diff options
author | dos-reis <gdr@axiomatics.org> | 2010-04-04 17:20:33 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-04-04 17:20:33 +0000 |
commit | ae3725b1b6208264518fbcd4d7adadd68978d26f (patch) | |
tree | 5d54b04001178fdfbf0eaa4a5031658e092d2aa2 /src | |
parent | da7d92d632deab11bb2c93a9b51dc4972707003d (diff) | |
download | open-axiom-ae3725b1b6208264518fbcd4d7adadd68978d26f.tar.gz |
* algebra/boolean.spad.pamphlet (BooleanLogic): New.
(PropositionalLogic): Extend it.
* algebra/aggcat.spad.pamphlet (BitAggregate): Likewise.
* algebra/si.spad.pamphlet (SingleInteger): Assert membership to
BooleanLogic.
Diffstat (limited to 'src')
-rw-r--r-- | src/ChangeLog | 8 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 6 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 6 | ||||
-rw-r--r-- | src/algebra/aggcat.spad.pamphlet | 11 | ||||
-rw-r--r-- | src/algebra/boolean.spad.pamphlet | 35 | ||||
-rw-r--r-- | src/algebra/si.spad.pamphlet | 6 | ||||
-rw-r--r-- | src/algebra/strap/SINT.lsp | 431 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3630 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 6986 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1332 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10701 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32561 |
12 files changed, 27879 insertions, 27834 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 534d0b45..6622f928 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,13 @@ 2010-04-04 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/boolean.spad.pamphlet (BooleanLogic): New. + (PropositionalLogic): Extend it. + * algebra/aggcat.spad.pamphlet (BitAggregate): Likewise. + * algebra/si.spad.pamphlet (SingleInteger): Assert membership to + BooleanLogic. + +2010-04-04 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/boolean.spad.pamphlet (PropositionalFormulaFunctions1): New. (PropositionalFormulaFunctions2): Likewise. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 8c99bd1e..8abba4d9 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -372,7 +372,8 @@ $(OUT)/IEVALAB.$(FASLEXT) $(OUT)/IEVALAB-.$(FASLEXT): \ $(OUT)/EVALAB.$(FASLEXT) $(OUT)/EVALAB-.$(FASLEXT): \ $(OUT)/IEVALAB.$(FASLEXT) -$(OUT)/PROPLOG.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) +$(OUT)/BOOLE.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/PROPLOG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) $(OUT)/SETCAT.$(FASLEXT) $(OUT)/MAYBE.$(FASLEXT): $(OUT)/KOERCE.$(FASLEXT) $(OUT)/RETRACT.$(FASLEXT) @@ -416,7 +417,7 @@ axiom_algebra_layer_1 = \ IDENT SEGCAT BINDING ALIST BOOLEAN PRIMARR \ ORDRING ORDRING- FEVALAB FEVALAB- \ OSGROUP MAYBE DATAARY PROPLOG HOMOTOP BYTEORD \ - FIELD FIELD- VECTCAT VECTCAT- IARRAY1 \ + FIELD FIELD- VECTCAT VECTCAT- IARRAY1 BOOLE \ PROPERTY ARITY OPERCAT OPERCAT- axiom_algebra_layer_1_nrlibs = \ @@ -578,6 +579,7 @@ $(OUT)/RMATCAT.$(FASLEXT): $(OUT)/DIRPROD.$(FASLEXT) $(OUT)/DIRPROD.$(FASLEXT): $(OUT)/DIRPCAT.$(FASLEXT) $(OUT)/DIRPCAT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/IVECTOR.$(FASLEXT) $(OUT)/MATRIX.$(FASLEXT): $(OUT)/MATCAT.$(FASLEXT) +$(OUT)/BTAGG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) axiom_algebra_layer_10 = \ RESULT BFUNCT BPADIC ANY \ diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 11c6399e..980260a2 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -331,7 +331,8 @@ $(OUT)/IEVALAB.$(FASLEXT) $(OUT)/IEVALAB-.$(FASLEXT): \ $(OUT)/EVALAB.$(FASLEXT) $(OUT)/EVALAB-.$(FASLEXT): \ $(OUT)/IEVALAB.$(FASLEXT) -$(OUT)/PROPLOG.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) +$(OUT)/BOOLE.$(FASLEXT): $(OUT)/TYPE.$(FASLEXT) +$(OUT)/PROPLOG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) $(OUT)/SETCAT.$(FASLEXT) $(OUT)/MAYBE.$(FASLEXT): $(OUT)/KOERCE.$(FASLEXT) $(OUT)/RETRACT.$(FASLEXT) @@ -375,7 +376,7 @@ axiom_algebra_layer_1 = \ IDENT SEGCAT BINDING ALIST BOOLEAN PRIMARR \ ORDRING ORDRING- FEVALAB FEVALAB- \ OSGROUP MAYBE DATAARY PROPLOG HOMOTOP BYTEORD \ - FIELD FIELD- VECTCAT VECTCAT- IARRAY1 \ + FIELD FIELD- VECTCAT VECTCAT- IARRAY1 BOOLE \ PROPERTY ARITY OPERCAT OPERCAT- axiom_algebra_layer_1_nrlibs = \ @@ -585,6 +586,7 @@ $(OUT)/RMATCAT.$(FASLEXT): $(OUT)/DIRPROD.$(FASLEXT) $(OUT)/DIRPROD.$(FASLEXT): $(OUT)/DIRPCAT.$(FASLEXT) $(OUT)/DIRPCAT.$(FASLEXT): $(OUT)/VSPACE.$(FASLEXT) $(OUT)/IVECTOR.$(FASLEXT) $(OUT)/MATRIX.$(FASLEXT): $(OUT)/MATCAT.$(FASLEXT) +$(OUT)/BTAGG.$(FASLEXT): $(OUT)/BOOLE.$(FASLEXT) axiom_algebra_layer_10 = \ RESULT BFUNCT BPADIC ANY \ diff --git a/src/algebra/aggcat.spad.pamphlet b/src/algebra/aggcat.spad.pamphlet index 6e448706..8b01b3c8 100644 --- a/src/algebra/aggcat.spad.pamphlet +++ b/src/algebra/aggcat.spad.pamphlet @@ -2681,22 +2681,13 @@ import OneDimensionalArrayAggregate Boolean ++ The bit aggregate category models aggregates representing large ++ quantities of Boolean data. BitAggregate(): Category == - Join(OrderedSet, Logic, OneDimensionalArrayAggregate Boolean) with - not: % -> % - ++ not(b) returns the logical {\em not} of bit aggregate - ++ \axiom{b}. + Join(OrderedSet, BooleanLogic, Logic, OneDimensionalArrayAggregate Boolean) with nand : (%, %) -> % ++ nand(a,b) returns the logical {\em nand} of bit aggregates \axiom{a} ++ and \axiom{b}. nor : (%, %) -> % ++ nor(a,b) returns the logical {\em nor} of bit aggregates \axiom{a} and ++ \axiom{b}. - and : (%, %) -> % - ++ a and b returns the logical {\em and} of bit aggregates \axiom{a} and - ++ \axiom{b}. - or : (%, %) -> % - ++ a or b returns the logical {\em or} of bit aggregates \axiom{a} and - ++ \axiom{b}. xor : (%, %) -> % ++ xor(a,b) returns the logical {\em exclusive-or} of bit aggregates ++ \axiom{a} and \axiom{b}. diff --git a/src/algebra/boolean.spad.pamphlet b/src/algebra/boolean.spad.pamphlet index 9be8f2a3..d4a2f65d 100644 --- a/src/algebra/boolean.spad.pamphlet +++ b/src/algebra/boolean.spad.pamphlet @@ -12,7 +12,24 @@ \tableofcontents \eject -\section{category PROPLOG PropositionalLogic} +\section{Categories an domains for logic} + +<<category BOOLE BooleanLogic>>= +)abbrev category BOOLE BooleanLogic +++ Author: Gabriel Dos Reis +++ Date Created: April 04, 2010 +++ Date Last Modified: April 04, 2010 +++ Description: +++ This is the category of Boolean logic structures. +BooleanLogic(): Category == Type with + not: % -> % + ++ \spad{not x} returns the complement or negation of \spad{x}. + and: (%,%) -> % + ++ \spad{x and y} returns the conjunction of \spad{x} and \spad{y}. + or: (%,%) -> % + ++ \spad{x or y} returns the disjunction of \spad{x} and \spad{y}. +@ + <<category PROPLOG PropositionalLogic>>= )abbrev category PROPLOG PropositionalLogic ++ Author: Gabriel Dos Reis @@ -20,17 +37,11 @@ ++ Date Last Modified: May 27, 2009 ++ Description: This category declares the connectives of ++ Propositional Logic. -PropositionalLogic(): Category == SetCategory with +PropositionalLogic(): Category == Join(BooleanLogic,SetCategory) with true: % ++ true is a logical constant. false: % ++ false is a logical constant. - not: % -> % - ++ not p returns the logical negation of `p'. - and: (%, %) -> % - ++ p and q returns the logical conjunction of `p', `q'. - or: (%, %) -> % - ++ p or q returns the logical disjunction of `p', `q'. implies: (%,%) -> % ++ implies(p,q) returns the logical implication of `q' by `p'. equiv: (%,%) -> % @@ -641,11 +652,9 @@ KleeneTrivalentLogic(): Public == Private where <<*>>= <<license>> -<<domain REF Reference>> +<<category BOOLE BooleanLogic>> <<category LOGIC Logic>> <<domain BOOLEAN Boolean>> -<<domain IBITS IndexedBits>> -<<domain BITS Bits>> <<category PROPLOG PropositionalLogic>> <<domain PROPFRML PropositionalFormula>> @@ -654,6 +663,10 @@ KleeneTrivalentLogic(): Public == Private where <<domain KTVLOGIC KleeneTrivalentLogic>> +<<domain IBITS IndexedBits>> +<<domain BITS Bits>> +<<domain REF Reference>> + @ \eject \begin{thebibliography}{99} diff --git a/src/algebra/si.spad.pamphlet b/src/algebra/si.spad.pamphlet index 1eece3c6..4e93667d 100644 --- a/src/algebra/si.spad.pamphlet +++ b/src/algebra/si.spad.pamphlet @@ -187,7 +187,7 @@ IntegerNumberSystem(): Category == -- QSOR, QSXOR, QSLEFTSHIFT, QSADDMOD, QSDIFMOD, QSMULTMOD -SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with +SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,BooleanLogic,Logic,OpenMath) with canonical ++ \spad{canonical} means that mathematical equality is implied by data structure equality. canonicalsClosed @@ -196,8 +196,6 @@ SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with ++ \spad{noetherian} all ideals are finitely generated (in fact principal). -- bit operations - not: % -> % - ++ not(n) returns the bit-by-bit logical {\em not} of the single integer n. xor: (%, %) -> % ++ xor(n,m) returns the bit-by-bit logical {\em xor} of ++ the single integers n and m. @@ -280,7 +278,9 @@ SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,Logic,OpenMath) with x \/ y == LOGIOR(x,y)$Lisp Not(x) == LOGNOT(x)$Lisp And(x,y) == LOGAND(x,y)$Lisp + x and y == And(x,y) Or(x,y) == LOGIOR(x,y)$Lisp + x or y == Or(x,y) xor(x,y) == LOGXOR(x,y)$Lisp x < y == QSLESSP(x,y)$Lisp x > y == QSGREATERP(x,y)$Lisp diff --git a/src/algebra/strap/SINT.lsp b/src/algebra/strap/SINT.lsp index 840a7fcf..fc221547 100644 --- a/src/algebra/strap/SINT.lsp +++ b/src/algebra/strap/SINT.lsp @@ -90,190 +90,200 @@ (PUT '|SINT;And;3$;21| '|SPADreplace| 'LOGAND) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;Or;3$;22|)) + |SINT;and;3$;22|)) -(PUT '|SINT;Or;3$;22| '|SPADreplace| 'LOGIOR) +(PUT '|SINT;and;3$;22| '|SPADreplace| 'LOGAND) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;xor;3$;23|)) + |SINT;Or;3$;23|)) -(PUT '|SINT;xor;3$;23| '|SPADreplace| 'LOGXOR) +(PUT '|SINT;Or;3$;23| '|SPADreplace| 'LOGIOR) + +(DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) + |SINT;or;3$;24|)) + +(PUT '|SINT;or;3$;24| '|SPADreplace| 'LOGIOR) + +(DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) + |SINT;xor;3$;25|)) + +(PUT '|SINT;xor;3$;25| '|SPADreplace| 'LOGXOR) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Boolean|) - |SINT;<;2$B;24|)) + |SINT;<;2$B;26|)) -(PUT '|SINT;<;2$B;24| '|SPADreplace| 'QSLESSP) +(PUT '|SINT;<;2$B;26| '|SPADreplace| 'QSLESSP) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Boolean|) - |SINT;>;2$B;25|)) + |SINT;>;2$B;27|)) -(PUT '|SINT;>;2$B;25| '|SPADreplace| 'QSGREATERP) +(PUT '|SINT;>;2$B;27| '|SPADreplace| 'QSGREATERP) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Boolean|) - |SINT;<=;2$B;26|)) + |SINT;<=;2$B;28|)) -(PUT '|SINT;<=;2$B;26| '|SPADreplace| +(PUT '|SINT;<=;2$B;28| '|SPADreplace| '(XLAM (|x| |y|) (NOT (> |x| |y|)))) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Boolean|) - |SINT;>=;2$B;27|)) + |SINT;>=;2$B;29|)) -(PUT '|SINT;>=;2$B;27| '|SPADreplace| '>=) +(PUT '|SINT;>=;2$B;29| '|SPADreplace| '>=) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) - |SINT;inc;2$;28|)) + |SINT;inc;2$;30|)) -(PUT '|SINT;inc;2$;28| '|SPADreplace| 'QSADD1) +(PUT '|SINT;inc;2$;30| '|SPADreplace| 'QSADD1) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) - |SINT;dec;2$;29|)) + |SINT;dec;2$;31|)) -(PUT '|SINT;dec;2$;29| '|SPADreplace| 'QSSUB1) +(PUT '|SINT;dec;2$;31| '|SPADreplace| 'QSSUB1) -(DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) |SINT;-;2$;30|)) +(DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) |SINT;-;2$;32|)) -(PUT '|SINT;-;2$;30| '|SPADreplace| 'QSMINUS) +(PUT '|SINT;-;2$;32| '|SPADreplace| 'QSMINUS) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;+;3$;31|)) + |SINT;+;3$;33|)) -(PUT '|SINT;+;3$;31| '|SPADreplace| 'QSPLUS) +(PUT '|SINT;+;3$;33| '|SPADreplace| 'QSPLUS) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;-;3$;32|)) + |SINT;-;3$;34|)) -(PUT '|SINT;-;3$;32| '|SPADreplace| 'QSDIFFERENCE) +(PUT '|SINT;-;3$;34| '|SPADreplace| 'QSDIFFERENCE) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;*;3$;33|)) + |SINT;*;3$;35|)) -(PUT '|SINT;*;3$;33| '|SPADreplace| 'QSTIMES) +(PUT '|SINT;*;3$;35| '|SPADreplace| 'QSTIMES) (DECLAIM (FTYPE (FUNCTION (|%Short| (|%IntegerSection| 0) |%Shell|) |%Short|) - |SINT;**;$Nni$;34|)) + |SINT;**;$Nni$;36|)) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;quo;3$;35|)) + |SINT;quo;3$;37|)) -(PUT '|SINT;quo;3$;35| '|SPADreplace| 'QSQUOTIENT) +(PUT '|SINT;quo;3$;37| '|SPADreplace| 'QSQUOTIENT) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;rem;3$;36|)) + |SINT;rem;3$;38|)) -(PUT '|SINT;rem;3$;36| '|SPADreplace| 'QSREMAINDER) +(PUT '|SINT;rem;3$;38| '|SPADreplace| 'QSREMAINDER) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Pair|) - |SINT;divide;2$R;37|)) + |SINT;divide;2$R;39|)) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;gcd;3$;38|)) + |SINT;gcd;3$;40|)) -(PUT '|SINT;gcd;3$;38| '|SPADreplace| 'GCD) +(PUT '|SINT;gcd;3$;40| '|SPADreplace| 'GCD) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) - |SINT;abs;2$;39|)) + |SINT;abs;2$;41|)) -(PUT '|SINT;abs;2$;39| '|SPADreplace| 'QSABSVAL) +(PUT '|SINT;abs;2$;41| '|SPADreplace| 'QSABSVAL) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Boolean|) - |SINT;odd?;$B;40|)) + |SINT;odd?;$B;42|)) -(PUT '|SINT;odd?;$B;40| '|SPADreplace| 'QSODDP) +(PUT '|SINT;odd?;$B;42| '|SPADreplace| 'QSODDP) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Boolean|) - |SINT;zero?;$B;41|)) + |SINT;zero?;$B;43|)) -(PUT '|SINT;zero?;$B;41| '|SPADreplace| 'QSZEROP) +(PUT '|SINT;zero?;$B;43| '|SPADreplace| 'QSZEROP) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Boolean|) - |SINT;one?;$B;42|)) + |SINT;one?;$B;44|)) -(PUT '|SINT;one?;$B;42| '|SPADreplace| '(XLAM (|x|) (EQL |x| 1))) +(PUT '|SINT;one?;$B;44| '|SPADreplace| '(XLAM (|x|) (EQL |x| 1))) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;max;3$;43|)) + |SINT;max;3$;45|)) -(PUT '|SINT;max;3$;43| '|SPADreplace| 'QSMAX) +(PUT '|SINT;max;3$;45| '|SPADreplace| 'QSMAX) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;min;3$;44|)) + |SINT;min;3$;46|)) -(PUT '|SINT;min;3$;44| '|SPADreplace| 'QSMIN) +(PUT '|SINT;min;3$;46| '|SPADreplace| 'QSMIN) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) - |SINT;hash;2$;45|)) + |SINT;hash;2$;47|)) -(PUT '|SINT;hash;2$;45| '|SPADreplace| 'HASHEQ) +(PUT '|SINT;hash;2$;47| '|SPADreplace| 'HASHEQ) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) - |SINT;length;2$;46|)) + |SINT;length;2$;48|)) -(PUT '|SINT;length;2$;46| '|SPADreplace| 'INTEGER-LENGTH) +(PUT '|SINT;length;2$;48| '|SPADreplace| 'INTEGER-LENGTH) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;shift;3$;47|)) + |SINT;shift;3$;49|)) -(PUT '|SINT;shift;3$;47| '|SPADreplace| 'QSLEFTSHIFT) +(PUT '|SINT;shift;3$;49| '|SPADreplace| 'QSLEFTSHIFT) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Short| |%Shell|) |%Short|) - |SINT;mulmod;4$;48|)) + |SINT;mulmod;4$;50|)) -(PUT '|SINT;mulmod;4$;48| '|SPADreplace| 'QSMULTMOD) +(PUT '|SINT;mulmod;4$;50| '|SPADreplace| 'QSMULTMOD) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Short| |%Shell|) |%Short|) - |SINT;addmod;4$;49|)) + |SINT;addmod;4$;51|)) -(PUT '|SINT;addmod;4$;49| '|SPADreplace| 'QSADDMOD) +(PUT '|SINT;addmod;4$;51| '|SPADreplace| 'QSADDMOD) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Short| |%Shell|) |%Short|) - |SINT;submod;4$;50|)) + |SINT;submod;4$;52|)) -(PUT '|SINT;submod;4$;50| '|SPADreplace| 'QSDIFMOD) +(PUT '|SINT;submod;4$;52| '|SPADreplace| 'QSDIFMOD) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Boolean|) - |SINT;negative?;$B;51|)) + |SINT;negative?;$B;53|)) -(PUT '|SINT;negative?;$B;51| '|SPADreplace| 'QSMINUSP) +(PUT '|SINT;negative?;$B;53| '|SPADreplace| 'QSMINUSP) (DECLAIM (FTYPE (FUNCTION (|%Shell|) (|%IntegerSection| 0)) - |SINT;size;Nni;52|)) + |SINT;size;Nni;54|)) -(PUT '|SINT;size;Nni;52| '|SPADreplace| +(PUT '|SINT;size;Nni;54| '|SPADreplace| '(XLAM NIL (+ (- |$ShortMaximum| |$ShortMinimum|) 1))) (DECLAIM (FTYPE (FUNCTION ((|%IntegerSection| 1) |%Shell|) |%Short|) - |SINT;index;Pi$;53|)) + |SINT;index;Pi$;55|)) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) (|%IntegerSection| 1)) - |SINT;lookup;$Pi;54|)) + |SINT;lookup;$Pi;56|)) -(PUT '|SINT;lookup;$Pi;54| '|SPADreplace| +(PUT '|SINT;lookup;$Pi;56| '|SPADreplace| '(XLAM (|x|) (+ (- |x| |$ShortMinimum|) 1))) (DECLAIM (FTYPE (FUNCTION (|%Thing| (|%Vector| *) |%Shell|) |%Pair|) - |SINT;reducedSystem;MVR;55|)) + |SINT;reducedSystem;MVR;57|)) -(PUT '|SINT;reducedSystem;MVR;55| '|SPADreplace| 'CONS) +(PUT '|SINT;reducedSystem;MVR;57| '|SPADreplace| 'CONS) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Short| |%Shell|) |%Short|) - |SINT;positiveRemainder;3$;56|)) + |SINT;positiveRemainder;3$;58|)) (DECLAIM (FTYPE (FUNCTION (|%Integer| |%Shell|) |%Short|) - |SINT;coerce;I$;57|)) + |SINT;coerce;I$;59|)) -(DECLAIM (FTYPE (FUNCTION (|%Shell|) |%Short|) |SINT;random;$;58|)) +(DECLAIM (FTYPE (FUNCTION (|%Shell|) |%Short|) |SINT;random;$;60|)) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Short|) - |SINT;random;2$;59|)) + |SINT;random;2$;61|)) -(PUT '|SINT;random;2$;59| '|SPADreplace| 'RANDOM) +(PUT '|SINT;random;2$;61| '|SPADreplace| 'RANDOM) (DECLAIM (FTYPE (FUNCTION (|%Short| |%Shell|) |%Shell|) - |SINT;unitNormal;$R;60|)) + |SINT;unitNormal;$R;62|)) (DEFUN |SINT;writeOMSingleInt| (|dev| |x| $) (SEQ (COND @@ -368,130 +378,138 @@ (DECLARE (IGNORE $)) (LOGAND |x| |y|)) -(DEFUN |SINT;Or;3$;22| (|x| |y| $) +(DEFUN |SINT;and;3$;22| (|x| |y| $) + (DECLARE (IGNORE $)) + (LOGAND |x| |y|)) + +(DEFUN |SINT;Or;3$;23| (|x| |y| $) (DECLARE (IGNORE $)) (LOGIOR |x| |y|)) -(DEFUN |SINT;xor;3$;23| (|x| |y| $) +(DEFUN |SINT;or;3$;24| (|x| |y| $) + (DECLARE (IGNORE $)) + (LOGIOR |x| |y|)) + +(DEFUN |SINT;xor;3$;25| (|x| |y| $) (DECLARE (IGNORE $)) (LOGXOR |x| |y|)) -(DEFUN |SINT;<;2$B;24| (|x| |y| $) +(DEFUN |SINT;<;2$B;26| (|x| |y| $) (DECLARE (IGNORE $)) (QSLESSP |x| |y|)) -(DEFUN |SINT;>;2$B;25| (|x| |y| $) +(DEFUN |SINT;>;2$B;27| (|x| |y| $) (DECLARE (IGNORE $)) (QSGREATERP |x| |y|)) -(DEFUN |SINT;<=;2$B;26| (|x| |y| $) +(DEFUN |SINT;<=;2$B;28| (|x| |y| $) (DECLARE (IGNORE $)) (NOT (> |x| |y|))) -(DEFUN |SINT;>=;2$B;27| (|x| |y| $) (DECLARE (IGNORE $)) (>= |x| |y|)) +(DEFUN |SINT;>=;2$B;29| (|x| |y| $) (DECLARE (IGNORE $)) (>= |x| |y|)) -(DEFUN |SINT;inc;2$;28| (|x| $) (DECLARE (IGNORE $)) (QSADD1 |x|)) +(DEFUN |SINT;inc;2$;30| (|x| $) (DECLARE (IGNORE $)) (QSADD1 |x|)) -(DEFUN |SINT;dec;2$;29| (|x| $) (DECLARE (IGNORE $)) (QSSUB1 |x|)) +(DEFUN |SINT;dec;2$;31| (|x| $) (DECLARE (IGNORE $)) (QSSUB1 |x|)) -(DEFUN |SINT;-;2$;30| (|x| $) (DECLARE (IGNORE $)) (QSMINUS |x|)) +(DEFUN |SINT;-;2$;32| (|x| $) (DECLARE (IGNORE $)) (QSMINUS |x|)) -(DEFUN |SINT;+;3$;31| (|x| |y| $) +(DEFUN |SINT;+;3$;33| (|x| |y| $) (DECLARE (IGNORE $)) (QSPLUS |x| |y|)) -(DEFUN |SINT;-;3$;32| (|x| |y| $) +(DEFUN |SINT;-;3$;34| (|x| |y| $) (DECLARE (IGNORE $)) (QSDIFFERENCE |x| |y|)) -(DEFUN |SINT;*;3$;33| (|x| |y| $) +(DEFUN |SINT;*;3$;35| (|x| |y| $) (DECLARE (IGNORE $)) (QSTIMES |x| |y|)) -(DEFUN |SINT;**;$Nni$;34| (|x| |n| $) +(DEFUN |SINT;**;$Nni$;36| (|x| |n| $) (SPADCALL (EXPT |x| |n|) (|getShellEntry| $ 36))) -(DEFUN |SINT;quo;3$;35| (|x| |y| $) +(DEFUN |SINT;quo;3$;37| (|x| |y| $) (DECLARE (IGNORE $)) (QSQUOTIENT |x| |y|)) -(DEFUN |SINT;rem;3$;36| (|x| |y| $) +(DEFUN |SINT;rem;3$;38| (|x| |y| $) (DECLARE (IGNORE $)) (QSREMAINDER |x| |y|)) -(DEFUN |SINT;divide;2$R;37| (|x| |y| $) +(DEFUN |SINT;divide;2$R;39| (|x| |y| $) (CONS (QSQUOTIENT |x| |y|) (QSREMAINDER |x| |y|))) -(DEFUN |SINT;gcd;3$;38| (|x| |y| $) +(DEFUN |SINT;gcd;3$;40| (|x| |y| $) (DECLARE (IGNORE $)) (GCD |x| |y|)) -(DEFUN |SINT;abs;2$;39| (|x| $) (DECLARE (IGNORE $)) (QSABSVAL |x|)) +(DEFUN |SINT;abs;2$;41| (|x| $) (DECLARE (IGNORE $)) (QSABSVAL |x|)) -(DEFUN |SINT;odd?;$B;40| (|x| $) (DECLARE (IGNORE $)) (QSODDP |x|)) +(DEFUN |SINT;odd?;$B;42| (|x| $) (DECLARE (IGNORE $)) (QSODDP |x|)) -(DEFUN |SINT;zero?;$B;41| (|x| $) (DECLARE (IGNORE $)) (QSZEROP |x|)) +(DEFUN |SINT;zero?;$B;43| (|x| $) (DECLARE (IGNORE $)) (QSZEROP |x|)) -(DEFUN |SINT;one?;$B;42| (|x| $) (DECLARE (IGNORE $)) (EQL |x| 1)) +(DEFUN |SINT;one?;$B;44| (|x| $) (DECLARE (IGNORE $)) (EQL |x| 1)) -(DEFUN |SINT;max;3$;43| (|x| |y| $) +(DEFUN |SINT;max;3$;45| (|x| |y| $) (DECLARE (IGNORE $)) (QSMAX |x| |y|)) -(DEFUN |SINT;min;3$;44| (|x| |y| $) +(DEFUN |SINT;min;3$;46| (|x| |y| $) (DECLARE (IGNORE $)) (QSMIN |x| |y|)) -(DEFUN |SINT;hash;2$;45| (|x| $) (DECLARE (IGNORE $)) (HASHEQ |x|)) +(DEFUN |SINT;hash;2$;47| (|x| $) (DECLARE (IGNORE $)) (HASHEQ |x|)) -(DEFUN |SINT;length;2$;46| (|x| $) +(DEFUN |SINT;length;2$;48| (|x| $) (DECLARE (IGNORE $)) (INTEGER-LENGTH |x|)) -(DEFUN |SINT;shift;3$;47| (|x| |n| $) +(DEFUN |SINT;shift;3$;49| (|x| |n| $) (DECLARE (IGNORE $)) (QSLEFTSHIFT |x| |n|)) -(DEFUN |SINT;mulmod;4$;48| (|a| |b| |p| $) +(DEFUN |SINT;mulmod;4$;50| (|a| |b| |p| $) (DECLARE (IGNORE $)) (QSMULTMOD |a| |b| |p|)) -(DEFUN |SINT;addmod;4$;49| (|a| |b| |p| $) +(DEFUN |SINT;addmod;4$;51| (|a| |b| |p| $) (DECLARE (IGNORE $)) (QSADDMOD |a| |b| |p|)) -(DEFUN |SINT;submod;4$;50| (|a| |b| |p| $) +(DEFUN |SINT;submod;4$;52| (|a| |b| |p| $) (DECLARE (IGNORE $)) (QSDIFMOD |a| |b| |p|)) -(DEFUN |SINT;negative?;$B;51| (|x| $) +(DEFUN |SINT;negative?;$B;53| (|x| $) (DECLARE (IGNORE $)) (QSMINUSP |x|)) -(DEFUN |SINT;size;Nni;52| ($) +(DEFUN |SINT;size;Nni;54| ($) (DECLARE (IGNORE $)) (+ (- |$ShortMaximum| |$ShortMinimum|) 1)) -(DEFUN |SINT;index;Pi$;53| (|i| $) - (PROG (#0=#:G1457) +(DEFUN |SINT;index;Pi$;55| (|i| $) + (PROG (#0=#:G1459) (RETURN (PROG1 (LETT #0# (- (+ |i| |$ShortMinimum|) 1) - |SINT;index;Pi$;53|) + |SINT;index;Pi$;55|) (|check-subtype| (SMINTP #0#) '(|SingleInteger|) #0#))))) -(DEFUN |SINT;lookup;$Pi;54| (|x| $) +(DEFUN |SINT;lookup;$Pi;56| (|x| $) (DECLARE (IGNORE $)) (+ (- |x| |$ShortMinimum|) 1)) -(DEFUN |SINT;reducedSystem;MVR;55| (|m| |v| $) +(DEFUN |SINT;reducedSystem;MVR;57| (|m| |v| $) (DECLARE (IGNORE $)) (CONS |m| |v|)) -(DEFUN |SINT;positiveRemainder;3$;56| (|x| |n| $) +(DEFUN |SINT;positiveRemainder;3$;58| (|x| |n| $) (PROG (|r|) (RETURN (SEQ (LETT |r| (QSREMAINDER |x| |n|) - |SINT;positiveRemainder;3$;56|) + |SINT;positiveRemainder;3$;58|) (EXIT (COND ((QSMINUSP |r|) (COND @@ -499,18 +517,18 @@ ('T (QSPLUS |r| |n|)))) ('T |r|))))))) -(DEFUN |SINT;coerce;I$;57| (|x| $) +(DEFUN |SINT;coerce;I$;59| (|x| $) (PROG1 |x| (|check-subtype| (SMINTP |x|) '(|SingleInteger|) |x|))) -(DEFUN |SINT;random;$;58| ($) +(DEFUN |SINT;random;$;60| ($) (SEQ (|setShellEntry| $ 6 (REMAINDER (TIMES 314159269 (|getShellEntry| $ 6)) 2147483647)) (EXIT (REMAINDER (|getShellEntry| $ 6) 67108864)))) -(DEFUN |SINT;random;2$;59| (|n| $) (DECLARE (IGNORE $)) (RANDOM |n|)) +(DEFUN |SINT;random;2$;61| (|n| $) (DECLARE (IGNORE $)) (RANDOM |n|)) -(DEFUN |SINT;unitNormal;$R;60| (|x| $) +(DEFUN |SINT;unitNormal;$R;62| (|x| $) (COND ((QSLESSP |x| 0) (VECTOR -1 (QSMINUS |x|) -1)) ('T (VECTOR 1 |x| 1)))) @@ -518,7 +536,7 @@ (DEFUN |SingleInteger| () (PROG () (RETURN - (PROG (#0=#:G1492) + (PROG (#0=#:G1494) (RETURN (COND ((LETT #0# (HGET |$ConstructorCache| '|SingleInteger|) @@ -540,7 +558,7 @@ (RETURN (PROGN (LETT |dv$| '(|SingleInteger|) . #0=(|SingleInteger|)) - (LETT $ (|newShell| 115) . #0#) + (LETT $ (|newShell| 117) . #0#) (|setShellEntry| $ 0 |dv$|) (|setShellEntry| $ 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #0#)) @@ -554,9 +572,9 @@ (LIST '#(NIL NIL NIL NIL NIL (|Integer|) '|seed| (CONS IDENTITY (FUNCALL (|dispatchFunction| |SINT;Zero;$;10|) $)) - (0 . |Zero|) (|Boolean|) |SINT;<;2$B;24| (|Void|) + (0 . |Zero|) (|Boolean|) |SINT;<;2$B;26| (|Void|) (|OpenMathDevice|) (4 . |OMputApp|) (|String|) - (9 . |OMputSymbol|) |SINT;-;2$;30| |SINT;convert;$I;8| + (9 . |OMputSymbol|) |SINT;-;2$;32| |SINT;convert;$I;8| (16 . |OMputInteger|) (22 . |OMputEndApp|) (|OpenMathEncoding|) (27 . |OMencodingXML|) (31 . |OMopenString|) (37 . |OMputObject|) @@ -565,7 +583,7 @@ |SINT;OMwrite;Omd$V;4| |SINT;OMwrite;Omd$BV;5| (|Matrix| 5) (|Matrix| $) |SINT;reducedSystem;MM;6| (|OutputForm|) (52 . |coerce|) |SINT;coerce;$Of;7| - (57 . |coerce|) |SINT;*;3$;33| |SINT;*;I2$;9| + (57 . |coerce|) |SINT;*;3$;35| |SINT;*;I2$;9| (CONS IDENTITY (FUNCALL (|dispatchFunction| |SINT;One;$;11|) $)) |SINT;base;$;12| @@ -575,33 +593,34 @@ (FUNCALL (|dispatchFunction| |SINT;min;$;14|) $)) |SINT;=;2$B;15| |SINT;~;2$;16| |SINT;not;2$;17| |SINT;/\\;3$;18| |SINT;\\/;3$;19| |SINT;Not;2$;20| - |SINT;And;3$;21| |SINT;Or;3$;22| |SINT;xor;3$;23| - |SINT;>;2$B;25| (62 . |not|) |SINT;<=;2$B;26| - |SINT;>=;2$B;27| |SINT;inc;2$;28| |SINT;dec;2$;29| - |SINT;+;3$;31| |SINT;-;3$;32| (|NonNegativeInteger|) - |SINT;**;$Nni$;34| |SINT;quo;3$;35| |SINT;rem;3$;36| + |SINT;And;3$;21| |SINT;and;3$;22| |SINT;Or;3$;23| + |SINT;or;3$;24| |SINT;xor;3$;25| |SINT;>;2$B;27| + (62 . |not|) |SINT;<=;2$B;28| |SINT;>=;2$B;29| + |SINT;inc;2$;30| |SINT;dec;2$;31| |SINT;+;3$;33| + |SINT;-;3$;34| (|NonNegativeInteger|) |SINT;**;$Nni$;36| + |SINT;quo;3$;37| |SINT;rem;3$;38| (|Record| (|:| |quotient| $) (|:| |remainder| $)) - |SINT;divide;2$R;37| |SINT;gcd;3$;38| |SINT;abs;2$;39| - |SINT;odd?;$B;40| |SINT;zero?;$B;41| (67 . |One|) - |SINT;one?;$B;42| |SINT;max;3$;43| |SINT;min;3$;44| - (|SingleInteger|) |SINT;hash;2$;45| |SINT;length;2$;46| - |SINT;shift;3$;47| |SINT;mulmod;4$;48| |SINT;addmod;4$;49| - |SINT;submod;4$;50| |SINT;negative?;$B;51| - |SINT;size;Nni;52| (|PositiveInteger|) (71 . +) (77 . -) - |SINT;index;Pi$;53| |SINT;lookup;$Pi;54| (|Vector| 5) - (|Record| (|:| |mat| 30) (|:| |vec| 88)) (|Vector| $) - |SINT;reducedSystem;MVR;55| |SINT;positiveRemainder;3$;56| - |SINT;coerce;I$;57| |SINT;random;$;58| |SINT;random;2$;59| + |SINT;divide;2$R;39| |SINT;gcd;3$;40| |SINT;abs;2$;41| + |SINT;odd?;$B;42| |SINT;zero?;$B;43| (67 . |One|) + |SINT;one?;$B;44| |SINT;max;3$;45| |SINT;min;3$;46| + (|SingleInteger|) |SINT;hash;2$;47| |SINT;length;2$;48| + |SINT;shift;3$;49| |SINT;mulmod;4$;50| |SINT;addmod;4$;51| + |SINT;submod;4$;52| |SINT;negative?;$B;53| + |SINT;size;Nni;54| (|PositiveInteger|) (71 . +) (77 . -) + |SINT;index;Pi$;55| |SINT;lookup;$Pi;56| (|Vector| 5) + (|Record| (|:| |mat| 30) (|:| |vec| 90)) (|Vector| $) + |SINT;reducedSystem;MVR;57| |SINT;positiveRemainder;3$;58| + |SINT;coerce;I$;59| |SINT;random;$;60| |SINT;random;2$;61| (|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) - |SINT;unitNormal;$R;60| (|Fraction| 5) - (|Union| 98 '"failed") (|DoubleFloat|) - (|Union| $ '"failed") (|Float|) (|PatternMatchResult| 5 $) - (|Pattern| 5) (|InputForm|) (|Union| 5 '"failed") - (|List| $) (|Union| 107 '"failed") - (|Record| (|:| |coef| 107) (|:| |generator| $)) + |SINT;unitNormal;$R;62| (|Fraction| 5) + (|Union| 100 '"failed") (|Union| $ '"failed") (|Float|) + (|DoubleFloat|) (|Pattern| 5) (|PatternMatchResult| 5 $) + (|InputForm|) (|Union| 5 '"failed") (|List| $) + (|Union| 109 '"failed") + (|Record| (|:| |coef| 109) (|:| |generator| $)) (|Record| (|:| |coef1| $) (|:| |coef2| $)) - (|Union| 110 '"failed") + (|Union| 112 '"failed") (|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) (|Factored| $) (|SparseUnivariatePolynomial| $)) @@ -614,20 +633,20 @@ 206 |rational?| 211 |rational| 216 |random| 221 |quo| 230 |principalIdeal| 236 |prime?| 241 |powmod| 246 |positiveRemainder| 253 |positive?| 259 |permutation| 264 - |patternMatch| 270 |one?| 277 |odd?| 282 |not| 287 - |nextItem| 292 |negative?| 297 |multiEuclidean| 302 - |mulmod| 308 |min| 315 |max| 325 |mask| 335 |lookup| 340 - |length| 345 |lcm| 350 |latex| 361 |invmod| 366 |init| 372 - |index| 376 |inc| 381 |hash| 386 |gcdPolynomial| 391 |gcd| - 397 |factorial| 408 |factor| 413 |extendedEuclidean| 418 - |exquo| 431 |expressIdealMember| 437 |even?| 443 - |euclideanSize| 448 |divide| 453 |differentiate| 459 |dec| - 470 |copy| 475 |convert| 480 |coerce| 505 |characteristic| - 525 |bit?| 529 |binomial| 535 |before?| 541 |base| 547 - |associates?| 551 |addmod| 557 |abs| 564 |\\/| 569 |Zero| - 575 |Or| 579 |One| 585 |OMwrite| 589 |Not| 613 D 618 |And| - 629 >= 635 > 641 = 647 <= 653 < 659 |/\\| 665 - 671 + 682 - ** 688 * 700) + |patternMatch| 270 |or| 277 |one?| 283 |odd?| 288 |not| + 293 |nextItem| 298 |negative?| 303 |multiEuclidean| 308 + |mulmod| 314 |min| 321 |max| 331 |mask| 341 |lookup| 346 + |length| 351 |lcm| 356 |latex| 367 |invmod| 372 |init| 378 + |index| 382 |inc| 387 |hash| 392 |gcdPolynomial| 397 |gcd| + 403 |factorial| 414 |factor| 419 |extendedEuclidean| 424 + |exquo| 437 |expressIdealMember| 443 |even?| 449 + |euclideanSize| 454 |divide| 459 |differentiate| 465 |dec| + 476 |copy| 481 |convert| 486 |coerce| 511 |characteristic| + 531 |bit?| 535 |binomial| 541 |before?| 547 |base| 553 + |associates?| 557 |and| 563 |addmod| 569 |abs| 576 |\\/| + 581 |Zero| 587 |Or| 591 |One| 597 |OMwrite| 601 |Not| 625 + D 630 |And| 641 >= 647 > 653 = 659 <= 665 < 671 |/\\| 677 + - 683 + 694 ** 700 * 712) '((|noetherian| . 0) (|canonicalsClosed| . 0) (|canonical| . 0) (|canonicalUnitNormal| . 0) (|multiplicativeValuation| . 0) (|noZeroDivisors| . 0) @@ -636,7 +655,7 @@ (CONS (|makeByteWordVec2| 1 '(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0)) + 0 0 0 0 0 0)) (CONS '#(|IntegerNumberSystem&| |EuclideanDomain&| |UniqueFactorizationDomain&| NIL NIL |GcdDomain&| |IntegralDomain&| |Algebra&| NIL @@ -645,9 +664,9 @@ |AbelianGroup&| NIL NIL NIL NIL NIL |AbelianMonoid&| |Monoid&| NIL NIL NIL |OrderedSet&| NIL NIL |AbelianSemiGroup&| - |SemiGroup&| NIL |Logic&| NIL |RetractableTo&| - |SetCategory&| NIL NIL NIL NIL NIL NIL NIL NIL - NIL |BasicType&| NIL) + |SemiGroup&| NIL |Logic&| NIL NIL + |RetractableTo&| |SetCategory&| NIL NIL NIL + NIL NIL NIL NIL NIL NIL NIL |BasicType&| NIL) (CONS '#((|IntegerNumberSystem|) (|EuclideanDomain|) (|UniqueFactorizationDomain|) @@ -675,61 +694,63 @@ (|RightLinearSet| $$) (|AbelianSemiGroup|) (|SemiGroup|) (|LeftLinearSet| 5) (|Logic|) - (|RealConstant|) (|RetractableTo| 5) - (|SetCategory|) (|OpenMath|) - (|ConvertibleTo| 102) - (|ConvertibleTo| 100) - (|CombinatorialFunctionCategory|) + (|BooleanLogic|) (|RealConstant|) + (|RetractableTo| 5) (|SetCategory|) + (|OpenMath|) (|Type|) + (|ConvertibleTo| 103) (|ConvertibleTo| 104) + (|CombinatorialFunctionCategory|) (|ConvertibleTo| 105) + (|ConvertibleTo| 107) (|ConvertibleTo| 5) (|CoercibleFrom| $$) (|CoercibleFrom| 5) (|BasicType|) (|CoercibleTo| 33)) - (|makeByteWordVec2| 114 + (|makeByteWordVec2| 116 '(0 5 0 8 1 12 11 0 13 3 12 11 0 14 14 15 2 12 11 0 5 18 1 12 11 0 19 0 20 0 21 2 12 0 14 20 22 1 12 11 0 23 1 12 11 0 24 1 12 11 0 25 1 5 33 0 34 1 0 - 0 5 36 1 9 0 0 53 0 5 0 70 2 83 0 0 0 - 84 2 5 0 0 0 85 2 0 9 0 0 1 1 0 0 0 - 44 1 0 9 0 69 2 0 0 0 0 51 1 0 96 0 - 97 1 0 0 0 1 1 0 9 0 1 2 0 0 0 0 1 2 - 0 101 0 0 1 3 0 0 0 0 0 80 1 0 0 0 1 - 1 0 113 0 1 2 0 9 0 0 1 0 0 60 82 1 0 - 5 0 1 2 0 0 0 0 77 0 0 0 1 1 0 106 0 - 1 1 0 5 0 1 2 0 0 0 0 63 2 0 89 31 90 - 91 1 0 30 31 32 1 0 101 0 1 1 0 99 0 - 1 1 0 9 0 1 1 0 98 0 1 1 0 0 0 95 0 0 - 0 94 2 0 0 0 0 62 1 0 109 107 1 1 0 9 - 0 1 3 0 0 0 0 0 1 2 0 0 0 0 92 1 0 9 - 0 1 2 0 0 0 0 1 3 0 103 0 104 103 1 1 - 0 9 0 71 1 0 9 0 68 1 0 0 0 45 1 0 - 101 0 1 1 0 9 0 81 2 0 108 107 0 1 3 - 0 0 0 0 0 78 0 0 0 42 2 0 0 0 0 73 0 - 0 0 41 2 0 0 0 0 72 1 0 0 0 1 1 0 83 - 0 87 1 0 0 0 76 2 0 0 0 0 1 1 0 0 107 - 1 1 0 14 0 1 2 0 0 0 0 1 0 0 0 1 1 0 - 0 83 86 1 0 0 0 56 1 0 74 0 75 2 0 - 114 114 114 1 2 0 0 0 0 66 1 0 0 107 - 1 1 0 0 0 1 1 0 113 0 1 3 0 111 0 0 0 - 1 2 0 112 0 0 1 2 0 101 0 0 1 2 0 108 - 107 0 1 1 0 9 0 1 1 0 60 0 1 2 0 64 0 - 0 65 1 0 0 0 1 2 0 0 0 60 1 1 0 0 0 - 57 1 0 0 0 1 1 0 100 0 1 1 0 102 0 1 - 1 0 105 0 1 1 0 104 0 1 1 0 5 0 17 1 - 0 0 5 93 1 0 0 0 1 1 0 0 5 93 1 0 33 - 0 35 0 0 60 1 2 0 9 0 0 1 2 0 0 0 0 1 - 2 0 9 0 0 1 0 0 0 40 2 0 9 0 0 1 3 0 - 0 0 0 0 79 1 0 0 0 67 2 0 0 0 0 47 0 - 0 0 7 2 0 0 0 0 50 0 0 0 39 2 0 11 12 - 0 28 3 0 11 12 0 9 29 2 0 14 0 9 27 1 - 0 14 0 26 1 0 0 0 48 1 0 0 0 1 2 0 0 - 0 60 1 2 0 0 0 0 49 2 0 9 0 0 55 2 0 - 9 0 0 52 2 0 9 0 0 43 2 0 9 0 0 54 2 - 0 9 0 0 10 2 0 0 0 0 46 2 0 0 0 0 59 - 1 0 0 0 16 2 0 0 0 0 58 2 0 0 0 60 61 - 2 0 0 0 83 1 2 0 0 0 0 37 2 0 0 5 0 - 38 2 0 0 60 0 1 2 0 0 83 0 1))))) + 0 5 36 1 9 0 0 55 0 5 0 72 2 85 0 0 0 + 86 2 5 0 0 0 87 2 0 9 0 0 1 1 0 0 0 + 44 1 0 9 0 71 2 0 0 0 0 53 1 0 98 0 + 99 1 0 0 0 1 1 0 9 0 1 2 0 0 0 0 1 2 + 0 102 0 0 1 3 0 0 0 0 0 82 1 0 0 0 1 + 1 0 115 0 1 2 0 9 0 0 1 0 0 62 84 1 0 + 5 0 1 2 0 0 0 0 79 0 0 0 1 1 0 108 0 + 1 1 0 5 0 1 2 0 0 0 0 65 1 0 30 31 32 + 2 0 91 31 92 93 1 0 102 0 1 1 0 101 0 + 1 1 0 9 0 1 1 0 100 0 1 0 0 0 96 1 0 + 0 0 97 2 0 0 0 0 64 1 0 111 109 1 1 0 + 9 0 1 3 0 0 0 0 0 1 2 0 0 0 0 94 1 0 + 9 0 1 2 0 0 0 0 1 3 0 106 0 105 106 1 + 2 0 0 0 0 52 1 0 9 0 73 1 0 9 0 70 1 + 0 0 0 45 1 0 102 0 1 1 0 9 0 83 2 0 + 110 109 0 1 3 0 0 0 0 0 80 0 0 0 42 2 + 0 0 0 0 75 0 0 0 41 2 0 0 0 0 74 1 0 + 0 0 1 1 0 85 0 89 1 0 0 0 78 2 0 0 0 + 0 1 1 0 0 109 1 1 0 14 0 1 2 0 0 0 0 + 1 0 0 0 1 1 0 0 85 88 1 0 0 0 58 1 0 + 76 0 77 2 0 116 116 116 1 2 0 0 0 0 + 68 1 0 0 109 1 1 0 0 0 1 1 0 115 0 1 + 3 0 113 0 0 0 1 2 0 114 0 0 1 2 0 102 + 0 0 1 2 0 110 109 0 1 1 0 9 0 1 1 0 + 62 0 1 2 0 66 0 0 67 1 0 0 0 1 2 0 0 + 0 62 1 1 0 0 0 59 1 0 0 0 1 1 0 103 0 + 1 1 0 104 0 1 1 0 105 0 1 1 0 107 0 1 + 1 0 5 0 17 1 0 0 5 95 1 0 0 0 1 1 0 0 + 5 95 1 0 33 0 35 0 0 62 1 2 0 9 0 0 1 + 2 0 0 0 0 1 2 0 9 0 0 1 0 0 0 40 2 0 + 9 0 0 1 2 0 0 0 0 50 3 0 0 0 0 0 81 1 + 0 0 0 69 2 0 0 0 0 47 0 0 0 7 2 0 0 0 + 0 51 0 0 0 39 3 0 11 12 0 9 29 2 0 14 + 0 9 27 2 0 11 12 0 28 1 0 14 0 26 1 0 + 0 0 48 1 0 0 0 1 2 0 0 0 62 1 2 0 0 0 + 0 49 2 0 9 0 0 57 2 0 9 0 0 54 2 0 9 + 0 0 43 2 0 9 0 0 56 2 0 9 0 0 10 2 0 + 0 0 0 46 2 0 0 0 0 61 1 0 0 0 16 2 0 + 0 0 0 60 2 0 0 0 62 63 2 0 0 0 85 1 2 + 0 0 0 0 37 2 0 0 5 0 38 2 0 0 62 0 1 + 2 0 0 85 0 1))))) '|lookupComplete|)) (MAKEPROP '|SingleInteger| 'NILADIC T) diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index c23e3ecf..2030cdcf 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2268440 . 3479376211) +(2267734 . 3479388555) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4444 . T) (-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4440 . T) (-4445 . T) (-4439 . T)) +((-4445 . T) (-4443 . T) (-4442 . T) ((-4450 "*") . T) (-4441 . T) (-4446 . T) (-4440 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -1668) +(-32 R -1667) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) +((|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4447))) +((|HasAttribute| |#1| (QUOTE -4448))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -1668 UP UPUP -2520) +(-40 -1667 UP UPUP -2132) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4440 |has| (-412 |#2|) (-367)) (-4445 |has| (-412 |#2|) (-367)) (-4439 |has| (-412 |#2|) (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2776 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2776 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2776 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367))))) -(-41 R -1668) +((-4441 |has| (-413 |#2|) (-368)) (-4446 |has| (-413 |#2|) (-368)) (-4440 |has| (-413 |#2|) (-368)) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-2779 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-2779 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-2779 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-2779 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368))))) +(-41 R -1667) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -435) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -436) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,a) = 0} and \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,a,b) = associator(a,x,b) = associator(a,b,x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,x,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,b,x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,a,b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,j=1,...,n},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,...,bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,...,bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-310)))) +((|HasCategory| |#1| (QUOTE (-311)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4444 |has| |#1| (-561)) (-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) +((-4445 |has| |#1| (-562)) (-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4447 . T) (-4448 . T)) -((-2776 (-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|))))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|))))))) +((-4448 . T) (-4449 . T)) +((-2779 (-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|))))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569))))) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4444 . T)) +((-4445 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -1668) +(-54 |Base| R -1667) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-61 -3573) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-61 -3574) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3573) +(-62 -3574) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3573) +(-63 -3574) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3573) +(-64 -3574) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3573) +(-65 -3574) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3573) +(-66 -3574) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3573) +(-67 -3574) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3573) +(-68 -3574) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3573) +(-69 -3574) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3573) +(-70 -3574) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3573) +(-71 -3574) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3573) +(-72 -3574) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3573) +(-73 -3574) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3573) +(-74 -3574) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,66 +236,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3573) +(-77 -3574) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3573) +(-78 -3574) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3573) +(-79 -3574) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3573) +(-80 -3574) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3573) +(-81 -3574) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3573) +(-82 -3574) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3573) +(-83 -3574) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3573) +(-84 -3574) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3573) +(-85 -3574) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3573) +(-86 -3574) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3573) +(-87 -3574) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3573) +(-88 -3574) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -3573) +(-89 -3574) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-90 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-367)))) +((|HasCategory| |#1| (QUOTE (-368)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4447 . T)) +((-4448 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4447 . T) ((-4449 "*") . T) (-4448 . T) (-4444 . T) (-4442 . T) (-4441 . T) (-4440 . T) (-4445 . T) (-4439 . T) (-4438 . T) (-4437 . T) (-4436 . T) (-4435 . T) (-4443 . T) (-4446 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4434 . T)) +((-4448 . T) ((-4450 "*") . T) (-4449 . T) (-4445 . T) (-4443 . T) (-4442 . T) (-4441 . T) (-4446 . T) (-4440 . T) (-4439 . T) (-4438 . T) (-4437 . T) (-4436 . T) (-4444 . T) (-4447 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4435 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4444 . T)) +((-4445 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4449 "*")))) +((|HasAttribute| |#1| (QUOTE (-4450 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4447 . T)) +((-4448 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,4791 +358,4795 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4448 . T)) +((-4449 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145))))) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2779 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867))))) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -313) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-112) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-868))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) NIL NIL -(-113 A) +(-113) +((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) +NIL +NIL +(-114 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-114) +(-115) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-115 -1668 UP) +(-116 -1667 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-116 |p|) +(-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-117 |p|) +(-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-915))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-116 |#1|) (QUOTE (-1030))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-2776 (|HasCategory| (-116 |#1|) (QUOTE (-825))) (|HasCategory| (-116 |#1|) (QUOTE (-855)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-1160))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-116 |#1|) (QUOTE (-234))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-310))) (|HasCategory| (-116 |#1|) (QUOTE (-550))) (|HasCategory| (-116 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-915)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) -(-118 A S) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-916))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-117 |#1|) (QUOTE (-1031))) (|HasCategory| (-117 |#1|) (QUOTE (-826))) (-2779 (|HasCategory| (-117 |#1|) (QUOTE (-826))) (|HasCategory| (-117 |#1|) (QUOTE (-856)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-1161))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-235))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-311))) (|HasCategory| (-117 |#1|) (QUOTE (-551))) (|HasCategory| (-117 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +(-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4448))) -(-119 S) +((|HasAttribute| |#1| (QUOTE -4449))) +(-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL NIL -(-120 UP) +(-121 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-121 S) -((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (-122 S) -((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) +((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-123 S) +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL -(-123) -((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4448 . T) (-4447 . T)) +(-124) +((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) +((-4449 . T) (-4448 . T)) NIL -(-124 A S) +(-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-125 S) +(-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL -(-126 S) -((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (-127 S) +((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-128) -((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129)))))) (-2776 (-12 (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-129) (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1108)))) (|HasCategory| (-129) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-129) (QUOTE (-1108))) (|HasCategory| (-129) (LIST (QUOTE -312) (QUOTE (-129)))))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (-129) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130)))))) (-2779 (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-130) (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109)))) (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130)))))) +(-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-130) +(-131) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL NIL -(-131) +(-132) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x, y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-132) +(-133) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x, n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-133) +(-134) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) NIL NIL -(-134) +(-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4449 "*") . T)) +(((-4450 "*") . T)) NIL -(-135 |minix| -2409 S T$) +(-136 |minix| -2411 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -2409 R) +(-137 |minix| -2411 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-137) +(-138) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-138) +(-139) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-139) +(-140) ((|constructor| (NIL "This domain provides representations for category constructors."))) NIL NIL -(-140) +(-141) ((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}."))) NIL NIL -(-141) +(-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4447 . T) (-4437 . T) (-4448 . T)) -((-2776 (-12 (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-372))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) -(-142 R Q A) +((-4448 . T) (-4438 . T) (-4449 . T)) +((-2779 (-12 (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) +(-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-143) +(-144) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n, m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,r)} returns the \\spad{(n,r)} binomial coefficient (often denoted in the literature by \\spad{C(n,r)}). Note: \\spad{C(n,r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-144) +(-145) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-145) +(-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4444 . T)) +((-4445 . T)) NIL -(-146 R) +(-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-147) +(-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4444 . T)) +((-4445 . T)) NIL -(-148 -1668 UP UPUP) +(-149 -1667 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL -(-149 R CR) +(-150 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-150 A S) +(-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasAttribute| |#1| (QUOTE -4447))) -(-151 S) +((|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasAttribute| |#1| (QUOTE -4448))) +(-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL -(-152 |n| K Q) +(-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4442 . T) (-4441 . T) (-4444 . T)) +((-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-153) +(-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-154) +(-155) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-155 UP |Par|) +(-156 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly, eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-156) +(-157) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-157) +(-158) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -1668) +(-159 R -1667) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-159 I) +(-160 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,m)} returns the Stirling number of the second kind denoted \\spad{SS[n,m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,m)} returns the Stirling number of the first kind denoted \\spad{S[n,m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,[m1,m2,...,mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,r)} returns the binomial coefficient \\spad{C(n,r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-160) +(-161) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-161) +(-162) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-162) +(-163) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-163) +(-164) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-164 R UP UPUP) +(-165 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-165 S R) +(-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1010))) (|HasCategory| |#2| (QUOTE (-1210))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4443)) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561)))) -(-166 R) +((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1211))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasAttribute| |#2| (QUOTE -4447)) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562)))) +(-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4440 -2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4443 |has| |#1| (-6 -4443)) (-4446 |has| |#1| (-6 -4446)) (-3101 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 -2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4444 |has| |#1| (-6 -4444)) (-4447 |has| |#1| (-6 -4447)) (-3103 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-167 RR PR) +(-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-168) +(-169) ((|constructor| (NIL "This package implements a Spad compiler.")) (|elaborate| (((|Maybe| (|Elaboration|)) (|SpadAst|)) "\\spad{elaborate(s)} returns the elaboration of the syntax object \\spad{s} in the empty environement.")) (|macroExpand| (((|SpadAst|) (|SpadAst|) (|Environment|)) "\\spad{macroExpand(s,e)} traverses the syntax object \\spad{s} replacing all (niladic) macro invokations with the corresponding substitution."))) NIL NIL -(-169 R S) +(-170 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-170 R) +(-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4440 -2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4443 |has| |#1| (-6 -4443)) (-4446 |has| |#1| (-6 -4446)) (-3101 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-372)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-833)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-1210)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-915))))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1210)))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1210)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-234))) (-12 (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasAttribute| |#1| (QUOTE -4443)) (|HasAttribute| |#1| (QUOTE -4446)) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-353))))) -(-171 R S CS) +((-4441 -2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4444 |has| |#1| (-6 -4444)) (-4447 |has| |#1| (-6 -4447)) (-3103 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1211)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1211)))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1211)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4447)) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-354))))) +(-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-172) +(-173) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-173) +(-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-174) +(-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-175 R) +(-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4449 "*") . T) (-4440 . T) (-4445 . T) (-4439 . T) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") . T) (-4441 . T) (-4446 . T) (-4440 . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-176) +(-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-177 R) +(-178 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,b)} is a function which will map the point \\spad{(lambda,mu,nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,v,phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(xi,eta,phi)} to \\spad{x = a*sinh(xi)*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(xi)*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(xi)*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,v,z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v,z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta,z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-178 R |PolR| E) +(-179 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-179 R S CS) +(-180 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-958 |#2|) (LIST (QUOTE -892) (|devaluate| |#1|)))) -(-180 R) +((|HasCategory| (-959 |#2|) (LIST (QUOTE -893) (|devaluate| |#1|)))) +(-181 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL NIL -(-181) +(-182) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-182 R UP) +(-183 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-183 S ST) +(-184 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-184 C) +(-185 C) ((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call."))) NIL NIL -(-185 S) +(-186 S) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-186) +(-187) ((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'."))) NIL NIL -(-187) +(-188) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-188) +(-189) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-189 R -1668) +(-190 R -1667) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-190 R) +(-191 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-191) +(-192) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(li)} is the \\spad{S}-function of the partition \\spad{li} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-192) +(-193) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-193) +(-194) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,t,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-194) +(-195) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-195) +(-196) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-197) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-197) +(-198) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-198) +(-199) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-199) +(-200) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-200) +(-201) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-201) +(-202) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-202) +(-203) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-203) +(-204) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-204) +(-205) NIL NIL NIL -(-205) +(-206) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-206) +(-207) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes"))) NIL NIL -(-207) +(-208) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-208) +(-209) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-209) +(-210) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-210) +(-211) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-211) +(-212) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,g,l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,n)} \\undocumented{}"))) NIL NIL -(-212) +(-213) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-213) +(-214) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-214 N T$) +(-215 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-215 S) +(-216 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-216 -1668 UP UPUP R) +(-217 -1667 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-217 -1668 FP) +(-218 -1667 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-218) -((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145))))) (-219) +((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2779 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146))))) +(-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-220 R -1668) +(-221 R -1667) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-221 R) +(-222 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-222 R1 R2) +(-223 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-223 S) +(-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-224 |CoefRing| |listIndVar|) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-225 R -1668) +(-226 R -1667) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-226) +(-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-3093 . T) (-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-227) +(-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) NIL NIL -(-228 R) +(-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4449 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-229 A S) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4450 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-230 S) +(-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4448 . T)) +((-4449 . T)) NIL -(-231 S R) +(-232 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234)))) -(-232 R) +((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) +(-233 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-233 S) +(-234 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-234) +(-235) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4444 . T)) +((-4445 . T)) NIL -(-235 A S) +(-236 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4447))) -(-236 S) +((|HasAttribute| |#1| (QUOTE -4448))) +(-237 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4448 . T)) +((-4449 . T)) NIL -(-237) +(-238) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-238 S -2409 R) +(-239 S -2411 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasAttribute| |#3| (QUOTE -4444)) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-1108)))) -(-239 -2409 R) +((|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasAttribute| |#3| (QUOTE -4445)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109)))) +(-240 -2411 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T)) +((-4442 |has| |#2| (-1058)) (-4443 |has| |#2| (-1058)) (-4445 |has| |#2| (-6 -4445)) ((-4450 "*") |has| |#2| (-174)) (-4448 . T)) NIL -(-240 -2409 A B) +(-241 -2411 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-241 -2409 R) +(-242 -2411 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2776 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-234))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) -(-242) +((-4442 |has| |#2| (-1058)) (-4443 |has| |#2| (-1058)) (-4445 |has| |#2| (-6 -4445)) ((-4450 "*") |has| |#2| (-174)) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2779 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2779 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))))) +(-243) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-243 S) +(-244 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-244) +(-245) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4440 . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-245 S) +(-246 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) NIL NIL -(-246 S) +(-247 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-247 M) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-248 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-248 |vl| R) +(-249 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-249) +(((-4450 "*") |has| |#2| (-174)) (-4441 |has| |#2| (-562)) (-4446 |has| |#2| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-916))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-250) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL NIL -(-250) +(-251) ((|constructor| (NIL "This domain provides representations for domains constructors.")) (|functorData| (((|FunctorData|) $) "\\spad{functorData x} returns the functor data associated with the domain constructor \\spad{x}."))) NIL NIL -(-251) +(-252) ((|constructor| (NIL "Represntation of domain templates resulting from compiling a domain constructor")) (|elt| (((|Syntax|) $ (|NonNegativeInteger|)) "\\spad{x.i} yields the entry at slot \\spad{i} in \\spad{x}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# x} returns the length of the domain template \\spad{x}."))) NIL NIL -(-252 |n| R M S) +(-253 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4444 -2776 (-1759 (|has| |#4| (-1057)) (|has| |#4| (-234))) (-1759 (|has| |#4| (-1057)) (|has| |#4| (-906 (-1185)))) (|has| |#4| (-6 -4444)) (-1759 (|has| |#4| (-1057)) (|has| |#4| (-644 (-569))))) (-4441 |has| |#4| (-1057)) (-4442 |has| |#4| (-1057)) ((-4449 "*") |has| |#4| (-173)) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#4| (QUOTE (-367))) (-2776 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-1057)))) (-2776 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-367)))) (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-798))) (-2776 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (QUOTE (-853)))) (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (QUOTE (-731))) (-2776 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-1057)))) (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-173)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-234)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-372)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-731)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-798)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-853)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1057)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1057))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-731))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-798))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-853))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (-2776 (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (|HasCategory| |#4| (QUOTE (-731))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569))))) (-2776 (|HasCategory| |#4| (QUOTE (-1057))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (QUOTE (-1108)))) (-2776 (|HasAttribute| |#4| (QUOTE -4444)) (-12 (|HasCategory| |#4| (QUOTE (-234))) (|HasCategory| |#4| (QUOTE (-1057)))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#4| (QUOTE (-1057))) (|HasCategory| |#4| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|))))) -(-253 |n| R S) +((-4445 -2779 (-1760 (|has| |#4| (-1058)) (|has| |#4| (-235))) (-1760 (|has| |#4| (-1058)) (|has| |#4| (-907 (-1186)))) (|has| |#4| (-6 -4445)) (-1760 (|has| |#4| (-1058)) (|has| |#4| (-645 (-570))))) (-4442 |has| |#4| (-1058)) (-4443 |has| |#4| (-1058)) ((-4450 "*") |has| |#4| (-174)) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-368))) (-2779 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-1058)))) (-2779 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368)))) (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-799))) (-2779 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (QUOTE (-854)))) (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (QUOTE (-732))) (-2779 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-235)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-799)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-854)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109))))) (-2779 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-2779 (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-732))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2779 (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109)))) (-2779 (|HasAttribute| |#4| (QUOTE -4445)) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))))) +(-254 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4444 -2776 (-1759 (|has| |#3| (-1057)) (|has| |#3| (-234))) (-1759 (|has| |#3| (-1057)) (|has| |#3| (-906 (-1185)))) (|has| |#3| (-6 -4444)) (-1759 (|has| |#3| (-1057)) (|has| |#3| (-644 (-569))))) (-4441 |has| |#3| (-1057)) (-4442 |has| |#3| (-1057)) ((-4449 "*") |has| |#3| (-173)) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#3| (QUOTE (-367))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2776 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-731))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-2776 (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108)))) (-2776 (|HasAttribute| |#3| (QUOTE -4444)) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) -(-254 A R S V E) +((-4445 -2779 (-1760 (|has| |#3| (-1058)) (|has| |#3| (-235))) (-1760 (|has| |#3| (-1058)) (|has| |#3| (-907 (-1186)))) (|has| |#3| (-6 -4445)) (-1760 (|has| |#3| (-1058)) (|has| |#3| (-645 (-570))))) (-4442 |has| |#3| (-1058)) (-4443 |has| |#3| (-1058)) ((-4450 "*") |has| |#3| (-174)) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-368))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-2779 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2779 (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-732))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2779 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-2779 (|HasAttribute| |#3| (QUOTE -4445)) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) +(-255 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-234)))) -(-255 R S V E) +((|HasCategory| |#2| (QUOTE (-235)))) +(-256 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-256 S) +(-257 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL -(-257) +(-258) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-258 R |Ex|) +(-259 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,y) = g(x,y),x,y,l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-259) +(-260) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-260 R) +(-261 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-261 |Ex|) +(-262 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-262) +(-263) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,lz,l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly,lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,ly,l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-263) +(-264) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-264 S) +(-265 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-265) +(-266) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,y,z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,y,z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-266 R S V) +(-267 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-267 A S) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-268 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-268 S) +(-269 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-269) +(-270) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-270) +(-271) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-271) +(-272) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-272) +(-273) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-273) +(-274) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-274) +(-275) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-275) +(-276) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-276) +(-277) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-277) +(-278) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-278 R -1668) +(-279 R -1667) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-279 R -1668) +(-280 R -1667) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-280 |Coef| UTS ULS) +(-281 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-367)))) -(-281 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-368)))) +(-282 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-367)))) -(-282) +((|HasCategory| |#1| (QUOTE (-368)))) +(-283) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-283) +(-284) ((|environment| (((|Environment|) $) "\\spad{environment(x)} returns the environment of the elaboration \\spad{x}.")) (|typeForm| (((|InternalTypeForm|) $) "\\spad{typeForm(x)} returns the type form of the elaboration \\spad{x}.")) (|irForm| (((|InternalRepresentationForm|) $) "\\spad{irForm(x)} returns the internal representation form of the elaboration \\spad{x}.")) (|elaboration| (($ (|InternalRepresentationForm|) (|InternalTypeForm|) (|Environment|)) "\\spad{elaboration(ir,ty,env)} construct an elaboration object for for the internal representation form \\spad{ir},{} with type \\spad{ty},{} and environment \\spad{env}."))) NIL NIL -(-284 A S) +(-285 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108)))) -(-285 S) +((|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109)))) +(-286 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4448 . T)) +((-4449 . T)) NIL -(-286 S) +(-287 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-287) +(-288) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-288 |Coef| UTS) +(-289 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-289 S |Index|) +(-290 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-290 S |Dom| |Im|) +(-291 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4448))) -(-291 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4449))) +(-292 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-292 S R |Mod| -1538 -4198 |exactQuo|) +(-293 S R |Mod| -2625 -2735 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-293) +(-294) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4440 . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-294) +(-295) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-295 R) +(-296 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,m,k,g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-296 S R) +(-297 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-297 S) +(-298 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4444 -2776 (|has| |#1| (-1057)) (|has| |#1| (-478))) (-4441 |has| |#1| (-1057)) (-4442 |has| |#1| (-1057))) -((|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731)))) (|HasCategory| |#1| (QUOTE (-478))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-1108)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-305))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-478)))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-731)))) -(-298 |Key| |Entry|) +((-4445 -2779 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4442 |has| |#1| (-1058)) (-4443 |has| |#1| (-1058))) +((|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732)))) (|HasCategory| |#1| (QUOTE (-479))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2779 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-306))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479)))) (-2779 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732)))) (-2779 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-732)))) +(-299 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-299) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-300) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-300 -1668 S) +(-301 -1667 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-301 E -1668) +(-302 E -1667) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL -(-302 A B) +(-303 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-303) +(-304) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,var,range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,vars,range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,var,range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-304 S) +(-305 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1057)))) -(-305) +((|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-1058)))) +(-306) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-306 R1) +(-307 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-307 R1 R2) +(-308 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-308) +(-309) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-309 S) +(-310 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-310) +(-311) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-311 S R) +(-312 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-312 R) +(-313 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-313 -1668) +(-314 -1667) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-314) +(-315) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-315) +(-316) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-316 R FE |var| |cen|) +(-317 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-1030))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-2776 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-855)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-1160))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-234))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -312) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (LIST (QUOTE -289) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1261) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-310))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-550))) (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-855))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145)))) (-2776 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1261 |#1| |#2| |#3| |#4|) (QUOTE (-915))) (|HasCategory| $ (QUOTE (-145)))))) -(-317 R S) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-1031))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (-2779 (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-856)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-1161))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-235))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -313) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (LIST (QUOTE -290) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1262) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-551))) (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-856))) (-12 (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146)))) (-2779 (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1262 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146)))))) +(-318 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-318 R FE) +(-319 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-319 R) +(-320 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4444 -2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (-12 (|has| |#1| (-561)) (-2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (|has| |#1| (-1057)) (|has| |#1| (-478)))) (|has| |#1| (-1057)) (|has| |#1| (-478))) (-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) ((-4449 "*") |has| |#1| (-561)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-561)) (-4439 |has| |#1| (-561))) -((-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (QUOTE (-21))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1120)))) (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057)))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1120)))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2776 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1120)))) (-2776 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))))) (-2776 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#1| (QUOTE (-1057)))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1120))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569))))) -(-320 R -1668) +((-4445 -2779 (-1760 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-12 (|has| |#1| (-562)) (-2779 (-1760 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (|has| |#1| (-1058)) (|has| |#1| (-479)))) (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) ((-4450 "*") |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-562)) (-4440 |has| |#1| (-562))) +((-2779 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (-2779 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-21))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2779 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-2779 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2779 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-2779 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570))))) +(-321 R -1667) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL -(-321) +(-322) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n,s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,g,h,colorFcn,a..b,r,n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-322 FE |var| |cen|) +(-323 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|))))))) -(-323 M) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +(-324 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-324 E OV R P) +(-325 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-325 S) +(-326 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-797)))) -(-326 S E) +((-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-798)))) +(-327 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-327 S) +(-328 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-776) (QUOTE (-797)))) -(-328 S R E) +((|HasCategory| (-777) (QUOTE (-798)))) +(-329 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173)))) -(-329 R E) +((|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174)))) +(-330 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-330 S) +(-331 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-331 S -1668) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-332 S -1667) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-372)))) -(-332 -1668) +((|HasCategory| |#2| (QUOTE (-373)))) +(-333 -1667) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-333) +(-334) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) NIL NIL -(-334 E) +(-335 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-335) +(-336) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}"))) NIL NIL -(-336) +(-337) ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-337 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-338 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-338 S -1668 UP UPUP R) +(-339 S -1667 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-339 -1668 UP UPUP R) +(-340 -1667 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-340 -1668 UP UPUP R) +(-341 -1667 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-341 S R) +(-342 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-342 R) +((|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-343 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-343 |basicSymbols| |subscriptedSymbols| R) +(-344 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-383)))) (|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569))))) -(-344 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-384)))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570))))) +(-345 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-345 S -1668 UP UPUP) +(-346 S -1667 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-367)))) -(-346 -1668 UP UPUP) +((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-368)))) +(-347 -1667 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4440 |has| (-412 |#2|) (-367)) (-4445 |has| (-412 |#2|) (-367)) (-4439 |has| (-412 |#2|) (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 |has| (-413 |#2|) (-368)) (-4446 |has| (-413 |#2|) (-368)) (-4440 |has| (-413 |#2|) (-368)) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-347 |p| |extdeg|) +(-348 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145)))) -(-348 GF |defpol|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146)))) +(-349 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145)))) -(-349 GF |extdeg|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146)))) +(-350 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145)))) -(-350 GF) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146)))) +(-351 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-351 F1 GF F2) +(-352 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-352 S) +(-353 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-353) +(-354) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-354 R UP -1668) +(-355 R UP -1667) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-355 |p| |extdeg|) +(-356 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145)))) -(-356 GF |uni|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146)))) +(-357 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145)))) -(-357 GF |extdeg|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146)))) +(-358 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145)))) -(-358 |p| |n|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146)))) +(-359 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| (-916 |#1|) (QUOTE (-145))) (|HasCategory| (-916 |#1|) (QUOTE (-372)))) (|HasCategory| (-916 |#1|) (QUOTE (-147))) (|HasCategory| (-916 |#1|) (QUOTE (-372))) (|HasCategory| (-916 |#1|) (QUOTE (-145)))) -(-359 GF |defpol|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146)))) +(-360 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145)))) -(-360 -1668 GF) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146)))) +(-361 -1667 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-361 GF) +(-362 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-362 -1668 FP FPP) +(-363 -1667 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-363 GF |n|) +(-364 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-145)))) -(-364 R |ls|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146)))) +(-365 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-365 S) +(-366 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4444 . T)) +((-4445 . T)) NIL -(-366 S) +(-367 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-367) +(-368) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-368 |Name| S) +(-369 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-369 S) +(-370 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-370 S R) +(-371 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-561)))) -(-371 R) +((|HasCategory| |#2| (QUOTE (-562)))) +(-372 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4444 |has| |#1| (-561)) (-4442 . T) (-4441 . T)) +((-4445 |has| |#1| (-562)) (-4443 . T) (-4442 . T)) NIL -(-372) +(-373) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-373 S R UP) +(-374 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-367)))) -(-374 R UP) +((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-368)))) +(-375 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-375 S A R B) +(-376 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-376 A S) +(-377 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108)))) -(-377 S) +((|HasAttribute| |#1| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109)))) +(-378 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4447 . T)) +((-4448 . T)) NIL -(-378 |VarSet| R) +(-379 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4442 . T) (-4441 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4443 . T) (-4442 . T)) NIL -(-379 S V) +(-380 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-380 S R) +(-381 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) -(-381 R) +((|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) +(-382 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4444 . T)) +((-4445 . T)) NIL -(-382 |Par|) +(-383 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-383) +(-384) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4430 . T) (-4438 . T) (-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4431 . T) (-4439 . T) (-3093 . T) (-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-384 |Par|) +(-385 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-385 R S) +(-386 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (QUOTE (-173)))) -(-386 R |Basis|) +((-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (QUOTE (-174)))) +(-387 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL -(-387) +(-388) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-388) +(-389) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-389 R S) +(-390 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (QUOTE (-173)))) -(-390 S) +((-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (QUOTE (-174)))) +(-391 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-391 S) +(-392 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-855)))) -(-392) +((|HasCategory| |#1| (QUOTE (-856)))) +(-393) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-393) +(-394) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-394) +(-395) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used."))) NIL NIL -(-395 |n| |class| R) +(-396 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL -(-396) +(-397) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-397 -1668 UP UPUP R) +(-398 -1667 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-398 S) +(-399 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-399) +(-400) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-400) +(-401) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) NIL NIL -(-401) +(-402) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-402) +(-403) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-403 -3573 |returnType| -3939 |symbols|) +(-404 -3574 |returnType| -3941 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-404 -1668 UP) +(-405 -1667 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-405 R) +(-406 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) NIL NIL -(-406 S) +(-407 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-407) +(-408) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-408 S) +(-409 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4430)) (|HasAttribute| |#1| (QUOTE -4438))) -(-409) +((|HasAttribute| |#1| (QUOTE -4431)) (|HasAttribute| |#1| (QUOTE -4439))) +(-410) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-3093 . T) (-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-410 R S) +(-411 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-411 A B) +(-412 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-412 S) +(-413 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4434 -12 (|has| |#1| (-6 -4445)) (|has| |#1| (-457)) (|has| |#1| (-6 -4434))) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-825))) (-2776 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-855)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-833)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-550))) (-12 (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4434)) (|HasCategory| |#1| (QUOTE (-457)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-413 S R UP) +((-4435 -12 (|has| |#1| (-6 -4446)) (|has| |#1| (-458)) (|has| |#1| (-6 -4435))) (-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-826))) (-2779 (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-856)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-551))) (-12 (|HasAttribute| |#1| (QUOTE -4446)) (|HasAttribute| |#1| (QUOTE -4435)) (|HasCategory| |#1| (QUOTE (-458)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-414 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-414 R UP) +(-415 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-415 A S) +(-416 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) -(-416 S) +((|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) +(-417 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-417 R1 F1 U1 A1 R2 F2 U2 A2) +(-418 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-418 R -1668 UP A) +(-419 R -1667 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-419 R -1668 UP A |ibasis|) +(-420 R -1667 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1046) (|devaluate| |#2|)))) -(-420 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1047) (|devaluate| |#2|)))) +(-421 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-421 S R) +(-422 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-367)))) -(-422 R) +((|HasCategory| |#2| (QUOTE (-368)))) +(-423 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4444 |has| |#1| (-561)) (-4442 . T) (-4441 . T)) +((-4445 |has| |#1| (-562)) (-4443 . T) (-4442 . T)) NIL -(-423 R) -((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -312) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -289) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1229))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-1229)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-457)))) (-424 R) +((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -313) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1230))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-1230)))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-458)))) +(-425 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL NIL -(-425 R FE |x| |cen|) +(-426 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-426 R A S B) +(-427 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-427 R FE |Expon| UPS TRAN |x|) +(-428 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series"))) NIL NIL -(-428 S A R B) +(-429 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-429 A S) +(-430 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372)))) -(-430 S) +((|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-373)))) +(-431 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4447 . T) (-4437 . T) (-4448 . T)) +((-4448 . T) (-4438 . T) (-4449 . T)) NIL -(-431 R -1668) +(-432 R -1667) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-432 R E) +(-433 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4434 -12 (|has| |#1| (-6 -4434)) (|has| |#2| (-6 -4434))) (-4441 . T) (-4442 . T) (-4444 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4434)) (|HasAttribute| |#2| (QUOTE -4434)))) -(-433 R -1668) +((-4435 -12 (|has| |#1| (-6 -4435)) (|has| |#2| (-6 -4435))) (-4442 . T) (-4443 . T) (-4445 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4435)) (|HasAttribute| |#2| (QUOTE -4435)))) +(-434 R -1667) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-434 S R) +(-435 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-1120))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) -(-435 R) +((|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) +(-436 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4444 -2776 (|has| |#1| (-1057)) (|has| |#1| (-478))) (-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) ((-4449 "*") |has| |#1| (-561)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-561)) (-4439 |has| |#1| (-561))) +((-4445 -2779 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) ((-4450 "*") |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-562)) (-4440 |has| |#1| (-562))) NIL -(-436 R -1668) +(-437 R -1667) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-437 R -1668) +(-438 R -1667) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-438 R -1668) +(-439 R -1667) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-439) +(-440) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-440 R -1668 UP) +(-441 R -1667 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-48))))) -(-441) +((|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-48))))) +(-442) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-442) +(-443) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL NIL -(-443 |f|) +(-444 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-444) +(-445) ((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}."))) NIL NIL -(-445) +(-446) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) NIL NIL -(-446) +(-447) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-447 UP) +(-448 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-448 R UP -1668) +(-449 R UP -1667) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-449 R UP) +(-450 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-450 R) +(-451 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-409)))) -(-451) +((|HasCategory| |#1| (QUOTE (-410)))) +(-452) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-452 |Dom| |Expon| |VarSet| |Dpol|) +(-453 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-453 |Dom| |Expon| |VarSet| |Dpol|) +(-454 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-454 |Dom| |Expon| |VarSet| |Dpol|) +(-455 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-455 |Dom| |Expon| |VarSet| |Dpol|) +(-456 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-367)))) -(-456 S) +((|HasCategory| |#1| (QUOTE (-368)))) +(-457 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-457) +(-458) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-458 R |n| |ls| |gamma|) +(-459 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4444 |has| (-412 (-958 |#1|)) (-561)) (-4442 . T) (-4441 . T)) -((|HasCategory| (-412 (-958 |#1|)) (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-412 (-958 |#1|)) (QUOTE (-561)))) -(-459 |vl| R E) +((-4445 |has| (-413 (-959 |#1|)) (-562)) (-4443 . T) (-4442 . T)) +((|HasCategory| (-413 (-959 |#1|)) (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-413 (-959 |#1|)) (QUOTE (-562)))) +(-460 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-460 R BP) +(((-4450 "*") |has| |#2| (-174)) (-4441 |has| |#2| (-562)) (-4446 |has| |#2| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-916))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-461 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-461 OV E S R P) +(-462 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-462 E OV R P) +(-463 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-463 R) +(-464 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-464 R FE) +(-465 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}."))) NIL NIL -(-465 RP TP) +(-466 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-466 |vl| R IS E |ff| P) +(-467 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL -(-467 E V R P Q) +(-468 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-468 R E |VarSet| P) +(-469 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867))))) -(-469 S R E) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868))))) +(-470 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-470 R E) +(-471 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-471) +(-472) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-472) +(-473) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-473) +(-474) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-474 S R E) +(-475 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-475 R E) +(-476 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-476 |lv| -1668 R) +(-477 |lv| -1667 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-477 S) +(-478 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-478) +(-479) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-479 |Coef| |var| |cen|) +(-480 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|))))))) -(-480 |Key| |Entry| |Tbl| |dent|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +(-481 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108)))) -(-481 R E V P) +((-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109)))) +(-482 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867))))) -(-482) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868))))) +(-483) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-483) +(-484) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-484 |Key| |Entry| |hashfn|) +(-485 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-485) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-486) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-486 |vl| R) +(-487 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-487 -2409 S) +(((-4450 "*") |has| |#2| (-174)) (-4441 |has| |#2| (-562)) (-4446 |has| |#2| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-916))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-488 -2411 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2776 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-234))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) -(-488) +((-4442 |has| |#2| (-1058)) (-4443 |has| |#2| (-1058)) (-4445 |has| |#2| (-6 -4445)) ((-4450 "*") |has| |#2| (-174)) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2779 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2779 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))))) +(-489) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL -(-489 S) +(-490 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-490 -1668 UP UPUP R) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-491 -1667 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-491 BP) +(-492 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-492) +(-493) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145))))) -(-493 A S) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2779 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146))))) +(-494 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4447)) (|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) -(-494 S) +((|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#1| (QUOTE -4449)) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) +(-495 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL NIL -(-495 S) +(-496 S) ((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A."))) NIL NIL -(-496) +(-497) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-497 S) +(-498 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-498) +(-499) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-499 -1668 UP |AlExt| |AlPol|) +(-500 -1667 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-500) +(-501) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| $ (QUOTE (-1057))) (|HasCategory| $ (LIST (QUOTE -1046) (QUOTE (-569))))) -(-501 S |mn|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570))))) +(-502 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-502 R |mnRow| |mnCol|) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-503 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-503 K R UP) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-504 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-504 R UP -1668) +(-505 R UP -1667) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-505 |mn|) +(-506 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -312) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-112) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-112) (QUOTE (-1108))) (|HasCategory| (-112) (LIST (QUOTE -618) (QUOTE (-867))))) -(-506 K R UP L) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -313) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-112) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-112) (QUOTE (-1109))) (|HasCategory| (-112) (LIST (QUOTE -619) (QUOTE (-868))))) +(-507 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-507) +(-508) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-508 R Q A B) +(-509 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-509 -1668 |Expon| |VarSet| |DPoly|) +(-510 -1667 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-1185))))) -(-510 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-1186))))) +(-511 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-511) +(-512) ((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system"))) NIL NIL -(-512 A S) +(-513 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-513 A S) +(-514 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-514 A S) +(-515 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-515 A S) +(-516 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-516 A S) +(-517 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-517 A S) +(-518 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-518 S A B) +(-519 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-519 A B) +(-520 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-520 S E |un|) +(-521 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-797)))) -(-521 S |mn|) +((|HasCategory| |#2| (QUOTE (-798)))) +(-522 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-522) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-523) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-523 |p| |n|) +(-524 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| (-586 |#1|) (QUOTE (-145))) (|HasCategory| (-586 |#1|) (QUOTE (-372)))) (|HasCategory| (-586 |#1|) (QUOTE (-147))) (|HasCategory| (-586 |#1|) (QUOTE (-372))) (|HasCategory| (-586 |#1|) (QUOTE (-145)))) -(-524 R |mnRow| |mnCol| |Row| |Col|) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| (-587 |#1|) (QUOTE (-146))) (|HasCategory| (-587 |#1|) (QUOTE (-373)))) (|HasCategory| (-587 |#1|) (QUOTE (-148))) (|HasCategory| (-587 |#1|) (QUOTE (-373))) (|HasCategory| (-587 |#1|) (QUOTE (-146)))) +(-525 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-525 S |mn|) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-526 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-526 R |Row| |Col| M) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-527 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4448))) -(-527 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4449))) +(-528 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4448))) -(-528 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4449))) +(-529 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4449 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-529) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4450 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-530) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-530) +(-531) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-531 S) +(-532 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-532) +(-533) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}."))) NIL NIL -(-533 GF) +(-534 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-534) +(-535) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-535 R) +(-536 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-536 |Varset|) +(-537 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-537 K -1668 |Par|) +(-538 K -1667 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-538) +(-539) NIL NIL NIL -(-539) +(-540) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-540 R) +(-541 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-541) +(-542) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-542 |Coef| UTS) +(-543 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-543 K -1668 |Par|) +(-544 K -1667 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-544 R BP |pMod| |nextMod|) +(-545 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-545 OV E R P) +(-546 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-546 K UP |Coef| UTS) +(-547 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-547 |Coef| UTS) +(-548 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-548 R UP) +(-549 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented"))) NIL NIL -(-549 S) +(-550 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-550) +(-551) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4446 . T) (-4447 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-551) +(-552) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) NIL NIL -(-552) +(-553) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits."))) NIL NIL -(-553) +(-554) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) NIL NIL -(-554) +(-555) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-555 |Key| |Entry| |addDom|) +(-556 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-556 R -1668) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-557 R -1667) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-557 R0 -1668 UP UPUP R) +(-558 R0 -1667 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-558) +(-559) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-559 R) +(-560 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-3091 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-3093 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-560 S) +(-561 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-561) +(-562) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-562 R -1668) +(-563 R -1667) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-563 I) +(-564 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-564) +(-565) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-565 R -1668 L) +(-566 R -1667 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|)))) -(-566) +((|HasCategory| |#3| (LIST (QUOTE -662) (|devaluate| |#2|)))) +(-567) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-567 -1668 UP UPUP R) +(-568 -1667 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-568 -1668 UP) +(-569 -1667 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-569) +(-570) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4429 . T) (-4435 . T) (-4439 . T) (-4434 . T) (-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4430 . T) (-4436 . T) (-4440 . T) (-4435 . T) (-4446 . T) (-4447 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-570) +(-571) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-571 R -1668 L) +(-572 R -1667 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -661) (|devaluate| |#2|)))) -(-572 R -1668) +((|HasCategory| |#3| (LIST (QUOTE -662) (|devaluate| |#2|)))) +(-573 R -1667) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1147)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-634))))) -(-573 -1668 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-635))))) +(-574 -1667 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-574 S) +(-575 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-575 -1668) +(-576 -1667) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-576 R) +(-577 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-3091 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-3093 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-577) +(-578) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-578 R -1668) +(-579 R -1667) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-287))) (|HasCategory| |#2| (QUOTE (-634))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-287)))) (|HasCategory| |#1| (QUOTE (-561)))) -(-579 -1668 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-635))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-288)))) (|HasCategory| |#1| (QUOTE (-562)))) +(-580 -1667 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-580 R -1668) +(-581 R -1667) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-581) +(-582) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-582) +(-583) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-583) +(-584) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input."))) NIL NIL -(-584) +(-585) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-585 |p| |unBalanced?|) +(-586 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-586 |p|) +(-587 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372)))) -(-587) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-373)))) +(-588) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-588 R -1668) +(-589 R -1667) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-589 E -1668) +(-590 E -1667) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-590) +(-591) ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-591 -1668) +(-592 -1667) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-1185))))) -(-592 I) +((-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186))))) +(-593 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-593 GF) +(-594 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-594 R) +(-595 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-147)))) -(-595) +((|HasCategory| |#1| (QUOTE (-148)))) +(-596) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-596 R E V P TS) +(-597 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-597) +(-598) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-598 |mn|) +(-599 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (-2776 (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) -(-599 E V R P) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (-2779 (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) +(-600 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-600 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))) (|HasCategory| (-569) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569)))))) (-601 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))) (|HasCategory| (-570) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570)))))) +(-602 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4449 "*") |has| |#1| (-561)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-561)))) -(-602) +(((-4450 "*") |has| |#1| (-562)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-562)))) +(-603) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-603 A B) +(-604 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-604 A B C) +(-605 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-605 R -1668 FG) +(-606 R -1667 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-606 S) +(-607 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-607 R |mn|) +(-608 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-608 S |Index| |Entry|) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-609 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (QUOTE (-855))) (|HasAttribute| |#1| (QUOTE -4447)) (|HasCategory| |#3| (QUOTE (-1108)))) -(-609 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-856))) (|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#3| (QUOTE (-1109)))) +(-610 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-610) +(-611) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-611) +(-612) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-612 R A) +(-613 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4444 -2776 (-1759 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4442 . T) (-4441 . T)) -((-2776 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) -(-613 |Entry|) +((-4445 -2779 (-1760 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4443 . T) (-4442 . T)) +((-2779 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) +(-614 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1167))) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| (-1167) (QUOTE (-855))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-614 S |Key| |Entry|) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-615 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-615 |Key| |Entry|) +(-616 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4448 . T)) +((-4449 . T)) NIL -(-616 R S) +(-617 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-617 S) +(-618 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) -(-618 S) +((|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) +(-619 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-619 S) +(-620 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-620 -1668 UP) +(-621 -1667 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-621 S) +(-622 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-622) +(-623) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-623 S) +(-624 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-624 S R) +(-625 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-625 R) +(-626 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4444 . T)) +((-4445 . T)) NIL -(-626 A R S) +(-627 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-853)))) -(-627 R -1668) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-854)))) +(-628 R -1667) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-628 R UP) +(-629 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4440 . T) (-4444 . T)) -((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) -(-629 R E V P TS ST) +((-4443 . T) (-4442 . T) ((-4450 "*") . T) (-4441 . T) (-4445 . T)) +((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) +(-630 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-630 OV E Z P) +(-631 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-631) +(-632) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-632 |VarSet| R |Order|) +(-633 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-633 R |ls|) +(-634 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-634) +(-635) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-635 R -1668) +(-636 R -1667) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-636 |lv| -1668) +(-637 |lv| -1667) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-637) +(-638) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1167))) (LIST (QUOTE |:|) (QUOTE -2216) (QUOTE (-52))))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-52) (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-1167) (QUOTE (-855))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (QUOTE (-1108)))) -(-638 S R) +((-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2219) (QUOTE (-52))))))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-1168) (QUOTE (-856))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (QUOTE (-1109)))) +(-639 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-367)))) -(-639 R) +((|HasCategory| |#2| (QUOTE (-368)))) +(-640 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4442 . T) (-4441 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4443 . T) (-4442 . T)) NIL -(-640 R A) +(-641 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4444 -2776 (-1759 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))) (-4442 . T) (-4441 . T)) -((-2776 (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -422) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -371) (|devaluate| |#1|)))) -(-641 R FE) +((-4445 -2779 (-1760 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4443 . T) (-4442 . T)) +((-2779 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) +(-642 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-642 R) +(-643 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-643 S R) +(-644 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1749 (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-367)))) -(-644 R) +((-1748 (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-368)))) +(-645 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-645 R) +(-646 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-646 A B) +(-647 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-647 A B) +(-648 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-648 A B C) +(-649 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-649 S) +(-650 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-833))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-650 T$) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-651 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-651 R) +(-652 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-652 S) +(-653 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-653 R) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-654 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-654 S E |un|) +(-655 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-655 A S) +(-656 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4448))) -(-656 S) +((|HasAttribute| |#1| (QUOTE -4449))) +(-657 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-657 R -1668 L) +(-658 R -1667 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-658 A) +(-659 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367)))) -(-659 A M) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368)))) +(-660 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367)))) -(-660 S A) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368)))) +(-661 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-367)))) -(-661 A) +((|HasCategory| |#2| (QUOTE (-368)))) +(-662 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-662 -1668 UP) +(-663 -1667 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-663 A -2673) +(-664 A -2901) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367)))) -(-664 A L) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368)))) +(-665 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-665 S) +(-666 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-666) +(-667) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-667 M R S) +(-668 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (QUOTE (-796)))) -(-668 R) +((-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (QUOTE (-797)))) +(-669 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-669 |VarSet| R) +(-670 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4442 . T) (-4441 . T)) -((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-173)))) -(-670 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4443 . T) (-4442 . T)) +((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-174)))) +(-671 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-671 S) +(-672 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-672 -1668) +(-673 -1667) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-673 -1668 |Row| |Col| M) +(-674 -1667 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-674 R E OV P) +(-675 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-675 |n| R) +(-676 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4444 . T) (-4447 . T) (-4441 . T) (-4442 . T)) -((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561))) (-2776 (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173)))) -(-676) +((-4445 . T) (-4448 . T) (-4442 . T) (-4443 . T)) +((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4450 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-562))) (-2779 (|HasAttribute| |#2| (QUOTE (-4450 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-677) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-677 |VarSet|) +(-678 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-678 A S) +(-679 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-679 S) +(-680 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-680 R) +(-681 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-681) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-682) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-682 |VarSet|) +(-683 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-683 A) +(-684 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-684 A C) +(-685 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-685 A B C) +(-686 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-686) +(-687) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-687 A) +(-688 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-688 A C) +(-689 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-689 A B C) +(-690 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-690 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-691 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-691 S R |Row| |Col|) +(-692 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-561)))) -(-692 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4450 "*"))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-562)))) +(-693 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL -(-693 R |Row| |Col| M) +(-694 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561)))) -(-694 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4447 . T) (-4448 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-561))) (|HasAttribute| |#1| (QUOTE (-4449 "*"))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562)))) (-695 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4448 . T) (-4449 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4450 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-696 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-696 T$) +(-697 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-697 S -1668 FLAF FLAS) +(-698 S -1667 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-698 R Q) +(-699 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-699) +(-700) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4440 . T) (-4445 |has| (-704) (-367)) (-4439 |has| (-704) (-367)) (-3101 . T) (-4446 |has| (-704) (-6 -4446)) (-4443 |has| (-704) (-6 -4443)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-704) (QUOTE (-147))) (|HasCategory| (-704) (QUOTE (-145))) (|HasCategory| (-704) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-372))) (|HasCategory| (-704) (QUOTE (-367))) (-2776 (|HasCategory| (-704) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-704) (QUOTE (-234))) (-2776 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (LIST (QUOTE -289) (QUOTE (-704)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -312) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-704)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-704) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-704) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (-2776 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-353)))) (|HasCategory| (-704) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-704) (QUOTE (-1030))) (|HasCategory| (-704) (QUOTE (-1210))) (-12 (|HasCategory| (-704) (QUOTE (-1010))) (|HasCategory| (-704) (QUOTE (-1210)))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-367))) (|HasCategory| (-704) (QUOTE (-915)))) (-12 (|HasCategory| (-704) (QUOTE (-353))) (|HasCategory| (-704) (QUOTE (-915))))) (|HasCategory| (-704) (QUOTE (-550))) (-12 (|HasCategory| (-704) (QUOTE (-1068))) (|HasCategory| (-704) (QUOTE (-1210)))) (|HasCategory| (-704) (QUOTE (-1068))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-367)))) (-2776 (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-561)))) (-12 (|HasCategory| (-704) (QUOTE (-234))) (|HasCategory| (-704) (QUOTE (-367)))) (-12 (|HasCategory| (-704) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-704) (QUOTE (-367)))) (|HasCategory| (-704) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-704) (QUOTE (-561))) (|HasAttribute| (-704) (QUOTE -4446)) (|HasAttribute| (-704) (QUOTE -4443)) (-12 (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-145)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-704) (QUOTE (-310))) (|HasCategory| (-704) (QUOTE (-915)))) (|HasCategory| (-704) (QUOTE (-353))))) -(-700 S) +((-4441 . T) (-4446 |has| (-705) (-368)) (-4440 |has| (-705) (-368)) (-3103 . T) (-4447 |has| (-705) (-6 -4447)) (-4444 |has| (-705) (-6 -4444)) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-705) (QUOTE (-148))) (|HasCategory| (-705) (QUOTE (-146))) (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-373))) (|HasCategory| (-705) (QUOTE (-368))) (-2779 (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-235))) (-2779 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (LIST (QUOTE -290) (QUOTE (-705)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -313) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-2779 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-705) (QUOTE (-1031))) (|HasCategory| (-705) (QUOTE (-1211))) (-12 (|HasCategory| (-705) (QUOTE (-1011))) (|HasCategory| (-705) (QUOTE (-1211)))) (-2779 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (-2779 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (|HasCategory| (-705) (QUOTE (-551))) (-12 (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-1211)))) (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916))) (-2779 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368)))) (-2779 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-562)))) (-12 (|HasCategory| (-705) (QUOTE (-235))) (|HasCategory| (-705) (QUOTE (-368)))) (-12 (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-562))) (|HasAttribute| (-705) (QUOTE -4447)) (|HasAttribute| (-705) (QUOTE -4444)) (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-146)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-354))))) +(-701 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4448 . T)) +((-4449 . T)) NIL -(-701 U) +(-702 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-702) +(-703) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-703 OV E -1668 PG) +(-704 OV E -1667 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-704) +(-705) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-3091 . T) (-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-3093 . T) (-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-705 R) +(-706 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-706) +(-707) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4446 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4447 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-707 S D1 D2 I) +(-708 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-708 S) +(-709 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-709 S) +(-710 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-710 S T$) +(-711 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-711 S -2832 I) +(-712 S -2835 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-712 E OV R P) +(-713 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-713 R) +(-714 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-714 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-715 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-715) +(-716) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-716 R |Mod| -1538 -4198 |exactQuo|) +(-717 R |Mod| -2625 -2735 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-717 R |Rep|) +(-718 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-718 IS E |ff|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4444 |has| |#1| (-368)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-719 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-719 R M) +(-720 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-720 R |Mod| -1538 -4198 |exactQuo|) +((-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) +(-721 R |Mod| -2625 -2735 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4444 . T)) +((-4445 . T)) NIL -(-721 S R) +(-722 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-722 R) +(-723 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL -(-723 -1668) +(-724 -1667) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-724 S) +(-725 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-725) +(-726) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-726 S) +(-727 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-727) +(-728) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-728 S R UP) +(-729 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-353))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372)))) -(-729 R UP) +((|HasCategory| |#2| (QUOTE (-354))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373)))) +(-730 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4440 |has| |#1| (-367)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 |has| |#1| (-368)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-730 S) +(-731 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-731) +(-732) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-732 -1668 UP) +(-733 -1667 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-733 |VarSet| E1 E2 R S PR PS) +(-734 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-734 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-735 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-735 E OV R PPR) +(-736 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-736 |vl| R) +(-737 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-915))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-869 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-737 E OV R PRF) +(((-4450 "*") |has| |#2| (-174)) (-4441 |has| |#2| (-562)) (-4446 |has| |#2| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-916))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-738 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-738 E OV R P) +(-739 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-739 R S M) +(-740 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-740 R M) +(-741 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-855)))) -(-741 S) +((-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) (-4445 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-856)))) +(-742 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4437 . T) (-4448 . T)) +((-4438 . T) (-4449 . T)) NIL -(-742 S) +(-743 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4447 . T) (-4437 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-743) +((-4448 . T) (-4438 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-744) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-744 S) +(-745 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-745 |Coef| |Var|) +(-746 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4442 . T) (-4441 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-746 OV E R P) +(-747 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-747 E OV R P) +(-748 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-748 S R) +(-749 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-749 R) +(-750 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL -(-750) +(-751) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-756) +(-757) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-758) +(-759) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-760) +(-761) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-761) +(-762) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-762) +(-763) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-763) +(-764) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-764) +(-765) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-765 S) +(-766 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-766) +(-767) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-767 S) +(-768 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-768) +(-769) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-769 |Par|) +(-770 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-770 -1668) +(-771 -1667) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-771 P -1668) +(-772 P -1667) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-772 T$) +(-773 T$) NIL NIL NIL -(-773 UP -1668) +(-774 UP -1667) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-774) +(-775) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-775 R) +(-776 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-776) +(-777) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4449 "*") . T)) +(((-4450 "*") . T)) NIL -(-777 R -1668) +(-778 R -1667) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-778 S) +(-779 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-779) +(-780) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-780 R |PolR| E |PolE|) +(-781 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-781 R E V P TS) +(-782 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-782 -1668 |ExtF| |SUEx| |ExtP| |n|) +(-783 -1667 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-783 BP E OV R P) +(-784 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-784 |Par|) +(-785 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-785 R |VarSet|) +(-786 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (QUOTE (-550)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-569))))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-1185)))) (-1749 (|HasCategory| |#1| (LIST (QUOTE -1000) (QUOTE (-569))))))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-786 R S) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1748 (|HasCategory| |#1| (QUOTE (-551)))) (-1748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1748 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570))))) (-1748 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-1748 (|HasCategory| |#1| (LIST (QUOTE -1001) (QUOTE (-570))))))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-787 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-787 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) (-788 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4444 |has| |#1| (-368)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-789 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) -(-789 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) +(-790 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-790 S) +(-791 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-1057))) (|HasCategory| |#1| (QUOTE (-173)))) -(-791) +((-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-174)))) +(-792) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-792) +(-793) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-793) +(-794) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-794) +(-795) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-795 |Curve|) +(-796 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-796) +(-797) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-797) +(-798) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-798) +(-799) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-799) +(-800) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-800) +(-801) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-801 S R) +(-802 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-372)))) -(-802 R) +((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-373)))) +(-803 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-803 -2776 R OS S) +(-804 -2779 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-804 R) +(-805 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (-2776 (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1007 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) -(-805) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-2779 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) +(-806) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-806 R -1668 L) +(-807 R -1667 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-807 R -1668) +(-808 R -1667) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-808) +(-809) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-809 R -1668) +(-810 R -1667) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-810) +(-811) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-811 -1668 UP UPUP R) +(-812 -1667 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-812 -1668 UP L LQ) +(-813 -1667 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-813) +(-814) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-814 -1668 UP L LQ) +(-815 -1667 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-815 -1668 UP) +(-816 -1667 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-816 -1668 L UP A LO) +(-817 -1667 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-817 -1668 UP) +(-818 -1667 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-818 -1668 LO) +(-819 -1667 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-819 -1668 LODO) +(-820 -1667 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-820 -2409 S |f|) +(-821 -2411 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4441 |has| |#2| (-1057)) (-4442 |has| |#2| (-1057)) (-4444 |has| |#2| (-6 -4444)) ((-4449 "*") |has| |#2| (-173)) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-798))) (-2776 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-731))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1057)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (|HasCategory| |#2| (QUOTE (-234))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-173)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-234)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-372)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-853)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-853))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (QUOTE (-1057)))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#2| (QUOTE (-1057))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-1108)))) (|HasAttribute| |#2| (QUOTE -4444)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))))) -(-821 R) +((-4442 |has| |#2| (-1058)) (-4443 |has| |#2| (-1058)) (-4445 |has| |#2| (-6 -4445)) ((-4450 "*") |has| |#2| (-174)) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2779 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2779 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))))) +(-822 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-823 (-1185)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-822 |Kernels| R |var|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-823 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4449 "*") |has| |#2| (-367)) (-4440 |has| |#2| (-367)) (-4445 |has| |#2| (-367)) (-4439 |has| |#2| (-367)) (-4444 . T) (-4442 . T) (-4441 . T)) -((|HasCategory| |#2| (QUOTE (-367)))) -(-823 S) +(((-4450 "*") |has| |#2| (-368)) (-4441 |has| |#2| (-368)) (-4446 |has| |#2| (-368)) (-4440 |has| |#2| (-368)) (-4445 . T) (-4443 . T) (-4442 . T)) +((|HasCategory| |#2| (QUOTE (-368)))) +(-824 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-824 S) +(-825 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-855)))) -(-825) +((|HasCategory| |#1| (QUOTE (-856)))) +(-826) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-826) +(-827) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-827) +(-828) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-828) +(-829) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-829) +(-830) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-830) +(-831) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-831 R) +(-832 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-832 P R) +(-833 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-234)))) -(-833) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-235)))) +(-834) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-834) +(-835) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-835 S) +(-836 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4447 . T) (-4437 . T) (-4448 . T)) +((-4448 . T) (-4438 . T) (-4449 . T)) NIL -(-836) +(-837) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-837 R S) +(-838 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-838 R) +(-839 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4444 |has| |#1| (-853))) -((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550)))) -(-839 A S) +((-4445 |has| |#1| (-854))) +((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-2779 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2779 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551)))) +(-840 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-840 S) +(-841 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-841 R) +(-842 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-842) +((-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) +(-843) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-843) +(-844) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-844) +(-845) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-845) +(-846) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-846) +(-847) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-847 R S) +(-848 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-848 R) +(-849 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4444 |has| |#1| (-853))) -((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-21))) (-2776 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-550)))) -(-849) +((-4445 |has| |#1| (-854))) +((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-2779 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2779 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551)))) +(-850) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-850 -2409 S) +(-851 -2411 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-851) +(-852) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-852 S) +(-853 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-853) +(-854) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4444 . T)) +((-4445 . T)) NIL -(-854 S) +(-855 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-855) +(-856) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-856 S R) +(-857 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173)))) -(-857 R) +((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174)))) +(-858 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-858 R C) +(-859 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) -(-859 R |sigma| -3117) +((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) +(-860 R |sigma| -3118) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-367)))) -(-860 |x| R |sigma| -3117) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368)))) +(-861 |x| R |sigma| -3118) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-367)))) -(-861 R) +((-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-368)))) +(-862 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) -(-862) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) +(-863) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-863) +(-864) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-864 S) +(-865 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-865) +(-866) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-866) +(-867) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-867) +(-868) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-868) +(-869) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-869 |VariableList|) +(-870 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-870) +(-871) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-871 R |vl| |wl| |wtlevel|) +(-872 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) -(-872 R PS UP) +((-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368)))) +(-873 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-873 R |x| |pt|) +(-874 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-874 |p|) +(-875 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-875 |p|) +(-876 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-876 |p|) +(-877 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-875 |#1|) (QUOTE (-915))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-875 |#1|) (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-147))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-875 |#1|) (QUOTE (-1030))) (|HasCategory| (-875 |#1|) (QUOTE (-825))) (-2776 (|HasCategory| (-875 |#1|) (QUOTE (-825))) (|HasCategory| (-875 |#1|) (QUOTE (-855)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-1160))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| (-875 |#1|) (QUOTE (-234))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -312) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (LIST (QUOTE -289) (LIST (QUOTE -875) (|devaluate| |#1|)) (LIST (QUOTE -875) (|devaluate| |#1|)))) (|HasCategory| (-875 |#1|) (QUOTE (-310))) (|HasCategory| (-875 |#1|) (QUOTE (-550))) (|HasCategory| (-875 |#1|) (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-875 |#1|) (QUOTE (-915)))) (|HasCategory| (-875 |#1|) (QUOTE (-145))))) -(-877 |p| PADIC) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-876 |#1|) (QUOTE (-916))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-148))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-876 |#1|) (QUOTE (-1031))) (|HasCategory| (-876 |#1|) (QUOTE (-826))) (-2779 (|HasCategory| (-876 |#1|) (QUOTE (-826))) (|HasCategory| (-876 |#1|) (QUOTE (-856)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-1161))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-235))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -876) (|devaluate| |#1|)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (QUOTE (-311))) (|HasCategory| (-876 |#1|) (QUOTE (-551))) (|HasCategory| (-876 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (|HasCategory| (-876 |#1|) (QUOTE (-146))))) +(-878 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-825))) (-2776 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1160))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-855))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-878 S T$) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-826))) (-2779 (|HasCategory| |#2| (QUOTE (-826))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-879 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))))) -(-879) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))))) +(-880) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-880) +(-881) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-881) +(-882) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-882 CF1 CF2) +(-883 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-883 |ComponentFunction|) +(-884 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-884 CF1 CF2) +(-885 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-885 |ComponentFunction|) +(-886 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-886) +(-887) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-887 CF1 CF2) +(-888 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-888 |ComponentFunction|) +(-889 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-889) +(-890) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-890 R) +(-891 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-891 R S L) +(-892 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-892 S) +(-893 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-893 |Base| |Subject| |Pat|) +(-894 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1749 (|HasCategory| |#2| (QUOTE (-1057)))) (-1749 (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (-12 (|HasCategory| |#2| (QUOTE (-1057))) (-1749 (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185))))) -(-894 R A B) +((-12 (-1748 (|HasCategory| |#2| (QUOTE (-1058)))) (-1748 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (-1748 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) +(-895 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-895 R S) +(-896 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-896 R -2832) +(-897 R -2835) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-897 R S) +(-898 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-898 R) +(-899 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-899 |VarSet|) +(-900 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-900 UP R) +(-901 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-901) +(-902) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-902 UP -1668) +(-903 UP -1667) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-903) +(-904) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-904) +(-905) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-905 A S) +(-906 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-906 S) +(-907 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4444 . T)) +((-4445 . T)) NIL -(-907 S) +(-908 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-908 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-909 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-909 S) +(-910 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4444 . T)) +((-4445 . T)) NIL -(-910 S) +(-911 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-911 S) +(-912 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4444 . T)) -((-2776 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-855)))) -(-912 R E |VarSet| S) +((-4445 . T)) +((-2779 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856)))) +(-913 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-913 R S) +(-914 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-914 S) +(-915 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-145)))) -(-915) +((|HasCategory| |#1| (QUOTE (-146)))) +(-916) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-916 |p|) +(-917 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-372)))) -(-917 R0 -1668 UP UPUP R) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-373)))) +(-918 R0 -1667 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-918 UP UPUP R) +(-919 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-919 UP UPUP) +(-920 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-920 R) +(-921 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-921 R) +(-922 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-922 E OV R P) +(-923 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-923) +(-924) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-924 -1668) +(-925 -1667) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-925 R) +(-926 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-926) +(-927) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-927) +(-928) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4449 "*") . T)) +(((-4450 "*") . T)) NIL -(-928 -1668 P) +(-929 -1667 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-929 |xx| -1668) +(-930 |xx| -1667) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-930 R |Var| |Expon| GR) +(-931 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-931 S) +(-932 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-932) +(-933) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-933) +(-934) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-934) +(-935) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-935 R -1668) +(-936 R -1667) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-936) +(-937) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-937 S A B) +(-938 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-938 S R -1668) +(-939 S R -1667) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-939 I) +(-940 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-940 S E) +(-941 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-941 S R L) +(-942 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-942 S E V R P) +(-943 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -892) (|devaluate| |#1|)))) -(-943 R -1668 -2832) +((|HasCategory| |#3| (LIST (QUOTE -893) (|devaluate| |#1|)))) +(-944 R -1667 -2835) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-944 -2832) +(-945 -2835) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-945 S R Q) +(-946 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-946 S) +(-947 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-947 S R P) +(-948 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-948) +(-949) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-949 R) +(-950 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-950 |lv| R) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-951 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-951 |TheField| |ThePols|) +(-952 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-853)))) -(-952 R S) +((|HasCategory| |#1| (QUOTE (-854)))) +(-953 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-953 |x| R) +(-954 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-954 S R E |VarSet|) +(-955 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-915))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#4| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#4| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) -(-955 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-916))) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#4| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#4| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) +(-956 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-956 E V R P -1668) +(-957 E V R P -1667) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-957 E |Vars| R P S) +(-958 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-958 R) +(-959 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1185) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-959 E V R P -1668) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-960 E V R P -1667) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-457)))) -(-960) +((|HasCategory| |#3| (QUOTE (-458)))) +(-961) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-961) +(-962) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-962 R L) +(-963 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-963 A B) +(-964 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-964 S) +(-965 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-965) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-966) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-966 -1668) +(-967 -1667) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-967 I) +(-968 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-968) +(-969) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-969 R E) +(-970 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4445))) -(-970 A B) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4446))) +(-971 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4444 -12 (|has| |#2| (-478)) (|has| |#1| (-478)))) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731))))) (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-372)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-478))) (|HasCategory| |#2| (QUOTE (-478)))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-798))))) (-12 (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-731)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-855))))) -(-971) +((-4445 -12 (|has| |#2| (-479)) (|has| |#1| (-479)))) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856))))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-373)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856))))) +(-972) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-972 T$) +(-973 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-973 T$) +(-974 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|terms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{terms f} \\spad{++} returns the set of terms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-974 S T$) +(-975 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all terms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-975) -((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) +(-976) +((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-976 S) +(-977 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL -(-977 R |polR|) +(-978 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-457)))) -(-978) +((|HasCategory| |#1| (QUOTE (-458)))) +(-979) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-979) +(-980) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-980 S |Coef| |Expon| |Var|) +(-981 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-981 |Coef| |Expon| |Var|) +(-982 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-982) +(-983) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-983 S R E |VarSet| P) +(-984 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-561)))) -(-984 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-562)))) +(-985 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4447 . T)) +((-4448 . T)) NIL -(-985 R E V P) +(-986 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-457)))) -(-986 K) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-458)))) +(-987 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-987 |VarSet| E RC P) +(-988 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-988 R) +(-989 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-989 R1 R2) +(-990 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-990 R) +(-991 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-991 K) +(-992 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-992 R E OV PPR) +(-993 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-993 K R UP -1668) +(-994 K R UP -1667) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-994 |vl| |nv|) +(-995 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-995 R |Var| |Expon| |Dpoly|) +(-996 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-310))))) -(-996 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-311))))) +(-997 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-997) +(-998) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-998 A B R S) +(-999 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-999 A S) +(-1000 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-1160)))) -(-1000 S) +((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-826))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1161)))) +(-1001 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1001 |n| K) +(-1002 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1002) +(-1003) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1003 S) +(-1004 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL -(-1004 S R) +(-1005 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-293)))) -(-1005 R) +((|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-294)))) +(-1006 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4440 |has| |#1| (-293)) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 |has| |#1| (-294)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1006 QR R QS S) +(-1007 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1007 R) +(-1008 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4440 |has| |#1| (-293)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-293))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -289) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-550)))) -(-1008 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) +((-4441 |has| |#1| (-294)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551)))) (-1009 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1010 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1010) +(-1011) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1011 -1668 UP UPUP |radicnd| |n|) +(-1012 -1667 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4440 |has| (-412 |#2|) (-367)) (-4445 |has| (-412 |#2|) (-367)) (-4439 |has| (-412 |#2|) (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-412 |#2|) (QUOTE (-145))) (|HasCategory| (-412 |#2|) (QUOTE (-147))) (|HasCategory| (-412 |#2|) (QUOTE (-353))) (-2776 (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (|HasCategory| (-412 |#2|) (QUOTE (-367))) (|HasCategory| (-412 |#2|) (QUOTE (-372))) (-2776 (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (QUOTE (-353)))) (-2776 (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-353))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 |#2|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-12 (|HasCategory| (-412 |#2|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-412 |#2|) (QUOTE (-367)))) (-12 (|HasCategory| (-412 |#2|) (QUOTE (-234))) (|HasCategory| (-412 |#2|) (QUOTE (-367))))) -(-1012 |bb|) +((-4441 |has| (-413 |#2|) (-368)) (-4446 |has| (-413 |#2|) (-368)) (-4440 |has| (-413 |#2|) (-368)) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-2779 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-2779 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-2779 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-2779 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368))))) +(-1013 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-569) (QUOTE (-915))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| (-569) (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-147))) (|HasCategory| (-569) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-1030))) (|HasCategory| (-569) (QUOTE (-825))) (-2776 (|HasCategory| (-569) (QUOTE (-825))) (|HasCategory| (-569) (QUOTE (-855)))) (|HasCategory| (-569) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-1160))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| (-569) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| (-569) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| (-569) (QUOTE (-234))) (|HasCategory| (-569) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| (-569) (LIST (QUOTE -519) (QUOTE (-1185)) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -312) (QUOTE (-569)))) (|HasCategory| (-569) (LIST (QUOTE -289) (QUOTE (-569)) (QUOTE (-569)))) (|HasCategory| (-569) (QUOTE (-310))) (|HasCategory| (-569) (QUOTE (-550))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-569) (LIST (QUOTE -644) (QUOTE (-569)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-569) (QUOTE (-915)))) (|HasCategory| (-569) (QUOTE (-145))))) -(-1013) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2779 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146))))) +(-1014) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1014) +(-1015) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1015 RP) +(-1016 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1016 S) +(-1017 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1017 A S) +(-1018 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#2| (QUOTE (-1108)))) -(-1018 S) +((|HasAttribute| |#1| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-1109)))) +(-1019 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1019 S) +(-1020 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1020) +(-1021) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4440 . T) (-4445 . T) (-4439 . T) (-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4444 . T)) +((-4441 . T) (-4446 . T) (-4440 . T) (-4443 . T) (-4442 . T) ((-4450 "*") . T) (-4445 . T)) NIL -(-1021 R -1668) +(-1022 R -1667) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1022 R -1668) +(-1023 R -1667) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1023 -1668 UP) +(-1024 -1667 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1024 -1668 UP) +(-1025 -1667 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1025 S) +(-1026 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1026 F1 UP UPUP R F2) +(-1027 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1027) +(-1028) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1028 |Pol|) +(-1029 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1029 |Pol|) +(-1030 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1030) +(-1031) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1031) +(-1032) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1032 |TheField|) +(-1033 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4440 . T) (-4445 . T) (-4439 . T) (-4442 . T) (-4441 . T) ((-4449 "*") . T) (-4444 . T)) -((-2776 (|HasCategory| (-412 (-569)) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-412 (-569)) (LIST (QUOTE -1046) (QUOTE (-569))))) -(-1033 -1668 L) +((-4441 . T) (-4446 . T) (-4440 . T) (-4443 . T) (-4442 . T) ((-4450 "*") . T) (-4445 . T)) +((-2779 (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570))))) +(-1034 -1667 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1034 S) +(-1035 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1108)))) -(-1035 R E V P) +((|HasCategory| |#1| (QUOTE (-1109)))) +(-1036 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1036 R) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1037 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4449 "*")))) -(-1037 R) +((|HasAttribute| |#1| (QUOTE (-4450 "*")))) +(-1038 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-310)))) -(-1038 S) +((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-311)))) +(-1039 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1039) +(-1040) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1040 S) +(-1041 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1041 S) +(-1042 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1042 -1668 |Expon| |VarSet| |FPol| |LFPol|) +(-1043 -1667 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1043) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1185))) (LIST (QUOTE |:|) (QUOTE -2216) (QUOTE (-52))))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-52) (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-1185) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867))))) (-1044) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -2219) (QUOTE (-52))))))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868))))) +(-1045) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1045 A S) +(-1046 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1046 S) +(-1047 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1047 Q R) +(-1048 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1048) +(-1049) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1049 UP) +(-1050 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1050 R) +(-1051 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1051 R) +(-1052 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1052 T$) +(-1053 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1053 T$) +(-1054 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1054 R |ls|) +(-1055 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1108))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -785) (|devaluate| |#1|) (LIST (QUOTE -869) (|devaluate| |#2|)))))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-785 |#1| (-869 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| (-869 |#2|) (QUOTE (-372))) (|HasCategory| (-785 |#1| (-869 |#2|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-1055) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| (-786 |#1| (-870 |#2|)) (QUOTE (-1109))) (|HasCategory| (-786 |#1| (-870 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -786) (|devaluate| |#1|) (LIST (QUOTE -870) (|devaluate| |#2|)))))) (|HasCategory| (-786 |#1| (-870 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-786 |#1| (-870 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| (-870 |#2|) (QUOTE (-373))) (|HasCategory| (-786 |#1| (-870 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-1056) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1056 S) +(-1057 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1057) +(-1058) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4444 . T)) +((-4445 . T)) NIL -(-1058 |xx| -1668) +(-1059 |xx| -1667) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1059 R) +(-1060 R) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set"))) NIL NIL -(-1060 S |m| |n| R |Row| |Col|) +(-1061 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-310))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (QUOTE (-561))) (|HasCategory| |#4| (QUOTE (-173)))) -(-1061 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-311))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-562))) (|HasCategory| |#4| (QUOTE (-174)))) +(-1062 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4447 . T) (-4442 . T) (-4441 . T)) +((-4448 . T) (-4443 . T) (-4442 . T)) NIL -(-1062 |m| |n| R) +(-1063 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4447 . T) (-4442 . T) (-4441 . T)) -((|HasCategory| |#3| (QUOTE (-173))) (-2776 (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (QUOTE (-310))) (|HasCategory| |#3| (QUOTE (-561))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1063 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4448 . T) (-4443 . T) (-4442 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2779 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1064 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1064 R) +(-1065 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline"))) NIL NIL -(-1065 S T$) +(-1066 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1108)))) -(-1066) +((|HasCategory| |#1| (QUOTE (-1109)))) +(-1067) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1067 S) +(-1068 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1068) +(-1069) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1069 |TheField| |ThePolDom|) +(-1070 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1070) +(-1071) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4435 . T) (-4439 . T) (-4434 . T) (-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4436 . T) (-4440 . T) (-4435 . T) (-4446 . T) (-4447 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1071) +(-1072) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1185))) (LIST (QUOTE |:|) (QUOTE -2216) (QUOTE (-52))))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-52) (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| (-52) (QUOTE (-1108))) (|HasCategory| (-52) (LIST (QUOTE -312) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (QUOTE (-1108))) (|HasCategory| (-1185) (QUOTE (-855))) (|HasCategory| (-52) (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-52) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (LIST (QUOTE -618) (QUOTE (-867))))) -(-1072 S R E V) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -2219) (QUOTE (-52))))))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (LIST (QUOTE -619) (QUOTE (-868))))) +(-1073 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1000) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-1185))))) -(-1073 R E V) +((|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1001) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-1186))))) +(-1074 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-1074) +(-1075) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1075 S |TheField| |ThePols|) +(-1076 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1076 |TheField| |ThePols|) +(-1077 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1077 R E V P TS) +(-1078 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1078 S R E V P) +(-1079 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1079 R E V P) +(-1080 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1080 R E V P TS) +(-1081 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1081) +(-1082) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1082) +(-1083) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1083 |f|) +(-1084 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1084 |Base| R -1668) +(-1085 |Base| R -1667) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1085 |Base| R -1668) +(-1086 |Base| R -1667) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1086 R |ls|) +(-1087 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1087 UP SAE UPA) +(-1088 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1088 R UP M) +(-1089 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4440 |has| |#1| (-367)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-353))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-353)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-372))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-353)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-353))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367))))) -(-1089 UP SAE UPA) +((-4441 |has| |#1| (-368)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-354)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368))))) +(-1090 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1090) +(-1091) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1091) +(-1092) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1092 S) +(-1093 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1093) +(-1094) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1094 R) +(-1095 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1095 R) +(-1096 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1096 (-1185)) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-234))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1096 S) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1097 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1097 R S) +(-1098 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-853)))) -(-1098) +((|HasCategory| |#1| (QUOTE (-854)))) +(-1099) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1099 R S) +(-1100 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1100 S) +(-1101 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1102 |#1|) (QUOTE (-1108)))) -(-1101 S) +((|HasCategory| (-1103 |#1|) (QUOTE (-1109)))) +(-1102 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1102 S) +(-1103 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1108)))) -(-1103 S L) +((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-1109)))) +(-1104 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1104) +(-1105) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1105 A S) +(-1106 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1106 S) +(-1107 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4437 . T)) +((-4438 . T)) NIL -(-1107 S) +(-1108 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1108) +(-1109) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1109 |m| |n|) +(-1110 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1110 S) +(-1111 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4447 . T) (-4437 . T) (-4448 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-372))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-1111 |Str| |Sym| |Int| |Flt| |Expr|) +((-4448 . T) (-4438 . T) (-4449 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-1112 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1112) +(-1113) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1113 |Str| |Sym| |Int| |Flt| |Expr|) +(-1114 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1114 R FS) +(-1115 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1115 R E V P TS) +(-1116 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1116 R E V P TS) +(-1117 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1117 R E V P) +(-1118 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1118) +(-1119) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1119 S) +(-1120 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1120) +(-1121) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1121 |dimtot| |dim1| S) +(-1122 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4441 |has| |#3| (-1057)) (-4442 |has| |#3| (-1057)) (-4444 |has| |#3| (-6 -4444)) ((-4449 "*") |has| |#3| (-173)) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108)))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#3| (QUOTE (-367))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-367)))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-798))) (-2776 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853)))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-731))) (-2776 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-1057)))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (|HasCategory| |#3| (QUOTE (-234))) (-2776 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (QUOTE (-1108)))) (|HasCategory| |#3| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-173)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-234)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-372)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-731)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-798)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-853)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-173))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-731))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-798))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-853))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (|HasCategory| (-569) (QUOTE (-855))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (QUOTE (-234))) (|HasCategory| |#3| (QUOTE (-1057)))) (-12 (|HasCategory| |#3| (QUOTE (-1057))) (|HasCategory| |#3| (LIST (QUOTE -906) (QUOTE (-1185))))) (-2776 (|HasCategory| |#3| (QUOTE (-1057))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569)))))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#3| (QUOTE (-1108)))) (|HasAttribute| |#3| (QUOTE -4444)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#3| (QUOTE (-1108))) (|HasCategory| |#3| (LIST (QUOTE -312) (|devaluate| |#3|))))) -(-1122 R |x|) +((-4442 |has| |#3| (-1058)) (-4443 |has| |#3| (-1058)) (-4445 |has| |#3| (-6 -4445)) ((-4450 "*") |has| |#3| (-174)) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-368))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-2779 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-2779 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2779 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2779 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2779 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2779 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (-2779 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasCategory| |#3| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2779 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasAttribute| |#3| (QUOTE -4445)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) +(-1123 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-457)))) -(-1123) +((|HasCategory| |#1| (QUOTE (-458)))) +(-1124) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1124 R -1668) +(-1125 R -1667) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1125 R) +(-1126 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1126) +(-1127) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1127) +(-1128) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1128) -((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4435 . T) (-4439 . T) (-4434 . T) (-4445 . T) (-4446 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +(-1129) +((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) +((-4436 . T) (-4440 . T) (-4435 . T) (-4446 . T) (-4447 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1129 S) +(-1130 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4447 . T) (-4448 . T)) +((-4448 . T) (-4449 . T)) NIL -(-1130 S |ndim| R |Row| |Col|) +(-1131 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-367))) (|HasAttribute| |#3| (QUOTE (-4449 "*"))) (|HasCategory| |#3| (QUOTE (-173)))) -(-1131 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-368))) (|HasAttribute| |#3| (QUOTE (-4450 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +(-1132 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4447 . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4448 . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1132 R |Row| |Col| M) +(-1133 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1133 R |VarSet|) +(-1134 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1134 |Coef| |Var| SMP) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1135 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367)))) -(-1135 R E V P) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368)))) +(-1136 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1136 UP -1668) +(-1137 UP -1667) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1137 R) +(-1138 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1138 R) +(-1139 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1139 R) +(-1140 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1140 S A) +(-1141 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-855)))) -(-1141 R) +((|HasCategory| |#1| (QUOTE (-856)))) +(-1142 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1142 R) +(-1143 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1143) +(-1144) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1144) +(-1145) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1145) +(-1146) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1146) +(-1147) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1147) +(-1148) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1148 V C) +(-1149 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1149 V C) +(-1150 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1148 |#1| |#2|) (QUOTE (-1108)))) (|HasCategory| (-1148 |#1| |#2|) (QUOTE (-1108))) (-2776 (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -312) (LIST (QUOTE -1148) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1148 |#1| |#2|) (QUOTE (-1108))))) (|HasCategory| (-1148 |#1| |#2|) (LIST (QUOTE -618) (QUOTE (-867))))) -(-1150 |ndim| R) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))) (-2779 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))))) (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868))))) +(-1151 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4444 . T) (-4436 |has| |#2| (-6 (-4449 "*"))) (-4447 . T) (-4441 . T) (-4442 . T)) -((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (-12 (|HasCategory| |#2| (QUOTE (-234))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (QUOTE (-310))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-367))) (-2776 (|HasAttribute| |#2| (QUOTE (-4449 "*"))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-173)))) -(-1151 S) +((-4445 . T) (-4437 |has| |#2| (-6 (-4450 "*"))) (-4448 . T) (-4442 . T) (-4443 . T)) +((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4450 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (-2779 (|HasAttribute| |#2| (QUOTE (-4450 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +(-1152 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1152) +(-1153) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1153 R E V P TS) +(-1154 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1154 R E V P) +(-1155 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1155 S) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1156 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1156 A S) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1157 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1157 S) +(-1158 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1158 |Key| |Ent| |dent|) +(-1159 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-855))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108)))) -(-1159) +((-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109)))) +(-1160) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1160) +(-1161) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1161 |Coef|) +(-1162 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1162 S) +(-1163 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1163 A B) +(-1164 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1164 A B C) +(-1165 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1165 S) +(-1166 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4448 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1166) +((-4449 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1167) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1167) +(-1168) NIL -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| (-144) (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| (-144) (QUOTE (-1108))) (|HasCategory| (-144) (LIST (QUOTE -312) (QUOTE (-144)))))) -(-1168 |Entry|) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) +(-1169 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (QUOTE (-1167))) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#1|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (QUOTE (-1108))) (|HasCategory| (-1167) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-1169 A) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#1|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-1170 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) -(-1170 |Coef|) +((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) +(-1171 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1171 |Coef|) +(-1172 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1172 R UP) +(-1173 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-310)))) -(-1173 |n| R) +((|HasCategory| |#1| (QUOTE (-311)))) +(-1174 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1174 S1 S2) +(-1175 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1175) +(-1176) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1176 |Coef| |var| |cen|) +(-1177 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4449 "*") -2776 (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-915)))) (-4440 -2776 (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1759 (|has| |#1| (-367)) (|has| (-1183 |#1| |#2| |#3|) (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1120))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1183) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1183 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1177 R -1668) +(((-4450 "*") -2779 (-1760 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-1760 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4441 -2779 (-1760 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-1760 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1178 R -1667) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1178 R) +(-1179 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1179 R S) +(-1180 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1180 E OV R P) +(-1181 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1181 R) +(-1182 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#1| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1160))) (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-234))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1182 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|))))))) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4444 |has| |#1| (-368)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4446)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1183 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +(-1184 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1120))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|))))))) -(-1184) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +(-1185) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1185) +(-1186) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1186 R) +(-1187 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1187 R) +(-1188 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-6 -4445)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-457))) (-12 (|HasCategory| (-979) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasAttribute| |#1| (QUOTE -4445))) -(-1188) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-6 -4446)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| (-980) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasAttribute| |#1| (QUOTE -4446))) +(-1189) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1189) +(-1190) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1190) +(-1191) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1191 N) +(-1192 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1192 N) +(-1193 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1193) +(-1194) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1194 R) +(-1195 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1195) +(-1196) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1196 S) +(-1197 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1197 S) +(-1198 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1198 |Key| |Entry|) +(-1199 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4447 . T) (-4448 . T)) -((-12 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -312) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2006) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2216) (|devaluate| |#2|)))))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#2| (QUOTE (-1108)))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -619) (QUOTE (-541)))) (-12 (|HasCategory| |#2| (QUOTE (-1108))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#2| (QUOTE (-1108))) (-2776 (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#2| (LIST (QUOTE -618) (QUOTE (-867)))) (|HasCategory| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (LIST (QUOTE -618) (QUOTE (-867))))) -(-1199 R) +((-4448 . T) (-4449 . T)) +((-12 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2009) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2219) (|devaluate| |#2|)))))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2779 (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (LIST (QUOTE -619) (QUOTE (-868))))) +(-1200 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1200 S |Key| |Entry|) +(-1201 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1201 |Key| |Entry|) +(-1202 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4448 . T)) +((-4449 . T)) NIL -(-1202 |Key| |Entry|) +(-1203 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1203) +(-1204) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1204 S) +(-1205 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1205) +(-1206) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1206) +(-1207) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1207 R) +(-1208 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1208) +(-1209) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1209 S) +(-1210 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1210) +(-1211) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1211 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1108))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (-1212 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1213 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1213) +(-1214) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1214 R -1668) +(-1215 R -1667) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1215 R |Row| |Col| M) +(-1216 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1216 R -1668) +(-1217 R -1667) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -619) (LIST (QUOTE -898) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -892) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -892) (|devaluate| |#1|))))) -(-1217 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -893) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -893) (|devaluate| |#1|))))) +(-1218 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-372)))) -(-1218 R E V P) +((|HasCategory| |#4| (QUOTE (-373)))) +(-1219 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1219 |Coef|) +(-1220 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-367)))) -(-1220 |Curve|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368)))) +(-1221 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1221) +(-1222) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1222 S) +(-1223 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1223 -1668) +((|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1224 -1667) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1224) +(-1225) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1225) +(-1226) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1226 S) +(-1227 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-855)))) -(-1227) +((|HasCategory| |#1| (QUOTE (-856)))) +(-1228) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1228 S) +(-1229 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1229) +(-1230) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1230) +(-1231) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1231) +(-1232) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1232) +(-1233) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1233) +(-1234) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1234 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1235 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1235 |Coef|) +(-1236 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1236 S |Coef| UTS) +(-1237 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-367)))) -(-1237 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-368)))) +(-1238 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1238 |Coef| UTS) +(-1239 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145))))) (-2776 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-147))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-234)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1120))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1030)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855))))) (-2776 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-1185)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -289) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -312) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -519) (QUOTE (-1185)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-855)))) (|HasCategory| |#2| (QUOTE (-915))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-310)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-145)))))) -(-1239 |Coef| |var| |cen|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))) (-2779 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-148))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856))))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1240 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4449 "*") -2776 (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-825))) (|has| |#1| (-173)) (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-915)))) (-4440 -2776 (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-825))) (|has| |#1| (-561)) (-1759 (|has| |#1| (-367)) (|has| (-1267 |#1| |#2| |#3|) (-915)))) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|)))))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-234))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-569)) (|devaluate| |#1|))))) (|HasCategory| (-569) (QUOTE (-1120))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367))))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-1160))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -289) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -312) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -519) (QUOTE (-1185)) (LIST (QUOTE -1267) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-569))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-310))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-173)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| (-1267 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1240 ZP) +(((-4450 "*") -2779 (-1760 (|has| |#1| (-368)) (|has| (-1268 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-1760 (|has| |#1| (-368)) (|has| (-1268 |#1| |#2| |#3|) (-916)))) (-4441 -2779 (-1760 (|has| |#1| (-368)) (|has| (-1268 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-1760 (|has| |#1| (-368)) (|has| (-1268 |#1| |#2| |#3|) (-916)))) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1268) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1268 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1241 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1241 R S) +(-1242 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-853)))) -(-1242 S) +((|HasCategory| |#1| (QUOTE (-854)))) +(-1243 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-853))) (|HasCategory| |#1| (QUOTE (-1108)))) -(-1243 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-1109)))) +(-1244 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1244 R Q UP) +(-1245 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1245 R UP) +(-1246 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1246 R UP) +(-1247 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1247 R U) +(-1248 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1248 |x| R) +(-1249 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4449 "*") |has| |#2| (-173)) (-4440 |has| |#2| (-561)) (-4443 |has| |#2| (-367)) (-4445 |has| |#2| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-561)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-383)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-383))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -892) (QUOTE (-569)))) (|HasCategory| |#2| (LIST (QUOTE -892) (QUOTE (-569))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-383)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -619) (LIST (QUOTE -898) (QUOTE (-569)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-541))))) (|HasCategory| |#2| (LIST (QUOTE -644) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (QUOTE (-569)))) (-2776 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| |#2| (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (-2776 (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-1160))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasCategory| |#2| (QUOTE (-234))) (|HasAttribute| |#2| (QUOTE -4445)) (|HasCategory| |#2| (QUOTE (-457))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (-2776 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-915)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-1249 R PR S PS) +(((-4450 "*") |has| |#2| (-174)) (-4441 |has| |#2| (-562)) (-4444 |has| |#2| (-368)) (-4446 |has| |#2| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2779 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE -4446)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2779 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1250 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1250 S R) +(-1251 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-457))) (|HasCategory| |#2| (QUOTE (-561))) (|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (QUOTE (-1160)))) -(-1251 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1161)))) +(-1252 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4443 |has| |#1| (-367)) (-4445 |has| |#1| (-6 -4445)) (-4442 . T) (-4441 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4444 |has| |#1| (-368)) (-4446 |has| |#1| (-6 -4446)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-1252 S |Coef| |Expon|) +(-1253 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1120))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3796) (LIST (|devaluate| |#2|) (QUOTE (-1185)))))) -(-1253 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3798) (LIST (|devaluate| |#2|) (QUOTE (-1186)))))) +(-1254 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1254 RC P) +(-1255 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1255 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1256 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1256 |Coef|) +(-1257 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1257 S |Coef| ULS) +(-1258 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1258 |Coef| ULS) +(-1259 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1259 |Coef| ULS) +(-1260 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) -(-1260 |Coef| |var| |cen|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) +(-1261 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4445 |has| |#1| (-367)) (-4439 |has| |#1| (-367)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#1| (QUOTE (-173))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569))) (|devaluate| |#1|)))) (|HasCategory| (-412 (-569)) (QUOTE (-1120))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-2776 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-561)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -412) (QUOTE (-569)))))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|))))))) -(-1261 R FE |var| |cen|) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4446 |has| |#1| (-368)) (-4440 |has| |#1| (-368)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2779 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +(-1262 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4449 "*") |has| (-1260 |#2| |#3| |#4|) (-173)) (-4440 |has| (-1260 |#2| |#3| |#4|) (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-173))) (-2776 (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569)))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -1046) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| (-1260 |#2| |#3| |#4|) (LIST (QUOTE -1046) (QUOTE (-569)))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-367))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-457))) (|HasCategory| (-1260 |#2| |#3| |#4|) (QUOTE (-561)))) -(-1262 A S) +(((-4450 "*") |has| (-1261 |#2| |#3| |#4|) (-174)) (-4441 |has| (-1261 |#2| |#3| |#4|) (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| (-1261 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1261 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1261 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1261 |#2| |#3| |#4|) (QUOTE (-174))) (-2779 (|HasCategory| (-1261 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1261 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| (-1261 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1261 |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1261 |#2| |#3| |#4|) (QUOTE (-368))) (|HasCategory| (-1261 |#2| |#3| |#4|) (QUOTE (-458))) (|HasCategory| (-1261 |#2| |#3| |#4|) (QUOTE (-562)))) +(-1263 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4448))) -(-1263 S) +((|HasAttribute| |#1| (QUOTE -4449))) +(-1264 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1264 |Coef1| |Coef2| UTS1 UTS2) +(-1265 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1265 S |Coef|) +(-1266 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#2| (QUOTE (-965))) (|HasCategory| |#2| (QUOTE (-1210))) (|HasSignature| |#2| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3579) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1185))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#2| (QUOTE (-367)))) -(-1266 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1211))) (|HasSignature| |#2| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1840) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) +(-1267 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1267 |Coef| |var| |cen|) +(-1268 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4449 "*") |has| |#1| (-173)) (-4440 |has| |#1| (-561)) (-4441 . T) (-4442 . T) (-4444 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasCategory| |#1| (QUOTE (-561))) (-2776 (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-561)))) (|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-1185)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-776)) (|devaluate| |#1|)))) (|HasCategory| (-776) (QUOTE (-1120))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasSignature| |#1| (LIST (QUOTE -3796) (LIST (|devaluate| |#1|) (QUOTE (-1185)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-367))) (-2776 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-965))) (|HasCategory| |#1| (QUOTE (-1210))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasSignature| |#1| (LIST (QUOTE -3579) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1185))))) (|HasSignature| |#1| (LIST (QUOTE -1712) (LIST (LIST (QUOTE -649) (QUOTE (-1185))) (|devaluate| |#1|))))))) -(-1268 |Coef| UTS) +(((-4450 "*") |has| |#1| (-174)) (-4441 |has| |#1| (-562)) (-4442 . T) (-4443 . T) (-4445 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2779 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -3798) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2779 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1211))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -1840) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1709) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|))))))) +(-1269 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1269 -1668 UP L UTS) +(-1270 -1667 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-561)))) -(-1270) +((|HasCategory| |#1| (QUOTE (-562)))) +(-1271) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1271 |sym|) +(-1272 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1272 S R) +(-1273 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1010))) (|HasCategory| |#2| (QUOTE (-1057))) (|HasCategory| |#2| (QUOTE (-731))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1273 R) +((|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1274 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4448 . T) (-4447 . T)) +((-4449 . T) (-4448 . T)) NIL -(-1274 A B) +(-1275 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1275 R) +(-1276 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4448 . T) (-4447 . T)) -((-2776 (-12 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) (-2776 (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-541)))) (-2776 (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108)))) (|HasCategory| |#1| (QUOTE (-855))) (|HasCategory| (-569) (QUOTE (-855))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-731))) (|HasCategory| |#1| (QUOTE (-1057))) (-12 (|HasCategory| |#1| (QUOTE (-1010))) (|HasCategory| |#1| (QUOTE (-1057)))) (|HasCategory| |#1| (LIST (QUOTE -618) (QUOTE (-867)))) (-12 (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (LIST (QUOTE -312) (|devaluate| |#1|))))) -(-1276) +((-4449 . T) (-4448 . T)) +((-2779 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2779 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2779 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) +(-1277) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1277) +(-1278) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1278) +(-1279) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1279) +(-1280) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1280) +(-1281) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1281 A S) +(-1282 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1282 S) +(-1283 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4442 . T) (-4441 . T)) +((-4443 . T) (-4442 . T)) NIL -(-1283 R) +(-1284 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1284 K R UP -1668) +(-1285 K R UP -1667) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1285) +(-1286) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1286) +(-1287) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1287 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1288 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4442 |has| |#1| (-173)) (-4441 |has| |#1| (-173)) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367)))) -(-1288 R E V P) +((-4443 |has| |#1| (-174)) (-4442 |has| |#1| (-174)) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368)))) +(-1289 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4448 . T) (-4447 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#4| (LIST (QUOTE -312) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-541)))) (|HasCategory| |#4| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-561))) (|HasCategory| |#3| (QUOTE (-372))) (|HasCategory| |#4| (LIST (QUOTE -618) (QUOTE (-867))))) -(-1289 R) +((-4449 . T) (-4448 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868))))) +(-1290 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4441 . T) (-4442 . T) (-4444 . T)) +((-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1290 |vl| R) +(-1291 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4444 . T) (-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T)) -((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4440))) -(-1291 R |VarSet| XPOLY) +((-4445 . T) (-4441 |has| |#2| (-6 -4441)) (-4443 . T) (-4442 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4441))) +(-1292 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1292 |vl| R) +(-1293 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T)) +((-4441 |has| |#2| (-6 -4441)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-1293 S -1668) +(-1294 S -1667) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-372))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1294 -1668) +((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) +(-1295 -1667) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4439 . T) (-4445 . T) (-4440 . T) ((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +((-4440 . T) (-4446 . T) (-4441 . T) ((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL -(-1295 |VarSet| R) +(-1296 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-173))) (|HasCategory| |#2| (LIST (QUOTE -722) (LIST (QUOTE -412) (QUOTE (-569))))) (|HasAttribute| |#2| (QUOTE -4440))) -(-1296 |vl| R) +((-4441 |has| |#2| (-6 -4441)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -723) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasAttribute| |#2| (QUOTE -4441))) +(-1297 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T)) +((-4441 |has| |#2| (-6 -4441)) (-4443 . T) (-4442 . T) (-4445 . T)) NIL -(-1297 R) +(-1298 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4440 |has| |#1| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasAttribute| |#1| (QUOTE -4440))) -(-1298 R E) +((-4441 |has| |#1| (-6 -4441)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4441))) +(-1299 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4444 . T) (-4445 |has| |#1| (-6 -4445)) (-4440 |has| |#1| (-6 -4440)) (-4442 . T) (-4441 . T)) -((|HasCategory| |#1| (QUOTE (-173))) (|HasCategory| |#1| (QUOTE (-367))) (|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4440))) -(-1299 |VarSet| R) +((-4445 . T) (-4446 |has| |#1| (-6 -4446)) (-4441 |has| |#1| (-6 -4441)) (-4443 . T) (-4442 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4446)) (|HasAttribute| |#1| (QUOTE -4441))) +(-1300 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4440 |has| |#2| (-6 -4440)) (-4442 . T) (-4441 . T) (-4444 . T)) -((|HasCategory| |#2| (QUOTE (-173))) (|HasAttribute| |#2| (QUOTE -4440))) -(-1300 A) +((-4441 |has| |#2| (-6 -4441)) (-4443 . T) (-4442 . T) (-4445 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4441))) +(-1301 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1301 R |ls| |ls2|) +(-1302 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1302 R) +(-1303 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1303 |p|) +(-1304 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4449 "*") . T) (-4441 . T) (-4442 . T) (-4444 . T)) +(((-4450 "*") . T) (-4442 . T) (-4443 . T) (-4445 . T)) NIL NIL NIL @@ -5160,4 +5164,4 @@ NIL NIL NIL NIL -((-3 NIL 2268420 2268425 2268430 2268435) (-2 NIL 2268400 2268405 2268410 2268415) (-1 NIL 2268380 2268385 2268390 2268395) (0 NIL 2268360 2268365 2268370 2268375) (-1303 "ZMOD.spad" 2268169 2268182 2268298 2268355) (-1302 "ZLINDEP.spad" 2267235 2267246 2268159 2268164) (-1301 "ZDSOLVE.spad" 2257180 2257202 2267225 2267230) (-1300 "YSTREAM.spad" 2256675 2256686 2257170 2257175) (-1299 "XRPOLY.spad" 2255895 2255915 2256531 2256600) (-1298 "XPR.spad" 2253690 2253703 2255613 2255712) (-1297 "XPOLY.spad" 2253245 2253256 2253546 2253615) (-1296 "XPOLYC.spad" 2252564 2252580 2253171 2253240) (-1295 "XPBWPOLY.spad" 2251001 2251021 2252344 2252413) (-1294 "XF.spad" 2249464 2249479 2250903 2250996) (-1293 "XF.spad" 2247907 2247924 2249348 2249353) (-1292 "XFALG.spad" 2244955 2244971 2247833 2247902) (-1291 "XEXPPKG.spad" 2244206 2244232 2244945 2244950) (-1290 "XDPOLY.spad" 2243820 2243836 2244062 2244131) (-1289 "XALG.spad" 2243480 2243491 2243776 2243815) (-1288 "WUTSET.spad" 2239319 2239336 2243126 2243153) (-1287 "WP.spad" 2238518 2238562 2239177 2239244) (-1286 "WHILEAST.spad" 2238316 2238325 2238508 2238513) (-1285 "WHEREAST.spad" 2237987 2237996 2238306 2238311) (-1284 "WFFINTBS.spad" 2235650 2235672 2237977 2237982) (-1283 "WEIER.spad" 2233872 2233883 2235640 2235645) (-1282 "VSPACE.spad" 2233545 2233556 2233840 2233867) (-1281 "VSPACE.spad" 2233238 2233251 2233535 2233540) (-1280 "VOID.spad" 2232915 2232924 2233228 2233233) (-1279 "VIEW.spad" 2230595 2230604 2232905 2232910) (-1278 "VIEWDEF.spad" 2225796 2225805 2230585 2230590) (-1277 "VIEW3D.spad" 2209757 2209766 2225786 2225791) (-1276 "VIEW2D.spad" 2197648 2197657 2209747 2209752) (-1275 "VECTOR.spad" 2196322 2196333 2196573 2196600) (-1274 "VECTOR2.spad" 2194961 2194974 2196312 2196317) (-1273 "VECTCAT.spad" 2192865 2192876 2194929 2194956) (-1272 "VECTCAT.spad" 2190576 2190589 2192642 2192647) (-1271 "VARIABLE.spad" 2190356 2190371 2190566 2190571) (-1270 "UTYPE.spad" 2190000 2190009 2190346 2190351) (-1269 "UTSODETL.spad" 2189295 2189319 2189956 2189961) (-1268 "UTSODE.spad" 2187511 2187531 2189285 2189290) (-1267 "UTS.spad" 2182315 2182343 2185978 2186075) (-1266 "UTSCAT.spad" 2179794 2179810 2182213 2182310) (-1265 "UTSCAT.spad" 2176917 2176935 2179338 2179343) (-1264 "UTS2.spad" 2176512 2176547 2176907 2176912) (-1263 "URAGG.spad" 2171185 2171196 2176502 2176507) (-1262 "URAGG.spad" 2165822 2165835 2171141 2171146) (-1261 "UPXSSING.spad" 2163467 2163493 2164903 2165036) (-1260 "UPXS.spad" 2160621 2160649 2161599 2161748) (-1259 "UPXSCONS.spad" 2158380 2158400 2158753 2158902) (-1258 "UPXSCCA.spad" 2156951 2156971 2158226 2158375) (-1257 "UPXSCCA.spad" 2155664 2155686 2156941 2156946) (-1256 "UPXSCAT.spad" 2154253 2154269 2155510 2155659) (-1255 "UPXS2.spad" 2153796 2153849 2154243 2154248) (-1254 "UPSQFREE.spad" 2152210 2152224 2153786 2153791) (-1253 "UPSCAT.spad" 2149821 2149845 2152108 2152205) (-1252 "UPSCAT.spad" 2147138 2147164 2149427 2149432) (-1251 "UPOLYC.spad" 2142178 2142189 2146980 2147133) (-1250 "UPOLYC.spad" 2137110 2137123 2141914 2141919) (-1249 "UPOLYC2.spad" 2136581 2136600 2137100 2137105) (-1248 "UP.spad" 2133780 2133795 2134167 2134320) (-1247 "UPMP.spad" 2132680 2132693 2133770 2133775) (-1246 "UPDIVP.spad" 2132245 2132259 2132670 2132675) (-1245 "UPDECOMP.spad" 2130490 2130504 2132235 2132240) (-1244 "UPCDEN.spad" 2129699 2129715 2130480 2130485) (-1243 "UP2.spad" 2129063 2129084 2129689 2129694) (-1242 "UNISEG.spad" 2128416 2128427 2128982 2128987) (-1241 "UNISEG2.spad" 2127913 2127926 2128372 2128377) (-1240 "UNIFACT.spad" 2127016 2127028 2127903 2127908) (-1239 "ULS.spad" 2117574 2117602 2118661 2119090) (-1238 "ULSCONS.spad" 2109970 2109990 2110340 2110489) (-1237 "ULSCCAT.spad" 2107707 2107727 2109816 2109965) (-1236 "ULSCCAT.spad" 2105552 2105574 2107663 2107668) (-1235 "ULSCAT.spad" 2103784 2103800 2105398 2105547) (-1234 "ULS2.spad" 2103298 2103351 2103774 2103779) (-1233 "UINT8.spad" 2103175 2103184 2103288 2103293) (-1232 "UINT64.spad" 2103051 2103060 2103165 2103170) (-1231 "UINT32.spad" 2102927 2102936 2103041 2103046) (-1230 "UINT16.spad" 2102803 2102812 2102917 2102922) (-1229 "UFD.spad" 2101868 2101877 2102729 2102798) (-1228 "UFD.spad" 2100995 2101006 2101858 2101863) (-1227 "UDVO.spad" 2099876 2099885 2100985 2100990) (-1226 "UDPO.spad" 2097369 2097380 2099832 2099837) (-1225 "TYPE.spad" 2097301 2097310 2097359 2097364) (-1224 "TYPEAST.spad" 2097220 2097229 2097291 2097296) (-1223 "TWOFACT.spad" 2095872 2095887 2097210 2097215) (-1222 "TUPLE.spad" 2095358 2095369 2095771 2095776) (-1221 "TUBETOOL.spad" 2092225 2092234 2095348 2095353) (-1220 "TUBE.spad" 2090872 2090889 2092215 2092220) (-1219 "TS.spad" 2089471 2089487 2090437 2090534) (-1218 "TSETCAT.spad" 2076598 2076615 2089439 2089466) (-1217 "TSETCAT.spad" 2063711 2063730 2076554 2076559) (-1216 "TRMANIP.spad" 2058077 2058094 2063417 2063422) (-1215 "TRIMAT.spad" 2057040 2057065 2058067 2058072) (-1214 "TRIGMNIP.spad" 2055567 2055584 2057030 2057035) (-1213 "TRIGCAT.spad" 2055079 2055088 2055557 2055562) (-1212 "TRIGCAT.spad" 2054589 2054600 2055069 2055074) (-1211 "TREE.spad" 2053164 2053175 2054196 2054223) (-1210 "TRANFUN.spad" 2053003 2053012 2053154 2053159) (-1209 "TRANFUN.spad" 2052840 2052851 2052993 2052998) (-1208 "TOPSP.spad" 2052514 2052523 2052830 2052835) (-1207 "TOOLSIGN.spad" 2052177 2052188 2052504 2052509) (-1206 "TEXTFILE.spad" 2050738 2050747 2052167 2052172) (-1205 "TEX.spad" 2047884 2047893 2050728 2050733) (-1204 "TEX1.spad" 2047440 2047451 2047874 2047879) (-1203 "TEMUTL.spad" 2046995 2047004 2047430 2047435) (-1202 "TBCMPPK.spad" 2045088 2045111 2046985 2046990) (-1201 "TBAGG.spad" 2044138 2044161 2045068 2045083) (-1200 "TBAGG.spad" 2043196 2043221 2044128 2044133) (-1199 "TANEXP.spad" 2042604 2042615 2043186 2043191) (-1198 "TABLE.spad" 2041015 2041038 2041285 2041312) (-1197 "TABLEAU.spad" 2040496 2040507 2041005 2041010) (-1196 "TABLBUMP.spad" 2037299 2037310 2040486 2040491) (-1195 "SYSTEM.spad" 2036527 2036536 2037289 2037294) (-1194 "SYSSOLP.spad" 2034010 2034021 2036517 2036522) (-1193 "SYSPTR.spad" 2033909 2033918 2034000 2034005) (-1192 "SYSNNI.spad" 2033091 2033102 2033899 2033904) (-1191 "SYSINT.spad" 2032495 2032506 2033081 2033086) (-1190 "SYNTAX.spad" 2028701 2028710 2032485 2032490) (-1189 "SYMTAB.spad" 2026769 2026778 2028691 2028696) (-1188 "SYMS.spad" 2022792 2022801 2026759 2026764) (-1187 "SYMPOLY.spad" 2021799 2021810 2021881 2022008) (-1186 "SYMFUNC.spad" 2021300 2021311 2021789 2021794) (-1185 "SYMBOL.spad" 2018803 2018812 2021290 2021295) (-1184 "SWITCH.spad" 2015574 2015583 2018793 2018798) (-1183 "SUTS.spad" 2012479 2012507 2014041 2014138) (-1182 "SUPXS.spad" 2009620 2009648 2010611 2010760) (-1181 "SUP.spad" 2006433 2006444 2007206 2007359) (-1180 "SUPFRACF.spad" 2005538 2005556 2006423 2006428) (-1179 "SUP2.spad" 2004930 2004943 2005528 2005533) (-1178 "SUMRF.spad" 2003904 2003915 2004920 2004925) (-1177 "SUMFS.spad" 2003541 2003558 2003894 2003899) (-1176 "SULS.spad" 1994086 1994114 1995186 1995615) (-1175 "SUCHTAST.spad" 1993855 1993864 1994076 1994081) (-1174 "SUCH.spad" 1993537 1993552 1993845 1993850) (-1173 "SUBSPACE.spad" 1985652 1985667 1993527 1993532) (-1172 "SUBRESP.spad" 1984822 1984836 1985608 1985613) (-1171 "STTF.spad" 1980921 1980937 1984812 1984817) (-1170 "STTFNC.spad" 1977389 1977405 1980911 1980916) (-1169 "STTAYLOR.spad" 1970024 1970035 1977270 1977275) (-1168 "STRTBL.spad" 1968529 1968546 1968678 1968705) (-1167 "STRING.spad" 1967938 1967947 1967952 1967979) (-1166 "STRICAT.spad" 1967726 1967735 1967906 1967933) (-1165 "STREAM.spad" 1964644 1964655 1967251 1967266) (-1164 "STREAM3.spad" 1964217 1964232 1964634 1964639) (-1163 "STREAM2.spad" 1963345 1963358 1964207 1964212) (-1162 "STREAM1.spad" 1963051 1963062 1963335 1963340) (-1161 "STINPROD.spad" 1961987 1962003 1963041 1963046) (-1160 "STEP.spad" 1961188 1961197 1961977 1961982) (-1159 "STEPAST.spad" 1960422 1960431 1961178 1961183) (-1158 "STBL.spad" 1958948 1958976 1959115 1959130) (-1157 "STAGG.spad" 1958023 1958034 1958938 1958943) (-1156 "STAGG.spad" 1957096 1957109 1958013 1958018) (-1155 "STACK.spad" 1956453 1956464 1956703 1956730) (-1154 "SREGSET.spad" 1954157 1954174 1956099 1956126) (-1153 "SRDCMPK.spad" 1952718 1952738 1954147 1954152) (-1152 "SRAGG.spad" 1947861 1947870 1952686 1952713) (-1151 "SRAGG.spad" 1943024 1943035 1947851 1947856) (-1150 "SQMATRIX.spad" 1940640 1940658 1941556 1941643) (-1149 "SPLTREE.spad" 1935192 1935205 1940076 1940103) (-1148 "SPLNODE.spad" 1931780 1931793 1935182 1935187) (-1147 "SPFCAT.spad" 1930589 1930598 1931770 1931775) (-1146 "SPECOUT.spad" 1929141 1929150 1930579 1930584) (-1145 "SPADXPT.spad" 1920736 1920745 1929131 1929136) (-1144 "spad-parser.spad" 1920201 1920210 1920726 1920731) (-1143 "SPADAST.spad" 1919902 1919911 1920191 1920196) (-1142 "SPACEC.spad" 1904101 1904112 1919892 1919897) (-1141 "SPACE3.spad" 1903877 1903888 1904091 1904096) (-1140 "SORTPAK.spad" 1903426 1903439 1903833 1903838) (-1139 "SOLVETRA.spad" 1901189 1901200 1903416 1903421) (-1138 "SOLVESER.spad" 1899717 1899728 1901179 1901184) (-1137 "SOLVERAD.spad" 1895743 1895754 1899707 1899712) (-1136 "SOLVEFOR.spad" 1894205 1894223 1895733 1895738) (-1135 "SNTSCAT.spad" 1893805 1893822 1894173 1894200) (-1134 "SMTS.spad" 1892077 1892103 1893370 1893467) (-1133 "SMP.spad" 1889552 1889572 1889942 1890069) (-1132 "SMITH.spad" 1888397 1888422 1889542 1889547) (-1131 "SMATCAT.spad" 1886507 1886537 1888341 1888392) (-1130 "SMATCAT.spad" 1884549 1884581 1886385 1886390) (-1129 "SKAGG.spad" 1883512 1883523 1884517 1884544) (-1128 "SINT.spad" 1882344 1882353 1883378 1883507) (-1127 "SIMPAN.spad" 1882072 1882081 1882334 1882339) (-1126 "SIG.spad" 1881402 1881411 1882062 1882067) (-1125 "SIGNRF.spad" 1880520 1880531 1881392 1881397) (-1124 "SIGNEF.spad" 1879799 1879816 1880510 1880515) (-1123 "SIGAST.spad" 1879184 1879193 1879789 1879794) (-1122 "SHP.spad" 1877112 1877127 1879140 1879145) (-1121 "SHDP.spad" 1866823 1866850 1867332 1867463) (-1120 "SGROUP.spad" 1866431 1866440 1866813 1866818) (-1119 "SGROUP.spad" 1866037 1866048 1866421 1866426) (-1118 "SGCF.spad" 1859200 1859209 1866027 1866032) (-1117 "SFRTCAT.spad" 1858130 1858147 1859168 1859195) (-1116 "SFRGCD.spad" 1857193 1857213 1858120 1858125) (-1115 "SFQCMPK.spad" 1851830 1851850 1857183 1857188) (-1114 "SFORT.spad" 1851269 1851283 1851820 1851825) (-1113 "SEXOF.spad" 1851112 1851152 1851259 1851264) (-1112 "SEX.spad" 1851004 1851013 1851102 1851107) (-1111 "SEXCAT.spad" 1848605 1848645 1850994 1850999) (-1110 "SET.spad" 1846929 1846940 1848026 1848065) (-1109 "SETMN.spad" 1845379 1845396 1846919 1846924) (-1108 "SETCAT.spad" 1844701 1844710 1845369 1845374) (-1107 "SETCAT.spad" 1844021 1844032 1844691 1844696) (-1106 "SETAGG.spad" 1840570 1840581 1844001 1844016) (-1105 "SETAGG.spad" 1837127 1837140 1840560 1840565) (-1104 "SEQAST.spad" 1836830 1836839 1837117 1837122) (-1103 "SEGXCAT.spad" 1835986 1835999 1836820 1836825) (-1102 "SEG.spad" 1835799 1835810 1835905 1835910) (-1101 "SEGCAT.spad" 1834724 1834735 1835789 1835794) (-1100 "SEGBIND.spad" 1834482 1834493 1834671 1834676) (-1099 "SEGBIND2.spad" 1834180 1834193 1834472 1834477) (-1098 "SEGAST.spad" 1833894 1833903 1834170 1834175) (-1097 "SEG2.spad" 1833329 1833342 1833850 1833855) (-1096 "SDVAR.spad" 1832605 1832616 1833319 1833324) (-1095 "SDPOL.spad" 1830031 1830042 1830322 1830449) (-1094 "SCPKG.spad" 1828120 1828131 1830021 1830026) (-1093 "SCOPE.spad" 1827273 1827282 1828110 1828115) (-1092 "SCACHE.spad" 1825969 1825980 1827263 1827268) (-1091 "SASTCAT.spad" 1825878 1825887 1825959 1825964) (-1090 "SAOS.spad" 1825750 1825759 1825868 1825873) (-1089 "SAERFFC.spad" 1825463 1825483 1825740 1825745) (-1088 "SAE.spad" 1823638 1823654 1824249 1824384) (-1087 "SAEFACT.spad" 1823339 1823359 1823628 1823633) (-1086 "RURPK.spad" 1820998 1821014 1823329 1823334) (-1085 "RULESET.spad" 1820451 1820475 1820988 1820993) (-1084 "RULE.spad" 1818691 1818715 1820441 1820446) (-1083 "RULECOLD.spad" 1818543 1818556 1818681 1818686) (-1082 "RTVALUE.spad" 1818278 1818287 1818533 1818538) (-1081 "RSTRCAST.spad" 1817995 1818004 1818268 1818273) (-1080 "RSETGCD.spad" 1814373 1814393 1817985 1817990) (-1079 "RSETCAT.spad" 1804309 1804326 1814341 1814368) (-1078 "RSETCAT.spad" 1794265 1794284 1804299 1804304) (-1077 "RSDCMPK.spad" 1792717 1792737 1794255 1794260) (-1076 "RRCC.spad" 1791101 1791131 1792707 1792712) (-1075 "RRCC.spad" 1789483 1789515 1791091 1791096) (-1074 "RPTAST.spad" 1789185 1789194 1789473 1789478) (-1073 "RPOLCAT.spad" 1768545 1768560 1789053 1789180) (-1072 "RPOLCAT.spad" 1747618 1747635 1768128 1768133) (-1071 "ROUTINE.spad" 1743501 1743510 1746265 1746292) (-1070 "ROMAN.spad" 1742829 1742838 1743367 1743496) (-1069 "ROIRC.spad" 1741909 1741941 1742819 1742824) (-1068 "RNS.spad" 1740812 1740821 1741811 1741904) (-1067 "RNS.spad" 1739801 1739812 1740802 1740807) (-1066 "RNG.spad" 1739536 1739545 1739791 1739796) (-1065 "RNGBIND.spad" 1738696 1738710 1739491 1739496) (-1064 "RMODULE.spad" 1738461 1738472 1738686 1738691) (-1063 "RMCAT2.spad" 1737881 1737938 1738451 1738456) (-1062 "RMATRIX.spad" 1736705 1736724 1737048 1737087) (-1061 "RMATCAT.spad" 1732284 1732315 1736661 1736700) (-1060 "RMATCAT.spad" 1727753 1727786 1732132 1732137) (-1059 "RLINSET.spad" 1727147 1727158 1727743 1727748) (-1058 "RINTERP.spad" 1727035 1727055 1727137 1727142) (-1057 "RING.spad" 1726505 1726514 1727015 1727030) (-1056 "RING.spad" 1725983 1725994 1726495 1726500) (-1055 "RIDIST.spad" 1725375 1725384 1725973 1725978) (-1054 "RGCHAIN.spad" 1723958 1723974 1724860 1724887) (-1053 "RGBCSPC.spad" 1723739 1723751 1723948 1723953) (-1052 "RGBCMDL.spad" 1723269 1723281 1723729 1723734) (-1051 "RF.spad" 1720911 1720922 1723259 1723264) (-1050 "RFFACTOR.spad" 1720373 1720384 1720901 1720906) (-1049 "RFFACT.spad" 1720108 1720120 1720363 1720368) (-1048 "RFDIST.spad" 1719104 1719113 1720098 1720103) (-1047 "RETSOL.spad" 1718523 1718536 1719094 1719099) (-1046 "RETRACT.spad" 1717951 1717962 1718513 1718518) (-1045 "RETRACT.spad" 1717377 1717390 1717941 1717946) (-1044 "RETAST.spad" 1717189 1717198 1717367 1717372) (-1043 "RESULT.spad" 1715249 1715258 1715836 1715863) (-1042 "RESRING.spad" 1714596 1714643 1715187 1715244) (-1041 "RESLATC.spad" 1713920 1713931 1714586 1714591) (-1040 "REPSQ.spad" 1713651 1713662 1713910 1713915) (-1039 "REP.spad" 1711205 1711214 1713641 1713646) (-1038 "REPDB.spad" 1710912 1710923 1711195 1711200) (-1037 "REP2.spad" 1700570 1700581 1710754 1710759) (-1036 "REP1.spad" 1694766 1694777 1700520 1700525) (-1035 "REGSET.spad" 1692563 1692580 1694412 1694439) (-1034 "REF.spad" 1691898 1691909 1692518 1692523) (-1033 "REDORDER.spad" 1691104 1691121 1691888 1691893) (-1032 "RECLOS.spad" 1689887 1689907 1690591 1690684) (-1031 "REALSOLV.spad" 1689027 1689036 1689877 1689882) (-1030 "REAL.spad" 1688899 1688908 1689017 1689022) (-1029 "REAL0Q.spad" 1686197 1686212 1688889 1688894) (-1028 "REAL0.spad" 1683041 1683056 1686187 1686192) (-1027 "RDUCEAST.spad" 1682762 1682771 1683031 1683036) (-1026 "RDIV.spad" 1682417 1682442 1682752 1682757) (-1025 "RDIST.spad" 1681984 1681995 1682407 1682412) (-1024 "RDETRS.spad" 1680848 1680866 1681974 1681979) (-1023 "RDETR.spad" 1678987 1679005 1680838 1680843) (-1022 "RDEEFS.spad" 1678086 1678103 1678977 1678982) (-1021 "RDEEF.spad" 1677096 1677113 1678076 1678081) (-1020 "RCFIELD.spad" 1674282 1674291 1676998 1677091) (-1019 "RCFIELD.spad" 1671554 1671565 1674272 1674277) (-1018 "RCAGG.spad" 1669482 1669493 1671544 1671549) (-1017 "RCAGG.spad" 1667337 1667350 1669401 1669406) (-1016 "RATRET.spad" 1666697 1666708 1667327 1667332) (-1015 "RATFACT.spad" 1666389 1666401 1666687 1666692) (-1014 "RANDSRC.spad" 1665708 1665717 1666379 1666384) (-1013 "RADUTIL.spad" 1665464 1665473 1665698 1665703) (-1012 "RADIX.spad" 1662385 1662399 1663931 1664024) (-1011 "RADFF.spad" 1660798 1660835 1660917 1661073) (-1010 "RADCAT.spad" 1660393 1660402 1660788 1660793) (-1009 "RADCAT.spad" 1659986 1659997 1660383 1660388) (-1008 "QUEUE.spad" 1659334 1659345 1659593 1659620) (-1007 "QUAT.spad" 1657915 1657926 1658258 1658323) (-1006 "QUATCT2.spad" 1657535 1657554 1657905 1657910) (-1005 "QUATCAT.spad" 1655705 1655716 1657465 1657530) (-1004 "QUATCAT.spad" 1653626 1653639 1655388 1655393) (-1003 "QUAGG.spad" 1652453 1652464 1653594 1653621) (-1002 "QQUTAST.spad" 1652221 1652230 1652443 1652448) (-1001 "QFORM.spad" 1651685 1651700 1652211 1652216) (-1000 "QFCAT.spad" 1650387 1650398 1651587 1651680) (-999 "QFCAT.spad" 1648681 1648693 1649882 1649887) (-998 "QFCAT2.spad" 1648374 1648390 1648671 1648676) (-997 "QEQUAT.spad" 1647933 1647941 1648364 1648369) (-996 "QCMPACK.spad" 1642680 1642699 1647923 1647928) (-995 "QALGSET.spad" 1638759 1638791 1642594 1642599) (-994 "QALGSET2.spad" 1636755 1636773 1638749 1638754) (-993 "PWFFINTB.spad" 1634171 1634192 1636745 1636750) (-992 "PUSHVAR.spad" 1633510 1633529 1634161 1634166) (-991 "PTRANFN.spad" 1629638 1629648 1633500 1633505) (-990 "PTPACK.spad" 1626726 1626736 1629628 1629633) (-989 "PTFUNC2.spad" 1626549 1626563 1626716 1626721) (-988 "PTCAT.spad" 1625804 1625814 1626517 1626544) (-987 "PSQFR.spad" 1625111 1625135 1625794 1625799) (-986 "PSEUDLIN.spad" 1623997 1624007 1625101 1625106) (-985 "PSETPK.spad" 1609430 1609446 1623875 1623880) (-984 "PSETCAT.spad" 1603350 1603373 1609410 1609425) (-983 "PSETCAT.spad" 1597244 1597269 1603306 1603311) (-982 "PSCURVE.spad" 1596227 1596235 1597234 1597239) (-981 "PSCAT.spad" 1595010 1595039 1596125 1596222) (-980 "PSCAT.spad" 1593883 1593914 1595000 1595005) (-979 "PRTITION.spad" 1592844 1592852 1593873 1593878) (-978 "PRTDAST.spad" 1592563 1592571 1592834 1592839) (-977 "PRS.spad" 1582125 1582142 1592519 1592524) (-976 "PRQAGG.spad" 1581560 1581570 1582093 1582120) (-975 "PROPLOG.spad" 1580859 1580867 1581550 1581555) (-974 "PROPFUN2.spad" 1580482 1580495 1580849 1580854) (-973 "PROPFUN1.spad" 1580075 1580086 1580472 1580477) (-972 "PROPFRML.spad" 1578643 1578654 1580065 1580070) (-971 "PROPERTY.spad" 1578131 1578139 1578633 1578638) (-970 "PRODUCT.spad" 1575813 1575825 1576097 1576152) (-969 "PR.spad" 1574205 1574217 1574904 1575031) (-968 "PRINT.spad" 1573957 1573965 1574195 1574200) (-967 "PRIMES.spad" 1572210 1572220 1573947 1573952) (-966 "PRIMELT.spad" 1570291 1570305 1572200 1572205) (-965 "PRIMCAT.spad" 1569918 1569926 1570281 1570286) (-964 "PRIMARR.spad" 1568923 1568933 1569101 1569128) (-963 "PRIMARR2.spad" 1567690 1567702 1568913 1568918) (-962 "PREASSOC.spad" 1567072 1567084 1567680 1567685) (-961 "PPCURVE.spad" 1566209 1566217 1567062 1567067) (-960 "PORTNUM.spad" 1565984 1565992 1566199 1566204) (-959 "POLYROOT.spad" 1564833 1564855 1565940 1565945) (-958 "POLY.spad" 1562168 1562178 1562683 1562810) (-957 "POLYLIFT.spad" 1561433 1561456 1562158 1562163) (-956 "POLYCATQ.spad" 1559551 1559573 1561423 1561428) (-955 "POLYCAT.spad" 1553021 1553042 1559419 1559546) (-954 "POLYCAT.spad" 1545829 1545852 1552229 1552234) (-953 "POLY2UP.spad" 1545281 1545295 1545819 1545824) (-952 "POLY2.spad" 1544878 1544890 1545271 1545276) (-951 "POLUTIL.spad" 1543819 1543848 1544834 1544839) (-950 "POLTOPOL.spad" 1542567 1542582 1543809 1543814) (-949 "POINT.spad" 1541405 1541415 1541492 1541519) (-948 "PNTHEORY.spad" 1538107 1538115 1541395 1541400) (-947 "PMTOOLS.spad" 1536882 1536896 1538097 1538102) (-946 "PMSYM.spad" 1536431 1536441 1536872 1536877) (-945 "PMQFCAT.spad" 1536022 1536036 1536421 1536426) (-944 "PMPRED.spad" 1535501 1535515 1536012 1536017) (-943 "PMPREDFS.spad" 1534955 1534977 1535491 1535496) (-942 "PMPLCAT.spad" 1534035 1534053 1534887 1534892) (-941 "PMLSAGG.spad" 1533620 1533634 1534025 1534030) (-940 "PMKERNEL.spad" 1533199 1533211 1533610 1533615) (-939 "PMINS.spad" 1532779 1532789 1533189 1533194) (-938 "PMFS.spad" 1532356 1532374 1532769 1532774) (-937 "PMDOWN.spad" 1531646 1531660 1532346 1532351) (-936 "PMASS.spad" 1530656 1530664 1531636 1531641) (-935 "PMASSFS.spad" 1529623 1529639 1530646 1530651) (-934 "PLOTTOOL.spad" 1529403 1529411 1529613 1529618) (-933 "PLOT.spad" 1524326 1524334 1529393 1529398) (-932 "PLOT3D.spad" 1520790 1520798 1524316 1524321) (-931 "PLOT1.spad" 1519947 1519957 1520780 1520785) (-930 "PLEQN.spad" 1507237 1507264 1519937 1519942) (-929 "PINTERP.spad" 1506859 1506878 1507227 1507232) (-928 "PINTERPA.spad" 1506643 1506659 1506849 1506854) (-927 "PI.spad" 1506252 1506260 1506617 1506638) (-926 "PID.spad" 1505222 1505230 1506178 1506247) (-925 "PICOERCE.spad" 1504879 1504889 1505212 1505217) (-924 "PGROEB.spad" 1503480 1503494 1504869 1504874) (-923 "PGE.spad" 1495097 1495105 1503470 1503475) (-922 "PGCD.spad" 1493987 1494004 1495087 1495092) (-921 "PFRPAC.spad" 1493136 1493146 1493977 1493982) (-920 "PFR.spad" 1489799 1489809 1493038 1493131) (-919 "PFOTOOLS.spad" 1489057 1489073 1489789 1489794) (-918 "PFOQ.spad" 1488427 1488445 1489047 1489052) (-917 "PFO.spad" 1487846 1487873 1488417 1488422) (-916 "PF.spad" 1487420 1487432 1487651 1487744) (-915 "PFECAT.spad" 1485102 1485110 1487346 1487415) (-914 "PFECAT.spad" 1482812 1482822 1485058 1485063) (-913 "PFBRU.spad" 1480700 1480712 1482802 1482807) (-912 "PFBR.spad" 1478260 1478283 1480690 1480695) (-911 "PERM.spad" 1473945 1473955 1478090 1478105) (-910 "PERMGRP.spad" 1468707 1468717 1473935 1473940) (-909 "PERMCAT.spad" 1467265 1467275 1468687 1468702) (-908 "PERMAN.spad" 1465797 1465811 1467255 1467260) (-907 "PENDTREE.spad" 1465138 1465148 1465426 1465431) (-906 "PDRING.spad" 1463689 1463699 1465118 1465133) (-905 "PDRING.spad" 1462248 1462260 1463679 1463684) (-904 "PDEPROB.spad" 1461263 1461271 1462238 1462243) (-903 "PDEPACK.spad" 1455303 1455311 1461253 1461258) (-902 "PDECOMP.spad" 1454773 1454790 1455293 1455298) (-901 "PDECAT.spad" 1453129 1453137 1454763 1454768) (-900 "PCOMP.spad" 1452982 1452995 1453119 1453124) (-899 "PBWLB.spad" 1451570 1451587 1452972 1452977) (-898 "PATTERN.spad" 1446109 1446119 1451560 1451565) (-897 "PATTERN2.spad" 1445847 1445859 1446099 1446104) (-896 "PATTERN1.spad" 1444183 1444199 1445837 1445842) (-895 "PATRES.spad" 1441758 1441770 1444173 1444178) (-894 "PATRES2.spad" 1441430 1441444 1441748 1441753) (-893 "PATMATCH.spad" 1439627 1439658 1441138 1441143) (-892 "PATMAB.spad" 1439056 1439066 1439617 1439622) (-891 "PATLRES.spad" 1438142 1438156 1439046 1439051) (-890 "PATAB.spad" 1437906 1437916 1438132 1438137) (-889 "PARTPERM.spad" 1435306 1435314 1437896 1437901) (-888 "PARSURF.spad" 1434740 1434768 1435296 1435301) (-887 "PARSU2.spad" 1434537 1434553 1434730 1434735) (-886 "script-parser.spad" 1434057 1434065 1434527 1434532) (-885 "PARSCURV.spad" 1433491 1433519 1434047 1434052) (-884 "PARSC2.spad" 1433282 1433298 1433481 1433486) (-883 "PARPCURV.spad" 1432744 1432772 1433272 1433277) (-882 "PARPC2.spad" 1432535 1432551 1432734 1432739) (-881 "PARAMAST.spad" 1431663 1431671 1432525 1432530) (-880 "PAN2EXPR.spad" 1431075 1431083 1431653 1431658) (-879 "PALETTE.spad" 1430045 1430053 1431065 1431070) (-878 "PAIR.spad" 1429032 1429045 1429633 1429638) (-877 "PADICRC.spad" 1426366 1426384 1427537 1427630) (-876 "PADICRAT.spad" 1424381 1424393 1424602 1424695) (-875 "PADIC.spad" 1424076 1424088 1424307 1424376) (-874 "PADICCT.spad" 1422625 1422637 1424002 1424071) (-873 "PADEPAC.spad" 1421314 1421333 1422615 1422620) (-872 "PADE.spad" 1420066 1420082 1421304 1421309) (-871 "OWP.spad" 1419306 1419336 1419924 1419991) (-870 "OVERSET.spad" 1418879 1418887 1419296 1419301) (-869 "OVAR.spad" 1418660 1418683 1418869 1418874) (-868 "OUT.spad" 1417746 1417754 1418650 1418655) (-867 "OUTFORM.spad" 1407138 1407146 1417736 1417741) (-866 "OUTBFILE.spad" 1406556 1406564 1407128 1407133) (-865 "OUTBCON.spad" 1405562 1405570 1406546 1406551) (-864 "OUTBCON.spad" 1404566 1404576 1405552 1405557) (-863 "OSI.spad" 1404041 1404049 1404556 1404561) (-862 "OSGROUP.spad" 1403959 1403967 1404031 1404036) (-861 "ORTHPOL.spad" 1402444 1402454 1403876 1403881) (-860 "OREUP.spad" 1401897 1401925 1402124 1402163) (-859 "ORESUP.spad" 1401198 1401222 1401577 1401616) (-858 "OREPCTO.spad" 1399055 1399067 1401118 1401123) (-857 "OREPCAT.spad" 1393202 1393212 1399011 1399050) (-856 "OREPCAT.spad" 1387239 1387251 1393050 1393055) (-855 "ORDSET.spad" 1386411 1386419 1387229 1387234) (-854 "ORDSET.spad" 1385581 1385591 1386401 1386406) (-853 "ORDRING.spad" 1384971 1384979 1385561 1385576) (-852 "ORDRING.spad" 1384369 1384379 1384961 1384966) (-851 "ORDMON.spad" 1384224 1384232 1384359 1384364) (-850 "ORDFUNS.spad" 1383356 1383372 1384214 1384219) (-849 "ORDFIN.spad" 1383176 1383184 1383346 1383351) (-848 "ORDCOMP.spad" 1381641 1381651 1382723 1382752) (-847 "ORDCOMP2.spad" 1380934 1380946 1381631 1381636) (-846 "OPTPROB.spad" 1379572 1379580 1380924 1380929) (-845 "OPTPACK.spad" 1371981 1371989 1379562 1379567) (-844 "OPTCAT.spad" 1369660 1369668 1371971 1371976) (-843 "OPSIG.spad" 1369314 1369322 1369650 1369655) (-842 "OPQUERY.spad" 1368863 1368871 1369304 1369309) (-841 "OP.spad" 1368605 1368615 1368685 1368752) (-840 "OPERCAT.spad" 1368071 1368081 1368595 1368600) (-839 "OPERCAT.spad" 1367535 1367547 1368061 1368066) (-838 "ONECOMP.spad" 1366280 1366290 1367082 1367111) (-837 "ONECOMP2.spad" 1365704 1365716 1366270 1366275) (-836 "OMSERVER.spad" 1364710 1364718 1365694 1365699) (-835 "OMSAGG.spad" 1364498 1364508 1364666 1364705) (-834 "OMPKG.spad" 1363114 1363122 1364488 1364493) (-833 "OM.spad" 1362087 1362095 1363104 1363109) (-832 "OMLO.spad" 1361512 1361524 1361973 1362012) (-831 "OMEXPR.spad" 1361346 1361356 1361502 1361507) (-830 "OMERR.spad" 1360891 1360899 1361336 1361341) (-829 "OMERRK.spad" 1359925 1359933 1360881 1360886) (-828 "OMENC.spad" 1359269 1359277 1359915 1359920) (-827 "OMDEV.spad" 1353578 1353586 1359259 1359264) (-826 "OMCONN.spad" 1352987 1352995 1353568 1353573) (-825 "OINTDOM.spad" 1352750 1352758 1352913 1352982) (-824 "OFMONOID.spad" 1350873 1350883 1352706 1352711) (-823 "ODVAR.spad" 1350134 1350144 1350863 1350868) (-822 "ODR.spad" 1349778 1349804 1349946 1350095) (-821 "ODPOL.spad" 1347160 1347170 1347500 1347627) (-820 "ODP.spad" 1337007 1337027 1337380 1337511) (-819 "ODETOOLS.spad" 1335656 1335675 1336997 1337002) (-818 "ODESYS.spad" 1333350 1333367 1335646 1335651) (-817 "ODERTRIC.spad" 1329359 1329376 1333307 1333312) (-816 "ODERED.spad" 1328758 1328782 1329349 1329354) (-815 "ODERAT.spad" 1326373 1326390 1328748 1328753) (-814 "ODEPRRIC.spad" 1323410 1323432 1326363 1326368) (-813 "ODEPROB.spad" 1322667 1322675 1323400 1323405) (-812 "ODEPRIM.spad" 1320001 1320023 1322657 1322662) (-811 "ODEPAL.spad" 1319387 1319411 1319991 1319996) (-810 "ODEPACK.spad" 1306053 1306061 1319377 1319382) (-809 "ODEINT.spad" 1305488 1305504 1306043 1306048) (-808 "ODEIFTBL.spad" 1302883 1302891 1305478 1305483) (-807 "ODEEF.spad" 1298374 1298390 1302873 1302878) (-806 "ODECONST.spad" 1297911 1297929 1298364 1298369) (-805 "ODECAT.spad" 1296509 1296517 1297901 1297906) (-804 "OCT.spad" 1294645 1294655 1295359 1295398) (-803 "OCTCT2.spad" 1294291 1294312 1294635 1294640) (-802 "OC.spad" 1292087 1292097 1294247 1294286) (-801 "OC.spad" 1289608 1289620 1291770 1291775) (-800 "OCAMON.spad" 1289456 1289464 1289598 1289603) (-799 "OASGP.spad" 1289271 1289279 1289446 1289451) (-798 "OAMONS.spad" 1288793 1288801 1289261 1289266) (-797 "OAMON.spad" 1288654 1288662 1288783 1288788) (-796 "OAGROUP.spad" 1288516 1288524 1288644 1288649) (-795 "NUMTUBE.spad" 1288107 1288123 1288506 1288511) (-794 "NUMQUAD.spad" 1276083 1276091 1288097 1288102) (-793 "NUMODE.spad" 1267437 1267445 1276073 1276078) (-792 "NUMINT.spad" 1265003 1265011 1267427 1267432) (-791 "NUMFMT.spad" 1263843 1263851 1264993 1264998) (-790 "NUMERIC.spad" 1255957 1255967 1263648 1263653) (-789 "NTSCAT.spad" 1254465 1254481 1255925 1255952) (-788 "NTPOLFN.spad" 1254016 1254026 1254382 1254387) (-787 "NSUP.spad" 1247062 1247072 1251602 1251755) (-786 "NSUP2.spad" 1246454 1246466 1247052 1247057) (-785 "NSMP.spad" 1242684 1242703 1242992 1243119) (-784 "NREP.spad" 1241062 1241076 1242674 1242679) (-783 "NPCOEF.spad" 1240308 1240328 1241052 1241057) (-782 "NORMRETR.spad" 1239906 1239945 1240298 1240303) (-781 "NORMPK.spad" 1237808 1237827 1239896 1239901) (-780 "NORMMA.spad" 1237496 1237522 1237798 1237803) (-779 "NONE.spad" 1237237 1237245 1237486 1237491) (-778 "NONE1.spad" 1236913 1236923 1237227 1237232) (-777 "NODE1.spad" 1236400 1236416 1236903 1236908) (-776 "NNI.spad" 1235295 1235303 1236374 1236395) (-775 "NLINSOL.spad" 1233921 1233931 1235285 1235290) (-774 "NIPROB.spad" 1232462 1232470 1233911 1233916) (-773 "NFINTBAS.spad" 1230022 1230039 1232452 1232457) (-772 "NETCLT.spad" 1229996 1230007 1230012 1230017) (-771 "NCODIV.spad" 1228212 1228228 1229986 1229991) (-770 "NCNTFRAC.spad" 1227854 1227868 1228202 1228207) (-769 "NCEP.spad" 1226020 1226034 1227844 1227849) (-768 "NASRING.spad" 1225616 1225624 1226010 1226015) (-767 "NASRING.spad" 1225210 1225220 1225606 1225611) (-766 "NARNG.spad" 1224562 1224570 1225200 1225205) (-765 "NARNG.spad" 1223912 1223922 1224552 1224557) (-764 "NAGSP.spad" 1222989 1222997 1223902 1223907) (-763 "NAGS.spad" 1212650 1212658 1222979 1222984) (-762 "NAGF07.spad" 1211081 1211089 1212640 1212645) (-761 "NAGF04.spad" 1205483 1205491 1211071 1211076) (-760 "NAGF02.spad" 1199552 1199560 1205473 1205478) (-759 "NAGF01.spad" 1195313 1195321 1199542 1199547) (-758 "NAGE04.spad" 1189013 1189021 1195303 1195308) (-757 "NAGE02.spad" 1179673 1179681 1189003 1189008) (-756 "NAGE01.spad" 1175675 1175683 1179663 1179668) (-755 "NAGD03.spad" 1173679 1173687 1175665 1175670) (-754 "NAGD02.spad" 1166426 1166434 1173669 1173674) (-753 "NAGD01.spad" 1160719 1160727 1166416 1166421) (-752 "NAGC06.spad" 1156594 1156602 1160709 1160714) (-751 "NAGC05.spad" 1155095 1155103 1156584 1156589) (-750 "NAGC02.spad" 1154362 1154370 1155085 1155090) (-749 "NAALG.spad" 1153903 1153913 1154330 1154357) (-748 "NAALG.spad" 1153464 1153476 1153893 1153898) (-747 "MULTSQFR.spad" 1150422 1150439 1153454 1153459) (-746 "MULTFACT.spad" 1149805 1149822 1150412 1150417) (-745 "MTSCAT.spad" 1147899 1147920 1149703 1149800) (-744 "MTHING.spad" 1147558 1147568 1147889 1147894) (-743 "MSYSCMD.spad" 1146992 1147000 1147548 1147553) (-742 "MSET.spad" 1144950 1144960 1146698 1146737) (-741 "MSETAGG.spad" 1144795 1144805 1144918 1144945) (-740 "MRING.spad" 1141772 1141784 1144503 1144570) (-739 "MRF2.spad" 1141342 1141356 1141762 1141767) (-738 "MRATFAC.spad" 1140888 1140905 1141332 1141337) (-737 "MPRFF.spad" 1138928 1138947 1140878 1140883) (-736 "MPOLY.spad" 1136399 1136414 1136758 1136885) (-735 "MPCPF.spad" 1135663 1135682 1136389 1136394) (-734 "MPC3.spad" 1135480 1135520 1135653 1135658) (-733 "MPC2.spad" 1135126 1135159 1135470 1135475) (-732 "MONOTOOL.spad" 1133477 1133494 1135116 1135121) (-731 "MONOID.spad" 1132796 1132804 1133467 1133472) (-730 "MONOID.spad" 1132113 1132123 1132786 1132791) (-729 "MONOGEN.spad" 1130861 1130874 1131973 1132108) (-728 "MONOGEN.spad" 1129631 1129646 1130745 1130750) (-727 "MONADWU.spad" 1127661 1127669 1129621 1129626) (-726 "MONADWU.spad" 1125689 1125699 1127651 1127656) (-725 "MONAD.spad" 1124849 1124857 1125679 1125684) (-724 "MONAD.spad" 1124007 1124017 1124839 1124844) (-723 "MOEBIUS.spad" 1122743 1122757 1123987 1124002) (-722 "MODULE.spad" 1122613 1122623 1122711 1122738) (-721 "MODULE.spad" 1122503 1122515 1122603 1122608) (-720 "MODRING.spad" 1121838 1121877 1122483 1122498) (-719 "MODOP.spad" 1120503 1120515 1121660 1121727) (-718 "MODMONOM.spad" 1120234 1120252 1120493 1120498) (-717 "MODMON.spad" 1117029 1117045 1117748 1117901) (-716 "MODFIELD.spad" 1116391 1116430 1116931 1117024) (-715 "MMLFORM.spad" 1115251 1115259 1116381 1116386) (-714 "MMAP.spad" 1114993 1115027 1115241 1115246) (-713 "MLO.spad" 1113452 1113462 1114949 1114988) (-712 "MLIFT.spad" 1112064 1112081 1113442 1113447) (-711 "MKUCFUNC.spad" 1111599 1111617 1112054 1112059) (-710 "MKRECORD.spad" 1111203 1111216 1111589 1111594) (-709 "MKFUNC.spad" 1110610 1110620 1111193 1111198) (-708 "MKFLCFN.spad" 1109578 1109588 1110600 1110605) (-707 "MKBCFUNC.spad" 1109073 1109091 1109568 1109573) (-706 "MINT.spad" 1108512 1108520 1108975 1109068) (-705 "MHROWRED.spad" 1107023 1107033 1108502 1108507) (-704 "MFLOAT.spad" 1105543 1105551 1106913 1107018) (-703 "MFINFACT.spad" 1104943 1104965 1105533 1105538) (-702 "MESH.spad" 1102725 1102733 1104933 1104938) (-701 "MDDFACT.spad" 1100936 1100946 1102715 1102720) (-700 "MDAGG.spad" 1100227 1100237 1100916 1100931) (-699 "MCMPLX.spad" 1096238 1096246 1096852 1097053) (-698 "MCDEN.spad" 1095448 1095460 1096228 1096233) (-697 "MCALCFN.spad" 1092570 1092596 1095438 1095443) (-696 "MAYBE.spad" 1091854 1091865 1092560 1092565) (-695 "MATSTOR.spad" 1089162 1089172 1091844 1091849) (-694 "MATRIX.spad" 1087866 1087876 1088350 1088377) (-693 "MATLIN.spad" 1085210 1085234 1087750 1087755) (-692 "MATCAT.spad" 1076939 1076961 1085178 1085205) (-691 "MATCAT.spad" 1068540 1068564 1076781 1076786) (-690 "MATCAT2.spad" 1067822 1067870 1068530 1068535) (-689 "MAPPKG3.spad" 1066737 1066751 1067812 1067817) (-688 "MAPPKG2.spad" 1066075 1066087 1066727 1066732) (-687 "MAPPKG1.spad" 1064903 1064913 1066065 1066070) (-686 "MAPPAST.spad" 1064218 1064226 1064893 1064898) (-685 "MAPHACK3.spad" 1064030 1064044 1064208 1064213) (-684 "MAPHACK2.spad" 1063799 1063811 1064020 1064025) (-683 "MAPHACK1.spad" 1063443 1063453 1063789 1063794) (-682 "MAGMA.spad" 1061233 1061250 1063433 1063438) (-681 "MACROAST.spad" 1060812 1060820 1061223 1061228) (-680 "M3D.spad" 1058532 1058542 1060190 1060195) (-679 "LZSTAGG.spad" 1055770 1055780 1058522 1058527) (-678 "LZSTAGG.spad" 1053006 1053018 1055760 1055765) (-677 "LWORD.spad" 1049711 1049728 1052996 1053001) (-676 "LSTAST.spad" 1049495 1049503 1049701 1049706) (-675 "LSQM.spad" 1047725 1047739 1048119 1048170) (-674 "LSPP.spad" 1047260 1047277 1047715 1047720) (-673 "LSMP.spad" 1046110 1046138 1047250 1047255) (-672 "LSMP1.spad" 1043928 1043942 1046100 1046105) (-671 "LSAGG.spad" 1043597 1043607 1043896 1043923) (-670 "LSAGG.spad" 1043286 1043298 1043587 1043592) (-669 "LPOLY.spad" 1042240 1042259 1043142 1043211) (-668 "LPEFRAC.spad" 1041511 1041521 1042230 1042235) (-667 "LO.spad" 1040912 1040926 1041445 1041472) (-666 "LOGIC.spad" 1040514 1040522 1040902 1040907) (-665 "LOGIC.spad" 1040114 1040124 1040504 1040509) (-664 "LODOOPS.spad" 1039044 1039056 1040104 1040109) (-663 "LODO.spad" 1038428 1038444 1038724 1038763) (-662 "LODOF.spad" 1037474 1037491 1038385 1038390) (-661 "LODOCAT.spad" 1036140 1036150 1037430 1037469) (-660 "LODOCAT.spad" 1034804 1034816 1036096 1036101) (-659 "LODO2.spad" 1034077 1034089 1034484 1034523) (-658 "LODO1.spad" 1033477 1033487 1033757 1033796) (-657 "LODEEF.spad" 1032279 1032297 1033467 1033472) (-656 "LNAGG.spad" 1028111 1028121 1032269 1032274) (-655 "LNAGG.spad" 1023907 1023919 1028067 1028072) (-654 "LMOPS.spad" 1020675 1020692 1023897 1023902) (-653 "LMODULE.spad" 1020443 1020453 1020665 1020670) (-652 "LMDICT.spad" 1019730 1019740 1019994 1020021) (-651 "LLINSET.spad" 1019127 1019137 1019720 1019725) (-650 "LITERAL.spad" 1019033 1019044 1019117 1019122) (-649 "LIST.spad" 1016768 1016778 1018180 1018207) (-648 "LIST3.spad" 1016079 1016093 1016758 1016763) (-647 "LIST2.spad" 1014781 1014793 1016069 1016074) (-646 "LIST2MAP.spad" 1011684 1011696 1014771 1014776) (-645 "LINSET.spad" 1011306 1011316 1011674 1011679) (-644 "LINEXP.spad" 1010740 1010750 1011286 1011301) (-643 "LINDEP.spad" 1009549 1009561 1010652 1010657) (-642 "LIMITRF.spad" 1007477 1007487 1009539 1009544) (-641 "LIMITPS.spad" 1006380 1006393 1007467 1007472) (-640 "LIE.spad" 1004396 1004408 1005670 1005815) (-639 "LIECAT.spad" 1003872 1003882 1004322 1004391) (-638 "LIECAT.spad" 1003376 1003388 1003828 1003833) (-637 "LIB.spad" 1001426 1001434 1002035 1002050) (-636 "LGROBP.spad" 998779 998798 1001416 1001421) (-635 "LF.spad" 997734 997750 998769 998774) (-634 "LFCAT.spad" 996793 996801 997724 997729) (-633 "LEXTRIPK.spad" 992296 992311 996783 996788) (-632 "LEXP.spad" 990299 990326 992276 992291) (-631 "LETAST.spad" 989998 990006 990289 990294) (-630 "LEADCDET.spad" 988396 988413 989988 989993) (-629 "LAZM3PK.spad" 987100 987122 988386 988391) (-628 "LAUPOL.spad" 985793 985806 986693 986762) (-627 "LAPLACE.spad" 985376 985392 985783 985788) (-626 "LA.spad" 984816 984830 985298 985337) (-625 "LALG.spad" 984592 984602 984796 984811) (-624 "LALG.spad" 984376 984388 984582 984587) (-623 "KVTFROM.spad" 984111 984121 984366 984371) (-622 "KTVLOGIC.spad" 983623 983631 984101 984106) (-621 "KRCFROM.spad" 983361 983371 983613 983618) (-620 "KOVACIC.spad" 982084 982101 983351 983356) (-619 "KONVERT.spad" 981806 981816 982074 982079) (-618 "KOERCE.spad" 981543 981553 981796 981801) (-617 "KERNEL.spad" 980198 980208 981327 981332) (-616 "KERNEL2.spad" 979901 979913 980188 980193) (-615 "KDAGG.spad" 979010 979032 979881 979896) (-614 "KDAGG.spad" 978127 978151 979000 979005) (-613 "KAFILE.spad" 977090 977106 977325 977352) (-612 "JORDAN.spad" 974919 974931 976380 976525) (-611 "JOINAST.spad" 974613 974621 974909 974914) (-610 "JAVACODE.spad" 974479 974487 974603 974608) (-609 "IXAGG.spad" 972612 972636 974469 974474) (-608 "IXAGG.spad" 970600 970626 972459 972464) (-607 "IVECTOR.spad" 969370 969385 969525 969552) (-606 "ITUPLE.spad" 968531 968541 969360 969365) (-605 "ITRIGMNP.spad" 967370 967389 968521 968526) (-604 "ITFUN3.spad" 966876 966890 967360 967365) (-603 "ITFUN2.spad" 966620 966632 966866 966871) (-602 "ITFORM.spad" 965975 965983 966610 966615) (-601 "ITAYLOR.spad" 963969 963984 965839 965936) (-600 "ISUPS.spad" 956406 956421 962943 963040) (-599 "ISUMP.spad" 955907 955923 956396 956401) (-598 "ISTRING.spad" 954995 955008 955076 955103) (-597 "ISAST.spad" 954714 954722 954985 954990) (-596 "IRURPK.spad" 953431 953450 954704 954709) (-595 "IRSN.spad" 951435 951443 953421 953426) (-594 "IRRF2F.spad" 949920 949930 951391 951396) (-593 "IRREDFFX.spad" 949521 949532 949910 949915) (-592 "IROOT.spad" 947860 947870 949511 949516) (-591 "IR.spad" 945661 945675 947715 947742) (-590 "IRFORM.spad" 944985 944993 945651 945656) (-589 "IR2.spad" 944013 944029 944975 944980) (-588 "IR2F.spad" 943219 943235 944003 944008) (-587 "IPRNTPK.spad" 942979 942987 943209 943214) (-586 "IPF.spad" 942544 942556 942784 942877) (-585 "IPADIC.spad" 942305 942331 942470 942539) (-584 "IP4ADDR.spad" 941862 941870 942295 942300) (-583 "IOMODE.spad" 941384 941392 941852 941857) (-582 "IOBFILE.spad" 940745 940753 941374 941379) (-581 "IOBCON.spad" 940610 940618 940735 940740) (-580 "INVLAPLA.spad" 940259 940275 940600 940605) (-579 "INTTR.spad" 933641 933658 940249 940254) (-578 "INTTOOLS.spad" 931396 931412 933215 933220) (-577 "INTSLPE.spad" 930716 930724 931386 931391) (-576 "INTRVL.spad" 930282 930292 930630 930711) (-575 "INTRF.spad" 928706 928720 930272 930277) (-574 "INTRET.spad" 928138 928148 928696 928701) (-573 "INTRAT.spad" 926865 926882 928128 928133) (-572 "INTPM.spad" 925250 925266 926508 926513) (-571 "INTPAF.spad" 923114 923132 925182 925187) (-570 "INTPACK.spad" 913488 913496 923104 923109) (-569 "INT.spad" 912936 912944 913342 913483) (-568 "INTHERTR.spad" 912210 912227 912926 912931) (-567 "INTHERAL.spad" 911880 911904 912200 912205) (-566 "INTHEORY.spad" 908319 908327 911870 911875) (-565 "INTG0.spad" 902052 902070 908251 908256) (-564 "INTFTBL.spad" 896081 896089 902042 902047) (-563 "INTFACT.spad" 895140 895150 896071 896076) (-562 "INTEF.spad" 893525 893541 895130 895135) (-561 "INTDOM.spad" 892148 892156 893451 893520) (-560 "INTDOM.spad" 890833 890843 892138 892143) (-559 "INTCAT.spad" 889092 889102 890747 890828) (-558 "INTBIT.spad" 888599 888607 889082 889087) (-557 "INTALG.spad" 887787 887814 888589 888594) (-556 "INTAF.spad" 887287 887303 887777 887782) (-555 "INTABL.spad" 885805 885836 885968 885995) (-554 "INT8.spad" 885685 885693 885795 885800) (-553 "INT64.spad" 885564 885572 885675 885680) (-552 "INT32.spad" 885443 885451 885554 885559) (-551 "INT16.spad" 885322 885330 885433 885438) (-550 "INS.spad" 882825 882833 885224 885317) (-549 "INS.spad" 880414 880424 882815 882820) (-548 "INPSIGN.spad" 879862 879875 880404 880409) (-547 "INPRODPF.spad" 878958 878977 879852 879857) (-546 "INPRODFF.spad" 878046 878070 878948 878953) (-545 "INNMFACT.spad" 877021 877038 878036 878041) (-544 "INMODGCD.spad" 876509 876539 877011 877016) (-543 "INFSP.spad" 874806 874828 876499 876504) (-542 "INFPROD0.spad" 873886 873905 874796 874801) (-541 "INFORM.spad" 871085 871093 873876 873881) (-540 "INFORM1.spad" 870710 870720 871075 871080) (-539 "INFINITY.spad" 870262 870270 870700 870705) (-538 "INETCLTS.spad" 870239 870247 870252 870257) (-537 "INEP.spad" 868777 868799 870229 870234) (-536 "INDE.spad" 868506 868523 868767 868772) (-535 "INCRMAPS.spad" 867927 867937 868496 868501) (-534 "INBFILE.spad" 866999 867007 867917 867922) (-533 "INBFF.spad" 862793 862804 866989 866994) (-532 "INBCON.spad" 861083 861091 862783 862788) (-531 "INBCON.spad" 859371 859381 861073 861078) (-530 "INAST.spad" 859032 859040 859361 859366) (-529 "IMPTAST.spad" 858740 858748 859022 859027) (-528 "IMATRIX.spad" 857685 857711 858197 858224) (-527 "IMATQF.spad" 856779 856823 857641 857646) (-526 "IMATLIN.spad" 855384 855408 856735 856740) (-525 "ILIST.spad" 854042 854057 854567 854594) (-524 "IIARRAY2.spad" 853430 853468 853649 853676) (-523 "IFF.spad" 852840 852856 853111 853204) (-522 "IFAST.spad" 852454 852462 852830 852835) (-521 "IFARRAY.spad" 849947 849962 851637 851664) (-520 "IFAMON.spad" 849809 849826 849903 849908) (-519 "IEVALAB.spad" 849214 849226 849799 849804) (-518 "IEVALAB.spad" 848617 848631 849204 849209) (-517 "IDPO.spad" 848415 848427 848607 848612) (-516 "IDPOAMS.spad" 848171 848183 848405 848410) (-515 "IDPOAM.spad" 847891 847903 848161 848166) (-514 "IDPC.spad" 846829 846841 847881 847886) (-513 "IDPAM.spad" 846574 846586 846819 846824) (-512 "IDPAG.spad" 846321 846333 846564 846569) (-511 "IDENT.spad" 845971 845979 846311 846316) (-510 "IDECOMP.spad" 843210 843228 845961 845966) (-509 "IDEAL.spad" 838159 838198 843145 843150) (-508 "ICDEN.spad" 837348 837364 838149 838154) (-507 "ICARD.spad" 836539 836547 837338 837343) (-506 "IBPTOOLS.spad" 835146 835163 836529 836534) (-505 "IBITS.spad" 834349 834362 834782 834809) (-504 "IBATOOL.spad" 831326 831345 834339 834344) (-503 "IBACHIN.spad" 829833 829848 831316 831321) (-502 "IARRAY2.spad" 828821 828847 829440 829467) (-501 "IARRAY1.spad" 827866 827881 828004 828031) (-500 "IAN.spad" 826089 826097 827682 827775) (-499 "IALGFACT.spad" 825692 825725 826079 826084) (-498 "HYPCAT.spad" 825116 825124 825682 825687) (-497 "HYPCAT.spad" 824538 824548 825106 825111) (-496 "HOSTNAME.spad" 824346 824354 824528 824533) (-495 "HOMOTOP.spad" 824089 824099 824336 824341) (-494 "HOAGG.spad" 821371 821381 824079 824084) (-493 "HOAGG.spad" 818428 818440 821138 821143) (-492 "HEXADEC.spad" 816530 816538 816895 816988) (-491 "HEUGCD.spad" 815565 815576 816520 816525) (-490 "HELLFDIV.spad" 815155 815179 815555 815560) (-489 "HEAP.spad" 814547 814557 814762 814789) (-488 "HEADAST.spad" 814080 814088 814537 814542) (-487 "HDP.spad" 803923 803939 804300 804431) (-486 "HDMP.spad" 801137 801152 801753 801880) (-485 "HB.spad" 799388 799396 801127 801132) (-484 "HASHTBL.spad" 797858 797889 798069 798096) (-483 "HASAST.spad" 797574 797582 797848 797853) (-482 "HACKPI.spad" 797065 797073 797476 797569) (-481 "GTSET.spad" 796004 796020 796711 796738) (-480 "GSTBL.spad" 794523 794558 794697 794712) (-479 "GSERIES.spad" 791694 791721 792655 792804) (-478 "GROUP.spad" 790967 790975 791674 791689) (-477 "GROUP.spad" 790248 790258 790957 790962) (-476 "GROEBSOL.spad" 788742 788763 790238 790243) (-475 "GRMOD.spad" 787313 787325 788732 788737) (-474 "GRMOD.spad" 785882 785896 787303 787308) (-473 "GRIMAGE.spad" 778771 778779 785872 785877) (-472 "GRDEF.spad" 777150 777158 778761 778766) (-471 "GRAY.spad" 775613 775621 777140 777145) (-470 "GRALG.spad" 774690 774702 775603 775608) (-469 "GRALG.spad" 773765 773779 774680 774685) (-468 "GPOLSET.spad" 773219 773242 773447 773474) (-467 "GOSPER.spad" 772488 772506 773209 773214) (-466 "GMODPOL.spad" 771636 771663 772456 772483) (-465 "GHENSEL.spad" 770719 770733 771626 771631) (-464 "GENUPS.spad" 767012 767025 770709 770714) (-463 "GENUFACT.spad" 766589 766599 767002 767007) (-462 "GENPGCD.spad" 766175 766192 766579 766584) (-461 "GENMFACT.spad" 765627 765646 766165 766170) (-460 "GENEEZ.spad" 763578 763591 765617 765622) (-459 "GDMP.spad" 760634 760651 761408 761535) (-458 "GCNAALG.spad" 754557 754584 760428 760495) (-457 "GCDDOM.spad" 753733 753741 754483 754552) (-456 "GCDDOM.spad" 752971 752981 753723 753728) (-455 "GB.spad" 750497 750535 752927 752932) (-454 "GBINTERN.spad" 746517 746555 750487 750492) (-453 "GBF.spad" 742284 742322 746507 746512) (-452 "GBEUCLID.spad" 740166 740204 742274 742279) (-451 "GAUSSFAC.spad" 739479 739487 740156 740161) (-450 "GALUTIL.spad" 737805 737815 739435 739440) (-449 "GALPOLYU.spad" 736259 736272 737795 737800) (-448 "GALFACTU.spad" 734432 734451 736249 736254) (-447 "GALFACT.spad" 724621 724632 734422 734427) (-446 "FVFUN.spad" 721644 721652 724611 724616) (-445 "FVC.spad" 720696 720704 721634 721639) (-444 "FUNDESC.spad" 720374 720382 720686 720691) (-443 "FUNCTION.spad" 720223 720235 720364 720369) (-442 "FT.spad" 718520 718528 720213 720218) (-441 "FTEM.spad" 717685 717693 718510 718515) (-440 "FSUPFACT.spad" 716585 716604 717621 717626) (-439 "FST.spad" 714671 714679 716575 716580) (-438 "FSRED.spad" 714151 714167 714661 714666) (-437 "FSPRMELT.spad" 713033 713049 714108 714113) (-436 "FSPECF.spad" 711124 711140 713023 713028) (-435 "FS.spad" 705392 705402 710899 711119) (-434 "FS.spad" 699438 699450 704947 704952) (-433 "FSINT.spad" 699098 699114 699428 699433) (-432 "FSERIES.spad" 698289 698301 698918 699017) (-431 "FSCINT.spad" 697606 697622 698279 698284) (-430 "FSAGG.spad" 696723 696733 697562 697601) (-429 "FSAGG.spad" 695802 695814 696643 696648) (-428 "FSAGG2.spad" 694545 694561 695792 695797) (-427 "FS2UPS.spad" 689036 689070 694535 694540) (-426 "FS2.spad" 688683 688699 689026 689031) (-425 "FS2EXPXP.spad" 687808 687831 688673 688678) (-424 "FRUTIL.spad" 686762 686772 687798 687803) (-423 "FR.spad" 680478 680488 685786 685855) (-422 "FRNAALG.spad" 675597 675607 680420 680473) (-421 "FRNAALG.spad" 670728 670740 675553 675558) (-420 "FRNAAF2.spad" 670184 670202 670718 670723) (-419 "FRMOD.spad" 669594 669624 670115 670120) (-418 "FRIDEAL.spad" 668819 668840 669574 669589) (-417 "FRIDEAL2.spad" 668423 668455 668809 668814) (-416 "FRETRCT.spad" 667934 667944 668413 668418) (-415 "FRETRCT.spad" 667311 667323 667792 667797) (-414 "FRAMALG.spad" 665659 665672 667267 667306) (-413 "FRAMALG.spad" 664039 664054 665649 665654) (-412 "FRAC.spad" 661138 661148 661541 661714) (-411 "FRAC2.spad" 660743 660755 661128 661133) (-410 "FR2.spad" 660079 660091 660733 660738) (-409 "FPS.spad" 656894 656902 659969 660074) (-408 "FPS.spad" 653737 653747 656814 656819) (-407 "FPC.spad" 652783 652791 653639 653732) (-406 "FPC.spad" 651915 651925 652773 652778) (-405 "FPATMAB.spad" 651677 651687 651905 651910) (-404 "FPARFRAC.spad" 650164 650181 651667 651672) (-403 "FORTRAN.spad" 648670 648713 650154 650159) (-402 "FORT.spad" 647619 647627 648660 648665) (-401 "FORTFN.spad" 644789 644797 647609 647614) (-400 "FORTCAT.spad" 644473 644481 644779 644784) (-399 "FORMULA.spad" 641947 641955 644463 644468) (-398 "FORMULA1.spad" 641426 641436 641937 641942) (-397 "FORDER.spad" 641117 641141 641416 641421) (-396 "FOP.spad" 640318 640326 641107 641112) (-395 "FNLA.spad" 639742 639764 640286 640313) (-394 "FNCAT.spad" 638337 638345 639732 639737) (-393 "FNAME.spad" 638229 638237 638327 638332) (-392 "FMTC.spad" 638027 638035 638155 638224) (-391 "FMONOID.spad" 637692 637702 637983 637988) (-390 "FMONCAT.spad" 634845 634855 637682 637687) (-389 "FM.spad" 634540 634552 634779 634806) (-388 "FMFUN.spad" 631570 631578 634530 634535) (-387 "FMC.spad" 630622 630630 631560 631565) (-386 "FMCAT.spad" 628290 628308 630590 630617) (-385 "FM1.spad" 627647 627659 628224 628251) (-384 "FLOATRP.spad" 625382 625396 627637 627642) (-383 "FLOAT.spad" 618696 618704 625248 625377) (-382 "FLOATCP.spad" 616127 616141 618686 618691) (-381 "FLINEXP.spad" 615839 615849 616107 616122) (-380 "FLINEXP.spad" 615505 615517 615775 615780) (-379 "FLASORT.spad" 614831 614843 615495 615500) (-378 "FLALG.spad" 612477 612496 614757 614826) (-377 "FLAGG.spad" 609519 609529 612457 612472) (-376 "FLAGG.spad" 606462 606474 609402 609407) (-375 "FLAGG2.spad" 605187 605203 606452 606457) (-374 "FINRALG.spad" 603248 603261 605143 605182) (-373 "FINRALG.spad" 601235 601250 603132 603137) (-372 "FINITE.spad" 600387 600395 601225 601230) (-371 "FINAALG.spad" 589508 589518 600329 600382) (-370 "FINAALG.spad" 578641 578653 589464 589469) (-369 "FILE.spad" 578224 578234 578631 578636) (-368 "FILECAT.spad" 576750 576767 578214 578219) (-367 "FIELD.spad" 576156 576164 576652 576745) (-366 "FIELD.spad" 575648 575658 576146 576151) (-365 "FGROUP.spad" 574295 574305 575628 575643) (-364 "FGLMICPK.spad" 573082 573097 574285 574290) (-363 "FFX.spad" 572457 572472 572798 572891) (-362 "FFSLPE.spad" 571960 571981 572447 572452) (-361 "FFPOLY.spad" 563222 563233 571950 571955) (-360 "FFPOLY2.spad" 562282 562299 563212 563217) (-359 "FFP.spad" 561679 561699 561998 562091) (-358 "FF.spad" 561127 561143 561360 561453) (-357 "FFNBX.spad" 559639 559659 560843 560936) (-356 "FFNBP.spad" 558152 558169 559355 559448) (-355 "FFNB.spad" 556617 556638 557833 557926) (-354 "FFINTBAS.spad" 554131 554150 556607 556612) (-353 "FFIELDC.spad" 551708 551716 554033 554126) (-352 "FFIELDC.spad" 549371 549381 551698 551703) (-351 "FFHOM.spad" 548119 548136 549361 549366) (-350 "FFF.spad" 545554 545565 548109 548114) (-349 "FFCGX.spad" 544401 544421 545270 545363) (-348 "FFCGP.spad" 543290 543310 544117 544210) (-347 "FFCG.spad" 542082 542103 542971 543064) (-346 "FFCAT.spad" 535255 535277 541921 542077) (-345 "FFCAT.spad" 528507 528531 535175 535180) (-344 "FFCAT2.spad" 528254 528294 528497 528502) (-343 "FEXPR.spad" 519971 520017 528010 528049) (-342 "FEVALAB.spad" 519679 519689 519961 519966) (-341 "FEVALAB.spad" 519172 519184 519456 519461) (-340 "FDIV.spad" 518614 518638 519162 519167) (-339 "FDIVCAT.spad" 516678 516702 518604 518609) (-338 "FDIVCAT.spad" 514740 514766 516668 516673) (-337 "FDIV2.spad" 514396 514436 514730 514735) (-336 "FCTRDATA.spad" 513404 513412 514386 514391) (-335 "FCPAK1.spad" 511971 511979 513394 513399) (-334 "FCOMP.spad" 511350 511360 511961 511966) (-333 "FC.spad" 501357 501365 511340 511345) (-332 "FAXF.spad" 494328 494342 501259 501352) (-331 "FAXF.spad" 487351 487367 494284 494289) (-330 "FARRAY.spad" 485501 485511 486534 486561) (-329 "FAMR.spad" 483637 483649 485399 485496) (-328 "FAMR.spad" 481757 481771 483521 483526) (-327 "FAMONOID.spad" 481425 481435 481711 481716) (-326 "FAMONC.spad" 479721 479733 481415 481420) (-325 "FAGROUP.spad" 479345 479355 479617 479644) (-324 "FACUTIL.spad" 477549 477566 479335 479340) (-323 "FACTFUNC.spad" 476743 476753 477539 477544) (-322 "EXPUPXS.spad" 473576 473599 474875 475024) (-321 "EXPRTUBE.spad" 470864 470872 473566 473571) (-320 "EXPRODE.spad" 468024 468040 470854 470859) (-319 "EXPR.spad" 463299 463309 464013 464420) (-318 "EXPR2UPS.spad" 459421 459434 463289 463294) (-317 "EXPR2.spad" 459126 459138 459411 459416) (-316 "EXPEXPAN.spad" 456066 456091 456698 456791) (-315 "EXIT.spad" 455737 455745 456056 456061) (-314 "EXITAST.spad" 455473 455481 455727 455732) (-313 "EVALCYC.spad" 454933 454947 455463 455468) (-312 "EVALAB.spad" 454505 454515 454923 454928) (-311 "EVALAB.spad" 454075 454087 454495 454500) (-310 "EUCDOM.spad" 451649 451657 454001 454070) (-309 "EUCDOM.spad" 449285 449295 451639 451644) (-308 "ESTOOLS.spad" 441131 441139 449275 449280) (-307 "ESTOOLS2.spad" 440734 440748 441121 441126) (-306 "ESTOOLS1.spad" 440419 440430 440724 440729) (-305 "ES.spad" 433234 433242 440409 440414) (-304 "ES.spad" 425955 425965 433132 433137) (-303 "ESCONT.spad" 422748 422756 425945 425950) (-302 "ESCONT1.spad" 422497 422509 422738 422743) (-301 "ES2.spad" 422002 422018 422487 422492) (-300 "ES1.spad" 421572 421588 421992 421997) (-299 "ERROR.spad" 418899 418907 421562 421567) (-298 "EQTBL.spad" 417371 417393 417580 417607) (-297 "EQ.spad" 412176 412186 414963 415075) (-296 "EQ2.spad" 411894 411906 412166 412171) (-295 "EP.spad" 408220 408230 411884 411889) (-294 "ENV.spad" 406898 406906 408210 408215) (-293 "ENTIRER.spad" 406566 406574 406842 406893) (-292 "EMR.spad" 405773 405814 406492 406561) (-291 "ELTAGG.spad" 404027 404046 405763 405768) (-290 "ELTAGG.spad" 402245 402266 403983 403988) (-289 "ELTAB.spad" 401694 401712 402235 402240) (-288 "ELFUTS.spad" 401081 401100 401684 401689) (-287 "ELEMFUN.spad" 400770 400778 401071 401076) (-286 "ELEMFUN.spad" 400457 400467 400760 400765) (-285 "ELAGG.spad" 398428 398438 400437 400452) (-284 "ELAGG.spad" 396336 396348 398347 398352) (-283 "ELABOR.spad" 395682 395690 396326 396331) (-282 "ELABEXPR.spad" 394614 394622 395672 395677) (-281 "EFUPXS.spad" 391390 391420 394570 394575) (-280 "EFULS.spad" 388226 388249 391346 391351) (-279 "EFSTRUC.spad" 386241 386257 388216 388221) (-278 "EF.spad" 381017 381033 386231 386236) (-277 "EAB.spad" 379293 379301 381007 381012) (-276 "E04UCFA.spad" 378829 378837 379283 379288) (-275 "E04NAFA.spad" 378406 378414 378819 378824) (-274 "E04MBFA.spad" 377986 377994 378396 378401) (-273 "E04JAFA.spad" 377522 377530 377976 377981) (-272 "E04GCFA.spad" 377058 377066 377512 377517) (-271 "E04FDFA.spad" 376594 376602 377048 377053) (-270 "E04DGFA.spad" 376130 376138 376584 376589) (-269 "E04AGNT.spad" 371980 371988 376120 376125) (-268 "DVARCAT.spad" 368669 368679 371970 371975) (-267 "DVARCAT.spad" 365356 365368 368659 368664) (-266 "DSMP.spad" 362823 362837 363128 363255) (-265 "DROPT.spad" 356782 356790 362813 362818) (-264 "DROPT1.spad" 356447 356457 356772 356777) (-263 "DROPT0.spad" 351304 351312 356437 356442) (-262 "DRAWPT.spad" 349477 349485 351294 351299) (-261 "DRAW.spad" 342353 342366 349467 349472) (-260 "DRAWHACK.spad" 341661 341671 342343 342348) (-259 "DRAWCX.spad" 339131 339139 341651 341656) (-258 "DRAWCURV.spad" 338678 338693 339121 339126) (-257 "DRAWCFUN.spad" 328210 328218 338668 338673) (-256 "DQAGG.spad" 326388 326398 328178 328205) (-255 "DPOLCAT.spad" 321737 321753 326256 326383) (-254 "DPOLCAT.spad" 317172 317190 321693 321698) (-253 "DPMO.spad" 309398 309414 309536 309837) (-252 "DPMM.spad" 301637 301655 301762 302063) (-251 "DOMTMPLT.spad" 301297 301305 301627 301632) (-250 "DOMCTOR.spad" 301052 301060 301287 301292) (-249 "DOMAIN.spad" 300139 300147 301042 301047) (-248 "DMP.spad" 297399 297414 297969 298096) (-247 "DLP.spad" 296751 296761 297389 297394) (-246 "DLIST.spad" 295330 295340 295934 295961) (-245 "DLAGG.spad" 293747 293757 295320 295325) (-244 "DIVRING.spad" 293289 293297 293691 293742) (-243 "DIVRING.spad" 292875 292885 293279 293284) (-242 "DISPLAY.spad" 291065 291073 292865 292870) (-241 "DIRPROD.spad" 280645 280661 281285 281416) (-240 "DIRPROD2.spad" 279463 279481 280635 280640) (-239 "DIRPCAT.spad" 278407 278423 279327 279458) (-238 "DIRPCAT.spad" 277080 277098 278002 278007) (-237 "DIOSP.spad" 275905 275913 277070 277075) (-236 "DIOPS.spad" 274901 274911 275885 275900) (-235 "DIOPS.spad" 273871 273883 274857 274862) (-234 "DIFRING.spad" 273167 273175 273851 273866) (-233 "DIFRING.spad" 272471 272481 273157 273162) (-232 "DIFEXT.spad" 271642 271652 272451 272466) (-231 "DIFEXT.spad" 270730 270742 271541 271546) (-230 "DIAGG.spad" 270360 270370 270710 270725) (-229 "DIAGG.spad" 269998 270010 270350 270355) (-228 "DHMATRIX.spad" 268310 268320 269455 269482) (-227 "DFSFUN.spad" 261950 261958 268300 268305) (-226 "DFLOAT.spad" 258681 258689 261840 261945) (-225 "DFINTTLS.spad" 256912 256928 258671 258676) (-224 "DERHAM.spad" 254826 254858 256892 256907) (-223 "DEQUEUE.spad" 254150 254160 254433 254460) (-222 "DEGRED.spad" 253767 253781 254140 254145) (-221 "DEFINTRF.spad" 251304 251314 253757 253762) (-220 "DEFINTEF.spad" 249814 249830 251294 251299) (-219 "DEFAST.spad" 249182 249190 249804 249809) (-218 "DECIMAL.spad" 247288 247296 247649 247742) (-217 "DDFACT.spad" 245101 245118 247278 247283) (-216 "DBLRESP.spad" 244701 244725 245091 245096) (-215 "DBASE.spad" 243365 243375 244691 244696) (-214 "DATAARY.spad" 242827 242840 243355 243360) (-213 "D03FAFA.spad" 242655 242663 242817 242822) (-212 "D03EEFA.spad" 242475 242483 242645 242650) (-211 "D03AGNT.spad" 241561 241569 242465 242470) (-210 "D02EJFA.spad" 241023 241031 241551 241556) (-209 "D02CJFA.spad" 240501 240509 241013 241018) (-208 "D02BHFA.spad" 239991 239999 240491 240496) (-207 "D02BBFA.spad" 239481 239489 239981 239986) (-206 "D02AGNT.spad" 234295 234303 239471 239476) (-205 "D01WGTS.spad" 232614 232622 234285 234290) (-204 "D01TRNS.spad" 232591 232599 232604 232609) (-203 "D01GBFA.spad" 232113 232121 232581 232586) (-202 "D01FCFA.spad" 231635 231643 232103 232108) (-201 "D01ASFA.spad" 231103 231111 231625 231630) (-200 "D01AQFA.spad" 230549 230557 231093 231098) (-199 "D01APFA.spad" 229973 229981 230539 230544) (-198 "D01ANFA.spad" 229467 229475 229963 229968) (-197 "D01AMFA.spad" 228977 228985 229457 229462) (-196 "D01ALFA.spad" 228517 228525 228967 228972) (-195 "D01AKFA.spad" 228043 228051 228507 228512) (-194 "D01AJFA.spad" 227566 227574 228033 228038) (-193 "D01AGNT.spad" 223633 223641 227556 227561) (-192 "CYCLOTOM.spad" 223139 223147 223623 223628) (-191 "CYCLES.spad" 219995 220003 223129 223134) (-190 "CVMP.spad" 219412 219422 219985 219990) (-189 "CTRIGMNP.spad" 217912 217928 219402 219407) (-188 "CTOR.spad" 217603 217611 217902 217907) (-187 "CTORKIND.spad" 217206 217214 217593 217598) (-186 "CTORCAT.spad" 216455 216463 217196 217201) (-185 "CTORCAT.spad" 215702 215712 216445 216450) (-184 "CTORCALL.spad" 215291 215301 215692 215697) (-183 "CSTTOOLS.spad" 214536 214549 215281 215286) (-182 "CRFP.spad" 208260 208273 214526 214531) (-181 "CRCEAST.spad" 207980 207988 208250 208255) (-180 "CRAPACK.spad" 207031 207041 207970 207975) (-179 "CPMATCH.spad" 206535 206550 206956 206961) (-178 "CPIMA.spad" 206240 206259 206525 206530) (-177 "COORDSYS.spad" 201249 201259 206230 206235) (-176 "CONTOUR.spad" 200660 200668 201239 201244) (-175 "CONTFRAC.spad" 196410 196420 200562 200655) (-174 "CONDUIT.spad" 196168 196176 196400 196405) (-173 "COMRING.spad" 195842 195850 196106 196163) (-172 "COMPPROP.spad" 195360 195368 195832 195837) (-171 "COMPLPAT.spad" 195127 195142 195350 195355) (-170 "COMPLEX.spad" 189264 189274 189508 189769) (-169 "COMPLEX2.spad" 188979 188991 189254 189259) (-168 "COMPILER.spad" 188528 188536 188969 188974) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2267714 2267719 2267724 2267729) (-2 NIL 2267694 2267699 2267704 2267709) (-1 NIL 2267674 2267679 2267684 2267689) (0 NIL 2267654 2267659 2267664 2267669) (-1304 "ZMOD.spad" 2267463 2267476 2267592 2267649) (-1303 "ZLINDEP.spad" 2266529 2266540 2267453 2267458) (-1302 "ZDSOLVE.spad" 2256474 2256496 2266519 2266524) (-1301 "YSTREAM.spad" 2255969 2255980 2256464 2256469) (-1300 "XRPOLY.spad" 2255189 2255209 2255825 2255894) (-1299 "XPR.spad" 2252984 2252997 2254907 2255006) (-1298 "XPOLY.spad" 2252539 2252550 2252840 2252909) (-1297 "XPOLYC.spad" 2251858 2251874 2252465 2252534) (-1296 "XPBWPOLY.spad" 2250295 2250315 2251638 2251707) (-1295 "XF.spad" 2248758 2248773 2250197 2250290) (-1294 "XF.spad" 2247201 2247218 2248642 2248647) (-1293 "XFALG.spad" 2244249 2244265 2247127 2247196) (-1292 "XEXPPKG.spad" 2243500 2243526 2244239 2244244) (-1291 "XDPOLY.spad" 2243114 2243130 2243356 2243425) (-1290 "XALG.spad" 2242774 2242785 2243070 2243109) (-1289 "WUTSET.spad" 2238613 2238630 2242420 2242447) (-1288 "WP.spad" 2237812 2237856 2238471 2238538) (-1287 "WHILEAST.spad" 2237610 2237619 2237802 2237807) (-1286 "WHEREAST.spad" 2237281 2237290 2237600 2237605) (-1285 "WFFINTBS.spad" 2234944 2234966 2237271 2237276) (-1284 "WEIER.spad" 2233166 2233177 2234934 2234939) (-1283 "VSPACE.spad" 2232839 2232850 2233134 2233161) (-1282 "VSPACE.spad" 2232532 2232545 2232829 2232834) (-1281 "VOID.spad" 2232209 2232218 2232522 2232527) (-1280 "VIEW.spad" 2229889 2229898 2232199 2232204) (-1279 "VIEWDEF.spad" 2225090 2225099 2229879 2229884) (-1278 "VIEW3D.spad" 2209051 2209060 2225080 2225085) (-1277 "VIEW2D.spad" 2196942 2196951 2209041 2209046) (-1276 "VECTOR.spad" 2195616 2195627 2195867 2195894) (-1275 "VECTOR2.spad" 2194255 2194268 2195606 2195611) (-1274 "VECTCAT.spad" 2192159 2192170 2194223 2194250) (-1273 "VECTCAT.spad" 2189870 2189883 2191936 2191941) (-1272 "VARIABLE.spad" 2189650 2189665 2189860 2189865) (-1271 "UTYPE.spad" 2189294 2189303 2189640 2189645) (-1270 "UTSODETL.spad" 2188589 2188613 2189250 2189255) (-1269 "UTSODE.spad" 2186805 2186825 2188579 2188584) (-1268 "UTS.spad" 2181609 2181637 2185272 2185369) (-1267 "UTSCAT.spad" 2179088 2179104 2181507 2181604) (-1266 "UTSCAT.spad" 2176211 2176229 2178632 2178637) (-1265 "UTS2.spad" 2175806 2175841 2176201 2176206) (-1264 "URAGG.spad" 2170479 2170490 2175796 2175801) (-1263 "URAGG.spad" 2165116 2165129 2170435 2170440) (-1262 "UPXSSING.spad" 2162761 2162787 2164197 2164330) (-1261 "UPXS.spad" 2159915 2159943 2160893 2161042) (-1260 "UPXSCONS.spad" 2157674 2157694 2158047 2158196) (-1259 "UPXSCCA.spad" 2156245 2156265 2157520 2157669) (-1258 "UPXSCCA.spad" 2154958 2154980 2156235 2156240) (-1257 "UPXSCAT.spad" 2153547 2153563 2154804 2154953) (-1256 "UPXS2.spad" 2153090 2153143 2153537 2153542) (-1255 "UPSQFREE.spad" 2151504 2151518 2153080 2153085) (-1254 "UPSCAT.spad" 2149115 2149139 2151402 2151499) (-1253 "UPSCAT.spad" 2146432 2146458 2148721 2148726) (-1252 "UPOLYC.spad" 2141472 2141483 2146274 2146427) (-1251 "UPOLYC.spad" 2136404 2136417 2141208 2141213) (-1250 "UPOLYC2.spad" 2135875 2135894 2136394 2136399) (-1249 "UP.spad" 2133074 2133089 2133461 2133614) (-1248 "UPMP.spad" 2131974 2131987 2133064 2133069) (-1247 "UPDIVP.spad" 2131539 2131553 2131964 2131969) (-1246 "UPDECOMP.spad" 2129784 2129798 2131529 2131534) (-1245 "UPCDEN.spad" 2128993 2129009 2129774 2129779) (-1244 "UP2.spad" 2128357 2128378 2128983 2128988) (-1243 "UNISEG.spad" 2127710 2127721 2128276 2128281) (-1242 "UNISEG2.spad" 2127207 2127220 2127666 2127671) (-1241 "UNIFACT.spad" 2126310 2126322 2127197 2127202) (-1240 "ULS.spad" 2116868 2116896 2117955 2118384) (-1239 "ULSCONS.spad" 2109264 2109284 2109634 2109783) (-1238 "ULSCCAT.spad" 2107001 2107021 2109110 2109259) (-1237 "ULSCCAT.spad" 2104846 2104868 2106957 2106962) (-1236 "ULSCAT.spad" 2103078 2103094 2104692 2104841) (-1235 "ULS2.spad" 2102592 2102645 2103068 2103073) (-1234 "UINT8.spad" 2102469 2102478 2102582 2102587) (-1233 "UINT64.spad" 2102345 2102354 2102459 2102464) (-1232 "UINT32.spad" 2102221 2102230 2102335 2102340) (-1231 "UINT16.spad" 2102097 2102106 2102211 2102216) (-1230 "UFD.spad" 2101162 2101171 2102023 2102092) (-1229 "UFD.spad" 2100289 2100300 2101152 2101157) (-1228 "UDVO.spad" 2099170 2099179 2100279 2100284) (-1227 "UDPO.spad" 2096663 2096674 2099126 2099131) (-1226 "TYPE.spad" 2096595 2096604 2096653 2096658) (-1225 "TYPEAST.spad" 2096514 2096523 2096585 2096590) (-1224 "TWOFACT.spad" 2095166 2095181 2096504 2096509) (-1223 "TUPLE.spad" 2094652 2094663 2095065 2095070) (-1222 "TUBETOOL.spad" 2091519 2091528 2094642 2094647) (-1221 "TUBE.spad" 2090166 2090183 2091509 2091514) (-1220 "TS.spad" 2088765 2088781 2089731 2089828) (-1219 "TSETCAT.spad" 2075892 2075909 2088733 2088760) (-1218 "TSETCAT.spad" 2063005 2063024 2075848 2075853) (-1217 "TRMANIP.spad" 2057371 2057388 2062711 2062716) (-1216 "TRIMAT.spad" 2056334 2056359 2057361 2057366) (-1215 "TRIGMNIP.spad" 2054861 2054878 2056324 2056329) (-1214 "TRIGCAT.spad" 2054373 2054382 2054851 2054856) (-1213 "TRIGCAT.spad" 2053883 2053894 2054363 2054368) (-1212 "TREE.spad" 2052458 2052469 2053490 2053517) (-1211 "TRANFUN.spad" 2052297 2052306 2052448 2052453) (-1210 "TRANFUN.spad" 2052134 2052145 2052287 2052292) (-1209 "TOPSP.spad" 2051808 2051817 2052124 2052129) (-1208 "TOOLSIGN.spad" 2051471 2051482 2051798 2051803) (-1207 "TEXTFILE.spad" 2050032 2050041 2051461 2051466) (-1206 "TEX.spad" 2047178 2047187 2050022 2050027) (-1205 "TEX1.spad" 2046734 2046745 2047168 2047173) (-1204 "TEMUTL.spad" 2046289 2046298 2046724 2046729) (-1203 "TBCMPPK.spad" 2044382 2044405 2046279 2046284) (-1202 "TBAGG.spad" 2043432 2043455 2044362 2044377) (-1201 "TBAGG.spad" 2042490 2042515 2043422 2043427) (-1200 "TANEXP.spad" 2041898 2041909 2042480 2042485) (-1199 "TABLE.spad" 2040309 2040332 2040579 2040606) (-1198 "TABLEAU.spad" 2039790 2039801 2040299 2040304) (-1197 "TABLBUMP.spad" 2036593 2036604 2039780 2039785) (-1196 "SYSTEM.spad" 2035821 2035830 2036583 2036588) (-1195 "SYSSOLP.spad" 2033304 2033315 2035811 2035816) (-1194 "SYSPTR.spad" 2033203 2033212 2033294 2033299) (-1193 "SYSNNI.spad" 2032385 2032396 2033193 2033198) (-1192 "SYSINT.spad" 2031789 2031800 2032375 2032380) (-1191 "SYNTAX.spad" 2027995 2028004 2031779 2031784) (-1190 "SYMTAB.spad" 2026063 2026072 2027985 2027990) (-1189 "SYMS.spad" 2022086 2022095 2026053 2026058) (-1188 "SYMPOLY.spad" 2021093 2021104 2021175 2021302) (-1187 "SYMFUNC.spad" 2020594 2020605 2021083 2021088) (-1186 "SYMBOL.spad" 2018097 2018106 2020584 2020589) (-1185 "SWITCH.spad" 2014868 2014877 2018087 2018092) (-1184 "SUTS.spad" 2011773 2011801 2013335 2013432) (-1183 "SUPXS.spad" 2008914 2008942 2009905 2010054) (-1182 "SUP.spad" 2005727 2005738 2006500 2006653) (-1181 "SUPFRACF.spad" 2004832 2004850 2005717 2005722) (-1180 "SUP2.spad" 2004224 2004237 2004822 2004827) (-1179 "SUMRF.spad" 2003198 2003209 2004214 2004219) (-1178 "SUMFS.spad" 2002835 2002852 2003188 2003193) (-1177 "SULS.spad" 1993380 1993408 1994480 1994909) (-1176 "SUCHTAST.spad" 1993149 1993158 1993370 1993375) (-1175 "SUCH.spad" 1992831 1992846 1993139 1993144) (-1174 "SUBSPACE.spad" 1984946 1984961 1992821 1992826) (-1173 "SUBRESP.spad" 1984116 1984130 1984902 1984907) (-1172 "STTF.spad" 1980215 1980231 1984106 1984111) (-1171 "STTFNC.spad" 1976683 1976699 1980205 1980210) (-1170 "STTAYLOR.spad" 1969318 1969329 1976564 1976569) (-1169 "STRTBL.spad" 1967823 1967840 1967972 1967999) (-1168 "STRING.spad" 1967232 1967241 1967246 1967273) (-1167 "STRICAT.spad" 1967020 1967029 1967200 1967227) (-1166 "STREAM.spad" 1963938 1963949 1966545 1966560) (-1165 "STREAM3.spad" 1963511 1963526 1963928 1963933) (-1164 "STREAM2.spad" 1962639 1962652 1963501 1963506) (-1163 "STREAM1.spad" 1962345 1962356 1962629 1962634) (-1162 "STINPROD.spad" 1961281 1961297 1962335 1962340) (-1161 "STEP.spad" 1960482 1960491 1961271 1961276) (-1160 "STEPAST.spad" 1959716 1959725 1960472 1960477) (-1159 "STBL.spad" 1958242 1958270 1958409 1958424) (-1158 "STAGG.spad" 1957317 1957328 1958232 1958237) (-1157 "STAGG.spad" 1956390 1956403 1957307 1957312) (-1156 "STACK.spad" 1955747 1955758 1955997 1956024) (-1155 "SREGSET.spad" 1953451 1953468 1955393 1955420) (-1154 "SRDCMPK.spad" 1952012 1952032 1953441 1953446) (-1153 "SRAGG.spad" 1947155 1947164 1951980 1952007) (-1152 "SRAGG.spad" 1942318 1942329 1947145 1947150) (-1151 "SQMATRIX.spad" 1939934 1939952 1940850 1940937) (-1150 "SPLTREE.spad" 1934486 1934499 1939370 1939397) (-1149 "SPLNODE.spad" 1931074 1931087 1934476 1934481) (-1148 "SPFCAT.spad" 1929883 1929892 1931064 1931069) (-1147 "SPECOUT.spad" 1928435 1928444 1929873 1929878) (-1146 "SPADXPT.spad" 1920030 1920039 1928425 1928430) (-1145 "spad-parser.spad" 1919495 1919504 1920020 1920025) (-1144 "SPADAST.spad" 1919196 1919205 1919485 1919490) (-1143 "SPACEC.spad" 1903395 1903406 1919186 1919191) (-1142 "SPACE3.spad" 1903171 1903182 1903385 1903390) (-1141 "SORTPAK.spad" 1902720 1902733 1903127 1903132) (-1140 "SOLVETRA.spad" 1900483 1900494 1902710 1902715) (-1139 "SOLVESER.spad" 1899011 1899022 1900473 1900478) (-1138 "SOLVERAD.spad" 1895037 1895048 1899001 1899006) (-1137 "SOLVEFOR.spad" 1893499 1893517 1895027 1895032) (-1136 "SNTSCAT.spad" 1893099 1893116 1893467 1893494) (-1135 "SMTS.spad" 1891371 1891397 1892664 1892761) (-1134 "SMP.spad" 1888846 1888866 1889236 1889363) (-1133 "SMITH.spad" 1887691 1887716 1888836 1888841) (-1132 "SMATCAT.spad" 1885801 1885831 1887635 1887686) (-1131 "SMATCAT.spad" 1883843 1883875 1885679 1885684) (-1130 "SKAGG.spad" 1882806 1882817 1883811 1883838) (-1129 "SINT.spad" 1881746 1881755 1882672 1882801) (-1128 "SIMPAN.spad" 1881474 1881483 1881736 1881741) (-1127 "SIG.spad" 1880804 1880813 1881464 1881469) (-1126 "SIGNRF.spad" 1879922 1879933 1880794 1880799) (-1125 "SIGNEF.spad" 1879201 1879218 1879912 1879917) (-1124 "SIGAST.spad" 1878586 1878595 1879191 1879196) (-1123 "SHP.spad" 1876514 1876529 1878542 1878547) (-1122 "SHDP.spad" 1866225 1866252 1866734 1866865) (-1121 "SGROUP.spad" 1865833 1865842 1866215 1866220) (-1120 "SGROUP.spad" 1865439 1865450 1865823 1865828) (-1119 "SGCF.spad" 1858602 1858611 1865429 1865434) (-1118 "SFRTCAT.spad" 1857532 1857549 1858570 1858597) (-1117 "SFRGCD.spad" 1856595 1856615 1857522 1857527) (-1116 "SFQCMPK.spad" 1851232 1851252 1856585 1856590) (-1115 "SFORT.spad" 1850671 1850685 1851222 1851227) (-1114 "SEXOF.spad" 1850514 1850554 1850661 1850666) (-1113 "SEX.spad" 1850406 1850415 1850504 1850509) (-1112 "SEXCAT.spad" 1848007 1848047 1850396 1850401) (-1111 "SET.spad" 1846331 1846342 1847428 1847467) (-1110 "SETMN.spad" 1844781 1844798 1846321 1846326) (-1109 "SETCAT.spad" 1844103 1844112 1844771 1844776) (-1108 "SETCAT.spad" 1843423 1843434 1844093 1844098) (-1107 "SETAGG.spad" 1839972 1839983 1843403 1843418) (-1106 "SETAGG.spad" 1836529 1836542 1839962 1839967) (-1105 "SEQAST.spad" 1836232 1836241 1836519 1836524) (-1104 "SEGXCAT.spad" 1835388 1835401 1836222 1836227) (-1103 "SEG.spad" 1835201 1835212 1835307 1835312) (-1102 "SEGCAT.spad" 1834126 1834137 1835191 1835196) (-1101 "SEGBIND.spad" 1833884 1833895 1834073 1834078) (-1100 "SEGBIND2.spad" 1833582 1833595 1833874 1833879) (-1099 "SEGAST.spad" 1833296 1833305 1833572 1833577) (-1098 "SEG2.spad" 1832731 1832744 1833252 1833257) (-1097 "SDVAR.spad" 1832007 1832018 1832721 1832726) (-1096 "SDPOL.spad" 1829433 1829444 1829724 1829851) (-1095 "SCPKG.spad" 1827522 1827533 1829423 1829428) (-1094 "SCOPE.spad" 1826675 1826684 1827512 1827517) (-1093 "SCACHE.spad" 1825371 1825382 1826665 1826670) (-1092 "SASTCAT.spad" 1825280 1825289 1825361 1825366) (-1091 "SAOS.spad" 1825152 1825161 1825270 1825275) (-1090 "SAERFFC.spad" 1824865 1824885 1825142 1825147) (-1089 "SAE.spad" 1823040 1823056 1823651 1823786) (-1088 "SAEFACT.spad" 1822741 1822761 1823030 1823035) (-1087 "RURPK.spad" 1820400 1820416 1822731 1822736) (-1086 "RULESET.spad" 1819853 1819877 1820390 1820395) (-1085 "RULE.spad" 1818093 1818117 1819843 1819848) (-1084 "RULECOLD.spad" 1817945 1817958 1818083 1818088) (-1083 "RTVALUE.spad" 1817680 1817689 1817935 1817940) (-1082 "RSTRCAST.spad" 1817397 1817406 1817670 1817675) (-1081 "RSETGCD.spad" 1813775 1813795 1817387 1817392) (-1080 "RSETCAT.spad" 1803711 1803728 1813743 1813770) (-1079 "RSETCAT.spad" 1793667 1793686 1803701 1803706) (-1078 "RSDCMPK.spad" 1792119 1792139 1793657 1793662) (-1077 "RRCC.spad" 1790503 1790533 1792109 1792114) (-1076 "RRCC.spad" 1788885 1788917 1790493 1790498) (-1075 "RPTAST.spad" 1788587 1788596 1788875 1788880) (-1074 "RPOLCAT.spad" 1767947 1767962 1788455 1788582) (-1073 "RPOLCAT.spad" 1747020 1747037 1767530 1767535) (-1072 "ROUTINE.spad" 1742903 1742912 1745667 1745694) (-1071 "ROMAN.spad" 1742231 1742240 1742769 1742898) (-1070 "ROIRC.spad" 1741311 1741343 1742221 1742226) (-1069 "RNS.spad" 1740214 1740223 1741213 1741306) (-1068 "RNS.spad" 1739203 1739214 1740204 1740209) (-1067 "RNG.spad" 1738938 1738947 1739193 1739198) (-1066 "RNGBIND.spad" 1738098 1738112 1738893 1738898) (-1065 "RMODULE.spad" 1737863 1737874 1738088 1738093) (-1064 "RMCAT2.spad" 1737283 1737340 1737853 1737858) (-1063 "RMATRIX.spad" 1736107 1736126 1736450 1736489) (-1062 "RMATCAT.spad" 1731686 1731717 1736063 1736102) (-1061 "RMATCAT.spad" 1727155 1727188 1731534 1731539) (-1060 "RLINSET.spad" 1726549 1726560 1727145 1727150) (-1059 "RINTERP.spad" 1726437 1726457 1726539 1726544) (-1058 "RING.spad" 1725907 1725916 1726417 1726432) (-1057 "RING.spad" 1725385 1725396 1725897 1725902) (-1056 "RIDIST.spad" 1724777 1724786 1725375 1725380) (-1055 "RGCHAIN.spad" 1723360 1723376 1724262 1724289) (-1054 "RGBCSPC.spad" 1723141 1723153 1723350 1723355) (-1053 "RGBCMDL.spad" 1722671 1722683 1723131 1723136) (-1052 "RF.spad" 1720313 1720324 1722661 1722666) (-1051 "RFFACTOR.spad" 1719775 1719786 1720303 1720308) (-1050 "RFFACT.spad" 1719510 1719522 1719765 1719770) (-1049 "RFDIST.spad" 1718506 1718515 1719500 1719505) (-1048 "RETSOL.spad" 1717925 1717938 1718496 1718501) (-1047 "RETRACT.spad" 1717353 1717364 1717915 1717920) (-1046 "RETRACT.spad" 1716779 1716792 1717343 1717348) (-1045 "RETAST.spad" 1716591 1716600 1716769 1716774) (-1044 "RESULT.spad" 1714651 1714660 1715238 1715265) (-1043 "RESRING.spad" 1713998 1714045 1714589 1714646) (-1042 "RESLATC.spad" 1713322 1713333 1713988 1713993) (-1041 "REPSQ.spad" 1713053 1713064 1713312 1713317) (-1040 "REP.spad" 1710607 1710616 1713043 1713048) (-1039 "REPDB.spad" 1710314 1710325 1710597 1710602) (-1038 "REP2.spad" 1699972 1699983 1710156 1710161) (-1037 "REP1.spad" 1694168 1694179 1699922 1699927) (-1036 "REGSET.spad" 1691965 1691982 1693814 1693841) (-1035 "REF.spad" 1691300 1691311 1691920 1691925) (-1034 "REDORDER.spad" 1690506 1690523 1691290 1691295) (-1033 "RECLOS.spad" 1689289 1689309 1689993 1690086) (-1032 "REALSOLV.spad" 1688429 1688438 1689279 1689284) (-1031 "REAL.spad" 1688301 1688310 1688419 1688424) (-1030 "REAL0Q.spad" 1685599 1685614 1688291 1688296) (-1029 "REAL0.spad" 1682443 1682458 1685589 1685594) (-1028 "RDUCEAST.spad" 1682164 1682173 1682433 1682438) (-1027 "RDIV.spad" 1681819 1681844 1682154 1682159) (-1026 "RDIST.spad" 1681386 1681397 1681809 1681814) (-1025 "RDETRS.spad" 1680250 1680268 1681376 1681381) (-1024 "RDETR.spad" 1678389 1678407 1680240 1680245) (-1023 "RDEEFS.spad" 1677488 1677505 1678379 1678384) (-1022 "RDEEF.spad" 1676498 1676515 1677478 1677483) (-1021 "RCFIELD.spad" 1673684 1673693 1676400 1676493) (-1020 "RCFIELD.spad" 1670956 1670967 1673674 1673679) (-1019 "RCAGG.spad" 1668884 1668895 1670946 1670951) (-1018 "RCAGG.spad" 1666739 1666752 1668803 1668808) (-1017 "RATRET.spad" 1666099 1666110 1666729 1666734) (-1016 "RATFACT.spad" 1665791 1665803 1666089 1666094) (-1015 "RANDSRC.spad" 1665110 1665119 1665781 1665786) (-1014 "RADUTIL.spad" 1664866 1664875 1665100 1665105) (-1013 "RADIX.spad" 1661787 1661801 1663333 1663426) (-1012 "RADFF.spad" 1660200 1660237 1660319 1660475) (-1011 "RADCAT.spad" 1659795 1659804 1660190 1660195) (-1010 "RADCAT.spad" 1659388 1659399 1659785 1659790) (-1009 "QUEUE.spad" 1658736 1658747 1658995 1659022) (-1008 "QUAT.spad" 1657317 1657328 1657660 1657725) (-1007 "QUATCT2.spad" 1656937 1656956 1657307 1657312) (-1006 "QUATCAT.spad" 1655107 1655118 1656867 1656932) (-1005 "QUATCAT.spad" 1653028 1653041 1654790 1654795) (-1004 "QUAGG.spad" 1651855 1651866 1652996 1653023) (-1003 "QQUTAST.spad" 1651623 1651632 1651845 1651850) (-1002 "QFORM.spad" 1651087 1651102 1651613 1651618) (-1001 "QFCAT.spad" 1649789 1649800 1650989 1651082) (-1000 "QFCAT.spad" 1648082 1648095 1649284 1649289) (-999 "QFCAT2.spad" 1647775 1647791 1648072 1648077) (-998 "QEQUAT.spad" 1647334 1647342 1647765 1647770) (-997 "QCMPACK.spad" 1642081 1642100 1647324 1647329) (-996 "QALGSET.spad" 1638160 1638192 1641995 1642000) (-995 "QALGSET2.spad" 1636156 1636174 1638150 1638155) (-994 "PWFFINTB.spad" 1633572 1633593 1636146 1636151) (-993 "PUSHVAR.spad" 1632911 1632930 1633562 1633567) (-992 "PTRANFN.spad" 1629039 1629049 1632901 1632906) (-991 "PTPACK.spad" 1626127 1626137 1629029 1629034) (-990 "PTFUNC2.spad" 1625950 1625964 1626117 1626122) (-989 "PTCAT.spad" 1625205 1625215 1625918 1625945) (-988 "PSQFR.spad" 1624512 1624536 1625195 1625200) (-987 "PSEUDLIN.spad" 1623398 1623408 1624502 1624507) (-986 "PSETPK.spad" 1608831 1608847 1623276 1623281) (-985 "PSETCAT.spad" 1602751 1602774 1608811 1608826) (-984 "PSETCAT.spad" 1596645 1596670 1602707 1602712) (-983 "PSCURVE.spad" 1595628 1595636 1596635 1596640) (-982 "PSCAT.spad" 1594411 1594440 1595526 1595623) (-981 "PSCAT.spad" 1593284 1593315 1594401 1594406) (-980 "PRTITION.spad" 1592245 1592253 1593274 1593279) (-979 "PRTDAST.spad" 1591964 1591972 1592235 1592240) (-978 "PRS.spad" 1581526 1581543 1591920 1591925) (-977 "PRQAGG.spad" 1580961 1580971 1581494 1581521) (-976 "PROPLOG.spad" 1580533 1580541 1580951 1580956) (-975 "PROPFUN2.spad" 1580156 1580169 1580523 1580528) (-974 "PROPFUN1.spad" 1579749 1579760 1580146 1580151) (-973 "PROPFRML.spad" 1578317 1578328 1579739 1579744) (-972 "PROPERTY.spad" 1577805 1577813 1578307 1578312) (-971 "PRODUCT.spad" 1575487 1575499 1575771 1575826) (-970 "PR.spad" 1573879 1573891 1574578 1574705) (-969 "PRINT.spad" 1573631 1573639 1573869 1573874) (-968 "PRIMES.spad" 1571884 1571894 1573621 1573626) (-967 "PRIMELT.spad" 1569965 1569979 1571874 1571879) (-966 "PRIMCAT.spad" 1569592 1569600 1569955 1569960) (-965 "PRIMARR.spad" 1568597 1568607 1568775 1568802) (-964 "PRIMARR2.spad" 1567364 1567376 1568587 1568592) (-963 "PREASSOC.spad" 1566746 1566758 1567354 1567359) (-962 "PPCURVE.spad" 1565883 1565891 1566736 1566741) (-961 "PORTNUM.spad" 1565658 1565666 1565873 1565878) (-960 "POLYROOT.spad" 1564507 1564529 1565614 1565619) (-959 "POLY.spad" 1561842 1561852 1562357 1562484) (-958 "POLYLIFT.spad" 1561107 1561130 1561832 1561837) (-957 "POLYCATQ.spad" 1559225 1559247 1561097 1561102) (-956 "POLYCAT.spad" 1552695 1552716 1559093 1559220) (-955 "POLYCAT.spad" 1545503 1545526 1551903 1551908) (-954 "POLY2UP.spad" 1544955 1544969 1545493 1545498) (-953 "POLY2.spad" 1544552 1544564 1544945 1544950) (-952 "POLUTIL.spad" 1543493 1543522 1544508 1544513) (-951 "POLTOPOL.spad" 1542241 1542256 1543483 1543488) (-950 "POINT.spad" 1541079 1541089 1541166 1541193) (-949 "PNTHEORY.spad" 1537781 1537789 1541069 1541074) (-948 "PMTOOLS.spad" 1536556 1536570 1537771 1537776) (-947 "PMSYM.spad" 1536105 1536115 1536546 1536551) (-946 "PMQFCAT.spad" 1535696 1535710 1536095 1536100) (-945 "PMPRED.spad" 1535175 1535189 1535686 1535691) (-944 "PMPREDFS.spad" 1534629 1534651 1535165 1535170) (-943 "PMPLCAT.spad" 1533709 1533727 1534561 1534566) (-942 "PMLSAGG.spad" 1533294 1533308 1533699 1533704) (-941 "PMKERNEL.spad" 1532873 1532885 1533284 1533289) (-940 "PMINS.spad" 1532453 1532463 1532863 1532868) (-939 "PMFS.spad" 1532030 1532048 1532443 1532448) (-938 "PMDOWN.spad" 1531320 1531334 1532020 1532025) (-937 "PMASS.spad" 1530330 1530338 1531310 1531315) (-936 "PMASSFS.spad" 1529297 1529313 1530320 1530325) (-935 "PLOTTOOL.spad" 1529077 1529085 1529287 1529292) (-934 "PLOT.spad" 1524000 1524008 1529067 1529072) (-933 "PLOT3D.spad" 1520464 1520472 1523990 1523995) (-932 "PLOT1.spad" 1519621 1519631 1520454 1520459) (-931 "PLEQN.spad" 1506911 1506938 1519611 1519616) (-930 "PINTERP.spad" 1506533 1506552 1506901 1506906) (-929 "PINTERPA.spad" 1506317 1506333 1506523 1506528) (-928 "PI.spad" 1505926 1505934 1506291 1506312) (-927 "PID.spad" 1504896 1504904 1505852 1505921) (-926 "PICOERCE.spad" 1504553 1504563 1504886 1504891) (-925 "PGROEB.spad" 1503154 1503168 1504543 1504548) (-924 "PGE.spad" 1494771 1494779 1503144 1503149) (-923 "PGCD.spad" 1493661 1493678 1494761 1494766) (-922 "PFRPAC.spad" 1492810 1492820 1493651 1493656) (-921 "PFR.spad" 1489473 1489483 1492712 1492805) (-920 "PFOTOOLS.spad" 1488731 1488747 1489463 1489468) (-919 "PFOQ.spad" 1488101 1488119 1488721 1488726) (-918 "PFO.spad" 1487520 1487547 1488091 1488096) (-917 "PF.spad" 1487094 1487106 1487325 1487418) (-916 "PFECAT.spad" 1484776 1484784 1487020 1487089) (-915 "PFECAT.spad" 1482486 1482496 1484732 1484737) (-914 "PFBRU.spad" 1480374 1480386 1482476 1482481) (-913 "PFBR.spad" 1477934 1477957 1480364 1480369) (-912 "PERM.spad" 1473619 1473629 1477764 1477779) (-911 "PERMGRP.spad" 1468381 1468391 1473609 1473614) (-910 "PERMCAT.spad" 1466939 1466949 1468361 1468376) (-909 "PERMAN.spad" 1465471 1465485 1466929 1466934) (-908 "PENDTREE.spad" 1464812 1464822 1465100 1465105) (-907 "PDRING.spad" 1463363 1463373 1464792 1464807) (-906 "PDRING.spad" 1461922 1461934 1463353 1463358) (-905 "PDEPROB.spad" 1460937 1460945 1461912 1461917) (-904 "PDEPACK.spad" 1454977 1454985 1460927 1460932) (-903 "PDECOMP.spad" 1454447 1454464 1454967 1454972) (-902 "PDECAT.spad" 1452803 1452811 1454437 1454442) (-901 "PCOMP.spad" 1452656 1452669 1452793 1452798) (-900 "PBWLB.spad" 1451244 1451261 1452646 1452651) (-899 "PATTERN.spad" 1445783 1445793 1451234 1451239) (-898 "PATTERN2.spad" 1445521 1445533 1445773 1445778) (-897 "PATTERN1.spad" 1443857 1443873 1445511 1445516) (-896 "PATRES.spad" 1441432 1441444 1443847 1443852) (-895 "PATRES2.spad" 1441104 1441118 1441422 1441427) (-894 "PATMATCH.spad" 1439301 1439332 1440812 1440817) (-893 "PATMAB.spad" 1438730 1438740 1439291 1439296) (-892 "PATLRES.spad" 1437816 1437830 1438720 1438725) (-891 "PATAB.spad" 1437580 1437590 1437806 1437811) (-890 "PARTPERM.spad" 1434980 1434988 1437570 1437575) (-889 "PARSURF.spad" 1434414 1434442 1434970 1434975) (-888 "PARSU2.spad" 1434211 1434227 1434404 1434409) (-887 "script-parser.spad" 1433731 1433739 1434201 1434206) (-886 "PARSCURV.spad" 1433165 1433193 1433721 1433726) (-885 "PARSC2.spad" 1432956 1432972 1433155 1433160) (-884 "PARPCURV.spad" 1432418 1432446 1432946 1432951) (-883 "PARPC2.spad" 1432209 1432225 1432408 1432413) (-882 "PARAMAST.spad" 1431337 1431345 1432199 1432204) (-881 "PAN2EXPR.spad" 1430749 1430757 1431327 1431332) (-880 "PALETTE.spad" 1429719 1429727 1430739 1430744) (-879 "PAIR.spad" 1428706 1428719 1429307 1429312) (-878 "PADICRC.spad" 1426040 1426058 1427211 1427304) (-877 "PADICRAT.spad" 1424055 1424067 1424276 1424369) (-876 "PADIC.spad" 1423750 1423762 1423981 1424050) (-875 "PADICCT.spad" 1422299 1422311 1423676 1423745) (-874 "PADEPAC.spad" 1420988 1421007 1422289 1422294) (-873 "PADE.spad" 1419740 1419756 1420978 1420983) (-872 "OWP.spad" 1418980 1419010 1419598 1419665) (-871 "OVERSET.spad" 1418553 1418561 1418970 1418975) (-870 "OVAR.spad" 1418334 1418357 1418543 1418548) (-869 "OUT.spad" 1417420 1417428 1418324 1418329) (-868 "OUTFORM.spad" 1406812 1406820 1417410 1417415) (-867 "OUTBFILE.spad" 1406230 1406238 1406802 1406807) (-866 "OUTBCON.spad" 1405236 1405244 1406220 1406225) (-865 "OUTBCON.spad" 1404240 1404250 1405226 1405231) (-864 "OSI.spad" 1403715 1403723 1404230 1404235) (-863 "OSGROUP.spad" 1403633 1403641 1403705 1403710) (-862 "ORTHPOL.spad" 1402118 1402128 1403550 1403555) (-861 "OREUP.spad" 1401571 1401599 1401798 1401837) (-860 "ORESUP.spad" 1400872 1400896 1401251 1401290) (-859 "OREPCTO.spad" 1398729 1398741 1400792 1400797) (-858 "OREPCAT.spad" 1392876 1392886 1398685 1398724) (-857 "OREPCAT.spad" 1386913 1386925 1392724 1392729) (-856 "ORDSET.spad" 1386085 1386093 1386903 1386908) (-855 "ORDSET.spad" 1385255 1385265 1386075 1386080) (-854 "ORDRING.spad" 1384645 1384653 1385235 1385250) (-853 "ORDRING.spad" 1384043 1384053 1384635 1384640) (-852 "ORDMON.spad" 1383898 1383906 1384033 1384038) (-851 "ORDFUNS.spad" 1383030 1383046 1383888 1383893) (-850 "ORDFIN.spad" 1382850 1382858 1383020 1383025) (-849 "ORDCOMP.spad" 1381315 1381325 1382397 1382426) (-848 "ORDCOMP2.spad" 1380608 1380620 1381305 1381310) (-847 "OPTPROB.spad" 1379246 1379254 1380598 1380603) (-846 "OPTPACK.spad" 1371655 1371663 1379236 1379241) (-845 "OPTCAT.spad" 1369334 1369342 1371645 1371650) (-844 "OPSIG.spad" 1368988 1368996 1369324 1369329) (-843 "OPQUERY.spad" 1368537 1368545 1368978 1368983) (-842 "OP.spad" 1368279 1368289 1368359 1368426) (-841 "OPERCAT.spad" 1367745 1367755 1368269 1368274) (-840 "OPERCAT.spad" 1367209 1367221 1367735 1367740) (-839 "ONECOMP.spad" 1365954 1365964 1366756 1366785) (-838 "ONECOMP2.spad" 1365378 1365390 1365944 1365949) (-837 "OMSERVER.spad" 1364384 1364392 1365368 1365373) (-836 "OMSAGG.spad" 1364172 1364182 1364340 1364379) (-835 "OMPKG.spad" 1362788 1362796 1364162 1364167) (-834 "OM.spad" 1361761 1361769 1362778 1362783) (-833 "OMLO.spad" 1361186 1361198 1361647 1361686) (-832 "OMEXPR.spad" 1361020 1361030 1361176 1361181) (-831 "OMERR.spad" 1360565 1360573 1361010 1361015) (-830 "OMERRK.spad" 1359599 1359607 1360555 1360560) (-829 "OMENC.spad" 1358943 1358951 1359589 1359594) (-828 "OMDEV.spad" 1353252 1353260 1358933 1358938) (-827 "OMCONN.spad" 1352661 1352669 1353242 1353247) (-826 "OINTDOM.spad" 1352424 1352432 1352587 1352656) (-825 "OFMONOID.spad" 1350547 1350557 1352380 1352385) (-824 "ODVAR.spad" 1349808 1349818 1350537 1350542) (-823 "ODR.spad" 1349452 1349478 1349620 1349769) (-822 "ODPOL.spad" 1346834 1346844 1347174 1347301) (-821 "ODP.spad" 1336681 1336701 1337054 1337185) (-820 "ODETOOLS.spad" 1335330 1335349 1336671 1336676) (-819 "ODESYS.spad" 1333024 1333041 1335320 1335325) (-818 "ODERTRIC.spad" 1329033 1329050 1332981 1332986) (-817 "ODERED.spad" 1328432 1328456 1329023 1329028) (-816 "ODERAT.spad" 1326047 1326064 1328422 1328427) (-815 "ODEPRRIC.spad" 1323084 1323106 1326037 1326042) (-814 "ODEPROB.spad" 1322341 1322349 1323074 1323079) (-813 "ODEPRIM.spad" 1319675 1319697 1322331 1322336) (-812 "ODEPAL.spad" 1319061 1319085 1319665 1319670) (-811 "ODEPACK.spad" 1305727 1305735 1319051 1319056) (-810 "ODEINT.spad" 1305162 1305178 1305717 1305722) (-809 "ODEIFTBL.spad" 1302557 1302565 1305152 1305157) (-808 "ODEEF.spad" 1298048 1298064 1302547 1302552) (-807 "ODECONST.spad" 1297585 1297603 1298038 1298043) (-806 "ODECAT.spad" 1296183 1296191 1297575 1297580) (-805 "OCT.spad" 1294319 1294329 1295033 1295072) (-804 "OCTCT2.spad" 1293965 1293986 1294309 1294314) (-803 "OC.spad" 1291761 1291771 1293921 1293960) (-802 "OC.spad" 1289282 1289294 1291444 1291449) (-801 "OCAMON.spad" 1289130 1289138 1289272 1289277) (-800 "OASGP.spad" 1288945 1288953 1289120 1289125) (-799 "OAMONS.spad" 1288467 1288475 1288935 1288940) (-798 "OAMON.spad" 1288328 1288336 1288457 1288462) (-797 "OAGROUP.spad" 1288190 1288198 1288318 1288323) (-796 "NUMTUBE.spad" 1287781 1287797 1288180 1288185) (-795 "NUMQUAD.spad" 1275757 1275765 1287771 1287776) (-794 "NUMODE.spad" 1267111 1267119 1275747 1275752) (-793 "NUMINT.spad" 1264677 1264685 1267101 1267106) (-792 "NUMFMT.spad" 1263517 1263525 1264667 1264672) (-791 "NUMERIC.spad" 1255631 1255641 1263322 1263327) (-790 "NTSCAT.spad" 1254139 1254155 1255599 1255626) (-789 "NTPOLFN.spad" 1253690 1253700 1254056 1254061) (-788 "NSUP.spad" 1246736 1246746 1251276 1251429) (-787 "NSUP2.spad" 1246128 1246140 1246726 1246731) (-786 "NSMP.spad" 1242358 1242377 1242666 1242793) (-785 "NREP.spad" 1240736 1240750 1242348 1242353) (-784 "NPCOEF.spad" 1239982 1240002 1240726 1240731) (-783 "NORMRETR.spad" 1239580 1239619 1239972 1239977) (-782 "NORMPK.spad" 1237482 1237501 1239570 1239575) (-781 "NORMMA.spad" 1237170 1237196 1237472 1237477) (-780 "NONE.spad" 1236911 1236919 1237160 1237165) (-779 "NONE1.spad" 1236587 1236597 1236901 1236906) (-778 "NODE1.spad" 1236074 1236090 1236577 1236582) (-777 "NNI.spad" 1234969 1234977 1236048 1236069) (-776 "NLINSOL.spad" 1233595 1233605 1234959 1234964) (-775 "NIPROB.spad" 1232136 1232144 1233585 1233590) (-774 "NFINTBAS.spad" 1229696 1229713 1232126 1232131) (-773 "NETCLT.spad" 1229670 1229681 1229686 1229691) (-772 "NCODIV.spad" 1227886 1227902 1229660 1229665) (-771 "NCNTFRAC.spad" 1227528 1227542 1227876 1227881) (-770 "NCEP.spad" 1225694 1225708 1227518 1227523) (-769 "NASRING.spad" 1225290 1225298 1225684 1225689) (-768 "NASRING.spad" 1224884 1224894 1225280 1225285) (-767 "NARNG.spad" 1224236 1224244 1224874 1224879) (-766 "NARNG.spad" 1223586 1223596 1224226 1224231) (-765 "NAGSP.spad" 1222663 1222671 1223576 1223581) (-764 "NAGS.spad" 1212324 1212332 1222653 1222658) (-763 "NAGF07.spad" 1210755 1210763 1212314 1212319) (-762 "NAGF04.spad" 1205157 1205165 1210745 1210750) (-761 "NAGF02.spad" 1199226 1199234 1205147 1205152) (-760 "NAGF01.spad" 1194987 1194995 1199216 1199221) (-759 "NAGE04.spad" 1188687 1188695 1194977 1194982) (-758 "NAGE02.spad" 1179347 1179355 1188677 1188682) (-757 "NAGE01.spad" 1175349 1175357 1179337 1179342) (-756 "NAGD03.spad" 1173353 1173361 1175339 1175344) (-755 "NAGD02.spad" 1166100 1166108 1173343 1173348) (-754 "NAGD01.spad" 1160393 1160401 1166090 1166095) (-753 "NAGC06.spad" 1156268 1156276 1160383 1160388) (-752 "NAGC05.spad" 1154769 1154777 1156258 1156263) (-751 "NAGC02.spad" 1154036 1154044 1154759 1154764) (-750 "NAALG.spad" 1153577 1153587 1154004 1154031) (-749 "NAALG.spad" 1153138 1153150 1153567 1153572) (-748 "MULTSQFR.spad" 1150096 1150113 1153128 1153133) (-747 "MULTFACT.spad" 1149479 1149496 1150086 1150091) (-746 "MTSCAT.spad" 1147573 1147594 1149377 1149474) (-745 "MTHING.spad" 1147232 1147242 1147563 1147568) (-744 "MSYSCMD.spad" 1146666 1146674 1147222 1147227) (-743 "MSET.spad" 1144624 1144634 1146372 1146411) (-742 "MSETAGG.spad" 1144469 1144479 1144592 1144619) (-741 "MRING.spad" 1141446 1141458 1144177 1144244) (-740 "MRF2.spad" 1141016 1141030 1141436 1141441) (-739 "MRATFAC.spad" 1140562 1140579 1141006 1141011) (-738 "MPRFF.spad" 1138602 1138621 1140552 1140557) (-737 "MPOLY.spad" 1136073 1136088 1136432 1136559) (-736 "MPCPF.spad" 1135337 1135356 1136063 1136068) (-735 "MPC3.spad" 1135154 1135194 1135327 1135332) (-734 "MPC2.spad" 1134800 1134833 1135144 1135149) (-733 "MONOTOOL.spad" 1133151 1133168 1134790 1134795) (-732 "MONOID.spad" 1132470 1132478 1133141 1133146) (-731 "MONOID.spad" 1131787 1131797 1132460 1132465) (-730 "MONOGEN.spad" 1130535 1130548 1131647 1131782) (-729 "MONOGEN.spad" 1129305 1129320 1130419 1130424) (-728 "MONADWU.spad" 1127335 1127343 1129295 1129300) (-727 "MONADWU.spad" 1125363 1125373 1127325 1127330) (-726 "MONAD.spad" 1124523 1124531 1125353 1125358) (-725 "MONAD.spad" 1123681 1123691 1124513 1124518) (-724 "MOEBIUS.spad" 1122417 1122431 1123661 1123676) (-723 "MODULE.spad" 1122287 1122297 1122385 1122412) (-722 "MODULE.spad" 1122177 1122189 1122277 1122282) (-721 "MODRING.spad" 1121512 1121551 1122157 1122172) (-720 "MODOP.spad" 1120177 1120189 1121334 1121401) (-719 "MODMONOM.spad" 1119908 1119926 1120167 1120172) (-718 "MODMON.spad" 1116703 1116719 1117422 1117575) (-717 "MODFIELD.spad" 1116065 1116104 1116605 1116698) (-716 "MMLFORM.spad" 1114925 1114933 1116055 1116060) (-715 "MMAP.spad" 1114667 1114701 1114915 1114920) (-714 "MLO.spad" 1113126 1113136 1114623 1114662) (-713 "MLIFT.spad" 1111738 1111755 1113116 1113121) (-712 "MKUCFUNC.spad" 1111273 1111291 1111728 1111733) (-711 "MKRECORD.spad" 1110877 1110890 1111263 1111268) (-710 "MKFUNC.spad" 1110284 1110294 1110867 1110872) (-709 "MKFLCFN.spad" 1109252 1109262 1110274 1110279) (-708 "MKBCFUNC.spad" 1108747 1108765 1109242 1109247) (-707 "MINT.spad" 1108186 1108194 1108649 1108742) (-706 "MHROWRED.spad" 1106697 1106707 1108176 1108181) (-705 "MFLOAT.spad" 1105217 1105225 1106587 1106692) (-704 "MFINFACT.spad" 1104617 1104639 1105207 1105212) (-703 "MESH.spad" 1102399 1102407 1104607 1104612) (-702 "MDDFACT.spad" 1100610 1100620 1102389 1102394) (-701 "MDAGG.spad" 1099901 1099911 1100590 1100605) (-700 "MCMPLX.spad" 1095912 1095920 1096526 1096727) (-699 "MCDEN.spad" 1095122 1095134 1095902 1095907) (-698 "MCALCFN.spad" 1092244 1092270 1095112 1095117) (-697 "MAYBE.spad" 1091528 1091539 1092234 1092239) (-696 "MATSTOR.spad" 1088836 1088846 1091518 1091523) (-695 "MATRIX.spad" 1087540 1087550 1088024 1088051) (-694 "MATLIN.spad" 1084884 1084908 1087424 1087429) (-693 "MATCAT.spad" 1076613 1076635 1084852 1084879) (-692 "MATCAT.spad" 1068214 1068238 1076455 1076460) (-691 "MATCAT2.spad" 1067496 1067544 1068204 1068209) (-690 "MAPPKG3.spad" 1066411 1066425 1067486 1067491) (-689 "MAPPKG2.spad" 1065749 1065761 1066401 1066406) (-688 "MAPPKG1.spad" 1064577 1064587 1065739 1065744) (-687 "MAPPAST.spad" 1063892 1063900 1064567 1064572) (-686 "MAPHACK3.spad" 1063704 1063718 1063882 1063887) (-685 "MAPHACK2.spad" 1063473 1063485 1063694 1063699) (-684 "MAPHACK1.spad" 1063117 1063127 1063463 1063468) (-683 "MAGMA.spad" 1060907 1060924 1063107 1063112) (-682 "MACROAST.spad" 1060486 1060494 1060897 1060902) (-681 "M3D.spad" 1058206 1058216 1059864 1059869) (-680 "LZSTAGG.spad" 1055444 1055454 1058196 1058201) (-679 "LZSTAGG.spad" 1052680 1052692 1055434 1055439) (-678 "LWORD.spad" 1049385 1049402 1052670 1052675) (-677 "LSTAST.spad" 1049169 1049177 1049375 1049380) (-676 "LSQM.spad" 1047399 1047413 1047793 1047844) (-675 "LSPP.spad" 1046934 1046951 1047389 1047394) (-674 "LSMP.spad" 1045784 1045812 1046924 1046929) (-673 "LSMP1.spad" 1043602 1043616 1045774 1045779) (-672 "LSAGG.spad" 1043271 1043281 1043570 1043597) (-671 "LSAGG.spad" 1042960 1042972 1043261 1043266) (-670 "LPOLY.spad" 1041914 1041933 1042816 1042885) (-669 "LPEFRAC.spad" 1041185 1041195 1041904 1041909) (-668 "LO.spad" 1040586 1040600 1041119 1041146) (-667 "LOGIC.spad" 1040188 1040196 1040576 1040581) (-666 "LOGIC.spad" 1039788 1039798 1040178 1040183) (-665 "LODOOPS.spad" 1038718 1038730 1039778 1039783) (-664 "LODO.spad" 1038102 1038118 1038398 1038437) (-663 "LODOF.spad" 1037148 1037165 1038059 1038064) (-662 "LODOCAT.spad" 1035814 1035824 1037104 1037143) (-661 "LODOCAT.spad" 1034478 1034490 1035770 1035775) (-660 "LODO2.spad" 1033751 1033763 1034158 1034197) (-659 "LODO1.spad" 1033151 1033161 1033431 1033470) (-658 "LODEEF.spad" 1031953 1031971 1033141 1033146) (-657 "LNAGG.spad" 1027785 1027795 1031943 1031948) (-656 "LNAGG.spad" 1023581 1023593 1027741 1027746) (-655 "LMOPS.spad" 1020349 1020366 1023571 1023576) (-654 "LMODULE.spad" 1020117 1020127 1020339 1020344) (-653 "LMDICT.spad" 1019404 1019414 1019668 1019695) (-652 "LLINSET.spad" 1018801 1018811 1019394 1019399) (-651 "LITERAL.spad" 1018707 1018718 1018791 1018796) (-650 "LIST.spad" 1016442 1016452 1017854 1017881) (-649 "LIST3.spad" 1015753 1015767 1016432 1016437) (-648 "LIST2.spad" 1014455 1014467 1015743 1015748) (-647 "LIST2MAP.spad" 1011358 1011370 1014445 1014450) (-646 "LINSET.spad" 1010980 1010990 1011348 1011353) (-645 "LINEXP.spad" 1010414 1010424 1010960 1010975) (-644 "LINDEP.spad" 1009223 1009235 1010326 1010331) (-643 "LIMITRF.spad" 1007151 1007161 1009213 1009218) (-642 "LIMITPS.spad" 1006054 1006067 1007141 1007146) (-641 "LIE.spad" 1004070 1004082 1005344 1005489) (-640 "LIECAT.spad" 1003546 1003556 1003996 1004065) (-639 "LIECAT.spad" 1003050 1003062 1003502 1003507) (-638 "LIB.spad" 1001100 1001108 1001709 1001724) (-637 "LGROBP.spad" 998453 998472 1001090 1001095) (-636 "LF.spad" 997408 997424 998443 998448) (-635 "LFCAT.spad" 996467 996475 997398 997403) (-634 "LEXTRIPK.spad" 991970 991985 996457 996462) (-633 "LEXP.spad" 989973 990000 991950 991965) (-632 "LETAST.spad" 989672 989680 989963 989968) (-631 "LEADCDET.spad" 988070 988087 989662 989667) (-630 "LAZM3PK.spad" 986774 986796 988060 988065) (-629 "LAUPOL.spad" 985467 985480 986367 986436) (-628 "LAPLACE.spad" 985050 985066 985457 985462) (-627 "LA.spad" 984490 984504 984972 985011) (-626 "LALG.spad" 984266 984276 984470 984485) (-625 "LALG.spad" 984050 984062 984256 984261) (-624 "KVTFROM.spad" 983785 983795 984040 984045) (-623 "KTVLOGIC.spad" 983297 983305 983775 983780) (-622 "KRCFROM.spad" 983035 983045 983287 983292) (-621 "KOVACIC.spad" 981758 981775 983025 983030) (-620 "KONVERT.spad" 981480 981490 981748 981753) (-619 "KOERCE.spad" 981217 981227 981470 981475) (-618 "KERNEL.spad" 979872 979882 981001 981006) (-617 "KERNEL2.spad" 979575 979587 979862 979867) (-616 "KDAGG.spad" 978684 978706 979555 979570) (-615 "KDAGG.spad" 977801 977825 978674 978679) (-614 "KAFILE.spad" 976764 976780 976999 977026) (-613 "JORDAN.spad" 974593 974605 976054 976199) (-612 "JOINAST.spad" 974287 974295 974583 974588) (-611 "JAVACODE.spad" 974153 974161 974277 974282) (-610 "IXAGG.spad" 972286 972310 974143 974148) (-609 "IXAGG.spad" 970274 970300 972133 972138) (-608 "IVECTOR.spad" 969044 969059 969199 969226) (-607 "ITUPLE.spad" 968205 968215 969034 969039) (-606 "ITRIGMNP.spad" 967044 967063 968195 968200) (-605 "ITFUN3.spad" 966550 966564 967034 967039) (-604 "ITFUN2.spad" 966294 966306 966540 966545) (-603 "ITFORM.spad" 965649 965657 966284 966289) (-602 "ITAYLOR.spad" 963643 963658 965513 965610) (-601 "ISUPS.spad" 956080 956095 962617 962714) (-600 "ISUMP.spad" 955581 955597 956070 956075) (-599 "ISTRING.spad" 954669 954682 954750 954777) (-598 "ISAST.spad" 954388 954396 954659 954664) (-597 "IRURPK.spad" 953105 953124 954378 954383) (-596 "IRSN.spad" 951109 951117 953095 953100) (-595 "IRRF2F.spad" 949594 949604 951065 951070) (-594 "IRREDFFX.spad" 949195 949206 949584 949589) (-593 "IROOT.spad" 947534 947544 949185 949190) (-592 "IR.spad" 945335 945349 947389 947416) (-591 "IRFORM.spad" 944659 944667 945325 945330) (-590 "IR2.spad" 943687 943703 944649 944654) (-589 "IR2F.spad" 942893 942909 943677 943682) (-588 "IPRNTPK.spad" 942653 942661 942883 942888) (-587 "IPF.spad" 942218 942230 942458 942551) (-586 "IPADIC.spad" 941979 942005 942144 942213) (-585 "IP4ADDR.spad" 941536 941544 941969 941974) (-584 "IOMODE.spad" 941058 941066 941526 941531) (-583 "IOBFILE.spad" 940419 940427 941048 941053) (-582 "IOBCON.spad" 940284 940292 940409 940414) (-581 "INVLAPLA.spad" 939933 939949 940274 940279) (-580 "INTTR.spad" 933315 933332 939923 939928) (-579 "INTTOOLS.spad" 931070 931086 932889 932894) (-578 "INTSLPE.spad" 930390 930398 931060 931065) (-577 "INTRVL.spad" 929956 929966 930304 930385) (-576 "INTRF.spad" 928380 928394 929946 929951) (-575 "INTRET.spad" 927812 927822 928370 928375) (-574 "INTRAT.spad" 926539 926556 927802 927807) (-573 "INTPM.spad" 924924 924940 926182 926187) (-572 "INTPAF.spad" 922788 922806 924856 924861) (-571 "INTPACK.spad" 913162 913170 922778 922783) (-570 "INT.spad" 912610 912618 913016 913157) (-569 "INTHERTR.spad" 911884 911901 912600 912605) (-568 "INTHERAL.spad" 911554 911578 911874 911879) (-567 "INTHEORY.spad" 907993 908001 911544 911549) (-566 "INTG0.spad" 901726 901744 907925 907930) (-565 "INTFTBL.spad" 895755 895763 901716 901721) (-564 "INTFACT.spad" 894814 894824 895745 895750) (-563 "INTEF.spad" 893199 893215 894804 894809) (-562 "INTDOM.spad" 891822 891830 893125 893194) (-561 "INTDOM.spad" 890507 890517 891812 891817) (-560 "INTCAT.spad" 888766 888776 890421 890502) (-559 "INTBIT.spad" 888273 888281 888756 888761) (-558 "INTALG.spad" 887461 887488 888263 888268) (-557 "INTAF.spad" 886961 886977 887451 887456) (-556 "INTABL.spad" 885479 885510 885642 885669) (-555 "INT8.spad" 885359 885367 885469 885474) (-554 "INT64.spad" 885238 885246 885349 885354) (-553 "INT32.spad" 885117 885125 885228 885233) (-552 "INT16.spad" 884996 885004 885107 885112) (-551 "INS.spad" 882499 882507 884898 884991) (-550 "INS.spad" 880088 880098 882489 882494) (-549 "INPSIGN.spad" 879536 879549 880078 880083) (-548 "INPRODPF.spad" 878632 878651 879526 879531) (-547 "INPRODFF.spad" 877720 877744 878622 878627) (-546 "INNMFACT.spad" 876695 876712 877710 877715) (-545 "INMODGCD.spad" 876183 876213 876685 876690) (-544 "INFSP.spad" 874480 874502 876173 876178) (-543 "INFPROD0.spad" 873560 873579 874470 874475) (-542 "INFORM.spad" 870759 870767 873550 873555) (-541 "INFORM1.spad" 870384 870394 870749 870754) (-540 "INFINITY.spad" 869936 869944 870374 870379) (-539 "INETCLTS.spad" 869913 869921 869926 869931) (-538 "INEP.spad" 868451 868473 869903 869908) (-537 "INDE.spad" 868180 868197 868441 868446) (-536 "INCRMAPS.spad" 867601 867611 868170 868175) (-535 "INBFILE.spad" 866673 866681 867591 867596) (-534 "INBFF.spad" 862467 862478 866663 866668) (-533 "INBCON.spad" 860757 860765 862457 862462) (-532 "INBCON.spad" 859045 859055 860747 860752) (-531 "INAST.spad" 858706 858714 859035 859040) (-530 "IMPTAST.spad" 858414 858422 858696 858701) (-529 "IMATRIX.spad" 857359 857385 857871 857898) (-528 "IMATQF.spad" 856453 856497 857315 857320) (-527 "IMATLIN.spad" 855058 855082 856409 856414) (-526 "ILIST.spad" 853716 853731 854241 854268) (-525 "IIARRAY2.spad" 853104 853142 853323 853350) (-524 "IFF.spad" 852514 852530 852785 852878) (-523 "IFAST.spad" 852128 852136 852504 852509) (-522 "IFARRAY.spad" 849621 849636 851311 851338) (-521 "IFAMON.spad" 849483 849500 849577 849582) (-520 "IEVALAB.spad" 848888 848900 849473 849478) (-519 "IEVALAB.spad" 848291 848305 848878 848883) (-518 "IDPO.spad" 848089 848101 848281 848286) (-517 "IDPOAMS.spad" 847845 847857 848079 848084) (-516 "IDPOAM.spad" 847565 847577 847835 847840) (-515 "IDPC.spad" 846503 846515 847555 847560) (-514 "IDPAM.spad" 846248 846260 846493 846498) (-513 "IDPAG.spad" 845995 846007 846238 846243) (-512 "IDENT.spad" 845645 845653 845985 845990) (-511 "IDECOMP.spad" 842884 842902 845635 845640) (-510 "IDEAL.spad" 837833 837872 842819 842824) (-509 "ICDEN.spad" 837022 837038 837823 837828) (-508 "ICARD.spad" 836213 836221 837012 837017) (-507 "IBPTOOLS.spad" 834820 834837 836203 836208) (-506 "IBITS.spad" 834023 834036 834456 834483) (-505 "IBATOOL.spad" 831000 831019 834013 834018) (-504 "IBACHIN.spad" 829507 829522 830990 830995) (-503 "IARRAY2.spad" 828495 828521 829114 829141) (-502 "IARRAY1.spad" 827540 827555 827678 827705) (-501 "IAN.spad" 825763 825771 827356 827449) (-500 "IALGFACT.spad" 825366 825399 825753 825758) (-499 "HYPCAT.spad" 824790 824798 825356 825361) (-498 "HYPCAT.spad" 824212 824222 824780 824785) (-497 "HOSTNAME.spad" 824020 824028 824202 824207) (-496 "HOMOTOP.spad" 823763 823773 824010 824015) (-495 "HOAGG.spad" 821045 821055 823753 823758) (-494 "HOAGG.spad" 818102 818114 820812 820817) (-493 "HEXADEC.spad" 816204 816212 816569 816662) (-492 "HEUGCD.spad" 815239 815250 816194 816199) (-491 "HELLFDIV.spad" 814829 814853 815229 815234) (-490 "HEAP.spad" 814221 814231 814436 814463) (-489 "HEADAST.spad" 813754 813762 814211 814216) (-488 "HDP.spad" 803597 803613 803974 804105) (-487 "HDMP.spad" 800811 800826 801427 801554) (-486 "HB.spad" 799062 799070 800801 800806) (-485 "HASHTBL.spad" 797532 797563 797743 797770) (-484 "HASAST.spad" 797248 797256 797522 797527) (-483 "HACKPI.spad" 796739 796747 797150 797243) (-482 "GTSET.spad" 795678 795694 796385 796412) (-481 "GSTBL.spad" 794197 794232 794371 794386) (-480 "GSERIES.spad" 791368 791395 792329 792478) (-479 "GROUP.spad" 790641 790649 791348 791363) (-478 "GROUP.spad" 789922 789932 790631 790636) (-477 "GROEBSOL.spad" 788416 788437 789912 789917) (-476 "GRMOD.spad" 786987 786999 788406 788411) (-475 "GRMOD.spad" 785556 785570 786977 786982) (-474 "GRIMAGE.spad" 778445 778453 785546 785551) (-473 "GRDEF.spad" 776824 776832 778435 778440) (-472 "GRAY.spad" 775287 775295 776814 776819) (-471 "GRALG.spad" 774364 774376 775277 775282) (-470 "GRALG.spad" 773439 773453 774354 774359) (-469 "GPOLSET.spad" 772893 772916 773121 773148) (-468 "GOSPER.spad" 772162 772180 772883 772888) (-467 "GMODPOL.spad" 771310 771337 772130 772157) (-466 "GHENSEL.spad" 770393 770407 771300 771305) (-465 "GENUPS.spad" 766686 766699 770383 770388) (-464 "GENUFACT.spad" 766263 766273 766676 766681) (-463 "GENPGCD.spad" 765849 765866 766253 766258) (-462 "GENMFACT.spad" 765301 765320 765839 765844) (-461 "GENEEZ.spad" 763252 763265 765291 765296) (-460 "GDMP.spad" 760308 760325 761082 761209) (-459 "GCNAALG.spad" 754231 754258 760102 760169) (-458 "GCDDOM.spad" 753407 753415 754157 754226) (-457 "GCDDOM.spad" 752645 752655 753397 753402) (-456 "GB.spad" 750171 750209 752601 752606) (-455 "GBINTERN.spad" 746191 746229 750161 750166) (-454 "GBF.spad" 741958 741996 746181 746186) (-453 "GBEUCLID.spad" 739840 739878 741948 741953) (-452 "GAUSSFAC.spad" 739153 739161 739830 739835) (-451 "GALUTIL.spad" 737479 737489 739109 739114) (-450 "GALPOLYU.spad" 735933 735946 737469 737474) (-449 "GALFACTU.spad" 734106 734125 735923 735928) (-448 "GALFACT.spad" 724295 724306 734096 734101) (-447 "FVFUN.spad" 721318 721326 724285 724290) (-446 "FVC.spad" 720370 720378 721308 721313) (-445 "FUNDESC.spad" 720048 720056 720360 720365) (-444 "FUNCTION.spad" 719897 719909 720038 720043) (-443 "FT.spad" 718194 718202 719887 719892) (-442 "FTEM.spad" 717359 717367 718184 718189) (-441 "FSUPFACT.spad" 716259 716278 717295 717300) (-440 "FST.spad" 714345 714353 716249 716254) (-439 "FSRED.spad" 713825 713841 714335 714340) (-438 "FSPRMELT.spad" 712707 712723 713782 713787) (-437 "FSPECF.spad" 710798 710814 712697 712702) (-436 "FS.spad" 705066 705076 710573 710793) (-435 "FS.spad" 699112 699124 704621 704626) (-434 "FSINT.spad" 698772 698788 699102 699107) (-433 "FSERIES.spad" 697963 697975 698592 698691) (-432 "FSCINT.spad" 697280 697296 697953 697958) (-431 "FSAGG.spad" 696397 696407 697236 697275) (-430 "FSAGG.spad" 695476 695488 696317 696322) (-429 "FSAGG2.spad" 694219 694235 695466 695471) (-428 "FS2UPS.spad" 688710 688744 694209 694214) (-427 "FS2.spad" 688357 688373 688700 688705) (-426 "FS2EXPXP.spad" 687482 687505 688347 688352) (-425 "FRUTIL.spad" 686436 686446 687472 687477) (-424 "FR.spad" 680152 680162 685460 685529) (-423 "FRNAALG.spad" 675271 675281 680094 680147) (-422 "FRNAALG.spad" 670402 670414 675227 675232) (-421 "FRNAAF2.spad" 669858 669876 670392 670397) (-420 "FRMOD.spad" 669268 669298 669789 669794) (-419 "FRIDEAL.spad" 668493 668514 669248 669263) (-418 "FRIDEAL2.spad" 668097 668129 668483 668488) (-417 "FRETRCT.spad" 667608 667618 668087 668092) (-416 "FRETRCT.spad" 666985 666997 667466 667471) (-415 "FRAMALG.spad" 665333 665346 666941 666980) (-414 "FRAMALG.spad" 663713 663728 665323 665328) (-413 "FRAC.spad" 660812 660822 661215 661388) (-412 "FRAC2.spad" 660417 660429 660802 660807) (-411 "FR2.spad" 659753 659765 660407 660412) (-410 "FPS.spad" 656568 656576 659643 659748) (-409 "FPS.spad" 653411 653421 656488 656493) (-408 "FPC.spad" 652457 652465 653313 653406) (-407 "FPC.spad" 651589 651599 652447 652452) (-406 "FPATMAB.spad" 651351 651361 651579 651584) (-405 "FPARFRAC.spad" 649838 649855 651341 651346) (-404 "FORTRAN.spad" 648344 648387 649828 649833) (-403 "FORT.spad" 647293 647301 648334 648339) (-402 "FORTFN.spad" 644463 644471 647283 647288) (-401 "FORTCAT.spad" 644147 644155 644453 644458) (-400 "FORMULA.spad" 641621 641629 644137 644142) (-399 "FORMULA1.spad" 641100 641110 641611 641616) (-398 "FORDER.spad" 640791 640815 641090 641095) (-397 "FOP.spad" 639992 640000 640781 640786) (-396 "FNLA.spad" 639416 639438 639960 639987) (-395 "FNCAT.spad" 638011 638019 639406 639411) (-394 "FNAME.spad" 637903 637911 638001 638006) (-393 "FMTC.spad" 637701 637709 637829 637898) (-392 "FMONOID.spad" 637366 637376 637657 637662) (-391 "FMONCAT.spad" 634519 634529 637356 637361) (-390 "FM.spad" 634214 634226 634453 634480) (-389 "FMFUN.spad" 631244 631252 634204 634209) (-388 "FMC.spad" 630296 630304 631234 631239) (-387 "FMCAT.spad" 627964 627982 630264 630291) (-386 "FM1.spad" 627321 627333 627898 627925) (-385 "FLOATRP.spad" 625056 625070 627311 627316) (-384 "FLOAT.spad" 618370 618378 624922 625051) (-383 "FLOATCP.spad" 615801 615815 618360 618365) (-382 "FLINEXP.spad" 615513 615523 615781 615796) (-381 "FLINEXP.spad" 615179 615191 615449 615454) (-380 "FLASORT.spad" 614505 614517 615169 615174) (-379 "FLALG.spad" 612151 612170 614431 614500) (-378 "FLAGG.spad" 609193 609203 612131 612146) (-377 "FLAGG.spad" 606136 606148 609076 609081) (-376 "FLAGG2.spad" 604861 604877 606126 606131) (-375 "FINRALG.spad" 602922 602935 604817 604856) (-374 "FINRALG.spad" 600909 600924 602806 602811) (-373 "FINITE.spad" 600061 600069 600899 600904) (-372 "FINAALG.spad" 589182 589192 600003 600056) (-371 "FINAALG.spad" 578315 578327 589138 589143) (-370 "FILE.spad" 577898 577908 578305 578310) (-369 "FILECAT.spad" 576424 576441 577888 577893) (-368 "FIELD.spad" 575830 575838 576326 576419) (-367 "FIELD.spad" 575322 575332 575820 575825) (-366 "FGROUP.spad" 573969 573979 575302 575317) (-365 "FGLMICPK.spad" 572756 572771 573959 573964) (-364 "FFX.spad" 572131 572146 572472 572565) (-363 "FFSLPE.spad" 571634 571655 572121 572126) (-362 "FFPOLY.spad" 562896 562907 571624 571629) (-361 "FFPOLY2.spad" 561956 561973 562886 562891) (-360 "FFP.spad" 561353 561373 561672 561765) (-359 "FF.spad" 560801 560817 561034 561127) (-358 "FFNBX.spad" 559313 559333 560517 560610) (-357 "FFNBP.spad" 557826 557843 559029 559122) (-356 "FFNB.spad" 556291 556312 557507 557600) (-355 "FFINTBAS.spad" 553805 553824 556281 556286) (-354 "FFIELDC.spad" 551382 551390 553707 553800) (-353 "FFIELDC.spad" 549045 549055 551372 551377) (-352 "FFHOM.spad" 547793 547810 549035 549040) (-351 "FFF.spad" 545228 545239 547783 547788) (-350 "FFCGX.spad" 544075 544095 544944 545037) (-349 "FFCGP.spad" 542964 542984 543791 543884) (-348 "FFCG.spad" 541756 541777 542645 542738) (-347 "FFCAT.spad" 534929 534951 541595 541751) (-346 "FFCAT.spad" 528181 528205 534849 534854) (-345 "FFCAT2.spad" 527928 527968 528171 528176) (-344 "FEXPR.spad" 519645 519691 527684 527723) (-343 "FEVALAB.spad" 519353 519363 519635 519640) (-342 "FEVALAB.spad" 518846 518858 519130 519135) (-341 "FDIV.spad" 518288 518312 518836 518841) (-340 "FDIVCAT.spad" 516352 516376 518278 518283) (-339 "FDIVCAT.spad" 514414 514440 516342 516347) (-338 "FDIV2.spad" 514070 514110 514404 514409) (-337 "FCTRDATA.spad" 513078 513086 514060 514065) (-336 "FCPAK1.spad" 511645 511653 513068 513073) (-335 "FCOMP.spad" 511024 511034 511635 511640) (-334 "FC.spad" 501031 501039 511014 511019) (-333 "FAXF.spad" 494002 494016 500933 501026) (-332 "FAXF.spad" 487025 487041 493958 493963) (-331 "FARRAY.spad" 485175 485185 486208 486235) (-330 "FAMR.spad" 483311 483323 485073 485170) (-329 "FAMR.spad" 481431 481445 483195 483200) (-328 "FAMONOID.spad" 481099 481109 481385 481390) (-327 "FAMONC.spad" 479395 479407 481089 481094) (-326 "FAGROUP.spad" 479019 479029 479291 479318) (-325 "FACUTIL.spad" 477223 477240 479009 479014) (-324 "FACTFUNC.spad" 476417 476427 477213 477218) (-323 "EXPUPXS.spad" 473250 473273 474549 474698) (-322 "EXPRTUBE.spad" 470538 470546 473240 473245) (-321 "EXPRODE.spad" 467698 467714 470528 470533) (-320 "EXPR.spad" 462973 462983 463687 464094) (-319 "EXPR2UPS.spad" 459095 459108 462963 462968) (-318 "EXPR2.spad" 458800 458812 459085 459090) (-317 "EXPEXPAN.spad" 455740 455765 456372 456465) (-316 "EXIT.spad" 455411 455419 455730 455735) (-315 "EXITAST.spad" 455147 455155 455401 455406) (-314 "EVALCYC.spad" 454607 454621 455137 455142) (-313 "EVALAB.spad" 454179 454189 454597 454602) (-312 "EVALAB.spad" 453749 453761 454169 454174) (-311 "EUCDOM.spad" 451323 451331 453675 453744) (-310 "EUCDOM.spad" 448959 448969 451313 451318) (-309 "ESTOOLS.spad" 440805 440813 448949 448954) (-308 "ESTOOLS2.spad" 440408 440422 440795 440800) (-307 "ESTOOLS1.spad" 440093 440104 440398 440403) (-306 "ES.spad" 432908 432916 440083 440088) (-305 "ES.spad" 425629 425639 432806 432811) (-304 "ESCONT.spad" 422422 422430 425619 425624) (-303 "ESCONT1.spad" 422171 422183 422412 422417) (-302 "ES2.spad" 421676 421692 422161 422166) (-301 "ES1.spad" 421246 421262 421666 421671) (-300 "ERROR.spad" 418573 418581 421236 421241) (-299 "EQTBL.spad" 417045 417067 417254 417281) (-298 "EQ.spad" 411850 411860 414637 414749) (-297 "EQ2.spad" 411568 411580 411840 411845) (-296 "EP.spad" 407894 407904 411558 411563) (-295 "ENV.spad" 406572 406580 407884 407889) (-294 "ENTIRER.spad" 406240 406248 406516 406567) (-293 "EMR.spad" 405447 405488 406166 406235) (-292 "ELTAGG.spad" 403701 403720 405437 405442) (-291 "ELTAGG.spad" 401919 401940 403657 403662) (-290 "ELTAB.spad" 401368 401386 401909 401914) (-289 "ELFUTS.spad" 400755 400774 401358 401363) (-288 "ELEMFUN.spad" 400444 400452 400745 400750) (-287 "ELEMFUN.spad" 400131 400141 400434 400439) (-286 "ELAGG.spad" 398102 398112 400111 400126) (-285 "ELAGG.spad" 396010 396022 398021 398026) (-284 "ELABOR.spad" 395356 395364 396000 396005) (-283 "ELABEXPR.spad" 394288 394296 395346 395351) (-282 "EFUPXS.spad" 391064 391094 394244 394249) (-281 "EFULS.spad" 387900 387923 391020 391025) (-280 "EFSTRUC.spad" 385915 385931 387890 387895) (-279 "EF.spad" 380691 380707 385905 385910) (-278 "EAB.spad" 378967 378975 380681 380686) (-277 "E04UCFA.spad" 378503 378511 378957 378962) (-276 "E04NAFA.spad" 378080 378088 378493 378498) (-275 "E04MBFA.spad" 377660 377668 378070 378075) (-274 "E04JAFA.spad" 377196 377204 377650 377655) (-273 "E04GCFA.spad" 376732 376740 377186 377191) (-272 "E04FDFA.spad" 376268 376276 376722 376727) (-271 "E04DGFA.spad" 375804 375812 376258 376263) (-270 "E04AGNT.spad" 371654 371662 375794 375799) (-269 "DVARCAT.spad" 368343 368353 371644 371649) (-268 "DVARCAT.spad" 365030 365042 368333 368338) (-267 "DSMP.spad" 362497 362511 362802 362929) (-266 "DROPT.spad" 356456 356464 362487 362492) (-265 "DROPT1.spad" 356121 356131 356446 356451) (-264 "DROPT0.spad" 350978 350986 356111 356116) (-263 "DRAWPT.spad" 349151 349159 350968 350973) (-262 "DRAW.spad" 342027 342040 349141 349146) (-261 "DRAWHACK.spad" 341335 341345 342017 342022) (-260 "DRAWCX.spad" 338805 338813 341325 341330) (-259 "DRAWCURV.spad" 338352 338367 338795 338800) (-258 "DRAWCFUN.spad" 327884 327892 338342 338347) (-257 "DQAGG.spad" 326062 326072 327852 327879) (-256 "DPOLCAT.spad" 321411 321427 325930 326057) (-255 "DPOLCAT.spad" 316846 316864 321367 321372) (-254 "DPMO.spad" 309072 309088 309210 309511) (-253 "DPMM.spad" 301311 301329 301436 301737) (-252 "DOMTMPLT.spad" 300971 300979 301301 301306) (-251 "DOMCTOR.spad" 300726 300734 300961 300966) (-250 "DOMAIN.spad" 299813 299821 300716 300721) (-249 "DMP.spad" 297073 297088 297643 297770) (-248 "DLP.spad" 296425 296435 297063 297068) (-247 "DLIST.spad" 295004 295014 295608 295635) (-246 "DLAGG.spad" 293421 293431 294994 294999) (-245 "DIVRING.spad" 292963 292971 293365 293416) (-244 "DIVRING.spad" 292549 292559 292953 292958) (-243 "DISPLAY.spad" 290739 290747 292539 292544) (-242 "DIRPROD.spad" 280319 280335 280959 281090) (-241 "DIRPROD2.spad" 279137 279155 280309 280314) (-240 "DIRPCAT.spad" 278081 278097 279001 279132) (-239 "DIRPCAT.spad" 276754 276772 277676 277681) (-238 "DIOSP.spad" 275579 275587 276744 276749) (-237 "DIOPS.spad" 274575 274585 275559 275574) (-236 "DIOPS.spad" 273545 273557 274531 274536) (-235 "DIFRING.spad" 272841 272849 273525 273540) (-234 "DIFRING.spad" 272145 272155 272831 272836) (-233 "DIFEXT.spad" 271316 271326 272125 272140) (-232 "DIFEXT.spad" 270404 270416 271215 271220) (-231 "DIAGG.spad" 270034 270044 270384 270399) (-230 "DIAGG.spad" 269672 269684 270024 270029) (-229 "DHMATRIX.spad" 267984 267994 269129 269156) (-228 "DFSFUN.spad" 261624 261632 267974 267979) (-227 "DFLOAT.spad" 258355 258363 261514 261619) (-226 "DFINTTLS.spad" 256586 256602 258345 258350) (-225 "DERHAM.spad" 254500 254532 256566 256581) (-224 "DEQUEUE.spad" 253824 253834 254107 254134) (-223 "DEGRED.spad" 253441 253455 253814 253819) (-222 "DEFINTRF.spad" 250978 250988 253431 253436) (-221 "DEFINTEF.spad" 249488 249504 250968 250973) (-220 "DEFAST.spad" 248856 248864 249478 249483) (-219 "DECIMAL.spad" 246962 246970 247323 247416) (-218 "DDFACT.spad" 244775 244792 246952 246957) (-217 "DBLRESP.spad" 244375 244399 244765 244770) (-216 "DBASE.spad" 243039 243049 244365 244370) (-215 "DATAARY.spad" 242501 242514 243029 243034) (-214 "D03FAFA.spad" 242329 242337 242491 242496) (-213 "D03EEFA.spad" 242149 242157 242319 242324) (-212 "D03AGNT.spad" 241235 241243 242139 242144) (-211 "D02EJFA.spad" 240697 240705 241225 241230) (-210 "D02CJFA.spad" 240175 240183 240687 240692) (-209 "D02BHFA.spad" 239665 239673 240165 240170) (-208 "D02BBFA.spad" 239155 239163 239655 239660) (-207 "D02AGNT.spad" 233969 233977 239145 239150) (-206 "D01WGTS.spad" 232288 232296 233959 233964) (-205 "D01TRNS.spad" 232265 232273 232278 232283) (-204 "D01GBFA.spad" 231787 231795 232255 232260) (-203 "D01FCFA.spad" 231309 231317 231777 231782) (-202 "D01ASFA.spad" 230777 230785 231299 231304) (-201 "D01AQFA.spad" 230223 230231 230767 230772) (-200 "D01APFA.spad" 229647 229655 230213 230218) (-199 "D01ANFA.spad" 229141 229149 229637 229642) (-198 "D01AMFA.spad" 228651 228659 229131 229136) (-197 "D01ALFA.spad" 228191 228199 228641 228646) (-196 "D01AKFA.spad" 227717 227725 228181 228186) (-195 "D01AJFA.spad" 227240 227248 227707 227712) (-194 "D01AGNT.spad" 223307 223315 227230 227235) (-193 "CYCLOTOM.spad" 222813 222821 223297 223302) (-192 "CYCLES.spad" 219669 219677 222803 222808) (-191 "CVMP.spad" 219086 219096 219659 219664) (-190 "CTRIGMNP.spad" 217586 217602 219076 219081) (-189 "CTOR.spad" 217277 217285 217576 217581) (-188 "CTORKIND.spad" 216880 216888 217267 217272) (-187 "CTORCAT.spad" 216129 216137 216870 216875) (-186 "CTORCAT.spad" 215376 215386 216119 216124) (-185 "CTORCALL.spad" 214965 214975 215366 215371) (-184 "CSTTOOLS.spad" 214210 214223 214955 214960) (-183 "CRFP.spad" 207934 207947 214200 214205) (-182 "CRCEAST.spad" 207654 207662 207924 207929) (-181 "CRAPACK.spad" 206705 206715 207644 207649) (-180 "CPMATCH.spad" 206209 206224 206630 206635) (-179 "CPIMA.spad" 205914 205933 206199 206204) (-178 "COORDSYS.spad" 200923 200933 205904 205909) (-177 "CONTOUR.spad" 200334 200342 200913 200918) (-176 "CONTFRAC.spad" 196084 196094 200236 200329) (-175 "CONDUIT.spad" 195842 195850 196074 196079) (-174 "COMRING.spad" 195516 195524 195780 195837) (-173 "COMPPROP.spad" 195034 195042 195506 195511) (-172 "COMPLPAT.spad" 194801 194816 195024 195029) (-171 "COMPLEX.spad" 188938 188948 189182 189443) (-170 "COMPLEX2.spad" 188653 188665 188928 188933) (-169 "COMPILER.spad" 188202 188210 188643 188648) (-168 "COMPFACT.spad" 187804 187818 188192 188197) (-167 "COMPCAT.spad" 185876 185886 187538 187799) (-166 "COMPCAT.spad" 183676 183688 185340 185345) (-165 "COMMUPC.spad" 183424 183442 183666 183671) (-164 "COMMONOP.spad" 182957 182965 183414 183419) (-163 "COMM.spad" 182768 182776 182947 182952) (-162 "COMMAAST.spad" 182531 182539 182758 182763) (-161 "COMBOPC.spad" 181446 181454 182521 182526) (-160 "COMBINAT.spad" 180213 180223 181436 181441) (-159 "COMBF.spad" 177595 177611 180203 180208) (-158 "COLOR.spad" 176432 176440 177585 177590) (-157 "COLONAST.spad" 176098 176106 176422 176427) (-156 "CMPLXRT.spad" 175809 175826 176088 176093) (-155 "CLLCTAST.spad" 175471 175479 175799 175804) (-154 "CLIP.spad" 171579 171587 175461 175466) (-153 "CLIF.spad" 170234 170250 171535 171574) (-152 "CLAGG.spad" 166739 166749 170224 170229) (-151 "CLAGG.spad" 163115 163127 166602 166607) (-150 "CINTSLPE.spad" 162446 162459 163105 163110) (-149 "CHVAR.spad" 160584 160606 162436 162441) (-148 "CHARZ.spad" 160499 160507 160564 160579) (-147 "CHARPOL.spad" 160009 160019 160489 160494) (-146 "CHARNZ.spad" 159762 159770 159989 160004) (-145 "CHAR.spad" 157636 157644 159752 159757) (-144 "CFCAT.spad" 156964 156972 157626 157631) (-143 "CDEN.spad" 156160 156174 156954 156959) (-142 "CCLASS.spad" 154309 154317 155571 155610) (-141 "CATEGORY.spad" 153351 153359 154299 154304) (-140 "CATCTOR.spad" 153242 153250 153341 153346) (-139 "CATAST.spad" 152860 152868 153232 153237) (-138 "CASEAST.spad" 152574 152582 152850 152855) (-137 "CARTEN.spad" 147861 147885 152564 152569) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 0b98eb29..78616994 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,1108 +1,1108 @@ -(188562 . 3479376217) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -((((-569)) . T) (($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T)) +(188562 . 3479388562) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +((((-570)) . T) (($) -2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-569)) . T)) -((($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569))))) +((((-570)) . T)) +((($ $) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2| |#2|) . T) ((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) (((|#2|) . T)) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -(|has| |#1| (-915)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((($) . T) (((-412 (-569))) . T)) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +(|has| |#1| (-916)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((($) . T) (((-413 (-570))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-144)) . T)) -((((-541)) . T) (((-1167)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T)) -(((|#1|) . T)) -((((-226)) . T) (((-867)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -((($ $) . T) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T)) -(-2776 (|has| |#1| (-825)) (|has| |#1| (-855))) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(|has| |#1| (-853)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-319 |#1|)) . T) (((-569)) . T) (($) . T)) +((((-145)) . T)) +((((-542)) . T) (((-1168)) . T) (((-227)) . T) (((-384)) . T) (((-899 (-384))) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-868)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +((($ $) . T) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1| |#1|) . T)) +(-2779 (|has| |#1| (-826)) (|has| |#1| (-856))) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +((((-868)) . T)) +((((-868)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(|has| |#1| (-854)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-320 |#1|)) . T) (((-570)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-569)) . T) (((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-412 (-569))) . T) (((-704)) . T) (($) . T)) -((((-867)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) +((((-570)) . T) (((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-413 (-570))) . T) (((-705)) . T) (($) . T)) +((((-868)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) (((|#4|) . T)) -((((-412 (-569))) . T) (((-704)) . T) (($) . T)) -((((-867)) . T)) -((((-867)) |has| (-1102 |#1|) (-1108))) -((((-867)) . T) (((-1190)) . T)) +((((-413 (-570))) . T) (((-705)) . T) (($) . T)) +((((-868)) . T)) +((((-868)) |has| (-1103 |#1|) (-1109))) +((((-868)) . T) (((-1191)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1190)) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(((|#2| (-487 (-2428 |#1|) (-776))) . T)) -(((|#1| (-536 (-1185))) . T)) -(((#0=(-875 |#1|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -((((-1167)) . T) (((-964 (-129))) . T) (((-867)) . T)) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(|has| |#4| (-372)) -(|has| |#3| (-372)) -(((|#1|) . T)) -((((-1185)) . T)) -((((-511)) . T)) -((((-875 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-1191)) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(((|#2| (-488 (-2431 |#1|) (-777))) . T)) +(((|#1| (-537 (-1186))) . T)) +(((#0=(-876 |#1|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +((((-1168)) . T) (((-965 (-130))) . T) (((-868)) . T)) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(|has| |#4| (-373)) +(|has| |#3| (-373)) +(((|#1|) . T)) +((((-1186)) . T)) +((((-512)) . T)) +((((-876 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-561)) -((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -((((-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) . T)) -((($) . T)) -((((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1185)) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -((((-1185)) . T)) -((((-569)) . T) (($) . T)) -((((-586 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-562)) +((((-570)) . T) (((-413 (-570))) -2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +((((-2 (|:| -2155 |#1|) (|:| -3283 |#2|))) . T)) +((($) . T)) +((((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1186)) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +((((-1186)) . T)) +((((-570)) . T) (($) . T)) +((((-587 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T) (((-569)) . T) (($) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-867)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T) (((-570)) . T) (($) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) -((((-867)) . T)) +((((-868)) . T)) (((|#1|) . T)) -(|has| |#1| (-1108)) -(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +(|has| |#1| (-1109)) +(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) (((|#1|) . T)) -((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((((-116 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -(((|#2|) . T) (((-569)) . T) ((|#6|) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +((((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((((-117 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +(((|#2|) . T) (((-570)) . T) ((|#6|) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T)) -((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T)) +((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) ((($ $) . T)) ((($) . T)) -((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) +((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-372)) +(|has| |#1| (-373)) (((|#1|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) (((|#1|) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-569)) . T)) -((((-867)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-570)) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T) (((-569)) . T) (($) . T)) -(|has| |#1| (-561)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T) (((-570)) . T) (($) . T)) +(|has| |#1| (-562)) (((|#1| |#1|) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(|has| |#1| (-1108)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(|has| |#1| (-1108)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(|has| |#1| (-853)) -((($) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-569) (-129)) . T)) -((($) . T) (((-412 (-569))) . T)) -((((-129)) . T)) -(-2776 (|has| |#4| (-798)) (|has| |#4| (-853))) -(-2776 (|has| |#4| (-798)) (|has| |#4| (-853))) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(|has| |#1| (-1109)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(|has| |#1| (-1109)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(|has| |#1| (-854)) +((($) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-570) (-130)) . T)) +((($) . T) (((-413 (-570))) . T)) +((((-130)) . T)) +(-2779 (|has| |#4| (-799)) (|has| |#4| (-854))) +(-2779 (|has| |#4| (-799)) (|has| |#4| (-854))) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) (((|#1| |#2|) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-1190)) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) (((-1185) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1185) |#2|)))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-1191)) . T)) +(((|#2| |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))) (((-1186) |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-520 (-1186) |#2|)))) (((|#1| |#2|) . T)) -(|has| |#1| (-1108)) -(|has| |#1| (-1108)) -((((-569)) . T) (((-412 (-569))) . T)) -(((|#1| (-1185) (-1096 (-1185)) (-536 (-1096 (-1185)))) . T)) -((((-569) |#1|) . T)) -((((-569)) . T)) -((((-569)) . T)) -((((-916 |#1|)) . T)) -(((|#1| (-536 |#2|)) . T)) -((((-569)) . T)) -((((-569)) . T)) -(((|#1|) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(((|#1| (-776)) . T)) -(|has| |#2| (-798)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(|has| |#2| (-853)) +(|has| |#1| (-1109)) +(|has| |#1| (-1109)) +((((-570)) . T) (((-413 (-570))) . T)) +(((|#1| (-1186) (-1097 (-1186)) (-537 (-1097 (-1186)))) . T)) +((((-570) |#1|) . T)) +((((-570)) . T)) +((((-570)) . T)) +((((-917 |#1|)) . T)) +(((|#1| (-537 |#2|)) . T)) +((((-570)) . T)) +((((-570)) . T)) +(((|#1|) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(((|#1| (-777)) . T)) +(|has| |#2| (-799)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(|has| |#2| (-854)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1167) |#1|) . T)) -((((-569) (-129)) . T)) +((((-1168) |#1|) . T)) +((((-570) (-130)) . T)) (((|#1|) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(((|#3| (-776)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((($) . T) (((-412 (-569))) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(((|#3| (-777)) . T)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +((($) . T) (((-413 (-570))) . T)) ((($) . T)) ((($) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -((((-412 (-569))) . T) (($) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +((((-413 (-570))) . T) (($) . T)) ((($) . T)) ((($) . T)) -(|has| |#1| (-1108)) -((((-412 (-569))) . T) (((-569)) . T)) -((((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#2|) . T)) -((((-1185) |#2|) |has| |#2| (-519 (-1185) |#2|)) ((|#2| |#2|) |has| |#2| (-312 |#2|))) -((((-412 (-569))) . T) (((-569)) . T)) -((((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1090)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) +(|has| |#1| (-1109)) +((((-413 (-570))) . T) (((-570)) . T)) +((((-570)) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#2|) . T)) +((((-1186) |#2|) |has| |#2| (-520 (-1186) |#2|)) ((|#2| |#2|) |has| |#2| (-313 |#2|))) +((((-413 (-570))) . T) (((-570)) . T)) +((((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1091)) . T) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (((|#1|) . T) (($) . T)) -((((-569)) . T)) -((((-569)) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -((((-569)) . T)) -((((-569)) . T)) -((((-412 (-569))) . T) (($) . T)) -(((#0=(-704) (-1181 #0#)) . T)) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T)) -(|has| |#2| (-367)) -((((-569) |#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -(((|#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) +((((-570)) . T)) +((((-570)) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +((((-570)) . T)) +((((-570)) . T)) +((((-413 (-570))) . T) (($) . T)) +(((#0=(-705) (-1182 #0#)) . T)) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T)) +(|has| |#2| (-368)) +((((-570) |#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +(((|#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-867)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-1167) |#1|) . T)) +((((-868)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-1168) |#1|) . T)) (((|#3| |#3|) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#1| |#1|) . T)) -(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057)))) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-569) |#1|) . T)) -((((-867)) . T)) -((((-170 (-226))) |has| |#1| (-1030)) (((-170 (-383))) |has| |#1| (-1030)) (((-541)) |has| |#1| (-619 (-541))) (((-1181 |#1|)) . T) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383))))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -(|has| |#1| (-367)) -((((-867)) . T)) -((($) . T)) -((($) . T)) -((((-129)) . T)) -(-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) -(-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) -(-2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057))) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569)))) -(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -(|has| |#1| (-561)) -((((-569)) -2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108))) (|has| |#4| (-1057))) ((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-1108))) (((-412 (-569))) -12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108)))) -((((-569)) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(|has| |#1| (-561)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#1|) . T)) -(|has| |#1| (-561)) -(|has| |#1| (-561)) -(|has| |#1| (-561)) -((((-704)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-412 (-569))) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -(-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))) -((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T)) -(((|#4| |#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))) (($ $) |has| |#4| (-173))) -(((|#3| |#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($ $) |has| |#3| (-173))) -(((|#2|) . T)) -(((|#1|) . T)) -((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569))))) -((((-867)) . T)) +(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058)))) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-570) |#1|) . T)) +((((-868)) . T)) +((((-171 (-227))) |has| |#1| (-1031)) (((-171 (-384))) |has| |#1| (-1031)) (((-542)) |has| |#1| (-620 (-542))) (((-1182 |#1|)) . T) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384))))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +(|has| |#1| (-368)) +((((-868)) . T)) +((($) . T)) +((($) . T)) +((((-130)) . T)) +(-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) +(-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) +(-2779 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058))) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570)))) +(((|#2|) . T) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +(|has| |#1| (-562)) +((((-570)) -2779 (|has| |#4| (-174)) (|has| |#4| (-854)) (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109))) (|has| |#4| (-1058))) ((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-1109))) (((-413 (-570))) -12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109)))) +((((-570)) -2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058))) ((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(|has| |#1| (-562)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#1|) . T)) +(|has| |#1| (-562)) +(|has| |#1| (-562)) +(|has| |#1| (-562)) +((((-705)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-1011)) (|has| |#1| (-1211))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-413 (-570))) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +(-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))) +((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T)) +(((|#4| |#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))) (($ $) |has| |#4| (-174))) +(((|#3| |#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($ $) |has| |#3| (-174))) +(((|#2|) . T)) +(((|#1|) . T)) +((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570))))) +((((-868)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) . T) (((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569))))) -(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))) (($) |has| |#4| (-173))) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173))) -((((-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -((((-649 |#1|)) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((((-412 $) (-412 $)) |has| |#2| (-561)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-915)) -((((-1167) (-52)) . T)) -((((-569)) |has| #0=(-412 |#2|) (-644 (-569))) ((#0#) . T)) -((((-541)) . T) (((-226)) . T) (((-383)) . T) (((-898 (-383))) . T)) -((((-867)) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) -(((|#1|) |has| |#1| (-173))) -(((|#1| $) |has| |#1| (-289 |#1| |#1|))) -((((-867)) . T)) -((((-867)) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -(|has| |#1| (-855)) -(((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-1108)) -((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) . T) (((-1190)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-1190)) . T)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(|has| |#1| (-234)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1| (-536 (-823 (-1185)))) . T)) -(((|#1| (-979)) . T)) -((((-569)) . T) ((|#2|) . T)) -(((#0=(-875 |#1|) $) |has| #0# (-289 #0# #0#))) -((((-569) |#4|) . T)) -((((-569) |#3|) . T)) +((((-2 (|:| -2155 |#1|) (|:| -3283 |#2|))) . T) (((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570))))) +(((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))) (($) |has| |#4| (-174))) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174))) +((((-2 (|:| -2155 |#1|) (|:| -3283 |#2|))) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +((((-650 |#1|)) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((((-413 $) (-413 $)) |has| |#2| (-562)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-916)) +((((-1168) (-52)) . T)) +((((-570)) |has| #0=(-413 |#2|) (-645 (-570))) ((#0#) . T)) +((((-542)) . T) (((-227)) . T) (((-384)) . T) (((-899 (-384))) . T)) +((((-868)) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) +(((|#1|) |has| |#1| (-174))) +(((|#1| $) |has| |#1| (-290 |#1| |#1|))) +((((-868)) . T)) +((((-868)) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +(|has| |#1| (-856)) +(((|#2|) . T) (((-570)) . T) (((-825 |#1|)) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-1109)) +((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) . T) (((-1191)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-1191)) . T)) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(|has| |#1| (-235)) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1| (-537 (-824 (-1186)))) . T)) +(((|#1| (-980)) . T)) +((((-570)) . T) ((|#2|) . T)) +(((#0=(-876 |#1|) $) |has| #0# (-290 #0# #0#))) +((((-570) |#4|) . T)) +((((-570) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1160)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -(|has| (-1261 |#1| |#2| |#3| |#4|) (-145)) -(|has| (-1261 |#1| |#2| |#3| |#4|) (-147)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(((|#1|) |has| |#1| (-173))) -((((-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) -(|has| |#1| (-1108)) -((((-1167) |#1|) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) -((((-1133 |#1| (-1185))) . T) (((-569)) . T) (((-823 (-1185))) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-1185)) . T)) -(|has| |#2| (-372)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(|has| |#1| (-1161)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +(|has| (-1262 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1262 |#1| |#2| |#3| |#4|) (-148)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +((((-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) +(((|#1|) |has| |#1| (-174))) +(|has| |#1| (-1109)) +((((-1168) |#1|) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) +((((-1134 |#1| (-1186))) . T) (((-570)) . T) (((-824 (-1186))) . T) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-1186)) . T)) +(|has| |#2| (-373)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1057))) -((((-867)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) +(((|#2|) |has| |#2| (-1058))) +((((-868)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) (((|#1|) . T)) -((((-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((#0=(-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) #0#) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) -((((-867)) . T)) -((((-569) |#1|) . T)) -((((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) +((((-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((#0=(-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) #0#) |has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))))) +((((-868)) . T)) +((((-570) |#1|) . T)) +((((-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542)))) (((-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384))))) (((-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) ((($) . T)) -((((-867)) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) +((((-868)) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) -((((-867)) . T)) -(|has| (-1260 |#2| |#3| |#4|) (-147)) -(|has| (-1260 |#2| |#3| |#4|) (-145)) -(((|#2|) |has| |#2| (-1108)) (((-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) +((((-868)) . T)) +(|has| (-1261 |#2| |#3| |#4|) (-148)) +(|has| (-1261 |#2| |#3| |#4|) (-146)) +(((|#2|) |has| |#2| (-1109)) (((-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((|#1|) . T)) -(|has| |#1| (-1108)) -((((-867)) . T)) +(|has| |#1| (-1109)) +((((-868)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) (((|#1|) . T)) -((((-569) |#1|) . T)) -(((|#2|) |has| |#2| (-173))) -(((|#1|) |has| |#1| (-173))) +((((-570) |#1|) . T)) +(((|#2|) |has| |#2| (-174))) +(((|#1|) |has| |#1| (-174))) (((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -((((-867)) |has| |#1| (-1108))) -(-2776 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-916 |#1|)) . T)) -((((-412 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-569) |#1|))) -((((-412 (-569))) . T) (($) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +((((-868)) |has| |#1| (-1109))) +(-2779 (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-917 |#1|)) . T)) +((((-413 |#2|) |#3|) . T)) +(|has| |#1| (-15 * (|#1| (-570) |#1|))) +((((-413 (-570))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -(|has| |#1| (-367)) -(-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))) -(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) -(|has| |#1| (-367)) -(|has| |#1| (-15 * (|#1| (-776) |#1|))) -((((-569)) . T)) -((((-569)) . T)) -((((-1150 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T)) -((($) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T)) -(((|#1|) . T)) -((((-569) |#1|) . T)) -((((-867)) . T)) -(((|#2|) . T)) -(-2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((($) |has| |#1| (-561)) (((-569)) . T)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -((((-1267 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173))) -((((-1271 |#2|)) . T) (((-1267 |#1| |#2| |#3|)) . T) (((-1239 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T)) -(((|#1|) . T)) -((((-1185)) -12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(-12 (|has| |#1| (-367)) (|has| |#2| (-825))) -(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) -(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((($ $) |has| |#1| (-561)) ((|#1| |#1|) . T)) -(((#0=(-704) (-1181 #0#)) . T)) -((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-867)) . T) (((-1275 |#4|)) . T)) -((((-867)) . T) (((-1275 |#3|)) . T)) -((((-586 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((($) . T) (((-412 (-569))) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) . T)) -((((-867)) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((($) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1267 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T)) -(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -(((|#3|) |has| |#3| (-1057))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -(|has| (-1102 |#1|) (-1108)) -(((|#2| (-824 |#1|)) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +((((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +(|has| |#1| (-368)) +(-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))) +(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) +(|has| |#1| (-368)) +(|has| |#1| (-15 * (|#1| (-777) |#1|))) +((((-570)) . T)) +((((-570)) . T)) +((((-1151 |#2| (-413 (-959 |#1|)))) . T) (((-413 (-959 |#1|))) . T)) +((($) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T)) +(((|#1|) . T)) +((((-570) |#1|) . T)) +((((-868)) . T)) +(((|#2|) . T)) +(-2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +((((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((($) |has| |#1| (-562)) (((-570)) . T)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +((((-1268 |#1| |#2| |#3|)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) ((|#1|) |has| |#1| (-174))) +((((-1272 |#2|)) . T) (((-1268 |#1| |#2| |#3|)) . T) (((-1240 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T)) +(((|#1|) . T)) +((((-1186)) -12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(-12 (|has| |#1| (-368)) (|has| |#2| (-826))) +(-2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) +(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((($ $) |has| |#1| (-562)) ((|#1| |#1|) . T)) +(((#0=(-705) (-1182 #0#)) . T)) +((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-868)) . T) (((-1276 |#4|)) . T)) +((((-868)) . T) (((-1276 |#3|)) . T)) +((((-587 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((($) . T) (((-413 (-570))) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) . T)) +((((-868)) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((($) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((#1=(-1268 |#1| |#2| |#3|) #1#) |has| |#1| (-368)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T)) +(((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +(((|#3|) |has| |#3| (-1058))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +(|has| (-1103 |#1|) (-1109)) +(((|#2| (-825 |#1|)) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) (((|#2|) . T) ((|#6|) . T)) -(|has| |#1| (-367)) -((((-569)) . T) ((|#2|) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +(|has| |#1| (-368)) +((((-570)) . T) ((|#2|) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) (((|#2|) . T) ((|#6|) . T)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((#0=(-1090) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-867)) . T)) -((((-916 |#1|)) . T)) -((((-144)) . T)) -((((-144)) . T)) -(((|#3|) |has| |#3| (-1108)) (((-569)) -12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1|) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -(((|#1|) |has| |#1| (-173))) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -(|has| |#1| (-367)) -((((-1190)) . T)) -(((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|))) -(|has| |#2| (-825)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-853)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-541)) |has| |#1| (-619 (-541)))) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T)) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-413 $) (-413 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((#0=(-1091) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-868)) . T)) +((((-917 |#1|)) . T)) +((((-145)) . T)) +((((-145)) . T)) +(((|#3|) |has| |#3| (-1109)) (((-570)) -12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1|) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +(((|#1|) |has| |#1| (-174))) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +(|has| |#1| (-368)) +((((-1191)) . T)) +(((|#1|) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|))) +(|has| |#2| (-826)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-854)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-542)) |has| |#1| (-620 (-542)))) (((|#1| |#2|) . T)) -((((-1185)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) -((((-1167) |#1|) . T)) -(((|#1| |#2| |#3| (-536 |#3|)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((((-867)) . T)) -((((-412 (-569))) . T)) -(((|#1|) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -((((-412 (-569))) . T)) -(|has| |#1| (-372)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-569)) . T)) -((((-569)) . T)) -(((|#1|) . T) (((-569)) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -((((-867)) . T)) -((((-867)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -(-12 (|has| |#2| (-234)) (|has| |#2| (-1057))) -((((-1185) #0=(-875 |#1|)) |has| #0# (-519 (-1185) #0#)) ((#0# #0#) |has| #0# (-312 #0#))) -(((|#1|) . T)) -((((-569) |#4|) . T)) -((((-569) |#3|) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569)))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -((((-412 (-569))) . T) (((-569)) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) +((((-1186)) -12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) +((((-1168) |#1|) . T)) +(((|#1| |#2| |#3| (-537 |#3|)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-868)) . T)) +((((-413 (-570))) . T)) +(((|#1|) . T)) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +((((-413 (-570))) . T)) +(|has| |#1| (-373)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-570)) . T)) +((((-570)) . T)) +(((|#1|) . T) (((-570)) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +((((-868)) . T)) +((((-868)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +(-12 (|has| |#2| (-235)) (|has| |#2| (-1058))) +((((-1186) #0=(-876 |#1|)) |has| #0# (-520 (-1186) #0#)) ((#0# #0#) |has| #0# (-313 #0#))) +(((|#1|) . T)) +((((-570) |#4|) . T)) +((((-570) |#3|) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570)))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +((((-413 (-570))) . T) (((-570)) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((((-569)) . T)) -((((-569)) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-412 (-569))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -((($) . T) (((-412 (-569))) . T)) -(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -(((|#1|) |has| |#1| (-561))) -((((-569) |#4|) . T)) -((((-569) |#3|) . T)) -((((-867)) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((((-867)) . T)) -((((-569) |#1|) . T)) -(((|#1|) . T)) -((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T)) -((($) . T)) -((($ $) . T) ((#0=(-1185) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-173))) -((($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -(((|#2| |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($ $) |has| |#2| (-173))) -((((-144)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-372))) -((((-867)) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173))) -(((|#1|) . T)) -((((-867)) . T)) -(|has| |#1| (-1108)) -(|has| $ (-147)) -((((-1190)) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T)) -((((-569) |#1|) . T)) -((($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) -(|has| |#1| (-367)) -(-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))) -(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) -(|has| |#1| (-367)) -(|has| |#1| (-15 * (|#1| (-776) |#1|))) -(((|#1|) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -((((-867)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(((|#2| (-536 (-869 |#1|))) . T)) -((((-867)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-586 |#1|)) . T)) -((($) . T)) -((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((((-570)) . T)) +((((-570)) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((((-570)) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-413 (-570))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +((($) . T) (((-413 (-570))) . T)) +(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +(((|#1|) |has| |#1| (-562))) +((((-570) |#4|) . T)) +((((-570) |#3|) . T)) +((((-868)) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((((-868)) . T)) +((((-570) |#1|) . T)) +(((|#1|) . T)) +((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T)) +((($) . T)) +((($ $) . T) ((#0=(-1186) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-174))) +((($) -2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-174)) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +(((|#2| |#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($ $) |has| |#2| (-174))) +((((-145)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-373))) +((((-868)) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174))) +(((|#1|) . T)) +((((-868)) . T)) +(|has| |#1| (-1109)) +(|has| $ (-148)) +((((-1191)) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) (((-570)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) . T)) +((((-570) |#1|) . T)) +((($) -2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) +(|has| |#1| (-368)) +(-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))) +(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) +(|has| |#1| (-368)) +(|has| |#1| (-15 * (|#1| (-777) |#1|))) +(((|#1|) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +((((-868)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(((|#2| (-537 (-870 |#1|))) . T)) +((((-868)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-587 |#1|)) . T)) +((($) . T)) +((((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) (((|#1|) . T) (($) . T)) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) -((((-1183 |#1| |#2| |#3|)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173))) -((((-1271 |#2|)) . T) (((-1183 |#1| |#2| |#3|)) . T) (((-1176 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) +((((-1184 |#1| |#2| |#3|)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) ((|#1|) |has| |#1| (-174))) +((((-1272 |#2|)) . T) (((-1184 |#1| |#2| |#3|)) . T) (((-1177 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) (((|#4|) . T)) (((|#3|) . T)) -((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T)) -((((-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) -(((|#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T)) -((((-569) |#2|) . T)) -((((-867)) . T)) -((($) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T)) +((((-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) +(((|#1|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-570)) . T) (((-413 (-570))) -2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T)) +((((-570) |#2|) . T)) +((((-868)) . T)) +((($) . T) (((-570)) . T) ((|#2|) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((#1=(-1183 |#1| |#2| |#3|) #1#) |has| |#1| (-367)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) -(((|#2|) |has| |#2| (-1057))) -(|has| |#1| (-1108)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T)) -(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) |has| |#1| (-173)) (($) . T)) -(((|#1|) . T)) -(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-867)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((#1=(-1184 |#1| |#2| |#3|) #1#) |has| |#1| (-368)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) +(((|#2|) |has| |#2| (-1058))) +(|has| |#1| (-1109)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T)) +(((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) |has| |#1| (-174)) (($) . T)) +(((|#1|) . T)) +(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-868)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -(((#0=(-1090) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#1|) . T)) -(((|#2|) |has| |#2| (-1108)) (((-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) -(((|#2|) |has| |#1| (-367))) -((((-569) |#1|) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T)) -((((-1190)) . T)) -((((-867)) . T)) -((((-412 |#2|) |#3|) . T)) -(((|#1| (-412 (-569))) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-867)) . T) (((-1190)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -((((-1190)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -(((|#2| |#3| (-869 |#1|)) . T)) -((((-1185)) |has| |#2| (-906 (-1185)))) -(((|#1|) . T)) -(((|#1| (-536 |#2|) |#2|) . T)) -(((|#1| (-776) (-1090)) . T)) -((((-412 (-569))) |has| |#2| (-367)) (($) . T)) -(((|#1| (-536 (-1096 (-1185))) (-1096 (-1185))) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1007 |#1|)) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(|has| |#2| (-798)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#2| (-853)) -((((-899 |#1|)) . T) (((-824 |#1|)) . T)) -((((-824 (-1185))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-649 (-569))) . T)) -((((-649 (-569))) . T) (((-867)) . T)) -((((-412 (-569))) . T) (((-867)) . T)) -((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -(|has| |#1| (-234)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +(((#0=(-1091) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#1|) . T)) +(((|#2|) |has| |#2| (-1109)) (((-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) +(((|#2|) |has| |#1| (-368))) +((((-570) |#1|) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T)) +((((-1191)) . T)) +((((-868)) . T)) +((((-413 |#2|) |#3|) . T)) +(((|#1| (-413 (-570))) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-868)) . T) (((-1191)) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +((((-1191)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +(((|#2| |#3| (-870 |#1|)) . T)) +((((-1186)) |has| |#2| (-907 (-1186)))) +(((|#1|) . T)) +(((|#1| (-537 |#2|) |#2|) . T)) +(((|#1| (-777) (-1091)) . T)) +((((-413 (-570))) |has| |#2| (-368)) (($) . T)) +(((|#1| (-537 (-1097 (-1186))) (-1097 (-1186))) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1008 |#1|)) . T) (((-570)) . T) ((|#1|) . T) (((-413 (-570))) -2779 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(|has| |#2| (-799)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#2| (-854)) +((((-900 |#1|)) . T) (((-825 |#1|)) . T)) +((((-825 (-1186))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-650 (-570))) . T)) +((((-650 (-570))) . T) (((-868)) . T)) +((((-413 (-570))) . T) (((-868)) . T)) +((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +(|has| |#1| (-235)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-1267 |#1| |#2| |#3|) $) -12 (|has| (-1267 |#1| |#2| |#3|) (-289 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-1268 |#1| |#2| |#3|) $) -12 (|has| (-1268 |#1| |#2| |#3|) (-290 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1148 |#1| |#2|)) |has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) +((((-1149 |#1| |#2|)) |has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(((|#2|) . T)) -((((-867)) -2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) (((-1275 |#2|)) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T) (($) . T)) -(((|#1|) |has| |#1| (-173))) -((((-569)) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -(|has| |#1| (-1108)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-569) (-144)) . T)) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057)))) -((((-569)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-569)) . T)) -((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-569)) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) -(((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) -((($) . T) (((-569)) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T)) -(((|#2|) |has| |#1| (-367))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(((|#2|) . T)) +((((-868)) -2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-619 (-868))) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) (((-1276 |#2|)) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T) (($) . T)) +(((|#1|) |has| |#1| (-174))) +((((-570)) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +(|has| |#1| (-1109)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-570) (-145)) . T)) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058)))) +((((-570)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-570)) . T)) +((($) |has| |#1| (-562)) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-570)) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) +(((|#1|) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) +((($) . T) (((-570)) . T) ((|#2|) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T)) +(((|#2|) |has| |#1| (-368))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-1190)) . T)) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1| (-536 #0=(-1185)) #0#) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-1191)) . T)) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1| (-537 #0=(-1186)) #0#) . T)) (((|#1|) . T) (($) . T)) -((((-569)) . T)) -(|has| |#4| (-173)) -(|has| |#3| (-173)) -(((#0=(-412 (-958 |#1|)) #0#) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(|has| |#1| (-1108)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(|has| |#1| (-1108)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -(((|#1| |#1|) |has| |#1| (-173))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T)) -((((-412 (-958 |#1|))) . T)) -(((|#1|) . T) (((-569)) . T) (($) . T)) -(((|#1|) |has| |#1| (-173))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-867)) . T)) -((((-867)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1057)) (((-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) +((((-570)) . T)) +(|has| |#4| (-174)) +(|has| |#3| (-174)) +(((#0=(-413 (-959 |#1|)) #0#) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(|has| |#1| (-1109)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(|has| |#1| (-1109)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +(((|#1| |#1|) |has| |#1| (-174))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T)) +((((-413 (-959 |#1|))) . T)) +(((|#1|) . T) (((-570)) . T) (($) . T)) +(((|#1|) |has| |#1| (-174))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-868)) . T)) +((((-868)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1058)) (((-570)) -12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((|#1| |#2|) . T)) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -(|has| |#3| (-798)) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -(|has| |#3| (-853)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -(((|#2|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1| (-1165 |#1|)) |has| |#1| (-853))) -((((-569) |#2|) . T)) -(|has| |#1| (-1108)) -(((|#1|) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-1160))) -((((-412 (-569))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-1108)) -(((|#2|) . T)) -((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569))))) -(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)))) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)))) -((((-867)) . T)) -(((|#1|) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-915))) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-915))) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#2|) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915))) -(((|#2|) . T)) -((($ $) . T) ((#0=(-1185) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-823 (-1185)) |#1|) . T) ((#1# $) . T)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-915))) -((((-569) |#2|) . T)) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057)))) -((((-569) |#1|) . T)) -(|has| (-412 |#2|) (-147)) -(|has| (-412 |#2|) (-145)) -(((|#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|)))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -(|has| |#1| (-561)) -(|has| |#1| (-561)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-867)) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((((-393) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#2| (-1160)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-1224)) . T) (((-867)) . T) (((-1190)) . T)) -((((-116 |#1|)) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -(((|#1|) . T)) -((((-393) (-1167)) . T)) -(|has| |#1| (-561)) -((((-569) |#1|) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#2|) . T)) -((((-867)) . T)) -((((-824 |#1|)) . T)) -(((|#2|) |has| |#2| (-173))) -((((-1185) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-561)) -(((|#1|) |has| |#1| (-173))) -((((-649 |#1|)) . T)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#2|) |has| |#2| (-312 |#2|))) -(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1181 |#1|)) . T)) -(|has| $ (-147)) -(((|#2|) . T)) -(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -(|has| |#2| (-372)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +(|has| |#3| (-799)) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +(|has| |#3| (-854)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +(((|#2|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1| (-1166 |#1|)) |has| |#1| (-854))) +((((-570) |#2|) . T)) +(|has| |#1| (-1109)) +(((|#1|) . T)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-1161))) +((((-413 (-570))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-1109)) +(((|#2|) . T)) +((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570))))) +(((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)))) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)))) +((((-868)) . T)) +(((|#1|) . T)) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-916))) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-916))) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#2|) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-916))) +(((|#2|) . T)) +((($ $) . T) ((#0=(-1186) $) |has| |#1| (-235)) ((#0# |#1|) |has| |#1| (-235)) ((#1=(-824 (-1186)) |#1|) . T) ((#1# $) . T)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-916))) +((((-570) |#2|) . T)) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((($) -2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) ((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058)))) +((((-570) |#1|) . T)) +(|has| (-413 |#2|) (-148)) +(|has| (-413 |#2|) (-146)) +(((|#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|)))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +(|has| |#1| (-562)) +(|has| |#1| (-562)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-868)) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((((-394) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#2| (-1161)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-1225)) . T) (((-868)) . T) (((-1191)) . T)) +((((-117 |#1|)) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +(((|#1|) . T)) +((((-394) (-1168)) . T)) +(|has| |#1| (-562)) +((((-570) |#1|) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#2|) . T)) +((((-868)) . T)) +((((-825 |#1|)) . T)) +(((|#2|) |has| |#2| (-174))) +((((-1186) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-562)) +(((|#1|) |has| |#1| (-174))) +((((-650 |#1|)) . T)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#2|) |has| |#2| (-313 |#2|))) +(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1182 |#1|)) . T)) +(|has| $ (-148)) +(((|#2|) . T)) +(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +(|has| |#2| (-373)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-867)) . T)) -((((-1183 |#1| |#2| |#3|) $) -12 (|has| (-1183 |#1| |#2| |#3|) (-289 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))) (($ $) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-868)) . T)) +((((-1184 |#1| |#2| |#3|) $) -12 (|has| (-1184 |#1| |#2| |#3|) (-290 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((#0=(-1267 |#1| |#2| |#3|) #0#) -12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1185) #0#) -12 (|has| (-1267 |#1| |#2| |#3|) (-519 (-1185) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) -(-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((#0=(-1268 |#1| |#2| |#3|) #0#) -12 (|has| (-1268 |#1| |#2| |#3|) (-313 (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368))) (((-1186) #0#) -12 (|has| (-1268 |#1| |#2| |#3|) (-520 (-1186) (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) +(-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-569)) . T) (($) . T)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) . T) (((-569)) . T) ((|#2|) . T)) -((((-569)) . T) (($) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -((((-412 (-569))) . T) (((-569)) . T)) -((((-569) (-144)) . T)) -((((-144)) . T)) +((((-570)) . T) (($) . T)) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) . T) (((-570)) . T) ((|#2|) . T)) +((((-570)) . T) (($) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +((((-413 (-570))) . T) (((-570)) . T)) +((((-570) (-145)) . T)) +((((-145)) . T)) (((|#1|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) ((((-112)) . T)) (((|#1|) . T)) -((((-541)) |has| |#1| (-619 (-541))) (((-226)) . #0=(|has| |#1| (-1030))) (((-383)) . #0#)) -((((-867)) . T)) -((((-1190)) . T)) -(|has| |#1| (-825)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#2|) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -(|has| |#1| (-561)) -(|has| |#1| (-855)) -((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T)) -(|has| |#1| (-915)) -(((|#1|) . T)) -(|has| |#1| (-1108)) -((((-867)) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1| (-1275 |#1|) (-1275 |#1|)) . T)) -((((-569) (-144)) . T)) -((($) . T)) -(-2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057))) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-1190)) . T) (((-867)) . T)) -((((-1190)) . T)) -((((-867)) . T)) -(|has| |#1| (-1108)) -(((|#1| (-979)) . T)) +((((-542)) |has| |#1| (-620 (-542))) (((-227)) . #0=(|has| |#1| (-1031))) (((-384)) . #0#)) +((((-868)) . T)) +((((-1191)) . T)) +(|has| |#1| (-826)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) ((|#1|) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#2|) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +(|has| |#1| (-562)) +(|has| |#1| (-856)) +((($) . T) (((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T)) +(|has| |#1| (-916)) +(((|#1|) . T)) +(|has| |#1| (-1109)) +((((-868)) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1| (-1276 |#1|) (-1276 |#1|)) . T)) +((((-570) (-145)) . T)) +((($) . T)) +(-2779 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058))) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-1191)) . T) (((-868)) . T)) +((((-1191)) . T)) +((((-868)) . T)) +(|has| |#1| (-1109)) +(((|#1| (-980)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(-12 (|has| |#1| (-478)) (|has| |#2| (-478))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((($) . T) (((-569)) . T) (((-875 |#1|)) . T) (((-412 (-569))) . T)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(-12 (|has| |#1| (-479)) (|has| |#2| (-479))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((($) . T) (((-570)) . T) (((-876 |#1|)) . T) (((-413 (-570))) . T)) (((|#1|) . T)) -(|has| |#2| (-798)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) +(|has| |#2| (-799)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(|has| |#2| (-853)) -(-12 (|has| |#1| (-798)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-798)) (|has| |#2| (-798))) -(-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(|has| |#2| (-854)) +(-12 (|has| |#1| (-799)) (|has| |#2| (-799))) +(-12 (|has| |#1| (-799)) (|has| |#2| (-799))) +(-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-173)) ((|#4|) . T) (((-569)) . T)) -(((|#2|) |has| |#2| (-173))) -(((|#1|) |has| |#1| (-173))) -((((-867)) . T)) -(|has| |#1| (-353)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-412 (-569))) . T) (($) . T)) -(((|#2|) . T) (($) . T) (((-412 (-569))) . T)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T)) -(|has| |#1| (-833)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -(|has| |#1| (-1108)) -(((|#1| $) |has| |#1| (-289 |#1| |#1|))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((($) |has| |#1| (-561))) -(((|#2|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1108))) -(((|#3|) |has| |#3| (-1108))) -(|has| |#3| (-372)) -((($) |has| |#1| (-561)) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-569)) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -((((-867)) . T)) -((((-867)) . T)) +(((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-570)) . T)) +(((|#2|) |has| |#2| (-174))) +(((|#1|) |has| |#1| (-174))) +((((-868)) . T)) +(|has| |#1| (-354)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-413 (-570))) . T) (($) . T)) +(((|#2|) . T) (($) . T) (((-413 (-570))) . T)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T)) +(|has| |#1| (-834)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +(|has| |#1| (-1109)) +(((|#1| $) |has| |#1| (-290 |#1| |#1|))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((($) |has| |#1| (-562))) +(((|#2|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1109))) +(((|#3|) |has| |#3| (-1109))) +(|has| |#3| (-373)) +((($) |has| |#1| (-562)) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-570)) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +((((-868)) . T)) +((((-868)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1| |#1|) |has| |#1| (-173))) -(|has| |#2| (-367)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-173))) -((((-412 (-569))) . T) (((-569)) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((($) . T) (((-569)) . T)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((((-144)) . T)) -(((|#1|) . T)) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057)))) -((((-144)) . T)) -((((-144)) . T)) -((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#) ((|#2|) . T) (((-569)) . T)) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1| |#1|) |has| |#1| (-174))) +(|has| |#2| (-368)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-174))) +((((-413 (-570))) . T) (((-570)) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((($) . T) (((-570)) . T)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((((-145)) . T)) +(((|#1|) . T)) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058)))) +((((-145)) . T)) +((((-145)) . T)) +((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#) ((|#2|) . T) (((-570)) . T)) (((|#1| |#2| |#3|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) -(((|#1|) |has| |#1| (-173))) -(|has| $ (-147)) -(|has| $ (-147)) -((((-1190)) . T)) -(((|#1|) |has| |#1| (-173))) -(|has| |#1| (-1108)) -((((-867)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1057)) (|has| |#1| (-1120))) -((($ $) |has| |#1| (-289 $ $)) ((|#1| $) |has| |#1| (-289 |#1| |#1|))) -(((|#1| (-412 (-569))) . T)) -(((|#1|) . T)) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-1185)) . T)) -(|has| |#1| (-561)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(|has| |#1| (-561)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-867)) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-147)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) +(((|#1|) |has| |#1| (-174))) +(|has| $ (-148)) +(|has| $ (-148)) +((((-1191)) . T)) +(((|#1|) |has| |#1| (-174))) +(|has| |#1| (-1109)) +((((-868)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-479)) (|has| |#1| (-562)) (|has| |#1| (-1058)) (|has| |#1| (-1121))) +((($ $) |has| |#1| (-290 $ $)) ((|#1| $) |has| |#1| (-290 |#1| |#1|))) +(((|#1| (-413 (-570))) . T)) +(((|#1|) . T)) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-1186)) . T)) +(|has| |#1| (-562)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(|has| |#1| (-562)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-868)) . T)) +(|has| |#2| (-146)) +(|has| |#2| (-148)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(|has| |#4| (-853)) -(((|#2| (-241 (-2428 |#1|) (-776)) (-869 |#1|)) . T)) -(|has| |#3| (-853)) -(((|#1| (-536 |#3|) |#3|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(((#0=(-412 (-569)) #0#) |has| |#2| (-367)) (($ $) . T)) -((((-875 |#1|)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((((-867)) . T)) -(|has| |#1| (-147)) -((((-412 (-569))) |has| |#2| (-367)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(|has| |#1| (-145)) -(-2776 (|has| |#1| (-353)) (|has| |#1| (-372))) -((((-1150 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-173)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +(|has| |#4| (-854)) +(((|#2| (-242 (-2431 |#1|) (-777)) (-870 |#1|)) . T)) +(|has| |#3| (-854)) +(((|#1| (-537 |#3|) |#3|) . T)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +(((#0=(-413 (-570)) #0#) |has| |#2| (-368)) (($ $) . T)) +((((-876 |#1|)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-868)) . T)) +(|has| |#1| (-148)) +((((-413 (-570))) |has| |#2| (-368)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(|has| |#1| (-146)) +(-2779 (|has| |#1| (-354)) (|has| |#1| (-373))) +((((-1151 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-174)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-234)) (|has| |#2| (-1057))) -(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -((((-867)) . T)) +(-12 (|has| |#2| (-235)) (|has| |#2| (-1058))) +(((|#2|) . T) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +((((-868)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-704)) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(|has| |#1| (-561)) +((((-705)) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(|has| |#1| (-562)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1110,2828 +1110,2828 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1185) (-52)) . T)) +((((-1186) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-1012 10)) . T) (((-412 (-569))) . T) (((-867)) . T)) -((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -(((|#1|) . T)) -((((-1012 16)) . T) (((-412 (-569))) . T) (((-867)) . T)) -((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -(((|#1| (-569)) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-1013 10)) . T) (((-413 (-570))) . T) (((-868)) . T)) +((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +(((|#1|) . T)) +((((-1013 16)) . T) (((-413 (-570))) . T) (((-868)) . T)) +((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +(((|#1| (-570)) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-412 (-569))) . T)) -(((|#3|) . T) (((-617 $)) . T)) +(((|#1| (-413 (-570))) . T)) +(((|#3|) . T) (((-618 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-570)) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -(((#0=(-1183 |#1| |#2| |#3|) #0#) -12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))) (((-1185) #0#) -12 (|has| (-1183 |#1| |#2| |#3|) (-519 (-1185) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) -((((-867)) . T)) -((((-867)) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +(((#0=(-1184 |#1| |#2| |#3|) #0#) -12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))) (((-1186) #0#) -12 (|has| (-1184 |#1| |#2| |#3|) (-520 (-1186) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) +((((-868)) . T)) +((((-868)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) -((((-867)) . T)) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) |has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))))) +((((-868)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1185) (-52)) . T)) +((((-1186) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-833)) -((($) . T) (((-569)) . T) ((|#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(|has| (-1102 |#1|) (-1108)) -(((|#2| |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($ $) |has| |#2| (-173))) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)))) -((((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173))) -((((-569)) . T)) -((((-1190)) . T)) -((((-776)) . T)) -(((|#2|) |has| |#2| (-173))) -(((|#1|) |has| |#1| (-173))) -(|has| |#1| (-561)) -((((-569)) . T)) -(((|#2|) . T)) -((((-867)) . T)) -(((|#1| (-412 (-569)) (-1090)) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#1|) . T)) -(|has| |#1| (-561)) -((((-569)) . T)) -((((-116 |#1|)) . T)) -(((|#1|) . T)) -((((-412 (-569))) . T) (($) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -((((-1190)) . T)) -((($) . T) (((-412 (-569))) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -(|has| |#1| (-145)) -((((-569)) . T)) -(|has| |#1| (-147)) -((((-569)) . T)) -((((-898 (-569))) . T) (((-898 (-383))) . T) (((-541)) . T) (((-1185)) . T)) -((((-867)) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((($) . T)) -(((|#1|) . T)) -((((-867)) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) +((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-834)) +((($) . T) (((-570)) . T) ((|#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(|has| (-1103 |#1|) (-1109)) +(((|#2| |#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($ $) |has| |#2| (-174))) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)))) +((((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174))) +((((-570)) . T)) +((((-1191)) . T)) +((((-777)) . T)) +(((|#2|) |has| |#2| (-174))) +(((|#1|) |has| |#1| (-174))) +(|has| |#1| (-562)) +((((-570)) . T)) +(((|#2|) . T)) +((((-868)) . T)) +(((|#1| (-413 (-570)) (-1091)) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#1|) . T)) +(|has| |#1| (-562)) +((((-570)) . T)) +((((-117 |#1|)) . T)) +(((|#1|) . T)) +((((-413 (-570))) . T) (($) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +((((-1191)) . T)) +((($) . T) (((-413 (-570))) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +(|has| |#1| (-146)) +((((-570)) . T)) +(|has| |#1| (-148)) +((((-570)) . T)) +((((-899 (-570))) . T) (((-899 (-384))) . T) (((-542)) . T) (((-1186)) . T)) +((((-868)) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((($) . T)) +(((|#1|) . T)) +((((-868)) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((|#1|) . T) (($) . T)) -(((|#2|) |has| |#2| (-173))) -((($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -((((-875 |#1|)) . T)) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) -(-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) -(|has| |#2| (-1160)) -(((#0=(-52)) . T) (((-2 (|:| -2006 (-1185)) (|:| -2216 #0#))) . T)) +(((|#2|) |has| |#2| (-174))) +((($) -2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-174)) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +((((-876 |#1|)) . T)) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) +(-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) +(|has| |#2| (-1161)) +(((#0=(-52)) . T) (((-2 (|:| -2009 (-1186)) (|:| -2219 #0#))) . T)) (((|#1| |#2|) . T)) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -(((|#1| (-569) (-1090)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| (-412 (-569)) (-1090)) . T)) -((($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-569) |#2|) . T)) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +(((|#1| (-570) (-1091)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| (-413 (-570)) (-1091)) . T)) +((($) -2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-570) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-372)) -(-12 (|has| |#1| (-372)) (|has| |#2| (-372))) -((((-867)) . T)) -((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(((|#1|) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) +(|has| |#2| (-373)) +(-12 (|has| |#1| (-373)) (|has| |#2| (-373))) +((((-868)) . T)) +((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(((|#1|) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(|has| |#1| (-354)) +((((-570)) -2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058))) ((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) +(((|#1|) . T)) (((|#4|) . T)) -(|has| |#1| (-353)) -((((-569)) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) -(((|#1|) . T)) -(((|#4|) . T) (((-867)) . T)) -(((|#3|) . T) ((|#2|) . T) (($) -2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057))) (((-569)) . T) ((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057)))) -(((|#2|) . T) (($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) (((-569)) . T) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057)))) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(|has| |#1| (-561)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) +(((|#4|) . T) (((-868)) . T)) +(((|#3|) . T) ((|#2|) . T) (($) -2779 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058))) (((-570)) . T) ((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058)))) +(((|#2|) . T) (($) -2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) (((-570)) . T) ((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058)))) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(|has| |#1| (-562)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) (((|#1| |#2|) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-915))) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-915))) -((((-412 (-569))) . T) (((-569)) . T)) -((((-569)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -(((|#3| |#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($ $) |has| |#3| (-173))) -(|has| |#1| (-1030)) -((((-867)) . T)) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173))) -((((-569) (-112)) . T)) -((((-1190)) . T)) -(((|#1|) |has| |#1| (-312 |#1|))) -((((-1190)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((((-1185) $) |has| |#1| (-519 (-1185) $)) (($ $) |has| |#1| (-312 $)) ((|#1| |#1|) |has| |#1| (-312 |#1|)) (((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|))) -((((-1185)) |has| |#1| (-906 (-1185)))) -(-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353))) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-916))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-916))) +((((-413 (-570))) . T) (((-570)) . T)) +((((-570)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +(((|#3| |#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($ $) |has| |#3| (-174))) +(|has| |#1| (-1031)) +((((-868)) . T)) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174))) +((((-570) (-112)) . T)) +((((-1191)) . T)) +(((|#1|) |has| |#1| (-313 |#1|))) +((((-1191)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((((-1186) $) |has| |#1| (-520 (-1186) $)) (($ $) |has| |#1| (-313 $)) ((|#1| |#1|) |has| |#1| (-313 |#1|)) (((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|))) +((((-1186)) |has| |#1| (-907 (-1186)))) +(-2779 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-393) |#1|) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -(|has| |#1| (-1108)) -(((|#2|) . T) (((-867)) . T)) -((((-867)) . T)) -(((|#2|) . T)) -((((-916 |#1|)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) +((((-394) |#1|) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +(|has| |#1| (-1109)) +(((|#2|) . T) (((-868)) . T)) +((((-868)) . T)) +(((|#2|) . T)) +((((-917 |#1|)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) (((|#1| |#1|) . T)) -(((#0=(-875 |#1|)) |has| #0# (-312 #0#))) -((((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-1046 (-412 (-569))))) ((|#1|) . T)) +(((#0=(-876 |#1|)) |has| #0# (-313 #0#))) +((((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-1047 (-413 (-570))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(((|#1|) . T)) -(-12 (|has| |#1| (-798)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-798)) (|has| |#2| (-798))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((($) . T) (((-569)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(((|#1|) . T)) +(-12 (|has| |#1| (-799)) (|has| |#2| (-799))) +(-12 (|has| |#1| (-799)) (|has| |#2| (-799))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((($) . T) (((-570)) . T) ((|#2|) . T)) +(((|#2|) . T) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1210)) -(((#0=(-569) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -((((-412 (-569))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1057))) -(((|#3|) |has| |#3| (-1057))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(|has| |#1| (-367)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((($ $) . T) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1| |#1|) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-569) |#3|) . T)) -((((-867)) . T)) -((((-541)) |has| |#3| (-619 (-541)))) -((((-694 |#3|)) . T) (((-867)) . T)) +(|has| |#1| (-1211)) +(((#0=(-570) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +((((-413 (-570))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1058))) +(((|#3|) |has| |#3| (-1058))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(|has| |#1| (-368)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((($ $) . T) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1| |#1|) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-570) |#3|) . T)) +((((-868)) . T)) +((((-542)) |has| |#3| (-620 (-542)))) +((((-695 |#3|)) . T) (((-868)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-853)) -(|has| |#1| (-853)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -((($) . T)) -(((#0=(-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) #0#) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) -((($) . T)) -((($) . T)) -(((|#2|) |has| |#2| (-1108))) -((((-867)) -2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) (((-1275 |#2|)) . T)) -((($) . T)) -((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-1167) (-52)) . T)) -(((|#2|) |has| |#2| (-173))) -((($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) |has| |#2| (-173)) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -((((-867)) . T)) -(((|#2|) . T)) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -((((-569)) |has| #0=(-412 |#2|) (-644 (-569))) ((#0#) . T)) -((($) . T) (((-569)) . T)) -((((-569) (-144)) . T)) -((((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#1| |#2|) . T)) -((((-412 (-569))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-867)) . T)) -((((-916 |#1|)) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) -(|has| |#1| (-853)) -((($) -2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -(|has| |#1| (-367)) +(|has| |#1| (-854)) +(|has| |#1| (-854)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +((($) . T)) +(((#0=(-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) #0#) |has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))))) +((($) . T)) +((($) . T)) +(((|#2|) |has| |#2| (-1109))) +((((-868)) -2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-619 (-868))) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) (((-1276 |#2|)) . T)) +((($) . T)) +((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-1168) (-52)) . T)) +(((|#2|) |has| |#2| (-174))) +((($) -2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) |has| |#2| (-174)) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +((((-868)) . T)) +(((|#2|) . T)) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +((((-570)) |has| #0=(-413 |#2|) (-645 (-570))) ((#0#) . T)) +((($) . T) (((-570)) . T)) +((((-570) (-145)) . T)) +((((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((|#1| |#2|) . T)) +((((-413 (-570))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-868)) . T)) +((((-917 |#1|)) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) +(|has| |#1| (-854)) +((($) -2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +(|has| |#1| (-368)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-853)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-1185)) |has| |#1| (-906 (-1185)))) -(|has| |#1| (-853)) -((((-511)) . T)) -(((|#1| (-1185)) . T)) -(((|#1| (-1275 |#1|) (-1275 |#1|)) . T)) -((((-867)) . T) (((-1190)) . T)) +(|has| |#1| (-854)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-1186)) |has| |#1| (-907 (-1186)))) +(|has| |#1| (-854)) +((((-512)) . T)) +(((|#1| (-1186)) . T)) +(((|#1| (-1276 |#1|) (-1276 |#1|)) . T)) +((((-868)) . T) (((-1191)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1190)) . T)) -(|has| |#1| (-1108)) -(((|#1| (-1185) (-823 (-1185)) (-536 (-823 (-1185)))) . T)) -((((-412 (-958 |#1|))) . T)) -((((-541)) . T)) -((((-867)) . T)) +((((-1191)) . T)) +(|has| |#1| (-1109)) +(((|#1| (-1186) (-824 (-1186)) (-537 (-824 (-1186)))) . T)) +((((-413 (-959 |#1|))) . T)) +((((-542)) . T)) +((((-868)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#1| |#2|) . T)) +((((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-173))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(((|#1|) |has| |#1| (-174))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-173))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-541)) |has| |#1| (-619 (-541))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569))))) -((((-867)) . T)) -((((-875 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-511)) . T)) -(|has| |#2| (-853)) -((((-511)) . T)) -(-12 (|has| |#2| (-234)) (|has| |#2| (-1057))) -(|has| |#1| (-561)) -((((-875 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-1167) |#1|) . T)) -(|has| |#1| (-1160)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-964 |#1|)) . T)) -(((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-569))) (((-569)) |has| |#1| (-1046 (-569))) (((-1185)) |has| |#1| (-1046 (-1185))) ((|#1|) . T)) -((((-569) |#2|) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383)))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-569)) . T)) -((((-649 |#4|)) . T) (((-867)) . T)) -((((-541)) |has| |#4| (-619 (-541)))) -((((-541)) |has| |#4| (-619 (-541)))) -((((-867)) . T) (((-649 |#4|)) . T)) -((($) |has| |#1| (-853))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T)) -((((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) -(((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T)) -((((-649 |#4|)) . T) (((-867)) . T)) -((((-541)) |has| |#4| (-619 (-541)))) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T)) -(((|#1|) . T)) -((((-1185)) |has| (-412 |#2|) (-906 (-1185)))) -(((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($) . T)) -((($) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-867)) -2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-618 (-867))) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)) (|has| |#3| (-1108))) (((-1275 |#3|)) . T)) -((((-569) |#2|) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#2| |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($ $) |has| |#2| (-173))) -(((|#2|) . T) (((-569)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((|#2|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-1167) (-1185) (-569) (-226) (-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-867)) . T)) -((((-569) (-112)) . T)) -(((|#1|) . T)) -((((-867)) . T)) +(((|#1|) |has| |#1| (-174))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-542)) |has| |#1| (-620 (-542))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570))))) +((((-868)) . T)) +((((-876 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#2|) . T) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-512)) . T)) +(|has| |#2| (-854)) +((((-512)) . T)) +(-12 (|has| |#2| (-235)) (|has| |#2| (-1058))) +(|has| |#1| (-562)) +((((-876 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-1168) |#1|) . T)) +(|has| |#1| (-1161)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-965 |#1|)) . T)) +(((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1| |#1|) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-570))) (((-570)) |has| |#1| (-1047 (-570))) (((-1186)) |has| |#1| (-1047 (-1186))) ((|#1|) . T)) +((((-570) |#2|) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((((-570)) |has| |#1| (-893 (-570))) (((-384)) |has| |#1| (-893 (-384)))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-570)) . T)) +((((-650 |#4|)) . T) (((-868)) . T)) +((((-542)) |has| |#4| (-620 (-542)))) +((((-542)) |has| |#4| (-620 (-542)))) +((((-868)) . T) (((-650 |#4|)) . T)) +((($) |has| |#1| (-854))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) (((-570)) . T) (($) . T) ((|#1|) . T)) +((((-570)) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) +(((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) . T)) +((((-650 |#4|)) . T) (((-868)) . T)) +((((-542)) |has| |#4| (-620 (-542)))) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T)) +(((|#1|) . T)) +((((-1186)) |has| (-413 |#2|) (-907 (-1186)))) +(((|#2|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($) . T)) +((($) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-868)) -2779 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-619 (-868))) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-373)) (|has| |#3| (-732)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)) (|has| |#3| (-1109))) (((-1276 |#3|)) . T)) +((((-570) |#2|) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#2| |#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($ $) |has| |#2| (-174))) +(((|#2|) . T) (((-570)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((|#2|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-1168) (-1186) (-570) (-227) (-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-868)) . T)) +((((-570) (-112)) . T)) +(((|#1|) . T)) +((((-868)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-868)) . T)) +((((-868)) . T)) ((((-112)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((($) . T) (((-412 (-569))) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173))) -(|has| $ (-147)) -((((-412 |#2|)) . T)) -((((-412 (-569))) |has| #0=(-412 |#2|) (-1046 (-412 (-569)))) (((-569)) |has| #0# (-1046 (-569))) ((#0#) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((($) . T) (((-413 (-570))) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174))) +(|has| $ (-148)) +((((-413 |#2|)) . T)) +((((-413 (-570))) |has| #0=(-413 |#2|) (-1047 (-413 (-570)))) (((-570)) |has| #0# (-1047 (-570))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-173))) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -(((|#3|) |has| |#3| (-173))) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(|has| |#1| (-147)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(|has| |#1| (-147)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(|has| |#1| (-147)) -(((|#1|) . T)) -(|has| |#2| (-234)) -(((|#2|) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-1185) (-52)) . T)) -((((-867)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) +(((|#4|) |has| |#4| (-174))) +(|has| |#2| (-146)) +(|has| |#2| (-148)) +(((|#3|) |has| |#3| (-174))) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(|has| |#1| (-148)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(|has| |#1| (-148)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(|has| |#1| (-148)) +(((|#1|) . T)) +(|has| |#2| (-235)) +(((|#2|) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-1186) (-52)) . T)) +((((-868)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) (((|#1| |#1|) . T)) -((((-1185)) |has| |#2| (-906 (-1185)))) -((((-129)) . T)) -((((-899 |#1|)) . T) ((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T)) -((((-569) (-112)) . T)) -(|has| |#1| (-561)) +((((-1186)) |has| |#2| (-907 (-1186)))) +((((-130)) . T)) +((((-900 |#1|)) . T) ((|#2|) . T) (((-570)) . T) (((-825 |#1|)) . T)) +((((-570) (-112)) . T)) +(|has| |#1| (-562)) (((|#2|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-569)) . T) (((-824 (-1185))) . T)) +(((|#1|) . T) (((-570)) . T) (((-825 (-1186))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) (((|#3|) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) -(((|#1|) . T)) -((((-1012 2)) . T) (((-412 (-569))) . T) (((-867)) . T)) -((((-541)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-1007 |#1|)) . T) ((|#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1181 |#1|)) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((((-570)) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) +(((|#1|) . T)) +((((-1013 2)) . T) (((-413 (-570))) . T) (((-868)) . T)) +((((-542)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-1008 |#1|)) . T) ((|#1|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1182 |#1|)) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-855)) -(((|#1|) . T) (((-569)) . T) (($) . T)) -(((|#2|) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-569) |#2|) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -(((|#2|) . T)) -((((-569) |#3|) . T)) -(((|#2|) . T)) -((((-867)) . T)) -(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) +(|has| |#1| (-856)) +(((|#1|) . T) (((-570)) . T) (($) . T)) +(((|#2|) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-570) |#2|) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +(((|#2|) . T)) +((((-570) |#3|) . T)) +(((|#2|) . T)) +((((-868)) . T)) +(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-1108)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#2| (-367)) -(((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#2|) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-173))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T)) -((((-1167) (-52)) . T)) -(((|#1|) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#2|) |has| |#2| (-173))) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) (((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057)))) -((((-569) |#3|) . T)) -((((-569) (-144)) . T)) -((((-144)) . T)) -((((-867)) . T)) -((((-1190)) . T)) +(|has| |#1| (-1109)) +(|has| |#2| (-368)) +(((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#2|) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#1|) |has| |#1| (-174))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2|) . T)) +(((|#1|) . T)) +((((-1168) (-52)) . T)) +(((|#1|) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2|) |has| |#2| (-174))) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((-570)) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058)))) +((((-570) |#3|) . T)) +((((-570) (-145)) . T)) +((((-145)) . T)) +((((-868)) . T)) +((((-1191)) . T)) ((((-112)) . T)) -(|has| |#1| (-147)) +(|has| |#1| (-148)) (((|#1|) . T)) -(|has| |#1| (-145)) +(|has| |#1| (-146)) ((($) . T)) -(|has| |#1| (-561)) +(|has| |#1| (-562)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#1|) . T)) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) -((((-144)) . T)) -((((-867)) . T)) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) -((((-1167) (-52)) . T)) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) +((((-145)) . T)) +((((-868)) . T)) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) +((((-1168) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#1| |#2|) . T)) -((((-569) (-144)) . T)) -(((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(|has| |#1| (-855)) -(((|#2| (-776) (-1090)) . T)) +((((-570) (-145)) . T)) +(((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(|has| |#1| (-856)) +(((|#2| (-777) (-1091)) . T)) (((|#1| |#2|) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -(|has| |#1| (-796)) -(((|#1|) |has| |#1| (-173))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +(|has| |#1| (-797)) +(((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2776 (|has| |#1| (-147)) (-12 (|has| |#1| (-367)) (|has| |#2| (-147)))) -(-2776 (|has| |#1| (-145)) (-12 (|has| |#1| (-367)) (|has| |#2| (-145)))) +(-2779 (|has| |#1| (-148)) (-12 (|has| |#1| (-368)) (|has| |#2| (-148)))) +(-2779 (|has| |#1| (-146)) (-12 (|has| |#1| (-368)) (|has| |#2| (-146)))) (((|#4|) . T)) -(|has| |#1| (-145)) -((((-1167) |#1|) . T)) -(|has| |#1| (-147)) +(|has| |#1| (-146)) +((((-1168) |#1|) . T)) +(|has| |#1| (-148)) (((|#1|) . T)) -((((-569)) . T)) -((((-867)) . T)) +((((-570)) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) -((((-867)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +((((-868)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#3|) . T)) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) (((-569)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) . T)) -((((-867)) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -(((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108))) (((-964 |#1|)) . T)) -(|has| |#1| (-853)) -(|has| |#1| (-853)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-964 |#1|)) . T)) -(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)))) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)))) -(|has| |#2| (-367)) -(((|#1|) |has| |#1| (-173))) -(((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057))) (($) |has| |#4| (-173))) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173))) -(((|#2|) |has| |#2| (-1057))) -((((-1167) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) -(((|#2| (-899 |#1|)) . T)) -((($) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((((-393) (-1167)) . T)) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) -2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-618 (-867))) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) (((-1275 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2006 (-1167)) (|:| -2216 #0#))) . T)) -(((|#1|) . T)) -((((-867)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((((-144)) . T)) -(|has| |#2| (-145)) -((((-569)) . T)) -(|has| |#2| (-147)) -(|has| |#1| (-478)) -(-2776 (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) -(|has| |#1| (-367)) -((((-867)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((($) |has| |#1| (-561))) -((((-1190)) . T)) -(|has| |#1| (-853)) -(|has| |#1| (-853)) -((((-867)) . T)) -(((|#2|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#2|) . T) (((-569)) . T) (((-824 |#1|)) . T)) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) (((-570)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) . T)) +((((-868)) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +(((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109))) (((-965 |#1|)) . T)) +(|has| |#1| (-854)) +(|has| |#1| (-854)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-965 |#1|)) . T)) +(((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)))) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)))) +(|has| |#2| (-368)) +(((|#1|) |has| |#1| (-174))) +(((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058))) (($) |has| |#4| (-174))) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174))) +(((|#2|) |has| |#2| (-1058))) +((((-1168) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) +(((|#2| (-900 |#1|)) . T)) +((($) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((((-394) (-1168)) . T)) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) -2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-619 (-868))) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) (((-1276 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2009 (-1168)) (|:| -2219 #0#))) . T)) +(((|#1|) . T)) +((((-868)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((((-145)) . T)) +(|has| |#2| (-146)) +((((-570)) . T)) +(|has| |#2| (-148)) +(|has| |#1| (-479)) +(-2779 (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) +(|has| |#1| (-368)) +((((-868)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((($) |has| |#1| (-562))) +((((-1191)) . T)) +(|has| |#1| (-854)) +(|has| |#1| (-854)) +((((-868)) . T)) +(((|#2|) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2|) . T) (((-570)) . T) (((-825 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1185)) |has| |#1| (-906 (-1185)))) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-867)) . T)) -(|has| |#1| (-1108)) -(((|#2| (-487 (-2428 |#1|) (-776)) (-869 |#1|)) . T)) -((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#)) -(((|#1| (-536 (-1185)) (-1185)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-1186)) |has| |#1| (-907 (-1186)))) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-868)) . T)) +(|has| |#1| (-1109)) +(((|#2| (-488 (-2431 |#1|) (-777)) (-870 |#1|)) . T)) +((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#)) +(((|#1| (-537 (-1186)) (-1186)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-173)) +(|has| |#2| (-174)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(((|#2|) |has| |#2| (-173))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-1185) (-52)) . T)) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-1186) (-52)) . T)) ((($ $) . T)) -(((|#1| (-569)) . T)) -((((-916 |#1|)) . T)) -(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))) (($) -2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))) -(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -(|has| |#1| (-855)) -(|has| |#1| (-855)) -((((-569) |#2|) . T)) -((($) . T) (((-569)) . T) ((|#1|) . T)) -((((-867)) . T)) -((((-569)) . T)) -(|has| |#1| (-855)) -((((-694 |#2|)) . T) (((-867)) . T)) -((((-1267 |#1| |#2| |#3|)) -12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) +(((|#1| (-570)) . T)) +((((-917 |#1|)) . T)) +(((|#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))) (($) -2779 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))) +(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +(|has| |#1| (-856)) +(|has| |#1| (-856)) +((((-570) |#2|) . T)) +((($) . T) (((-570)) . T) ((|#1|) . T)) +((((-868)) . T)) +((((-570)) . T)) +(|has| |#1| (-856)) +((((-695 |#2|)) . T) (((-868)) . T)) +((((-1268 |#1| |#2| |#3|)) -12 (|has| (-1268 |#1| |#2| |#3|) (-313 (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-412 (-958 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#1|) |has| |#1| (-173))) -(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)))) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(-2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-915))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -((((-569) |#2|) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)))) -(|has| |#1| (-353)) -(((|#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) -(((|#2|) . T) (((-569)) . T)) -((($) . T) (((-412 (-569))) . T)) -((((-569) (-112)) . T)) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -(((|#1|) . T)) -(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353))) -(|has| |#1| (-853)) -(|has| |#1| (-853)) -(|has| |#1| (-853)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-569)) . T) (($) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-1185)) |has| |#1| (-906 (-1185))) (((-1090)) . T)) -(((|#1|) . T)) -(|has| |#1| (-853)) -(((#0=(-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) #0#) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(|has| |#1| (-1108)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) +((((-413 (-959 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#1|) |has| |#1| (-174))) +(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)))) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(-2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-916))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +((((-570) |#2|) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)))) +(|has| |#1| (-354)) +(((|#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) +(((|#2|) . T) (((-570)) . T)) +((($) . T) (((-413 (-570))) . T)) +((((-570) (-112)) . T)) +(|has| |#1| (-826)) +(|has| |#1| (-826)) +(((|#1|) . T)) +(-2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354))) +(|has| |#1| (-854)) +(|has| |#1| (-854)) +(|has| |#1| (-854)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-570)) . T) (($) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-1186)) |has| |#1| (-907 (-1186))) (((-1091)) . T)) +(((|#1|) . T)) +(|has| |#1| (-854)) +(((#0=(-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) #0#) |has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(|has| |#1| (-1109)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -((((-1150 |#2| (-412 (-958 |#1|)))) . T) (((-412 (-958 |#1|))) . T) (((-569)) . T)) -(((|#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) . T)) +((((-1151 |#2| (-413 (-959 |#1|)))) . T) (((-413 (-959 |#1|))) . T) (((-570)) . T)) +(((|#1| |#2| |#3| (-242 |#2| |#3|) (-242 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) -((($) . T) (((-569)) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T)) +((($) . T) (((-570)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-536 |#2|) |#2|) . T)) -((((-867)) . T)) -((((-144)) . T) (((-867)) . T)) -(((|#1| (-776) (-1090)) . T)) +(((|#1| (-537 |#2|) |#2|) . T)) +((((-868)) . T)) +((((-145)) . T) (((-868)) . T)) +(((|#1| (-777) (-1091)) . T)) (((|#3|) . T)) -((((-144)) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) -2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-144)) . T)) -(((|#2|) |has| |#2| (-173))) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) -(((|#1|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#3| (-173)) -(((|#4|) |has| |#4| (-367))) -(((|#3|) |has| |#3| (-367))) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-367))) -((((-867)) . T)) -((((-867)) . T)) -(((|#2|) . T)) -(((|#1| (-1181 |#1|)) . T)) -((((-1090)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((($) . T) ((|#1|) . T) (((-412 (-569))) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((($) |has| |#1| (-561))) -(((|#2|) . T)) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) . T)) -((($) |has| |#1| (-853))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(|has| |#1| (-915)) -((((-1185)) . T)) -((((-867)) . T)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1267 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T)) -(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +((((-145)) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) -2779 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-145)) . T)) +(((|#2|) |has| |#2| (-174))) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) +(((|#1|) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#3| (-174)) +(((|#4|) |has| |#4| (-368))) +(((|#3|) |has| |#3| (-368))) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-368))) +((((-868)) . T)) +((((-868)) . T)) +(((|#2|) . T)) +(((|#1| (-1182 |#1|)) . T)) +((((-1091)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((($) . T) ((|#1|) . T) (((-413 (-570))) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((($) |has| |#1| (-562))) +(((|#2|) . T)) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) . T)) +((($) |has| |#1| (-854))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(|has| |#1| (-916)) +((((-1186)) . T)) +((((-868)) . T)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1268 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T)) +(((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((#0=(-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) #0#) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-915))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((#0=(-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) #0#) |has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))))) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-916))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)))) -(|has| |#1| (-855)) -(|has| |#1| (-561)) -((((-586 |#1|)) . T)) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)))) +(|has| |#1| (-856)) +(|has| |#1| (-562)) +((((-587 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-825))) (-12 (|has| |#1| (-367)) (|has| |#2| (-855)))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -((((-916 |#1|)) . T)) -(((|#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) . T)) +(-2779 (-12 (|has| |#1| (-368)) (|has| |#2| (-826))) (-12 (|has| |#1| (-368)) (|has| |#2| (-856)))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +((((-917 |#1|)) . T)) +(((|#1| (-502 |#1| |#3|) (-502 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-776)) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-677 |#1|)) . T)) +(((|#1| (-777)) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-678 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-541)) . T)) -((((-867)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-1190)) . T)) -((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-569)) . T)) -(((|#3|) . T) (((-569)) . T) (((-617 $)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#2|) . T)) -(-2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)) (|has| |#3| (-1108))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -(|has| |#1| (-1210)) -(|has| |#1| (-1210)) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) -(|has| |#1| (-1210)) -(|has| |#1| (-1210)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T) ((#1=(-412 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((($) . T) (((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-542)) . T)) +((((-868)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-1191)) . T)) +((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T) (((-570)) . T)) +(((|#3|) . T) (((-570)) . T) (((-618 $)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#2|) . T)) +(-2779 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-373)) (|has| |#3| (-732)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)) (|has| |#3| (-1109))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +(|has| |#1| (-1211)) +(|has| |#1| (-1211)) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) +(|has| |#1| (-1211)) +(|has| |#1| (-1211)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T) ((#1=(-413 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((($) . T) (((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T)) (((|#3| |#3|) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((((-1167) (-52)) . T)) -(|has| |#1| (-1108)) -(((|#1|) |has| |#1| (-173)) (($) . T)) -(-2776 (|has| |#2| (-825)) (|has| |#2| (-855))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-569)) . T) (($) . T)) -((((-776)) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) -((($) . T) (((-569)) . T)) -((($) . T)) -(|has| |#2| (-915)) -(|has| |#1| (-367)) -(((|#2|) |has| |#2| (-1108))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-541)) . T) (((-412 (-1181 (-569)))) . T) (((-226)) . T) (((-383)) . T)) -((((-383)) . T) (((-226)) . T) (((-867)) . T)) -(|has| |#1| (-915)) -(|has| |#1| (-915)) -(|has| |#1| (-915)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-915))) -((($) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((((-1168) (-52)) . T)) +(|has| |#1| (-1109)) +(((|#1|) |has| |#1| (-174)) (($) . T)) +(-2779 (|has| |#2| (-826)) (|has| |#2| (-856))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-570)) . T) (($) . T)) +((((-777)) . T)) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) +((($) . T) (((-570)) . T)) +((($) . T)) +(|has| |#2| (-916)) +(|has| |#1| (-368)) +(((|#2|) |has| |#2| (-1109))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-542)) . T) (((-413 (-1182 (-570)))) . T) (((-227)) . T) (((-384)) . T)) +((((-384)) . T) (((-227)) . T) (((-868)) . T)) +(|has| |#1| (-916)) +(|has| |#1| (-916)) +(|has| |#1| (-916)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-916))) +((($) . T)) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) ((($) . T) ((|#2|) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)))) -((((-1183 |#1| |#2| |#3|)) -12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915))) -(((|#1|) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173))) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((((-867)) . T)) -((((-867)) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)))) +((((-1184 |#1| |#2| |#3|)) -12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-916))) +(((|#1|) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174))) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((((-868)) . T)) +((((-868)) . T)) ((($ $) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) ((($ $) . T)) -((((-569) (-112)) . T)) +((((-570) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-569)) . T)) +((((-570)) . T)) ((((-112)) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#1| (-569)) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#1| (-570)) . T)) ((($) . T)) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) (((|#1|) . T)) -((((-569)) . T)) +((((-570)) . T)) (((|#1| |#2|) . T)) -((((-1185)) |has| |#1| (-1057))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#1|) . T)) -((((-867)) . T)) -(((|#1| (-569)) . T)) -(((|#1| (-1267 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-412 (-569))) . T)) -(((|#1| (-1239 |#1| |#2| |#3|)) . T)) -(((|#1| (-776)) . T)) -(((|#1|) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-867)) . T)) -(|has| |#1| (-1108)) -((((-1167) |#1|) . T)) -((($) . T)) -(|has| |#2| (-147)) -(|has| |#2| (-145)) -(((|#1| (-536 (-823 (-1185))) (-823 (-1185))) . T)) -((((-867)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1057))) -((((-569) (-112)) . T)) -((((-867)) |has| |#1| (-1108))) -(((|#1|) . T) (((-569)) . T) (($) . T)) -(|has| |#2| (-173)) -((((-569)) . T)) -(|has| |#2| (-853)) -(((|#1|) . T)) -((((-569)) . T)) -((((-867)) . T)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-353))) -((((-867)) . T)) -(|has| |#1| (-147)) +((((-1186)) |has| |#1| (-1058))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#1|) . T)) +((((-868)) . T)) +(((|#1| (-570)) . T)) +(((|#1| (-1268 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-413 (-570))) . T)) +(((|#1| (-1240 |#1| |#2| |#3|)) . T)) +(((|#1| (-777)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(|has| |#1| (-1109)) +((((-1168) |#1|) . T)) +((($) . T)) +(|has| |#2| (-148)) +(|has| |#2| (-146)) +(((|#1| (-537 (-824 (-1186))) (-824 (-1186))) . T)) +((((-868)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1058))) +((((-570) (-112)) . T)) +((((-868)) |has| |#1| (-1109))) +(((|#1|) . T) (((-570)) . T) (($) . T)) +(|has| |#2| (-174)) +((((-570)) . T)) +(|has| |#2| (-854)) +(((|#1|) . T)) +((((-570)) . T)) +((((-868)) . T)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-354))) +((((-868)) . T)) +(|has| |#1| (-148)) (((|#3|) . T)) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-867)) . T)) -((((-1260 |#2| |#3| |#4|)) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T)) -((((-867)) . T)) -((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (((-617 $)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) -2776 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1057)) (((-1185)) . T)) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-868)) . T)) +((((-1261 |#2| |#3| |#4|)) . T) (((-1262 |#1| |#2| |#3| |#4|)) . T)) +((((-868)) . T)) +((((-48)) -12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (((-618 $)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) -2779 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-413 (-959 |#1|))) |has| |#1| (-562)) (((-959 |#1|)) |has| |#1| (-1058)) (((-1186)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-776)) . T)) -(((|#1|) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-312 |#1|))) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383)))) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-561)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -(((|#1|) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) |has| |#1| (-173))) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-1183 |#1| |#2| |#3|)) |has| |#1| (-367)) ((|#1|) . T)) -(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(((|#1|) |has| |#1| (-173))) -((((-867)) . T)) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -(((|#1|) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (((-569)) . T) (($) . T)) -(((|#3|) |has| |#3| (-1108))) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)))) -((((-1260 |#2| |#3| |#4|)) . T)) +(((|#1| (-777)) . T)) +(((|#1|) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-313 |#1|))) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +((((-570)) |has| |#1| (-893 (-570))) (((-384)) |has| |#1| (-893 (-384)))) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-562)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +(((|#1|) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-1184 |#1| |#2| |#3|)) |has| |#1| (-368)) ((|#1|) . T)) +(((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(((|#1|) |has| |#1| (-174))) +((((-868)) . T)) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +(((|#1|) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (((-570)) . T) (($) . T)) +(((|#3|) |has| |#3| (-1109))) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)))) +((((-1261 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -(((|#1| (-569) (-1090)) . T)) -((($) |has| |#1| (-312 $)) ((|#1|) |has| |#1| (-312 |#1|))) -(|has| |#1| (-853)) -(|has| |#1| (-853)) -(((|#1| (-569) (-1090)) . T)) -(-2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1| (-412 (-569)) (-1090)) . T)) -(((|#1| (-776) (-1090)) . T)) -(|has| |#1| (-855)) -(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -(((|#2|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-1108)) -((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-1108)) -((((-412 (-569))) |has| |#2| (-367)) (($) . T) (((-569)) . T)) -((((-569)) -2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))) -(((|#1|) . T)) -(|has| |#1| (-1108)) -((((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((|#2|) |has| |#1| (-367))) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) -((((-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704)))) . T)) -(((|#2|) |has| |#2| (-173))) -(((|#1|) |has| |#1| (-173))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -((((-867)) . T)) -(|has| |#3| (-853)) -((((-867)) . T)) -((((-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T)) -((((-867)) . T)) -(((|#1| |#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057)))) -(((|#1|) . T)) -((((-569)) . T)) -((((-569)) . T)) -(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057)))) -(((|#2|) |has| |#2| (-367))) -(((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-367))) -(|has| |#1| (-855)) -(((|#1|) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1|) . T) (((-569)) . T)) -(((|#2|) . T)) -((((-569)) . T) ((|#3|) . T)) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-915))) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) -((((-867)) . T)) -((((-867)) . T)) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) (((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057)))) -((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -((((-867)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-234)) +(|has| |#1| (-826)) +(|has| |#1| (-826)) +(((|#1| (-570) (-1091)) . T)) +((($) |has| |#1| (-313 $)) ((|#1|) |has| |#1| (-313 |#1|))) +(|has| |#1| (-854)) +(|has| |#1| (-854)) +(((|#1| (-570) (-1091)) . T)) +(-2779 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1| (-413 (-570)) (-1091)) . T)) +(((|#1| (-777) (-1091)) . T)) +(|has| |#1| (-856)) +(((#0=(-917 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T)) +(|has| |#2| (-146)) +(|has| |#2| (-148)) +(((|#2|) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-1109)) +((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-1109)) +((((-413 (-570))) |has| |#2| (-368)) (($) . T) (((-570)) . T)) +((((-570)) -2779 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))) +(((|#1|) . T)) +(|has| |#1| (-1109)) +((((-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-645 (-570)))) ((|#2|) |has| |#1| (-368))) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) +((((-695 (-344 (-3811) (-3811 (QUOTE X) (QUOTE HESS)) (-705)))) . T)) +(((|#2|) |has| |#2| (-174))) +(((|#1|) |has| |#1| (-174))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +((((-868)) . T)) +(|has| |#3| (-854)) +((((-868)) . T)) +((((-1261 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) . T)) +((((-868)) . T)) +(((|#1| |#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058)))) +(((|#1|) . T)) +((((-570)) . T)) +((((-570)) . T)) +(((|#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058)))) +(((|#2|) |has| |#2| (-368))) +(((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-368))) +(|has| |#1| (-856)) +(((|#1|) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1|) . T) (((-570)) . T)) +(((|#2|) . T)) +((((-570)) . T) ((|#3|) . T)) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) |has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-916))) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) +((((-868)) . T)) +((((-868)) . T)) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((-570)) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058)))) +((((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +((((-868)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-235)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -(|has| |#1| (-853)) -(((|#1| (-569)) . T)) +(|has| |#1| (-854)) +(((|#1| (-570)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1183 |#1| |#2| |#3|)) . T)) +(((|#1| (-1184 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-412 (-569))) . T)) -(((|#1| (-1176 |#1| |#2| |#3|)) . T)) -(((|#1| |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T)) -(((|#1| (-776)) . T)) +(((|#1| (-413 (-570))) . T)) +(((|#1| (-1177 |#1| |#2| |#3|)) . T)) +(((|#1| |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T)) +(((|#1| (-777)) . T)) (((|#1|) . T)) -((((-412 (-958 |#1|))) . T)) +((((-413 (-959 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -((((-412 (-958 |#1|))) . T)) -(((|#1|) |has| |#1| (-173))) -(|has| |#1| (-145)) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) |has| |#1| (-173))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-569)) . T) ((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-1185)) |has| |#1| (-1046 (-1185)))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-148)) +((((-413 (-959 |#1|))) . T)) +(((|#1|) |has| |#1| (-174))) +(|has| |#1| (-146)) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) |has| |#1| (-174))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-570)) . T) ((|#1|) . T) (($) . T) (((-413 (-570))) . T) (((-1186)) |has| |#1| (-1047 (-1186)))) (((|#1| |#2|) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) -2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))) ((|#1|) . T)) -((((-144)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#1|) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-569)) . T)) -((((-867)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| (-412 |#2|) (-234)) -((((-649 |#1|)) . T)) -(|has| |#1| (-915)) -(((|#2|) |has| |#2| (-1057))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(|has| |#1| (-367)) -(((|#1|) |has| |#1| (-173))) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) -2779 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))) ((|#1|) . T)) +((((-145)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#1|) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-570)) . T)) +((((-868)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| (-413 |#2|) (-235)) +((((-650 |#1|)) . T)) +(|has| |#1| (-916)) +(((|#2|) |has| |#2| (-1058))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(|has| |#1| (-368)) +(((|#1|) |has| |#1| (-174))) (((|#1| |#1|) . T)) -((((-875 |#1|)) . T)) -((((-867)) . T)) +((((-876 |#1|)) . T)) +((((-868)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1108))) +(((|#2|) |has| |#2| (-1109))) (((|#1|) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((((-649 $)) . T) (((-1167)) . T) (((-1185)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T)) -((($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) (((-569)) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057)))) -((((-412 (-569))) . T) (((-569)) . T) (((-617 $)) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((((-650 $)) . T) (((-1168)) . T) (((-1186)) . T) (((-570)) . T) (((-227)) . T) (((-868)) . T)) +((($) -2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) (((-570)) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-854)) (|has| |#3| (-1058))) ((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058)))) +((((-413 (-570))) . T) (((-570)) . T) (((-618 $)) . T)) (((|#1|) . T)) -((((-867)) . T)) +((((-868)) . T)) ((($) . T)) -(((|#1| (-536 |#2|) |#2|) . T)) -((((-867)) . T)) -(((|#1| (-569) (-1090)) . T)) -(((|#1| (-412 (-569)) (-1090)) . T)) -((((-916 |#1|)) . T)) -((((-867)) . T)) +(((|#1| (-537 |#2|) |#2|) . T)) +((((-868)) . T)) +(((|#1| (-570) (-1091)) . T)) +(((|#1| (-413 (-570)) (-1091)) . T)) +((((-917 |#1|)) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-776) (-1090)) . T)) -(((#0=(-412 |#2|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-569)) -2776 (|has| (-412 (-569)) (-1046 (-569))) (|has| |#1| (-1046 (-569)))) (((-412 (-569))) . T)) -(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-173))) +(((|#1| (-777) (-1091)) . T)) +(((#0=(-413 |#2|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-570)) -2779 (|has| (-413 (-570)) (-1047 (-570))) (|has| |#1| (-1047 (-570)))) (((-413 (-570))) . T)) +(((|#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -(|has| |#2| (-234)) -(((|#2| (-536 (-869 |#1|)) (-869 |#1|)) . T)) -((((-867)) . T)) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +(|has| |#2| (-235)) +(((|#2| (-537 (-870 |#1|)) (-870 |#1|)) . T)) +((((-868)) . T)) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) (((|#1| |#3|) . T)) -((((-867)) . T)) -(((|#1|) |has| |#1| (-173)) (((-958 |#1|)) . T) (((-569)) . T)) -(((|#1|) |has| |#1| (-173))) -((((-704)) . T)) -((((-704)) . T)) -(((|#2|) |has| |#2| (-173))) -(|has| |#2| (-853)) -((((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) -((((-112)) |has| |#1| (-1108)) (((-867)) -2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)) (|has| |#1| (-1108)))) +((((-868)) . T)) +(((|#1|) |has| |#1| (-174)) (((-959 |#1|)) . T) (((-570)) . T)) +(((|#1|) |has| |#1| (-174))) +((((-705)) . T)) +((((-705)) . T)) +(((|#2|) |has| |#2| (-174))) +(|has| |#2| (-854)) +((((-570)) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) +((((-112)) |has| |#1| (-1109)) (((-868)) -2779 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)) (|has| |#1| (-1109)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-704)) . T) (((-412 (-569))) . T) (((-569)) . T)) -(((|#1| |#1|) |has| |#1| (-173))) -(((|#2|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-569) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -((((-383)) . T)) -((((-704)) . T)) -((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#)) -(((|#1|) |has| |#1| (-173))) -((((-412 (-958 |#1|))) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-705)) . T) (((-413 (-570))) . T) (((-570)) . T)) +(((|#1| |#1|) |has| |#1| (-174))) +(((|#2|) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-570) |#1|) . T)) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +((((-384)) . T)) +((((-705)) . T)) +((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#)) +(((|#1|) |has| |#1| (-174))) +((((-413 (-959 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#3|) |has| |#3| (-1057))) -(|has| |#2| (-915)) -(|has| |#1| (-915)) -(|has| |#1| (-367)) -((((-1185)) |has| |#2| (-906 (-1185)))) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-478)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-367)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-478)) (|has| |#1| (-561)) (|has| |#1| (-1057)) (|has| |#1| (-1120))) -(|has| |#1| (-38 (-412 (-569)))) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-353)) -((((-144)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((($) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#2|) . T) (((-867)) . T)) -(((|#2|) . T) (((-867)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-855)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#3|) |has| |#3| (-1058))) +(|has| |#2| (-916)) +(|has| |#1| (-916)) +(|has| |#1| (-368)) +((((-1186)) |has| |#2| (-907 (-1186)))) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-479)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-368)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-479)) (|has| |#1| (-562)) (|has| |#1| (-1058)) (|has| |#1| (-1121))) +(|has| |#1| (-38 (-413 (-570)))) +((((-117 |#1|)) . T)) +((((-117 |#1|)) . T)) +(|has| |#1| (-354)) +((((-145)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((($) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#2|) . T) (((-868)) . T)) +(((|#2|) . T) (((-868)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-856)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-569)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) ((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) +((($) . T) (((-570)) . T)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) ((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (((|#2|) . T)) (((|#3|) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-855)) -(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -((((-116 |#1|)) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#2|) |has| |#2| (-173))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-569)) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-867)) . T)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#1| (-1030))) (((-226)) . #0#)) -(((|#1|) |has| |#1| (-367))) -((((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((($ $) . T) (((-617 $) $) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -((($) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T)) -((($) -2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561))) -((($) . T) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-383)) . T) (((-569)) . T) (((-412 (-569))) . T)) -((((-649 (-785 |#1| (-869 |#2|)))) . T) (((-867)) . T)) -((((-541)) |has| (-785 |#1| (-869 |#2|)) (-619 (-541)))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-383)) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) -(((|#1|) |has| |#1| (-173))) -((((-867)) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-915))) -(((|#1|) . T)) -((($) |has| |#1| (-561)) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((((-776)) . T)) -(|has| |#1| (-1108)) -((($) -2776 (|has| |#2| (-173)) (|has| |#2| (-853)) (|has| |#2| (-1057))) (((-569)) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) ((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057)))) -((((-867)) . T)) -((((-1185)) . T) (((-867)) . T)) -((((-569)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) -((((-412 (-569))) . T) (((-569)) . T) (((-617 $)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -((((-569)) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (($) . T)) -((((-569)) . T)) -(|has| |#1| (-367)) -(-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147))) -(-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))) -(|has| |#1| (-367)) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(|has| |#1| (-234)) -(|has| |#1| (-367)) +((((-117 |#1|)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-856)) +(((|#2|) . T) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +((((-117 |#1|)) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#2|) |has| |#2| (-174))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-570)) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-868)) . T)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384)))) (((-384)) . #0=(|has| |#1| (-1031))) (((-227)) . #0#)) +(((|#1|) |has| |#1| (-368))) +((((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((($ $) . T) (((-618 $) $) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +((($) . T) (((-1262 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T)) +((($) -2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562))) +((($) . T) (((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-384)) . T) (((-570)) . T) (((-413 (-570))) . T)) +((((-650 (-786 |#1| (-870 |#2|)))) . T) (((-868)) . T)) +((((-542)) |has| (-786 |#1| (-870 |#2|)) (-620 (-542)))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-384)) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) +(((|#1|) |has| |#1| (-174))) +((((-868)) . T)) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-916))) +(((|#1|) . T)) +((($) |has| |#1| (-562)) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((((-777)) . T)) +(|has| |#1| (-1109)) +((($) -2779 (|has| |#2| (-174)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((-570)) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) ((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058)))) +((((-868)) . T)) +((((-1186)) . T) (((-868)) . T)) +((((-570)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) +((((-413 (-570))) . T) (((-570)) . T) (((-618 $)) . T)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +((((-570)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(((#0=(-1261 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))) (($) . T)) +((((-570)) . T)) +(|has| |#1| (-368)) +(-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-148)) (|has| |#1| (-368))) (|has| |#1| (-148))) +(-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))) +(|has| |#1| (-368)) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +(|has| |#1| (-235)) +(|has| |#1| (-368)) (((|#3|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-569)) |has| |#2| (-644 (-569))) ((|#2|) . T)) -(((|#2|) . T) (($) . T) (((-569)) . T)) -(((|#2|) . T)) -((((-412 (-569))) . #0=(|has| |#2| (-367))) (($) . #0#)) -((((-412 (-569))) |has| |#2| (-367)) (($) . T)) -(|has| |#1| (-1108)) -((((-1150 |#2| |#1|)) . T) ((|#1|) . T) (((-569)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-570)) |has| |#2| (-645 (-570))) ((|#2|) . T)) +(((|#2|) . T) (($) . T) (((-570)) . T)) +(((|#2|) . T)) +((((-413 (-570))) . #0=(|has| |#2| (-368))) (($) . #0#)) +((((-413 (-570))) |has| |#2| (-368)) (($) . T)) +(|has| |#1| (-1109)) +((((-1151 |#2| |#1|)) . T) ((|#1|) . T) (((-570)) . T)) (((|#1| |#2|) . T)) -((((-569)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569)))))) -(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569)))) -(((|#3|) |has| |#3| (-173))) -(((|#2|) . T) (($) . T) (((-569)) . T)) -(((|#1|) . T) (($) . T) (((-569)) . T)) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) -((((-867)) . T)) -((((-569)) . T)) -(((|#1| $) |has| |#1| (-289 |#1| |#1|))) -((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T)) -((((-958 |#1|)) . T) (((-867)) . T)) +((((-570)) . T) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570)))))) +(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570)))) +(((|#3|) |has| |#3| (-174))) +(((|#2|) . T) (($) . T) (((-570)) . T)) +(((|#1|) . T) (($) . T) (((-570)) . T)) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) +((((-868)) . T)) +((((-570)) . T)) +(((|#1| $) |has| |#1| (-290 |#1| |#1|))) +((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T)) +((((-959 |#1|)) . T) (((-868)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-293)) (|has| |#1| (-367))) ((#0=(-412 (-569)) #0#) |has| |#1| (-367))) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -((((-958 |#1|)) . T)) -((($) . T)) -((((-569) |#1|) . T)) -((((-1185)) |has| (-412 |#2|) (-906 (-1185)))) -(((|#1|) . T) (($) -2776 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367))) -((((-541)) |has| |#2| (-619 (-541)))) -((((-694 |#2|)) . T) (((-867)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -((((-875 |#1|)) . T)) -(((|#1|) |has| |#1| (-173))) -(-2776 (|has| |#4| (-798)) (|has| |#4| (-853))) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((($) . T) (((-569)) . T) ((|#2|) . T)) -(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)))) -(((|#2|) |has| |#2| (-1057))) +(((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-294)) (|has| |#1| (-368))) ((#0=(-413 (-570)) #0#) |has| |#1| (-368))) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +((((-959 |#1|)) . T)) +((($) . T)) +((((-570) |#1|) . T)) +((((-1186)) |has| (-413 |#2|) (-907 (-1186)))) +(((|#1|) . T) (($) -2779 (|has| |#1| (-294)) (|has| |#1| (-368))) (((-413 (-570))) |has| |#1| (-368))) +((((-542)) |has| |#2| (-620 (-542)))) +((((-695 |#2|)) . T) (((-868)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +((((-876 |#1|)) . T)) +(((|#1|) |has| |#1| (-174))) +(-2779 (|has| |#4| (-799)) (|has| |#4| (-854))) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((($) . T) (((-570)) . T) ((|#2|) . T)) +(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)))) +(((|#2|) |has| |#2| (-1058))) (((|#3|) . T)) (((|#1|) . T)) -((((-412 |#2|)) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)))) -(((|#1|) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173))) -(((|#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) -((((-569) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) . T) (($) . T)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-1229))) -((($) . T)) -((((-412 (-569))) |has| #0=(-412 |#2|) (-1046 (-412 (-569)))) (((-569)) |has| #0# (-1046 (-569))) ((#0#) . T)) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) -(((|#1| (-776)) . T)) -(|has| |#1| (-855)) -(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569)))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-569)) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))))) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(|has| |#1| (-853)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-353)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-1167)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T)) -((((-867)) . T)) -(((|#2|) . T) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1090)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) +((((-413 |#2|)) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)))) +(((|#1|) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174))) +(((|#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) +((((-570) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) . T) (($) . T)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-1230))) +((($) . T)) +((((-413 (-570))) |has| #0=(-413 |#2|) (-1047 (-413 (-570)))) (((-570)) |has| #0# (-1047 (-570))) ((#0#) . T)) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) +(((|#1| (-777)) . T)) +(|has| |#1| (-856)) +(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570)))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-570)) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((((-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) |has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))))) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(|has| |#1| (-854)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-354)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-1168)) . T) (((-512)) . T) (((-227)) . T) (((-570)) . T)) +((((-868)) . T)) +(((|#2|) . T) (((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1091)) . T) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (((|#1| |#2|) . T)) -((((-144)) . T)) -((((-785 |#1| (-869 |#2|))) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(|has| |#1| (-1210)) -((((-867)) . T)) -(((|#1|) . T)) -(-2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-372)) (|has| |#3| (-731)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057)) (|has| |#3| (-1108))) -((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|))) -(((|#2|) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -((((-916 |#1|)) . T)) -((($) . T)) -((((-412 (-958 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-541)) |has| |#4| (-619 (-541)))) -((((-867)) . T) (((-649 |#4|)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-853)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) |has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) -(|has| |#1| (-1108)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)))) -((((-677 |#1|)) . T)) -(((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057))) (($) |has| |#3| (-173))) -((($) . T) (((-412 (-569))) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-147)) (|has| |#1| (-367))) (|has| |#1| (-147))) -(-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -(|has| |#1| (-853)) +((((-145)) . T)) +((((-786 |#1| (-870 |#2|))) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(|has| |#1| (-1211)) +((((-868)) . T)) +(((|#1|) . T)) +(-2779 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-373)) (|has| |#3| (-732)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058)) (|has| |#3| (-1109))) +((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|))) +(((|#2|) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +((((-917 |#1|)) . T)) +((($) . T)) +((((-413 (-959 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-542)) |has| |#4| (-620 (-542)))) +((((-868)) . T) (((-650 |#4|)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-854)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) |has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))))) +(|has| |#1| (-1109)) +(|has| |#1| (-368)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)))) +((((-678 |#1|)) . T)) +(((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058))) (($) |has| |#3| (-174))) +((($) . T) (((-413 (-570))) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-148)) (|has| |#1| (-368))) (|has| |#1| (-148))) +(-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +(|has| |#1| (-854)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569)))) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-1108)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T) (((-569)) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-147)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-1108)) -(((|#2|) |has| |#2| (-173))) -((((-569)) . T) ((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-569)) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570)))) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-1109)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T) (((-570)) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T)) +(|has| |#2| (-146)) +(|has| |#2| (-148)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-1109)) +(((|#2|) |has| |#2| (-174))) +((((-570)) . T) ((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-570)) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-367))) -((((-412 |#2|)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-569)) . T) (($) . T) (((-412 (-569))) . T)) -((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|))) -(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((((-319 |#1|)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#2|) |has| |#2| (-367))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -(((|#2|) . T)) -((((-412 (-569))) . T) (((-704)) . T) (($) . T)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((#0=(-785 |#1| (-869 |#2|)) #0#) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|))))) -((((-569)) . T) (($) . T)) -((((-869 |#1|)) . T)) -(((|#2|) |has| |#2| (-173))) -(((|#1|) |has| |#1| (-173))) -(((|#2|) . T)) -((((-1185)) |has| |#1| (-906 (-1185))) (((-1090)) . T)) -((((-1185)) |has| |#1| (-906 (-1185))) (((-1096 (-1185))) . T)) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(|has| |#1| (-38 (-412 (-569)))) -(((|#4|) |has| |#4| (-1057)) (((-569)) -12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057)))) -(((|#3|) |has| |#3| (-1057)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) +(((|#3|) |has| |#3| (-368))) +((((-413 |#2|)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-570)) . T) (($) . T) (((-413 (-570))) . T)) +((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|))) +(((|#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((((-320 |#1|)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#2|) |has| |#2| (-368))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +(((|#2|) . T)) +((((-413 (-570))) . T) (((-705)) . T) (($) . T)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((#0=(-786 |#1| (-870 |#2|)) #0#) |has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|))))) +((((-570)) . T) (($) . T)) +((((-870 |#1|)) . T)) +(((|#2|) |has| |#2| (-174))) +(((|#1|) |has| |#1| (-174))) +(((|#2|) . T)) +((((-1186)) |has| |#1| (-907 (-1186))) (((-1091)) . T)) +((((-1186)) |has| |#1| (-907 (-1186))) (((-1097 (-1186))) . T)) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(|has| |#1| (-38 (-413 (-570)))) +(((|#4|) |has| |#4| (-1058)) (((-570)) -12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058)))) +(((|#3|) |has| |#3| (-1058)) (((-570)) -12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) ((($ $) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)) (|has| |#1| (-1108))) -(|has| |#1| (-561)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)) (|has| |#1| (-1109))) +(|has| |#1| (-562)) (((|#2|) . T)) -((((-569)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +((((-570)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) (((|#1|) . T)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-586 |#1|)) . T)) +((((-587 |#1|)) . T)) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-867)) . T)) -(((|#2|) |has| |#2| (-6 (-4449 "*")))) +((((-868)) . T)) +(((|#2|) |has| |#2| (-6 (-4450 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#3|) . T)) ((($) . T)) -(((|#2|) . T) (((-569)) . T) (($) . T)) +(((|#2|) . T) (((-570)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) . T) (((-569)) . T)) -((((-1260 |#2| |#3| |#4|)) . T) (((-569)) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-48)) -12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (((-569)) -2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))) (|has| |#1| (-1057))) ((|#1|) . T) (((-617 $)) . T) (($) |has| |#1| (-561)) (((-412 (-569))) -2776 (|has| |#1| (-561)) (|has| |#1| (-1046 (-412 (-569))))) (((-412 (-958 |#1|))) |has| |#1| (-561)) (((-958 |#1|)) |has| |#1| (-1057)) (((-1185)) . T)) -((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-412 (-569))) . T)) -((((-1133 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((((-1181 |#1|)) . T) (((-1090)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((((-1133 |#1| (-1185))) . T) (((-1096 (-1185))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-1185)) . T)) -(|has| |#1| (-1108)) +(((|#3|) . T) (((-570)) . T)) +((((-1261 |#2| |#3| |#4|)) . T) (((-570)) . T) (((-1262 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-48)) -12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (((-570)) -2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))) (|has| |#1| (-1058))) ((|#1|) . T) (((-618 $)) . T) (($) |has| |#1| (-562)) (((-413 (-570))) -2779 (|has| |#1| (-562)) (|has| |#1| (-1047 (-413 (-570))))) (((-413 (-959 |#1|))) |has| |#1| (-562)) (((-959 |#1|)) |has| |#1| (-1058)) (((-1186)) . T)) +((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T)) +((($) . T) (((-117 |#1|)) . T) (((-413 (-570))) . T)) +((((-1134 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((((-1182 |#1|)) . T) (((-1091)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((((-1134 |#1| (-1186))) . T) (((-1097 (-1186))) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-1186)) . T)) +(|has| |#1| (-1109)) ((($) . T)) -(|has| |#1| (-1108)) -((((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))) (((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) +(|has| |#1| (-1109)) +((((-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))) (((-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384))))) (((|#1| |#2|) . T)) -((((-1185) |#1|) . T)) +((((-1186) |#1|) . T)) (((|#4|) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-1185) (-52)) . T)) -((((-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T)) -((((-867)) . T)) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-372)) (|has| |#2| (-731)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057)) (|has| |#2| (-1108))) -(((#0=(-1261 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-173)) ((#0=(-412 (-569)) #0#) |has| |#1| (-561)) (($ $) |has| |#1| (-561))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1| $) |has| |#1| (-289 |#1| |#1|))) -((((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)) (($) |has| |#1| (-561))) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T)) -(|has| |#1| (-367)) -((($) |has| |#1| (-853)) (((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-853)))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((((-412 (-569))) . T) (($) . T)) -(((|#3|) |has| |#3| (-367))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -((((-1185)) . T)) -((($) . T) (((-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569)))) (((-569)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-1186) (-52)) . T)) +((((-1261 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T)) +((((-868)) . T)) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-373)) (|has| |#2| (-732)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058)) (|has| |#2| (-1109))) +(((#0=(-1262 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-174)) ((#0=(-413 (-570)) #0#) |has| |#1| (-562)) (($ $) |has| |#1| (-562))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1| $) |has| |#1| (-290 |#1| |#1|))) +((((-1262 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562)) (($) |has| |#1| (-562))) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T)) +(|has| |#1| (-368)) +((($) |has| |#1| (-854)) (((-570)) -2779 (|has| |#1| (-21)) (|has| |#1| (-854)))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +((((-413 (-570))) . T) (($) . T)) +(((|#3|) |has| |#3| (-368))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +((((-1186)) . T)) +((($) . T) (((-1261 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| (-1261 |#2| |#3| |#4|) (-38 (-413 (-570)))) (((-570)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (((|#2| |#3|) . T)) -(-2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(((|#1| (-536 |#2|)) . T)) -(((|#1| (-776)) . T)) -(((|#1| (-536 (-1096 (-1185)))) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#1|) . T)) -(|has| |#2| (-915)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -((((-867)) . T)) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)))) -(((|#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-1057))) (($) |has| |#2| (-173))) -((($ $) . T) ((#0=(-1260 |#2| |#3| |#4|) #0#) . T) ((#1=(-412 (-569)) #1#) |has| #0# (-38 (-412 (-569))))) -((((-916 |#1|)) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-825))) -((($) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -((($) . T)) -((($) . T)) -(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353)) (|has| |#1| (-561))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) +(-2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(((|#1| (-537 |#2|)) . T)) +(((|#1| (-777)) . T)) +(((|#1| (-537 (-1097 (-1186)))) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#1|) . T)) +(|has| |#2| (-916)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +((((-868)) . T)) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)))) +(((|#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-1058))) (($) |has| |#2| (-174))) +((($ $) . T) ((#0=(-1261 |#2| |#3| |#4|) #0#) . T) ((#1=(-413 (-570)) #1#) |has| #0# (-38 (-413 (-570))))) +((((-917 |#1|)) . T)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-826))) +((($) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +((($) . T)) +((($) . T)) +(-2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354)) (|has| |#1| (-562))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569))))) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) -(-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367)) (|has| |#1| (-353))) -(-2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) -((((-569)) |has| |#1| (-644 (-569))) ((|#1|) . T)) +((($) . T) ((#0=(-1261 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570))))) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) +(-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368)) (|has| |#1| (-354))) +(-2779 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) +((((-570)) |has| |#1| (-645 (-570))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-868)) . T)) +((((-868)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T)) +(((|#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) . T)) (((|#2|) . T)) -(|has| |#2| (-367)) -(|has| |#1| (-855)) +(|has| |#2| (-368)) +(|has| |#1| (-856)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-569)) . T)) +((((-570)) . T)) (((|#1|) . T)) -((((-867)) . T)) -(((|#2|) |has| |#2| (-173))) -(|has| |#1| (-1108)) -(((|#1|) |has| |#1| (-173))) +((((-868)) . T)) +(((|#2|) |has| |#2| (-174))) +(|has| |#1| (-1109)) +(((|#1|) |has| |#1| (-174))) (((|#2|) . T)) (((|#1|) . T)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T) (((-569)) . T) (($) . T)) -(((|#3|) . T) (((-569)) . T) (($) . T)) -((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-825)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T) (((-570)) . T) (($) . T)) +(((|#3|) . T) (((-570)) . T) (($) . T)) +((((-413 $) (-413 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-826)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-867)) . T)) -(((|#1| (-536 (-1185))) . T)) -(((|#1|) |has| |#1| (-173))) -((((-867)) . T)) -(((|#2|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#2|) . T)) -(((|#2|) -2776 (|has| |#2| (-6 (-4449 "*"))) (|has| |#2| (-173)))) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(|has| |#2| (-915)) -(|has| |#1| (-915)) -(((|#2|) |has| |#2| (-173))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -((((-867)) . T)) -((((-867)) . T)) -((((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) +((((-868)) . T)) +(((|#1| (-537 (-1186))) . T)) +(((|#1|) |has| |#1| (-174))) +((((-868)) . T)) +(((|#2|) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#2|) . T)) +(((|#2|) -2779 (|has| |#2| (-6 (-4450 "*"))) (|has| |#2| (-174)))) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(|has| |#2| (-916)) +(|has| |#1| (-916)) +(((|#2|) |has| |#2| (-174))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +((((-868)) . T)) +((((-868)) . T)) +((((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-569)) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T)) +((($) . T) (((-570)) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-867)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) -((($) . T) (((-569)) . T)) -(((|#1| (-412 (-569))) . T)) +((($) . T) (((-570)) . T)) +(((|#1| (-413 (-570))) . T)) (((|#1|) . T)) -(-2776 (|has| |#1| (-293)) (|has| |#1| (-367))) -((((-144)) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-853)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T)) +(-2779 (|has| |#1| (-294)) (|has| |#1| (-368))) +((((-145)) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-854)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-188)) . T) (((-867)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-189)) . T) (((-868)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541))) (((-898 (-569))) |has| |#1| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#1| (-619 (-898 (-383))))) -((((-1185) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-649 (-144))) . T) (((-1167)) . T)) -((((-867)) . T)) -((((-1167)) . T)) -((((-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((|#1| |#1|) |has| |#1| (-312 |#1|))) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -(|has| |#1| (-855)) -((((-867)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) . T)) -(((|#2|) |has| |#2| (-367))) -((((-867)) . T)) -((((-541)) |has| |#4| (-619 (-541)))) -((((-867)) . T) (((-649 |#4|)) . T)) -(((|#2|) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T) (((-617 $)) . T)) -(-2776 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1057))) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-1185) (-52)) . T)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(|has| |#1| (-915)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(|has| |#1| (-915)) -(((|#1|) . T) (((-569)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((((-569)) . T)) -(((#0=(-412 (-569)) #0#) . T) (($ $) . T)) -((((-412 (-569))) . T) (($) . T)) -(((|#1| (-412 (-569)) (-1090)) . T)) -(|has| |#1| (-1108)) -(|has| |#1| (-561)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(|has| |#1| (-825)) -(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T)) -((((-412 |#2|)) . T)) -(|has| |#1| (-853)) -((((-1211 |#1|)) . T) (((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) . T) ((#1=(-569) #1#) . T) (($ $) . T)) -((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#2|) |has| |#2| (-1057)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542))) (((-899 (-570))) |has| |#1| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#1| (-620 (-899 (-384))))) +((((-1186) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-650 (-145))) . T) (((-1168)) . T)) +((((-868)) . T)) +((((-1168)) . T)) +((((-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((|#1| |#1|) |has| |#1| (-313 |#1|))) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +(|has| |#1| (-856)) +((((-868)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) . T)) +(((|#2|) |has| |#2| (-368))) +((((-868)) . T)) +((((-542)) |has| |#4| (-620 (-542)))) +((((-868)) . T) (((-650 |#4|)) . T)) +(((|#2|) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T) (((-618 $)) . T)) +(-2779 (|has| |#4| (-174)) (|has| |#4| (-732)) (|has| |#4| (-854)) (|has| |#4| (-1058))) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-1186) (-52)) . T)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(|has| |#1| (-916)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(|has| |#1| (-916)) +(((|#1|) . T) (((-570)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-570)) . T)) +(((#0=(-413 (-570)) #0#) . T) (($ $) . T)) +((((-413 (-570))) . T) (($) . T)) +(((|#1| (-413 (-570)) (-1091)) . T)) +(|has| |#1| (-1109)) +(|has| |#1| (-562)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(|has| |#1| (-826)) +(((#0=(-917 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T)) +((((-413 |#2|)) . T)) +(|has| |#1| (-854)) +((((-1212 |#1|)) . T) (((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) . T) ((#1=(-570) #1#) . T) (($ $) . T)) +((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#2|) |has| |#2| (-1058)) (((-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -(((|#2|) . T)) -((((-867)) . T)) -((((-412 (-569))) . T) (((-704)) . T) (($) . T) (((-569)) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#2|) |has| |#2| (-173))) -(((|#1|) . T)) -(((|#2|) . T)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2006 (-1185)) (|:| -2216 #0#))) . T)) -(|has| |#1| (-353)) -((((-569)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -(((#0=(-1261 |#1| |#2| |#3| |#4|) $) |has| #0# (-289 #0# #0#))) -(|has| |#1| (-367)) -(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057))) (($) -2776 (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057))) (((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)))) -(((#0=(-1090) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -(((#0=(-412 (-569)) #0#) . T) ((#1=(-704) #1#) . T) (($ $) . T)) -((((-319 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367))) -((((-867)) . T)) -(|has| |#1| (-1108)) -(((|#1|) . T)) -(((|#1|) -2776 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|)))) -(((|#1|) -2776 (|has| |#2| (-371 |#1|)) (|has| |#2| (-422 |#1|)))) -(((|#2|) . T)) -((((-412 (-569))) . T) (((-704)) . T) (($) . T)) -((((-584)) . T)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +(((|#2|) . T)) +((((-868)) . T)) +((((-413 (-570))) . T) (((-705)) . T) (($) . T) (((-570)) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#2|) |has| |#2| (-174))) +(((|#1|) . T)) +(((|#2|) . T)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -2009 (-1186)) (|:| -2219 #0#))) . T)) +(|has| |#1| (-354)) +((((-570)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +(((#0=(-1262 |#1| |#2| |#3| |#4|) $) |has| #0# (-290 #0# #0#))) +(|has| |#1| (-368)) +(((|#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058))) (($) -2779 (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058))) (((-570)) -2779 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)))) +(((#0=(-1091) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +(((#0=(-413 (-570)) #0#) . T) ((#1=(-705) #1#) . T) (($ $) . T)) +((((-320 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-368))) +((((-868)) . T)) +(|has| |#1| (-1109)) +(((|#1|) . T)) +(((|#1|) -2779 (|has| |#2| (-372 |#1|)) (|has| |#2| (-423 |#1|)))) +(((|#1|) -2779 (|has| |#2| (-372 |#1|)) (|has| |#2| (-423 |#1|)))) +(((|#2|) . T)) +((((-413 (-570))) . T) (((-705)) . T) (($) . T)) +((((-585)) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-234)) -((((-869 |#1|)) . T)) -((((-1185)) |has| |#1| (-906 (-1185))) ((|#3|) . T)) -((((-649 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-1030))) -((((-412 (-569))) . T) (($) . T)) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) -((($) . T) (((-412 (-569))) . T)) -((((-867)) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T)) -((((-569)) . T) (((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-569)) . T)) +(|has| |#2| (-235)) +((((-870 |#1|)) . T)) +((((-1186)) |has| |#1| (-907 (-1186))) ((|#3|) . T)) +((((-650 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-1031))) +((((-413 (-570))) . T) (($) . T)) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) +((($) . T) (((-413 (-570))) . T)) +((((-868)) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T)) +((((-570)) . T) (((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-570)) . T)) (((|#3|) . T)) -(|has| |#1| (-1108)) +(|has| |#1| (-1109)) (((|#2|) . T)) (((|#1|) . T)) -((((-569)) . T)) -(((|#2|) . T) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (($) . T) (((-569)) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) +((((-570)) . T)) +(((|#2|) . T) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (($) . T) (((-570)) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((($) . T) (((-412 (-569))) . T)) +((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((($) . T) (((-413 (-570))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1|) . T) (((-569)) . T)) -(((|#1|) . T) (((-569)) . T)) -(((|#1| (-1275 |#1|) (-1275 |#1|)) . T)) +(((|#1|) . T) (((-570)) . T)) +(((|#1|) . T) (((-570)) . T)) +(((|#1| (-1276 |#1|) (-1276 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) -((((-867)) . T)) -((((-867)) . T)) +((((-868)) . T)) +((((-868)) . T)) (((|#2|) . T)) (((|#3|) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) -((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T)) -((((-1133 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#2|) . T)) +(((#0=(-117 |#1|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) +((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T)) +((((-1134 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) ((($ $) . T)) -((((-677 |#1|)) . T)) -((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) (((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383))))) +((((-678 |#1|)) . T)) +((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((((-117 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) (((-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) (($) . T)) -((((-144)) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) (($) . T)) +((((-145)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-383)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-384)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) (((|#1|) . T)) -(|has| |#2| (-915)) -(|has| |#1| (-915)) -(|has| |#1| (-915)) +(|has| |#2| (-916)) +(|has| |#1| (-916)) +(|has| |#1| (-916)) (((|#4|) . T)) -(|has| |#2| (-1030)) +(|has| |#2| (-1031)) ((($) . T)) -(|has| |#1| (-915)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +(|has| |#1| (-916)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-367)) -((((-916 |#1|)) . T)) -((($) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) |has| |#1| (-853)) (((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-853)))) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(-2776 (|has| |#1| (-372)) (|has| |#1| (-855))) -(((|#1|) . T)) -((((-776)) . T)) -((((-867)) . T)) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) -((((-412 |#2|) |#3|) . T)) -((($) . T) (((-412 (-569))) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T) (((-617 $)) . T)) -((((-569)) . T) (($) . T)) -((((-569)) . T) (($) . T)) -((((-776) |#1|) . T)) -(((|#2| (-241 (-2428 |#1|) (-776))) . T)) -(((|#1| (-536 |#3|)) . T)) -((((-412 (-569))) . T)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-1167)) . T) (((-867)) . T)) -(((#0=(-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) #0#) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) -((((-1167)) . T)) -(|has| |#1| (-915)) -(|has| |#2| (-367)) -(((|#1|) . T) (($) . T) (((-569)) . T)) -(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-170 (-383))) . T) (((-226)) . T) (((-383)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-383)) . T) (((-569)) . T)) -(((#0=(-412 (-569)) #0#) . T) (($ $) . T)) +(|has| |#1| (-368)) +((((-917 |#1|)) . T)) +((($) . T) (((-570)) . T) ((|#1|) . T) (((-413 (-570))) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) |has| |#1| (-854)) (((-570)) -2779 (|has| |#1| (-21)) (|has| |#1| (-854)))) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(-2779 (|has| |#1| (-373)) (|has| |#1| (-856))) +(((|#1|) . T)) +((((-777)) . T)) +((((-868)) . T)) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) +((((-413 |#2|) |#3|) . T)) +((($) . T) (((-413 (-570))) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T) (((-618 $)) . T)) +((((-570)) . T) (($) . T)) +((((-570)) . T) (($) . T)) +((((-777) |#1|) . T)) +(((|#2| (-242 (-2431 |#1|) (-777))) . T)) +(((|#1| (-537 |#3|)) . T)) +((((-413 (-570))) . T)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-1168)) . T) (((-868)) . T)) +(((#0=(-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) #0#) |has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))))) +((((-1168)) . T)) +(|has| |#1| (-916)) +(|has| |#2| (-368)) +(((|#1|) . T) (($) . T) (((-570)) . T)) +(-2779 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-171 (-384))) . T) (((-227)) . T) (((-384)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-384)) . T) (((-570)) . T)) +(((#0=(-413 (-570)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-867)) . T)) -(|has| |#1| (-561)) -((((-412 (-569))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353))) -(|has| |#1| (-38 (-412 (-569)))) -(-12 (|has| |#1| (-550)) (|has| |#1| (-833))) -((((-867)) . T)) -((((-1185)) -2776 (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))) (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1185)))))) -(|has| |#1| (-367)) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) -(|has| |#1| (-367)) -((((-412 (-569))) . T) (($) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((((-569) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) |has| |#1| (-367))) -(((|#2|) |has| |#1| (-367))) -((((-569)) . T) (($) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#1|) . T)) -(((|#2|) . T) (((-1185)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))) (((-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569))))) -(((|#2|) . T)) -((((-1185) #0=(-1261 |#1| |#2| |#3| |#4|)) |has| #0# (-519 (-1185) #0#)) ((#0# #0#) |has| #0# (-312 #0#))) -((((-412 (-569))) . T) (($) . T) (((-412 |#1|)) . T) ((|#1|) . T)) -((((-617 $) $) . T) (($ $) . T)) -((((-170 (-226))) . T) (((-170 (-383))) . T) (((-1181 (-704))) . T) (((-898 (-383))) . T)) +((((-868)) . T)) +(|has| |#1| (-562)) +((((-413 (-570))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +(-2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354))) +(|has| |#1| (-38 (-413 (-570)))) +(-12 (|has| |#1| (-551)) (|has| |#1| (-834))) +((((-868)) . T)) +((((-1186)) -2779 (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))) (-12 (|has| |#1| (-368)) (|has| |#2| (-907 (-1186)))))) +(|has| |#1| (-368)) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) +(|has| |#1| (-368)) +((((-413 (-570))) . T) (($) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((((-570) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) |has| |#1| (-368))) +(((|#2|) |has| |#1| (-368))) +((((-570)) . T) (($) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#1|) . T)) +(((|#2|) . T) (((-1186)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) (((-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))) (((-413 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570))))) +(((|#2|) . T)) +((((-1186) #0=(-1262 |#1| |#2| |#3| |#4|)) |has| #0# (-520 (-1186) #0#)) ((#0# #0#) |has| #0# (-313 #0#))) +((((-413 (-570))) . T) (($) . T) (((-413 |#1|)) . T) ((|#1|) . T)) +((((-618 $) $) . T) (($ $) . T)) +((((-171 (-227))) . T) (((-171 (-384))) . T) (((-1182 (-705))) . T) (((-899 (-384))) . T)) (((|#3|) . T)) -(|has| |#1| (-561)) -(|has| (-412 |#2|) (-234)) -(((|#1| (-412 (-569))) . T)) -((($) . T) (((-412 (-569))) . T) (((-412 |#1|)) . T) ((|#1|) . T)) +(|has| |#1| (-562)) +(|has| (-413 |#2|) (-235)) +(((|#1| (-413 (-570))) . T)) +((($) . T) (((-413 (-570))) . T) (((-413 |#1|)) . T) ((|#1|) . T)) (((|#3|) . T)) -(|has| |#1| (-561)) -((((-867)) . T)) +(|has| |#1| (-562)) +((((-868)) . T)) ((($ $) . T)) ((($) . T)) -((((-867)) . T)) -((((-1185)) |has| |#2| (-906 (-1185)))) -((((-412 (-569))) . T) (($) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T) (((-569)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#2|) |has| |#1| (-367))) -((((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) (((-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569))))) -(|has| |#1| (-367)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(|has| |#1| (-367)) -(((|#1|) . T)) -((($) . T) (((-569)) . T) ((|#2|) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(|has| |#1| (-367)) +((((-868)) . T)) +((((-1186)) |has| |#2| (-907 (-1186)))) +((((-413 (-570))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T) (((-570)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#2|) |has| |#1| (-368))) +((((-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-384)))) (((-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-570))))) +(|has| |#1| (-368)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(|has| |#1| (-368)) +(((|#1|) . T)) +((($) . T) (((-570)) . T) ((|#2|) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(|has| |#1| (-368)) (((|#3|) . T)) -((((-1167)) . T) (((-511)) . T) (((-226)) . T) (((-569)) . T)) +((((-1168)) . T) (((-512)) . T) (((-227)) . T) (((-570)) . T)) (((|#1|) . T)) -(|has| |#1| (-561)) -(((|#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) +(|has| |#1| (-562)) +(((|#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(-2779 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (((|#2|) . T)) (((|#2|) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(|has| |#1| (-38 (-412 (-569)))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(|has| |#1| (-38 (-413 (-570)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) +(|has| |#1| (-38 (-413 (-570)))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) ((($) . T)) -((((-1167) |#1|) . T)) -(|has| |#1| (-147)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) -(|has| |#1| (-147)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-372))) +((((-1168) |#1|) . T)) +(|has| |#1| (-148)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) +(|has| |#1| (-148)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-373))) ((($) . T)) -(|has| |#1| (-147)) -((((-586 |#1|)) . T)) +(|has| |#1| (-148)) +((((-587 |#1|)) . T)) ((($) . T)) -(|has| |#1| (-561)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) +(|has| |#1| (-562)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) ((($) . T)) ((($) . T)) -((((-412 |#2|)) . T)) -((((-412 (-569))) |has| |#2| (-1046 (-569))) (((-569)) |has| |#2| (-1046 (-569))) (((-1185)) |has| |#2| (-1046 (-1185))) ((|#2|) . T)) -(((#0=(-412 |#2|) #0#) . T) ((#1=(-412 (-569)) #1#) . T) (($ $) . T)) +((((-413 |#2|)) . T)) +((((-413 (-570))) |has| |#2| (-1047 (-570))) (((-570)) |has| |#2| (-1047 (-570))) (((-1186)) |has| |#2| (-1047 (-1186))) ((|#2|) . T)) +(((#0=(-413 |#2|) #0#) . T) ((#1=(-413 (-570)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-353))) -(|has| |#1| (-147)) -((((-867)) . T)) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-354))) +(|has| |#1| (-148)) +((((-868)) . T)) ((($) . T)) -((((-1148 |#1| |#2|)) . T)) -(((|#1| (-569)) . T)) -(((|#1| (-412 (-569))) . T)) -((((-569)) |has| |#2| (-892 (-569))) (((-383)) |has| |#2| (-892 (-383)))) +((((-1149 |#1| |#2|)) . T)) +(((|#1| (-570)) . T)) +(((|#1| (-413 (-570))) . T)) +((((-570)) |has| |#2| (-893 (-570))) (((-384)) |has| |#2| (-893 (-384)))) (((|#2|) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) ((((-112)) . T)) -(((|#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T)) -(((|#2|) . T)) -((((-867)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-1185) (-52)) . T)) -((((-412 |#2|)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1108)) -(|has| |#1| (-796)) -(|has| |#1| (-796)) -((((-867)) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-114)) . T) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-226)) . T) (((-383)) . T) (((-898 (-383))) . T)) -((((-867)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561))) -((((-867)) . T)) -((((-867)) . T)) -(((|#2|) . T)) -((((-867)) . T)) -(((#0=(-916 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-367)) -((((-867)) . T)) -(((|#2|) . T)) -((((-569)) . T)) -((((-867)) . T)) -((((-569)) . T)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -((((-170 (-383))) . T) (((-226)) . T) (((-383)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-1167)) . T) (((-541)) . T) (((-569)) . T) (((-898 (-569))) . T) (((-383)) . T) (((-226)) . T)) -((((-867)) . T)) -(|has| |#1| (-147)) -(|has| |#1| (-145)) -((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569))))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-478)) (|has| |#1| (-731)) (|has| |#1| (-906 (-1185))) (|has| |#1| (-1057)) (|has| |#1| (-1120)) (|has| |#1| (-1108))) -(|has| |#1| (-1160)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-569) |#1|) . T)) -(((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-289 #0# #0#))) -(((|#1|) |has| |#1| (-173))) -((((-319 |#1|)) . T) (((-569)) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((((-114)) . T) ((|#1|) . T)) -((((-867)) . T)) +(((|#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T)) +(((|#2|) . T)) +((((-868)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-1186) (-52)) . T)) +((((-413 |#2|)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1109)) +(|has| |#1| (-797)) +(|has| |#1| (-797)) +((((-868)) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-115)) . T) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-227)) . T) (((-384)) . T) (((-899 (-384))) . T)) +((((-868)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)) (((-413 (-570))) |has| |#1| (-562))) +((((-868)) . T)) +((((-868)) . T)) +(((|#2|) . T)) +((((-868)) . T)) +(((#0=(-917 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-368)) +((((-868)) . T)) +(((|#2|) . T)) +((((-570)) . T)) +((((-868)) . T)) +((((-570)) . T)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +((((-171 (-384))) . T) (((-227)) . T) (((-384)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-1168)) . T) (((-542)) . T) (((-570)) . T) (((-899 (-570))) . T) (((-384)) . T) (((-227)) . T)) +((((-868)) . T)) +(|has| |#1| (-148)) +(|has| |#1| (-146)) +((($) . T) ((#0=(-1261 |#2| |#3| |#4|)) |has| #0# (-174)) (((-413 (-570))) |has| #0# (-38 (-413 (-570))))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-479)) (|has| |#1| (-732)) (|has| |#1| (-907 (-1186))) (|has| |#1| (-1058)) (|has| |#1| (-1121)) (|has| |#1| (-1109))) +(|has| |#1| (-1161)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-570) |#1|) . T)) +(((|#1|) . T)) +(((#0=(-117 |#1|) $) |has| #0# (-290 #0# #0#))) +(((|#1|) |has| |#1| (-174))) +((((-320 |#1|)) . T) (((-570)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-115)) . T) ((|#1|) . T)) +((((-868)) . T)) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-312 |#1|))) -((((-569) |#1|) . T)) -((((-1185) |#1|) . T)) -(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)))) +(((|#1|) |has| |#1| (-313 |#1|))) +((((-570) |#1|) . T)) +((((-1186) |#1|) . T)) +(((|#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)))) (((|#1|) . T)) -(((|#1|) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-1057)))) -((((-569)) . T) (((-412 (-569))) . T)) +(((|#1|) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-1058)))) +((((-570)) . T) (((-413 (-570))) . T)) (((|#1|) . T)) -(|has| |#1| (-561)) -((($) . T) (((-569)) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-367))) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -((((-383)) . T)) +(|has| |#1| (-562)) +((($) . T) (((-570)) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-368))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +((((-384)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-367)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(|has| |#1| (-367)) -(|has| |#1| (-561)) -(|has| |#1| (-1108)) -((((-785 |#1| (-869 |#2|))) |has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|))))) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) +(|has| |#1| (-368)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(|has| |#1| (-368)) +(|has| |#1| (-562)) +(|has| |#1| (-1109)) +((((-786 |#1| (-870 |#2|))) |has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|))))) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-915)) -(((|#1| (-536 |#2|)) . T)) -(((|#1| (-776)) . T)) -(|has| |#1| (-234)) -(((|#1| (-536 (-1096 (-1185)))) . T)) -(|has| |#2| (-367)) -((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-569)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) -((((-867)) . T)) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -((((-867)) . T)) -((((-1128)) . T) (((-867)) . T)) -((((-541)) . T) (((-867)) . T)) -(((|#1|) . T)) -((($ $) . T) (((-617 $) $) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-569)) . T)) +(|has| |#2| (-916)) +(((|#1| (-537 |#2|)) . T)) +(((|#1| (-777)) . T)) +(|has| |#1| (-235)) +(((|#1| (-537 (-1097 (-1186)))) . T)) +(|has| |#2| (-368)) +((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-570)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) +((((-868)) . T)) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +((((-868)) . T)) +((((-1129)) . T) (((-868)) . T)) +((((-542)) . T) (((-868)) . T)) +(((|#1|) . T)) +((($ $) . T) (((-618 $) $) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-570)) . T)) (((|#3|) . T)) -((((-867)) . T)) -(-2776 (|has| |#1| (-310)) (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T)) -((((-1133 |#1| |#2|)) . T) ((|#2|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-569)) . T)) -((((-1181 |#1|)) . T) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) (((-1090)) . T) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) -(-2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) -((((-1133 |#1| (-1185))) . T) (((-569)) . T) (((-1096 (-1185))) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) (((-1185)) . T)) -(((#0=(-586 |#1|) #0#) . T) (($ $) . T) ((#1=(-412 (-569)) #1#) . T)) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#1| (-1275 |#1|) (-1275 |#1|)) . T)) -((((-586 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((($) . T) (((-412 (-569))) . T)) +((((-868)) . T)) +(-2779 (|has| |#1| (-311)) (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-570)) . T) (((-413 (-570))) -2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T)) +((((-1134 |#1| |#2|)) . T) ((|#2|) . T) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-570)) . T)) +((((-1182 |#1|)) . T) (((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) (((-1091)) . T) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) +(-2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) +((((-1134 |#1| (-1186))) . T) (((-570)) . T) (((-1097 (-1186))) . T) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) (((-1186)) . T)) +(((#0=(-587 |#1|) #0#) . T) (($ $) . T) ((#1=(-413 (-570)) #1#) . T)) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#1| (-1276 |#1|) (-1276 |#1|)) . T)) +((((-587 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((($) . T) (((-413 (-570))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-412 (-569))) . T)) -(((|#2|) |has| |#2| (-6 (-4449 "*")))) +((($) . T) (((-413 (-570))) . T)) +(((|#2|) |has| |#2| (-6 (-4450 "*")))) (((|#1|) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((|#1|) . T) (((-569)) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((|#1|) . T) (((-570)) . T)) (((|#1|) . T)) -((((-867)) . T)) -((((-297 |#3|)) . T)) -(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +((((-868)) . T)) +((((-298 |#3|)) . T)) +(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) +((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) (((|#2|) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(|has| |#2| (-915)) -(|has| |#1| (-915)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(|has| |#2| (-916)) +(|has| |#1| (-916)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) (((|#1|) . T)) -((((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) . T)) +((((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1108)) -(((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -((((-1185)) . T) ((|#1|) . T)) -((((-867)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-569)) . T) (($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) -(((#0=(-412 (-569)) #0#) . T)) -((((-412 (-569))) . T)) -(((|#1|) |has| |#1| (-173))) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(((|#1|) . T)) -(((|#1|) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(((|#1|) . T)) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-541)) . T)) -((((-867)) . T)) -((((-569)) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((((-1185)) |has| |#2| (-906 (-1185))) (((-1090)) . T)) -((((-867)) . T)) -((((-1260 |#2| |#3| |#4|)) . T)) -((((-916 |#1|)) . T)) -((($) . T) (((-412 (-569))) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-825))) -(-12 (|has| |#1| (-367)) (|has| |#2| (-825))) -((((-867)) . T)) -(|has| |#1| (-1229)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -((((-1185)) |has| |#1| (-906 (-1185)))) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) . T)) -(((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569)))) ((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -((($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1057)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-561)))) -(|has| |#1| (-561)) -(((|#1|) |has| |#1| (-367))) -((((-569)) . T)) -(|has| |#1| (-796)) -((((-1185) #0=(-116 |#1|)) |has| #0# (-519 (-1185) #0#)) ((#0# #0#) |has| #0# (-312 #0#))) -(|has| |#1| (-796)) -(((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) -((((-1090)) . T) ((|#2|) . T) (((-569)) |has| |#2| (-1046 (-569))) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-569)) . T) (($) . T)) -((((-569) (-776)) . T) ((|#3| (-776)) . T)) +(|has| |#1| (-1109)) +(((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +((((-1186)) . T) ((|#1|) . T)) +((((-868)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-570)) . T) (($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) +(((#0=(-413 (-570)) #0#) . T)) +((((-413 (-570))) . T)) +(((|#1|) |has| |#1| (-174))) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(((|#1|) . T)) +(((|#1|) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(((|#1|) . T)) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-542)) . T)) +((((-868)) . T)) +((((-570)) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((((-1186)) |has| |#2| (-907 (-1186))) (((-1091)) . T)) +((((-868)) . T)) +((((-1261 |#2| |#3| |#4|)) . T)) +((((-917 |#1|)) . T)) +((($) . T) (((-413 (-570))) . T)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-826))) +(-12 (|has| |#1| (-368)) (|has| |#2| (-826))) +((((-868)) . T)) +(|has| |#1| (-1230)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +((((-1186)) |has| |#1| (-907 (-1186)))) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) . T)) +(((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570)))) ((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +((($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1058)) (((-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-562)))) +(|has| |#1| (-562)) +(((|#1|) |has| |#1| (-368))) +((((-570)) . T)) +((((-1186) #0=(-117 |#1|)) |has| #0# (-520 (-1186) #0#)) ((#0# #0#) |has| #0# (-313 #0#))) +(|has| |#1| (-797)) +(|has| |#1| (-797)) +(((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) +((((-1091)) . T) ((|#2|) . T) (((-570)) |has| |#2| (-1047 (-570))) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-570)) . T) (($) . T)) +((((-570) (-777)) . T) ((|#3| (-777)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) . T)) -(|has| |#2| (-825)) -(|has| |#2| (-825)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((((-569)) |has| |#1| (-892 (-569))) (((-383)) |has| |#1| (-892 (-383)))) -(((|#1|) . T)) -((((-875 |#1|)) . T)) -((((-875 |#1|)) . T)) -(-12 (|has| |#1| (-367)) (|has| |#2| (-915))) -((((-412 (-569))) . T) (((-704)) . T) (($) . T)) -(((|#1|) |has| |#1| (-173))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-173))) -(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#2|) -2776 (|has| |#2| (-6 (-4449 "*"))) (|has| |#2| (-173)))) -(((|#2|) . T)) -(|has| |#1| (-367)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-869 |#1|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#2| (-776)) . T)) -((((-1185)) . T)) -((((-875 |#1|)) . T)) -(-2776 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-867)) . T)) -(((|#1|) . T)) -(-2776 (|has| |#2| (-798)) (|has| |#2| (-853))) -(-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))) -((((-875 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -((($ $) . T) (((-617 $) $) . T)) -((($) . T)) -((((-867)) . T)) -((((-569)) . T)) -(((|#2|) . T)) -((((-867)) . T)) -((($) . T) (((-569)) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367))) -((((-867)) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((($) . T) ((|#2|) . T) (((-412 (-569))) . T)) -(|has| |#1| (-1108)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-867)) . T)) -(|has| |#2| (-915)) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569))))) -((((-867)) . T)) -((((-867)) . T)) -(((|#3|) |has| |#3| (-1057)) (((-569)) -12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) -((((-1133 |#1| |#2|)) . T) (((-958 |#1|)) |has| |#2| (-619 (-1185))) (((-867)) . T)) -((((-958 |#1|)) |has| |#2| (-619 (-1185))) (((-1167)) -12 (|has| |#1| (-1046 (-569))) (|has| |#2| (-619 (-1185)))) (((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383))))) (((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541))))) -((((-1181 |#1|)) . T) (((-867)) . T)) -((((-867)) . T)) -((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T) (((-1185)) . T)) -((((-867)) . T)) -((((-569)) . T)) -(((|#1|) . T)) -((($) . T)) -((((-383)) |has| |#1| (-892 (-383))) (((-569)) |has| |#1| (-892 (-569)))) -((((-569)) . T)) -(((|#1|) . T)) -((((-867)) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-649 |#1|)) . T)) -((($) . T) (((-569)) . T) (((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T)) -((((-569)) -2776 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) (($) -2776 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-173)) (|has| |#1| (-561)) (|has| |#1| (-1057))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561))) -((((-1190)) . T)) -((((-1190)) . T)) -((((-569)) . T) (((-412 (-569))) . T)) -((((-1190)) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T)) -((((-1190)) . T)) -(((|#1|) |has| |#1| (-312 |#1|))) -((((-383)) . T)) -((((-867)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-867)) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-412 |#2|) |#3|) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) . T)) +(|has| |#2| (-826)) +(|has| |#2| (-826)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((((-570)) |has| |#1| (-893 (-570))) (((-384)) |has| |#1| (-893 (-384)))) +(((|#1|) . T)) +((((-876 |#1|)) . T)) +((((-876 |#1|)) . T)) +(-12 (|has| |#1| (-368)) (|has| |#2| (-916))) +((((-413 (-570))) . T) (((-705)) . T) (($) . T)) +(((|#1|) |has| |#1| (-174))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-174))) +(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#2|) -2779 (|has| |#2| (-6 (-4450 "*"))) (|has| |#2| (-174)))) +(((|#2|) . T)) +(|has| |#1| (-368)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-870 |#1|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#2| (-777)) . T)) +((((-1186)) . T)) +((((-876 |#1|)) . T)) +(-2779 (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-868)) . T)) +(((|#1|) . T)) +(-2779 (|has| |#2| (-799)) (|has| |#2| (-854))) +(-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))) +((((-876 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +((($ $) . T) (((-618 $) $) . T)) +((($) . T)) +((((-868)) . T)) +((((-570)) . T)) +(((|#2|) . T)) +((((-868)) . T)) +((($) . T) (((-570)) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-368))) +((((-868)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((($) . T) ((|#2|) . T) (((-413 (-570))) . T)) +(|has| |#1| (-1109)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-868)) . T)) +(|has| |#2| (-916)) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570))))) +((((-868)) . T)) +((((-868)) . T)) +(((|#3|) |has| |#3| (-1058)) (((-570)) -12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) +((((-1134 |#1| |#2|)) . T) (((-959 |#1|)) |has| |#2| (-620 (-1186))) (((-868)) . T)) +((((-959 |#1|)) |has| |#2| (-620 (-1186))) (((-1168)) -12 (|has| |#1| (-1047 (-570))) (|has| |#2| (-620 (-1186)))) (((-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570))))) (((-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384))))) (((-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542))))) +((((-1182 |#1|)) . T) (((-868)) . T)) +((((-868)) . T)) +((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T) (((-1186)) . T)) +((((-868)) . T)) +((((-570)) . T)) +(((|#1|) . T)) +((($) . T)) +((((-384)) |has| |#1| (-893 (-384))) (((-570)) |has| |#1| (-893 (-570)))) +((((-570)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-650 |#1|)) . T)) +((($) . T) (((-570)) . T) (((-1262 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T)) +((((-570)) -2779 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) (($) -2779 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-562)) (|has| |#1| (-1058))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562))) +((((-1191)) . T)) +((((-1191)) . T)) +((((-570)) . T) (((-413 (-570))) . T)) +((((-1191)) . T)) +(((|#1|) |has| |#1| (-174)) (($) . T)) +((((-1191)) . T)) +(((|#1|) |has| |#1| (-313 |#1|))) +((((-384)) . T)) +((((-868)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-868)) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-413 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1108)) -(((|#2| (-487 (-2428 |#1|) (-776))) . T)) -((((-569) |#1|) . T)) -((((-1167)) . T) (((-867)) . T)) +(|has| |#1| (-1109)) +(((|#2| (-488 (-2431 |#1|) (-777))) . T)) +((((-570) |#1|) . T)) +((((-1168)) . T) (((-868)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-536 (-1185))) . T)) -(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-569)) . T)) +(((|#1| (-537 (-1186))) . T)) +(-2779 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-570)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1185)) |has| |#1| (-906 (-1185))) (((-1090)) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-644 (-569)))) -(|has| |#1| (-561)) -(((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569)))) (((-569)) . T) (($) . T)) -((($) . T) (((-412 (-569))) . T)) +((((-1186)) |has| |#1| (-907 (-1186))) (((-1091)) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-645 (-570)))) +(|has| |#1| (-562)) +(((#0=(-1261 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570)))) (((-570)) . T) (($) . T)) +((($) . T) (((-413 (-570))) . T)) ((($) . T)) ((($) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) (((|#1|) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-867)) . T)) -((((-144)) . T)) -(((|#1|) . T) (((-412 (-569))) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-868)) . T)) +((((-145)) . T)) +(((|#1|) . T) (((-413 (-570))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-867)) . T)) +((((-868)) . T)) (((|#1|) . T)) -(|has| |#1| (-1160)) -(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T)) +(|has| |#1| (-1161)) +(((|#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) . T)) (((|#1|) . T)) -((((-412 $) (-412 $)) |has| |#1| (-561)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((((-867)) . T)) -((((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-569)) |has| |#1| (-1046 (-569))) ((|#1|) . T) ((|#2|) . T)) -((((-1090)) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569))))) -((((-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383)))) (((-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569))))) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -((((-569) |#1|) . T)) +((((-413 $) (-413 $)) |has| |#1| (-562)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((((-868)) . T)) +((((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-570)) |has| |#1| (-1047 (-570))) ((|#1|) . T) ((|#2|) . T)) +((((-1091)) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570))))) +((((-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384)))) (((-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570))))) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +((((-570) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-173)) (($) . T)) -((($) . T)) -((((-704)) . T)) -((((-785 |#1| (-869 |#2|))) . T)) -((((-569)) . T) (($) . T)) -((($) . T)) -(((|#1|) . T) (((-412 (-569))) |has| |#1| (-367))) -((((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-1108)) -(|has| |#1| (-1108)) -(|has| |#2| (-367)) -(((|#1|) . T) (($) -2776 (|has| |#1| (-293)) (|has| |#1| (-367))) (((-412 (-569))) |has| |#1| (-367))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-38 (-412 (-569)))) -((((-569)) . T)) -((((-1185)) -12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) -((((-1185)) -12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) -(((|#1|) . T)) -(|has| |#1| (-234)) -(((|#2| (-241 (-2428 |#1|) (-776))) . T)) -(((|#1| (-536 |#3|)) . T)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) -(|has| |#1| (-372)) +(((|#1|) |has| |#1| (-174)) (($) . T)) +((($) . T)) +((((-705)) . T)) +((((-786 |#1| (-870 |#2|))) . T)) +((((-570)) . T) (($) . T)) +((($) . T)) +(((|#1|) . T) (((-413 (-570))) |has| |#1| (-368))) +((((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-1109)) +(|has| |#1| (-1109)) +(|has| |#2| (-368)) +(((|#1|) . T) (($) -2779 (|has| |#1| (-294)) (|has| |#1| (-368))) (((-413 (-570))) |has| |#1| (-368))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-38 (-413 (-570)))) +((((-570)) . T)) +((((-1186)) -12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) +((((-1186)) -12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) +(((|#1|) . T)) +(|has| |#1| (-235)) +(((|#2| (-242 (-2431 |#1|) (-777))) . T)) +(((|#1| (-537 |#3|)) . T)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) +(|has| |#1| (-373)) (((|#1|) . T) (($) . T)) -(((|#1| (-536 |#2|)) . T)) -(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(((|#1| (-776)) . T)) -(|has| |#1| (-561)) -(-2776 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-853)) (|has| |#2| (-1057))) +(((|#1| (-537 |#2|)) . T)) +(-2779 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(((|#1| (-777)) . T)) +(|has| |#1| (-562)) +(-2779 (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-854)) (|has| |#2| (-1058))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-867)) . T)) -((((-569)) . T) (((-412 (-569))) . T) (($) . T)) -(-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) -(-2776 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(((|#1|) |has| |#1| (-173))) -(((|#4|) |has| |#4| (-1057))) -(((|#3|) |has| |#3| (-1057))) -(-12 (|has| |#1| (-367)) (|has| |#2| (-825))) -(-12 (|has| |#1| (-367)) (|has| |#2| (-825))) -((((-569)) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))) ((|#2|) . T) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-869 |#1|)) . T)) -((((-1133 |#1| |#2|)) . T) (((-569)) . T) ((|#3|) . T) (($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))) ((|#2|) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((((-1190)) . T)) -((((-677 |#1|)) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (($) . T)) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -((((-867)) . T)) -((((-649 $)) . T) (((-1167)) . T) (((-1185)) . T) (((-569)) . T) (((-226)) . T) (((-867)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((($) . T) (((-412 (-569))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1108)) (((-569)) -12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108))) (((-412 (-569))) -12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108)))) -(((|#3|) |has| |#3| (-1108)) (((-569)) -12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (((-412 (-569))) -12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) -(|has| |#2| (-367)) -(((|#2|) |has| |#2| (-1057)) (((-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) -(((|#1|) . T)) -(|has| |#2| (-367)) -(((#0=(-412 (-569)) #0#) |has| |#2| (-38 (-412 (-569)))) ((|#2| |#2|) . T) (($ $) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1| |#1|) . T) ((#0=(-412 (-569)) #0#) |has| |#1| (-38 (-412 (-569))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-412 (-569)) #0#) . T)) +((((-868)) . T)) +((((-570)) . T) (((-413 (-570))) . T) (($) . T)) +(-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) +(-2779 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(((|#1|) |has| |#1| (-174))) +(((|#4|) |has| |#4| (-1058))) +(((|#3|) |has| |#3| (-1058))) +(-12 (|has| |#1| (-368)) (|has| |#2| (-826))) +(-12 (|has| |#1| (-368)) (|has| |#2| (-826))) +((((-570)) . T) (((-413 (-570))) -2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))) ((|#2|) . T) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-870 |#1|)) . T)) +((((-1134 |#1| |#2|)) . T) (((-570)) . T) ((|#3|) . T) (($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))) ((|#2|) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((((-1191)) . T)) +((((-678 |#1|)) . T)) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (($) . T)) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +((((-868)) . T)) +((((-650 $)) . T) (((-1168)) . T) (((-1186)) . T) (((-570)) . T) (((-227)) . T) (((-868)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((($) . T) (((-413 (-570))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1109)) (((-570)) -12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109))) (((-413 (-570))) -12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109)))) +(((|#3|) |has| |#3| (-1109)) (((-570)) -12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (((-413 (-570))) -12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) +(|has| |#2| (-368)) +(((|#2|) |has| |#2| (-1058)) (((-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) +(((|#1|) . T)) +(|has| |#2| (-368)) +(((#0=(-413 (-570)) #0#) |has| |#2| (-38 (-413 (-570)))) ((|#2| |#2|) . T) (($ $) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1| |#1|) . T) ((#0=(-413 (-570)) #0#) |has| |#1| (-38 (-413 (-570))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-413 (-570)) #0#) . T)) (((|#2| |#2|) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T) (($) -2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) . T) (($) . T) (((-412 (-569))) . T)) -(((|#2|) . T)) -((((-867)) |has| |#1| (-1108))) -((($) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-825)) -(|has| |#2| (-825)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) -(|has| |#1| (-367)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#1|) |has| |#2| (-422 |#1|))) -(((|#1|) |has| |#2| (-422 |#1|))) -((((-1167)) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-649 |#1|)) . T) (((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-649 |#1|)) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1224)) . T) (((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) |has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -((((-569) |#1|) . T)) -((((-569) |#1|) . T)) -((((-569) |#1|) . T)) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-569) |#1|) . T)) -(((|#1|) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#1|) |has| |#1| (-173))) -((((-1185)) |has| |#1| (-906 (-1185))) (((-823 (-1185))) . T)) -(-2776 (|has| |#3| (-131)) (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-798)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-824 |#1|)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T) (($) -2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) . T) (($) . T) (((-413 (-570))) . T)) +(((|#2|) . T)) +((((-868)) |has| |#1| (-1109))) +((($) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-826)) +(|has| |#2| (-826)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) +(|has| |#1| (-368)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#1|) |has| |#2| (-423 |#1|))) +(((|#1|) |has| |#2| (-423 |#1|))) +((((-1168)) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-650 |#1|)) . T) (((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-650 |#1|)) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1225)) . T) (((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) |has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))))) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +((((-570) |#1|) . T)) +((((-570) |#1|) . T)) +((((-570) |#1|) . T)) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-570) |#1|) . T)) +(((|#1|) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#1|) |has| |#1| (-174))) +((((-1186)) |has| |#1| (-907 (-1186))) (((-824 (-1186))) . T)) +(-2779 (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-799)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-825 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-867)) . T)) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057))) +((((-868)) . T)) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058))) (((|#1| |#2|) . T)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -(|has| |#1| (-38 (-412 (-569)))) -((((-867)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561))) -(((|#2|) . T) (((-569)) |has| |#2| (-644 (-569)))) -(|has| |#1| (-367)) -(-2776 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (-12 (|has| |#1| (-367)) (|has| |#2| (-234)))) -(|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) -(|has| |#1| (-367)) -(((|#1|) . T)) -(((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1| |#1|) . T)) -((((-569) |#1|) . T)) -((((-319 |#1|)) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((#0=(-704) (-1181 #0#)) . T)) -((((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((|#1|) . T)) -(((|#1|) . T) (($) . T) (((-569)) . T) (((-412 (-569))) . T)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +(|has| |#1| (-38 (-413 (-570)))) +((((-868)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)) (((-413 (-570))) |has| |#1| (-562))) +(((|#2|) . T) (((-570)) |has| |#2| (-645 (-570)))) +(|has| |#1| (-368)) +(-2779 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (-12 (|has| |#1| (-368)) (|has| |#2| (-235)))) +(|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) +(|has| |#1| (-368)) +(((|#1|) . T)) +(((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1| |#1|) . T)) +((((-570) |#1|) . T)) +((((-320 |#1|)) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((#0=(-705) (-1182 #0#)) . T)) +((((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((|#1|) . T)) +(((|#1|) . T) (($) . T) (((-570)) . T) (((-413 (-570))) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-853)) -(((|#2|) . T) (((-1185)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561))) (((-569)) . T) ((|#1|) |has| |#1| (-173))) -(((|#2|) . T) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) (((-569)) . T) (($) -2776 (|has| |#1| (-367)) (|has| |#1| (-561)))) -((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1133 |#1| (-1185))) . T) (((-823 (-1185))) . T) ((|#1|) . T) (((-569)) |has| |#1| (-1046 (-569))) (((-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) (((-1185)) . T)) +(|has| |#1| (-854)) +(((|#2|) . T) (((-1186)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562))) (((-570)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) (((-570)) . T) (($) -2779 (|has| |#1| (-368)) (|has| |#1| (-562)))) +((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1134 |#1| (-1186))) . T) (((-824 (-1186))) . T) ((|#1|) . T) (((-570)) |has| |#1| (-1047 (-570))) (((-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) (((-1186)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1090) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1185) $) |has| |#1| (-234)) ((#0# |#1|) |has| |#1| (-234)) ((#1=(-1096 (-1185)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1091) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1186) $) |has| |#1| (-235)) ((#0# |#1|) |has| |#1| (-235)) ((#1=(-1097 (-1186)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569))))) -(|has| |#2| (-915)) -((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569))))) -(((|#1|) |has| |#1| (-173))) -((((-569) |#1|) . T)) -(((|#1|) . T)) -((((-1190)) . T)) -(((#0=(-1261 |#1| |#2| |#3| |#4|)) |has| #0# (-312 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2| |#2|) |has| |#1| (-367)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) ((#0=(-412 (-569)) #0#) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -(|has| |#2| (-234)) -(|has| $ (-147)) -((((-867)) . T)) -((($) . T) (((-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-353))) ((|#1|) . T)) -((((-867)) . T)) -(|has| |#1| (-853)) -((((-129)) . T)) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) -((((-412 (-569))) . T) (((-704)) . T) (($) . T) (((-569)) . T)) -(((|#1|) . T)) -((((-129)) . T)) -((((-412 |#2|) |#3|) . T)) -((((-867)) . T)) -(-12 (|has| |#1| (-310)) (|has| |#1| (-915))) -(((|#2| (-677 |#1|)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-867)) |has| |#1| (-1108))) +((($) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570))))) +(|has| |#2| (-916)) +((($) . T) ((#0=(-1261 |#2| |#3| |#4|)) |has| #0# (-174)) (((-413 (-570))) |has| #0# (-38 (-413 (-570))))) +(((|#1|) |has| |#1| (-174))) +((((-570) |#1|) . T)) +(((|#1|) . T)) +((((-1191)) . T)) +(((#0=(-1262 |#1| |#2| |#3| |#4|)) |has| #0# (-313 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2| |#2|) |has| |#1| (-368)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) ((#0=(-413 (-570)) #0#) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +(|has| |#2| (-235)) +(|has| $ (-148)) +((((-868)) . T)) +((($) . T) (((-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-354))) ((|#1|) . T)) +((((-868)) . T)) +(|has| |#1| (-854)) +((((-130)) . T)) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) +((((-413 (-570))) . T) (((-705)) . T) (($) . T) (((-570)) . T)) +(((|#1|) . T)) +((((-130)) . T)) +((((-413 |#2|) |#3|) . T)) +((((-868)) . T)) +(-12 (|has| |#1| (-311)) (|has| |#1| (-916))) +(((|#2| (-678 |#1|)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-868)) |has| |#1| (-1109))) (((|#4|) . T)) -(|has| |#1| (-561)) -((($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367))) ((|#2|) |has| |#1| (-367)) ((|#1|) . T)) -((((-1185)) -2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) -(((|#1|) . T) (($) -2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-561))) (((-412 (-569))) -2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-367)))) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) -((((-569) |#1|) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(((|#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) -(((|#1|) . T)) -(((|#1| (-536 (-823 (-1185)))) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((((-569)) . T) ((|#2|) . T) (($) . T) (((-412 (-569))) . T) (((-1185)) |has| |#2| (-1046 (-1185)))) -(((|#1|) . T)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -(((|#1|) . T)) -(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -((($) . T) (((-875 |#1|)) . T) (((-412 (-569))) . T)) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -(|has| |#1| (-561)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-412 |#2|)) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-412 (-569)) #0#) . T) (($ $) . T)) -(((|#2|) . T) (((-412 (-569))) . T) (($) . T)) -((((-569)) . T)) -((((-867)) . T)) -((((-586 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -((((-867)) . T)) -((((-412 (-569))) . T) (($) . T)) -((((-569) |#1|) . T)) -((($) . T)) -((($) . T)) -((((-867)) . T)) -((((-541)) |has| |#2| (-619 (-541))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569))))) -((((-867)) . T)) -((((-867)) . T)) -((((-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) (((-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) (((-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541))))) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1|) . T) (((-867)) . T) (((-1190)) . T)) -((((-867)) . T)) -((((-1190)) . T)) -((((-114)) . T) ((|#1|) . T) (((-569)) . T)) -(((|#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) . T)) -((((-129)) . T)) -((($) . T) (((-569)) . T) (((-116 |#1|)) . T) (((-412 (-569))) . T)) -(((|#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) . T)) -((((-867)) . T)) -((((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) |has| |#2| (-173)) (($) -2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915)))) +(|has| |#1| (-562)) +((($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368))) ((|#2|) |has| |#1| (-368)) ((|#1|) . T)) +((((-1186)) -2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) +(((|#1|) . T) (($) -2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-562))) (((-413 (-570))) -2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-368)))) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) +((((-570) |#1|) . T)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(((|#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) +(((|#1|) . T)) +(((|#1| (-537 (-824 (-1186)))) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((((-570)) . T) ((|#2|) . T) (($) . T) (((-413 (-570))) . T) (((-1186)) |has| |#2| (-1047 (-1186)))) +(((|#1|) . T)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +(((|#1|) . T)) +(-2779 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +((($) . T) (((-876 |#1|)) . T) (((-413 (-570))) . T)) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +(|has| |#1| (-562)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-413 |#2|)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-413 (-570)) #0#) . T) (($ $) . T)) +(((|#2|) . T) (((-413 (-570))) . T) (($) . T)) +((((-570)) . T)) +((((-868)) . T)) +((((-587 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +((((-868)) . T)) +((((-413 (-570))) . T) (($) . T)) +((((-570) |#1|) . T)) +((($) . T)) +((($) . T)) +((((-868)) . T)) +((((-542)) |has| |#2| (-620 (-542))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570))))) +((((-868)) . T)) +((((-868)) . T)) +((((-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) (((-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) (((-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542))))) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1|) . T) (((-868)) . T) (((-1191)) . T)) +((((-868)) . T)) +((((-1191)) . T)) +((((-115)) . T) ((|#1|) . T) (((-570)) . T)) +(((|#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) . T)) +((((-130)) . T)) +((($) . T) (((-570)) . T) (((-117 |#1|)) . T) (((-413 (-570))) . T)) +(((|#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) . T)) +((((-868)) . T)) +((((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) |has| |#2| (-174)) (($) -2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-412 (-569))) |has| |#2| (-38 (-412 (-569)))) ((|#2|) . T)) -((($) . T) (((-569)) . T)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-1112)) . T)) -((((-867)) . T)) -((((-1190)) . T) (((-867)) . T)) -((((-1190)) . T) (((-867)) . T)) -((($) -2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((((-1190)) . T)) -((((-1190)) . T)) -((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((($) . T)) -((($) -2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) ((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -((($ $) . T) (((-1185) $) . T)) -((((-1267 |#1| |#2| |#3|)) . T)) -(|has| |#2| (-915)) -((((-1267 |#1| |#2| |#3|)) |has| |#1| (-367))) -(|has| |#1| (-367)) -(((|#1|) . T)) -((((-1267 |#1| |#2| |#3|)) . T) (((-1239 |#1| |#2| |#3|)) . T)) -((((-1185)) . T) (((-867)) . T)) -(|has| |#1| (-915)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-173))) -((((-704)) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-1190)) . T)) -(((|#1|) |has| |#1| (-173))) -((((-1190)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561)) (((-412 (-569))) |has| |#1| (-561))) -((((-1190)) . T)) -((((-1261 |#1| |#2| |#3| |#4|)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1|) |has| |#1| (-173)) (((-412 (-569))) |has| |#1| (-561)) (($) |has| |#1| (-561))) -((((-412 (-569))) . T) (($) . T)) -(((|#1| (-569)) . T)) -(((|#1|) |has| |#1| (-173))) -((((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-1190)) . T)) -((((-1190)) . T)) -(|has| |#1| (-367)) -(|has| |#1| (-367)) -(-2776 (|has| |#1| (-173)) (|has| |#1| (-561))) -(((|#1| (-569)) . T)) -(((|#1| (-412 (-569))) . T)) -(((|#1| (-776)) . T)) -((((-412 (-569))) . T)) -(((|#1| (-536 |#2|) |#2|) . T)) -((((-569) |#1|) . T)) -((((-569) |#1|) . T)) -(|has| |#1| (-1108)) -((((-569) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-898 (-383))) . T) (((-898 (-569))) . T) (((-1185)) . T) (((-541)) . T)) -(((|#1|) . T)) -((((-867)) . T)) -(-2776 (|has| |#2| (-131)) (|has| |#2| (-173)) (|has| |#2| (-367)) (|has| |#2| (-798)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -(-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) -((((-569)) . T)) -((((-569)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) +((($) . T) (((-413 (-570))) |has| |#2| (-38 (-413 (-570)))) ((|#2|) . T)) +((($) . T) (((-570)) . T)) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-1113)) . T)) +((((-868)) . T)) +((((-1191)) . T) (((-868)) . T)) +((((-1191)) . T) (((-868)) . T)) +((($) -2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((((-1191)) . T)) +((((-1191)) . T)) +((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((($) . T)) +((($) -2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) ((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +((($ $) . T) (((-1186) $) . T)) +((((-1268 |#1| |#2| |#3|)) . T)) +(|has| |#2| (-916)) +((((-1268 |#1| |#2| |#3|)) |has| |#1| (-368))) +(|has| |#1| (-368)) +(((|#1|) . T)) +((((-1268 |#1| |#2| |#3|)) . T) (((-1240 |#1| |#2| |#3|)) . T)) +((((-1186)) . T) (((-868)) . T)) +(|has| |#1| (-916)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-174))) +((((-705)) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-1191)) . T)) +(((|#1|) |has| |#1| (-174))) +((((-1191)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562)) (((-413 (-570))) |has| |#1| (-562))) +((((-1191)) . T)) +((((-1262 |#1| |#2| |#3| |#4|)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1|) |has| |#1| (-174)) (((-413 (-570))) |has| |#1| (-562)) (($) |has| |#1| (-562))) +((((-413 (-570))) . T) (($) . T)) +(((|#1| (-570)) . T)) +(((|#1|) |has| |#1| (-174))) +((((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-1191)) . T)) +((((-1191)) . T)) +(|has| |#1| (-368)) +(|has| |#1| (-368)) +(-2779 (|has| |#1| (-174)) (|has| |#1| (-562))) +(((|#1| (-570)) . T)) +(((|#1| (-413 (-570))) . T)) +(((|#1| (-777)) . T)) +((((-413 (-570))) . T)) +(((|#1| (-537 |#2|) |#2|) . T)) +((((-570) |#1|) . T)) +((((-570) |#1|) . T)) +(|has| |#1| (-1109)) +((((-570) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-899 (-384))) . T) (((-899 (-570))) . T) (((-1186)) . T) (((-542)) . T)) +(((|#1|) . T)) +((((-868)) . T)) +(-2779 (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-368)) (|has| |#2| (-799)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +(-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) +((((-570)) . T)) +((((-570)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2776 (|has| |#2| (-173)) (|has| |#2| (-731)) (|has| |#2| (-853)) (|has| |#2| (-1057))) -((((-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) -(-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) -(|has| |#1| (-145)) -(|has| |#1| (-147)) -(|has| |#1| (-367)) +(-2779 (|has| |#2| (-174)) (|has| |#2| (-732)) (|has| |#2| (-854)) (|has| |#2| (-1058))) +((((-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) +(-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) +(|has| |#1| (-146)) +(|has| |#1| (-148)) +(|has| |#1| (-368)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) |has| #0# (-173)) (((-412 (-569))) |has| #0# (-38 (-412 (-569))))) -(|has| |#1| (-234)) -((($) . T) (((-569)) . T) (((-412 (-569))) . T)) -((($) . T) (((-569)) . T)) -((($) . T) (((-569)) . T)) -((($) . T) ((#0=(-1260 |#2| |#3| |#4|)) . T) (((-412 (-569))) |has| #0# (-38 (-412 (-569))))) -((((-867)) . T)) -(((|#1| (-776) (-1090)) . T)) -((((-569) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-569) |#1|) . T)) -((((-569) |#1|) . T)) -((((-116 |#1|)) . T)) -((((-412 (-569))) . T) (((-569)) . T)) -(((|#2|) |has| |#2| (-1057))) -((((-412 (-569))) . T) (($) . T)) -(((|#2|) . T)) -((((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) |has| |#1| (-173)) (($) |has| |#1| (-561))) -((((-569)) . T)) -((((-569)) . T)) -((((-1167) (-1185) (-569) (-226) (-867)) . T)) +((($) . T) ((#0=(-1261 |#2| |#3| |#4|)) |has| #0# (-174)) (((-413 (-570))) |has| #0# (-38 (-413 (-570))))) +(|has| |#1| (-235)) +((($) . T) (((-570)) . T) (((-413 (-570))) . T)) +((($) . T) (((-570)) . T)) +((($) . T) (((-570)) . T)) +((($) . T) ((#0=(-1261 |#2| |#3| |#4|)) . T) (((-413 (-570))) |has| #0# (-38 (-413 (-570))))) +((((-868)) . T)) +(((|#1| (-777) (-1091)) . T)) +((((-570) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-570) |#1|) . T)) +((((-570) |#1|) . T)) +((((-117 |#1|)) . T)) +((((-413 (-570))) . T) (((-570)) . T)) +(((|#2|) |has| |#2| (-1058))) +((((-413 (-570))) . T) (($) . T)) +(((|#2|) . T)) +((((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-562))) +((((-570)) . T)) +((((-570)) . T)) +((((-1168) (-1186) (-570) (-227) (-868)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-569)) . T) ((|#2|) |has| |#2| (-173))) -((((-114)) . T) ((|#1|) . T) (((-569)) . T)) -(-2776 (|has| |#1| (-353)) (|has| |#1| (-372))) +((((-570)) . T) ((|#2|) |has| |#2| (-174))) +((((-115)) . T) ((|#1|) . T) (((-570)) . T)) +(-2779 (|has| |#1| (-354)) (|has| |#1| (-373))) (((|#1| |#2|) . T)) -((((-226)) . T)) -((((-412 (-569))) . T) (($) . T) (((-569)) . T)) -((((-867)) . T)) +((((-227)) . T)) +((((-413 (-570))) . T) (($) . T) (((-570)) . T)) +((((-868)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-412 (-569))) |has| |#1| (-38 (-412 (-569))))) -(((|#2|) |has| |#2| (-1108)) (((-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (((-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-541)) |has| |#1| (-619 (-541)))) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-855)) (|has| |#1| (-1108)))) -((($) . T) (((-412 (-569))) . T)) -(|has| |#1| (-915)) -(|has| |#1| (-915)) -((((-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) (((-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) (((-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) (((-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) (((-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541))))) -((((-867)) . T)) -((((-867)) . T)) +((($) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-413 (-570))) |has| |#1| (-38 (-413 (-570))))) +(((|#2|) |has| |#2| (-1109)) (((-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (((-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-542)) |has| |#1| (-620 (-542)))) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-856)) (|has| |#1| (-1109)))) +((($) . T) (((-413 (-570))) . T)) +(|has| |#1| (-916)) +(|has| |#1| (-916)) +((((-227)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) (((-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) (((-899 (-384))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-384))))) (((-899 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-570))))) (((-542)) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-542))))) +((((-868)) . T)) +((((-868)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-173))) -(((|#1|) . T) (((-569)) . T)) -((((-1190)) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-561))) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -(((|#2|) . T)) -(-2776 (|has| |#1| (-21)) (|has| |#1| (-853))) -(((|#1|) |has| |#1| (-173))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-867)) -2776 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) -((((-412 |#2|) |#3|) . T)) -((((-412 (-569))) . T) (($) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-367)) -((($ $) . T) ((#0=(-412 (-569)) #0#) . T)) -((($) . T) (((-569)) . T)) -(|has| (-412 |#2|) (-147)) -(|has| (-412 |#2|) (-145)) -((($) . T)) -((((-704)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((#0=(-569) #0#) . T)) -((($) . T) (((-412 (-569))) . T)) -(-2776 (|has| |#4| (-173)) (|has| |#4| (-731)) (|has| |#4| (-853)) (|has| |#4| (-1057))) -(-2776 (|has| |#3| (-173)) (|has| |#3| (-731)) (|has| |#3| (-853)) (|has| |#3| (-1057))) -((((-867)) . T) (((-1190)) . T)) -(|has| |#4| (-798)) -(-2776 (|has| |#4| (-798)) (|has| |#4| (-853))) -(|has| |#4| (-853)) -(|has| |#3| (-798)) -((((-1190)) . T)) -(-2776 (|has| |#3| (-798)) (|has| |#3| (-853))) -(|has| |#3| (-853)) -((((-569)) . T)) -(((|#2|) . T)) -((((-1185)) -2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) -((((-1185)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) +(((|#1| |#1|) |has| |#1| (-174))) +(((|#1|) . T) (((-570)) . T)) +((((-1191)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-562))) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +(((|#2|) . T)) +(-2779 (|has| |#1| (-21)) (|has| |#1| (-854))) +(((|#1|) |has| |#1| (-174))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-868)) -2779 (-12 (|has| |#1| (-619 (-868))) (|has| |#2| (-619 (-868)))) (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) +((((-413 |#2|) |#3|) . T)) +((((-413 (-570))) . T) (($) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-368)) +((($ $) . T) ((#0=(-413 (-570)) #0#) . T)) +((($) . T) (((-570)) . T)) +(|has| (-413 |#2|) (-148)) +(|has| (-413 |#2|) (-146)) +((($) . T)) +((((-705)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((#0=(-570) #0#) . T)) +((($) . T) (((-413 (-570))) . T)) +(-2779 (|has| |#4| (-174)) (|has| |#4| (-732)) (|has| |#4| (-854)) (|has| |#4| (-1058))) +(-2779 (|has| |#3| (-174)) (|has| |#3| (-732)) (|has| |#3| (-854)) (|has| |#3| (-1058))) +((((-868)) . T) (((-1191)) . T)) +(|has| |#4| (-799)) +(-2779 (|has| |#4| (-799)) (|has| |#4| (-854))) +(|has| |#4| (-854)) +(|has| |#3| (-799)) +((((-1191)) . T)) +(-2779 (|has| |#3| (-799)) (|has| |#3| (-854))) +(|has| |#3| (-854)) +((((-570)) . T)) +(((|#2|) . T)) +((((-1186)) -2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) +((((-1186)) -12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-869 |#1|)) . T)) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) -((((-1148 |#1| |#2|)) . T)) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) -(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1030)) -(((|#2|) . T) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -((((-867)) . T)) -((((-541)) |has| |#2| (-619 (-541))) (((-898 (-569))) |has| |#2| (-619 (-898 (-569)))) (((-898 (-383))) |has| |#2| (-619 (-898 (-383)))) (((-383)) . #0=(|has| |#2| (-1030))) (((-226)) . #0#)) -((((-297 |#3|)) . T)) -((((-1185) (-52)) . T)) -(((|#1|) . T)) -(|has| |#1| (-38 (-412 (-569)))) -(|has| |#1| (-38 (-412 (-569)))) -((((-867)) . T)) -(((|#2|) . T)) -((((-867)) . T)) +((((-870 |#1|)) . T)) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) +((((-1149 |#1| |#2|)) . T)) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) +(((|#2|) . T) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1031)) +(((|#2|) . T) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +((((-868)) . T)) +((((-542)) |has| |#2| (-620 (-542))) (((-899 (-570))) |has| |#2| (-620 (-899 (-570)))) (((-899 (-384))) |has| |#2| (-620 (-899 (-384)))) (((-384)) . #0=(|has| |#2| (-1031))) (((-227)) . #0#)) +((((-298 |#3|)) . T)) +((((-1186) (-52)) . T)) +(((|#1|) . T)) +(|has| |#1| (-38 (-413 (-570)))) +(|has| |#1| (-38 (-413 (-570)))) +((((-868)) . T)) +(((|#2|) . T)) +((((-868)) . T)) ((($ $) . T)) -((((-412 |#2|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-412 (-569))) . T) (((-704)) . T) (($) . T)) -((((-1183 |#1| |#2| |#3|)) . T)) -((((-1183 |#1| |#2| |#3|)) . T) (((-1176 |#1| |#2| |#3|)) . T)) -((((-867)) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-569) |#1|) . T)) -((((-1183 |#1| |#2| |#3|)) |has| |#1| (-367))) +((((-413 |#2|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-413 (-570))) . T) (((-705)) . T) (($) . T)) +((((-1184 |#1| |#2| |#3|)) . T)) +((((-1184 |#1| |#2| |#3|)) . T) (((-1177 |#1| |#2| |#3|)) . T)) +((((-868)) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-570) |#1|) . T)) +((((-1184 |#1| |#2| |#3|)) |has| |#1| (-368))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-367)) -(((|#3|) . T) ((|#2|) . T) (($) -2776 (|has| |#4| (-173)) (|has| |#4| (-853)) (|has| |#4| (-1057))) ((|#4|) -2776 (|has| |#4| (-173)) (|has| |#4| (-367)) (|has| |#4| (-1057)))) -(((|#2|) . T) (($) -2776 (|has| |#3| (-173)) (|has| |#3| (-853)) (|has| |#3| (-1057))) ((|#3|) -2776 (|has| |#3| (-173)) (|has| |#3| (-367)) (|has| |#3| (-1057)))) +(|has| |#2| (-368)) +(((|#3|) . T) ((|#2|) . T) (($) -2779 (|has| |#4| (-174)) (|has| |#4| (-854)) (|has| |#4| (-1058))) ((|#4|) -2779 (|has| |#4| (-174)) (|has| |#4| (-368)) (|has| |#4| (-1058)))) +(((|#2|) . T) (($) -2779 (|has| |#3| (-174)) (|has| |#3| (-854)) (|has| |#3| (-1058))) ((|#3|) -2779 (|has| |#3| (-174)) (|has| |#3| (-368)) (|has| |#3| (-1058)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-367)) -((((-116 |#1|)) . T)) +(|has| |#1| (-368)) +((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) (((-569)) |has| |#2| (-1046 (-569))) ((|#2|) . T) (((-869 |#1|)) . T)) -((((-1185)) . T) ((|#1|) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -((((-188)) . T) (((-867)) . T)) -((((-867)) . T)) +((((-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) (((-570)) |has| |#2| (-1047 (-570))) ((|#2|) . T) (((-870 |#1|)) . T)) +((((-1186)) . T) ((|#1|) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +((((-189)) . T) (((-868)) . T)) +((((-868)) . T)) (((|#1|) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -((((-129)) . T) (((-867)) . T)) -((((-569) |#1|) . T)) -((((-129)) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +((((-130)) . T) (((-868)) . T)) +((((-570) |#1|) . T)) +((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-368)) (|has| |#2| (-290 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-457)) (|has| |#1| (-915))) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -((((-867)) . T)) -((((-867)) . T)) -((((-867)) . T)) -(((|#1| (-536 |#2|)) . T)) -((((-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) . T)) -((((-569) (-129)) . T)) -(((|#1| (-569)) . T)) -(((|#1| (-412 (-569))) . T)) -(((|#1| (-776)) . T)) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -(-2776 (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) -(-2776 (|has| |#1| (-457)) (|has| |#1| (-561)) (|has| |#1| (-915))) -((($) . T)) -(((|#2| (-536 (-869 |#1|))) . T)) -((((-1190)) . T)) -((((-1190)) . T)) -((((-569) |#1|) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -(((|#2|) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-867)) . T) (((-1190)) . T)) -((((-1190)) . T)) -((((-867)) -2776 (|has| |#1| (-618 (-867))) (|has| |#1| (-1108)))) -(((|#1|) . T)) -(((|#2| (-776)) . T)) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-458)) (|has| |#1| (-916))) +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +((((-868)) . T)) +((((-868)) . T)) +((((-868)) . T)) +(((|#1| (-537 |#2|)) . T)) +((((-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) . T)) +((((-570) (-130)) . T)) +(((|#1| (-570)) . T)) +(((|#1| (-413 (-570))) . T)) +(((|#1| (-777)) . T)) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-117 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +(-2779 (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) +(-2779 (|has| |#1| (-458)) (|has| |#1| (-562)) (|has| |#1| (-916))) +((($) . T)) +(((|#2| (-537 (-870 |#1|))) . T)) +((((-1191)) . T)) +((((-1191)) . T)) +((((-570) |#1|) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +(((|#2|) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-868)) . T) (((-1191)) . T)) +((((-1191)) . T)) +((((-868)) -2779 (|has| |#1| (-619 (-868))) (|has| |#1| (-1109)))) +(((|#1|) . T)) +(((|#2| (-777)) . T)) (((|#1| |#2|) . T)) -((((-1167) |#1|) . T)) -((((-412 |#2|)) . T)) -((((-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T)) -(|has| |#1| (-561)) -(|has| |#1| (-561)) +((((-1168) |#1|) . T)) +((((-413 |#2|)) . T)) +((((-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T)) +(|has| |#1| (-562)) +(|has| |#1| (-562)) ((($) . T) ((|#2|) . T)) -((($) . T) (((-412 (-569))) . T)) -((((-412 (-569))) . T) (($) . T)) +((($) . T) (((-413 (-570))) . T)) +((((-413 (-570))) . T) (($) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-569)) . T) (($) . T)) -(((|#2| $) |has| |#2| (-289 |#2| |#2|))) -(((|#1| (-649 |#1|)) |has| |#1| (-853))) -(-2776 (|has| |#1| (-234)) (|has| |#1| (-353))) -(-2776 (|has| |#1| (-367)) (|has| |#1| (-353))) -((((-1271 |#1|)) . T) (((-569)) . T) ((|#2|) . T) (((-412 (-569))) |has| |#2| (-1046 (-412 (-569))))) -(|has| |#1| (-1108)) -(((|#1|) . T)) -((((-1271 |#1|)) . T) (((-569)) . T) (($) -2776 (|has| |#2| (-367)) (|has| |#2| (-457)) (|has| |#2| (-561)) (|has| |#2| (-915))) (((-1090)) . T) ((|#2|) . T) (((-412 (-569))) -2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) -((((-412 (-569))) . T) (($) . T)) -((((-1007 |#1|)) . T) ((|#1|) . T) (((-569)) -2776 (|has| (-1007 |#1|) (-1046 (-569))) (|has| |#1| (-1046 (-569)))) (((-412 (-569))) -2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) -((((-916 |#1|)) . T) (((-412 (-569))) . T) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-1185)) |has| |#1| (-906 (-1185)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -((((-916 |#1|)) . T) (($) . T) (((-412 (-569))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) -(((|#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-412 (-569))) . T) (((-569)) . T) (($) . T)) +((((-570)) . T) (($) . T)) +(((|#2| $) |has| |#2| (-290 |#2| |#2|))) +(((|#1| (-650 |#1|)) |has| |#1| (-854))) +(-2779 (|has| |#1| (-235)) (|has| |#1| (-354))) +(-2779 (|has| |#1| (-368)) (|has| |#1| (-354))) +((((-1272 |#1|)) . T) (((-570)) . T) ((|#2|) . T) (((-413 (-570))) |has| |#2| (-1047 (-413 (-570))))) +(|has| |#1| (-1109)) +(((|#1|) . T)) +((((-1272 |#1|)) . T) (((-570)) . T) (($) -2779 (|has| |#2| (-368)) (|has| |#2| (-458)) (|has| |#2| (-562)) (|has| |#2| (-916))) (((-1091)) . T) ((|#2|) . T) (((-413 (-570))) -2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) +((((-413 (-570))) . T) (($) . T)) +((((-1008 |#1|)) . T) ((|#1|) . T) (((-570)) -2779 (|has| (-1008 |#1|) (-1047 (-570))) (|has| |#1| (-1047 (-570)))) (((-413 (-570))) -2779 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) +((((-917 |#1|)) . T) (((-413 (-570))) . T) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-1186)) |has| |#1| (-907 (-1186)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +((((-917 |#1|)) . T) (($) . T) (((-413 (-570))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) +(((|#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-413 (-570))) . T) (((-570)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1148 |#1| |#2|) #0#) |has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|)))) +(((#0=(-1149 |#1| |#2|) #0#) |has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((#0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) #0#) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-312 #0#))) +(((|#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((#0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) #0#) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) +(((#0=(-117 |#1|)) |has| #0# (-313 #0#))) ((($ $) . T)) -(-2776 (|has| |#1| (-855)) (|has| |#1| (-1108))) -((($ $) . T) ((#0=(-869 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-234)) ((|#2| |#1|) |has| |#1| (-234)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-483 . -1108) T) ((-266 . -519) 188453) ((-248 . -519) 188396) ((-246 . -1108) 188346) ((-576 . -111) 188331) ((-536 . -23) T) ((-137 . -1108) T) ((-133 . -1108) T) ((-117 . -312) 188288) ((-138 . -1108) T) ((-484 . -519) 188080) ((-682 . -621) 188064) ((-699 . -102) T) ((-1149 . -519) 187983) ((-395 . -131) T) ((-1288 . -984) 187952) ((-1032 . -1059) 187889) ((-31 . -93) T) ((-607 . -494) 187873) ((-1032 . -645) 187810) ((-626 . -131) T) ((-824 . -851) T) ((-528 . -57) 187760) ((-524 . -519) 187693) ((-358 . -1059) 187638) ((-59 . -519) 187571) ((-521 . -519) 187504) ((-423 . -906) 187463) ((-170 . -1057) T) ((-502 . -519) 187396) ((-501 . -519) 187329) ((-358 . -645) 187274) ((-804 . -1046) 187054) ((-704 . -38) 187019) ((-1248 . -621) 186767) ((-347 . -353) T) ((-1102 . -1101) 186751) ((-1102 . -1108) 186729) ((-860 . -621) 186626) ((-170 . -244) 186577) ((-170 . -234) 186528) ((-1102 . -1103) 186486) ((-877 . -289) 186444) ((-226 . -800) T) ((-226 . -797) T) ((-699 . -287) NIL) ((-576 . -621) 186416) ((-1158 . -1201) 186395) ((-412 . -1000) 186379) ((-48 . -1059) 186344) ((-706 . -21) T) ((-706 . -25) T) ((-48 . -645) 186309) ((-1290 . -653) 186283) ((-319 . -160) 186262) ((-319 . -143) 186241) ((-1158 . -107) 186191) ((-116 . -21) T) ((-40 . -232) 186168) ((-134 . -25) T) ((-116 . -25) T) ((-613 . -291) 186144) ((-480 . -291) 186123) ((-1248 . -329) 186100) ((-1248 . -1057) T) ((-860 . -1057) T) ((-804 . -342) 186084) ((-139 . -186) T) ((-117 . -1160) NIL) ((-91 . -618) 186016) ((-482 . -131) T) ((-1248 . -234) T) ((-1104 . -495) 185997) ((-1104 . -618) 185963) ((-1098 . -495) 185944) ((-1098 . -618) 185910) ((-598 . -1225) T) ((-1081 . -495) 185891) ((-576 . -1057) T) ((-1081 . -618) 185857) ((-667 . -722) 185841) ((-1074 . -495) 185822) ((-1074 . -618) 185788) ((-964 . -291) 185765) ((-60 . -34) T) ((-1070 . -800) T) ((-1070 . -797) T) ((-1044 . -495) 185746) ((-1027 . -495) 185727) ((-821 . -731) T) ((-736 . -47) 185692) ((-628 . -38) 185679) ((-359 . -293) T) ((-356 . -293) T) ((-348 . -293) T) ((-266 . -293) 185610) ((-248 . -293) 185541) ((-1044 . -618) 185507) ((-1032 . -102) T) ((-1027 . -618) 185473) ((-631 . -495) 185454) ((-418 . -731) T) ((-117 . -38) 185399) ((-488 . -495) 185380) ((-631 . -618) 185346) ((-418 . -478) T) ((-219 . -495) 185327) ((-488 . -618) 185293) ((-358 . -102) T) ((-219 . -618) 185259) ((-1219 . -1066) T) ((-347 . -651) 185189) ((-716 . -1066) T) ((-1183 . -47) 185166) ((-1182 . -47) 185136) ((-1176 . -47) 185113) ((-128 . -291) 185088) ((-1043 . -151) 185034) ((-916 . -293) T) ((-1134 . -47) 185006) ((-699 . -312) NIL) ((-520 . -618) 184988) ((-515 . -618) 184970) ((-513 . -618) 184952) ((-330 . -1108) 184902) ((-717 . -457) 184833) ((-48 . -102) T) ((-1259 . -289) 184818) ((-1238 . -289) 184738) ((-649 . -671) 184722) ((-649 . -656) 184706) ((-343 . -21) T) ((-343 . -25) T) ((-40 . -353) NIL) ((-175 . -21) T) ((-175 . -25) T) ((-649 . -377) 184690) ((-610 . -495) 184672) ((-607 . -289) 184649) ((-610 . -618) 184616) ((-393 . -102) T) ((-1128 . -143) T) ((-126 . -618) 184548) ((-879 . -1108) T) ((-663 . -416) 184532) ((-719 . -618) 184514) ((-250 . -618) 184481) ((-188 . -618) 184463) ((-162 . -618) 184445) ((-157 . -618) 184427) ((-1290 . -731) T) ((-1110 . -34) T) ((-876 . -800) NIL) ((-876 . -797) NIL) ((-863 . -855) T) ((-736 . -892) NIL) ((-1299 . -131) T) ((-385 . -131) T) ((-898 . -621) 184395) ((-910 . -102) T) ((-736 . -1046) 184271) ((-536 . -131) T) ((-1095 . -416) 184255) ((-1008 . -494) 184239) ((-117 . -405) 184216) ((-1176 . -1225) 184195) ((-787 . -416) 184179) ((-785 . -416) 184163) ((-949 . -34) T) ((-699 . -1160) NIL) ((-253 . -653) 183998) ((-252 . -653) 183820) ((-822 . -926) 183799) ((-459 . -416) 183783) ((-607 . -19) 183767) ((-1154 . -1218) 183736) ((-1176 . -892) NIL) ((-1176 . -890) 183688) ((-607 . -609) 183665) ((-1211 . -618) 183597) ((-1184 . -618) 183579) ((-62 . -400) T) ((-1182 . -1046) 183514) ((-1176 . -1046) 183480) ((-699 . -38) 183430) ((-40 . -651) 183360) ((-479 . -289) 183345) ((-1231 . -618) 183327) ((-736 . -381) 183311) ((-843 . -618) 183293) ((-663 . -1066) T) ((-1259 . -1010) 183259) ((-1238 . -1010) 183225) ((-1096 . -621) 183209) ((-1071 . -1201) 183184) ((-1084 . -621) 183161) ((-877 . -619) 182968) ((-877 . -618) 182950) ((-1198 . -494) 182887) ((-423 . -1030) 182865) ((-48 . -312) 182852) ((-1071 . -107) 182798) ((-484 . -494) 182735) ((-525 . -1225) T) ((-1176 . -342) 182687) ((-1149 . -494) 182658) ((-1176 . -381) 182610) ((-1095 . -1066) T) ((-442 . -102) T) ((-184 . -1108) T) ((-253 . -34) T) ((-252 . -34) T) ((-787 . -1066) T) ((-785 . -1066) T) ((-736 . -906) 182587) ((-459 . -1066) T) ((-59 . -494) 182571) ((-1042 . -1064) 182545) ((-524 . -494) 182529) ((-521 . -494) 182513) ((-502 . -494) 182497) ((-501 . -494) 182481) ((-246 . -519) 182414) ((-1042 . -111) 182381) ((-1183 . -906) 182294) ((-1182 . -906) 182200) ((-1176 . -906) 182033) ((-1134 . -906) 182017) ((-675 . -1120) T) ((-358 . -1160) T) ((-650 . -93) T) ((-325 . -1064) 181999) ((-253 . -796) 181978) ((-253 . -799) 181929) ((-31 . -495) 181910) ((-253 . -798) 181889) ((-252 . -796) 181868) ((-252 . -799) 181819) ((-252 . -798) 181798) ((-31 . -618) 181764) ((-50 . -1066) T) ((-253 . -731) 181674) ((-252 . -731) 181584) ((-1219 . -1108) T) ((-675 . -23) T) ((-586 . -1066) T) ((-523 . -1066) T) ((-383 . -1064) 181549) ((-325 . -111) 181524) ((-73 . -387) T) ((-73 . -400) T) ((-1032 . -38) 181461) ((-699 . -405) 181443) ((-99 . -102) T) ((-716 . -1108) T) ((-1303 . -1059) 181430) ((-1011 . -145) 181402) ((-1011 . -147) 181374) ((-875 . -651) 181346) ((-383 . -111) 181302) ((-322 . -1229) 181281) ((-479 . -1010) 181247) ((-358 . -38) 181212) ((-40 . -374) 181184) ((-878 . -618) 181056) ((-127 . -125) 181040) ((-121 . -125) 181024) ((-841 . -1064) 180994) ((-838 . -21) 180946) ((-832 . -1064) 180930) ((-838 . -25) 180882) ((-322 . -561) 180833) ((-522 . -621) 180814) ((-569 . -833) T) ((-241 . -1225) T) ((-1042 . -621) 180783) ((-841 . -111) 180748) ((-832 . -111) 180727) ((-1259 . -618) 180709) ((-1238 . -618) 180691) ((-1238 . -619) 180362) ((-1181 . -915) 180341) ((-1133 . -915) 180320) ((-48 . -38) 180285) ((-1297 . -1120) T) ((-607 . -618) 180197) ((-607 . -619) 180158) ((-1295 . -1120) T) ((-365 . -621) 180142) ((-325 . -621) 180126) ((-241 . -1046) 179953) ((-1181 . -653) 179878) ((-1133 . -653) 179803) ((-859 . -653) 179777) ((-723 . -618) 179759) ((-551 . -372) T) ((-1297 . -23) T) ((-1295 . -23) T) ((-496 . -1108) T) ((-383 . -621) 179709) ((-383 . -623) 179691) ((-1042 . -1057) T) ((-870 . -102) T) ((-1198 . -289) 179670) ((-170 . -372) 179621) ((-1012 . -1225) T) ((-841 . -621) 179575) ((-832 . -621) 179530) ((-44 . -23) T) ((-484 . -289) 179509) ((-591 . -1108) T) ((-1154 . -1117) 179478) ((-1112 . -1111) 179430) ((-395 . -21) T) ((-395 . -25) T) ((-152 . -1120) T) ((-1303 . -102) T) ((-1012 . -890) 179412) ((-1012 . -892) 179394) ((-1219 . -722) 179291) ((-628 . -232) 179275) ((-626 . -21) T) ((-292 . -561) T) ((-626 . -25) T) ((-1205 . -1108) T) ((-716 . -722) 179240) ((-241 . -381) 179209) ((-1012 . -1046) 179169) ((-383 . -1057) T) ((-224 . -1066) T) ((-117 . -232) 179146) ((-59 . -289) 179123) ((-152 . -23) T) ((-521 . -289) 179100) ((-330 . -519) 179033) ((-501 . -289) 179010) ((-383 . -244) T) ((-383 . -234) T) ((-841 . -1057) T) ((-832 . -1057) T) ((-717 . -955) 178979) ((-706 . -855) T) ((-479 . -618) 178961) ((-1261 . -1059) 178866) ((-585 . -651) 178838) ((-569 . -651) 178810) ((-500 . -651) 178760) ((-832 . -234) 178739) ((-134 . -855) T) ((-1261 . -645) 178631) ((-663 . -1108) T) ((-1198 . -609) 178610) ((-555 . -1201) 178589) ((-340 . -1108) T) ((-322 . -367) 178568) ((-412 . -147) 178547) ((-412 . -145) 178526) ((-970 . -1120) 178425) ((-241 . -906) 178357) ((-820 . -1120) 178267) ((-659 . -857) 178251) ((-484 . -609) 178230) ((-555 . -107) 178180) ((-1012 . -381) 178162) ((-1012 . -342) 178144) ((-97 . -1108) T) ((-970 . -23) 177955) ((-482 . -21) T) ((-482 . -25) T) ((-820 . -23) 177825) ((-1185 . -618) 177807) ((-59 . -19) 177791) ((-1185 . -619) 177713) ((-1181 . -731) T) ((-1133 . -731) T) ((-521 . -19) 177697) ((-501 . -19) 177681) ((-59 . -609) 177658) ((-1095 . -1108) T) ((-907 . -102) 177636) ((-859 . -731) T) ((-787 . -1108) T) ((-521 . -609) 177613) ((-501 . -609) 177590) ((-785 . -1108) T) ((-785 . -1073) 177557) ((-466 . -1108) T) ((-459 . -1108) T) ((-591 . -722) 177532) ((-654 . -1108) T) ((-1267 . -47) 177509) ((-1261 . -102) T) ((-1260 . -47) 177479) ((-1239 . -47) 177456) ((-1219 . -173) 177407) ((-1182 . -310) 177386) ((-1176 . -310) 177365) ((-1104 . -621) 177346) ((-1098 . -621) 177327) ((-1088 . -561) 177278) ((-1012 . -906) NIL) ((-1088 . -1229) 177229) ((-675 . -131) T) ((-632 . -1120) T) ((-1081 . -621) 177210) ((-1074 . -621) 177191) ((-1044 . -621) 177172) ((-1027 . -621) 177153) ((-704 . -651) 177103) ((-277 . -1108) T) ((-85 . -446) T) ((-85 . -400) T) ((-719 . -1064) 177073) ((-716 . -173) T) ((-50 . -1108) T) ((-600 . -47) 177050) ((-226 . -653) 177015) ((-586 . -1108) T) ((-523 . -1108) T) ((-492 . -825) T) ((-492 . -926) T) ((-363 . -1229) T) ((-357 . -1229) T) ((-349 . -1229) T) ((-322 . -1120) T) ((-319 . -1059) 176925) ((-316 . -1059) 176854) ((-108 . -1229) T) ((-631 . -621) 176835) ((-363 . -561) T) ((-218 . -926) T) ((-218 . -825) T) ((-319 . -645) 176745) ((-316 . -645) 176674) ((-357 . -561) T) ((-349 . -561) T) ((-488 . -621) 176655) ((-108 . -561) T) ((-663 . -722) 176625) ((-1176 . -1030) NIL) ((-219 . -621) 176606) ((-322 . -23) T) ((-67 . -1225) T) ((-1008 . -618) 176538) ((-699 . -232) 176520) ((-719 . -111) 176485) ((-649 . -34) T) ((-246 . -494) 176469) ((-1110 . -1106) 176453) ((-172 . -1108) T) ((-1303 . -1160) T) ((-1299 . -21) T) ((-1299 . -25) T) ((-1297 . -131) T) ((-1295 . -131) T) ((-958 . -915) 176432) ((-1288 . -102) T) ((-1271 . -618) 176398) ((-1260 . -1046) 176333) ((-520 . -621) 176317) ((-1239 . -1225) 176296) ((-1239 . -892) NIL) ((-1239 . -890) 176248) ((-486 . -915) 176227) ((-1239 . -1046) 176193) ((-1219 . -519) 176160) ((-1095 . -722) 176009) ((-1070 . -653) 175996) ((-958 . -653) 175921) ((-602 . -495) 175902) ((-590 . -495) 175883) ((-787 . -722) 175712) ((-602 . -618) 175678) ((-590 . -618) 175644) ((-541 . -618) 175626) ((-541 . -619) 175607) ((-785 . -722) 175456) ((-1085 . -102) T) ((-385 . -25) T) ((-628 . -651) 175428) ((-385 . -21) T) ((-486 . -653) 175353) ((-466 . -722) 175324) ((-459 . -722) 175173) ((-995 . -102) T) ((-1198 . -619) NIL) ((-1198 . -618) 175155) ((-1150 . -1131) 175100) ((-742 . -102) T) ((-117 . -651) 175030) ((-610 . -621) 175012) ((-1054 . -1218) 174941) ((-907 . -312) 174879) ((-536 . -25) T) ((-881 . -93) T) ((-719 . -621) 174833) ((-686 . -93) T) ((-650 . -495) 174814) ((-141 . -102) T) ((-44 . -131) T) ((-681 . -93) T) ((-669 . -618) 174796) ((-347 . -1066) T) ((-292 . -1120) T) ((-650 . -618) 174749) ((-483 . -93) T) ((-359 . -618) 174731) ((-356 . -618) 174713) ((-348 . -618) 174695) ((-266 . -619) 174443) ((-266 . -618) 174425) ((-248 . -618) 174407) ((-248 . -619) 174268) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1149 . -618) 174250) ((-1128 . -645) 174237) ((-1128 . -1059) 174224) ((-824 . -731) T) ((-824 . -862) T) ((-607 . -291) 174201) ((-586 . -722) 174166) ((-484 . -619) NIL) ((-484 . -618) 174148) ((-523 . -722) 174093) ((-319 . -102) T) ((-316 . -102) T) ((-292 . -23) T) ((-152 . -131) T) ((-916 . -618) 174075) ((-916 . -619) 174057) ((-391 . -731) T) ((-877 . -1064) 174009) ((-877 . -111) 173947) ((-719 . -1057) T) ((-717 . -1251) 173931) ((-699 . -353) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-524 . -618) 173863) ((-383 . -800) T) ((-224 . -1108) T) ((-168 . -1225) T) ((-383 . -797) T) ((-226 . -799) T) ((-226 . -796) T) ((-59 . -619) 173824) ((-59 . -618) 173736) ((-226 . -731) T) ((-521 . -619) 173697) ((-521 . -618) 173609) ((-502 . -618) 173541) ((-501 . -619) 173502) ((-501 . -618) 173414) ((-1088 . -367) 173365) ((-40 . -416) 173342) ((-77 . -1225) T) ((-876 . -915) NIL) ((-363 . -332) 173326) ((-363 . -367) T) ((-357 . -332) 173310) ((-357 . -367) T) ((-349 . -332) 173294) ((-349 . -367) T) ((-319 . -287) 173273) ((-108 . -367) T) ((-70 . -1225) T) ((-1239 . -342) 173225) ((-876 . -653) 173170) ((-1239 . -381) 173122) ((-970 . -131) 172977) ((-820 . -131) 172847) ((-964 . -656) 172831) ((-1095 . -173) 172742) ((-964 . -377) 172726) ((-1070 . -799) T) ((-1070 . -796) T) ((-877 . -621) 172624) ((-787 . -173) 172515) ((-785 . -173) 172426) ((-821 . -47) 172388) ((-1070 . -731) T) ((-330 . -494) 172372) ((-958 . -731) T) ((-1288 . -312) 172310) ((-459 . -173) 172221) ((-246 . -289) 172198) ((-1267 . -906) 172111) ((-1260 . -906) 172017) ((-1259 . -1064) 171852) ((-486 . -731) T) ((-1239 . -906) 171685) ((-1238 . -1064) 171493) ((-1219 . -293) 171472) ((-1195 . -1225) T) ((-1192 . -372) T) ((-1191 . -372) T) ((-1154 . -151) 171456) ((-1128 . -102) T) ((-1126 . -1108) T) ((-1088 . -23) T) ((-1088 . -1120) T) ((-1083 . -102) T) ((-1065 . -618) 171423) ((-933 . -961) T) ((-742 . -312) 171361) ((-75 . -1225) T) ((-669 . -386) 171333) ((-170 . -915) 171286) ((-30 . -961) T) ((-112 . -849) T) ((-1 . -618) 171268) ((-1011 . -414) 171240) ((-128 . -656) 171222) ((-50 . -625) 171206) ((-699 . -651) 171141) ((-600 . -906) 171054) ((-443 . -102) T) ((-128 . -377) 171036) ((-141 . -312) NIL) ((-877 . -1057) T) ((-838 . -855) 171015) ((-81 . -1225) T) ((-716 . -293) T) ((-40 . -1066) T) ((-586 . -173) T) ((-523 . -173) T) ((-516 . -618) 170997) ((-170 . -653) 170907) ((-512 . -618) 170889) ((-355 . -147) 170871) ((-355 . -145) T) ((-363 . -1120) T) ((-357 . -1120) T) ((-349 . -1120) T) ((-1012 . -310) T) ((-920 . -310) T) ((-877 . -244) T) ((-108 . -1120) T) ((-877 . -234) 170850) ((-1259 . -111) 170671) ((-1238 . -111) 170460) ((-246 . -1263) 170444) ((-569 . -853) T) ((-363 . -23) T) ((-358 . -353) T) ((-319 . -312) 170431) ((-316 . -312) 170372) ((-357 . -23) T) ((-322 . -131) T) ((-349 . -23) T) ((-1012 . -1030) T) ((-31 . -621) 170353) ((-108 . -23) T) ((-659 . -1059) 170337) ((-246 . -609) 170314) ((-336 . -1108) T) ((-659 . -645) 170284) ((-1261 . -38) 170176) ((-1248 . -915) 170155) ((-112 . -1108) T) ((-1043 . -102) T) ((-1248 . -653) 170080) ((-876 . -799) NIL) ((-860 . -653) 170054) ((-876 . -796) NIL) ((-821 . -892) NIL) ((-876 . -731) T) ((-1095 . -519) 169927) ((-787 . -519) 169874) ((-785 . -519) 169826) ((-576 . -653) 169813) ((-821 . -1046) 169641) ((-459 . -519) 169584) ((-393 . -394) T) ((-1259 . -621) 169397) ((-1238 . -621) 169145) ((-60 . -1225) T) ((-626 . -855) 169124) ((-505 . -666) T) ((-1154 . -984) 169093) ((-1032 . -651) 169030) ((-1011 . -457) T) ((-704 . -853) T) ((-515 . -797) T) ((-479 . -1064) 168865) ((-347 . -1108) T) ((-316 . -1160) NIL) ((-292 . -131) T) ((-399 . -1108) T) ((-875 . -1066) T) ((-699 . -374) 168832) ((-358 . -651) 168762) ((-224 . -625) 168739) ((-330 . -289) 168716) ((-479 . -111) 168537) ((-1259 . -1057) T) ((-1238 . -1057) T) ((-821 . -381) 168521) ((-170 . -731) T) ((-659 . -102) T) ((-1259 . -244) 168500) ((-1259 . -234) 168452) ((-1238 . -234) 168357) ((-1238 . -244) 168336) ((-1011 . -407) NIL) ((-675 . -644) 168284) ((-319 . -38) 168194) ((-316 . -38) 168123) ((-69 . -618) 168105) ((-322 . -498) 168071) ((-48 . -651) 168021) ((-1198 . -291) 168000) ((-1233 . -855) T) ((-1121 . -1120) 167910) ((-83 . -1225) T) ((-61 . -618) 167892) ((-484 . -291) 167871) ((-1290 . -1046) 167848) ((-1173 . -1108) T) ((-1121 . -23) 167718) ((-821 . -906) 167654) ((-1248 . -731) T) ((-1110 . -1225) T) ((-479 . -621) 167480) ((-1095 . -293) 167411) ((-972 . -1108) T) ((-899 . -102) T) ((-787 . -293) 167322) ((-330 . -19) 167306) ((-59 . -291) 167283) ((-785 . -293) 167214) ((-860 . -731) T) ((-117 . -853) NIL) ((-521 . -291) 167191) ((-330 . -609) 167168) ((-501 . -291) 167145) ((-459 . -293) 167076) ((-1043 . -312) 166927) ((-881 . -495) 166908) ((-881 . -618) 166874) ((-686 . -495) 166855) ((-576 . -731) T) ((-681 . -495) 166836) ((-686 . -618) 166786) ((-681 . -618) 166752) ((-667 . -618) 166734) ((-483 . -495) 166715) ((-483 . -618) 166681) ((-246 . -619) 166642) ((-246 . -495) 166619) ((-138 . -495) 166600) ((-137 . -495) 166581) ((-133 . -495) 166562) ((-246 . -618) 166454) ((-214 . -102) T) ((-138 . -618) 166420) ((-137 . -618) 166386) ((-133 . -618) 166352) ((-1155 . -34) T) ((-949 . -1225) T) ((-347 . -722) 166297) ((-675 . -25) T) ((-675 . -21) T) ((-1185 . -621) 166278) ((-479 . -1057) T) ((-640 . -422) 166243) ((-612 . -422) 166208) ((-1128 . -1160) T) ((-717 . -1059) 166031) ((-586 . -293) T) ((-523 . -293) T) ((-1260 . -310) 166010) ((-479 . -234) 165962) ((-479 . -244) 165941) ((-1239 . -310) 165920) ((-717 . -645) 165749) ((-1239 . -1030) NIL) ((-1088 . -131) T) ((-877 . -800) 165728) ((-144 . -102) T) ((-40 . -1108) T) ((-877 . -797) 165707) ((-649 . -1018) 165691) ((-585 . -1066) T) ((-569 . -1066) T) ((-500 . -1066) T) ((-412 . -457) T) ((-363 . -131) T) ((-319 . -405) 165675) ((-316 . -405) 165636) ((-357 . -131) T) ((-349 . -131) T) ((-1190 . -1108) T) ((-1128 . -38) 165623) ((-1102 . -618) 165590) ((-108 . -131) T) ((-960 . -1108) T) ((-927 . -1108) T) ((-776 . -1108) T) ((-677 . -1108) T) ((-706 . -147) T) ((-116 . -147) T) ((-1297 . -21) T) ((-1297 . -25) T) ((-1295 . -21) T) ((-1295 . -25) T) ((-669 . -1064) 165574) ((-536 . -855) T) ((-505 . -855) T) ((-359 . -1064) 165526) ((-356 . -1064) 165478) ((-348 . -1064) 165430) ((-253 . -1225) T) ((-252 . -1225) T) ((-266 . -1064) 165273) ((-248 . -1064) 165116) ((-669 . -111) 165095) ((-552 . -849) T) ((-359 . -111) 165033) ((-356 . -111) 164971) ((-348 . -111) 164909) ((-266 . -111) 164738) ((-248 . -111) 164567) ((-822 . -1229) 164546) ((-628 . -416) 164530) ((-44 . -21) T) ((-44 . -25) T) ((-820 . -644) 164436) ((-822 . -561) 164415) ((-253 . -1046) 164242) ((-252 . -1046) 164069) ((-126 . -119) 164053) ((-916 . -1064) 164018) ((-717 . -102) T) ((-704 . -1066) T) ((-602 . -621) 163999) ((-590 . -621) 163980) ((-541 . -623) 163883) ((-347 . -173) T) ((-88 . -618) 163865) ((-152 . -21) T) ((-152 . -25) T) ((-916 . -111) 163821) ((-40 . -722) 163766) ((-875 . -1108) T) ((-669 . -621) 163743) ((-650 . -621) 163724) ((-359 . -621) 163661) ((-356 . -621) 163598) ((-552 . -1108) T) ((-348 . -621) 163535) ((-330 . -619) 163496) ((-330 . -618) 163408) ((-266 . -621) 163161) ((-248 . -621) 162946) ((-1238 . -797) 162899) ((-1238 . -800) 162852) ((-253 . -381) 162821) ((-252 . -381) 162790) ((-659 . -38) 162760) ((-613 . -34) T) ((-487 . -1120) 162670) ((-480 . -34) T) ((-1121 . -131) 162540) ((-970 . -25) 162351) ((-916 . -621) 162301) ((-879 . -618) 162283) ((-970 . -21) 162238) ((-820 . -21) 162148) ((-820 . -25) 161999) ((-1231 . -372) T) ((-628 . -1066) T) ((-1187 . -561) 161978) ((-1181 . -47) 161955) ((-359 . -1057) T) ((-356 . -1057) T) ((-487 . -23) 161825) ((-348 . -1057) T) ((-266 . -1057) T) ((-248 . -1057) T) ((-1133 . -47) 161797) ((-117 . -1066) T) ((-1042 . -653) 161771) ((-964 . -34) T) ((-359 . -234) 161750) ((-359 . -244) T) ((-356 . -234) 161729) ((-356 . -244) T) ((-348 . -234) 161708) ((-348 . -244) T) ((-266 . -329) 161680) ((-248 . -329) 161637) ((-266 . -234) 161616) ((-1165 . -151) 161600) ((-253 . -906) 161532) ((-252 . -906) 161464) ((-1090 . -855) T) ((-419 . -1120) T) ((-1062 . -23) T) ((-916 . -1057) T) ((-325 . -653) 161446) ((-1032 . -853) T) ((-1219 . -1010) 161412) ((-1182 . -926) 161391) ((-1176 . -926) 161370) ((-1176 . -825) NIL) ((-1007 . -1059) 161266) ((-973 . -1225) T) ((-916 . -244) T) ((-822 . -367) 161245) ((-389 . -23) T) ((-127 . -1108) 161223) ((-121 . -1108) 161201) ((-916 . -234) T) ((-128 . -34) T) ((-383 . -653) 161166) ((-1007 . -645) 161114) ((-875 . -722) 161101) ((-1303 . -651) 161073) ((-1054 . -151) 161038) ((-40 . -173) T) ((-699 . -416) 161020) ((-717 . -312) 161007) ((-841 . -653) 160967) ((-832 . -653) 160941) ((-322 . -25) T) ((-322 . -21) T) ((-663 . -289) 160920) ((-585 . -1108) T) ((-569 . -1108) T) ((-500 . -1108) T) ((-246 . -291) 160897) ((-316 . -232) 160858) ((-1181 . -892) NIL) ((-55 . -1108) T) ((-1133 . -892) 160717) ((-129 . -855) T) ((-1181 . -1046) 160597) ((-1133 . -1046) 160480) ((-184 . -618) 160462) ((-859 . -1046) 160358) ((-787 . -289) 160285) ((-822 . -1120) T) ((-1042 . -731) T) ((-607 . -656) 160269) ((-1054 . -984) 160198) ((-1007 . -102) T) ((-822 . -23) T) ((-717 . -1160) 160176) ((-699 . -1066) T) ((-607 . -377) 160160) ((-355 . -457) T) ((-347 . -293) T) ((-1276 . -1108) T) ((-249 . -1108) T) ((-404 . -102) T) ((-292 . -21) T) ((-292 . -25) T) ((-365 . -731) T) ((-715 . -1108) T) ((-704 . -1108) T) ((-365 . -478) T) ((-1219 . -618) 160142) ((-1181 . -381) 160126) ((-1133 . -381) 160110) ((-1032 . -416) 160072) ((-141 . -230) 160054) ((-383 . -799) T) ((-383 . -796) T) ((-875 . -173) T) ((-383 . -731) T) ((-716 . -618) 160036) ((-717 . -38) 159865) ((-1275 . -1273) 159849) ((-355 . -407) T) ((-1275 . -1108) 159799) ((-585 . -722) 159786) ((-569 . -722) 159773) ((-500 . -722) 159738) ((-1261 . -651) 159628) ((-319 . -634) 159607) ((-841 . -731) T) ((-832 . -731) T) ((-649 . -1225) T) ((-1088 . -644) 159555) ((-1181 . -906) 159498) ((-1133 . -906) 159482) ((-667 . -1064) 159466) ((-108 . -644) 159448) ((-487 . -131) 159318) ((-1187 . -1120) T) ((-958 . -47) 159287) ((-628 . -1108) T) ((-667 . -111) 159266) ((-496 . -618) 159232) ((-330 . -291) 159209) ((-486 . -47) 159166) ((-1187 . -23) T) ((-117 . -1108) T) ((-103 . -102) 159144) ((-1287 . -1120) T) ((-553 . -855) T) ((-1062 . -131) T) ((-1032 . -1066) T) ((-824 . -1046) 159128) ((-1011 . -729) 159100) ((-1287 . -23) T) ((-704 . -722) 159065) ((-591 . -618) 159047) ((-391 . -1046) 159031) ((-358 . -1066) T) ((-389 . -131) T) ((-327 . -1046) 159015) ((-1205 . -618) 158997) ((-1128 . -833) T) ((-1113 . -1108) T) ((-226 . -892) 158979) ((-1012 . -926) T) ((-91 . -34) T) ((-1012 . -825) T) ((-920 . -926) T) ((-1088 . -21) T) ((-1088 . -25) T) ((-492 . -1229) T) ((-1007 . -312) 158944) ((-881 . -621) 158925) ((-719 . -653) 158885) ((-218 . -1229) T) ((-686 . -621) 158866) ((-226 . -1046) 158826) ((-40 . -293) T) ((-681 . -621) 158807) ((-492 . -561) T) ((-483 . -621) 158788) ((-319 . -651) 158472) ((-316 . -651) 158386) ((-363 . -25) T) ((-363 . -21) T) ((-357 . -25) T) ((-218 . -561) T) ((-357 . -21) T) ((-349 . -25) T) ((-349 . -21) T) ((-246 . -621) 158363) ((-138 . -621) 158344) ((-137 . -621) 158325) ((-133 . -621) 158306) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1066) T) ((-585 . -173) T) ((-569 . -173) T) ((-500 . -173) T) ((-663 . -618) 158288) ((-742 . -741) 158272) ((-340 . -618) 158254) ((-68 . -387) T) ((-68 . -400) T) ((-1110 . -107) 158238) ((-1070 . -892) 158220) ((-958 . -892) 158145) ((-658 . -1120) T) ((-628 . -722) 158132) ((-486 . -892) NIL) ((-1154 . -102) T) ((-1102 . -623) 158116) ((-1070 . -1046) 158098) ((-97 . -618) 158080) ((-482 . -147) T) ((-958 . -1046) 157960) ((-117 . -722) 157905) ((-658 . -23) T) ((-486 . -1046) 157781) ((-1095 . -619) NIL) ((-1095 . -618) 157763) ((-787 . -619) NIL) ((-787 . -618) 157724) ((-785 . -619) 157358) ((-785 . -618) 157272) ((-1121 . -644) 157178) ((-466 . -618) 157160) ((-459 . -618) 157142) ((-459 . -619) 157003) ((-1043 . -230) 156949) ((-877 . -915) 156928) ((-126 . -34) T) ((-822 . -131) T) ((-654 . -618) 156910) ((-583 . -102) T) ((-359 . -1294) 156894) ((-356 . -1294) 156878) ((-348 . -1294) 156862) ((-127 . -519) 156795) ((-121 . -519) 156728) ((-516 . -797) T) ((-516 . -800) T) ((-515 . -799) T) ((-103 . -312) 156666) ((-223 . -102) 156644) ((-704 . -173) T) ((-699 . -1108) T) ((-877 . -653) 156596) ((-65 . -388) T) ((-277 . -618) 156578) ((-65 . -400) T) ((-958 . -381) 156562) ((-875 . -293) T) ((-50 . -618) 156544) ((-1007 . -38) 156492) ((-1128 . -651) 156464) ((-586 . -618) 156446) ((-486 . -381) 156430) ((-586 . -619) 156412) ((-523 . -618) 156394) ((-916 . -1294) 156381) ((-876 . -1225) T) ((-706 . -457) T) ((-500 . -519) 156347) ((-492 . -367) T) ((-359 . -372) 156326) ((-356 . -372) 156305) ((-348 . -372) 156284) ((-719 . -731) T) ((-218 . -367) T) ((-116 . -457) T) ((-1298 . -1289) 156268) ((-876 . -890) 156245) ((-876 . -892) NIL) ((-970 . -855) 156144) ((-820 . -855) 156095) ((-1232 . -102) T) ((-659 . -661) 156079) ((-1211 . -34) T) ((-172 . -618) 156061) ((-1121 . -21) 155971) ((-1121 . -25) 155822) ((-876 . -1046) 155799) ((-958 . -906) 155780) ((-1248 . -47) 155757) ((-916 . -372) T) ((-59 . -656) 155741) ((-521 . -656) 155725) ((-486 . -906) 155702) ((-71 . -446) T) ((-71 . -400) T) ((-501 . -656) 155686) ((-59 . -377) 155670) ((-628 . -173) T) ((-521 . -377) 155654) ((-501 . -377) 155638) ((-832 . -713) 155622) ((-1181 . -310) 155601) ((-1187 . -131) T) ((-1150 . -1059) 155585) ((-117 . -173) T) ((-1150 . -645) 155517) ((-1154 . -312) 155455) ((-170 . -1225) T) ((-1287 . -131) T) ((-871 . -1059) 155425) ((-640 . -749) 155409) ((-612 . -749) 155393) ((-1260 . -926) 155372) ((-1239 . -926) 155351) ((-1239 . -825) NIL) ((-871 . -645) 155321) ((-699 . -722) 155271) ((-1238 . -915) 155224) ((-1032 . -1108) T) ((-876 . -381) 155201) ((-876 . -342) 155178) ((-911 . -1120) T) ((-170 . -890) 155162) ((-170 . -892) 155087) ((-492 . -1120) T) ((-358 . -1108) T) ((-218 . -1120) T) ((-76 . -446) T) ((-76 . -400) T) ((-170 . -1046) 154983) ((-322 . -855) T) ((-1275 . -519) 154916) ((-1259 . -653) 154813) ((-1238 . -653) 154683) ((-877 . -799) 154662) ((-877 . -796) 154641) ((-877 . -731) T) ((-492 . -23) T) ((-224 . -618) 154623) ((-175 . -457) T) ((-223 . -312) 154561) ((-86 . -446) T) ((-86 . -400) T) ((-218 . -23) T) ((-1299 . -1292) 154540) ((-682 . -1046) 154524) ((-585 . -293) T) ((-569 . -293) T) ((-500 . -293) T) ((-136 . -475) 154479) ((-659 . -651) 154438) ((-48 . -1108) T) ((-717 . -232) 154422) ((-876 . -906) NIL) ((-1248 . -892) NIL) ((-895 . -102) T) ((-891 . -102) T) ((-393 . -1108) T) ((-170 . -381) 154406) ((-170 . -342) 154390) ((-1248 . -1046) 154270) ((-860 . -1046) 154166) ((-1150 . -102) T) ((-667 . -797) 154145) ((-658 . -131) T) ((-117 . -519) 154053) ((-667 . -800) 154032) ((-576 . -1046) 154014) ((-297 . -1282) 153984) ((-871 . -102) T) ((-969 . -561) 153963) ((-1219 . -1064) 153846) ((-1011 . -1059) 153791) ((-487 . -644) 153697) ((-910 . -1108) T) ((-1032 . -722) 153634) ((-716 . -1064) 153599) ((-1011 . -645) 153544) ((-622 . -102) T) ((-607 . -34) T) ((-1155 . -1225) T) ((-1219 . -111) 153413) ((-479 . -653) 153310) ((-358 . -722) 153255) ((-170 . -906) 153214) ((-704 . -293) T) ((-699 . -173) T) ((-716 . -111) 153170) ((-1303 . -1066) T) ((-1248 . -381) 153154) ((-423 . -1229) 153132) ((-1126 . -618) 153114) ((-316 . -853) NIL) ((-423 . -561) T) ((-226 . -310) T) ((-1238 . -796) 153067) ((-1238 . -799) 153020) ((-1259 . -731) T) ((-1238 . -731) T) ((-48 . -722) 152985) ((-226 . -1030) T) ((-355 . -1282) 152962) ((-1261 . -416) 152928) ((-723 . -731) T) ((-336 . -618) 152910) ((-1248 . -906) 152853) ((-1219 . -621) 152735) ((-112 . -618) 152717) ((-112 . -619) 152699) ((-723 . -478) T) ((-716 . -621) 152649) ((-1298 . -1059) 152633) ((-487 . -21) 152543) ((-127 . -494) 152527) ((-121 . -494) 152511) ((-487 . -25) 152362) ((-1298 . -645) 152332) ((-628 . -293) T) ((-591 . -1064) 152307) ((-442 . -1108) T) ((-1070 . -310) T) ((-117 . -293) T) ((-1112 . -102) T) ((-1011 . -102) T) ((-591 . -111) 152275) ((-1150 . -312) 152213) ((-1219 . -1057) T) ((-1070 . -1030) T) ((-66 . -1225) T) ((-1062 . -25) T) ((-1062 . -21) T) ((-716 . -1057) T) ((-389 . -21) T) ((-389 . -25) T) ((-699 . -519) NIL) ((-1032 . -173) T) ((-716 . -244) T) ((-1070 . -550) T) ((-717 . -651) 152123) ((-511 . -102) T) ((-507 . -102) T) ((-358 . -173) T) ((-347 . -618) 152105) ((-412 . -1059) 152057) ((-399 . -618) 152039) ((-1128 . -853) T) ((-479 . -731) T) ((-898 . -1046) 152007) ((-412 . -645) 151959) ((-108 . -855) T) ((-663 . -1064) 151943) ((-492 . -131) T) ((-1261 . -1066) T) ((-218 . -131) T) ((-1165 . -102) 151921) ((-99 . -1108) T) ((-246 . -671) 151905) ((-246 . -656) 151889) ((-663 . -111) 151868) ((-591 . -621) 151852) ((-319 . -416) 151836) ((-246 . -377) 151820) ((-1168 . -236) 151767) ((-1007 . -232) 151751) ((-74 . -1225) T) ((-48 . -173) T) ((-706 . -392) T) ((-706 . -143) T) ((-1298 . -102) T) ((-1205 . -621) 151733) ((-1095 . -1064) 151576) ((-266 . -915) 151555) ((-248 . -915) 151534) ((-787 . -1064) 151357) ((-785 . -1064) 151200) ((-613 . -1225) T) ((-1173 . -618) 151182) ((-1095 . -111) 151011) ((-1054 . -102) T) ((-480 . -1225) T) ((-466 . -1064) 150982) ((-459 . -1064) 150825) ((-669 . -653) 150809) ((-876 . -310) T) ((-787 . -111) 150618) ((-785 . -111) 150447) ((-359 . -653) 150399) ((-356 . -653) 150351) ((-348 . -653) 150303) ((-266 . -653) 150228) ((-248 . -653) 150153) ((-1167 . -855) T) ((-1096 . -1046) 150137) ((-466 . -111) 150098) ((-459 . -111) 149927) ((-1084 . -1046) 149904) ((-1008 . -34) T) ((-972 . -618) 149886) ((-964 . -1225) T) ((-126 . -1018) 149870) ((-969 . -1120) T) ((-876 . -1030) NIL) ((-740 . -1120) T) ((-720 . -1120) T) ((-663 . -621) 149788) ((-1275 . -494) 149772) ((-1150 . -38) 149732) ((-969 . -23) T) ((-916 . -653) 149697) ((-870 . -1108) T) ((-848 . -102) T) ((-822 . -21) T) ((-640 . -1059) 149681) ((-612 . -1059) 149665) ((-822 . -25) T) ((-740 . -23) T) ((-720 . -23) T) ((-640 . -645) 149649) ((-110 . -666) T) ((-612 . -645) 149633) ((-586 . -1064) 149598) ((-523 . -1064) 149543) ((-228 . -57) 149501) ((-458 . -23) T) ((-412 . -102) T) ((-265 . -102) T) ((-699 . -293) T) ((-871 . -38) 149471) ((-586 . -111) 149427) ((-523 . -111) 149356) ((-1095 . -621) 149092) ((-423 . -1120) T) ((-319 . -1066) 148982) ((-316 . -1066) T) ((-128 . -1225) T) ((-787 . -621) 148730) ((-785 . -621) 148496) ((-663 . -1057) T) ((-1303 . -1108) T) ((-459 . -621) 148281) ((-170 . -310) 148212) ((-423 . -23) T) ((-40 . -618) 148194) ((-40 . -619) 148178) ((-108 . -1000) 148160) ((-116 . -874) 148144) ((-654 . -621) 148128) ((-48 . -519) 148094) ((-1211 . -1018) 148078) ((-1190 . -618) 148045) ((-1198 . -34) T) ((-960 . -618) 148011) ((-927 . -618) 147993) ((-1121 . -855) 147944) ((-776 . -618) 147926) ((-677 . -618) 147908) ((-1165 . -312) 147846) ((-484 . -34) T) ((-1100 . -1225) T) ((-482 . -457) T) ((-1149 . -34) T) ((-1095 . -1057) T) ((-50 . -621) 147815) ((-787 . -1057) T) ((-785 . -1057) T) ((-652 . -236) 147799) ((-637 . -236) 147745) ((-586 . -621) 147695) ((-523 . -621) 147625) ((-1248 . -310) 147604) ((-1095 . -329) 147565) ((-459 . -1057) T) ((-1187 . -21) T) ((-1095 . -234) 147544) ((-787 . -329) 147521) ((-787 . -234) T) ((-785 . -329) 147493) ((-736 . -1229) 147472) ((-330 . -656) 147456) ((-1187 . -25) T) ((-59 . -34) T) ((-524 . -34) T) ((-521 . -34) T) ((-459 . -329) 147435) ((-330 . -377) 147419) ((-502 . -34) T) ((-501 . -34) T) ((-1011 . -1160) NIL) ((-736 . -561) 147350) ((-640 . -102) T) ((-612 . -102) T) ((-359 . -731) T) ((-356 . -731) T) ((-348 . -731) T) ((-266 . -731) T) ((-248 . -731) T) ((-1054 . -312) 147258) ((-907 . -1108) 147236) ((-50 . -1057) T) ((-1287 . -21) T) ((-1287 . -25) T) ((-1183 . -561) 147215) ((-1182 . -1229) 147194) ((-1182 . -561) 147145) ((-586 . -1057) T) ((-523 . -1057) T) ((-1176 . -1229) 147124) ((-365 . -1046) 147108) ((-325 . -1046) 147092) ((-1032 . -293) T) ((-383 . -892) 147074) ((-1176 . -561) 147025) ((-1011 . -38) 146970) ((-1007 . -651) 146893) ((-804 . -1120) T) ((-916 . -731) T) ((-586 . -244) T) ((-586 . -234) T) ((-523 . -234) T) ((-523 . -244) T) ((-1134 . -561) 146872) ((-358 . -293) T) ((-652 . -700) 146856) ((-383 . -1046) 146816) ((-297 . -1059) 146737) ((-1128 . -1066) T) ((-103 . -125) 146721) ((-297 . -645) 146663) ((-804 . -23) T) ((-1297 . -1292) 146639) ((-1275 . -289) 146616) ((-412 . -312) 146581) ((-1295 . -1292) 146560) ((-1261 . -1108) T) ((-875 . -618) 146542) ((-841 . -1046) 146511) ((-204 . -792) T) ((-203 . -792) T) ((-202 . -792) T) ((-201 . -792) T) ((-200 . -792) T) ((-199 . -792) T) ((-198 . -792) T) ((-197 . -792) T) ((-196 . -792) T) ((-195 . -792) T) ((-552 . -618) 146493) ((-500 . -1010) T) ((-276 . -844) T) ((-275 . -844) T) ((-274 . -844) T) ((-273 . -844) T) ((-48 . -293) T) ((-272 . -844) T) ((-271 . -844) T) ((-270 . -844) T) ((-194 . -792) T) ((-617 . -855) T) ((-659 . -416) 146477) ((-224 . -621) 146439) ((-110 . -855) T) ((-658 . -21) T) ((-658 . -25) T) ((-1298 . -38) 146409) ((-117 . -289) 146360) ((-1275 . -19) 146344) ((-1275 . -609) 146321) ((-1288 . -1108) T) ((-355 . -1059) 146266) ((-1085 . -1108) T) ((-995 . -1108) T) ((-969 . -131) T) ((-742 . -1108) T) ((-355 . -645) 146211) ((-740 . -131) T) ((-720 . -131) T) ((-516 . -798) T) ((-516 . -799) T) ((-458 . -131) T) ((-412 . -1160) 146189) ((-224 . -1057) T) ((-297 . -102) 145971) ((-141 . -1108) T) ((-704 . -1010) T) ((-91 . -1225) T) ((-127 . -618) 145903) ((-121 . -618) 145835) ((-1303 . -173) T) ((-1182 . -367) 145814) ((-1176 . -367) 145793) ((-319 . -1108) T) ((-423 . -131) T) ((-316 . -1108) T) ((-412 . -38) 145745) ((-1141 . -102) T) ((-1261 . -722) 145637) ((-659 . -1066) T) ((-1143 . -1270) T) ((-322 . -145) 145616) ((-322 . -147) 145595) ((-136 . -1108) T) ((-139 . -1108) T) ((-114 . -1108) T) ((-863 . -102) T) ((-585 . -618) 145577) ((-569 . -619) 145476) ((-569 . -618) 145458) ((-500 . -618) 145440) ((-500 . -619) 145385) ((-490 . -23) T) ((-487 . -855) 145336) ((-492 . -644) 145318) ((-971 . -618) 145300) ((-218 . -644) 145282) ((-226 . -409) T) ((-667 . -653) 145266) ((-55 . -618) 145248) ((-1181 . -926) 145227) ((-736 . -1120) T) ((-355 . -102) T) ((-1224 . -1091) T) ((-1128 . -849) T) ((-823 . -855) T) ((-736 . -23) T) ((-347 . -1064) 145172) ((-1167 . -1166) T) ((-1155 . -107) 145156) ((-1183 . -1120) T) ((-1182 . -1120) T) ((-520 . -1046) 145140) ((-1176 . -1120) T) ((-1134 . -1120) T) ((-347 . -111) 145069) ((-1012 . -1229) T) ((-126 . -1225) T) ((-920 . -1229) T) ((-699 . -289) NIL) ((-1276 . -618) 145051) ((-1183 . -23) T) ((-1182 . -23) T) ((-1176 . -23) T) ((-1012 . -561) T) ((-1150 . -232) 145035) ((-920 . -561) T) ((-1134 . -23) T) ((-249 . -618) 145017) ((-1083 . -1108) T) ((-804 . -131) T) ((-715 . -618) 144999) ((-319 . -722) 144909) ((-316 . -722) 144838) ((-704 . -618) 144820) ((-704 . -619) 144765) ((-412 . -405) 144749) ((-443 . -1108) T) ((-492 . -25) T) ((-492 . -21) T) ((-1128 . -1108) T) ((-218 . -25) T) ((-218 . -21) T) ((-717 . -416) 144733) ((-719 . -1046) 144702) ((-1275 . -618) 144614) ((-1275 . -619) 144575) ((-1261 . -173) T) ((-246 . -34) T) ((-347 . -621) 144505) ((-399 . -621) 144487) ((-932 . -982) T) ((-1211 . -1225) T) ((-667 . -796) 144466) ((-667 . -799) 144445) ((-403 . -400) T) ((-528 . -102) 144423) ((-1043 . -1108) T) ((-223 . -1003) 144407) ((-509 . -102) T) ((-628 . -618) 144389) ((-45 . -855) NIL) ((-628 . -619) 144366) ((-1043 . -615) 144341) ((-907 . -519) 144274) ((-347 . -1057) T) ((-117 . -619) NIL) ((-117 . -618) 144256) ((-877 . -1225) T) ((-675 . -422) 144240) ((-675 . -1131) 144185) ((-505 . -151) 144167) ((-347 . -234) T) ((-347 . -244) T) ((-40 . -1064) 144112) ((-877 . -890) 144096) ((-877 . -892) 144021) ((-717 . -1066) T) ((-699 . -1010) NIL) ((-1259 . -47) 143991) ((-1238 . -47) 143968) ((-1149 . -1018) 143939) ((-3 . |UnionCategory|) T) ((-1128 . -722) 143926) ((-1113 . -618) 143908) ((-1088 . -147) 143887) ((-1088 . -145) 143838) ((-972 . -621) 143822) ((-226 . -926) T) ((-40 . -111) 143751) ((-877 . -1046) 143615) ((-1012 . -367) T) ((-1011 . -232) 143592) ((-706 . -1059) 143579) ((-920 . -367) T) ((-706 . -645) 143566) ((-322 . -1213) 143532) ((-383 . -310) T) ((-322 . -1210) 143498) ((-319 . -173) 143477) ((-316 . -173) T) ((-586 . -1294) 143464) ((-523 . -1294) 143441) ((-363 . -147) 143420) ((-116 . -1059) 143407) ((-363 . -145) 143358) ((-357 . -147) 143337) ((-357 . -145) 143288) ((-349 . -147) 143267) ((-613 . -1201) 143243) ((-116 . -645) 143230) ((-349 . -145) 143181) ((-322 . -35) 143147) ((-480 . -1201) 143126) ((0 . |EnumerationCategory|) T) ((-322 . -95) 143092) ((-383 . -1030) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -236) 143042) ((-659 . -1108) T) ((-613 . -107) 142989) ((-490 . -131) T) ((-480 . -107) 142939) ((-241 . -1120) 142849) ((-877 . -381) 142833) ((-877 . -342) 142817) ((-241 . -23) 142687) ((-40 . -621) 142617) ((-1070 . -926) T) ((-1070 . -825) T) ((-586 . -372) T) ((-523 . -372) T) ((-1288 . -519) 142550) ((-1267 . -561) 142529) ((-355 . -1160) T) ((-330 . -34) T) ((-44 . -422) 142513) ((-1190 . -621) 142449) ((-878 . -1225) T) ((-395 . -749) 142433) ((-1260 . -1229) 142412) ((-1260 . -561) 142363) ((-1150 . -651) 142322) ((-736 . -131) T) ((-677 . -621) 142306) ((-1239 . -1229) 142285) ((-1239 . -561) 142236) ((-1238 . -1225) 142215) ((-1238 . -892) 142088) ((-1238 . -890) 142058) ((-1183 . -131) T) ((-314 . -1091) T) ((-1182 . -131) T) ((-742 . -519) 141991) ((-1176 . -131) T) ((-1134 . -131) T) ((-899 . -1108) T) ((-144 . -849) T) ((-1032 . -1010) T) ((-696 . -618) 141973) ((-1012 . -23) T) ((-528 . -312) 141911) ((-1012 . -1120) T) ((-141 . -519) NIL) ((-871 . -651) 141856) ((-1011 . -353) NIL) ((-979 . -23) T) ((-920 . -1120) T) ((-355 . -38) 141821) ((-920 . -23) T) ((-877 . -906) 141780) ((-82 . -618) 141762) ((-40 . -1057) T) ((-875 . -1064) 141749) ((-875 . -111) 141734) ((-706 . -102) T) ((-699 . -618) 141716) ((-607 . -1225) T) ((-601 . -561) 141695) ((-432 . -1120) T) ((-343 . -1059) 141679) ((-214 . -1108) T) ((-175 . -1059) 141611) ((-479 . -47) 141581) ((-134 . -102) T) ((-40 . -234) 141553) ((-40 . -244) T) ((-116 . -102) T) ((-600 . -561) 141532) ((-343 . -645) 141516) ((-699 . -619) 141424) ((-319 . -519) 141390) ((-175 . -645) 141322) ((-316 . -519) 141214) ((-1259 . -1046) 141198) ((-1238 . -1046) 140984) ((-1007 . -416) 140968) ((-432 . -23) T) ((-1128 . -173) T) ((-1261 . -293) T) ((-659 . -722) 140938) ((-144 . -1108) T) ((-48 . -1010) T) ((-412 . -232) 140922) ((-298 . -236) 140872) ((-876 . -926) T) ((-876 . -825) NIL) ((-875 . -621) 140844) ((-869 . -855) T) ((-1238 . -342) 140814) ((-1238 . -381) 140784) ((-223 . -1129) 140768) ((-1275 . -291) 140745) ((-1219 . -653) 140670) ((-1011 . -651) 140600) ((-969 . -21) T) ((-969 . -25) T) ((-740 . -21) T) ((-740 . -25) T) ((-720 . -21) T) ((-720 . -25) T) ((-716 . -653) 140565) ((-458 . -21) T) ((-458 . -25) T) ((-343 . -102) T) ((-175 . -102) T) ((-1007 . -1066) T) ((-875 . -1057) T) ((-779 . -102) T) ((-1260 . -367) 140544) ((-1259 . -906) 140450) ((-1239 . -367) 140429) ((-1238 . -906) 140280) ((-1032 . -618) 140262) ((-412 . -833) 140215) ((-1183 . -498) 140181) ((-170 . -926) 140112) ((-1182 . -498) 140078) ((-1176 . -498) 140044) ((-717 . -1108) T) ((-1134 . -498) 140010) ((-585 . -1064) 139997) ((-569 . -1064) 139984) ((-500 . -1064) 139949) ((-319 . -293) 139928) ((-316 . -293) T) ((-358 . -618) 139910) ((-423 . -25) T) ((-423 . -21) T) ((-99 . -289) 139889) ((-585 . -111) 139874) ((-569 . -111) 139859) ((-500 . -111) 139815) ((-1185 . -892) 139782) ((-907 . -494) 139766) ((-48 . -618) 139748) ((-48 . -619) 139693) ((-241 . -131) 139563) ((-1298 . -651) 139522) ((-1248 . -926) 139501) ((-821 . -1229) 139480) ((-393 . -495) 139461) ((-1043 . -519) 139305) ((-393 . -618) 139271) ((-821 . -561) 139202) ((-591 . -653) 139177) ((-266 . -47) 139149) ((-248 . -47) 139106) ((-536 . -514) 139083) ((-585 . -621) 139055) ((-569 . -621) 139027) ((-500 . -621) 138960) ((-1082 . -1225) T) ((-1008 . -1225) T) ((-1267 . -23) T) ((-704 . -1064) 138925) ((-1267 . -1120) T) ((-1260 . -1120) T) ((-1260 . -23) T) ((-1239 . -1120) T) ((-1239 . -23) T) ((-1011 . -374) 138897) ((-112 . -372) T) ((-479 . -906) 138803) ((-1219 . -731) T) ((-910 . -618) 138785) ((-55 . -621) 138767) ((-91 . -107) 138751) ((-1128 . -293) T) ((-911 . -855) 138702) ((-706 . -1160) T) ((-704 . -111) 138658) ((-848 . -651) 138575) ((-601 . -1120) T) ((-600 . -1120) T) ((-717 . -722) 138404) ((-716 . -731) T) ((-1012 . -131) T) ((-979 . -131) T) ((-492 . -855) T) ((-920 . -131) T) ((-804 . -25) T) ((-804 . -21) T) ((-218 . -855) T) ((-412 . -651) 138341) ((-585 . -1057) T) ((-569 . -1057) T) ((-500 . -1057) T) ((-601 . -23) T) ((-347 . -1294) 138318) ((-322 . -457) 138297) ((-343 . -312) 138284) ((-600 . -23) T) ((-432 . -131) T) ((-663 . -653) 138258) ((-246 . -1018) 138242) ((-877 . -310) T) ((-1299 . -1289) 138226) ((-776 . -797) T) ((-776 . -800) T) ((-706 . -38) 138213) ((-569 . -234) T) ((-500 . -244) T) ((-500 . -234) T) ((-1158 . -236) 138163) ((-1095 . -915) 138142) ((-116 . -38) 138129) ((-210 . -805) T) ((-209 . -805) T) ((-208 . -805) T) ((-207 . -805) T) ((-877 . -1030) 138107) ((-1288 . -494) 138091) ((-787 . -915) 138070) ((-785 . -915) 138049) ((-1198 . -1225) T) ((-459 . -915) 138028) ((-742 . -494) 138012) ((-1095 . -653) 137937) ((-704 . -621) 137872) ((-787 . -653) 137797) ((-628 . -1064) 137784) ((-484 . -1225) T) ((-347 . -372) T) ((-141 . -494) 137766) ((-785 . -653) 137691) ((-1149 . -1225) T) ((-554 . -855) T) ((-466 . -653) 137662) ((-266 . -892) 137521) ((-248 . -892) NIL) ((-117 . -1064) 137466) ((-459 . -653) 137391) ((-669 . -1046) 137368) ((-628 . -111) 137353) ((-395 . -1059) 137337) ((-359 . -1046) 137321) ((-356 . -1046) 137305) ((-348 . -1046) 137289) ((-266 . -1046) 137133) ((-248 . -1046) 137009) ((-117 . -111) 136938) ((-59 . -1225) T) ((-395 . -645) 136922) ((-626 . -1059) 136906) ((-524 . -1225) T) ((-521 . -1225) T) ((-502 . -1225) T) ((-501 . -1225) T) ((-442 . -618) 136888) ((-439 . -618) 136870) ((-626 . -645) 136854) ((-3 . -102) T) ((-1035 . -1218) 136823) ((-838 . -102) T) ((-694 . -57) 136781) ((-704 . -1057) T) ((-640 . -651) 136750) ((-612 . -651) 136719) ((-50 . -653) 136693) ((-292 . -457) T) ((-481 . -1218) 136662) ((0 . -102) T) ((-586 . -653) 136627) ((-523 . -653) 136572) ((-49 . -102) T) ((-916 . -1046) 136559) ((-704 . -244) T) ((-1088 . -414) 136538) ((-736 . -644) 136486) ((-1007 . -1108) T) ((-717 . -173) 136377) ((-628 . -621) 136272) ((-492 . -1000) 136254) ((-266 . -381) 136238) ((-248 . -381) 136222) ((-404 . -1108) T) ((-1034 . -102) 136200) ((-343 . -38) 136184) ((-218 . -1000) 136166) ((-117 . -621) 136096) ((-175 . -38) 136028) ((-1259 . -310) 136007) ((-1238 . -310) 135986) ((-663 . -731) T) ((-99 . -618) 135968) ((-482 . -1059) 135933) ((-1176 . -644) 135885) ((-482 . -645) 135850) ((-490 . -25) T) ((-490 . -21) T) ((-1238 . -1030) 135802) ((-1065 . -1225) T) ((-628 . -1057) T) ((-383 . -409) T) ((-395 . -102) T) ((-1113 . -623) 135717) ((-266 . -906) 135663) ((-248 . -906) 135640) ((-117 . -1057) T) ((-821 . -1120) T) ((-1095 . -731) T) ((-628 . -234) 135619) ((-626 . -102) T) ((-787 . -731) T) ((-785 . -731) T) ((-418 . -1120) T) ((-117 . -244) T) ((-40 . -372) NIL) ((-117 . -234) NIL) ((-1230 . -855) T) ((-459 . -731) T) ((-821 . -23) T) ((-736 . -25) T) ((-736 . -21) T) ((-1085 . -289) 135598) ((-78 . -401) T) ((-78 . -400) T) ((-538 . -772) 135580) ((-699 . -1064) 135530) ((-1267 . -131) T) ((-1260 . -131) T) ((-1239 . -131) T) ((-1183 . -25) T) ((-1150 . -416) 135514) ((-640 . -371) 135446) ((-612 . -371) 135378) ((-1165 . -1157) 135362) ((-103 . -1108) 135340) ((-1183 . -21) T) ((-1182 . -21) T) ((-870 . -618) 135322) ((-1007 . -722) 135270) ((-224 . -653) 135237) ((-699 . -111) 135171) ((-50 . -731) T) ((-1182 . -25) T) ((-355 . -353) T) ((-1176 . -21) T) ((-1088 . -457) 135122) ((-1176 . -25) T) ((-717 . -519) 135069) ((-586 . -731) T) ((-523 . -731) T) ((-1134 . -21) T) ((-1134 . -25) T) ((-601 . -131) T) ((-297 . -651) 134804) ((-600 . -131) T) ((-363 . -457) T) ((-357 . -457) T) ((-349 . -457) T) ((-479 . -310) 134783) ((-1233 . -102) T) ((-316 . -289) 134718) ((-108 . -457) T) ((-79 . -446) T) ((-79 . -400) T) ((-482 . -102) T) ((-696 . -621) 134702) ((-1303 . -618) 134684) ((-1303 . -619) 134666) ((-1088 . -407) 134645) ((-1043 . -494) 134576) ((-569 . -800) T) ((-569 . -797) T) ((-1071 . -236) 134522) ((-363 . -407) 134473) ((-357 . -407) 134424) ((-349 . -407) 134375) ((-1290 . -1120) T) ((-1299 . -1059) 134359) ((-385 . -1059) 134343) ((-1299 . -645) 134313) ((-385 . -645) 134283) ((-699 . -621) 134218) ((-1290 . -23) T) ((-1277 . -102) T) ((-176 . -618) 134200) ((-1150 . -1066) T) ((-552 . -372) T) ((-675 . -749) 134184) ((-1187 . -145) 134163) ((-1187 . -147) 134142) ((-1154 . -1108) T) ((-1154 . -1079) 134111) ((-69 . -1225) T) ((-1032 . -1064) 134048) ((-355 . -651) 133978) ((-871 . -1066) T) ((-241 . -644) 133884) ((-699 . -1057) T) ((-358 . -1064) 133829) ((-61 . -1225) T) ((-1032 . -111) 133745) ((-907 . -618) 133656) ((-699 . -244) T) ((-699 . -234) NIL) ((-848 . -853) 133635) ((-704 . -800) T) ((-704 . -797) T) ((-1011 . -416) 133612) ((-358 . -111) 133541) ((-383 . -926) T) ((-412 . -853) 133520) ((-717 . -293) 133431) ((-224 . -731) T) ((-1267 . -498) 133397) ((-1260 . -498) 133363) ((-1239 . -498) 133329) ((-583 . -1108) T) ((-319 . -1010) 133308) ((-223 . -1108) 133286) ((-1232 . -849) T) ((-322 . -981) 133248) ((-105 . -102) T) ((-48 . -1064) 133213) ((-1299 . -102) T) ((-385 . -102) T) ((-48 . -111) 133169) ((-1012 . -644) 133151) ((-1261 . -618) 133133) ((-536 . -102) T) ((-505 . -102) T) ((-1141 . -1142) 133117) ((-152 . -1282) 133101) ((-246 . -1225) T) ((-1224 . -102) T) ((-1032 . -621) 133038) ((-1181 . -1229) 133017) ((-358 . -621) 132947) ((-1133 . -1229) 132926) ((-241 . -21) 132836) ((-241 . -25) 132687) ((-127 . -119) 132671) ((-121 . -119) 132655) ((-44 . -749) 132639) ((-1181 . -561) 132550) ((-1133 . -561) 132481) ((-1232 . -1108) T) ((-1043 . -289) 132456) ((-1175 . -1091) T) ((-1002 . -1091) T) ((-821 . -131) T) ((-117 . -800) NIL) ((-117 . -797) NIL) ((-359 . -310) T) ((-356 . -310) T) ((-348 . -310) T) ((-253 . -1120) 132366) ((-252 . -1120) 132276) ((-1032 . -1057) T) ((-1011 . -1066) T) ((-48 . -621) 132209) ((-347 . -653) 132154) ((-626 . -38) 132138) ((-1288 . -618) 132100) ((-1288 . -619) 132061) ((-1085 . -618) 132043) ((-1032 . -244) T) ((-358 . -1057) T) ((-820 . -1282) 132013) ((-253 . -23) T) ((-252 . -23) T) ((-995 . -618) 131995) ((-742 . -619) 131956) ((-742 . -618) 131938) ((-804 . -855) 131917) ((-1168 . -151) 131864) ((-1007 . -519) 131776) ((-358 . -234) T) ((-358 . -244) T) ((-393 . -621) 131757) ((-1012 . -25) T) ((-141 . -618) 131739) ((-141 . -619) 131698) ((-916 . -310) T) ((-1012 . -21) T) ((-979 . -25) T) ((-920 . -21) T) ((-920 . -25) T) ((-432 . -21) T) ((-432 . -25) T) ((-848 . -416) 131682) ((-48 . -1057) T) ((-1297 . -1289) 131666) ((-1295 . -1289) 131650) ((-1043 . -609) 131625) ((-319 . -619) 131486) ((-319 . -618) 131468) ((-316 . -619) NIL) ((-316 . -618) 131450) ((-48 . -244) T) ((-48 . -234) T) ((-659 . -289) 131411) ((-555 . -236) 131361) ((-139 . -618) 131328) ((-136 . -618) 131310) ((-114 . -618) 131292) ((-482 . -38) 131257) ((-1299 . -1296) 131236) ((-1290 . -131) T) ((-1298 . -1066) T) ((-1090 . -102) T) ((-88 . -1225) T) ((-505 . -312) NIL) ((-1008 . -107) 131220) ((-895 . -1108) T) ((-891 . -1108) T) ((-1275 . -656) 131204) ((-1275 . -377) 131188) ((-330 . -1225) T) ((-598 . -855) T) ((-1150 . -1108) T) ((-1150 . -1061) 131128) ((-103 . -519) 131061) ((-933 . -618) 131043) ((-347 . -731) T) ((-30 . -618) 131025) ((-871 . -1108) T) ((-848 . -1066) 131004) ((-40 . -653) 130949) ((-226 . -1229) T) ((-412 . -1066) T) ((-1167 . -151) 130931) ((-1007 . -293) 130882) ((-622 . -1108) T) ((-226 . -561) T) ((-322 . -1256) 130866) ((-322 . -1253) 130836) ((-706 . -651) 130808) ((-1198 . -1201) 130787) ((-1083 . -618) 130769) ((-1198 . -107) 130719) ((-652 . -151) 130703) ((-637 . -151) 130649) ((-116 . -651) 130621) ((-484 . -1201) 130600) ((-492 . -147) T) ((-492 . -145) NIL) ((-1128 . -619) 130515) ((-443 . -618) 130497) ((-218 . -147) T) ((-218 . -145) NIL) ((-1128 . -618) 130479) ((-129 . -102) T) ((-52 . -102) T) ((-1239 . -644) 130431) ((-484 . -107) 130381) ((-1001 . -23) T) ((-1299 . -38) 130351) ((-1181 . -1120) T) ((-1133 . -1120) T) ((-1070 . -1229) T) ((-314 . -102) T) ((-859 . -1120) T) ((-958 . -1229) 130330) ((-486 . -1229) 130309) ((-1070 . -561) T) ((-958 . -561) 130240) ((-1181 . -23) T) ((-1159 . -1091) T) ((-1133 . -23) T) ((-859 . -23) T) ((-486 . -561) 130171) ((-1150 . -722) 130103) ((-675 . -1059) 130087) ((-1154 . -519) 130020) ((-675 . -645) 130004) ((-1043 . -619) NIL) ((-1043 . -618) 129986) ((-96 . -1091) T) ((-871 . -722) 129956) ((-1219 . -47) 129925) ((-253 . -131) T) ((-252 . -131) T) ((-1112 . -1108) T) ((-1011 . -1108) T) ((-62 . -618) 129907) ((-1176 . -855) NIL) ((-1032 . -797) T) ((-1032 . -800) T) ((-1303 . -1064) 129894) ((-1303 . -111) 129879) ((-1267 . -25) T) ((-1267 . -21) T) ((-875 . -653) 129866) ((-1260 . -21) T) ((-1260 . -25) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-1035 . -151) 129850) ((-877 . -825) 129829) ((-877 . -926) T) ((-717 . -289) 129756) ((-601 . -21) T) ((-343 . -651) 129715) ((-601 . -25) T) ((-600 . -21) T) ((-175 . -651) 129632) ((-40 . -731) T) ((-223 . -519) 129565) ((-600 . -25) T) ((-481 . -151) 129549) ((-468 . -151) 129533) ((-927 . -799) T) ((-927 . -731) T) ((-776 . -798) T) ((-776 . -799) T) ((-511 . -1108) T) ((-507 . -1108) T) ((-776 . -731) T) ((-226 . -367) T) ((-1297 . -1059) 129517) ((-1295 . -1059) 129501) ((-1297 . -645) 129471) ((-1165 . -1108) 129449) ((-876 . -1229) T) ((-1295 . -645) 129419) ((-659 . -618) 129401) ((-876 . -561) T) ((-699 . -372) NIL) ((-44 . -1059) 129385) ((-1303 . -621) 129367) ((-1298 . -1108) T) ((-675 . -102) T) ((-363 . -1282) 129351) ((-357 . -1282) 129335) ((-44 . -645) 129319) ((-349 . -1282) 129303) ((-553 . -102) T) ((-525 . -855) 129282) ((-1054 . -1108) T) ((-822 . -457) 129261) ((-152 . -1059) 129245) ((-1054 . -1079) 129174) ((-1035 . -984) 129143) ((-824 . -1120) T) ((-1011 . -722) 129088) ((-152 . -645) 129072) ((-391 . -1120) T) ((-481 . -984) 129041) ((-468 . -984) 129010) ((-110 . -151) 128992) ((-73 . -618) 128974) ((-899 . -618) 128956) ((-1088 . -729) 128935) ((-1303 . -1057) T) ((-821 . -644) 128883) ((-297 . -1066) 128825) ((-170 . -1229) 128730) ((-226 . -1120) T) ((-327 . -23) T) ((-1176 . -1000) 128682) ((-848 . -1108) T) ((-1261 . -1064) 128587) ((-1134 . -745) 128566) ((-1259 . -926) 128545) ((-1238 . -926) 128524) ((-875 . -731) T) ((-170 . -561) 128435) ((-585 . -653) 128422) ((-569 . -653) 128409) ((-412 . -1108) T) ((-265 . -1108) T) ((-214 . -618) 128391) ((-500 . -653) 128356) ((-226 . -23) T) ((-1238 . -825) 128309) ((-1297 . -102) T) ((-358 . -1294) 128286) ((-1295 . -102) T) ((-1261 . -111) 128178) ((-820 . -1059) 128075) ((-820 . -645) 128017) ((-144 . -618) 127999) ((-1001 . -131) T) ((-44 . -102) T) ((-241 . -855) 127950) ((-1248 . -1229) 127929) ((-103 . -494) 127913) ((-1298 . -722) 127883) ((-1095 . -47) 127844) ((-1070 . -1120) T) ((-958 . -1120) T) ((-127 . -34) T) ((-121 . -34) T) ((-787 . -47) 127821) ((-785 . -47) 127793) ((-1248 . -561) 127704) ((-358 . -372) T) ((-486 . -1120) T) ((-1181 . -131) T) ((-1133 . -131) T) ((-459 . -47) 127683) ((-876 . -367) T) ((-859 . -131) T) ((-152 . -102) T) ((-1070 . -23) T) ((-958 . -23) T) ((-576 . -561) T) ((-821 . -25) T) ((-821 . -21) T) ((-1150 . -519) 127616) ((-597 . -1091) T) ((-591 . -1046) 127600) ((-1261 . -621) 127474) ((-486 . -23) T) ((-355 . -1066) T) ((-1219 . -906) 127455) ((-675 . -312) 127393) ((-1121 . -1282) 127363) ((-704 . -653) 127328) ((-1011 . -173) T) ((-969 . -145) 127307) ((-640 . -1108) T) ((-612 . -1108) T) ((-969 . -147) 127286) ((-1012 . -855) T) ((-740 . -147) 127265) ((-740 . -145) 127244) ((-979 . -855) T) ((-838 . -651) 127161) ((-479 . -926) 127140) ((-322 . -1059) 126975) ((-319 . -1064) 126885) ((-316 . -1064) 126814) ((-1007 . -289) 126772) ((-412 . -722) 126724) ((-322 . -645) 126565) ((-706 . -853) T) ((-1261 . -1057) T) ((-319 . -111) 126461) ((-316 . -111) 126374) ((-970 . -102) T) ((-820 . -102) 126164) ((-717 . -619) NIL) ((-717 . -618) 126146) ((-663 . -1046) 126042) ((-1261 . -329) 125986) ((-1043 . -291) 125961) ((-585 . -731) T) ((-569 . -799) T) ((-170 . -367) 125912) ((-569 . -796) T) ((-569 . -731) T) ((-500 . -731) T) ((-1154 . -494) 125896) ((-1095 . -892) NIL) ((-876 . -1120) T) ((-117 . -915) NIL) ((-1297 . -1296) 125872) ((-1295 . -1296) 125851) ((-787 . -892) NIL) ((-785 . -892) 125710) ((-1290 . -25) T) ((-1290 . -21) T) ((-1222 . -102) 125688) ((-1114 . -400) T) ((-628 . -653) 125675) ((-459 . -892) NIL) ((-680 . -102) 125653) ((-1095 . -1046) 125480) ((-876 . -23) T) ((-787 . -1046) 125339) ((-785 . -1046) 125196) ((-117 . -653) 125141) ((-459 . -1046) 125017) ((-319 . -621) 124581) ((-316 . -621) 124464) ((-395 . -651) 124433) ((-654 . -1046) 124417) ((-632 . -102) T) ((-223 . -494) 124401) ((-1275 . -34) T) ((-626 . -651) 124360) ((-292 . -1059) 124347) ((-136 . -621) 124331) ((-292 . -645) 124318) ((-640 . -722) 124302) ((-612 . -722) 124286) ((-675 . -38) 124246) ((-322 . -102) T) ((-85 . -618) 124228) ((-50 . -1046) 124212) ((-1128 . -1064) 124199) ((-1095 . -381) 124183) ((-787 . -381) 124167) ((-704 . -731) T) ((-704 . -799) T) ((-704 . -796) T) ((-586 . -1046) 124154) ((-523 . -1046) 124131) ((-60 . -57) 124093) ((-327 . -131) T) ((-319 . -1057) 123983) ((-316 . -1057) T) ((-170 . -1120) T) ((-785 . -381) 123967) ((-45 . -151) 123917) ((-1012 . -1000) 123899) ((-459 . -381) 123883) ((-412 . -173) T) ((-319 . -244) 123862) ((-316 . -244) T) ((-316 . -234) NIL) ((-297 . -1108) 123644) ((-226 . -131) T) ((-1128 . -111) 123629) ((-170 . -23) T) ((-804 . -147) 123608) ((-804 . -145) 123587) ((-253 . -644) 123493) ((-252 . -644) 123399) ((-322 . -287) 123365) ((-1165 . -519) 123298) ((-482 . -651) 123248) ((-1141 . -1108) T) ((-226 . -1068) T) ((-820 . -312) 123186) ((-1095 . -906) 123121) ((-787 . -906) 123064) ((-785 . -906) 123048) ((-1297 . -38) 123018) ((-1295 . -38) 122988) ((-1248 . -1120) T) ((-860 . -1120) T) ((-459 . -906) 122965) ((-863 . -1108) T) ((-1248 . -23) T) ((-1128 . -621) 122937) ((-576 . -1120) T) ((-860 . -23) T) ((-628 . -731) T) ((-359 . -926) T) ((-356 . -926) T) ((-292 . -102) T) ((-348 . -926) T) ((-1070 . -131) T) ((-978 . -1091) T) ((-958 . -131) T) ((-117 . -799) NIL) ((-117 . -796) NIL) ((-117 . -731) T) ((-699 . -915) NIL) ((-1054 . -519) 122838) ((-486 . -131) T) ((-576 . -23) T) ((-680 . -312) 122776) ((-640 . -766) T) ((-612 . -766) T) ((-1239 . -855) NIL) ((-1088 . -1059) 122686) ((-1011 . -293) T) ((-699 . -653) 122636) ((-253 . -21) T) ((-355 . -1108) T) ((-253 . -25) T) ((-252 . -21) T) ((-252 . -25) T) ((-152 . -38) 122620) ((-2 . -102) T) ((-916 . -926) T) ((-1088 . -645) 122488) ((-487 . -1282) 122458) ((-1128 . -1057) T) ((-716 . -310) T) ((-363 . -1059) 122410) ((-357 . -1059) 122362) ((-349 . -1059) 122314) ((-363 . -645) 122266) ((-224 . -1046) 122243) ((-357 . -645) 122195) ((-108 . -1059) 122145) ((-349 . -645) 122097) ((-297 . -722) 122039) ((-706 . -1066) T) ((-492 . -457) T) ((-412 . -519) 121951) ((-108 . -645) 121901) ((-218 . -457) T) ((-1128 . -234) T) ((-298 . -151) 121851) ((-1007 . -619) 121812) ((-1007 . -618) 121794) ((-997 . -618) 121776) ((-116 . -1066) T) ((-659 . -1064) 121760) ((-226 . -498) T) ((-404 . -618) 121742) ((-404 . -619) 121719) ((-1062 . -1282) 121689) ((-659 . -111) 121668) ((-1150 . -494) 121652) ((-1299 . -651) 121611) ((-385 . -651) 121580) ((-820 . -38) 121550) ((-63 . -446) T) ((-63 . -400) T) ((-1168 . -102) T) ((-876 . -131) T) ((-489 . -102) 121528) ((-1303 . -372) T) ((-1088 . -102) T) ((-1069 . -102) T) ((-355 . -722) 121473) ((-736 . -147) 121452) ((-736 . -145) 121431) ((-659 . -621) 121349) ((-1032 . -653) 121286) ((-528 . -1108) 121264) ((-363 . -102) T) ((-357 . -102) T) ((-349 . -102) T) ((-108 . -102) T) ((-509 . -1108) T) ((-358 . -653) 121209) ((-1181 . -644) 121157) ((-1133 . -644) 121105) ((-389 . -514) 121084) ((-838 . -853) 121063) ((-383 . -1229) T) ((-699 . -731) T) ((-343 . -1066) T) ((-1239 . -1000) 121015) ((-175 . -1066) T) ((-103 . -618) 120947) ((-1183 . -145) 120926) ((-1183 . -147) 120905) ((-383 . -561) T) ((-1182 . -147) 120884) ((-1182 . -145) 120863) ((-1176 . -145) 120770) ((-412 . -293) T) ((-1176 . -147) 120677) ((-1134 . -147) 120656) ((-1134 . -145) 120635) ((-322 . -38) 120476) ((-170 . -131) T) ((-316 . -800) NIL) ((-316 . -797) NIL) ((-659 . -1057) T) ((-48 . -653) 120441) ((-1121 . -1059) 120338) ((-899 . -621) 120315) ((-1121 . -645) 120257) ((-1175 . -102) T) ((-1002 . -102) T) ((-1001 . -21) T) ((-127 . -1018) 120241) ((-121 . -1018) 120225) ((-1001 . -25) T) ((-907 . -119) 120209) ((-1167 . -102) T) ((-1248 . -131) T) ((-1181 . -25) T) ((-1181 . -21) T) ((-860 . -131) T) ((-1133 . -25) T) ((-1133 . -21) T) ((-859 . -25) T) ((-859 . -21) T) ((-787 . -310) 120188) ((-652 . -102) 120166) ((-637 . -102) T) ((-1168 . -312) 119961) ((-576 . -131) T) ((-626 . -853) 119940) ((-1165 . -494) 119924) ((-1158 . -151) 119874) ((-1154 . -618) 119836) ((-1154 . -619) 119797) ((-1032 . -796) T) ((-1032 . -799) T) ((-1032 . -731) T) ((-717 . -1064) 119620) ((-489 . -312) 119558) ((-458 . -422) 119528) ((-355 . -173) T) ((-292 . -38) 119515) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-347 . -1046) 119492) ((-270 . -102) T) ((-213 . -102) T) ((-212 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-358 . -731) T) ((-717 . -111) 119301) ((-675 . -232) 119285) ((-586 . -310) T) ((-523 . -310) T) ((-297 . -519) 119234) ((-108 . -312) NIL) ((-72 . -400) T) ((-1121 . -102) 119024) ((-838 . -416) 119008) ((-1128 . -800) T) ((-1128 . -797) T) ((-706 . -1108) T) ((-583 . -618) 118990) ((-383 . -367) T) ((-170 . -498) 118968) ((-223 . -618) 118900) ((-134 . -1108) T) ((-116 . -1108) T) ((-48 . -731) T) ((-1054 . -494) 118865) ((-141 . -430) 118847) ((-141 . -372) T) ((-1035 . -102) T) ((-517 . -514) 118826) ((-717 . -621) 118582) ((-481 . -102) T) ((-468 . -102) T) ((-1042 . -1120) T) ((-1232 . -618) 118564) ((-1190 . -1046) 118500) ((-1183 . -35) 118466) ((-1183 . -95) 118432) ((-1183 . -1213) 118398) ((-1183 . -1210) 118364) ((-1167 . -312) NIL) ((-89 . -401) T) ((-89 . -400) T) ((-1088 . -1160) 118343) ((-1182 . -1210) 118309) ((-1182 . -1213) 118275) ((-1042 . -23) T) ((-1182 . -95) 118241) ((-576 . -498) T) ((-1182 . -35) 118207) ((-1176 . -1210) 118173) ((-1176 . -1213) 118139) ((-1176 . -95) 118105) ((-365 . -1120) T) ((-363 . -1160) 118084) ((-357 . -1160) 118063) ((-349 . -1160) 118042) ((-1176 . -35) 118008) ((-1134 . -35) 117974) ((-1134 . -95) 117940) ((-108 . -1160) T) ((-1134 . -1213) 117906) ((-838 . -1066) 117885) ((-652 . -312) 117823) ((-637 . -312) 117674) ((-1134 . -1210) 117640) ((-717 . -1057) T) ((-1070 . -644) 117622) ((-1088 . -38) 117490) ((-958 . -644) 117438) ((-1012 . -147) T) ((-1012 . -145) NIL) ((-383 . -1120) T) ((-327 . -25) T) ((-325 . -23) T) ((-949 . -855) 117417) ((-717 . -329) 117394) ((-486 . -644) 117342) ((-40 . -1046) 117230) ((-717 . -234) T) ((-706 . -722) 117217) ((-343 . -1108) T) ((-175 . -1108) T) ((-334 . -855) T) ((-423 . -457) 117167) ((-383 . -23) T) ((-363 . -38) 117132) ((-357 . -38) 117097) ((-349 . -38) 117062) ((-80 . -446) T) ((-80 . -400) T) ((-226 . -25) T) ((-226 . -21) T) ((-841 . -1120) T) ((-108 . -38) 117012) ((-832 . -1120) T) ((-779 . -1108) T) ((-116 . -722) 116999) ((-677 . -1046) 116983) ((-617 . -102) T) ((-841 . -23) T) ((-832 . -23) T) ((-1165 . -289) 116960) ((-1121 . -312) 116898) ((-487 . -1059) 116795) ((-1110 . -236) 116779) ((-64 . -401) T) ((-64 . -400) T) ((-1159 . -102) T) ((-110 . -102) T) ((-487 . -645) 116721) ((-40 . -381) 116698) ((-96 . -102) T) ((-658 . -857) 116682) ((-1143 . -1091) T) ((-1070 . -21) T) ((-1070 . -25) T) ((-1062 . -1059) 116666) ((-820 . -232) 116635) ((-958 . -25) T) ((-958 . -21) T) ((-1062 . -645) 116577) ((-626 . -1066) T) ((-1128 . -372) T) ((-1035 . -312) 116515) ((-675 . -651) 116474) ((-486 . -25) T) ((-486 . -21) T) ((-389 . -1059) 116458) ((-895 . -618) 116440) ((-891 . -618) 116422) ((-528 . -519) 116355) ((-253 . -855) 116306) ((-252 . -855) 116257) ((-389 . -645) 116227) ((-876 . -644) 116204) ((-481 . -312) 116142) ((-468 . -312) 116080) ((-355 . -293) T) ((-1165 . -1263) 116064) ((-1150 . -618) 116026) ((-1150 . -619) 115987) ((-1148 . -102) T) ((-1007 . -1064) 115883) ((-40 . -906) 115835) ((-1165 . -609) 115812) ((-1303 . -653) 115799) ((-871 . -495) 115776) ((-1071 . -151) 115722) ((-877 . -1229) T) ((-1007 . -111) 115604) ((-343 . -722) 115588) ((-871 . -618) 115550) ((-175 . -722) 115482) ((-412 . -289) 115440) ((-877 . -561) T) ((-108 . -405) 115422) ((-84 . -388) T) ((-84 . -400) T) ((-706 . -173) T) ((-622 . -618) 115404) ((-99 . -731) T) ((-487 . -102) 115194) ((-99 . -478) T) ((-116 . -173) T) ((-1297 . -651) 115153) ((-1295 . -651) 115112) ((-1121 . -38) 115082) ((-170 . -644) 115030) ((-1062 . -102) T) ((-1007 . -621) 114920) ((-876 . -25) T) ((-820 . -239) 114899) ((-876 . -21) T) ((-823 . -102) T) ((-44 . -651) 114842) ((-419 . -102) T) ((-389 . -102) T) ((-110 . -312) NIL) ((-228 . -102) 114820) ((-127 . -1225) T) ((-121 . -1225) T) ((-822 . -1059) 114771) ((-822 . -645) 114713) ((-1042 . -131) T) ((-675 . -371) 114697) ((-152 . -651) 114656) ((-1007 . -1057) T) ((-1248 . -644) 114604) ((-1112 . -618) 114586) ((-1011 . -618) 114568) ((-520 . -23) T) ((-515 . -23) T) ((-347 . -310) T) ((-513 . -23) T) ((-325 . -131) T) ((-3 . -1108) T) ((-1011 . -619) 114552) ((-1007 . -244) 114531) ((-1007 . -234) 114510) ((-1303 . -731) T) ((-1267 . -145) 114489) ((-838 . -1108) T) ((-1267 . -147) 114468) ((-1260 . -147) 114447) ((-1260 . -145) 114426) ((-1259 . -1229) 114405) ((-1239 . -145) 114312) ((-1239 . -147) 114219) ((-1238 . -1229) 114198) ((-383 . -131) T) ((-569 . -892) 114180) ((0 . -1108) T) ((-175 . -173) T) ((-170 . -21) T) ((-170 . -25) T) ((-49 . -1108) T) ((-1261 . -653) 114085) ((-1259 . -561) 114036) ((-719 . -1120) T) ((-1238 . -561) 113987) ((-569 . -1046) 113969) ((-600 . -147) 113948) ((-600 . -145) 113927) ((-500 . -1046) 113870) ((-1143 . -1145) T) ((-87 . -388) T) ((-87 . -400) T) ((-877 . -367) T) ((-841 . -131) T) ((-832 . -131) T) ((-970 . -651) 113814) ((-719 . -23) T) ((-511 . -618) 113780) ((-507 . -618) 113762) ((-820 . -651) 113512) ((-1299 . -1066) T) ((-383 . -1068) T) ((-1034 . -1108) 113490) ((-55 . -1046) 113472) ((-907 . -34) T) ((-487 . -312) 113410) ((-597 . -102) T) ((-1165 . -619) 113371) ((-1165 . -618) 113303) ((-1187 . -1059) 113186) ((-45 . -102) T) ((-822 . -102) T) ((-1187 . -645) 113083) ((-1248 . -25) T) ((-1248 . -21) T) ((-860 . -25) T) ((-44 . -371) 113067) ((-860 . -21) T) ((-736 . -457) 113018) ((-1298 . -618) 113000) ((-1287 . -1059) 112970) ((-1062 . -312) 112908) ((-676 . -1091) T) ((-611 . -1091) T) ((-395 . -1108) T) ((-576 . -25) T) ((-576 . -21) T) ((-181 . -1091) T) ((-161 . -1091) T) ((-156 . -1091) T) ((-154 . -1091) T) ((-1287 . -645) 112878) ((-626 . -1108) T) ((-704 . -892) 112860) ((-1275 . -1225) T) ((-228 . -312) 112798) ((-144 . -372) T) ((-1054 . -619) 112740) ((-1054 . -618) 112683) ((-316 . -915) NIL) ((-1233 . -849) T) ((-704 . -1046) 112628) ((-716 . -926) T) ((-479 . -1229) 112607) ((-1182 . -457) 112586) ((-1176 . -457) 112565) ((-333 . -102) T) ((-877 . -1120) T) ((-322 . -651) 112447) ((-319 . -653) 112268) ((-316 . -653) 112197) ((-479 . -561) 112148) ((-343 . -519) 112114) ((-555 . -151) 112064) ((-40 . -310) T) ((-848 . -618) 112046) ((-706 . -293) T) ((-877 . -23) T) ((-383 . -498) T) ((-1088 . -232) 112016) ((-517 . -102) T) ((-412 . -619) 111823) ((-412 . -618) 111805) ((-265 . -618) 111787) ((-116 . -293) T) ((-1261 . -731) T) ((-1259 . -367) 111766) ((-1238 . -367) 111745) ((-1288 . -34) T) ((-1233 . -1108) T) ((-117 . -1225) T) ((-108 . -232) 111727) ((-1187 . -102) T) ((-482 . -1108) T) ((-528 . -494) 111711) ((-742 . -34) T) ((-658 . -1059) 111695) ((-487 . -38) 111665) ((-658 . -645) 111635) ((-141 . -34) T) ((-117 . -890) 111612) ((-117 . -892) NIL) ((-628 . -1046) 111495) ((-649 . -855) 111474) ((-1287 . -102) T) ((-298 . -102) T) ((-717 . -372) 111453) ((-117 . -1046) 111430) ((-395 . -722) 111414) ((-626 . -722) 111398) ((-45 . -312) 111202) ((-821 . -145) 111181) ((-821 . -147) 111160) ((-292 . -651) 111132) ((-1298 . -386) 111111) ((-824 . -855) T) ((-1277 . -1108) T) ((-1168 . -230) 111058) ((-391 . -855) 111037) ((-1267 . -1213) 111003) ((-1267 . -1210) 110969) ((-1260 . -1210) 110935) ((-520 . -131) T) ((-1260 . -1213) 110901) ((-1239 . -1210) 110867) ((-1239 . -1213) 110833) ((-1267 . -35) 110799) ((-1267 . -95) 110765) ((-640 . -618) 110734) ((-612 . -618) 110703) ((-226 . -855) T) ((-1260 . -95) 110669) ((-1260 . -35) 110635) ((-1259 . -1120) T) ((-1128 . -653) 110622) ((-1239 . -95) 110588) ((-1238 . -1120) T) ((-598 . -151) 110570) ((-1088 . -353) 110549) ((-175 . -293) T) ((-117 . -381) 110526) ((-117 . -342) 110503) ((-1239 . -35) 110469) ((-875 . -310) T) ((-316 . -799) NIL) ((-316 . -796) NIL) ((-319 . -731) 110318) ((-316 . -731) T) ((-479 . -367) 110297) ((-363 . -353) 110276) ((-357 . -353) 110255) ((-349 . -353) 110234) ((-319 . -478) 110213) ((-1259 . -23) T) ((-1238 . -23) T) ((-723 . -1120) T) ((-719 . -131) T) ((-658 . -102) T) ((-482 . -722) 110178) ((-45 . -285) 110128) ((-105 . -1108) T) ((-68 . -618) 110110) ((-978 . -102) T) ((-869 . -102) T) ((-628 . -906) 110069) ((-1299 . -1108) T) ((-385 . -1108) T) ((-82 . -1225) T) ((-1224 . -1108) T) ((-1070 . -855) T) ((-117 . -906) NIL) ((-787 . -926) 110048) ((-718 . -855) T) ((-536 . -1108) T) ((-505 . -1108) T) ((-359 . -1229) T) ((-356 . -1229) T) ((-348 . -1229) T) ((-266 . -1229) 110027) ((-248 . -1229) 110006) ((-538 . -865) T) ((-1121 . -232) 109975) ((-1167 . -833) T) ((-1150 . -1064) 109959) ((-395 . -766) T) ((-699 . -1225) T) ((-696 . -1046) 109943) ((-359 . -561) T) ((-356 . -561) T) ((-348 . -561) T) ((-266 . -561) 109874) ((-248 . -561) 109805) ((-530 . -1091) T) ((-1150 . -111) 109784) ((-458 . -749) 109754) ((-871 . -1064) 109724) ((-822 . -38) 109666) ((-699 . -890) 109648) ((-699 . -892) 109630) ((-298 . -312) 109434) ((-916 . -1229) T) ((-1165 . -291) 109411) ((-1088 . -651) 109306) ((-675 . -416) 109290) ((-871 . -111) 109255) ((-1012 . -457) T) ((-699 . -1046) 109200) ((-916 . -561) T) ((-538 . -618) 109182) ((-586 . -926) T) ((-492 . -1059) 109132) ((-479 . -1120) T) ((-523 . -926) T) ((-920 . -457) T) ((-65 . -618) 109114) ((-218 . -1059) 109064) ((-492 . -645) 109014) ((-363 . -651) 108951) ((-357 . -651) 108888) ((-349 . -651) 108825) ((-637 . -230) 108771) ((-218 . -645) 108721) ((-108 . -651) 108671) ((-479 . -23) T) ((-1128 . -799) T) ((-877 . -131) T) ((-1128 . -796) T) ((-1290 . -1292) 108650) ((-1128 . -731) T) ((-659 . -653) 108624) ((-297 . -618) 108365) ((-1150 . -621) 108283) ((-1043 . -34) T) ((-820 . -853) 108262) ((-585 . -310) T) ((-569 . -310) T) ((-500 . -310) T) ((-1299 . -722) 108232) ((-699 . -381) 108214) ((-699 . -342) 108196) ((-482 . -173) T) ((-385 . -722) 108166) ((-871 . -621) 108101) ((-876 . -855) NIL) ((-569 . -1030) T) ((-500 . -1030) T) ((-1141 . -618) 108083) ((-1121 . -239) 108062) ((-215 . -102) T) ((-1158 . -102) T) ((-71 . -618) 108044) ((-1150 . -1057) T) ((-1187 . -38) 107941) ((-863 . -618) 107923) ((-569 . -550) T) ((-675 . -1066) T) ((-736 . -955) 107876) ((-1150 . -234) 107855) ((-1090 . -1108) T) ((-1042 . -25) T) ((-1042 . -21) T) ((-1011 . -1064) 107800) ((-911 . -102) T) ((-871 . -1057) T) ((-699 . -906) NIL) ((-359 . -332) 107784) ((-359 . -367) T) ((-356 . -332) 107768) ((-356 . -367) T) ((-348 . -332) 107752) ((-348 . -367) T) ((-492 . -102) T) ((-1287 . -38) 107722) ((-551 . -855) T) ((-528 . -692) 107672) ((-218 . -102) T) ((-1032 . -1046) 107552) ((-1011 . -111) 107481) ((-1183 . -981) 107450) ((-525 . -151) 107434) ((-1088 . -374) 107413) ((-355 . -618) 107395) ((-325 . -21) T) ((-358 . -1046) 107372) ((-325 . -25) T) ((-1182 . -981) 107334) ((-1176 . -981) 107303) ((-76 . -618) 107285) ((-1134 . -981) 107252) ((-704 . -310) T) ((-129 . -849) T) ((-916 . -367) T) ((-383 . -25) T) ((-383 . -21) T) ((-916 . -332) 107239) ((-86 . -618) 107221) ((-704 . -1030) T) ((-682 . -855) T) ((-1259 . -131) T) ((-1238 . -131) T) ((-907 . -1018) 107205) ((-841 . -21) T) ((-48 . -1046) 107148) ((-841 . -25) T) ((-832 . -25) T) ((-832 . -21) T) ((-1121 . -651) 106898) ((-1297 . -1066) T) ((-554 . -102) T) ((-1295 . -1066) T) ((-659 . -731) T) ((-1112 . -623) 106801) ((-1011 . -621) 106731) ((-1298 . -1064) 106715) ((-820 . -416) 106684) ((-103 . -119) 106668) ((-129 . -1108) T) ((-52 . -1108) T) ((-932 . -618) 106650) ((-876 . -1000) 106627) ((-828 . -102) T) ((-1298 . -111) 106606) ((-658 . -38) 106576) ((-576 . -855) T) ((-359 . -1120) T) ((-356 . -1120) T) ((-348 . -1120) T) ((-266 . -1120) T) ((-248 . -1120) T) ((-628 . -310) 106555) ((-1158 . -312) 106359) ((-669 . -23) T) ((-529 . -1091) T) ((-314 . -1108) T) ((-487 . -232) 106328) ((-152 . -1066) T) ((-359 . -23) T) ((-356 . -23) T) ((-348 . -23) T) ((-117 . -310) T) ((-266 . -23) T) ((-248 . -23) T) ((-1011 . -1057) T) ((-717 . -915) 106307) ((-1165 . -621) 106284) ((-1011 . -234) 106256) ((-1011 . -244) T) ((-117 . -1030) NIL) ((-916 . -1120) T) ((-1260 . -457) 106235) ((-1239 . -457) 106214) ((-528 . -618) 106146) ((-717 . -653) 106071) ((-412 . -1064) 106023) ((-509 . -618) 106005) ((-916 . -23) T) ((-492 . -312) NIL) ((-1298 . -621) 105961) ((-479 . -131) T) ((-218 . -312) NIL) ((-412 . -111) 105899) ((-820 . -1066) 105829) ((-742 . -1106) 105813) ((-1259 . -498) 105779) ((-1238 . -498) 105745) ((-553 . -849) T) ((-141 . -1106) 105727) ((-482 . -293) T) ((-1298 . -1057) T) ((-1230 . -102) T) ((-1071 . -102) T) ((-848 . -621) 105595) ((-505 . -519) NIL) ((-487 . -239) 105574) ((-412 . -621) 105472) ((-969 . -1059) 105355) ((-740 . -1059) 105325) ((-969 . -645) 105222) ((-1181 . -145) 105201) ((-740 . -645) 105171) ((-458 . -1059) 105141) ((-1181 . -147) 105120) ((-1133 . -147) 105099) ((-1133 . -145) 105078) ((-640 . -1064) 105062) ((-612 . -1064) 105046) ((-458 . -645) 105016) ((-1183 . -1266) 105000) ((-1183 . -1253) 104977) ((-675 . -1108) T) ((-675 . -1061) 104917) ((-1182 . -1258) 104878) ((-553 . -1108) T) ((-492 . -1160) T) ((-1182 . -1253) 104848) ((-1182 . -1256) 104832) ((-1176 . -1237) 104793) ((-218 . -1160) T) ((-347 . -926) T) ((-823 . -268) 104777) ((-640 . -111) 104756) ((-612 . -111) 104735) ((-1176 . -1253) 104712) ((-848 . -1057) 104691) ((-1176 . -1235) 104675) ((-520 . -25) T) ((-500 . -305) T) ((-516 . -23) T) ((-515 . -25) T) ((-513 . -25) T) ((-512 . -23) T) ((-423 . -1059) 104649) ((-412 . -1057) T) ((-322 . -1066) T) ((-699 . -310) T) ((-423 . -645) 104623) ((-108 . -853) T) ((-717 . -731) T) ((-412 . -244) T) ((-412 . -234) 104602) ((-492 . -38) 104552) ((-218 . -38) 104502) ((-479 . -498) 104468) ((-1232 . -372) T) ((-1167 . -1152) T) ((-1109 . -102) T) ((-706 . -618) 104450) ((-706 . -619) 104365) ((-719 . -21) T) ((-719 . -25) T) ((-1143 . -102) T) ((-487 . -651) 104115) ((-134 . -618) 104097) ((-116 . -618) 104079) ((-157 . -25) T) ((-1297 . -1108) T) ((-877 . -644) 104027) ((-1295 . -1108) T) ((-969 . -102) T) ((-740 . -102) T) ((-720 . -102) T) ((-458 . -102) T) ((-821 . -457) 103978) ((-44 . -1108) T) ((-1096 . -855) T) ((-1071 . -312) 103829) ((-669 . -131) T) ((-1062 . -651) 103798) ((-675 . -722) 103782) ((-292 . -1066) T) ((-359 . -131) T) ((-356 . -131) T) ((-348 . -131) T) ((-266 . -131) T) ((-248 . -131) T) ((-389 . -651) 103751) ((-423 . -102) T) ((-152 . -1108) T) ((-45 . -230) 103701) ((-804 . -1059) 103685) ((-964 . -855) 103664) ((-1007 . -653) 103602) ((-804 . -645) 103586) ((-241 . -1282) 103556) ((-1032 . -310) T) ((-297 . -1064) 103477) ((-916 . -131) T) ((-40 . -926) T) ((-492 . -405) 103459) ((-358 . -310) T) ((-218 . -405) 103441) ((-1088 . -416) 103425) ((-297 . -111) 103341) ((-1192 . -855) T) ((-1191 . -855) T) ((-877 . -25) T) ((-877 . -21) T) ((-343 . -618) 103323) ((-1261 . -47) 103267) ((-226 . -147) T) ((-175 . -618) 103249) ((-1121 . -853) 103228) ((-779 . -618) 103210) ((-128 . -855) T) ((-613 . -236) 103157) ((-480 . -236) 103107) ((-1297 . -722) 103077) ((-48 . -310) T) ((-1295 . -722) 103047) ((-65 . -621) 102976) ((-970 . -1108) T) ((-820 . -1108) 102766) ((-315 . -102) T) ((-907 . -1225) T) ((-48 . -1030) T) ((-1238 . -644) 102674) ((-694 . -102) 102652) ((-44 . -722) 102636) ((-555 . -102) T) ((-297 . -621) 102567) ((-67 . -387) T) ((-67 . -400) T) ((-667 . -23) T) ((-822 . -651) 102503) ((-675 . -766) T) ((-1222 . -1108) 102481) ((-355 . -1064) 102426) ((-680 . -1108) 102404) ((-1070 . -147) T) ((-958 . -147) 102383) ((-958 . -145) 102362) ((-804 . -102) T) ((-152 . -722) 102346) ((-486 . -147) 102325) ((-486 . -145) 102304) ((-355 . -111) 102233) ((-1088 . -1066) T) ((-325 . -855) 102212) ((-1267 . -981) 102181) ((-632 . -1108) T) ((-1260 . -981) 102143) ((-516 . -131) T) ((-512 . -131) T) ((-298 . -230) 102093) ((-363 . -1066) T) ((-357 . -1066) T) ((-349 . -1066) T) ((-297 . -1057) 102035) ((-1239 . -981) 102004) ((-383 . -855) T) ((-108 . -1066) T) ((-1007 . -731) T) ((-875 . -926) T) ((-848 . -800) 101983) ((-848 . -797) 101962) ((-423 . -312) 101901) ((-473 . -102) T) ((-600 . -981) 101870) ((-322 . -1108) T) ((-412 . -800) 101849) ((-412 . -797) 101828) ((-505 . -494) 101810) ((-1261 . -1046) 101776) ((-1259 . -21) T) ((-1259 . -25) T) ((-1238 . -21) T) ((-1238 . -25) T) ((-820 . -722) 101718) ((-355 . -621) 101648) ((-704 . -409) T) ((-1288 . -1225) T) ((-611 . -102) T) ((-1121 . -416) 101617) ((-1011 . -372) NIL) ((-676 . -102) T) ((-181 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1187 . -651) 101527) ((-742 . -1225) T) ((-736 . -1059) 101370) ((-44 . -766) T) ((-736 . -645) 101219) ((-598 . -102) T) ((-77 . -401) T) ((-77 . -400) T) ((-658 . -661) 101203) ((-141 . -1225) T) ((-876 . -147) T) ((-876 . -145) NIL) ((-1224 . -93) T) ((-355 . -1057) T) ((-70 . -387) T) ((-70 . -400) T) ((-1174 . -102) T) ((-675 . -519) 101136) ((-1287 . -651) 101081) ((-694 . -312) 101019) ((-969 . -38) 100916) ((-1189 . -618) 100898) ((-740 . -38) 100868) ((-555 . -312) 100672) ((-1183 . -1059) 100555) ((-319 . -1225) T) ((-355 . -234) T) ((-355 . -244) T) ((-316 . -1225) T) ((-292 . -1108) T) ((-1182 . -1059) 100390) ((-1176 . -1059) 100180) ((-1134 . -1059) 100063) ((-1183 . -645) 99960) ((-1182 . -645) 99801) ((-716 . -1229) T) ((-1176 . -645) 99597) ((-1165 . -656) 99581) ((-1134 . -645) 99478) ((-1219 . -561) 99457) ((-824 . -390) 99441) ((-716 . -561) T) ((-319 . -890) 99425) ((-319 . -892) 99350) ((-316 . -890) 99311) ((-316 . -892) NIL) ((-804 . -312) 99276) ((-322 . -722) 99117) ((-391 . -390) 99101) ((-327 . -326) 99078) ((-490 . -102) T) ((-479 . -25) T) ((-479 . -21) T) ((-423 . -38) 99052) ((-319 . -1046) 98715) ((-226 . -1210) T) ((-226 . -1213) T) ((-3 . -618) 98697) ((-316 . -1046) 98627) ((-2 . -1108) T) ((-2 . |RecordCategory|) T) ((-838 . -618) 98609) ((-1121 . -1066) 98539) ((-585 . -926) T) ((-569 . -825) T) ((-569 . -926) T) ((-500 . -926) T) ((-136 . -1046) 98523) ((-226 . -95) T) ((-170 . -147) 98502) ((-75 . -446) T) ((0 . -618) 98484) ((-75 . -400) T) ((-170 . -145) 98435) ((-226 . -35) T) ((-49 . -618) 98417) ((-482 . -1066) T) ((-492 . -232) 98399) ((-489 . -976) 98383) ((-487 . -853) 98362) ((-218 . -232) 98344) ((-81 . -446) T) ((-81 . -400) T) ((-1154 . -34) T) ((-820 . -173) 98323) ((-736 . -102) T) ((-658 . -651) 98282) ((-1034 . -618) 98249) ((-505 . -289) 98224) ((-319 . -381) 98193) ((-316 . -381) 98154) ((-316 . -342) 98115) ((-1093 . -618) 98097) ((-821 . -955) 98044) ((-667 . -131) T) ((-1248 . -145) 98023) ((-1248 . -147) 98002) ((-1183 . -102) T) ((-1182 . -102) T) ((-1176 . -102) T) ((-1168 . -1108) T) ((-1134 . -102) T) ((-223 . -34) T) ((-292 . -722) 97989) ((-1168 . -615) 97965) ((-598 . -312) NIL) ((-489 . -1108) 97943) ((-395 . -618) 97925) ((-515 . -855) T) ((-1158 . -230) 97875) ((-1267 . -1266) 97859) ((-1267 . -1253) 97836) ((-1260 . -1258) 97797) ((-1260 . -1253) 97767) ((-1260 . -1256) 97751) ((-1239 . -1237) 97712) ((-1239 . -1253) 97689) ((-626 . -618) 97671) ((-1239 . -1235) 97655) ((-704 . -926) T) ((-1183 . -287) 97621) ((-1182 . -287) 97587) ((-1176 . -287) 97553) ((-1088 . -1108) T) ((-1069 . -1108) T) ((-48 . -305) T) ((-319 . -906) 97519) ((-316 . -906) NIL) ((-1069 . -1076) 97498) ((-1128 . -892) 97480) ((-804 . -38) 97464) ((-266 . -644) 97412) ((-248 . -644) 97360) ((-706 . -1064) 97347) ((-600 . -1253) 97324) ((-1134 . -287) 97290) ((-322 . -173) 97221) ((-363 . -1108) T) ((-357 . -1108) T) ((-349 . -1108) T) ((-505 . -19) 97203) ((-1128 . -1046) 97185) ((-1110 . -151) 97169) ((-108 . -1108) T) ((-116 . -1064) 97156) ((-716 . -367) T) ((-505 . -609) 97131) ((-706 . -111) 97116) ((-441 . -102) T) ((-881 . -1270) T) ((-251 . -102) T) ((-45 . -1157) 97066) ((-116 . -111) 97051) ((-640 . -725) T) ((-612 . -725) T) ((-1277 . -618) 97033) ((-1233 . -618) 97015) ((-1231 . -855) T) ((-820 . -519) 96948) ((-1043 . -1225) T) ((-241 . -1059) 96845) ((-1219 . -1120) T) ((-1219 . -23) T) ((-949 . -151) 96829) ((-1181 . -457) 96760) ((-1176 . -312) 96645) ((-241 . -645) 96587) ((-1175 . -1108) T) ((-1167 . -1108) T) ((-1150 . -653) 96561) ((-530 . -102) T) ((-525 . -102) 96511) ((-1134 . -312) 96498) ((-1133 . -457) 96449) ((-1095 . -1229) 96428) ((-787 . -1229) 96407) ((-785 . -1229) 96386) ((-62 . -1225) T) ((-482 . -618) 96338) ((-482 . -619) 96260) ((-1095 . -561) 96191) ((-1002 . -1108) T) ((-787 . -561) 96102) ((-785 . -561) 96033) ((-487 . -416) 96002) ((-628 . -926) 95981) ((-459 . -1229) 95960) ((-736 . -312) 95947) ((-706 . -621) 95919) ((-403 . -618) 95901) ((-680 . -519) 95834) ((-669 . -25) T) ((-669 . -21) T) ((-459 . -561) 95765) ((-359 . -25) T) ((-359 . -21) T) ((-117 . -926) T) ((-117 . -825) NIL) ((-356 . -25) T) ((-356 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-266 . -25) T) ((-266 . -21) T) ((-248 . -25) T) ((-248 . -21) T) ((-83 . -388) T) ((-83 . -400) T) ((-134 . -621) 95747) ((-116 . -621) 95719) ((-1088 . -722) 95587) ((-1012 . -1059) 95537) ((-1012 . -645) 95487) ((-949 . -988) 95471) ((-920 . -645) 95423) ((-920 . -1059) 95375) ((-916 . -21) T) ((-916 . -25) T) ((-877 . -855) 95326) ((-871 . -653) 95286) ((-716 . -1120) T) ((-716 . -23) T) ((-292 . -173) T) ((-706 . -1057) T) ((-314 . -93) T) ((-706 . -234) T) ((-652 . -1108) 95264) ((-637 . -615) 95239) ((-637 . -1108) T) ((-586 . -1229) T) ((-586 . -561) T) ((-523 . -1229) T) ((-523 . -561) T) ((-492 . -651) 95189) ((-432 . -1059) 95173) ((-432 . -645) 95157) ((-363 . -722) 95109) ((-357 . -722) 95061) ((-343 . -1064) 95045) ((-349 . -722) 94997) ((-343 . -111) 94976) ((-175 . -1064) 94908) ((-218 . -651) 94858) ((-175 . -111) 94769) ((-108 . -722) 94719) ((-276 . -1108) T) ((-275 . -1108) T) ((-274 . -1108) T) ((-273 . -1108) T) ((-272 . -1108) T) ((-271 . -1108) T) ((-270 . -1108) T) ((-213 . -1108) T) ((-212 . -1108) T) ((-170 . -1213) 94697) ((-170 . -1210) 94675) ((-210 . -1108) T) ((-209 . -1108) T) ((-116 . -1057) T) ((-208 . -1108) T) ((-207 . -1108) T) ((-204 . -1108) T) ((-203 . -1108) T) ((-202 . -1108) T) ((-201 . -1108) T) ((-200 . -1108) T) ((-199 . -1108) T) ((-198 . -1108) T) ((-197 . -1108) T) ((-196 . -1108) T) ((-195 . -1108) T) ((-194 . -1108) T) ((-241 . -102) 94465) ((-170 . -35) 94443) ((-170 . -95) 94421) ((-659 . -1046) 94317) ((-487 . -1066) 94247) ((-1121 . -1108) 94037) ((-1150 . -34) T) ((-675 . -494) 94021) ((-73 . -1225) T) ((-105 . -618) 94003) ((-1299 . -618) 93985) ((-385 . -618) 93967) ((-343 . -621) 93919) ((-175 . -621) 93836) ((-1224 . -495) 93817) ((-736 . -38) 93666) ((-576 . -1213) T) ((-576 . -1210) T) ((-536 . -618) 93648) ((-525 . -312) 93586) ((-505 . -618) 93568) ((-505 . -619) 93550) ((-1224 . -618) 93516) ((-1176 . -1160) NIL) ((-1035 . -1079) 93485) ((-1035 . -1108) T) ((-1012 . -102) T) ((-979 . -102) T) ((-920 . -102) T) ((-899 . -1046) 93462) ((-1150 . -731) T) ((-1011 . -653) 93407) ((-481 . -1108) T) ((-468 . -1108) T) ((-591 . -23) T) ((-576 . -35) T) ((-576 . -95) T) ((-432 . -102) T) ((-1071 . -230) 93353) ((-1183 . -38) 93250) ((-871 . -731) T) ((-699 . -926) T) ((-516 . -25) T) ((-512 . -21) T) ((-512 . -25) T) ((-1182 . -38) 93091) ((-343 . -1057) T) ((-1176 . -38) 92887) ((-1088 . -173) T) ((-175 . -1057) T) ((-1134 . -38) 92784) ((-717 . -47) 92761) ((-363 . -173) T) ((-357 . -173) T) ((-524 . -57) 92735) ((-502 . -57) 92685) ((-355 . -1294) 92662) ((-226 . -457) T) ((-322 . -293) 92613) ((-349 . -173) T) ((-175 . -244) T) ((-1238 . -855) 92512) ((-108 . -173) T) ((-877 . -1000) 92496) ((-663 . -1120) T) ((-586 . -367) T) ((-586 . -332) 92483) ((-523 . -332) 92460) ((-523 . -367) T) ((-319 . -310) 92439) ((-316 . -310) T) ((-607 . -855) 92418) ((-1121 . -722) 92360) ((-525 . -285) 92344) ((-663 . -23) T) ((-423 . -232) 92328) ((-316 . -1030) NIL) ((-340 . -23) T) ((-103 . -1018) 92312) ((-45 . -36) 92291) ((-617 . -1108) T) ((-355 . -372) T) ((-529 . -102) T) ((-500 . -27) T) ((-241 . -312) 92229) ((-1095 . -1120) T) ((-1298 . -653) 92203) ((-787 . -1120) T) ((-785 . -1120) T) ((-459 . -1120) T) ((-1070 . -457) T) ((-1159 . -1108) T) ((-958 . -457) 92154) ((-1123 . -1091) T) ((-110 . -1108) T) ((-1095 . -23) T) ((-822 . -1066) T) ((-787 . -23) T) ((-785 . -23) T) ((-486 . -457) 92105) ((-1168 . -519) 91888) ((-385 . -386) 91867) ((-1187 . -416) 91851) ((-466 . -23) T) ((-459 . -23) T) ((-96 . -1108) T) ((-489 . -519) 91784) ((-1267 . -1059) 91667) ((-1267 . -645) 91564) ((-1260 . -645) 91405) ((-1260 . -1059) 91240) ((-292 . -293) T) ((-1239 . -1059) 91030) ((-1090 . -618) 91012) ((-1090 . -619) 90993) ((-412 . -915) 90972) ((-1239 . -645) 90768) ((-50 . -1120) T) ((-1219 . -131) T) ((-1032 . -926) T) ((-1011 . -731) T) ((-848 . -653) 90741) ((-717 . -892) NIL) ((-601 . -1059) 90701) ((-586 . -1120) T) ((-523 . -1120) T) ((-600 . -1059) 90584) ((-1176 . -405) 90536) ((-1012 . -312) NIL) ((-820 . -494) 90520) ((-601 . -645) 90493) ((-358 . -926) T) ((-600 . -645) 90390) ((-1165 . -34) T) ((-412 . -653) 90342) ((-50 . -23) T) ((-716 . -131) T) ((-717 . -1046) 90222) ((-586 . -23) T) ((-108 . -519) NIL) ((-523 . -23) T) ((-170 . -414) 90193) ((-1148 . -1108) T) ((-1290 . -1289) 90177) ((-706 . -800) T) ((-706 . -797) T) ((-1128 . -310) T) ((-383 . -147) T) ((-283 . -618) 90159) ((-282 . -618) 90141) ((-1238 . -1000) 90111) ((-48 . -926) T) ((-680 . -494) 90095) ((-253 . -1282) 90065) ((-252 . -1282) 90035) ((-1185 . -855) T) ((-1121 . -173) 90014) ((-1128 . -1030) T) ((-1054 . -34) T) ((-841 . -147) 89993) ((-841 . -145) 89972) ((-742 . -107) 89956) ((-617 . -132) T) ((-487 . -1108) 89746) ((-1187 . -1066) T) ((-876 . -457) T) ((-85 . -1225) T) ((-241 . -38) 89716) ((-141 . -107) 89698) ((-717 . -381) 89682) ((-838 . -621) 89550) ((-1298 . -731) T) ((-1287 . -1066) T) ((-1128 . -550) T) ((-584 . -102) T) ((-129 . -495) 89532) ((-1267 . -102) T) ((-395 . -1064) 89516) ((-1260 . -102) T) ((-1181 . -955) 89485) ((-129 . -618) 89452) ((-52 . -618) 89434) ((-1133 . -955) 89401) ((-658 . -416) 89385) ((-1239 . -102) T) ((-1167 . -519) NIL) ((-667 . -25) T) ((-626 . -1064) 89369) ((-667 . -21) T) ((-969 . -651) 89279) ((-740 . -651) 89224) ((-720 . -651) 89196) ((-395 . -111) 89175) ((-223 . -256) 89159) ((-1062 . -1061) 89099) ((-1062 . -1108) T) ((-1012 . -1160) T) ((-823 . -1108) T) ((-458 . -651) 89014) ((-347 . -1229) T) ((-640 . -653) 88998) ((-626 . -111) 88977) ((-612 . -653) 88961) ((-601 . -102) T) ((-314 . -495) 88942) ((-591 . -131) T) ((-600 . -102) T) ((-419 . -1108) T) ((-389 . -1108) T) ((-314 . -618) 88908) ((-228 . -1108) 88886) ((-652 . -519) 88819) ((-637 . -519) 88663) ((-838 . -1057) 88642) ((-649 . -151) 88626) ((-347 . -561) T) ((-717 . -906) 88569) ((-555 . -230) 88519) ((-1267 . -287) 88485) ((-1260 . -287) 88451) ((-1088 . -293) 88402) ((-492 . -853) T) ((-224 . -1120) T) ((-1239 . -287) 88368) ((-1219 . -498) 88334) ((-1012 . -38) 88284) ((-218 . -853) T) ((-423 . -651) 88243) ((-920 . -38) 88195) ((-848 . -799) 88174) ((-848 . -796) 88153) ((-848 . -731) 88132) ((-363 . -293) T) ((-357 . -293) T) ((-349 . -293) T) ((-170 . -457) 88063) ((-432 . -38) 88047) ((-108 . -293) T) ((-224 . -23) T) ((-412 . -799) 88026) ((-412 . -796) 88005) ((-412 . -731) T) ((-505 . -291) 87980) ((-482 . -1064) 87945) ((-663 . -131) T) ((-626 . -621) 87914) ((-1121 . -519) 87847) ((-340 . -131) T) ((-170 . -407) 87826) ((-487 . -722) 87768) ((-820 . -289) 87745) ((-482 . -111) 87701) ((-658 . -1066) T) ((-821 . -1059) 87544) ((-1286 . -1091) T) ((-1248 . -457) 87475) ((-821 . -645) 87324) ((-1285 . -1091) T) ((-1095 . -131) T) ((-1062 . -722) 87266) ((-787 . -131) T) ((-785 . -131) T) ((-576 . -457) T) ((-1035 . -519) 87199) ((-626 . -1057) T) ((-597 . -1108) T) ((-538 . -174) T) ((-466 . -131) T) ((-459 . -131) T) ((-45 . -1108) T) ((-389 . -722) 87169) ((-822 . -1108) T) ((-481 . -519) 87102) ((-468 . -519) 87035) ((-458 . -371) 87005) ((-45 . -615) 86984) ((-319 . -305) T) ((-482 . -621) 86934) ((-1239 . -312) 86819) ((-675 . -618) 86781) ((-59 . -855) 86760) ((-1012 . -405) 86742) ((-553 . -618) 86724) ((-804 . -651) 86683) ((-820 . -609) 86660) ((-521 . -855) 86639) ((-501 . -855) 86618) ((-40 . -1229) T) ((-1007 . -1046) 86514) ((-50 . -131) T) ((-586 . -131) T) ((-523 . -131) T) ((-297 . -653) 86374) ((-347 . -332) 86351) ((-347 . -367) T) ((-325 . -326) 86328) ((-322 . -289) 86313) ((-40 . -561) T) ((-383 . -1210) T) ((-383 . -1213) T) ((-1043 . -1201) 86288) ((-1198 . -236) 86238) ((-1176 . -232) 86190) ((-333 . -1108) T) ((-383 . -95) T) ((-383 . -35) T) ((-1043 . -107) 86136) ((-482 . -1057) T) ((-1299 . -1064) 86120) ((-484 . -236) 86070) ((-1168 . -494) 86004) ((-1290 . -1059) 85988) ((-385 . -1064) 85972) ((-1290 . -645) 85942) ((-482 . -244) T) ((-821 . -102) T) ((-719 . -147) 85921) ((-719 . -145) 85900) ((-489 . -494) 85884) ((-490 . -339) 85853) ((-1299 . -111) 85832) ((-517 . -1108) T) ((-487 . -173) 85811) ((-1007 . -381) 85795) ((-418 . -102) T) ((-385 . -111) 85774) ((-1007 . -342) 85758) ((-281 . -991) 85742) ((-280 . -991) 85726) ((-1297 . -618) 85708) ((-1295 . -618) 85690) ((-110 . -519) NIL) ((-1181 . -1251) 85674) ((-859 . -857) 85658) ((-1187 . -1108) T) ((-103 . -1225) T) ((-958 . -955) 85619) ((-822 . -722) 85561) ((-1239 . -1160) NIL) ((-486 . -955) 85506) ((-1070 . -143) T) ((-60 . -102) 85484) ((-44 . -618) 85466) ((-78 . -618) 85448) ((-355 . -653) 85393) ((-1287 . -1108) T) ((-516 . -855) T) ((-347 . -1120) T) ((-298 . -1108) T) ((-1007 . -906) 85352) ((-298 . -615) 85331) ((-1299 . -621) 85280) ((-1267 . -38) 85177) ((-1260 . -38) 85018) ((-1239 . -38) 84814) ((-492 . -1066) T) ((-385 . -621) 84798) ((-218 . -1066) T) ((-347 . -23) T) ((-152 . -618) 84780) ((-838 . -800) 84759) ((-838 . -797) 84738) ((-1224 . -621) 84719) ((-601 . -38) 84692) ((-600 . -38) 84589) ((-875 . -561) T) ((-224 . -131) T) ((-322 . -1010) 84555) ((-79 . -618) 84537) ((-717 . -310) 84516) ((-297 . -731) 84418) ((-829 . -102) T) ((-869 . -849) T) ((-297 . -478) 84397) ((-1290 . -102) T) ((-40 . -367) T) ((-877 . -147) 84376) ((-490 . -651) 84358) ((-877 . -145) 84337) ((-1167 . -494) 84319) ((-1299 . -1057) T) ((-487 . -519) 84252) ((-1154 . -1225) T) ((-970 . -618) 84234) ((-652 . -494) 84218) ((-637 . -494) 84149) ((-820 . -618) 83880) ((-48 . -27) T) ((-1187 . -722) 83777) ((-658 . -1108) T) ((-866 . -865) T) ((-441 . -368) 83751) ((-736 . -651) 83661) ((-1110 . -102) T) ((-978 . -1108) T) ((-869 . -1108) T) ((-821 . -312) 83648) ((-538 . -532) T) ((-538 . -581) T) ((-1295 . -386) 83620) ((-1062 . -519) 83553) ((-1168 . -289) 83529) ((-241 . -232) 83498) ((-253 . -1059) 83395) ((-252 . -1059) 83292) ((-1287 . -722) 83262) ((-1175 . -93) T) ((-1002 . -93) T) ((-822 . -173) 83241) ((-253 . -645) 83183) ((-252 . -645) 83125) ((-1222 . -495) 83102) ((-228 . -519) 83035) ((-626 . -800) 83014) ((-626 . -797) 82993) ((-1222 . -618) 82905) ((-223 . -1225) T) ((-680 . -618) 82837) ((-1183 . -651) 82747) ((-1165 . -1018) 82731) ((-949 . -102) 82681) ((-355 . -731) T) ((-866 . -618) 82663) ((-1182 . -651) 82545) ((-1176 . -651) 82382) ((-1134 . -651) 82292) ((-1239 . -405) 82244) ((-1121 . -494) 82228) ((-60 . -312) 82166) ((-334 . -102) T) ((-1219 . -21) T) ((-1219 . -25) T) ((-40 . -1120) T) ((-716 . -21) T) ((-632 . -618) 82148) ((-520 . -326) 82127) ((-716 . -25) T) ((-444 . -102) T) ((-108 . -289) NIL) ((-927 . -1120) T) ((-40 . -23) T) ((-776 . -1120) T) ((-569 . -1229) T) ((-500 . -1229) T) ((-322 . -618) 82109) ((-1012 . -232) 82091) ((-170 . -166) 82075) ((-585 . -561) T) ((-569 . -561) T) ((-500 . -561) T) ((-776 . -23) T) ((-1259 . -147) 82054) ((-1168 . -609) 82030) ((-1259 . -145) 82009) ((-1035 . -494) 81993) ((-1238 . -145) 81918) ((-1238 . -147) 81843) ((-1290 . -1296) 81822) ((-481 . -494) 81806) ((-468 . -494) 81790) ((-528 . -34) T) ((-658 . -722) 81760) ((-112 . -975) T) ((-667 . -855) 81739) ((-1187 . -173) 81690) ((-369 . -102) T) ((-241 . -239) 81669) ((-253 . -102) T) ((-252 . -102) T) ((-1248 . -955) 81638) ((-246 . -855) 81617) ((-821 . -38) 81466) ((-45 . -519) 81258) ((-1167 . -289) 81233) ((-215 . -1108) T) ((-1158 . -1108) T) ((-1158 . -615) 81212) ((-591 . -25) T) ((-591 . -21) T) ((-1110 . -312) 81150) ((-969 . -416) 81134) ((-704 . -1229) T) ((-637 . -289) 81109) ((-1095 . -644) 81057) ((-787 . -644) 81005) ((-785 . -644) 80953) ((-347 . -131) T) ((-292 . -618) 80935) ((-911 . -1108) T) ((-704 . -561) T) ((-129 . -621) 80917) ((-875 . -1120) T) ((-459 . -644) 80865) ((-911 . -909) 80849) ((-383 . -457) T) ((-492 . -1108) T) ((-949 . -312) 80787) ((-706 . -653) 80774) ((-554 . -849) T) ((-218 . -1108) T) ((-319 . -926) 80753) ((-316 . -926) T) ((-316 . -825) NIL) ((-395 . -725) T) ((-875 . -23) T) ((-116 . -653) 80740) ((-479 . -145) 80719) ((-423 . -416) 80703) ((-479 . -147) 80682) ((-110 . -494) 80664) ((-314 . -621) 80645) ((-2 . -618) 80627) ((-187 . -102) T) ((-1167 . -19) 80609) ((-1167 . -609) 80584) ((-663 . -21) T) ((-663 . -25) T) ((-598 . -1152) T) ((-1121 . -289) 80561) ((-340 . -25) T) ((-340 . -21) T) ((-241 . -651) 80311) ((-500 . -367) T) ((-1290 . -38) 80281) ((-1181 . -1059) 80104) ((-1150 . -1225) T) ((-1133 . -1059) 79947) ((-859 . -1059) 79931) ((-637 . -609) 79906) ((-1297 . -1064) 79890) ((-1181 . -645) 79719) ((-1133 . -645) 79568) ((-859 . -645) 79538) ((-1295 . -1064) 79522) ((-1259 . -1210) 79488) ((-554 . -1108) T) ((-1095 . -25) T) ((-1095 . -21) T) ((-536 . -797) T) ((-536 . -800) T) ((-117 . -1229) T) ((-969 . -1066) T) ((-628 . -561) T) ((-787 . -25) T) ((-787 . -21) T) ((-785 . -21) T) ((-785 . -25) T) ((-740 . -1066) T) ((-720 . -1066) T) ((-675 . -1064) 79472) ((-522 . -1091) T) ((-466 . -25) T) ((-117 . -561) T) ((-466 . -21) T) ((-459 . -25) T) ((-459 . -21) T) ((-1259 . -1213) 79438) ((-1159 . -93) T) ((-1150 . -1046) 79334) ((-822 . -293) 79313) ((-1259 . -95) 79279) ((-828 . -1108) T) ((-1242 . -102) 79257) ((-972 . -975) T) ((-675 . -111) 79236) ((-298 . -519) 79028) ((-1239 . -232) 78980) ((-1238 . -1210) 78946) ((-1238 . -1213) 78912) ((-253 . -312) 78850) ((-252 . -312) 78788) ((-1233 . -372) T) ((-1168 . -619) NIL) ((-1168 . -618) 78770) ((-1230 . -849) T) ((-1150 . -381) 78754) ((-1128 . -825) T) ((-96 . -93) T) ((-1128 . -926) T) ((-1121 . -609) 78731) ((-1088 . -619) 78715) ((-1012 . -651) 78665) ((-920 . -651) 78602) ((-820 . -291) 78579) ((-489 . -618) 78511) ((-613 . -151) 78458) ((-492 . -722) 78408) ((-423 . -1066) T) ((-487 . -494) 78392) ((-432 . -651) 78351) ((-330 . -855) 78330) ((-343 . -653) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-218 . -722) 78254) ((-170 . -729) 78225) ((-175 . -653) 78157) ((-586 . -21) T) ((-586 . -25) T) ((-523 . -25) T) ((-523 . -21) T) ((-480 . -151) 78107) ((-1088 . -618) 78089) ((-1069 . -618) 78071) ((-1001 . -102) T) ((-867 . -102) T) ((-804 . -416) 78034) ((-40 . -131) T) ((-704 . -367) T) ((-706 . -731) T) ((-706 . -799) T) ((-706 . -796) T) ((-213 . -901) T) ((-585 . -1120) T) ((-569 . -1120) T) ((-500 . -1120) T) ((-363 . -618) 78016) ((-357 . -618) 77998) ((-349 . -618) 77980) ((-66 . -401) T) ((-66 . -400) T) ((-108 . -619) 77910) ((-108 . -618) 77852) ((-212 . -901) T) ((-964 . -151) 77836) ((-776 . -131) T) ((-675 . -621) 77754) ((-134 . -731) T) ((-116 . -731) T) ((-1259 . -35) 77720) ((-1062 . -494) 77704) ((-585 . -23) T) ((-569 . -23) T) ((-500 . -23) T) ((-1238 . -95) 77670) ((-1238 . -35) 77636) ((-1181 . -102) T) ((-1133 . -102) T) ((-859 . -102) T) ((-228 . -494) 77620) ((-1297 . -111) 77599) ((-1295 . -111) 77578) ((-44 . -1064) 77562) ((-1297 . -621) 77508) ((-1248 . -1251) 77492) ((-860 . -857) 77476) ((-1297 . -1057) T) ((-1187 . -293) 77455) ((-110 . -289) 77430) ((-1295 . -621) 77359) ((-128 . -151) 77341) ((-1150 . -906) 77300) ((-44 . -111) 77279) ((-1230 . -1108) T) ((-1190 . -1270) T) ((-1175 . -495) 77260) ((-1175 . -618) 77226) ((-675 . -1057) T) ((-1167 . -619) NIL) ((-1167 . -618) 77208) ((-1071 . -615) 77183) ((-1071 . -1108) T) ((-1002 . -495) 77164) ((-74 . -446) T) ((-74 . -400) T) ((-1002 . -618) 77130) ((-152 . -1064) 77114) ((-675 . -234) 77093) ((-576 . -559) 77077) ((-359 . -147) 77056) ((-359 . -145) 77007) ((-356 . -147) 76986) ((-356 . -145) 76937) ((-348 . -147) 76916) ((-348 . -145) 76867) ((-266 . -145) 76846) ((-266 . -147) 76825) ((-253 . -38) 76795) ((-248 . -147) 76774) ((-117 . -367) T) ((-248 . -145) 76753) ((-252 . -38) 76723) ((-152 . -111) 76702) ((-1011 . -1046) 76590) ((-1176 . -853) NIL) ((-699 . -1229) T) ((-804 . -1066) T) ((-704 . -1120) T) ((-1295 . -1057) T) ((-1165 . -1225) T) ((-1011 . -381) 76567) ((-916 . -145) T) ((-916 . -147) 76549) ((-875 . -131) T) ((-820 . -1064) 76446) ((-704 . -23) T) ((-699 . -561) T) ((-226 . -1059) 76411) ((-652 . -618) 76343) ((-652 . -619) 76304) ((-637 . -619) NIL) ((-637 . -618) 76286) ((-492 . -173) T) ((-226 . -645) 76251) ((-224 . -21) T) ((-218 . -173) T) ((-224 . -25) T) ((-479 . -1213) 76217) ((-479 . -1210) 76183) ((-276 . -618) 76165) ((-275 . -618) 76147) ((-274 . -618) 76129) ((-273 . -618) 76111) ((-272 . -618) 76093) ((-505 . -656) 76075) ((-271 . -618) 76057) ((-343 . -731) T) ((-270 . -618) 76039) ((-110 . -19) 76021) ((-175 . -731) T) ((-505 . -377) 76003) ((-213 . -618) 75985) ((-525 . -1157) 75969) ((-505 . -123) T) ((-110 . -609) 75944) ((-212 . -618) 75926) ((-479 . -35) 75892) ((-479 . -95) 75858) ((-210 . -618) 75840) ((-209 . -618) 75822) ((-208 . -618) 75804) ((-207 . -618) 75786) ((-204 . -618) 75768) ((-203 . -618) 75750) ((-202 . -618) 75732) ((-201 . -618) 75714) ((-200 . -618) 75696) ((-199 . -618) 75678) ((-198 . -618) 75660) ((-541 . -1111) 75612) ((-197 . -618) 75594) ((-196 . -618) 75576) ((-45 . -494) 75513) ((-195 . -618) 75495) ((-194 . -618) 75477) ((-152 . -621) 75446) ((-1123 . -102) T) ((-820 . -111) 75336) ((-649 . -102) 75286) ((-487 . -289) 75263) ((-1121 . -618) 74994) ((-1109 . -1108) T) ((-1054 . -1225) T) ((-1298 . -1046) 74978) ((-1070 . -1059) 74965) ((-1181 . -312) 74952) ((-958 . -1059) 74795) ((-1143 . -1108) T) ((-1133 . -312) 74782) ((-628 . -1120) T) ((-1070 . -645) 74769) ((-1104 . -1091) T) ((-958 . -645) 74618) ((-1098 . -1091) T) ((-486 . -1059) 74461) ((-1081 . -1091) T) ((-1074 . -1091) T) ((-1044 . -1091) T) ((-1027 . -1091) T) ((-117 . -1120) T) ((-486 . -645) 74310) ((-824 . -102) T) ((-631 . -1091) T) ((-628 . -23) T) ((-1158 . -519) 74102) ((-488 . -1091) T) ((-391 . -102) T) ((-327 . -102) T) ((-219 . -1091) T) ((-969 . -1108) T) ((-152 . -1057) T) ((-736 . -416) 74086) ((-117 . -23) T) ((-1011 . -906) 74038) ((-740 . -1108) T) ((-720 . -1108) T) ((-458 . -1108) T) ((-412 . -1225) T) ((-319 . -435) 74022) ((-597 . -93) T) ((-1267 . -651) 73932) ((-1035 . -619) 73893) ((-1032 . -1229) T) ((-226 . -102) T) ((-1035 . -618) 73855) ((-1260 . -651) 73737) ((-821 . -232) 73721) ((-820 . -621) 73451) ((-1239 . -651) 73288) ((-1032 . -561) T) ((-838 . -653) 73261) ((-358 . -1229) T) ((-481 . -618) 73223) ((-481 . -619) 73184) ((-468 . -619) 73145) ((-468 . -618) 73107) ((-601 . -651) 73066) ((-412 . -890) 73050) ((-322 . -1064) 72885) ((-412 . -892) 72810) ((-600 . -651) 72720) ((-848 . -1046) 72616) ((-492 . -519) NIL) ((-487 . -609) 72593) ((-358 . -561) T) ((-218 . -519) NIL) ((-877 . -457) T) ((-423 . -1108) T) ((-412 . -1046) 72457) ((-322 . -111) 72278) ((-699 . -367) T) ((-226 . -287) T) ((-1222 . -621) 72255) ((-48 . -1229) T) ((-820 . -1057) 72185) ((-1181 . -1160) 72163) ((-585 . -131) T) ((-569 . -131) T) ((-500 . -131) T) ((-1168 . -291) 72139) ((-48 . -561) T) ((-1070 . -102) T) ((-958 . -102) T) ((-876 . -1059) 72084) ((-319 . -27) 72063) ((-820 . -234) 72015) ((-250 . -840) 71997) ((-241 . -853) 71976) ((-188 . -840) 71958) ((-718 . -102) T) ((-298 . -494) 71895) ((-876 . -645) 71840) ((-486 . -102) T) ((-736 . -1066) T) ((-617 . -618) 71822) ((-617 . -619) 71683) ((-412 . -381) 71667) ((-412 . -342) 71651) ((-322 . -621) 71477) ((-1181 . -38) 71306) ((-1133 . -38) 71155) ((-859 . -38) 71125) ((-395 . -653) 71109) ((-649 . -312) 71047) ((-1159 . -495) 71028) ((-1159 . -618) 70994) ((-969 . -722) 70891) ((-740 . -722) 70861) ((-223 . -107) 70845) ((-45 . -289) 70770) ((-626 . -653) 70744) ((-315 . -1108) T) ((-292 . -1064) 70731) ((-110 . -618) 70713) ((-110 . -619) 70695) ((-458 . -722) 70665) ((-821 . -255) 70604) ((-694 . -1108) 70582) ((-555 . -1108) T) ((-1183 . -1066) T) ((-1182 . -1066) T) ((-96 . -495) 70563) ((-1176 . -1066) T) ((-292 . -111) 70548) ((-1134 . -1066) T) ((-555 . -615) 70527) ((-96 . -618) 70493) ((-1012 . -853) T) ((-228 . -692) 70451) ((-699 . -1120) T) ((-1219 . -745) 70427) ((-1032 . -367) T) ((-843 . -840) 70409) ((-838 . -799) 70388) ((-412 . -906) 70347) ((-322 . -1057) T) ((-347 . -25) T) ((-347 . -21) T) ((-170 . -1059) 70257) ((-68 . -1225) T) ((-838 . -796) 70236) ((-423 . -722) 70210) ((-804 . -1108) T) ((-717 . -926) 70189) ((-704 . -131) T) ((-170 . -645) 70017) ((-699 . -23) T) ((-492 . -293) T) ((-838 . -731) 69996) ((-322 . -234) 69948) ((-322 . -244) 69927) ((-218 . -293) T) ((-129 . -372) T) ((-1259 . -457) 69906) ((-1238 . -457) 69885) ((-358 . -332) 69862) ((-358 . -367) T) ((-1148 . -618) 69844) ((-45 . -1263) 69794) ((-876 . -102) T) ((-649 . -285) 69778) ((-704 . -1068) T) ((-1286 . -102) T) ((-1285 . -102) T) ((-482 . -653) 69743) ((-473 . -1108) T) ((-45 . -609) 69668) ((-1167 . -291) 69643) ((-292 . -621) 69615) ((-40 . -644) 69554) ((-1248 . -1059) 69377) ((-860 . -1059) 69361) ((-48 . -367) T) ((-1114 . -618) 69343) ((-1248 . -645) 69172) ((-860 . -645) 69142) ((-637 . -291) 69117) ((-821 . -651) 69027) ((-576 . -1059) 69014) ((-487 . -618) 68745) ((-241 . -416) 68714) ((-958 . -312) 68701) ((-576 . -645) 68688) ((-65 . -1225) T) ((-1071 . -519) 68532) ((-676 . -1108) T) ((-628 . -131) T) ((-486 . -312) 68519) ((-611 . -1108) T) ((-551 . -102) T) ((-117 . -131) T) ((-292 . -1057) T) ((-181 . -1108) T) ((-161 . -1108) T) ((-156 . -1108) T) ((-154 . -1108) T) ((-458 . -766) T) ((-31 . -1091) T) ((-969 . -173) 68470) ((-978 . -93) T) ((-1088 . -1064) 68380) ((-626 . -799) 68359) ((-598 . -1108) T) ((-626 . -796) 68338) ((-626 . -731) T) ((-298 . -289) 68317) ((-297 . -1225) T) ((-1062 . -618) 68279) ((-1062 . -619) 68240) ((-1032 . -1120) T) ((-170 . -102) T) ((-277 . -855) T) ((-1174 . -1108) T) ((-823 . -618) 68222) ((-1121 . -291) 68199) ((-1110 . -230) 68183) ((-1011 . -310) T) ((-804 . -722) 68167) ((-363 . -1064) 68119) ((-358 . -1120) T) ((-357 . -1064) 68071) ((-419 . -618) 68053) ((-389 . -618) 68035) ((-349 . -1064) 67987) ((-228 . -618) 67919) ((-1088 . -111) 67815) ((-1032 . -23) T) ((-108 . -1064) 67765) ((-904 . -102) T) ((-846 . -102) T) ((-813 . -102) T) ((-774 . -102) T) ((-682 . -102) T) ((-479 . -457) 67744) ((-423 . -173) T) ((-363 . -111) 67682) ((-357 . -111) 67620) ((-349 . -111) 67558) ((-253 . -232) 67527) ((-252 . -232) 67496) ((-358 . -23) T) ((-71 . -1225) T) ((-226 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-675 . -725) T) ((-170 . -287) 67373) ((-48 . -1120) T) ((-927 . -25) T) ((-776 . -25) T) ((-1299 . -653) 67347) ((-1158 . -494) 67284) ((-490 . -1108) T) ((-1290 . -651) 67243) ((-1248 . -102) T) ((-1070 . -1160) T) ((-860 . -102) T) ((-241 . -1066) 67173) ((-970 . -797) 67126) ((-970 . -800) 67079) ((-385 . -653) 67063) ((-48 . -23) T) ((-820 . -800) 67014) ((-820 . -797) 66965) ((-553 . -372) T) ((-298 . -609) 66944) ((-482 . -731) T) ((-576 . -102) T) ((-1088 . -621) 66762) ((-250 . -186) T) ((-188 . -186) T) ((-876 . -312) 66719) ((-658 . -289) 66698) ((-112 . -666) T) ((-363 . -621) 66635) ((-357 . -621) 66572) ((-349 . -621) 66509) ((-76 . -1225) T) ((-108 . -621) 66459) ((-1070 . -38) 66446) ((-669 . -378) 66425) ((-958 . -38) 66274) ((-736 . -1108) T) ((-486 . -38) 66123) ((-86 . -1225) T) ((-597 . -495) 66104) ((-576 . -287) T) ((-1239 . -853) NIL) ((-597 . -618) 66070) ((-1183 . -1108) T) ((-1182 . -1108) T) ((-1088 . -1057) T) ((-355 . -1046) 66047) ((-822 . -495) 66031) ((-1012 . -1066) T) ((-45 . -618) 66013) ((-45 . -619) NIL) ((-920 . -1066) T) ((-822 . -618) 65982) ((-1176 . -1108) T) ((-1155 . -102) 65960) ((-1088 . -244) 65911) ((-432 . -1066) T) ((-363 . -1057) T) ((-369 . -368) 65888) ((-357 . -1057) T) ((-349 . -1057) T) ((-253 . -239) 65867) ((-252 . -239) 65846) ((-1088 . -234) 65771) ((-1134 . -1108) T) ((-297 . -906) 65730) ((-108 . -1057) T) ((-699 . -131) T) ((-423 . -519) 65572) ((-363 . -234) 65551) ((-363 . -244) T) ((-44 . -725) T) ((-357 . -234) 65530) ((-357 . -244) T) ((-349 . -234) 65509) ((-349 . -244) T) ((-1175 . -621) 65490) ((-170 . -312) 65455) ((-108 . -244) T) ((-108 . -234) T) ((-1002 . -621) 65436) ((-322 . -797) T) ((-875 . -21) T) ((-875 . -25) T) ((-412 . -310) T) ((-505 . -34) T) ((-110 . -291) 65411) ((-1121 . -1064) 65308) ((-876 . -1160) NIL) ((-333 . -618) 65290) ((-412 . -1030) 65268) ((-1121 . -111) 65158) ((-696 . -1270) T) ((-441 . -1108) T) ((-251 . -1108) T) ((-1299 . -731) T) ((-63 . -618) 65140) ((-876 . -38) 65085) ((-528 . -1225) T) ((-607 . -151) 65069) ((-517 . -618) 65051) ((-1248 . -312) 65038) ((-736 . -722) 64887) ((-536 . -798) T) ((-536 . -799) T) ((-569 . -644) 64869) ((-500 . -644) 64829) ((-359 . -457) T) ((-356 . -457) T) ((-348 . -457) T) ((-266 . -457) 64780) ((-530 . -1108) T) ((-525 . -1108) 64730) ((-248 . -457) 64681) ((-1158 . -289) 64660) ((-1187 . -618) 64642) ((-694 . -519) 64575) ((-969 . -293) 64554) ((-555 . -519) 64346) ((-253 . -651) 64166) ((-252 . -651) 63973) ((-1287 . -618) 63942) ((-1181 . -232) 63926) ((-1121 . -621) 63656) ((-170 . -1160) 63635) ((-1287 . -495) 63619) ((-1183 . -722) 63516) ((-1182 . -722) 63357) ((-898 . -102) T) ((-1176 . -722) 63153) ((-1134 . -722) 63050) ((-1165 . -679) 63034) ((-359 . -407) 62985) ((-356 . -407) 62936) ((-348 . -407) 62887) ((-1032 . -131) T) ((-804 . -519) 62799) ((-298 . -619) NIL) ((-298 . -618) 62781) ((-916 . -457) T) ((-970 . -372) 62734) ((-820 . -372) 62713) ((-515 . -514) 62692) ((-513 . -514) 62671) ((-492 . -289) NIL) ((-487 . -291) 62648) ((-423 . -293) T) ((-358 . -131) T) ((-218 . -289) NIL) ((-699 . -498) NIL) ((-99 . -1120) T) ((-170 . -38) 62476) ((-1259 . -981) 62438) ((-1155 . -312) 62376) ((-1238 . -981) 62345) ((-916 . -407) T) ((-1121 . -1057) 62275) ((-1261 . -561) T) ((-1158 . -609) 62254) ((-112 . -855) T) ((-1071 . -494) 62185) ((-585 . -21) T) ((-585 . -25) T) ((-569 . -21) T) ((-569 . -25) T) ((-500 . -25) T) ((-500 . -21) T) ((-1248 . -1160) 62163) ((-1121 . -234) 62115) ((-48 . -131) T) ((-1206 . -102) T) ((-241 . -1108) 61905) ((-876 . -405) 61882) ((-1096 . -102) T) ((-1084 . -102) T) ((-613 . -102) T) ((-480 . -102) T) ((-1248 . -38) 61711) ((-860 . -38) 61681) ((-1042 . -1059) 61655) ((-736 . -173) 61566) ((-658 . -618) 61548) ((-650 . -1091) T) ((-1042 . -645) 61532) ((-576 . -38) 61519) ((-978 . -495) 61500) ((-978 . -618) 61466) ((-964 . -102) 61416) ((-869 . -618) 61398) ((-869 . -619) 61320) ((-598 . -519) NIL) ((-1267 . -1066) T) ((-1260 . -1066) T) ((-325 . -1059) 61302) ((-1239 . -1066) T) ((-1303 . -1120) T) ((-1219 . -147) 61281) ((-325 . -645) 61263) ((-1219 . -145) 61242) ((-1193 . -102) T) ((-1192 . -102) T) ((-1191 . -102) T) ((-1183 . -173) 61193) ((-601 . -1066) T) ((-600 . -1066) T) ((-1182 . -173) 61124) ((-1176 . -173) 61055) ((-383 . -1059) 61020) ((-1159 . -621) 61001) ((-1134 . -173) 60952) ((-1012 . -1108) T) ((-979 . -1108) T) ((-920 . -1108) T) ((-383 . -645) 60917) ((-804 . -802) 60901) ((-704 . -25) T) ((-704 . -21) T) ((-117 . -644) 60878) ((-706 . -892) 60860) ((-432 . -1108) T) ((-319 . -1229) 60839) ((-316 . -1229) T) ((-170 . -405) 60823) ((-841 . -1059) 60793) ((-479 . -981) 60755) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -618) 60737) ((-832 . -1059) 60721) ((-108 . -800) T) ((-108 . -797) T) ((-706 . -1046) 60703) ((-319 . -561) 60682) ((-316 . -561) T) ((-841 . -645) 60652) ((-832 . -645) 60622) ((-1303 . -23) T) ((-134 . -1046) 60604) ((-96 . -621) 60585) ((-1001 . -651) 60567) ((-487 . -1064) 60464) ((-45 . -291) 60389) ((-241 . -722) 60331) ((-522 . -102) T) ((-487 . -111) 60221) ((-1100 . -102) 60191) ((-1042 . -102) T) ((-1181 . -651) 60101) ((-1133 . -651) 60011) ((-859 . -651) 59970) ((-649 . -833) 59949) ((-736 . -519) 59892) ((-1062 . -1064) 59876) ((-1143 . -93) T) ((-1071 . -289) 59851) ((-628 . -21) T) ((-628 . -25) T) ((-529 . -1108) T) ((-675 . -653) 59825) ((-365 . -102) T) ((-325 . -102) T) ((-389 . -1064) 59809) ((-1062 . -111) 59788) ((-821 . -416) 59772) ((-117 . -25) T) ((-89 . -618) 59754) ((-117 . -21) T) ((-613 . -312) 59549) ((-480 . -312) 59353) ((-1158 . -619) NIL) ((-389 . -111) 59332) ((-383 . -102) T) ((-215 . -618) 59314) ((-1158 . -618) 59296) ((-1176 . -519) 59065) ((-1012 . -722) 59015) ((-1134 . -519) 58985) ((-920 . -722) 58937) ((-487 . -621) 58667) ((-355 . -310) T) ((-1198 . -151) 58617) ((-964 . -312) 58555) ((-841 . -102) T) ((-432 . -722) 58539) ((-226 . -833) T) ((-832 . -102) T) ((-830 . -102) T) ((-484 . -151) 58489) ((-1259 . -1258) 58468) ((-1128 . -1229) T) ((-343 . -1046) 58435) ((-1259 . -1253) 58405) ((-1259 . -1256) 58389) ((-1238 . -1237) 58368) ((-80 . -618) 58350) ((-911 . -618) 58332) ((-1238 . -1253) 58309) ((-1128 . -561) T) ((-927 . -855) T) ((-776 . -855) T) ((-677 . -855) T) ((-492 . -619) 58239) ((-492 . -618) 58180) ((-383 . -287) T) ((-1238 . -1235) 58164) ((-1261 . -1120) T) ((-218 . -619) 58094) ((-218 . -618) 58035) ((-1297 . -653) 58009) ((-1071 . -609) 57984) ((-823 . -621) 57968) ((-59 . -151) 57952) ((-521 . -151) 57936) ((-501 . -151) 57920) ((-363 . -1294) 57904) ((-357 . -1294) 57888) ((-349 . -1294) 57872) ((-319 . -367) 57851) ((-316 . -367) T) ((-487 . -1057) 57781) ((-699 . -644) 57763) ((-1295 . -653) 57737) ((-128 . -312) NIL) ((-1261 . -23) T) ((-694 . -494) 57721) ((-64 . -618) 57703) ((-1121 . -800) 57654) ((-1121 . -797) 57605) ((-555 . -494) 57542) ((-675 . -34) T) ((-487 . -234) 57494) ((-298 . -291) 57473) ((-241 . -173) 57452) ((-821 . -1066) T) ((-44 . -653) 57410) ((-1088 . -372) 57361) ((-1095 . -145) 57340) ((-736 . -293) 57271) ((-525 . -519) 57204) ((-822 . -1064) 57155) ((-1095 . -147) 57134) ((-554 . -618) 57116) ((-363 . -372) 57095) ((-357 . -372) 57074) ((-349 . -372) 57053) ((-974 . -1225) T) ((-876 . -232) 57030) ((-822 . -111) 56972) ((-787 . -145) 56951) ((-787 . -147) 56930) ((-266 . -955) 56897) ((-253 . -853) 56876) ((-248 . -955) 56821) ((-252 . -853) 56800) ((-785 . -145) 56779) ((-785 . -147) 56758) ((-152 . -653) 56732) ((-584 . -1108) T) ((-459 . -147) 56711) ((-459 . -145) 56690) ((-675 . -731) T) ((-828 . -618) 56672) ((-1267 . -1108) T) ((-1260 . -1108) T) ((-1239 . -1108) T) ((-1219 . -1213) 56638) ((-1219 . -1210) 56604) ((-1183 . -293) 56583) ((-1182 . -293) 56534) ((-1176 . -293) 56485) ((-1134 . -293) 56464) ((-343 . -906) 56445) ((-1012 . -173) T) ((-920 . -173) T) ((-699 . -21) T) ((-699 . -25) T) ((-226 . -651) 56395) ((-601 . -1108) T) ((-600 . -1108) T) ((-479 . -1256) 56379) ((-479 . -1253) 56349) ((-423 . -289) 56277) ((-552 . -855) T) ((-319 . -1120) 56126) ((-316 . -1120) T) ((-1219 . -35) 56092) ((-1219 . -95) 56058) ((-84 . -618) 56040) ((-91 . -102) 56018) ((-1303 . -131) T) ((-719 . -1059) 55988) ((-597 . -621) 55969) ((-586 . -145) T) ((-586 . -147) 55951) ((-523 . -147) 55933) ((-523 . -145) T) ((-719 . -645) 55903) ((-319 . -23) 55755) ((-40 . -346) 55729) ((-316 . -23) T) ((-822 . -621) 55643) ((-1167 . -656) 55625) ((-1290 . -1066) T) ((-1167 . -377) 55607) ((-820 . -653) 55455) ((-1104 . -102) T) ((-1098 . -102) T) ((-1081 . -102) T) ((-170 . -232) 55439) ((-1074 . -102) T) ((-1044 . -102) T) ((-1027 . -102) T) ((-598 . -494) 55421) ((-631 . -102) T) ((-241 . -519) 55354) ((-488 . -102) T) ((-1297 . -731) T) ((-1295 . -731) T) ((-219 . -102) T) ((-1187 . -1064) 55237) ((-1070 . -651) 55209) ((-958 . -651) 55119) ((-1187 . -111) 54988) ((-881 . -1091) T) ((-486 . -651) 54898) ((-866 . -174) T) ((-822 . -1057) T) ((-686 . -1091) T) ((-681 . -1091) T) ((-520 . -102) T) ((-515 . -102) T) ((-48 . -644) 54858) ((-513 . -102) T) ((-483 . -1091) T) ((-1287 . -1064) 54828) ((-138 . -1091) T) ((-137 . -1091) T) ((-133 . -1091) T) ((-1042 . -38) 54812) ((-822 . -234) T) ((-822 . -244) 54791) ((-1287 . -111) 54756) ((-1267 . -722) 54653) ((-1260 . -722) 54494) ((-555 . -289) 54473) ((-1248 . -232) 54457) ((-1230 . -618) 54439) ((-611 . -93) T) ((-1071 . -619) NIL) ((-1071 . -618) 54421) ((-676 . -93) T) ((-181 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1239 . -722) 54217) ((-1011 . -926) T) ((-152 . -731) T) ((-1187 . -621) 54070) ((-1121 . -372) 54049) ((-1032 . -25) T) ((-1012 . -519) NIL) ((-253 . -416) 54018) ((-252 . -416) 53987) ((-1032 . -21) T) ((-877 . -1059) 53939) ((-601 . -722) 53912) ((-600 . -722) 53809) ((-804 . -289) 53767) ((-126 . -102) 53745) ((-838 . -1046) 53641) ((-170 . -833) 53620) ((-322 . -653) 53517) ((-820 . -34) T) ((-719 . -102) T) ((-1128 . -1120) T) ((-1034 . -1225) T) ((-877 . -645) 53469) ((-383 . -38) 53434) ((-358 . -25) T) ((-358 . -21) T) ((-188 . -102) T) ((-162 . -102) T) ((-250 . -102) T) ((-157 . -102) T) ((-359 . -1282) 53418) ((-356 . -1282) 53402) ((-348 . -1282) 53386) ((-170 . -353) 53365) ((-569 . -855) T) ((-1128 . -23) T) ((-87 . -618) 53347) ((-706 . -310) T) ((-841 . -38) 53317) ((-832 . -38) 53287) ((-1287 . -621) 53229) ((-1261 . -131) T) ((-1158 . -291) 53208) ((-970 . -731) 53107) ((-970 . -798) 53060) ((-970 . -799) 53013) ((-820 . -796) 52992) ((-116 . -310) T) ((-91 . -312) 52930) ((-680 . -34) T) ((-555 . -609) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-820 . -799) 52860) ((-820 . -798) 52839) ((-706 . -1030) T) ((-658 . -1064) 52823) ((-876 . -651) 52753) ((-820 . -731) 52663) ((-970 . -478) 52616) ((-487 . -800) 52567) ((-487 . -797) 52518) ((-916 . -1282) 52505) ((-1187 . -1057) T) ((-658 . -111) 52484) ((-1187 . -329) 52461) ((-1211 . -102) 52439) ((-1109 . -618) 52421) ((-706 . -550) T) ((-821 . -1108) T) ((-1287 . -1057) T) ((-1143 . -495) 52402) ((-1231 . -102) T) ((-418 . -1108) T) ((-1143 . -618) 52368) ((-253 . -1066) 52298) ((-252 . -1066) 52228) ((-843 . -102) T) ((-292 . -653) 52215) ((-598 . -289) 52190) ((-694 . -692) 52148) ((-969 . -618) 52130) ((-877 . -102) T) ((-740 . -618) 52112) ((-720 . -618) 52094) ((-1267 . -173) 52045) ((-1260 . -173) 51976) ((-1239 . -173) 51907) ((-704 . -855) T) ((-1012 . -293) T) ((-458 . -618) 51889) ((-632 . -731) T) ((-60 . -1108) 51867) ((-246 . -151) 51851) ((-920 . -293) T) ((-1032 . -1020) T) ((-632 . -478) T) ((-717 . -1229) 51830) ((-658 . -621) 51748) ((-170 . -651) 51643) ((-1275 . -855) 51622) ((-601 . -173) 51601) ((-600 . -173) 51552) ((-1259 . -645) 51393) ((-1259 . -1059) 51228) ((-1238 . -645) 51042) ((-1238 . -1059) 50850) ((-717 . -561) 50761) ((-412 . -926) T) ((-412 . -825) 50740) ((-322 . -799) T) ((-978 . -621) 50721) ((-322 . -731) T) ((-423 . -618) 50703) ((-423 . -619) 50610) ((-649 . -1157) 50594) ((-110 . -656) 50576) ((-175 . -310) T) ((-126 . -312) 50514) ((-110 . -377) 50496) ((-403 . -1225) T) ((-319 . -131) 50367) ((-316 . -131) T) ((-69 . -400) T) ((-110 . -123) T) ((-525 . -494) 50351) ((-659 . -1120) T) ((-598 . -19) 50333) ((-61 . -446) T) ((-61 . -400) T) ((-829 . -1108) T) ((-598 . -609) 50308) ((-482 . -1046) 50268) ((-658 . -1057) T) ((-659 . -23) T) ((-1290 . -1108) T) ((-31 . -102) T) ((-1248 . -651) 50178) ((-860 . -651) 50137) ((-821 . -722) 49986) ((-582 . -865) T) ((-576 . -651) 49958) ((-117 . -855) NIL) ((-1181 . -416) 49942) ((-1133 . -416) 49926) ((-859 . -416) 49910) ((-878 . -102) 49861) ((-1259 . -102) T) ((-1239 . -519) 49630) ((-1238 . -102) T) ((-1211 . -312) 49568) ((-1183 . -289) 49553) ((-1182 . -289) 49538) ((-530 . -93) T) ((-1176 . -289) 49386) ((-315 . -618) 49368) ((-1110 . -1108) T) ((-1088 . -653) 49278) ((-716 . -457) T) ((-694 . -618) 49210) ((-292 . -731) T) ((-108 . -915) NIL) ((-694 . -619) 49171) ((-606 . -618) 49153) ((-582 . -618) 49135) ((-555 . -619) NIL) ((-555 . -618) 49117) ((-534 . -618) 49099) ((-516 . -514) 49078) ((-492 . -1064) 49028) ((-479 . -1059) 48863) ((-512 . -514) 48842) ((-479 . -645) 48683) ((-218 . -1064) 48633) ((-363 . -653) 48585) ((-357 . -653) 48537) ((-226 . -853) T) ((-349 . -653) 48489) ((-607 . -102) 48439) ((-487 . -372) 48418) ((-108 . -653) 48368) ((-492 . -111) 48302) ((-241 . -494) 48286) ((-347 . -147) 48268) ((-347 . -145) T) ((-170 . -374) 48239) ((-949 . -1273) 48223) ((-218 . -111) 48157) ((-877 . -312) 48122) ((-949 . -1108) 48072) ((-804 . -619) 48033) ((-804 . -618) 48015) ((-723 . -102) T) ((-334 . -1108) T) ((-215 . -621) 47992) ((-1128 . -131) T) ((-719 . -38) 47962) ((-319 . -498) 47941) ((-505 . -1225) T) ((-1259 . -287) 47907) ((-1238 . -287) 47873) ((-330 . -151) 47857) ((-444 . -1108) T) ((-1071 . -291) 47832) ((-1290 . -722) 47802) ((-1168 . -34) T) ((-1299 . -1046) 47779) ((-473 . -618) 47761) ((-489 . -34) T) ((-385 . -1046) 47745) ((-1181 . -1066) T) ((-1133 . -1066) T) ((-859 . -1066) T) ((-1070 . -853) T) ((-492 . -621) 47695) ((-218 . -621) 47645) ((-821 . -173) 47556) ((-525 . -289) 47533) ((-1267 . -293) 47512) ((-1206 . -368) 47486) ((-1096 . -268) 47470) ((-676 . -495) 47451) ((-676 . -618) 47417) ((-611 . -495) 47398) ((-117 . -1000) 47375) ((-611 . -618) 47325) ((-479 . -102) T) ((-181 . -495) 47306) ((-181 . -618) 47272) ((-161 . -495) 47253) ((-156 . -495) 47234) ((-154 . -495) 47215) ((-161 . -618) 47181) ((-156 . -618) 47147) ((-369 . -1108) T) ((-253 . -1108) T) ((-252 . -1108) T) ((-154 . -618) 47113) ((-1260 . -293) 47064) ((-1239 . -293) 47015) ((-877 . -1160) 46993) ((-1183 . -1010) 46959) ((-613 . -368) 46899) ((-1182 . -1010) 46865) ((-613 . -230) 46812) ((-699 . -855) T) ((-598 . -618) 46794) ((-598 . -619) NIL) ((-480 . -230) 46744) ((-492 . -1057) T) ((-1176 . -1010) 46710) ((-88 . -445) T) ((-88 . -400) T) ((-218 . -1057) T) ((-1134 . -1010) 46676) ((-1088 . -731) T) ((-717 . -1120) T) ((-601 . -293) 46655) ((-600 . -293) 46634) ((-492 . -244) T) ((-492 . -234) T) ((-218 . -244) T) ((-218 . -234) T) ((-1174 . -618) 46616) ((-877 . -38) 46568) ((-363 . -731) T) ((-357 . -731) T) ((-349 . -731) T) ((-108 . -799) T) ((-108 . -796) T) ((-717 . -23) T) ((-108 . -731) T) ((-525 . -1263) 46552) ((-1303 . -25) T) ((-479 . -287) 46518) ((-1303 . -21) T) ((-1238 . -312) 46457) ((-1185 . -102) T) ((-40 . -145) 46429) ((-40 . -147) 46401) ((-525 . -609) 46378) ((-1121 . -653) 46226) ((-607 . -312) 46164) ((-45 . -656) 46114) ((-45 . -671) 46064) ((-45 . -377) 46014) ((-1167 . -34) T) ((-876 . -853) NIL) ((-659 . -131) T) ((-490 . -618) 45996) ((-241 . -289) 45973) ((-187 . -1108) T) ((-1095 . -457) 45924) ((-821 . -519) 45798) ((-669 . -1059) 45782) ((-652 . -34) T) ((-637 . -34) T) ((-787 . -457) 45713) ((-669 . -645) 45697) ((-359 . -1059) 45649) ((-356 . -1059) 45601) ((-348 . -1059) 45553) ((-266 . -1059) 45396) ((-248 . -1059) 45239) ((-785 . -457) 45190) ((-359 . -645) 45142) ((-356 . -645) 45094) ((-348 . -645) 45046) ((-266 . -645) 44895) ((-248 . -645) 44744) ((-459 . -457) 44695) ((-958 . -416) 44679) ((-736 . -618) 44661) ((-253 . -722) 44603) ((-252 . -722) 44545) ((-736 . -619) 44406) ((-486 . -416) 44390) ((-343 . -305) T) ((-529 . -93) T) ((-355 . -926) T) ((-1008 . -102) 44368) ((-916 . -1059) 44333) ((-1032 . -855) T) ((-60 . -519) 44266) ((-916 . -645) 44231) ((-1238 . -1160) 44183) ((-1012 . -289) NIL) ((-226 . -1066) T) ((-383 . -833) T) ((-1121 . -34) T) ((-586 . -457) T) ((-523 . -457) T) ((-1242 . -1101) 44167) ((-1242 . -1108) 44145) ((-241 . -609) 44122) ((-1242 . -1103) 44079) ((-1183 . -618) 44061) ((-1182 . -618) 44043) ((-1176 . -618) 44025) ((-1176 . -619) NIL) ((-1134 . -618) 44007) ((-877 . -405) 43991) ((-602 . -102) T) ((-590 . -102) T) ((-541 . -102) T) ((-1259 . -38) 43832) ((-1238 . -38) 43646) ((-875 . -147) T) ((-586 . -407) T) ((-523 . -407) T) ((-1271 . -102) T) ((-1261 . -21) T) ((-1261 . -25) T) ((-1121 . -796) 43625) ((-1121 . -799) 43576) ((-1121 . -798) 43555) ((-1001 . -1108) T) ((-1035 . -34) T) ((-867 . -1108) T) ((-1121 . -731) 43465) ((-669 . -102) T) ((-650 . -102) T) ((-555 . -291) 43444) ((-1198 . -102) T) ((-481 . -34) T) ((-468 . -34) T) ((-359 . -102) T) ((-356 . -102) T) ((-348 . -102) T) ((-266 . -102) T) ((-248 . -102) T) ((-482 . -310) T) ((-1070 . -1066) T) ((-958 . -1066) T) ((-319 . -644) 43350) ((-316 . -644) 43311) ((-1181 . -1108) T) ((-486 . -1066) T) ((-484 . -102) T) ((-441 . -618) 43293) ((-1133 . -1108) T) ((-251 . -618) 43275) ((-859 . -1108) T) ((-1149 . -102) T) ((-821 . -293) 43206) ((-969 . -1064) 43089) ((-482 . -1030) T) ((-740 . -1064) 43059) ((-1042 . -651) 43018) ((-458 . -1064) 42988) ((-1155 . -1129) 42972) ((-1110 . -519) 42905) ((-969 . -111) 42774) ((-916 . -102) T) ((-740 . -111) 42739) ((-530 . -495) 42720) ((-530 . -618) 42686) ((-59 . -102) 42636) ((-525 . -619) 42597) ((-525 . -618) 42509) ((-524 . -102) 42487) ((-521 . -102) 42437) ((-502 . -102) 42415) ((-501 . -102) 42365) ((-458 . -111) 42328) ((-253 . -173) 42307) ((-252 . -173) 42286) ((-325 . -651) 42268) ((-423 . -1064) 42242) ((-1219 . -981) 42204) ((-1007 . -1120) T) ((-383 . -651) 42154) ((-1143 . -621) 42135) ((-949 . -519) 42068) ((-492 . -800) T) ((-479 . -38) 41909) ((-423 . -111) 41876) ((-492 . -797) T) ((-1008 . -312) 41814) ((-218 . -800) T) ((-218 . -797) T) ((-1007 . -23) T) ((-717 . -131) T) ((-1238 . -405) 41784) ((-841 . -651) 41729) ((-832 . -651) 41688) ((-319 . -25) 41540) ((-170 . -416) 41524) ((-319 . -21) 41395) ((-316 . -25) T) ((-316 . -21) T) ((-869 . -372) T) ((-969 . -621) 41248) ((-110 . -34) T) ((-740 . -621) 41204) ((-720 . -621) 41186) ((-487 . -653) 41034) ((-876 . -1066) T) ((-598 . -291) 41009) ((-585 . -147) T) ((-569 . -147) T) ((-500 . -147) T) ((-1181 . -722) 40838) ((-1065 . -102) 40816) ((-1133 . -722) 40665) ((-1128 . -644) 40647) ((-859 . -722) 40617) ((-675 . -1225) T) ((-1 . -102) T) ((-423 . -621) 40525) ((-241 . -618) 40256) ((-1123 . -1108) T) ((-1248 . -416) 40240) ((-1198 . -312) 40044) ((-969 . -1057) T) ((-740 . -1057) T) ((-720 . -1057) T) ((-649 . -1108) 39994) ((-1062 . -653) 39978) ((-860 . -416) 39962) ((-516 . -102) T) ((-512 . -102) T) ((-266 . -312) 39949) ((-248 . -312) 39936) ((-969 . -329) 39915) ((-389 . -653) 39899) ((-675 . -1046) 39795) ((-484 . -312) 39599) ((-253 . -519) 39532) ((-252 . -519) 39465) ((-1149 . -312) 39391) ((-824 . -1108) T) ((-804 . -1064) 39375) ((-1267 . -289) 39360) ((-1260 . -289) 39345) ((-1239 . -289) 39193) ((-391 . -1108) T) ((-327 . -1108) T) ((-423 . -1057) T) ((-170 . -1066) T) ((-59 . -312) 39131) ((-804 . -111) 39110) ((-600 . -289) 39095) ((-524 . -312) 39033) ((-521 . -312) 38971) ((-502 . -312) 38909) ((-501 . -312) 38847) ((-423 . -234) 38826) ((-487 . -34) T) ((-1012 . -619) 38756) ((-226 . -1108) T) ((-1012 . -618) 38716) ((-979 . -618) 38676) ((-979 . -619) 38651) ((-920 . -618) 38633) ((-704 . -147) T) ((-706 . -926) T) ((-706 . -825) T) ((-432 . -618) 38615) ((-1128 . -21) T) ((-1128 . -25) T) ((-675 . -381) 38599) ((-116 . -926) T) ((-877 . -232) 38583) ((-78 . -1225) T) ((-126 . -125) 38567) ((-1062 . -34) T) ((-1297 . -1046) 38541) ((-1295 . -1046) 38498) ((-1248 . -1066) T) ((-860 . -1066) T) ((-487 . -796) 38477) ((-359 . -1160) 38456) ((-356 . -1160) 38435) ((-348 . -1160) 38414) ((-487 . -799) 38365) ((-487 . -798) 38344) ((-228 . -34) T) ((-487 . -731) 38254) ((-804 . -621) 38100) ((-667 . -1059) 38084) ((-60 . -494) 38068) ((-576 . -1066) T) ((-667 . -645) 38052) ((-1181 . -173) 37943) ((-1133 . -173) 37854) ((-1070 . -1108) T) ((-1095 . -955) 37799) ((-958 . -1108) T) ((-822 . -653) 37750) ((-787 . -955) 37719) ((-718 . -1108) T) ((-785 . -955) 37686) ((-521 . -285) 37670) ((-675 . -906) 37629) ((-486 . -1108) T) ((-459 . -955) 37596) ((-79 . -1225) T) ((-359 . -38) 37561) ((-356 . -38) 37526) ((-348 . -38) 37491) ((-266 . -38) 37340) ((-248 . -38) 37189) ((-916 . -1160) T) ((-529 . -495) 37170) ((-628 . -147) 37149) ((-628 . -145) 37128) ((-529 . -618) 37094) ((-117 . -147) T) ((-117 . -145) NIL) ((-419 . -731) T) ((-804 . -1057) T) ((-347 . -457) T) ((-1267 . -1010) 37060) ((-1260 . -1010) 37026) ((-1239 . -1010) 36992) ((-916 . -38) 36957) ((-226 . -722) 36922) ((-322 . -47) 36892) ((-40 . -414) 36864) ((-140 . -618) 36846) ((-1007 . -131) T) ((-820 . -1225) T) ((-175 . -926) T) ((-554 . -372) T) ((-611 . -621) 36827) ((-347 . -407) T) ((-719 . -651) 36772) ((-676 . -621) 36753) ((-181 . -621) 36734) ((-161 . -621) 36715) ((-156 . -621) 36696) ((-154 . -621) 36677) ((-525 . -291) 36654) ((-1238 . -232) 36624) ((-881 . -102) T) ((-820 . -1046) 36451) ((-45 . -34) T) ((-686 . -102) T) ((-681 . -102) T) ((-667 . -102) T) ((-659 . -21) T) ((-659 . -25) T) ((-1110 . -494) 36435) ((-680 . -1225) T) ((-483 . -102) T) ((-246 . -102) 36385) ((-551 . -849) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-876 . -1108) T) ((-1187 . -653) 36310) ((-1070 . -722) 36297) ((-736 . -1064) 36140) ((-1181 . -519) 36087) ((-958 . -722) 35936) ((-1133 . -519) 35888) ((-1286 . -1108) T) ((-1285 . -1108) T) ((-486 . -722) 35737) ((-67 . -618) 35719) ((-736 . -111) 35548) ((-949 . -494) 35532) ((-1287 . -653) 35492) ((-822 . -731) T) ((-1183 . -1064) 35375) ((-1182 . -1064) 35210) ((-1176 . -1064) 35000) ((-1134 . -1064) 34883) ((-1011 . -1229) T) ((-1102 . -102) 34861) ((-820 . -381) 34830) ((-584 . -618) 34812) ((-551 . -1108) T) ((-1011 . -561) T) ((-1183 . -111) 34681) ((-1182 . -111) 34502) ((-1176 . -111) 34271) ((-1134 . -111) 34140) ((-1113 . -1111) 34104) ((-383 . -853) T) ((-1267 . -618) 34086) ((-1260 . -618) 34068) ((-877 . -651) 34005) ((-1239 . -618) 33987) ((-1239 . -619) NIL) ((-241 . -291) 33964) ((-40 . -457) T) ((-226 . -173) T) ((-170 . -1108) T) ((-736 . -621) 33749) ((-699 . -147) T) ((-699 . -145) NIL) ((-601 . -618) 33731) ((-600 . -618) 33713) ((-904 . -1108) T) ((-846 . -1108) T) ((-813 . -1108) T) ((-774 . -1108) T) ((-663 . -857) 33697) ((-682 . -1108) T) ((-820 . -906) 33629) ((-1230 . -372) T) ((-40 . -407) NIL) ((-1183 . -621) 33511) ((-1128 . -666) T) ((-876 . -722) 33456) ((-253 . -494) 33440) ((-252 . -494) 33424) ((-1182 . -621) 33167) ((-1176 . -621) 32962) ((-717 . -644) 32910) ((-658 . -653) 32884) ((-1134 . -621) 32766) ((-298 . -34) T) ((-736 . -1057) T) ((-586 . -1282) 32753) ((-523 . -1282) 32730) ((-1248 . -1108) T) ((-1181 . -293) 32641) ((-1133 . -293) 32572) ((-1070 . -173) T) ((-860 . -1108) T) ((-958 . -173) 32483) ((-787 . -1251) 32467) ((-649 . -519) 32400) ((-77 . -618) 32382) ((-736 . -329) 32347) ((-1187 . -731) T) ((-576 . -1108) T) ((-486 . -173) 32258) ((-246 . -312) 32196) ((-1150 . -1120) T) ((-70 . -618) 32178) ((-1287 . -731) T) ((-1183 . -1057) T) ((-1182 . -1057) T) ((-330 . -102) 32128) ((-1176 . -1057) T) ((-1150 . -23) T) ((-1134 . -1057) T) ((-91 . -1129) 32112) ((-871 . -1120) T) ((-1183 . -234) 32071) ((-1182 . -244) 32050) ((-1182 . -234) 32002) ((-1176 . -234) 31889) ((-1176 . -244) 31868) ((-322 . -906) 31774) ((-871 . -23) T) ((-170 . -722) 31602) ((-412 . -1229) T) ((-1109 . -372) T) ((-1011 . -367) T) ((-875 . -457) T) ((-1032 . -147) T) ((-949 . -289) 31579) ((-316 . -855) NIL) ((-1259 . -651) 31461) ((-879 . -102) T) ((-1238 . -651) 31316) ((-717 . -25) T) ((-412 . -561) T) ((-717 . -21) T) ((-530 . -621) 31297) ((-358 . -147) 31279) ((-358 . -145) T) ((-1155 . -1108) 31257) ((-458 . -725) T) ((-75 . -618) 31239) ((-114 . -855) T) ((-246 . -285) 31223) ((-241 . -1064) 31120) ((-81 . -618) 31102) ((-740 . -372) 31055) ((-1185 . -833) T) ((-742 . -236) 31039) ((-1168 . -1225) T) ((-141 . -236) 31021) ((-241 . -111) 30911) ((-1248 . -722) 30740) ((-48 . -147) T) ((-876 . -173) T) ((-860 . -722) 30710) ((-489 . -1225) T) ((-958 . -519) 30657) ((-658 . -731) T) ((-576 . -722) 30644) ((-1042 . -1066) T) ((-486 . -519) 30587) ((-949 . -19) 30571) ((-949 . -609) 30548) ((-821 . -619) NIL) ((-821 . -618) 30530) ((-1219 . -1059) 30413) ((-1012 . -1064) 30363) ((-418 . -618) 30345) ((-253 . -289) 30322) ((-252 . -289) 30299) ((-492 . -915) NIL) ((-319 . -29) 30269) ((-108 . -1225) T) ((-1011 . -1120) T) ((-218 . -915) NIL) ((-1219 . -645) 30166) ((-920 . -1064) 30118) ((-1088 . -1046) 30014) ((-1012 . -111) 29948) ((-716 . -1059) 29913) ((-1011 . -23) T) ((-920 . -111) 29851) ((-742 . -700) 29835) ((-716 . -645) 29800) ((-266 . -232) 29784) ((-432 . -1064) 29768) ((-383 . -1066) T) ((-241 . -621) 29498) ((-699 . -1213) NIL) ((-492 . -653) 29448) ((-479 . -651) 29330) ((-108 . -890) 29312) ((-108 . -892) 29294) ((-699 . -1210) NIL) ((-218 . -653) 29244) ((-363 . -1046) 29228) ((-357 . -1046) 29212) ((-330 . -312) 29150) ((-349 . -1046) 29134) ((-226 . -293) T) ((-432 . -111) 29113) ((-60 . -618) 29045) ((-170 . -173) T) ((-1128 . -855) T) ((-108 . -1046) 29005) ((-898 . -1108) T) ((-841 . -1066) T) ((-832 . -1066) T) ((-699 . -35) NIL) ((-699 . -95) NIL) ((-316 . -1000) 28966) ((-184 . -102) T) ((-585 . -457) T) ((-569 . -457) T) ((-500 . -457) T) ((-412 . -367) T) ((-241 . -1057) 28896) ((-1158 . -34) T) ((-482 . -926) T) ((-1007 . -644) 28844) ((-253 . -609) 28821) ((-252 . -609) 28798) ((-1088 . -381) 28782) ((-876 . -519) 28690) ((-241 . -234) 28642) ((-1167 . -1225) T) ((-1012 . -621) 28592) ((-920 . -621) 28529) ((-829 . -618) 28511) ((-1298 . -1120) T) ((-1290 . -618) 28493) ((-1248 . -173) 28384) ((-432 . -621) 28353) ((-108 . -381) 28335) ((-108 . -342) 28317) ((-1070 . -293) T) ((-958 . -293) 28248) ((-804 . -372) 28227) ((-652 . -1225) T) ((-637 . -1225) T) ((-591 . -1059) 28202) ((-486 . -293) 28133) ((-576 . -173) T) ((-330 . -285) 28117) ((-1298 . -23) T) ((-1219 . -102) T) ((-1206 . -1108) T) ((-1096 . -1108) T) ((-1084 . -1108) T) ((-591 . -645) 28092) ((-83 . -618) 28074) ((-1192 . -849) T) ((-1191 . -849) T) ((-716 . -102) T) ((-359 . -353) 28053) ((-613 . -1108) T) ((-356 . -353) 28032) ((-348 . -353) 28011) ((-480 . -1108) T) ((-1198 . -230) 27961) ((-266 . -255) 27923) ((-1150 . -131) T) ((-613 . -615) 27899) ((-1088 . -906) 27832) ((-1012 . -1057) T) ((-920 . -1057) T) ((-480 . -615) 27811) ((-1176 . -797) NIL) ((-1176 . -800) NIL) ((-1110 . -619) 27772) ((-484 . -230) 27722) ((-1110 . -618) 27704) ((-1012 . -244) T) ((-1012 . -234) T) ((-432 . -1057) T) ((-964 . -1108) 27654) ((-920 . -244) T) ((-871 . -131) T) ((-704 . -457) T) ((-848 . -1120) 27633) ((-108 . -906) NIL) ((-1219 . -287) 27599) ((-877 . -853) 27578) ((-1121 . -1225) T) ((-911 . -731) T) ((-170 . -519) 27490) ((-1007 . -25) T) ((-911 . -478) T) ((-412 . -1120) T) ((-492 . -799) T) ((-492 . -796) T) ((-916 . -353) T) ((-492 . -731) T) ((-218 . -799) T) ((-218 . -796) T) ((-1007 . -21) T) ((-218 . -731) T) ((-848 . -23) 27442) ((-1193 . -1108) T) ((-663 . -1059) 27426) ((-1192 . -1108) T) ((-529 . -621) 27407) ((-1191 . -1108) T) ((-322 . -310) 27386) ((-1043 . -236) 27332) ((-663 . -645) 27302) ((-412 . -23) T) ((-949 . -619) 27263) ((-949 . -618) 27175) ((-649 . -494) 27159) ((-45 . -1018) 27109) ((-622 . -975) T) ((-496 . -102) T) ((-334 . -618) 27091) ((-1121 . -1046) 26918) ((-598 . -656) 26900) ((-130 . -1108) T) ((-128 . -1108) T) ((-598 . -377) 26882) ((-347 . -1282) 26859) ((-444 . -618) 26841) ((-1248 . -519) 26788) ((-1095 . -1059) 26631) ((-1035 . -1225) T) ((-876 . -293) T) ((-1181 . -289) 26558) ((-1095 . -645) 26407) ((-1008 . -1003) 26391) ((-787 . -1059) 26214) ((-785 . -1059) 26057) ((-787 . -645) 25886) ((-785 . -645) 25735) ((-481 . -1225) T) ((-468 . -1225) T) ((-591 . -102) T) ((-466 . -1059) 25706) ((-459 . -1059) 25549) ((-669 . -651) 25518) ((-628 . -457) 25497) ((-466 . -645) 25468) ((-459 . -645) 25317) ((-359 . -651) 25254) ((-356 . -651) 25191) ((-348 . -651) 25128) ((-266 . -651) 25038) ((-248 . -651) 24948) ((-1290 . -386) 24920) ((-522 . -1108) T) ((-117 . -457) T) ((-1205 . -102) T) ((-1100 . -1108) 24890) ((-1042 . -1108) T) ((-1123 . -93) T) ((-899 . -855) T) ((-1267 . -111) 24759) ((-355 . -1229) T) ((-1267 . -1064) 24642) ((-1121 . -381) 24611) ((-1260 . -1064) 24446) ((-1239 . -1064) 24236) ((-1260 . -111) 24057) ((-1239 . -111) 23826) ((-1219 . -312) 23813) ((-1011 . -131) T) ((-916 . -651) 23763) ((-369 . -618) 23745) ((-355 . -561) T) ((-292 . -310) T) ((-601 . -1064) 23705) ((-600 . -1064) 23588) ((-586 . -1059) 23553) ((-523 . -1059) 23498) ((-365 . -1108) T) ((-325 . -1108) T) ((-253 . -618) 23459) ((-252 . -618) 23420) ((-586 . -645) 23385) ((-523 . -645) 23330) ((-699 . -414) 23297) ((-640 . -23) T) ((-612 . -23) T) ((-663 . -102) T) ((-601 . -111) 23250) ((-600 . -111) 23119) ((-383 . -1108) T) ((-340 . -102) T) ((-170 . -293) 23030) ((-1238 . -853) 22983) ((-719 . -1066) T) ((-1155 . -519) 22916) ((-1121 . -906) 22848) ((-841 . -1108) T) ((-832 . -1108) T) ((-830 . -1108) T) ((-97 . -102) T) ((-144 . -855) T) ((-617 . -890) 22832) ((-110 . -1225) T) ((-1095 . -102) T) ((-1071 . -34) T) ((-787 . -102) T) ((-785 . -102) T) ((-1267 . -621) 22714) ((-1260 . -621) 22457) ((-466 . -102) T) ((-459 . -102) T) ((-1239 . -621) 22252) ((-241 . -800) 22203) ((-241 . -797) 22154) ((-654 . -102) T) ((-601 . -621) 22112) ((-600 . -621) 21994) ((-1248 . -293) 21905) ((-669 . -639) 21889) ((-187 . -618) 21871) ((-649 . -289) 21848) ((-1042 . -722) 21832) ((-576 . -293) T) ((-969 . -653) 21757) ((-1298 . -131) T) ((-740 . -653) 21717) ((-720 . -653) 21704) ((-277 . -102) T) ((-458 . -653) 21634) ((-50 . -102) T) ((-586 . -102) T) ((-523 . -102) T) ((-1267 . -1057) T) ((-1260 . -1057) T) ((-1239 . -1057) T) ((-512 . -651) 21616) ((-325 . -722) 21598) ((-1267 . -234) 21557) ((-1260 . -244) 21536) ((-1260 . -234) 21488) ((-1239 . -234) 21375) ((-1239 . -244) 21354) ((-1219 . -38) 21251) ((-601 . -1057) T) ((-600 . -1057) T) ((-1012 . -800) T) ((-1012 . -797) T) ((-979 . -800) T) ((-979 . -797) T) ((-877 . -1066) T) ((-109 . -618) 21233) ((-699 . -457) T) ((-383 . -722) 21198) ((-423 . -653) 21172) ((-875 . -874) 21156) ((-716 . -38) 21121) ((-600 . -234) 21080) ((-40 . -729) 21052) ((-355 . -332) 21029) ((-355 . -367) T) ((-1088 . -310) 20980) ((-297 . -1120) 20861) ((-1114 . -1225) T) ((-172 . -102) T) ((-1242 . -618) 20828) ((-848 . -131) 20780) ((-649 . -1263) 20764) ((-841 . -722) 20734) ((-832 . -722) 20704) ((-487 . -1225) T) ((-363 . -310) T) ((-357 . -310) T) ((-349 . -310) T) ((-649 . -609) 20681) ((-412 . -131) T) ((-525 . -671) 20665) ((-108 . -310) T) ((-297 . -23) 20548) ((-525 . -656) 20532) ((-699 . -407) NIL) ((-525 . -377) 20516) ((-294 . -618) 20498) ((-91 . -1108) 20476) ((-108 . -1030) T) ((-569 . -143) T) ((-1275 . -151) 20460) ((-487 . -1046) 20287) ((-1261 . -145) 20248) ((-1261 . -147) 20209) ((-1062 . -1225) T) ((-1001 . -618) 20191) ((-867 . -618) 20173) ((-821 . -1064) 20016) ((-1286 . -93) T) ((-1285 . -93) T) ((-1181 . -619) NIL) ((-1104 . -1108) T) ((-1098 . -1108) T) ((-1095 . -312) 20003) ((-1081 . -1108) T) ((-228 . -1225) T) ((-1074 . -1108) T) ((-1044 . -1108) T) ((-1027 . -1108) T) ((-787 . -312) 19990) ((-785 . -312) 19977) ((-1181 . -618) 19959) ((-821 . -111) 19788) ((-1133 . -618) 19770) ((-631 . -1108) T) ((-582 . -174) T) ((-534 . -174) T) ((-459 . -312) 19757) ((-488 . -1108) T) ((-1133 . -619) 19505) ((-1042 . -173) T) ((-949 . -291) 19482) ((-219 . -1108) T) ((-859 . -618) 19464) ((-613 . -519) 19247) ((-81 . -621) 19188) ((-823 . -1046) 19172) ((-480 . -519) 18964) ((-969 . -731) T) ((-740 . -731) T) ((-720 . -731) T) ((-355 . -1120) T) ((-1188 . -618) 18946) ((-224 . -102) T) ((-487 . -381) 18915) ((-520 . -1108) T) ((-515 . -1108) T) ((-513 . -1108) T) ((-804 . -653) 18889) ((-1032 . -457) T) ((-964 . -519) 18822) ((-355 . -23) T) ((-640 . -131) T) ((-612 . -131) T) ((-358 . -457) T) ((-241 . -372) 18801) ((-383 . -173) T) ((-1259 . -1066) T) ((-1238 . -1066) T) ((-226 . -1010) T) ((-821 . -621) 18538) ((-704 . -392) T) ((-423 . -731) T) ((-706 . -1229) T) ((-1150 . -644) 18486) ((-585 . -874) 18470) ((-1290 . -1064) 18454) ((-1168 . -1201) 18430) ((-706 . -561) T) ((-126 . -1108) 18408) ((-719 . -1108) T) ((-487 . -906) 18340) ((-250 . -1108) T) ((-188 . -1108) T) ((-663 . -38) 18310) ((-358 . -407) T) ((-319 . -147) 18289) ((-319 . -145) 18268) ((-128 . -519) NIL) ((-116 . -561) T) ((-316 . -147) 18224) ((-316 . -145) 18180) ((-48 . -457) T) ((-162 . -1108) T) ((-157 . -1108) T) ((-1168 . -107) 18127) ((-787 . -1160) 18105) ((-694 . -34) T) ((-1290 . -111) 18084) ((-555 . -34) T) ((-489 . -107) 18068) ((-253 . -291) 18045) ((-252 . -291) 18022) ((-876 . -289) 17973) ((-45 . -1225) T) ((-1231 . -849) T) ((-821 . -1057) T) ((-667 . -651) 17942) ((-1187 . -47) 17919) ((-821 . -329) 17881) ((-1095 . -38) 17730) ((-821 . -234) 17709) ((-787 . -38) 17538) ((-785 . -38) 17387) ((-1123 . -495) 17368) ((-459 . -38) 17217) ((-1123 . -618) 17183) ((-1126 . -102) T) ((-649 . -619) 17144) ((-649 . -618) 17056) ((-586 . -1160) T) ((-523 . -1160) T) ((-1155 . -494) 17040) ((-347 . -1059) 16985) ((-1211 . -1108) 16963) ((-1150 . -25) T) ((-1150 . -21) T) ((-347 . -645) 16908) ((-1290 . -621) 16857) ((-479 . -1066) T) ((-1231 . -1108) T) ((-1239 . -797) NIL) ((-1239 . -800) NIL) ((-1007 . -855) 16836) ((-843 . -1108) T) ((-824 . -618) 16818) ((-871 . -21) T) ((-871 . -25) T) ((-804 . -731) T) ((-175 . -1229) T) ((-586 . -38) 16783) ((-523 . -38) 16748) ((-391 . -618) 16730) ((-336 . -102) T) ((-327 . -618) 16712) ((-170 . -289) 16670) ((-63 . -1225) T) ((-112 . -102) T) ((-877 . -1108) T) ((-175 . -561) T) ((-719 . -722) 16640) ((-297 . -131) 16523) ((-226 . -618) 16505) ((-226 . -619) 16435) ((-1011 . -644) 16374) ((-1290 . -1057) T) ((-1128 . -147) T) ((-637 . -1201) 16349) ((-736 . -915) 16328) ((-598 . -34) T) ((-652 . -107) 16312) ((-637 . -107) 16258) ((-1248 . -289) 16185) ((-736 . -653) 16110) ((-298 . -1225) T) ((-1187 . -1046) 16006) ((-949 . -623) 15983) ((-582 . -581) T) ((-582 . -532) T) ((-534 . -532) T) ((-1176 . -915) NIL) ((-1070 . -619) 15898) ((-1070 . -618) 15880) ((-958 . -618) 15862) ((-718 . -495) 15812) ((-347 . -102) T) ((-253 . -1064) 15709) ((-252 . -1064) 15606) ((-399 . -102) T) ((-31 . -1108) T) ((-958 . -619) 15467) ((-718 . -618) 15402) ((-1288 . -1218) 15371) ((-486 . -618) 15353) ((-486 . -619) 15214) ((-266 . -416) 15198) ((-248 . -416) 15182) ((-253 . -111) 15072) ((-252 . -111) 14962) ((-1183 . -653) 14887) ((-1182 . -653) 14784) ((-1176 . -653) 14636) ((-1134 . -653) 14561) ((-355 . -131) T) ((-82 . -446) T) ((-82 . -400) T) ((-1011 . -25) T) ((-1011 . -21) T) ((-878 . -1108) 14512) ((-40 . -1059) 14457) ((-877 . -722) 14409) ((-40 . -645) 14354) ((-383 . -293) T) ((-170 . -1010) 14305) ((-699 . -392) T) ((-1007 . -1005) 14289) ((-706 . -1120) T) ((-699 . -166) 14271) ((-1259 . -1108) T) ((-1238 . -1108) T) ((-319 . -1210) 14250) ((-319 . -1213) 14229) ((-1173 . -102) T) ((-319 . -965) 14208) ((-134 . -1120) T) ((-116 . -1120) T) ((-607 . -1273) 14192) ((-706 . -23) T) ((-607 . -1108) 14142) ((-319 . -95) 14121) ((-91 . -519) 14054) ((-175 . -367) T) ((-253 . -621) 13784) ((-252 . -621) 13514) ((-319 . -35) 13493) ((-613 . -494) 13427) ((-134 . -23) T) ((-116 . -23) T) ((-972 . -102) T) ((-723 . -1108) T) ((-480 . -494) 13364) ((-412 . -644) 13312) ((-658 . -1046) 13208) ((-964 . -494) 13192) ((-359 . -1066) T) ((-356 . -1066) T) ((-348 . -1066) T) ((-266 . -1066) T) ((-248 . -1066) T) ((-876 . -619) NIL) ((-876 . -618) 13174) ((-1286 . -495) 13155) ((-1285 . -495) 13136) ((-1298 . -21) T) ((-1286 . -618) 13102) ((-1285 . -618) 13068) ((-576 . -1010) T) ((-736 . -731) T) ((-1298 . -25) T) ((-253 . -1057) 12998) ((-252 . -1057) 12928) ((-72 . -1225) T) ((-253 . -234) 12880) ((-252 . -234) 12832) ((-40 . -102) T) ((-916 . -1066) T) ((-1190 . -102) T) ((-128 . -494) 12814) ((-1183 . -731) T) ((-1182 . -731) T) ((-1176 . -731) T) ((-1176 . -796) NIL) ((-1176 . -799) NIL) ((-960 . -102) T) ((-927 . -102) T) ((-875 . -1059) 12801) ((-1134 . -731) T) ((-776 . -102) T) ((-677 . -102) T) ((-875 . -645) 12788) ((-551 . -618) 12770) ((-479 . -1108) T) ((-343 . -1120) T) ((-175 . -1120) T) ((-322 . -926) 12749) ((-1259 . -722) 12590) ((-877 . -173) T) ((-1238 . -722) 12404) ((-848 . -21) 12356) ((-848 . -25) 12308) ((-246 . -1157) 12292) ((-126 . -519) 12225) ((-412 . -25) T) ((-412 . -21) T) ((-343 . -23) T) ((-170 . -619) 11991) ((-170 . -618) 11973) ((-175 . -23) T) ((-649 . -291) 11950) ((-525 . -34) T) ((-904 . -618) 11932) ((-89 . -1225) T) ((-846 . -618) 11914) ((-813 . -618) 11896) ((-774 . -618) 11878) ((-682 . -618) 11860) ((-241 . -653) 11708) ((-1185 . -1108) T) ((-1181 . -1064) 11531) ((-1158 . -1225) T) ((-1133 . -1064) 11374) ((-859 . -1064) 11358) ((-1242 . -623) 11342) ((-1181 . -111) 11151) ((-1133 . -111) 10980) ((-859 . -111) 10959) ((-1232 . -855) T) ((-1248 . -619) NIL) ((-1248 . -618) 10941) ((-347 . -1160) T) ((-860 . -618) 10923) ((-1084 . -289) 10902) ((-80 . -1225) T) ((-1012 . -915) NIL) ((-613 . -289) 10878) ((-1211 . -519) 10811) ((-492 . -1225) T) ((-576 . -618) 10793) ((-480 . -289) 10772) ((-1219 . -651) 10682) ((-522 . -93) T) ((-1095 . -232) 10666) ((-218 . -1225) T) ((-1012 . -653) 10616) ((-964 . -289) 10593) ((-292 . -926) T) ((-822 . -310) 10572) ((-875 . -102) T) ((-787 . -232) 10556) ((-920 . -653) 10508) ((-716 . -651) 10458) ((-699 . -729) 10425) ((-640 . -21) T) ((-640 . -25) T) ((-612 . -21) T) ((-552 . -102) T) ((-347 . -38) 10390) ((-492 . -890) 10372) ((-492 . -892) 10354) ((-479 . -722) 10195) ((-218 . -890) 10177) ((-64 . -1225) T) ((-218 . -892) 10159) ((-612 . -25) T) ((-432 . -653) 10133) ((-1181 . -621) 9902) ((-492 . -1046) 9862) ((-877 . -519) 9774) ((-1133 . -621) 9566) ((-859 . -621) 9484) ((-218 . -1046) 9444) ((-241 . -34) T) ((-1008 . -1108) 9422) ((-585 . -1059) 9409) ((-569 . -1059) 9396) ((-500 . -1059) 9361) ((-1259 . -173) 9292) ((-1238 . -173) 9223) ((-585 . -645) 9210) ((-569 . -645) 9197) ((-500 . -645) 9162) ((-717 . -145) 9141) ((-717 . -147) 9120) ((-706 . -131) T) ((-136 . -470) 9097) ((-1155 . -618) 9029) ((-663 . -661) 9013) ((-128 . -289) 8988) ((-116 . -131) T) ((-482 . -1229) T) ((-613 . -609) 8964) ((-480 . -609) 8943) ((-340 . -339) 8912) ((-602 . -1108) T) ((-590 . -1108) T) ((-541 . -1108) T) ((-482 . -561) T) ((-1181 . -1057) T) ((-1133 . -1057) T) ((-859 . -1057) T) ((-241 . -796) 8891) ((-241 . -799) 8842) ((-241 . -798) 8821) ((-1181 . -329) 8798) ((-241 . -731) 8708) ((-964 . -19) 8692) ((-492 . -381) 8674) ((-492 . -342) 8656) ((-1133 . -329) 8628) ((-358 . -1282) 8605) ((-218 . -381) 8587) ((-218 . -342) 8569) ((-964 . -609) 8546) ((-1181 . -234) T) ((-1271 . -1108) T) ((-669 . -1108) T) ((-650 . -1108) T) ((-1198 . -1108) T) ((-1095 . -255) 8483) ((-591 . -651) 8443) ((-359 . -1108) T) ((-356 . -1108) T) ((-348 . -1108) T) ((-266 . -1108) T) ((-248 . -1108) T) ((-84 . -1225) T) ((-127 . -102) 8421) ((-121 . -102) 8399) ((-1198 . -615) 8378) ((-1238 . -519) 8238) ((-1149 . -1108) T) ((-1123 . -621) 8219) ((-484 . -1108) T) ((-1088 . -926) 8170) ((-1012 . -799) T) ((-484 . -615) 8149) ((-253 . -800) 8100) ((-253 . -797) 8051) ((-252 . -800) 8002) ((-40 . -1160) NIL) ((-252 . -797) 7953) ((-1012 . -796) T) ((-128 . -19) 7935) ((-1012 . -731) T) ((-704 . -1059) 7900) ((-979 . -799) T) ((-920 . -731) T) ((-916 . -1108) T) ((-128 . -609) 7875) ((-704 . -645) 7840) ((-91 . -494) 7824) ((-492 . -906) NIL) ((-898 . -618) 7806) ((-226 . -1064) 7771) ((-877 . -293) T) ((-218 . -906) NIL) ((-838 . -1120) 7750) ((-59 . -1108) 7700) ((-524 . -1108) 7678) ((-521 . -1108) 7628) ((-502 . -1108) 7606) ((-501 . -1108) 7556) ((-585 . -102) T) ((-569 . -102) T) ((-500 . -102) T) ((-479 . -173) 7487) ((-363 . -926) T) ((-357 . -926) T) ((-349 . -926) T) ((-226 . -111) 7443) ((-838 . -23) 7395) ((-432 . -731) T) ((-108 . -926) T) ((-40 . -38) 7340) ((-108 . -825) T) ((-586 . -353) T) ((-523 . -353) T) ((-841 . -289) 7319) ((-319 . -457) 7298) ((-316 . -457) T) ((-663 . -651) 7257) ((-607 . -519) 7190) ((-343 . -131) T) ((-175 . -131) T) ((-297 . -25) 7054) ((-297 . -21) 6937) ((-45 . -1201) 6916) ((-66 . -618) 6898) ((-55 . -102) T) ((-340 . -651) 6880) ((-45 . -107) 6830) ((-824 . -621) 6814) ((-1276 . -102) T) ((-1275 . -102) 6764) ((-1267 . -653) 6689) ((-1260 . -653) 6586) ((-1239 . -653) 6438) ((-1110 . -430) 6422) ((-1110 . -372) 6401) ((-391 . -621) 6385) ((-327 . -621) 6369) ((-1239 . -915) NIL) ((-1206 . -618) 6351) ((-1071 . -1225) T) ((-1095 . -651) 6261) ((-1070 . -1064) 6248) ((-1070 . -111) 6233) ((-958 . -1064) 6076) ((-958 . -111) 5905) ((-787 . -651) 5815) ((-785 . -651) 5725) ((-628 . -1059) 5712) ((-669 . -722) 5696) ((-628 . -645) 5683) ((-486 . -1064) 5526) ((-482 . -367) T) ((-466 . -651) 5482) ((-459 . -651) 5392) ((-226 . -621) 5342) ((-359 . -722) 5294) ((-356 . -722) 5246) ((-117 . -1059) 5191) ((-348 . -722) 5143) ((-266 . -722) 4992) ((-248 . -722) 4841) ((-1104 . -93) T) ((-1098 . -93) T) ((-117 . -645) 4786) ((-1081 . -93) T) ((-949 . -656) 4770) ((-1074 . -93) T) ((-486 . -111) 4599) ((-1065 . -1108) 4577) ((-1044 . -93) T) ((-949 . -377) 4561) ((-249 . -102) T) ((-1027 . -93) T) ((-74 . -618) 4543) ((-969 . -47) 4522) ((-715 . -102) T) ((-704 . -102) T) ((-1 . -1108) T) ((-626 . -1120) T) ((-1096 . -618) 4504) ((-631 . -93) T) ((-1084 . -618) 4486) ((-916 . -722) 4451) ((-126 . -494) 4435) ((-488 . -93) T) ((-626 . -23) T) ((-395 . -23) T) ((-87 . -1225) T) ((-219 . -93) T) ((-613 . -618) 4417) ((-613 . -619) NIL) ((-480 . -619) NIL) ((-480 . -618) 4399) ((-355 . -25) T) ((-355 . -21) T) ((-50 . -651) 4358) ((-516 . -1108) T) ((-512 . -1108) T) ((-127 . -312) 4296) ((-121 . -312) 4234) ((-601 . -653) 4208) ((-600 . -653) 4133) ((-586 . -651) 4083) ((-226 . -1057) T) ((-523 . -651) 4013) ((-383 . -1010) T) ((-226 . -244) T) ((-226 . -234) T) ((-1070 . -621) 3985) ((-1070 . -623) 3966) ((-964 . -619) 3927) ((-964 . -618) 3839) ((-958 . -621) 3628) ((-875 . -38) 3615) ((-718 . -621) 3565) ((-1259 . -293) 3516) ((-1238 . -293) 3467) ((-486 . -621) 3252) ((-1128 . -457) T) ((-507 . -855) T) ((-319 . -1147) 3231) ((-1007 . -147) 3210) ((-1007 . -145) 3189) ((-500 . -312) 3176) ((-298 . -1201) 3155) ((-1193 . -618) 3137) ((-1192 . -618) 3119) ((-1191 . -618) 3101) ((-876 . -1064) 3046) ((-482 . -1120) T) ((-139 . -840) 3028) ((-114 . -840) 3009) ((-628 . -102) T) ((-1211 . -494) 2993) ((-253 . -372) 2972) ((-252 . -372) 2951) ((-1070 . -1057) T) ((-298 . -107) 2901) ((-130 . -618) 2883) ((-128 . -619) NIL) ((-128 . -618) 2827) ((-117 . -102) T) ((-958 . -1057) T) ((-876 . -111) 2756) ((-482 . -23) T) ((-486 . -1057) T) ((-1070 . -234) T) ((-958 . -329) 2725) ((-486 . -329) 2682) ((-359 . -173) T) ((-356 . -173) T) ((-348 . -173) T) ((-266 . -173) 2593) ((-248 . -173) 2504) ((-969 . -1046) 2400) ((-522 . -495) 2381) ((-740 . -1046) 2352) ((-522 . -618) 2318) ((-1113 . -102) T) ((-1100 . -618) 2277) ((-1042 . -618) 2259) ((-699 . -1059) 2209) ((-1288 . -151) 2193) ((-1286 . -621) 2174) ((-1285 . -621) 2155) ((-1280 . -618) 2137) ((-1267 . -731) T) ((-699 . -645) 2087) ((-1260 . -731) T) ((-1239 . -796) NIL) ((-1239 . -799) NIL) ((-170 . -1064) 1997) ((-916 . -173) T) ((-876 . -621) 1927) ((-1239 . -731) T) ((-1011 . -346) 1901) ((-224 . -651) 1853) ((-1008 . -519) 1786) ((-848 . -855) 1765) ((-569 . -1160) T) ((-479 . -293) 1716) ((-601 . -731) T) ((-365 . -618) 1698) ((-325 . -618) 1680) ((-423 . -1046) 1576) ((-600 . -731) T) ((-412 . -855) 1527) ((-170 . -111) 1423) ((-838 . -131) 1375) ((-742 . -151) 1359) ((-1275 . -312) 1297) ((-492 . -310) T) ((-383 . -618) 1264) ((-525 . -1018) 1248) ((-383 . -619) 1162) ((-218 . -310) T) ((-141 . -151) 1144) ((-719 . -289) 1123) ((-492 . -1030) T) ((-585 . -38) 1110) ((-569 . -38) 1097) ((-500 . -38) 1062) ((-218 . -1030) T) ((-876 . -1057) T) ((-841 . -618) 1044) ((-832 . -618) 1026) ((-830 . -618) 1008) ((-821 . -915) 987) ((-1299 . -1120) T) ((-1248 . -1064) 810) ((-860 . -1064) 794) ((-876 . -244) T) ((-876 . -234) NIL) ((-694 . -1225) T) ((-1299 . -23) T) ((-821 . -653) 719) ((-555 . -1225) T) ((-423 . -342) 703) ((-576 . -1064) 690) ((-1248 . -111) 499) ((-706 . -644) 481) ((-860 . -111) 460) ((-385 . -23) T) ((-170 . -621) 238) ((-1198 . -519) 30) ((-881 . -1108) T) ((-686 . -1108) T) ((-681 . -1108) T) ((-667 . -1108) T))
\ No newline at end of file +(-2779 (|has| |#1| (-856)) (|has| |#1| (-1109))) +((($ $) . T) ((#0=(-870 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-235)) ((|#2| |#1|) |has| |#1| (-235)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-484 . -1109) T) ((-267 . -520) 188453) ((-249 . -520) 188396) ((-247 . -1109) 188346) ((-577 . -111) 188331) ((-537 . -23) T) ((-134 . -1109) T) ((-139 . -1109) T) ((-118 . -313) 188288) ((-138 . -1109) T) ((-485 . -520) 188080) ((-683 . -622) 188064) ((-700 . -102) T) ((-1150 . -520) 187983) ((-396 . -132) T) ((-1289 . -985) 187952) ((-1033 . -1060) 187889) ((-31 . -93) T) ((-608 . -495) 187873) ((-1033 . -646) 187810) ((-627 . -132) T) ((-825 . -852) T) ((-529 . -57) 187760) ((-525 . -520) 187693) ((-359 . -1060) 187638) ((-59 . -520) 187571) ((-522 . -520) 187504) ((-424 . -907) 187463) ((-171 . -1058) T) ((-503 . -520) 187396) ((-502 . -520) 187329) ((-359 . -646) 187274) ((-805 . -1047) 187054) ((-705 . -38) 187019) ((-1249 . -622) 186767) ((-348 . -354) T) ((-1103 . -1102) 186751) ((-1103 . -1109) 186729) ((-861 . -622) 186626) ((-171 . -245) 186577) ((-171 . -235) 186528) ((-1103 . -1104) 186486) ((-878 . -290) 186444) ((-227 . -801) T) ((-227 . -798) T) ((-700 . -288) NIL) ((-577 . -622) 186416) ((-1159 . -1202) 186395) ((-413 . -1001) 186379) ((-48 . -1060) 186344) ((-707 . -21) T) ((-707 . -25) T) ((-48 . -646) 186309) ((-1291 . -654) 186283) ((-320 . -161) 186262) ((-320 . -144) 186241) ((-1159 . -107) 186191) ((-117 . -21) T) ((-40 . -233) 186168) ((-135 . -25) T) ((-117 . -25) T) ((-614 . -292) 186144) ((-481 . -292) 186123) ((-1249 . -330) 186100) ((-1249 . -1058) T) ((-861 . -1058) T) ((-805 . -343) 186084) ((-140 . -187) T) ((-118 . -1161) NIL) ((-91 . -619) 186016) ((-483 . -132) T) ((-1249 . -235) T) ((-1105 . -496) 185997) ((-1105 . -619) 185963) ((-1099 . -496) 185944) ((-1099 . -619) 185910) ((-599 . -1226) T) ((-1082 . -496) 185891) ((-577 . -1058) T) ((-1082 . -619) 185857) ((-668 . -723) 185841) ((-1075 . -496) 185822) ((-1075 . -619) 185788) ((-965 . -292) 185765) ((-60 . -34) T) ((-1071 . -801) T) ((-1071 . -798) T) ((-1045 . -496) 185746) ((-1028 . -496) 185727) ((-822 . -732) T) ((-737 . -47) 185692) ((-629 . -38) 185679) ((-360 . -294) T) ((-357 . -294) T) ((-349 . -294) T) ((-267 . -294) 185610) ((-249 . -294) 185541) ((-1045 . -619) 185507) ((-1033 . -102) T) ((-1028 . -619) 185473) ((-632 . -496) 185454) ((-419 . -732) T) ((-118 . -38) 185399) ((-489 . -496) 185380) ((-632 . -619) 185346) ((-419 . -479) T) ((-220 . -496) 185327) ((-489 . -619) 185293) ((-359 . -102) T) ((-220 . -619) 185259) ((-1220 . -1067) T) ((-348 . -652) 185189) ((-717 . -1067) T) ((-1184 . -47) 185166) ((-1183 . -47) 185136) ((-1177 . -47) 185113) ((-129 . -292) 185088) ((-1044 . -152) 185034) ((-917 . -294) T) ((-1135 . -47) 185006) ((-700 . -313) NIL) ((-521 . -619) 184988) ((-516 . -619) 184970) ((-514 . -619) 184952) ((-331 . -1109) 184902) ((-718 . -458) 184833) ((-48 . -102) T) ((-1260 . -290) 184818) ((-1239 . -290) 184738) ((-650 . -672) 184722) ((-650 . -657) 184706) ((-344 . -21) T) ((-344 . -25) T) ((-40 . -354) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-650 . -378) 184690) ((-611 . -496) 184672) ((-608 . -290) 184649) ((-611 . -619) 184616) ((-394 . -102) T) ((-1129 . -144) T) ((-127 . -619) 184548) ((-880 . -1109) T) ((-664 . -417) 184532) ((-720 . -619) 184514) ((-251 . -619) 184481) ((-189 . -619) 184463) ((-163 . -619) 184445) ((-158 . -619) 184427) ((-1291 . -732) T) ((-1111 . -34) T) ((-877 . -801) NIL) ((-877 . -798) NIL) ((-864 . -856) T) ((-737 . -893) NIL) ((-1300 . -132) T) ((-386 . -132) T) ((-899 . -622) 184395) ((-911 . -102) T) ((-737 . -1047) 184271) ((-537 . -132) T) ((-1096 . -417) 184255) ((-1009 . -495) 184239) ((-118 . -406) 184216) ((-1177 . -1226) 184195) ((-788 . -417) 184179) ((-786 . -417) 184163) ((-950 . -34) T) ((-700 . -1161) NIL) ((-254 . -654) 183998) ((-253 . -654) 183820) ((-823 . -927) 183799) ((-460 . -417) 183783) ((-608 . -19) 183767) ((-1155 . -1219) 183736) ((-1177 . -893) NIL) ((-1177 . -891) 183688) ((-608 . -610) 183665) ((-1212 . -619) 183597) ((-1185 . -619) 183579) ((-62 . -401) T) ((-1183 . -1047) 183514) ((-1177 . -1047) 183480) ((-700 . -38) 183430) ((-40 . -652) 183360) ((-480 . -290) 183345) ((-1232 . -619) 183327) ((-737 . -382) 183311) ((-844 . -619) 183293) ((-664 . -1067) T) ((-1260 . -1011) 183259) ((-1239 . -1011) 183225) ((-1097 . -622) 183209) ((-1072 . -1202) 183184) ((-1085 . -622) 183161) ((-878 . -620) 182968) ((-878 . -619) 182950) ((-1199 . -495) 182887) ((-424 . -1031) 182865) ((-48 . -313) 182852) ((-1072 . -107) 182798) ((-485 . -495) 182735) ((-526 . -1226) T) ((-1177 . -343) 182687) ((-1150 . -495) 182658) ((-1177 . -382) 182610) ((-1096 . -1067) T) ((-443 . -102) T) ((-185 . -1109) T) ((-254 . -34) T) ((-253 . -34) T) ((-788 . -1067) T) ((-786 . -1067) T) ((-737 . -907) 182587) ((-460 . -1067) T) ((-59 . -495) 182571) ((-1043 . -1065) 182545) ((-525 . -495) 182529) ((-522 . -495) 182513) ((-503 . -495) 182497) ((-502 . -495) 182481) ((-247 . -520) 182414) ((-1043 . -111) 182381) ((-1184 . -907) 182294) ((-1183 . -907) 182200) ((-1177 . -907) 182033) ((-1135 . -907) 182017) ((-676 . -1121) T) ((-359 . -1161) T) ((-651 . -93) T) ((-326 . -1065) 181999) ((-254 . -797) 181978) ((-254 . -800) 181929) ((-31 . -496) 181910) ((-254 . -799) 181889) ((-253 . -797) 181868) ((-253 . -800) 181819) ((-253 . -799) 181798) ((-31 . -619) 181764) ((-50 . -1067) T) ((-254 . -732) 181674) ((-253 . -732) 181584) ((-1220 . -1109) T) ((-676 . -23) T) ((-587 . -1067) T) ((-524 . -1067) T) ((-384 . -1065) 181549) ((-326 . -111) 181524) ((-73 . -388) T) ((-73 . -401) T) ((-1033 . -38) 181461) ((-700 . -406) 181443) ((-99 . -102) T) ((-717 . -1109) T) ((-1304 . -1060) 181430) ((-1012 . -146) 181402) ((-1012 . -148) 181374) ((-876 . -652) 181346) ((-384 . -111) 181302) ((-323 . -1230) 181281) ((-480 . -1011) 181247) ((-359 . -38) 181212) ((-40 . -375) 181184) ((-879 . -619) 181056) ((-128 . -126) 181040) ((-122 . -126) 181024) ((-842 . -1065) 180994) ((-839 . -21) 180946) ((-833 . -1065) 180930) ((-839 . -25) 180882) ((-323 . -562) 180833) ((-523 . -622) 180814) ((-570 . -834) T) ((-242 . -1226) T) ((-1043 . -622) 180783) ((-842 . -111) 180748) ((-833 . -111) 180727) ((-1260 . -619) 180709) ((-1239 . -619) 180691) ((-1239 . -620) 180362) ((-1182 . -916) 180341) ((-1134 . -916) 180320) ((-48 . -38) 180285) ((-1298 . -1121) T) ((-608 . -619) 180197) ((-608 . -620) 180158) ((-1296 . -1121) T) ((-366 . -622) 180142) ((-326 . -622) 180126) ((-242 . -1047) 179953) ((-1182 . -654) 179878) ((-1134 . -654) 179803) ((-860 . -654) 179777) ((-724 . -619) 179759) ((-552 . -373) T) ((-1298 . -23) T) ((-1296 . -23) T) ((-497 . -1109) T) ((-384 . -622) 179709) ((-384 . -624) 179691) ((-1043 . -1058) T) ((-871 . -102) T) ((-1199 . -290) 179670) ((-171 . -373) 179621) ((-1013 . -1226) T) ((-842 . -622) 179575) ((-833 . -622) 179530) ((-44 . -23) T) ((-485 . -290) 179509) ((-592 . -1109) T) ((-1155 . -1118) 179478) ((-1113 . -1112) 179430) ((-396 . -21) T) ((-396 . -25) T) ((-153 . -1121) T) ((-1304 . -102) T) ((-1013 . -891) 179412) ((-1013 . -893) 179394) ((-1220 . -723) 179291) ((-629 . -233) 179275) ((-627 . -21) T) ((-293 . -562) T) ((-627 . -25) T) ((-1206 . -1109) T) ((-717 . -723) 179240) ((-242 . -382) 179209) ((-1013 . -1047) 179169) ((-384 . -1058) T) ((-225 . -1067) T) ((-118 . -233) 179146) ((-59 . -290) 179123) ((-153 . -23) T) ((-522 . -290) 179100) ((-331 . -520) 179033) ((-502 . -290) 179010) ((-384 . -245) T) ((-384 . -235) T) ((-842 . -1058) T) ((-833 . -1058) T) ((-718 . -956) 178979) ((-707 . -856) T) ((-480 . -619) 178961) ((-1262 . -1060) 178866) ((-586 . -652) 178838) ((-570 . -652) 178810) ((-501 . -652) 178760) ((-833 . -235) 178739) ((-135 . -856) T) ((-1262 . -646) 178631) ((-664 . -1109) T) ((-1199 . -610) 178610) ((-556 . -1202) 178589) ((-341 . -1109) T) ((-323 . -368) 178568) ((-413 . -148) 178547) ((-413 . -146) 178526) ((-971 . -1121) 178425) ((-242 . -907) 178357) ((-821 . -1121) 178267) ((-660 . -858) 178251) ((-485 . -610) 178230) ((-556 . -107) 178180) ((-1013 . -382) 178162) ((-1013 . -343) 178144) ((-97 . -1109) T) ((-971 . -23) 177955) ((-483 . -21) T) ((-483 . -25) T) ((-821 . -23) 177825) ((-1186 . -619) 177807) ((-59 . -19) 177791) ((-1186 . -620) 177713) ((-1182 . -732) T) ((-1134 . -732) T) ((-522 . -19) 177697) ((-502 . -19) 177681) ((-59 . -610) 177658) ((-1096 . -1109) T) ((-908 . -102) 177636) ((-860 . -732) T) ((-788 . -1109) T) ((-522 . -610) 177613) ((-502 . -610) 177590) ((-786 . -1109) T) ((-786 . -1074) 177557) ((-467 . -1109) T) ((-460 . -1109) T) ((-592 . -723) 177532) ((-655 . -1109) T) ((-1268 . -47) 177509) ((-1262 . -102) T) ((-1261 . -47) 177479) ((-1240 . -47) 177456) ((-1220 . -174) 177407) ((-1183 . -311) 177386) ((-1177 . -311) 177365) ((-1105 . -622) 177346) ((-1099 . -622) 177327) ((-1089 . -562) 177278) ((-1013 . -907) NIL) ((-1089 . -1230) 177229) ((-676 . -132) T) ((-633 . -1121) T) ((-1082 . -622) 177210) ((-1075 . -622) 177191) ((-1045 . -622) 177172) ((-1028 . -622) 177153) ((-705 . -652) 177103) ((-278 . -1109) T) ((-85 . -447) T) ((-85 . -401) T) ((-720 . -1065) 177073) ((-717 . -174) T) ((-50 . -1109) T) ((-601 . -47) 177050) ((-227 . -654) 177015) ((-587 . -1109) T) ((-524 . -1109) T) ((-493 . -826) T) ((-493 . -927) T) ((-364 . -1230) T) ((-358 . -1230) T) ((-350 . -1230) T) ((-323 . -1121) T) ((-320 . -1060) 176925) ((-317 . -1060) 176854) ((-108 . -1230) T) ((-632 . -622) 176835) ((-364 . -562) T) ((-219 . -927) T) ((-219 . -826) T) ((-320 . -646) 176745) ((-317 . -646) 176674) ((-358 . -562) T) ((-350 . -562) T) ((-489 . -622) 176655) ((-108 . -562) T) ((-664 . -723) 176625) ((-1177 . -1031) NIL) ((-220 . -622) 176606) ((-323 . -23) T) ((-67 . -1226) T) ((-1009 . -619) 176538) ((-700 . -233) 176520) ((-720 . -111) 176485) ((-650 . -34) T) ((-247 . -495) 176469) ((-1111 . -1107) 176453) ((-173 . -1109) T) ((-1304 . -1161) T) ((-1300 . -21) T) ((-1300 . -25) T) ((-1298 . -132) T) ((-1296 . -132) T) ((-959 . -916) 176432) ((-1289 . -102) T) ((-1272 . -619) 176398) ((-1261 . -1047) 176333) ((-521 . -622) 176317) ((-1240 . -1226) 176296) ((-1240 . -893) NIL) ((-1240 . -891) 176248) ((-487 . -916) 176227) ((-1240 . -1047) 176193) ((-1220 . -520) 176160) ((-1096 . -723) 176009) ((-1071 . -654) 175996) ((-959 . -654) 175921) ((-603 . -496) 175902) ((-591 . -496) 175883) ((-788 . -723) 175712) ((-603 . -619) 175678) ((-591 . -619) 175644) ((-542 . -619) 175626) ((-542 . -620) 175607) ((-786 . -723) 175456) ((-1086 . -102) T) ((-386 . -25) T) ((-629 . -652) 175428) ((-386 . -21) T) ((-487 . -654) 175353) ((-467 . -723) 175324) ((-460 . -723) 175173) ((-996 . -102) T) ((-1199 . -620) NIL) ((-1199 . -619) 175155) ((-1151 . -1132) 175100) ((-743 . -102) T) ((-118 . -652) 175030) ((-611 . -622) 175012) ((-1055 . -1219) 174941) ((-908 . -313) 174879) ((-537 . -25) T) ((-882 . -93) T) ((-720 . -622) 174833) ((-687 . -93) T) ((-651 . -496) 174814) ((-142 . -102) T) ((-44 . -132) T) ((-682 . -93) T) ((-670 . -619) 174796) ((-348 . -1067) T) ((-293 . -1121) T) ((-651 . -619) 174749) ((-484 . -93) T) ((-360 . -619) 174731) ((-357 . -619) 174713) ((-349 . -619) 174695) ((-267 . -620) 174443) ((-267 . -619) 174425) ((-249 . -619) 174407) ((-249 . -620) 174268) ((-134 . -93) T) ((-139 . -93) T) ((-138 . -93) T) ((-1150 . -619) 174250) ((-1129 . -646) 174237) ((-1129 . -1060) 174224) ((-825 . -732) T) ((-825 . -863) T) ((-608 . -292) 174201) ((-587 . -723) 174166) ((-485 . -620) NIL) ((-485 . -619) 174148) ((-524 . -723) 174093) ((-320 . -102) T) ((-317 . -102) T) ((-293 . -23) T) ((-153 . -132) T) ((-917 . -619) 174075) ((-917 . -620) 174057) ((-392 . -732) T) ((-878 . -1065) 174009) ((-878 . -111) 173947) ((-720 . -1058) T) ((-718 . -1252) 173931) ((-700 . -354) NIL) ((-137 . -102) T) ((-115 . -102) T) ((-140 . -102) T) ((-525 . -619) 173863) ((-384 . -801) T) ((-225 . -1109) T) ((-169 . -1226) T) ((-384 . -798) T) ((-227 . -800) T) ((-227 . -797) T) ((-59 . -620) 173824) ((-59 . -619) 173736) ((-227 . -732) T) ((-522 . -620) 173697) ((-522 . -619) 173609) ((-503 . -619) 173541) ((-502 . -620) 173502) ((-502 . -619) 173414) ((-1089 . -368) 173365) ((-40 . -417) 173342) ((-77 . -1226) T) ((-877 . -916) NIL) ((-364 . -333) 173326) ((-364 . -368) T) ((-358 . -333) 173310) ((-358 . -368) T) ((-350 . -333) 173294) ((-350 . -368) T) ((-320 . -288) 173273) ((-108 . -368) T) ((-70 . -1226) T) ((-1240 . -343) 173225) ((-877 . -654) 173170) ((-1240 . -382) 173122) ((-971 . -132) 172977) ((-821 . -132) 172847) ((-965 . -657) 172831) ((-1096 . -174) 172742) ((-965 . -378) 172726) ((-1071 . -800) T) ((-1071 . -797) T) ((-878 . -622) 172624) ((-788 . -174) 172515) ((-786 . -174) 172426) ((-822 . -47) 172388) ((-1071 . -732) T) ((-331 . -495) 172372) ((-959 . -732) T) ((-1289 . -313) 172310) ((-460 . -174) 172221) ((-247 . -290) 172198) ((-1268 . -907) 172111) ((-1261 . -907) 172017) ((-1260 . -1065) 171852) ((-487 . -732) T) ((-1240 . -907) 171685) ((-1239 . -1065) 171493) ((-1220 . -294) 171472) ((-1196 . -1226) T) ((-1193 . -373) T) ((-1192 . -373) T) ((-1155 . -152) 171456) ((-1129 . -102) T) ((-1127 . -1109) T) ((-1089 . -23) T) ((-1089 . -1121) T) ((-1084 . -102) T) ((-1066 . -619) 171423) ((-934 . -962) T) ((-743 . -313) 171361) ((-75 . -1226) T) ((-670 . -387) 171333) ((-171 . -916) 171286) ((-30 . -962) T) ((-112 . -850) T) ((-1 . -619) 171268) ((-1012 . -415) 171240) ((-129 . -657) 171222) ((-50 . -626) 171206) ((-700 . -652) 171141) ((-601 . -907) 171054) ((-444 . -102) T) ((-129 . -378) 171036) ((-142 . -313) NIL) ((-878 . -1058) T) ((-839 . -856) 171015) ((-81 . -1226) T) ((-717 . -294) T) ((-40 . -1067) T) ((-587 . -174) T) ((-524 . -174) T) ((-517 . -619) 170997) ((-171 . -654) 170907) ((-513 . -619) 170889) ((-356 . -148) 170871) ((-356 . -146) T) ((-364 . -1121) T) ((-358 . -1121) T) ((-350 . -1121) T) ((-1013 . -311) T) ((-921 . -311) T) ((-878 . -245) T) ((-108 . -1121) T) ((-878 . -235) 170850) ((-1260 . -111) 170671) ((-1239 . -111) 170460) ((-247 . -1264) 170444) ((-570 . -854) T) ((-364 . -23) T) ((-359 . -354) T) ((-320 . -313) 170431) ((-317 . -313) 170372) ((-358 . -23) T) ((-323 . -132) T) ((-350 . -23) T) ((-1013 . -1031) T) ((-31 . -622) 170353) ((-108 . -23) T) ((-660 . -1060) 170337) ((-247 . -610) 170314) ((-337 . -1109) T) ((-660 . -646) 170284) ((-1262 . -38) 170176) ((-1249 . -916) 170155) ((-112 . -1109) T) ((-1044 . -102) T) ((-1249 . -654) 170080) ((-877 . -800) NIL) ((-861 . -654) 170054) ((-877 . -797) NIL) ((-822 . -893) NIL) ((-877 . -732) T) ((-1096 . -520) 169927) ((-788 . -520) 169874) ((-786 . -520) 169826) ((-577 . -654) 169813) ((-822 . -1047) 169641) ((-460 . -520) 169584) ((-394 . -395) T) ((-1260 . -622) 169397) ((-1239 . -622) 169145) ((-60 . -1226) T) ((-627 . -856) 169124) ((-506 . -667) T) ((-1155 . -985) 169093) ((-1033 . -652) 169030) ((-1012 . -458) T) ((-705 . -854) T) ((-516 . -798) T) ((-480 . -1065) 168865) ((-506 . -113) T) ((-348 . -1109) T) ((-317 . -1161) NIL) ((-293 . -132) T) ((-400 . -1109) T) ((-876 . -1067) T) ((-700 . -375) 168832) ((-359 . -652) 168762) ((-225 . -626) 168739) ((-331 . -290) 168716) ((-480 . -111) 168537) ((-1260 . -1058) T) ((-1239 . -1058) T) ((-822 . -382) 168521) ((-171 . -732) T) ((-660 . -102) T) ((-1260 . -245) 168500) ((-1260 . -235) 168452) ((-1239 . -235) 168357) ((-1239 . -245) 168336) ((-1012 . -408) NIL) ((-676 . -645) 168284) ((-320 . -38) 168194) ((-317 . -38) 168123) ((-69 . -619) 168105) ((-323 . -499) 168071) ((-48 . -652) 168021) ((-1199 . -292) 168000) ((-1234 . -856) T) ((-1122 . -1121) 167910) ((-83 . -1226) T) ((-61 . -619) 167892) ((-485 . -292) 167871) ((-1291 . -1047) 167848) ((-1174 . -1109) T) ((-1122 . -23) 167718) ((-822 . -907) 167654) ((-1249 . -732) T) ((-1111 . -1226) T) ((-480 . -622) 167480) ((-1096 . -294) 167411) ((-973 . -1109) T) ((-900 . -102) T) ((-788 . -294) 167322) ((-331 . -19) 167306) ((-59 . -292) 167283) ((-786 . -294) 167214) ((-861 . -732) T) ((-118 . -854) NIL) ((-522 . -292) 167191) ((-331 . -610) 167168) ((-502 . -292) 167145) ((-460 . -294) 167076) ((-1044 . -313) 166927) ((-882 . -496) 166908) ((-882 . -619) 166874) ((-687 . -496) 166855) ((-577 . -732) T) ((-682 . -496) 166836) ((-687 . -619) 166786) ((-682 . -619) 166752) ((-668 . -619) 166734) ((-484 . -496) 166715) ((-484 . -619) 166681) ((-247 . -620) 166642) ((-247 . -496) 166619) ((-139 . -496) 166600) ((-138 . -496) 166581) ((-134 . -496) 166562) ((-247 . -619) 166454) ((-215 . -102) T) ((-139 . -619) 166420) ((-138 . -619) 166386) ((-134 . -619) 166352) ((-1156 . -34) T) ((-950 . -1226) T) ((-348 . -723) 166297) ((-676 . -25) T) ((-676 . -21) T) ((-1186 . -622) 166278) ((-480 . -1058) T) ((-641 . -423) 166243) ((-613 . -423) 166208) ((-1129 . -1161) T) ((-718 . -1060) 166031) ((-587 . -294) T) ((-524 . -294) T) ((-1261 . -311) 166010) ((-480 . -235) 165962) ((-480 . -245) 165941) ((-1240 . -311) 165920) ((-718 . -646) 165749) ((-1240 . -1031) NIL) ((-1089 . -132) T) ((-878 . -801) 165728) ((-145 . -102) T) ((-40 . -1109) T) ((-878 . -798) 165707) ((-650 . -1019) 165691) ((-586 . -1067) T) ((-570 . -1067) T) ((-501 . -1067) T) ((-413 . -458) T) ((-364 . -132) T) ((-320 . -406) 165675) ((-317 . -406) 165636) ((-358 . -132) T) ((-350 . -132) T) ((-1191 . -1109) T) ((-1129 . -38) 165623) ((-1103 . -619) 165590) ((-108 . -132) T) ((-961 . -1109) T) ((-928 . -1109) T) ((-777 . -1109) T) ((-678 . -1109) T) ((-707 . -148) T) ((-117 . -148) T) ((-1298 . -21) T) ((-1298 . -25) T) ((-1296 . -21) T) ((-1296 . -25) T) ((-670 . -1065) 165574) ((-537 . -856) T) ((-506 . -856) T) ((-360 . -1065) 165526) ((-357 . -1065) 165478) ((-349 . -1065) 165430) ((-254 . -1226) T) ((-253 . -1226) T) ((-267 . -1065) 165273) ((-249 . -1065) 165116) ((-670 . -111) 165095) ((-553 . -850) T) ((-360 . -111) 165033) ((-357 . -111) 164971) ((-349 . -111) 164909) ((-267 . -111) 164738) ((-249 . -111) 164567) ((-823 . -1230) 164546) ((-629 . -417) 164530) ((-44 . -21) T) ((-44 . -25) T) ((-821 . -645) 164436) ((-823 . -562) 164415) ((-254 . -1047) 164242) ((-253 . -1047) 164069) ((-127 . -120) 164053) ((-917 . -1065) 164018) ((-718 . -102) T) ((-705 . -1067) T) ((-603 . -622) 163999) ((-591 . -622) 163980) ((-542 . -624) 163883) ((-348 . -174) T) ((-88 . -619) 163865) ((-153 . -21) T) ((-153 . -25) T) ((-917 . -111) 163821) ((-40 . -723) 163766) ((-876 . -1109) T) ((-670 . -622) 163743) ((-651 . -622) 163724) ((-360 . -622) 163661) ((-357 . -622) 163598) ((-553 . -1109) T) ((-349 . -622) 163535) ((-331 . -620) 163496) ((-331 . -619) 163408) ((-267 . -622) 163161) ((-249 . -622) 162946) ((-1239 . -798) 162899) ((-1239 . -801) 162852) ((-254 . -382) 162821) ((-253 . -382) 162790) ((-660 . -38) 162760) ((-614 . -34) T) ((-488 . -1121) 162670) ((-481 . -34) T) ((-1122 . -132) 162540) ((-971 . -25) 162351) ((-917 . -622) 162301) ((-880 . -619) 162283) ((-971 . -21) 162238) ((-821 . -21) 162148) ((-821 . -25) 161999) ((-1232 . -373) T) ((-629 . -1067) T) ((-1188 . -562) 161978) ((-1182 . -47) 161955) ((-360 . -1058) T) ((-357 . -1058) T) ((-488 . -23) 161825) ((-349 . -1058) T) ((-267 . -1058) T) ((-249 . -1058) T) ((-1134 . -47) 161797) ((-118 . -1067) T) ((-1043 . -654) 161771) ((-965 . -34) T) ((-360 . -235) 161750) ((-360 . -245) T) ((-357 . -235) 161729) ((-357 . -245) T) ((-349 . -235) 161708) ((-349 . -245) T) ((-267 . -330) 161680) ((-249 . -330) 161637) ((-267 . -235) 161616) ((-1166 . -152) 161600) ((-254 . -907) 161532) ((-253 . -907) 161464) ((-1091 . -856) T) ((-420 . -1121) T) ((-1063 . -23) T) ((-917 . -1058) T) ((-326 . -654) 161446) ((-1033 . -854) T) ((-1220 . -1011) 161412) ((-1183 . -927) 161391) ((-1177 . -927) 161370) ((-1177 . -826) NIL) ((-1008 . -1060) 161266) ((-974 . -1226) T) ((-917 . -245) T) ((-823 . -368) 161245) ((-390 . -23) T) ((-128 . -1109) 161223) ((-122 . -1109) 161201) ((-917 . -235) T) ((-129 . -34) T) ((-384 . -654) 161166) ((-1008 . -646) 161114) ((-876 . -723) 161101) ((-1304 . -652) 161073) ((-1055 . -152) 161038) ((-40 . -174) T) ((-700 . -417) 161020) ((-718 . -313) 161007) ((-842 . -654) 160967) ((-833 . -654) 160941) ((-323 . -25) T) ((-323 . -21) T) ((-664 . -290) 160920) ((-586 . -1109) T) ((-570 . -1109) T) ((-501 . -1109) T) ((-247 . -292) 160897) ((-317 . -233) 160858) ((-1182 . -893) NIL) ((-55 . -1109) T) ((-1134 . -893) 160717) ((-130 . -856) T) ((-1182 . -1047) 160597) ((-1134 . -1047) 160480) ((-185 . -619) 160462) ((-860 . -1047) 160358) ((-788 . -290) 160285) ((-823 . -1121) T) ((-1043 . -732) T) ((-608 . -657) 160269) ((-1055 . -985) 160198) ((-1008 . -102) T) ((-823 . -23) T) ((-718 . -1161) 160176) ((-700 . -1067) T) ((-608 . -378) 160160) ((-356 . -458) T) ((-348 . -294) T) ((-1277 . -1109) T) ((-250 . -1109) T) ((-405 . -102) T) ((-293 . -21) T) ((-293 . -25) T) ((-366 . -732) T) ((-716 . -1109) T) ((-705 . -1109) T) ((-366 . -479) T) ((-1220 . -619) 160142) ((-1182 . -382) 160126) ((-1134 . -382) 160110) ((-1033 . -417) 160072) ((-142 . -231) 160054) ((-384 . -800) T) ((-384 . -797) T) ((-876 . -174) T) ((-384 . -732) T) ((-717 . -619) 160036) ((-718 . -38) 159865) ((-1276 . -1274) 159849) ((-356 . -408) T) ((-1276 . -1109) 159799) ((-586 . -723) 159786) ((-570 . -723) 159773) ((-501 . -723) 159738) ((-1262 . -652) 159628) ((-320 . -635) 159607) ((-842 . -732) T) ((-833 . -732) T) ((-650 . -1226) T) ((-1089 . -645) 159555) ((-1182 . -907) 159498) ((-1134 . -907) 159482) ((-668 . -1065) 159466) ((-108 . -645) 159448) ((-488 . -132) 159318) ((-1188 . -1121) T) ((-959 . -47) 159287) ((-629 . -1109) T) ((-668 . -111) 159266) ((-497 . -619) 159232) ((-331 . -292) 159209) ((-487 . -47) 159166) ((-1188 . -23) T) ((-118 . -1109) T) ((-103 . -102) 159144) ((-1288 . -1121) T) ((-554 . -856) T) ((-1063 . -132) T) ((-1033 . -1067) T) ((-825 . -1047) 159128) ((-1012 . -730) 159100) ((-1288 . -23) T) ((-705 . -723) 159065) ((-592 . -619) 159047) ((-392 . -1047) 159031) ((-359 . -1067) T) ((-390 . -132) T) ((-328 . -1047) 159015) ((-1206 . -619) 158997) ((-1129 . -834) T) ((-1114 . -1109) T) ((-227 . -893) 158979) ((-1013 . -927) T) ((-91 . -34) T) ((-1013 . -826) T) ((-921 . -927) T) ((-1089 . -21) T) ((-1089 . -25) T) ((-493 . -1230) T) ((-1008 . -313) 158944) ((-882 . -622) 158925) ((-720 . -654) 158885) ((-219 . -1230) T) ((-687 . -622) 158866) ((-227 . -1047) 158826) ((-40 . -294) T) ((-682 . -622) 158807) ((-493 . -562) T) ((-484 . -622) 158788) ((-320 . -652) 158472) ((-317 . -652) 158386) ((-364 . -25) T) ((-364 . -21) T) ((-358 . -25) T) ((-219 . -562) T) ((-358 . -21) T) ((-350 . -25) T) ((-350 . -21) T) ((-247 . -622) 158363) ((-139 . -622) 158344) ((-138 . -622) 158325) ((-134 . -622) 158306) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1067) T) ((-586 . -174) T) ((-570 . -174) T) ((-501 . -174) T) ((-664 . -619) 158288) ((-743 . -742) 158272) ((-341 . -619) 158254) ((-68 . -388) T) ((-68 . -401) T) ((-1111 . -107) 158238) ((-1071 . -893) 158220) ((-959 . -893) 158145) ((-659 . -1121) T) ((-629 . -723) 158132) ((-487 . -893) NIL) ((-1155 . -102) T) ((-1103 . -624) 158116) ((-1071 . -1047) 158098) ((-97 . -619) 158080) ((-483 . -148) T) ((-959 . -1047) 157960) ((-118 . -723) 157905) ((-659 . -23) T) ((-487 . -1047) 157781) ((-1096 . -620) NIL) ((-1096 . -619) 157763) ((-788 . -620) NIL) ((-788 . -619) 157724) ((-786 . -620) 157358) ((-786 . -619) 157272) ((-1122 . -645) 157178) ((-467 . -619) 157160) ((-460 . -619) 157142) ((-460 . -620) 157003) ((-1044 . -231) 156949) ((-878 . -916) 156928) ((-127 . -34) T) ((-823 . -132) T) ((-655 . -619) 156910) ((-584 . -102) T) ((-360 . -1295) 156894) ((-357 . -1295) 156878) ((-349 . -1295) 156862) ((-128 . -520) 156795) ((-122 . -520) 156728) ((-517 . -798) T) ((-517 . -801) T) ((-516 . -800) T) ((-103 . -313) 156666) ((-224 . -102) 156644) ((-705 . -174) T) ((-700 . -1109) T) ((-878 . -654) 156596) ((-65 . -389) T) ((-278 . -619) 156578) ((-65 . -401) T) ((-959 . -382) 156562) ((-876 . -294) T) ((-50 . -619) 156544) ((-1008 . -38) 156492) ((-1129 . -652) 156464) ((-587 . -619) 156446) ((-487 . -382) 156430) ((-587 . -620) 156412) ((-524 . -619) 156394) ((-917 . -1295) 156381) ((-877 . -1226) T) ((-707 . -458) T) ((-501 . -520) 156347) ((-493 . -368) T) ((-360 . -373) 156326) ((-357 . -373) 156305) ((-349 . -373) 156284) ((-720 . -732) T) ((-219 . -368) T) ((-117 . -458) T) ((-1299 . -1290) 156268) ((-877 . -891) 156245) ((-877 . -893) NIL) ((-971 . -856) 156144) ((-821 . -856) 156095) ((-1233 . -102) T) ((-660 . -662) 156079) ((-1212 . -34) T) ((-173 . -619) 156061) ((-1122 . -21) 155971) ((-1122 . -25) 155822) ((-877 . -1047) 155799) ((-959 . -907) 155780) ((-1249 . -47) 155757) ((-917 . -373) T) ((-59 . -657) 155741) ((-522 . -657) 155725) ((-487 . -907) 155702) ((-71 . -447) T) ((-71 . -401) T) ((-502 . -657) 155686) ((-59 . -378) 155670) ((-629 . -174) T) ((-522 . -378) 155654) ((-502 . -378) 155638) ((-833 . -714) 155622) ((-1182 . -311) 155601) ((-1188 . -132) T) ((-1151 . -1060) 155585) ((-118 . -174) T) ((-1151 . -646) 155517) ((-1155 . -313) 155455) ((-171 . -1226) T) ((-1288 . -132) T) ((-872 . -1060) 155425) ((-641 . -750) 155409) ((-613 . -750) 155393) ((-1261 . -927) 155372) ((-1240 . -927) 155351) ((-1240 . -826) NIL) ((-872 . -646) 155321) ((-700 . -723) 155271) ((-1239 . -916) 155224) ((-1033 . -1109) T) ((-877 . -382) 155201) ((-877 . -343) 155178) ((-912 . -1121) T) ((-171 . -891) 155162) ((-171 . -893) 155087) ((-493 . -1121) T) ((-359 . -1109) T) ((-219 . -1121) T) ((-76 . -447) T) ((-76 . -401) T) ((-171 . -1047) 154983) ((-323 . -856) T) ((-1276 . -520) 154916) ((-1260 . -654) 154813) ((-1239 . -654) 154683) ((-878 . -800) 154662) ((-878 . -797) 154641) ((-878 . -732) T) ((-493 . -23) T) ((-225 . -619) 154623) ((-176 . -458) T) ((-224 . -313) 154561) ((-86 . -447) T) ((-86 . -401) T) ((-219 . -23) T) ((-1300 . -1293) 154540) ((-683 . -1047) 154524) ((-586 . -294) T) ((-570 . -294) T) ((-501 . -294) T) ((-137 . -476) 154479) ((-660 . -652) 154438) ((-48 . -1109) T) ((-718 . -233) 154422) ((-877 . -907) NIL) ((-1249 . -893) NIL) ((-896 . -102) T) ((-892 . -102) T) ((-394 . -1109) T) ((-171 . -382) 154406) ((-171 . -343) 154390) ((-1249 . -1047) 154270) ((-861 . -1047) 154166) ((-1151 . -102) T) ((-668 . -798) 154145) ((-659 . -132) T) ((-668 . -801) 154124) ((-118 . -520) 154032) ((-577 . -1047) 154014) ((-298 . -1283) 153984) ((-872 . -102) T) ((-970 . -562) 153963) ((-1220 . -1065) 153846) ((-1012 . -1060) 153791) ((-488 . -645) 153697) ((-911 . -1109) T) ((-1033 . -723) 153634) ((-717 . -1065) 153599) ((-1012 . -646) 153544) ((-623 . -102) T) ((-608 . -34) T) ((-1156 . -1226) T) ((-1220 . -111) 153413) ((-480 . -654) 153310) ((-359 . -723) 153255) ((-171 . -907) 153214) ((-705 . -294) T) ((-700 . -174) T) ((-717 . -111) 153170) ((-1304 . -1067) T) ((-1249 . -382) 153154) ((-424 . -1230) 153132) ((-1127 . -619) 153114) ((-317 . -854) NIL) ((-424 . -562) T) ((-227 . -311) T) ((-1239 . -797) 153067) ((-1239 . -800) 153020) ((-1260 . -732) T) ((-1239 . -732) T) ((-48 . -723) 152985) ((-227 . -1031) T) ((-356 . -1283) 152962) ((-1262 . -417) 152928) ((-724 . -732) T) ((-337 . -619) 152910) ((-1249 . -907) 152853) ((-1220 . -622) 152735) ((-112 . -619) 152717) ((-112 . -620) 152699) ((-724 . -479) T) ((-717 . -622) 152649) ((-1299 . -1060) 152633) ((-488 . -21) 152543) ((-128 . -495) 152527) ((-122 . -495) 152511) ((-488 . -25) 152362) ((-1299 . -646) 152332) ((-629 . -294) T) ((-592 . -1065) 152307) ((-443 . -1109) T) ((-1071 . -311) T) ((-118 . -294) T) ((-1113 . -102) T) ((-1012 . -102) T) ((-592 . -111) 152275) ((-1151 . -313) 152213) ((-1220 . -1058) T) ((-1071 . -1031) T) ((-66 . -1226) T) ((-1063 . -25) T) ((-1063 . -21) T) ((-717 . -1058) T) ((-390 . -21) T) ((-390 . -25) T) ((-700 . -520) NIL) ((-1033 . -174) T) ((-717 . -245) T) ((-1071 . -551) T) ((-718 . -652) 152123) ((-512 . -102) T) ((-508 . -102) T) ((-359 . -174) T) ((-348 . -619) 152105) ((-413 . -1060) 152057) ((-400 . -619) 152039) ((-1129 . -854) T) ((-480 . -732) T) ((-899 . -1047) 152007) ((-413 . -646) 151959) ((-108 . -856) T) ((-664 . -1065) 151943) ((-493 . -132) T) ((-1262 . -1067) T) ((-219 . -132) T) ((-1166 . -102) 151921) ((-99 . -1109) T) ((-247 . -672) 151905) ((-247 . -657) 151889) ((-664 . -111) 151868) ((-592 . -622) 151852) ((-320 . -417) 151836) ((-247 . -378) 151820) ((-1169 . -237) 151767) ((-1008 . -233) 151751) ((-74 . -1226) T) ((-48 . -174) T) ((-707 . -393) T) ((-707 . -144) T) ((-1299 . -102) T) ((-1206 . -622) 151733) ((-1096 . -1065) 151576) ((-267 . -916) 151555) ((-249 . -916) 151534) ((-788 . -1065) 151357) ((-786 . -1065) 151200) ((-614 . -1226) T) ((-1174 . -619) 151182) ((-1096 . -111) 151011) ((-1055 . -102) T) ((-481 . -1226) T) ((-467 . -1065) 150982) ((-460 . -1065) 150825) ((-670 . -654) 150809) ((-877 . -311) T) ((-788 . -111) 150618) ((-786 . -111) 150447) ((-360 . -654) 150399) ((-357 . -654) 150351) ((-349 . -654) 150303) ((-267 . -654) 150228) ((-249 . -654) 150153) ((-1168 . -856) T) ((-1097 . -1047) 150137) ((-467 . -111) 150098) ((-460 . -111) 149927) ((-1085 . -1047) 149904) ((-1009 . -34) T) ((-973 . -619) 149886) ((-965 . -1226) T) ((-127 . -1019) 149870) ((-970 . -1121) T) ((-877 . -1031) NIL) ((-741 . -1121) T) ((-721 . -1121) T) ((-664 . -622) 149788) ((-1276 . -495) 149772) ((-1151 . -38) 149732) ((-970 . -23) T) ((-917 . -654) 149697) ((-871 . -1109) T) ((-849 . -102) T) ((-823 . -21) T) ((-641 . -1060) 149681) ((-613 . -1060) 149665) ((-823 . -25) T) ((-741 . -23) T) ((-721 . -23) T) ((-641 . -646) 149649) ((-110 . -667) T) ((-613 . -646) 149633) ((-587 . -1065) 149598) ((-524 . -1065) 149543) ((-229 . -57) 149501) ((-459 . -23) T) ((-413 . -102) T) ((-266 . -102) T) ((-110 . -113) T) ((-700 . -294) T) ((-872 . -38) 149471) ((-587 . -111) 149427) ((-524 . -111) 149356) ((-1096 . -622) 149092) ((-424 . -1121) T) ((-320 . -1067) 148982) ((-317 . -1067) T) ((-129 . -1226) T) ((-788 . -622) 148730) ((-786 . -622) 148496) ((-664 . -1058) T) ((-1304 . -1109) T) ((-460 . -622) 148281) ((-171 . -311) 148212) ((-424 . -23) T) ((-40 . -619) 148194) ((-40 . -620) 148178) ((-108 . -1001) 148160) ((-117 . -875) 148144) ((-655 . -622) 148128) ((-48 . -520) 148094) ((-1212 . -1019) 148078) ((-1191 . -619) 148045) ((-1199 . -34) T) ((-961 . -619) 148011) ((-928 . -619) 147993) ((-1122 . -856) 147944) ((-777 . -619) 147926) ((-678 . -619) 147908) ((-1166 . -313) 147846) ((-485 . -34) T) ((-1101 . -1226) T) ((-483 . -458) T) ((-1150 . -34) T) ((-1096 . -1058) T) ((-50 . -622) 147815) ((-788 . -1058) T) ((-786 . -1058) T) ((-653 . -237) 147799) ((-638 . -237) 147745) ((-587 . -622) 147695) ((-524 . -622) 147625) ((-1249 . -311) 147604) ((-1096 . -330) 147565) ((-460 . -1058) T) ((-1188 . -21) T) ((-1096 . -235) 147544) ((-788 . -330) 147521) ((-788 . -235) T) ((-786 . -330) 147493) ((-737 . -1230) 147472) ((-331 . -657) 147456) ((-1188 . -25) T) ((-59 . -34) T) ((-525 . -34) T) ((-522 . -34) T) ((-460 . -330) 147435) ((-331 . -378) 147419) ((-503 . -34) T) ((-502 . -34) T) ((-1012 . -1161) NIL) ((-737 . -562) 147350) ((-641 . -102) T) ((-613 . -102) T) ((-360 . -732) T) ((-357 . -732) T) ((-349 . -732) T) ((-267 . -732) T) ((-249 . -732) T) ((-1055 . -313) 147258) ((-908 . -1109) 147236) ((-50 . -1058) T) ((-1288 . -21) T) ((-1288 . -25) T) ((-1184 . -562) 147215) ((-1183 . -1230) 147194) ((-1183 . -562) 147145) ((-587 . -1058) T) ((-524 . -1058) T) ((-1177 . -1230) 147124) ((-366 . -1047) 147108) ((-326 . -1047) 147092) ((-1033 . -294) T) ((-384 . -893) 147074) ((-1177 . -562) 147025) ((-1012 . -38) 146970) ((-1008 . -652) 146893) ((-805 . -1121) T) ((-917 . -732) T) ((-587 . -245) T) ((-587 . -235) T) ((-524 . -235) T) ((-524 . -245) T) ((-1135 . -562) 146872) ((-359 . -294) T) ((-653 . -701) 146856) ((-384 . -1047) 146816) ((-298 . -1060) 146737) ((-1129 . -1067) T) ((-103 . -126) 146721) ((-298 . -646) 146663) ((-805 . -23) T) ((-1298 . -1293) 146639) ((-1276 . -290) 146616) ((-413 . -313) 146581) ((-1296 . -1293) 146560) ((-1262 . -1109) T) ((-876 . -619) 146542) ((-842 . -1047) 146511) ((-205 . -793) T) ((-204 . -793) T) ((-203 . -793) T) ((-202 . -793) T) ((-201 . -793) T) ((-200 . -793) T) ((-199 . -793) T) ((-198 . -793) T) ((-197 . -793) T) ((-196 . -793) T) ((-553 . -619) 146493) ((-501 . -1011) T) ((-277 . -845) T) ((-276 . -845) T) ((-275 . -845) T) ((-274 . -845) T) ((-48 . -294) T) ((-273 . -845) T) ((-272 . -845) T) ((-271 . -845) T) ((-195 . -793) T) ((-618 . -856) T) ((-660 . -417) 146477) ((-225 . -622) 146439) ((-110 . -856) T) ((-659 . -21) T) ((-659 . -25) T) ((-1299 . -38) 146409) ((-118 . -290) 146360) ((-1276 . -19) 146344) ((-1276 . -610) 146321) ((-1289 . -1109) T) ((-356 . -1060) 146266) ((-1086 . -1109) T) ((-996 . -1109) T) ((-970 . -132) T) ((-743 . -1109) T) ((-356 . -646) 146211) ((-741 . -132) T) ((-721 . -132) T) ((-517 . -799) T) ((-517 . -800) T) ((-459 . -132) T) ((-413 . -1161) 146189) ((-225 . -1058) T) ((-298 . -102) 145971) ((-142 . -1109) T) ((-705 . -1011) T) ((-91 . -1226) T) ((-128 . -619) 145903) ((-122 . -619) 145835) ((-1304 . -174) T) ((-1183 . -368) 145814) ((-1177 . -368) 145793) ((-320 . -1109) T) ((-424 . -132) T) ((-317 . -1109) T) ((-413 . -38) 145745) ((-1142 . -102) T) ((-1262 . -723) 145637) ((-660 . -1067) T) ((-1144 . -1271) T) ((-323 . -146) 145616) ((-323 . -148) 145595) ((-137 . -1109) T) ((-140 . -1109) T) ((-115 . -1109) T) ((-864 . -102) T) ((-586 . -619) 145577) ((-570 . -620) 145476) ((-570 . -619) 145458) ((-501 . -619) 145440) ((-501 . -620) 145385) ((-491 . -23) T) ((-488 . -856) 145336) ((-493 . -645) 145318) ((-972 . -619) 145300) ((-219 . -645) 145282) ((-227 . -410) T) ((-668 . -654) 145266) ((-55 . -619) 145248) ((-1182 . -927) 145227) ((-737 . -1121) T) ((-356 . -102) T) ((-1225 . -1092) T) ((-1129 . -850) T) ((-824 . -856) T) ((-737 . -23) T) ((-348 . -1065) 145172) ((-1168 . -1167) T) ((-1156 . -107) 145156) ((-1184 . -1121) T) ((-1183 . -1121) T) ((-521 . -1047) 145140) ((-1177 . -1121) T) ((-1135 . -1121) T) ((-348 . -111) 145069) ((-1013 . -1230) T) ((-127 . -1226) T) ((-921 . -1230) T) ((-700 . -290) NIL) ((-1277 . -619) 145051) ((-1184 . -23) T) ((-1183 . -23) T) ((-1177 . -23) T) ((-1013 . -562) T) ((-1151 . -233) 145035) ((-921 . -562) T) ((-1135 . -23) T) ((-250 . -619) 145017) ((-1084 . -1109) T) ((-805 . -132) T) ((-716 . -619) 144999) ((-320 . -723) 144909) ((-317 . -723) 144838) ((-705 . -619) 144820) ((-705 . -620) 144765) ((-413 . -406) 144749) ((-444 . -1109) T) ((-493 . -25) T) ((-493 . -21) T) ((-1129 . -1109) T) ((-219 . -25) T) ((-219 . -21) T) ((-718 . -417) 144733) ((-720 . -1047) 144702) ((-1276 . -619) 144614) ((-1276 . -620) 144575) ((-1262 . -174) T) ((-247 . -34) T) ((-348 . -622) 144505) ((-400 . -622) 144487) ((-933 . -983) T) ((-1212 . -1226) T) ((-668 . -797) 144466) ((-668 . -800) 144445) ((-404 . -401) T) ((-529 . -102) 144423) ((-1044 . -1109) T) ((-224 . -1004) 144407) ((-510 . -102) T) ((-629 . -619) 144389) ((-45 . -856) NIL) ((-629 . -620) 144366) ((-1044 . -616) 144341) ((-908 . -520) 144274) ((-348 . -1058) T) ((-118 . -620) NIL) ((-118 . -619) 144256) ((-878 . -1226) T) ((-676 . -423) 144240) ((-676 . -1132) 144185) ((-506 . -152) 144167) ((-348 . -235) T) ((-348 . -245) T) ((-40 . -1065) 144112) ((-878 . -891) 144096) ((-878 . -893) 144021) ((-718 . -1067) T) ((-700 . -1011) NIL) ((-1260 . -47) 143991) ((-1239 . -47) 143968) ((-1150 . -1019) 143939) ((-3 . |UnionCategory|) T) ((-1129 . -723) 143926) ((-1114 . -619) 143908) ((-1089 . -148) 143887) ((-1089 . -146) 143838) ((-973 . -622) 143822) ((-227 . -927) T) ((-40 . -111) 143751) ((-878 . -1047) 143615) ((-1013 . -368) T) ((-1012 . -233) 143592) ((-707 . -1060) 143579) ((-921 . -368) T) ((-707 . -646) 143566) ((-323 . -1214) 143532) ((-384 . -311) T) ((-323 . -1211) 143498) ((-320 . -174) 143477) ((-317 . -174) T) ((-587 . -1295) 143464) ((-524 . -1295) 143441) ((-364 . -148) 143420) ((-117 . -1060) 143407) ((-364 . -146) 143358) ((-358 . -148) 143337) ((-358 . -146) 143288) ((-350 . -148) 143267) ((-614 . -1202) 143243) ((-117 . -646) 143230) ((-350 . -146) 143181) ((-323 . -35) 143147) ((-481 . -1202) 143126) ((0 . |EnumerationCategory|) T) ((-323 . -95) 143092) ((-384 . -1031) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -237) 143042) ((-660 . -1109) T) ((-614 . -107) 142989) ((-491 . -132) T) ((-481 . -107) 142939) ((-242 . -1121) 142849) ((-878 . -382) 142833) ((-878 . -343) 142817) ((-242 . -23) 142687) ((-40 . -622) 142617) ((-1071 . -927) T) ((-1071 . -826) T) ((-587 . -373) T) ((-524 . -373) T) ((-1289 . -520) 142550) ((-1268 . -562) 142529) ((-356 . -1161) T) ((-331 . -34) T) ((-44 . -423) 142513) ((-1191 . -622) 142449) ((-879 . -1226) T) ((-396 . -750) 142433) ((-1261 . -1230) 142412) ((-1261 . -562) 142363) ((-1151 . -652) 142322) ((-737 . -132) T) ((-678 . -622) 142306) ((-1240 . -1230) 142285) ((-1240 . -562) 142236) ((-1239 . -1226) 142215) ((-1239 . -893) 142088) ((-1239 . -891) 142058) ((-1184 . -132) T) ((-315 . -1092) T) ((-1183 . -132) T) ((-743 . -520) 141991) ((-1177 . -132) T) ((-1135 . -132) T) ((-900 . -1109) T) ((-145 . -850) T) ((-1033 . -1011) T) ((-697 . -619) 141973) ((-1013 . -23) T) ((-529 . -313) 141911) ((-1013 . -1121) T) ((-142 . -520) NIL) ((-872 . -652) 141856) ((-1012 . -354) NIL) ((-980 . -23) T) ((-921 . -1121) T) ((-356 . -38) 141821) ((-921 . -23) T) ((-878 . -907) 141780) ((-82 . -619) 141762) ((-40 . -1058) T) ((-876 . -1065) 141749) ((-876 . -111) 141734) ((-707 . -102) T) ((-700 . -619) 141716) ((-608 . -1226) T) ((-602 . -562) 141695) ((-433 . -1121) T) ((-344 . -1060) 141679) ((-215 . -1109) T) ((-176 . -1060) 141611) ((-480 . -47) 141581) ((-135 . -102) T) ((-40 . -235) 141553) ((-40 . -245) T) ((-117 . -102) T) ((-601 . -562) 141532) ((-344 . -646) 141516) ((-700 . -620) 141424) ((-320 . -520) 141390) ((-176 . -646) 141322) ((-317 . -520) 141214) ((-1260 . -1047) 141198) ((-1239 . -1047) 140984) ((-1008 . -417) 140968) ((-433 . -23) T) ((-1129 . -174) T) ((-1262 . -294) T) ((-660 . -723) 140938) ((-145 . -1109) T) ((-48 . -1011) T) ((-413 . -233) 140922) ((-299 . -237) 140872) ((-877 . -927) T) ((-877 . -826) NIL) ((-876 . -622) 140844) ((-870 . -856) T) ((-1239 . -343) 140814) ((-1239 . -382) 140784) ((-224 . -1130) 140768) ((-1276 . -292) 140745) ((-1220 . -654) 140670) ((-1012 . -652) 140600) ((-970 . -21) T) ((-970 . -25) T) ((-741 . -21) T) ((-741 . -25) T) ((-721 . -21) T) ((-721 . -25) T) ((-717 . -654) 140565) ((-459 . -21) T) ((-459 . -25) T) ((-344 . -102) T) ((-176 . -102) T) ((-1008 . -1067) T) ((-876 . -1058) T) ((-780 . -102) T) ((-1261 . -368) 140544) ((-1260 . -907) 140450) ((-1240 . -368) 140429) ((-1239 . -907) 140280) ((-1033 . -619) 140262) ((-413 . -834) 140215) ((-1184 . -499) 140181) ((-171 . -927) 140112) ((-1183 . -499) 140078) ((-1177 . -499) 140044) ((-718 . -1109) T) ((-1135 . -499) 140010) ((-586 . -1065) 139997) ((-570 . -1065) 139984) ((-501 . -1065) 139949) ((-320 . -294) 139928) ((-317 . -294) T) ((-359 . -619) 139910) ((-424 . -25) T) ((-424 . -21) T) ((-99 . -290) 139889) ((-586 . -111) 139874) ((-570 . -111) 139859) ((-501 . -111) 139815) ((-1186 . -893) 139782) ((-908 . -495) 139766) ((-48 . -619) 139748) ((-48 . -620) 139693) ((-242 . -132) 139563) ((-1299 . -652) 139522) ((-1249 . -927) 139501) ((-822 . -1230) 139480) ((-394 . -496) 139461) ((-1044 . -520) 139305) ((-394 . -619) 139271) ((-822 . -562) 139202) ((-592 . -654) 139177) ((-267 . -47) 139149) ((-249 . -47) 139106) ((-537 . -515) 139083) ((-586 . -622) 139055) ((-570 . -622) 139027) ((-501 . -622) 138960) ((-1083 . -1226) T) ((-1009 . -1226) T) ((-1268 . -23) T) ((-705 . -1065) 138925) ((-1268 . -1121) T) ((-1261 . -1121) T) ((-1261 . -23) T) ((-1240 . -1121) T) ((-1240 . -23) T) ((-1012 . -375) 138897) ((-112 . -373) T) ((-480 . -907) 138803) ((-1220 . -732) T) ((-911 . -619) 138785) ((-55 . -622) 138767) ((-91 . -107) 138751) ((-1129 . -294) T) ((-912 . -856) 138702) ((-707 . -1161) T) ((-705 . -111) 138658) ((-849 . -652) 138575) ((-602 . -1121) T) ((-601 . -1121) T) ((-718 . -723) 138404) ((-717 . -732) T) ((-1013 . -132) T) ((-980 . -132) T) ((-493 . -856) T) ((-921 . -132) T) ((-805 . -25) T) ((-805 . -21) T) ((-219 . -856) T) ((-413 . -652) 138341) ((-586 . -1058) T) ((-570 . -1058) T) ((-501 . -1058) T) ((-602 . -23) T) ((-348 . -1295) 138318) ((-323 . -458) 138297) ((-344 . -313) 138284) ((-601 . -23) T) ((-433 . -132) T) ((-664 . -654) 138258) ((-247 . -1019) 138242) ((-878 . -311) T) ((-1300 . -1290) 138226) ((-777 . -798) T) ((-777 . -801) T) ((-707 . -38) 138213) ((-570 . -235) T) ((-501 . -245) T) ((-501 . -235) T) ((-1159 . -237) 138163) ((-1096 . -916) 138142) ((-117 . -38) 138129) ((-211 . -806) T) ((-210 . -806) T) ((-209 . -806) T) ((-208 . -806) T) ((-878 . -1031) 138107) ((-1289 . -495) 138091) ((-788 . -916) 138070) ((-786 . -916) 138049) ((-1199 . -1226) T) ((-460 . -916) 138028) ((-743 . -495) 138012) ((-1096 . -654) 137937) ((-705 . -622) 137872) ((-788 . -654) 137797) ((-629 . -1065) 137784) ((-485 . -1226) T) ((-348 . -373) T) ((-142 . -495) 137766) ((-786 . -654) 137691) ((-1150 . -1226) T) ((-555 . -856) T) ((-467 . -654) 137662) ((-267 . -893) 137521) ((-249 . -893) NIL) ((-118 . -1065) 137466) ((-460 . -654) 137391) ((-670 . -1047) 137368) ((-629 . -111) 137353) ((-396 . -1060) 137337) ((-360 . -1047) 137321) ((-357 . -1047) 137305) ((-349 . -1047) 137289) ((-267 . -1047) 137133) ((-249 . -1047) 137009) ((-118 . -111) 136938) ((-59 . -1226) T) ((-396 . -646) 136922) ((-627 . -1060) 136906) ((-525 . -1226) T) ((-522 . -1226) T) ((-503 . -1226) T) ((-502 . -1226) T) ((-443 . -619) 136888) ((-440 . -619) 136870) ((-627 . -646) 136854) ((-3 . -102) T) ((-1036 . -1219) 136823) ((-839 . -102) T) ((-695 . -57) 136781) ((-705 . -1058) T) ((-641 . -652) 136750) ((-613 . -652) 136719) ((-50 . -654) 136693) ((-293 . -458) T) ((-482 . -1219) 136662) ((0 . -102) T) ((-587 . -654) 136627) ((-524 . -654) 136572) ((-49 . -102) T) ((-917 . -1047) 136559) ((-705 . -245) T) ((-1089 . -415) 136538) ((-737 . -645) 136486) ((-1008 . -1109) T) ((-718 . -174) 136377) ((-629 . -622) 136272) ((-493 . -1001) 136254) ((-267 . -382) 136238) ((-249 . -382) 136222) ((-405 . -1109) T) ((-1035 . -102) 136200) ((-344 . -38) 136184) ((-219 . -1001) 136166) ((-118 . -622) 136096) ((-176 . -38) 136028) ((-1260 . -311) 136007) ((-1239 . -311) 135986) ((-664 . -732) T) ((-99 . -619) 135968) ((-483 . -1060) 135933) ((-1177 . -645) 135885) ((-483 . -646) 135850) ((-491 . -25) T) ((-491 . -21) T) ((-1239 . -1031) 135802) ((-1066 . -1226) T) ((-629 . -1058) T) ((-384 . -410) T) ((-396 . -102) T) ((-1114 . -624) 135717) ((-267 . -907) 135663) ((-249 . -907) 135640) ((-118 . -1058) T) ((-822 . -1121) T) ((-1096 . -732) T) ((-629 . -235) 135619) ((-627 . -102) T) ((-788 . -732) T) ((-786 . -732) T) ((-419 . -1121) T) ((-118 . -245) T) ((-40 . -373) NIL) ((-118 . -235) NIL) ((-1231 . -856) T) ((-460 . -732) T) ((-822 . -23) T) ((-737 . -25) T) ((-737 . -21) T) ((-1086 . -290) 135598) ((-78 . -402) T) ((-78 . -401) T) ((-539 . -773) 135580) ((-700 . -1065) 135530) ((-1268 . -132) T) ((-1261 . -132) T) ((-1240 . -132) T) ((-1184 . -25) T) ((-1151 . -417) 135514) ((-641 . -372) 135446) ((-613 . -372) 135378) ((-1166 . -1158) 135362) ((-103 . -1109) 135340) ((-1184 . -21) T) ((-1183 . -21) T) ((-871 . -619) 135322) ((-1008 . -723) 135270) ((-225 . -654) 135237) ((-700 . -111) 135171) ((-50 . -732) T) ((-1183 . -25) T) ((-356 . -354) T) ((-1177 . -21) T) ((-1089 . -458) 135122) ((-1177 . -25) T) ((-718 . -520) 135069) ((-587 . -732) T) ((-524 . -732) T) ((-1135 . -21) T) ((-1135 . -25) T) ((-602 . -132) T) ((-298 . -652) 134804) ((-601 . -132) T) ((-364 . -458) T) ((-358 . -458) T) ((-350 . -458) T) ((-480 . -311) 134783) ((-1234 . -102) T) ((-317 . -290) 134718) ((-108 . -458) T) ((-79 . -447) T) ((-79 . -401) T) ((-483 . -102) T) ((-697 . -622) 134702) ((-1304 . -619) 134684) ((-1304 . -620) 134666) ((-1089 . -408) 134645) ((-1044 . -495) 134576) ((-570 . -801) T) ((-570 . -798) T) ((-1072 . -237) 134522) ((-364 . -408) 134473) ((-358 . -408) 134424) ((-350 . -408) 134375) ((-1291 . -1121) T) ((-1300 . -1060) 134359) ((-386 . -1060) 134343) ((-1300 . -646) 134313) ((-386 . -646) 134283) ((-700 . -622) 134218) ((-1291 . -23) T) ((-1278 . -102) T) ((-177 . -619) 134200) ((-1151 . -1067) T) ((-553 . -373) T) ((-676 . -750) 134184) ((-1188 . -146) 134163) ((-1188 . -148) 134142) ((-1155 . -1109) T) ((-1155 . -1080) 134111) ((-69 . -1226) T) ((-1033 . -1065) 134048) ((-356 . -652) 133978) ((-872 . -1067) T) ((-242 . -645) 133884) ((-700 . -1058) T) ((-359 . -1065) 133829) ((-61 . -1226) T) ((-1033 . -111) 133745) ((-908 . -619) 133656) ((-700 . -245) T) ((-700 . -235) NIL) ((-849 . -854) 133635) ((-705 . -801) T) ((-705 . -798) T) ((-1012 . -417) 133612) ((-359 . -111) 133541) ((-384 . -927) T) ((-413 . -854) 133520) ((-718 . -294) 133431) ((-225 . -732) T) ((-1268 . -499) 133397) ((-1261 . -499) 133363) ((-1240 . -499) 133329) ((-584 . -1109) T) ((-320 . -1011) 133308) ((-224 . -1109) 133286) ((-1233 . -850) T) ((-323 . -982) 133248) ((-105 . -102) T) ((-48 . -1065) 133213) ((-1300 . -102) T) ((-386 . -102) T) ((-48 . -111) 133169) ((-1013 . -645) 133151) ((-1262 . -619) 133133) ((-537 . -102) T) ((-506 . -102) T) ((-1142 . -1143) 133117) ((-153 . -1283) 133101) ((-247 . -1226) T) ((-1225 . -102) T) ((-1033 . -622) 133038) ((-1182 . -1230) 133017) ((-359 . -622) 132947) ((-1134 . -1230) 132926) ((-242 . -21) 132836) ((-242 . -25) 132687) ((-128 . -120) 132671) ((-122 . -120) 132655) ((-44 . -750) 132639) ((-1182 . -562) 132550) ((-1134 . -562) 132481) ((-1233 . -1109) T) ((-1044 . -290) 132456) ((-1176 . -1092) T) ((-1003 . -1092) T) ((-822 . -132) T) ((-118 . -801) NIL) ((-118 . -798) NIL) ((-360 . -311) T) ((-357 . -311) T) ((-349 . -311) T) ((-254 . -1121) 132366) ((-253 . -1121) 132276) ((-1033 . -1058) T) ((-1012 . -1067) T) ((-48 . -622) 132209) ((-348 . -654) 132154) ((-627 . -38) 132138) ((-1289 . -619) 132100) ((-1289 . -620) 132061) ((-1086 . -619) 132043) ((-1033 . -245) T) ((-359 . -1058) T) ((-821 . -1283) 132013) ((-254 . -23) T) ((-253 . -23) T) ((-996 . -619) 131995) ((-743 . -620) 131956) ((-743 . -619) 131938) ((-805 . -856) 131917) ((-1169 . -152) 131864) ((-1008 . -520) 131776) ((-359 . -235) T) ((-359 . -245) T) ((-394 . -622) 131757) ((-1013 . -25) T) ((-142 . -619) 131739) ((-142 . -620) 131698) ((-917 . -311) T) ((-1013 . -21) T) ((-980 . -25) T) ((-921 . -21) T) ((-921 . -25) T) ((-433 . -21) T) ((-433 . -25) T) ((-849 . -417) 131682) ((-48 . -1058) T) ((-1298 . -1290) 131666) ((-1296 . -1290) 131650) ((-1044 . -610) 131625) ((-320 . -620) 131486) ((-320 . -619) 131468) ((-317 . -620) NIL) ((-317 . -619) 131450) ((-48 . -245) T) ((-48 . -235) T) ((-660 . -290) 131411) ((-556 . -237) 131361) ((-140 . -619) 131328) ((-137 . -619) 131310) ((-115 . -619) 131292) ((-483 . -38) 131257) ((-1300 . -1297) 131236) ((-1291 . -132) T) ((-1299 . -1067) T) ((-1091 . -102) T) ((-88 . -1226) T) ((-506 . -313) NIL) ((-1009 . -107) 131220) ((-896 . -1109) T) ((-892 . -1109) T) ((-1276 . -657) 131204) ((-1276 . -378) 131188) ((-331 . -1226) T) ((-599 . -856) T) ((-1151 . -1109) T) ((-1151 . -1062) 131128) ((-103 . -520) 131061) ((-934 . -619) 131043) ((-348 . -732) T) ((-30 . -619) 131025) ((-872 . -1109) T) ((-849 . -1067) 131004) ((-40 . -654) 130949) ((-227 . -1230) T) ((-413 . -1067) T) ((-1168 . -152) 130931) ((-1008 . -294) 130882) ((-623 . -1109) T) ((-227 . -562) T) ((-323 . -1257) 130866) ((-323 . -1254) 130836) ((-707 . -652) 130808) ((-1199 . -1202) 130787) ((-1084 . -619) 130769) ((-1199 . -107) 130719) ((-653 . -152) 130703) ((-638 . -152) 130649) ((-117 . -652) 130621) ((-485 . -1202) 130600) ((-493 . -148) T) ((-493 . -146) NIL) ((-1129 . -620) 130515) ((-444 . -619) 130497) ((-219 . -148) T) ((-219 . -146) NIL) ((-1129 . -619) 130479) ((-130 . -102) T) ((-52 . -102) T) ((-1240 . -645) 130431) ((-485 . -107) 130381) ((-1002 . -23) T) ((-1300 . -38) 130351) ((-1182 . -1121) T) ((-1134 . -1121) T) ((-1071 . -1230) T) ((-315 . -102) T) ((-860 . -1121) T) ((-959 . -1230) 130330) ((-487 . -1230) 130309) ((-1071 . -562) T) ((-959 . -562) 130240) ((-1182 . -23) T) ((-1160 . -1092) T) ((-1134 . -23) T) ((-860 . -23) T) ((-487 . -562) 130171) ((-1151 . -723) 130103) ((-676 . -1060) 130087) ((-1155 . -520) 130020) ((-676 . -646) 130004) ((-1044 . -620) NIL) ((-1044 . -619) 129986) ((-96 . -1092) T) ((-872 . -723) 129956) ((-1220 . -47) 129925) ((-254 . -132) T) ((-253 . -132) T) ((-1113 . -1109) T) ((-1012 . -1109) T) ((-62 . -619) 129907) ((-1177 . -856) NIL) ((-1033 . -798) T) ((-1033 . -801) T) ((-1304 . -1065) 129894) ((-1304 . -111) 129879) ((-1268 . -25) T) ((-1268 . -21) T) ((-876 . -654) 129866) ((-1261 . -21) T) ((-1261 . -25) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-1036 . -152) 129850) ((-878 . -826) 129829) ((-878 . -927) T) ((-718 . -290) 129756) ((-602 . -21) T) ((-344 . -652) 129715) ((-602 . -25) T) ((-601 . -21) T) ((-176 . -652) 129632) ((-40 . -732) T) ((-224 . -520) 129565) ((-601 . -25) T) ((-482 . -152) 129549) ((-469 . -152) 129533) ((-928 . -800) T) ((-928 . -732) T) ((-777 . -799) T) ((-777 . -800) T) ((-512 . -1109) T) ((-508 . -1109) T) ((-777 . -732) T) ((-227 . -368) T) ((-1298 . -1060) 129517) ((-1296 . -1060) 129501) ((-1298 . -646) 129471) ((-1166 . -1109) 129449) ((-877 . -1230) T) ((-1296 . -646) 129419) ((-660 . -619) 129401) ((-877 . -562) T) ((-700 . -373) NIL) ((-44 . -1060) 129385) ((-1304 . -622) 129367) ((-1299 . -1109) T) ((-676 . -102) T) ((-364 . -1283) 129351) ((-358 . -1283) 129335) ((-44 . -646) 129319) ((-350 . -1283) 129303) ((-554 . -102) T) ((-526 . -856) 129282) ((-1055 . -1109) T) ((-823 . -458) 129261) ((-153 . -1060) 129245) ((-1055 . -1080) 129174) ((-1036 . -985) 129143) ((-825 . -1121) T) ((-1012 . -723) 129088) ((-153 . -646) 129072) ((-392 . -1121) T) ((-482 . -985) 129041) ((-469 . -985) 129010) ((-110 . -152) 128992) ((-73 . -619) 128974) ((-900 . -619) 128956) ((-1089 . -730) 128935) ((-1304 . -1058) T) ((-822 . -645) 128883) ((-298 . -1067) 128825) ((-171 . -1230) 128730) ((-227 . -1121) T) ((-328 . -23) T) ((-1177 . -1001) 128682) ((-849 . -1109) T) ((-1262 . -1065) 128587) ((-1135 . -746) 128566) ((-1260 . -927) 128545) ((-1239 . -927) 128524) ((-876 . -732) T) ((-171 . -562) 128435) ((-586 . -654) 128422) ((-570 . -654) 128409) ((-413 . -1109) T) ((-266 . -1109) T) ((-215 . -619) 128391) ((-501 . -654) 128356) ((-227 . -23) T) ((-1239 . -826) 128309) ((-1298 . -102) T) ((-359 . -1295) 128286) ((-1296 . -102) T) ((-1262 . -111) 128178) ((-821 . -1060) 128075) ((-821 . -646) 128017) ((-145 . -619) 127999) ((-1002 . -132) T) ((-44 . -102) T) ((-242 . -856) 127950) ((-1249 . -1230) 127929) ((-103 . -495) 127913) ((-1299 . -723) 127883) ((-1096 . -47) 127844) ((-1071 . -1121) T) ((-959 . -1121) T) ((-128 . -34) T) ((-122 . -34) T) ((-788 . -47) 127821) ((-786 . -47) 127793) ((-1249 . -562) 127704) ((-359 . -373) T) ((-487 . -1121) T) ((-1182 . -132) T) ((-1134 . -132) T) ((-460 . -47) 127683) ((-877 . -368) T) ((-860 . -132) T) ((-153 . -102) T) ((-1071 . -23) T) ((-959 . -23) T) ((-577 . -562) T) ((-822 . -25) T) ((-822 . -21) T) ((-1151 . -520) 127616) ((-598 . -1092) T) ((-592 . -1047) 127600) ((-1262 . -622) 127474) ((-487 . -23) T) ((-356 . -1067) T) ((-1220 . -907) 127455) ((-676 . -313) 127393) ((-1122 . -1283) 127363) ((-705 . -654) 127328) ((-1012 . -174) T) ((-970 . -146) 127307) ((-641 . -1109) T) ((-613 . -1109) T) ((-970 . -148) 127286) ((-1013 . -856) T) ((-741 . -148) 127265) ((-741 . -146) 127244) ((-980 . -856) T) ((-839 . -652) 127161) ((-480 . -927) 127140) ((-323 . -1060) 126975) ((-320 . -1065) 126885) ((-317 . -1065) 126814) ((-1008 . -290) 126772) ((-413 . -723) 126724) ((-323 . -646) 126565) ((-707 . -854) T) ((-1262 . -1058) T) ((-320 . -111) 126461) ((-317 . -111) 126374) ((-971 . -102) T) ((-821 . -102) 126164) ((-718 . -620) NIL) ((-718 . -619) 126146) ((-664 . -1047) 126042) ((-1262 . -330) 125986) ((-1044 . -292) 125961) ((-586 . -732) T) ((-570 . -800) T) ((-171 . -368) 125912) ((-570 . -797) T) ((-570 . -732) T) ((-501 . -732) T) ((-1155 . -495) 125896) ((-1096 . -893) NIL) ((-877 . -1121) T) ((-118 . -916) NIL) ((-1298 . -1297) 125872) ((-1296 . -1297) 125851) ((-788 . -893) NIL) ((-786 . -893) 125710) ((-1291 . -25) T) ((-1291 . -21) T) ((-1223 . -102) 125688) ((-1115 . -401) T) ((-629 . -654) 125675) ((-460 . -893) NIL) ((-681 . -102) 125653) ((-1096 . -1047) 125480) ((-877 . -23) T) ((-788 . -1047) 125339) ((-786 . -1047) 125196) ((-118 . -654) 125141) ((-460 . -1047) 125017) ((-320 . -622) 124581) ((-317 . -622) 124464) ((-396 . -652) 124433) ((-655 . -1047) 124417) ((-633 . -102) T) ((-224 . -495) 124401) ((-1276 . -34) T) ((-627 . -652) 124360) ((-293 . -1060) 124347) ((-137 . -622) 124331) ((-293 . -646) 124318) ((-641 . -723) 124302) ((-613 . -723) 124286) ((-676 . -38) 124246) ((-323 . -102) T) ((-85 . -619) 124228) ((-50 . -1047) 124212) ((-1129 . -1065) 124199) ((-1096 . -382) 124183) ((-788 . -382) 124167) ((-705 . -732) T) ((-705 . -800) T) ((-705 . -797) T) ((-587 . -1047) 124154) ((-524 . -1047) 124131) ((-60 . -57) 124093) ((-328 . -132) T) ((-320 . -1058) 123983) ((-317 . -1058) T) ((-171 . -1121) T) ((-786 . -382) 123967) ((-45 . -152) 123917) ((-1013 . -1001) 123899) ((-460 . -382) 123883) ((-413 . -174) T) ((-320 . -245) 123862) ((-317 . -245) T) ((-317 . -235) NIL) ((-298 . -1109) 123644) ((-227 . -132) T) ((-1129 . -111) 123629) ((-171 . -23) T) ((-805 . -148) 123608) ((-805 . -146) 123587) ((-254 . -645) 123493) ((-253 . -645) 123399) ((-323 . -288) 123365) ((-1166 . -520) 123298) ((-483 . -652) 123248) ((-1142 . -1109) T) ((-227 . -1069) T) ((-821 . -313) 123186) ((-1096 . -907) 123121) ((-788 . -907) 123064) ((-786 . -907) 123048) ((-1298 . -38) 123018) ((-1296 . -38) 122988) ((-1249 . -1121) T) ((-861 . -1121) T) ((-460 . -907) 122965) ((-864 . -1109) T) ((-1249 . -23) T) ((-1129 . -622) 122937) ((-577 . -1121) T) ((-861 . -23) T) ((-629 . -732) T) ((-360 . -927) T) ((-357 . -927) T) ((-293 . -102) T) ((-349 . -927) T) ((-1071 . -132) T) ((-979 . -1092) T) ((-959 . -132) T) ((-118 . -800) NIL) ((-118 . -797) NIL) ((-118 . -732) T) ((-700 . -916) NIL) ((-1055 . -520) 122838) ((-487 . -132) T) ((-577 . -23) T) ((-681 . -313) 122776) ((-641 . -767) T) ((-613 . -767) T) ((-1240 . -856) NIL) ((-1089 . -1060) 122686) ((-1012 . -294) T) ((-700 . -654) 122636) ((-254 . -21) T) ((-356 . -1109) T) ((-254 . -25) T) ((-253 . -21) T) ((-253 . -25) T) ((-153 . -38) 122620) ((-2 . -102) T) ((-917 . -927) T) ((-1089 . -646) 122488) ((-488 . -1283) 122458) ((-1129 . -1058) T) ((-717 . -311) T) ((-364 . -1060) 122410) ((-358 . -1060) 122362) ((-350 . -1060) 122314) ((-364 . -646) 122266) ((-225 . -1047) 122243) ((-358 . -646) 122195) ((-108 . -1060) 122145) ((-350 . -646) 122097) ((-298 . -723) 122039) ((-707 . -1067) T) ((-493 . -458) T) ((-413 . -520) 121951) ((-108 . -646) 121901) ((-219 . -458) T) ((-1129 . -235) T) ((-299 . -152) 121851) ((-1008 . -620) 121812) ((-1008 . -619) 121794) ((-998 . -619) 121776) ((-117 . -1067) T) ((-660 . -1065) 121760) ((-227 . -499) T) ((-405 . -619) 121742) ((-405 . -620) 121719) ((-1063 . -1283) 121689) ((-660 . -111) 121668) ((-1151 . -495) 121652) ((-1300 . -652) 121611) ((-386 . -652) 121580) ((-821 . -38) 121550) ((-63 . -447) T) ((-63 . -401) T) ((-1169 . -102) T) ((-877 . -132) T) ((-490 . -102) 121528) ((-1304 . -373) T) ((-1089 . -102) T) ((-1070 . -102) T) ((-356 . -723) 121473) ((-737 . -148) 121452) ((-737 . -146) 121431) ((-660 . -622) 121349) ((-1033 . -654) 121286) ((-529 . -1109) 121264) ((-364 . -102) T) ((-358 . -102) T) ((-350 . -102) T) ((-108 . -102) T) ((-510 . -1109) T) ((-359 . -654) 121209) ((-1182 . -645) 121157) ((-1134 . -645) 121105) ((-390 . -515) 121084) ((-839 . -854) 121063) ((-384 . -1230) T) ((-700 . -732) T) ((-1240 . -1001) 121015) ((-344 . -1067) T) ((-112 . -1226) T) ((-176 . -1067) T) ((-103 . -619) 120947) ((-1184 . -146) 120926) ((-1184 . -148) 120905) ((-384 . -562) T) ((-1183 . -148) 120884) ((-1183 . -146) 120863) ((-1177 . -146) 120770) ((-413 . -294) T) ((-1177 . -148) 120677) ((-1135 . -148) 120656) ((-1135 . -146) 120635) ((-323 . -38) 120476) ((-171 . -132) T) ((-317 . -801) NIL) ((-317 . -798) NIL) ((-660 . -1058) T) ((-48 . -654) 120441) ((-1122 . -1060) 120338) ((-900 . -622) 120315) ((-1122 . -646) 120257) ((-1176 . -102) T) ((-1003 . -102) T) ((-1002 . -21) T) ((-128 . -1019) 120241) ((-122 . -1019) 120225) ((-1002 . -25) T) ((-908 . -120) 120209) ((-1168 . -102) T) ((-1249 . -132) T) ((-1182 . -25) T) ((-1182 . -21) T) ((-861 . -132) T) ((-1134 . -25) T) ((-1134 . -21) T) ((-860 . -25) T) ((-860 . -21) T) ((-788 . -311) 120188) ((-653 . -102) 120166) ((-638 . -102) T) ((-1169 . -313) 119961) ((-577 . -132) T) ((-627 . -854) 119940) ((-1166 . -495) 119924) ((-1159 . -152) 119874) ((-1155 . -619) 119836) ((-1155 . -620) 119797) ((-1033 . -797) T) ((-1033 . -800) T) ((-1033 . -732) T) ((-718 . -1065) 119620) ((-490 . -313) 119558) ((-459 . -423) 119528) ((-356 . -174) T) ((-293 . -38) 119515) ((-277 . -102) T) ((-276 . -102) T) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-348 . -1047) 119492) ((-271 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-359 . -732) T) ((-718 . -111) 119301) ((-676 . -233) 119285) ((-587 . -311) T) ((-524 . -311) T) ((-298 . -520) 119234) ((-108 . -313) NIL) ((-72 . -401) T) ((-1122 . -102) 119024) ((-839 . -417) 119008) ((-1129 . -801) T) ((-1129 . -798) T) ((-707 . -1109) T) ((-584 . -619) 118990) ((-384 . -368) T) ((-171 . -499) 118968) ((-224 . -619) 118900) ((-135 . -1109) T) ((-117 . -1109) T) ((-973 . -1226) T) ((-48 . -732) T) ((-1055 . -495) 118865) ((-142 . -431) 118847) ((-142 . -373) T) ((-1036 . -102) T) ((-518 . -515) 118826) ((-718 . -622) 118582) ((-482 . -102) T) ((-469 . -102) T) ((-1043 . -1121) T) ((-1233 . -619) 118564) ((-1191 . -1047) 118500) ((-1184 . -35) 118466) ((-1184 . -95) 118432) ((-1184 . -1214) 118398) ((-1184 . -1211) 118364) ((-1168 . -313) NIL) ((-89 . -402) T) ((-89 . -401) T) ((-1089 . -1161) 118343) ((-1183 . -1211) 118309) ((-1183 . -1214) 118275) ((-1043 . -23) T) ((-1183 . -95) 118241) ((-577 . -499) T) ((-1183 . -35) 118207) ((-1177 . -1211) 118173) ((-1177 . -1214) 118139) ((-1177 . -95) 118105) ((-366 . -1121) T) ((-364 . -1161) 118084) ((-358 . -1161) 118063) ((-350 . -1161) 118042) ((-1177 . -35) 118008) ((-1135 . -35) 117974) ((-1135 . -95) 117940) ((-108 . -1161) T) ((-1135 . -1214) 117906) ((-839 . -1067) 117885) ((-653 . -313) 117823) ((-638 . -313) 117674) ((-1135 . -1211) 117640) ((-718 . -1058) T) ((-1071 . -645) 117622) ((-1089 . -38) 117490) ((-959 . -645) 117438) ((-1013 . -148) T) ((-1013 . -146) NIL) ((-384 . -1121) T) ((-328 . -25) T) ((-326 . -23) T) ((-950 . -856) 117417) ((-718 . -330) 117394) ((-487 . -645) 117342) ((-40 . -1047) 117230) ((-718 . -235) T) ((-707 . -723) 117217) ((-344 . -1109) T) ((-176 . -1109) T) ((-335 . -856) T) ((-424 . -458) 117167) ((-384 . -23) T) ((-364 . -38) 117132) ((-358 . -38) 117097) ((-350 . -38) 117062) ((-80 . -447) T) ((-80 . -401) T) ((-227 . -25) T) ((-227 . -21) T) ((-842 . -1121) T) ((-108 . -38) 117012) ((-833 . -1121) T) ((-780 . -1109) T) ((-117 . -723) 116999) ((-678 . -1047) 116983) ((-618 . -102) T) ((-842 . -23) T) ((-833 . -23) T) ((-1166 . -290) 116960) ((-1122 . -313) 116898) ((-488 . -1060) 116795) ((-1111 . -237) 116779) ((-64 . -402) T) ((-64 . -401) T) ((-1160 . -102) T) ((-110 . -102) T) ((-488 . -646) 116721) ((-40 . -382) 116698) ((-96 . -102) T) ((-659 . -858) 116682) ((-1144 . -1092) T) ((-1071 . -21) T) ((-1071 . -25) T) ((-1063 . -1060) 116666) ((-821 . -233) 116635) ((-959 . -25) T) ((-959 . -21) T) ((-1063 . -646) 116577) ((-627 . -1067) T) ((-1129 . -373) T) ((-1036 . -313) 116515) ((-676 . -652) 116474) ((-487 . -25) T) ((-487 . -21) T) ((-390 . -1060) 116458) ((-896 . -619) 116440) ((-892 . -619) 116422) ((-529 . -520) 116355) ((-254 . -856) 116306) ((-253 . -856) 116257) ((-390 . -646) 116227) ((-877 . -645) 116204) ((-482 . -313) 116142) ((-469 . -313) 116080) ((-356 . -294) T) ((-1166 . -1264) 116064) ((-1151 . -619) 116026) ((-1151 . -620) 115987) ((-1149 . -102) T) ((-1008 . -1065) 115883) ((-40 . -907) 115835) ((-1166 . -610) 115812) ((-1304 . -654) 115799) ((-872 . -496) 115776) ((-1072 . -152) 115722) ((-878 . -1230) T) ((-1008 . -111) 115604) ((-344 . -723) 115588) ((-872 . -619) 115550) ((-176 . -723) 115482) ((-413 . -290) 115440) ((-878 . -562) T) ((-108 . -406) 115422) ((-84 . -389) T) ((-84 . -401) T) ((-707 . -174) T) ((-623 . -619) 115404) ((-99 . -732) T) ((-488 . -102) 115194) ((-99 . -479) T) ((-117 . -174) T) ((-1298 . -652) 115153) ((-1296 . -652) 115112) ((-1122 . -38) 115082) ((-171 . -645) 115030) ((-1063 . -102) T) ((-1008 . -622) 114920) ((-877 . -25) T) ((-821 . -240) 114899) ((-877 . -21) T) ((-824 . -102) T) ((-44 . -652) 114842) ((-420 . -102) T) ((-390 . -102) T) ((-110 . -313) NIL) ((-229 . -102) 114820) ((-128 . -1226) T) ((-122 . -1226) T) ((-823 . -1060) 114771) ((-823 . -646) 114713) ((-1043 . -132) T) ((-676 . -372) 114697) ((-153 . -652) 114656) ((-1008 . -1058) T) ((-1249 . -645) 114604) ((-1113 . -619) 114586) ((-1012 . -619) 114568) ((-521 . -23) T) ((-516 . -23) T) ((-348 . -311) T) ((-514 . -23) T) ((-326 . -132) T) ((-3 . -1109) T) ((-1012 . -620) 114552) ((-1008 . -245) 114531) ((-1008 . -235) 114510) ((-1304 . -732) T) ((-1268 . -146) 114489) ((-839 . -1109) T) ((-1268 . -148) 114468) ((-1261 . -148) 114447) ((-1261 . -146) 114426) ((-1260 . -1230) 114405) ((-1240 . -146) 114312) ((-1240 . -148) 114219) ((-1239 . -1230) 114198) ((-384 . -132) T) ((-570 . -893) 114180) ((0 . -1109) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1109) T) ((-1262 . -654) 114085) ((-1260 . -562) 114036) ((-720 . -1121) T) ((-1239 . -562) 113987) ((-570 . -1047) 113969) ((-601 . -148) 113948) ((-601 . -146) 113927) ((-501 . -1047) 113870) ((-1144 . -1146) T) ((-87 . -389) T) ((-87 . -401) T) ((-878 . -368) T) ((-842 . -132) T) ((-833 . -132) T) ((-971 . -652) 113814) ((-720 . -23) T) ((-512 . -619) 113780) ((-508 . -619) 113762) ((-821 . -652) 113512) ((-1300 . -1067) T) ((-384 . -1069) T) ((-1035 . -1109) 113490) ((-55 . -1047) 113472) ((-908 . -34) T) ((-488 . -313) 113410) ((-598 . -102) T) ((-1166 . -620) 113371) ((-1166 . -619) 113303) ((-1188 . -1060) 113186) ((-45 . -102) T) ((-823 . -102) T) ((-1188 . -646) 113083) ((-1249 . -25) T) ((-1249 . -21) T) ((-861 . -25) T) ((-44 . -372) 113067) ((-861 . -21) T) ((-737 . -458) 113018) ((-1299 . -619) 113000) ((-1288 . -1060) 112970) ((-1063 . -313) 112908) ((-677 . -1092) T) ((-612 . -1092) T) ((-396 . -1109) T) ((-577 . -25) T) ((-577 . -21) T) ((-182 . -1092) T) ((-162 . -1092) T) ((-157 . -1092) T) ((-155 . -1092) T) ((-1288 . -646) 112878) ((-627 . -1109) T) ((-705 . -893) 112860) ((-1276 . -1226) T) ((-229 . -313) 112798) ((-145 . -373) T) ((-1055 . -620) 112740) ((-1055 . -619) 112683) ((-317 . -916) NIL) ((-1234 . -850) T) ((-705 . -1047) 112628) ((-717 . -927) T) ((-480 . -1230) 112607) ((-1183 . -458) 112586) ((-1177 . -458) 112565) ((-334 . -102) T) ((-878 . -1121) T) ((-323 . -652) 112447) ((-320 . -654) 112268) ((-317 . -654) 112197) ((-480 . -562) 112148) ((-344 . -520) 112114) ((-556 . -152) 112064) ((-40 . -311) T) ((-849 . -619) 112046) ((-707 . -294) T) ((-878 . -23) T) ((-384 . -499) T) ((-1089 . -233) 112016) ((-518 . -102) T) ((-413 . -620) 111823) ((-413 . -619) 111805) ((-266 . -619) 111787) ((-117 . -294) T) ((-1262 . -732) T) ((-1260 . -368) 111766) ((-1239 . -368) 111745) ((-1289 . -34) T) ((-1234 . -1109) T) ((-118 . -1226) T) ((-108 . -233) 111727) ((-1188 . -102) T) ((-483 . -1109) T) ((-529 . -495) 111711) ((-743 . -34) T) ((-659 . -1060) 111695) ((-488 . -38) 111665) ((-659 . -646) 111635) ((-142 . -34) T) ((-118 . -891) 111612) ((-118 . -893) NIL) ((-629 . -1047) 111495) ((-650 . -856) 111474) ((-1288 . -102) T) ((-299 . -102) T) ((-718 . -373) 111453) ((-118 . -1047) 111430) ((-396 . -723) 111414) ((-627 . -723) 111398) ((-45 . -313) 111202) ((-822 . -146) 111181) ((-822 . -148) 111160) ((-293 . -652) 111132) ((-1299 . -387) 111111) ((-825 . -856) T) ((-1278 . -1109) T) ((-1169 . -231) 111058) ((-392 . -856) 111037) ((-1268 . -1214) 111003) ((-1268 . -1211) 110969) ((-1261 . -1211) 110935) ((-521 . -132) T) ((-1261 . -1214) 110901) ((-1240 . -1211) 110867) ((-1240 . -1214) 110833) ((-1268 . -35) 110799) ((-1268 . -95) 110765) ((-641 . -619) 110734) ((-613 . -619) 110703) ((-227 . -856) T) ((-1261 . -95) 110669) ((-1261 . -35) 110635) ((-1260 . -1121) T) ((-1129 . -654) 110622) ((-1240 . -95) 110588) ((-1239 . -1121) T) ((-599 . -152) 110570) ((-1089 . -354) 110549) ((-176 . -294) T) ((-118 . -382) 110526) ((-118 . -343) 110503) ((-1240 . -35) 110469) ((-876 . -311) T) ((-317 . -800) NIL) ((-317 . -797) NIL) ((-320 . -732) 110318) ((-317 . -732) T) ((-480 . -368) 110297) ((-364 . -354) 110276) ((-358 . -354) 110255) ((-350 . -354) 110234) ((-320 . -479) 110213) ((-1260 . -23) T) ((-1239 . -23) T) ((-724 . -1121) T) ((-720 . -132) T) ((-659 . -102) T) ((-483 . -723) 110178) ((-45 . -286) 110128) ((-105 . -1109) T) ((-68 . -619) 110110) ((-979 . -102) T) ((-870 . -102) T) ((-629 . -907) 110069) ((-1300 . -1109) T) ((-386 . -1109) T) ((-82 . -1226) T) ((-1225 . -1109) T) ((-1071 . -856) T) ((-118 . -907) NIL) ((-788 . -927) 110048) ((-719 . -856) T) ((-537 . -1109) T) ((-506 . -1109) T) ((-360 . -1230) T) ((-357 . -1230) T) ((-349 . -1230) T) ((-267 . -1230) 110027) ((-249 . -1230) 110006) ((-539 . -866) T) ((-1122 . -233) 109975) ((-1168 . -834) T) ((-1151 . -1065) 109959) ((-396 . -767) T) ((-700 . -1226) T) ((-697 . -1047) 109943) ((-360 . -562) T) ((-357 . -562) T) ((-349 . -562) T) ((-267 . -562) 109874) ((-249 . -562) 109805) ((-531 . -1092) T) ((-1151 . -111) 109784) ((-459 . -750) 109754) ((-872 . -1065) 109724) ((-823 . -38) 109666) ((-700 . -891) 109648) ((-700 . -893) 109630) ((-299 . -313) 109434) ((-917 . -1230) T) ((-1166 . -292) 109411) ((-1089 . -652) 109306) ((-676 . -417) 109290) ((-872 . -111) 109255) ((-1013 . -458) T) ((-700 . -1047) 109200) ((-917 . -562) T) ((-539 . -619) 109182) ((-587 . -927) T) ((-493 . -1060) 109132) ((-480 . -1121) T) ((-524 . -927) T) ((-921 . -458) T) ((-65 . -619) 109114) ((-219 . -1060) 109064) ((-493 . -646) 109014) ((-364 . -652) 108951) ((-358 . -652) 108888) ((-350 . -652) 108825) ((-638 . -231) 108771) ((-219 . -646) 108721) ((-108 . -652) 108671) ((-480 . -23) T) ((-1129 . -800) T) ((-878 . -132) T) ((-1129 . -797) T) ((-1291 . -1293) 108650) ((-1129 . -732) T) ((-660 . -654) 108624) ((-298 . -619) 108365) ((-1151 . -622) 108283) ((-1044 . -34) T) ((-821 . -854) 108262) ((-586 . -311) T) ((-570 . -311) T) ((-501 . -311) T) ((-1300 . -723) 108232) ((-700 . -382) 108214) ((-700 . -343) 108196) ((-483 . -174) T) ((-386 . -723) 108166) ((-872 . -622) 108101) ((-877 . -856) NIL) ((-570 . -1031) T) ((-501 . -1031) T) ((-1142 . -619) 108083) ((-1122 . -240) 108062) ((-216 . -102) T) ((-1159 . -102) T) ((-71 . -619) 108044) ((-1151 . -1058) T) ((-1188 . -38) 107941) ((-864 . -619) 107923) ((-570 . -551) T) ((-676 . -1067) T) ((-737 . -956) 107876) ((-1151 . -235) 107855) ((-1091 . -1109) T) ((-1043 . -25) T) ((-1043 . -21) T) ((-1012 . -1065) 107800) ((-912 . -102) T) ((-872 . -1058) T) ((-700 . -907) NIL) ((-360 . -333) 107784) ((-360 . -368) T) ((-357 . -333) 107768) ((-357 . -368) T) ((-349 . -333) 107752) ((-349 . -368) T) ((-493 . -102) T) ((-1288 . -38) 107722) ((-552 . -856) T) ((-529 . -693) 107672) ((-219 . -102) T) ((-1033 . -1047) 107552) ((-1012 . -111) 107481) ((-1184 . -982) 107450) ((-526 . -152) 107434) ((-1089 . -375) 107413) ((-356 . -619) 107395) ((-326 . -21) T) ((-359 . -1047) 107372) ((-326 . -25) T) ((-1183 . -982) 107334) ((-1177 . -982) 107303) ((-76 . -619) 107285) ((-1135 . -982) 107252) ((-705 . -311) T) ((-130 . -850) T) ((-917 . -368) T) ((-384 . -25) T) ((-384 . -21) T) ((-917 . -333) 107239) ((-86 . -619) 107221) ((-705 . -1031) T) ((-683 . -856) T) ((-1260 . -132) T) ((-1239 . -132) T) ((-908 . -1019) 107205) ((-842 . -21) T) ((-48 . -1047) 107148) ((-842 . -25) T) ((-833 . -25) T) ((-833 . -21) T) ((-1122 . -652) 106898) ((-1298 . -1067) T) ((-555 . -102) T) ((-1296 . -1067) T) ((-660 . -732) T) ((-1113 . -624) 106801) ((-1012 . -622) 106731) ((-1299 . -1065) 106715) ((-821 . -417) 106684) ((-103 . -120) 106668) ((-130 . -1109) T) ((-52 . -1109) T) ((-933 . -619) 106650) ((-877 . -1001) 106627) ((-829 . -102) T) ((-1299 . -111) 106606) ((-659 . -38) 106576) ((-577 . -856) T) ((-360 . -1121) T) ((-357 . -1121) T) ((-349 . -1121) T) ((-267 . -1121) T) ((-249 . -1121) T) ((-629 . -311) 106555) ((-1159 . -313) 106359) ((-670 . -23) T) ((-530 . -1092) T) ((-315 . -1109) T) ((-488 . -233) 106328) ((-153 . -1067) T) ((-360 . -23) T) ((-357 . -23) T) ((-349 . -23) T) ((-118 . -311) T) ((-267 . -23) T) ((-249 . -23) T) ((-1012 . -1058) T) ((-718 . -916) 106307) ((-1166 . -622) 106284) ((-1012 . -235) 106256) ((-1012 . -245) T) ((-118 . -1031) NIL) ((-917 . -1121) T) ((-1261 . -458) 106235) ((-1240 . -458) 106214) ((-529 . -619) 106146) ((-718 . -654) 106071) ((-413 . -1065) 106023) ((-510 . -619) 106005) ((-917 . -23) T) ((-493 . -313) NIL) ((-1299 . -622) 105961) ((-480 . -132) T) ((-219 . -313) NIL) ((-413 . -111) 105899) ((-821 . -1067) 105829) ((-743 . -1107) 105813) ((-1260 . -499) 105779) ((-1239 . -499) 105745) ((-554 . -850) T) ((-142 . -1107) 105727) ((-483 . -294) T) ((-1299 . -1058) T) ((-1231 . -102) T) ((-1072 . -102) T) ((-849 . -622) 105595) ((-506 . -520) NIL) ((-488 . -240) 105574) ((-413 . -622) 105472) ((-970 . -1060) 105355) ((-741 . -1060) 105325) ((-970 . -646) 105222) ((-1182 . -146) 105201) ((-741 . -646) 105171) ((-459 . -1060) 105141) ((-1182 . -148) 105120) ((-1134 . -148) 105099) ((-1134 . -146) 105078) ((-641 . -1065) 105062) ((-613 . -1065) 105046) ((-459 . -646) 105016) ((-1184 . -1267) 105000) ((-1184 . -1254) 104977) ((-676 . -1109) T) ((-676 . -1062) 104917) ((-1183 . -1259) 104878) ((-554 . -1109) T) ((-493 . -1161) T) ((-1183 . -1254) 104848) ((-1183 . -1257) 104832) ((-1177 . -1238) 104793) ((-219 . -1161) T) ((-348 . -927) T) ((-824 . -269) 104777) ((-641 . -111) 104756) ((-613 . -111) 104735) ((-1177 . -1254) 104712) ((-849 . -1058) 104691) ((-1177 . -1236) 104675) ((-521 . -25) T) ((-501 . -306) T) ((-517 . -23) T) ((-516 . -25) T) ((-514 . -25) T) ((-513 . -23) T) ((-424 . -1060) 104649) ((-413 . -1058) T) ((-323 . -1067) T) ((-700 . -311) T) ((-424 . -646) 104623) ((-108 . -854) T) ((-718 . -732) T) ((-413 . -245) T) ((-413 . -235) 104602) ((-493 . -38) 104552) ((-219 . -38) 104502) ((-480 . -499) 104468) ((-1233 . -373) T) ((-1168 . -1153) T) ((-1110 . -102) T) ((-707 . -619) 104450) ((-707 . -620) 104365) ((-720 . -21) T) ((-720 . -25) T) ((-1144 . -102) T) ((-488 . -652) 104115) ((-135 . -619) 104097) ((-117 . -619) 104079) ((-158 . -25) T) ((-1298 . -1109) T) ((-878 . -645) 104027) ((-1296 . -1109) T) ((-970 . -102) T) ((-741 . -102) T) ((-721 . -102) T) ((-459 . -102) T) ((-822 . -458) 103978) ((-44 . -1109) T) ((-1097 . -856) T) ((-1072 . -313) 103829) ((-670 . -132) T) ((-1063 . -652) 103798) ((-676 . -723) 103782) ((-293 . -1067) T) ((-360 . -132) T) ((-357 . -132) T) ((-349 . -132) T) ((-267 . -132) T) ((-249 . -132) T) ((-390 . -652) 103751) ((-424 . -102) T) ((-153 . -1109) T) ((-45 . -231) 103701) ((-805 . -1060) 103685) ((-965 . -856) 103664) ((-1008 . -654) 103602) ((-805 . -646) 103586) ((-242 . -1283) 103556) ((-1033 . -311) T) ((-298 . -1065) 103477) ((-917 . -132) T) ((-40 . -927) T) ((-493 . -406) 103459) ((-359 . -311) T) ((-219 . -406) 103441) ((-1089 . -417) 103425) ((-298 . -111) 103341) ((-1193 . -856) T) ((-1192 . -856) T) ((-878 . -25) T) ((-878 . -21) T) ((-344 . -619) 103323) ((-1262 . -47) 103267) ((-227 . -148) T) ((-176 . -619) 103249) ((-1122 . -854) 103228) ((-780 . -619) 103210) ((-129 . -856) T) ((-614 . -237) 103157) ((-481 . -237) 103107) ((-1298 . -723) 103077) ((-48 . -311) T) ((-1296 . -723) 103047) ((-65 . -622) 102976) ((-971 . -1109) T) ((-821 . -1109) 102766) ((-316 . -102) T) ((-908 . -1226) T) ((-48 . -1031) T) ((-1239 . -645) 102674) ((-695 . -102) 102652) ((-44 . -723) 102636) ((-556 . -102) T) ((-298 . -622) 102567) ((-67 . -388) T) ((-67 . -401) T) ((-668 . -23) T) ((-823 . -652) 102503) ((-676 . -767) T) ((-1223 . -1109) 102481) ((-356 . -1065) 102426) ((-681 . -1109) 102404) ((-1071 . -148) T) ((-959 . -148) 102383) ((-959 . -146) 102362) ((-805 . -102) T) ((-153 . -723) 102346) ((-487 . -148) 102325) ((-487 . -146) 102304) ((-356 . -111) 102233) ((-1089 . -1067) T) ((-326 . -856) 102212) ((-1268 . -982) 102181) ((-633 . -1109) T) ((-1261 . -982) 102143) ((-517 . -132) T) ((-513 . -132) T) ((-299 . -231) 102093) ((-364 . -1067) T) ((-358 . -1067) T) ((-350 . -1067) T) ((-298 . -1058) 102035) ((-1240 . -982) 102004) ((-384 . -856) T) ((-108 . -1067) T) ((-1008 . -732) T) ((-876 . -927) T) ((-849 . -801) 101983) ((-849 . -798) 101962) ((-424 . -313) 101901) ((-474 . -102) T) ((-601 . -982) 101870) ((-323 . -1109) T) ((-413 . -801) 101849) ((-413 . -798) 101828) ((-506 . -495) 101810) ((-1262 . -1047) 101776) ((-1260 . -21) T) ((-1260 . -25) T) ((-1239 . -21) T) ((-1239 . -25) T) ((-821 . -723) 101718) ((-356 . -622) 101648) ((-705 . -410) T) ((-1289 . -1226) T) ((-612 . -102) T) ((-1122 . -417) 101617) ((-1012 . -373) NIL) ((-677 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1188 . -652) 101527) ((-743 . -1226) T) ((-737 . -1060) 101370) ((-44 . -767) T) ((-737 . -646) 101219) ((-599 . -102) T) ((-77 . -402) T) ((-77 . -401) T) ((-659 . -662) 101203) ((-142 . -1226) T) ((-877 . -148) T) ((-877 . -146) NIL) ((-1225 . -93) T) ((-356 . -1058) T) ((-70 . -388) T) ((-70 . -401) T) ((-1175 . -102) T) ((-676 . -520) 101136) ((-1288 . -652) 101081) ((-695 . -313) 101019) ((-970 . -38) 100916) ((-1190 . -619) 100898) ((-741 . -38) 100868) ((-556 . -313) 100672) ((-1184 . -1060) 100555) ((-320 . -1226) T) ((-356 . -235) T) ((-356 . -245) T) ((-317 . -1226) T) ((-293 . -1109) T) ((-1183 . -1060) 100390) ((-1177 . -1060) 100180) ((-1135 . -1060) 100063) ((-1184 . -646) 99960) ((-1183 . -646) 99801) ((-717 . -1230) T) ((-1177 . -646) 99597) ((-1166 . -657) 99581) ((-1135 . -646) 99478) ((-1220 . -562) 99457) ((-825 . -391) 99441) ((-717 . -562) T) ((-320 . -891) 99425) ((-320 . -893) 99350) ((-317 . -891) 99311) ((-317 . -893) NIL) ((-805 . -313) 99276) ((-323 . -723) 99117) ((-392 . -391) 99101) ((-328 . -327) 99078) ((-491 . -102) T) ((-480 . -25) T) ((-480 . -21) T) ((-424 . -38) 99052) ((-320 . -1047) 98715) ((-227 . -1211) T) ((-227 . -1214) T) ((-3 . -619) 98697) ((-317 . -1047) 98627) ((-2 . -1109) T) ((-2 . |RecordCategory|) T) ((-839 . -619) 98609) ((-1122 . -1067) 98539) ((-586 . -927) T) ((-570 . -826) T) ((-570 . -927) T) ((-501 . -927) T) ((-137 . -1047) 98523) ((-227 . -95) T) ((-171 . -148) 98502) ((-75 . -447) T) ((0 . -619) 98484) ((-75 . -401) T) ((-171 . -146) 98435) ((-227 . -35) T) ((-49 . -619) 98417) ((-483 . -1067) T) ((-493 . -233) 98399) ((-490 . -977) 98383) ((-488 . -854) 98362) ((-219 . -233) 98344) ((-81 . -447) T) ((-81 . -401) T) ((-1155 . -34) T) ((-821 . -174) 98323) ((-737 . -102) T) ((-659 . -652) 98282) ((-1035 . -619) 98249) ((-506 . -290) 98224) ((-320 . -382) 98193) ((-317 . -382) 98154) ((-317 . -343) 98115) ((-1094 . -619) 98097) ((-822 . -956) 98044) ((-668 . -132) T) ((-1249 . -146) 98023) ((-1249 . -148) 98002) ((-1184 . -102) T) ((-1183 . -102) T) ((-1177 . -102) T) ((-1169 . -1109) T) ((-1135 . -102) T) ((-224 . -34) T) ((-293 . -723) 97989) ((-1169 . -616) 97965) ((-599 . -313) NIL) ((-490 . -1109) 97943) ((-1159 . -231) 97893) ((-396 . -619) 97875) ((-516 . -856) T) ((-1129 . -1226) T) ((-1268 . -1267) 97859) ((-1268 . -1254) 97836) ((-1261 . -1259) 97797) ((-1261 . -1254) 97767) ((-1261 . -1257) 97751) ((-1240 . -1238) 97712) ((-1240 . -1254) 97689) ((-627 . -619) 97671) ((-1240 . -1236) 97655) ((-705 . -927) T) ((-1184 . -288) 97621) ((-1183 . -288) 97587) ((-1177 . -288) 97553) ((-1089 . -1109) T) ((-1070 . -1109) T) ((-48 . -306) T) ((-320 . -907) 97519) ((-317 . -907) NIL) ((-1070 . -1077) 97498) ((-1129 . -893) 97480) ((-805 . -38) 97464) ((-267 . -645) 97412) ((-249 . -645) 97360) ((-707 . -1065) 97347) ((-601 . -1254) 97324) ((-1135 . -288) 97290) ((-323 . -174) 97221) ((-364 . -1109) T) ((-358 . -1109) T) ((-350 . -1109) T) ((-506 . -19) 97203) ((-1129 . -1047) 97185) ((-1111 . -152) 97169) ((-108 . -1109) T) ((-117 . -1065) 97156) ((-717 . -368) T) ((-506 . -610) 97131) ((-707 . -111) 97116) ((-442 . -102) T) ((-882 . -1271) T) ((-252 . -102) T) ((-45 . -1158) 97066) ((-117 . -111) 97051) ((-641 . -726) T) ((-613 . -726) T) ((-1278 . -619) 97033) ((-1234 . -619) 97015) ((-1232 . -856) T) ((-821 . -520) 96948) ((-1044 . -1226) T) ((-242 . -1060) 96845) ((-1220 . -1121) T) ((-1220 . -23) T) ((-950 . -152) 96829) ((-1182 . -458) 96760) ((-1177 . -313) 96645) ((-242 . -646) 96587) ((-1176 . -1109) T) ((-1168 . -1109) T) ((-1151 . -654) 96561) ((-531 . -102) T) ((-526 . -102) 96511) ((-1135 . -313) 96498) ((-1134 . -458) 96449) ((-1096 . -1230) 96428) ((-788 . -1230) 96407) ((-786 . -1230) 96386) ((-62 . -1226) T) ((-483 . -619) 96338) ((-483 . -620) 96260) ((-1096 . -562) 96191) ((-1003 . -1109) T) ((-788 . -562) 96102) ((-786 . -562) 96033) ((-488 . -417) 96002) ((-629 . -927) 95981) ((-460 . -1230) 95960) ((-737 . -313) 95947) ((-707 . -622) 95919) ((-404 . -619) 95901) ((-681 . -520) 95834) ((-670 . -25) T) ((-670 . -21) T) ((-460 . -562) 95765) ((-360 . -25) T) ((-360 . -21) T) ((-118 . -927) T) ((-118 . -826) NIL) ((-357 . -25) T) ((-357 . -21) T) ((-349 . -25) T) ((-349 . -21) T) ((-267 . -25) T) ((-267 . -21) T) ((-249 . -25) T) ((-249 . -21) T) ((-83 . -389) T) ((-83 . -401) T) ((-135 . -622) 95747) ((-117 . -622) 95719) ((-1089 . -723) 95587) ((-1013 . -1060) 95537) ((-1013 . -646) 95487) ((-950 . -989) 95471) ((-921 . -646) 95423) ((-921 . -1060) 95375) ((-917 . -21) T) ((-917 . -25) T) ((-878 . -856) 95326) ((-872 . -654) 95286) ((-717 . -1121) T) ((-717 . -23) T) ((-293 . -174) T) ((-707 . -1058) T) ((-315 . -93) T) ((-707 . -235) T) ((-653 . -1109) 95264) ((-638 . -616) 95239) ((-638 . -1109) T) ((-587 . -1230) T) ((-587 . -562) T) ((-524 . -1230) T) ((-524 . -562) T) ((-493 . -652) 95189) ((-433 . -1060) 95173) ((-433 . -646) 95157) ((-364 . -723) 95109) ((-358 . -723) 95061) ((-344 . -1065) 95045) ((-350 . -723) 94997) ((-344 . -111) 94976) ((-176 . -1065) 94908) ((-219 . -652) 94858) ((-176 . -111) 94769) ((-108 . -723) 94719) ((-277 . -1109) T) ((-276 . -1109) T) ((-275 . -1109) T) ((-274 . -1109) T) ((-273 . -1109) T) ((-272 . -1109) T) ((-271 . -1109) T) ((-214 . -1109) T) ((-213 . -1109) T) ((-171 . -1214) 94697) ((-171 . -1211) 94675) ((-211 . -1109) T) ((-210 . -1109) T) ((-117 . -1058) T) ((-209 . -1109) T) ((-208 . -1109) T) ((-205 . -1109) T) ((-204 . -1109) T) ((-203 . -1109) T) ((-202 . -1109) T) ((-201 . -1109) T) ((-200 . -1109) T) ((-199 . -1109) T) ((-198 . -1109) T) ((-197 . -1109) T) ((-196 . -1109) T) ((-195 . -1109) T) ((-242 . -102) 94465) ((-171 . -35) 94443) ((-171 . -95) 94421) ((-660 . -1047) 94317) ((-488 . -1067) 94247) ((-1122 . -1109) 94037) ((-1151 . -34) T) ((-676 . -495) 94021) ((-73 . -1226) T) ((-105 . -619) 94003) ((-1300 . -619) 93985) ((-386 . -619) 93967) ((-344 . -622) 93919) ((-176 . -622) 93836) ((-1225 . -496) 93817) ((-737 . -38) 93666) ((-577 . -1214) T) ((-577 . -1211) T) ((-537 . -619) 93648) ((-526 . -313) 93586) ((-506 . -619) 93568) ((-506 . -620) 93550) ((-1225 . -619) 93516) ((-1177 . -1161) NIL) ((-1036 . -1080) 93485) ((-1036 . -1109) T) ((-1013 . -102) T) ((-980 . -102) T) ((-921 . -102) T) ((-900 . -1047) 93462) ((-1151 . -732) T) ((-1012 . -654) 93407) ((-482 . -1109) T) ((-469 . -1109) T) ((-592 . -23) T) ((-577 . -35) T) ((-577 . -95) T) ((-433 . -102) T) ((-1072 . -231) 93353) ((-1184 . -38) 93250) ((-872 . -732) T) ((-700 . -927) T) ((-517 . -25) T) ((-513 . -21) T) ((-513 . -25) T) ((-1183 . -38) 93091) ((-344 . -1058) T) ((-1177 . -38) 92887) ((-1089 . -174) T) ((-176 . -1058) T) ((-1135 . -38) 92784) ((-718 . -47) 92761) ((-364 . -174) T) ((-358 . -174) T) ((-525 . -57) 92735) ((-503 . -57) 92685) ((-356 . -1295) 92662) ((-227 . -458) T) ((-323 . -294) 92613) ((-350 . -174) T) ((-176 . -245) T) ((-1239 . -856) 92512) ((-108 . -174) T) ((-878 . -1001) 92496) ((-664 . -1121) T) ((-587 . -368) T) ((-587 . -333) 92483) ((-524 . -333) 92460) ((-524 . -368) T) ((-320 . -311) 92439) ((-317 . -311) T) ((-608 . -856) 92418) ((-1122 . -723) 92360) ((-526 . -286) 92344) ((-664 . -23) T) ((-424 . -233) 92328) ((-317 . -1031) NIL) ((-341 . -23) T) ((-103 . -1019) 92312) ((-45 . -36) 92291) ((-618 . -1109) T) ((-356 . -373) T) ((-530 . -102) T) ((-501 . -27) T) ((-242 . -313) 92229) ((-1096 . -1121) T) ((-1299 . -654) 92203) ((-788 . -1121) T) ((-786 . -1121) T) ((-460 . -1121) T) ((-1071 . -458) T) ((-1160 . -1109) T) ((-959 . -458) 92154) ((-1124 . -1092) T) ((-110 . -1109) T) ((-1096 . -23) T) ((-823 . -1067) T) ((-788 . -23) T) ((-786 . -23) T) ((-487 . -458) 92105) ((-1169 . -520) 91888) ((-386 . -387) 91867) ((-1188 . -417) 91851) ((-467 . -23) T) ((-460 . -23) T) ((-96 . -1109) T) ((-490 . -520) 91784) ((-1268 . -1060) 91667) ((-1268 . -646) 91564) ((-1261 . -646) 91405) ((-1261 . -1060) 91240) ((-293 . -294) T) ((-1240 . -1060) 91030) ((-1091 . -619) 91012) ((-1091 . -620) 90993) ((-413 . -916) 90972) ((-1240 . -646) 90768) ((-50 . -1121) T) ((-1220 . -132) T) ((-1033 . -927) T) ((-1012 . -732) T) ((-849 . -654) 90741) ((-718 . -893) NIL) ((-602 . -1060) 90701) ((-587 . -1121) T) ((-524 . -1121) T) ((-601 . -1060) 90584) ((-1177 . -406) 90536) ((-1013 . -313) NIL) ((-821 . -495) 90520) ((-602 . -646) 90493) ((-359 . -927) T) ((-601 . -646) 90390) ((-1166 . -34) T) ((-413 . -654) 90342) ((-50 . -23) T) ((-717 . -132) T) ((-718 . -1047) 90222) ((-587 . -23) T) ((-108 . -520) NIL) ((-524 . -23) T) ((-171 . -415) 90193) ((-1149 . -1109) T) ((-1291 . -1290) 90177) ((-707 . -801) T) ((-707 . -798) T) ((-1129 . -311) T) ((-384 . -148) T) ((-284 . -619) 90159) ((-283 . -619) 90141) ((-1239 . -1001) 90111) ((-48 . -927) T) ((-681 . -495) 90095) ((-254 . -1283) 90065) ((-253 . -1283) 90035) ((-1186 . -856) T) ((-1122 . -174) 90014) ((-1129 . -1031) T) ((-1055 . -34) T) ((-842 . -148) 89993) ((-842 . -146) 89972) ((-743 . -107) 89956) ((-618 . -133) T) ((-488 . -1109) 89746) ((-1188 . -1067) T) ((-877 . -458) T) ((-85 . -1226) T) ((-242 . -38) 89716) ((-142 . -107) 89698) ((-718 . -382) 89682) ((-839 . -622) 89550) ((-1299 . -732) T) ((-1288 . -1067) T) ((-1129 . -551) T) ((-585 . -102) T) ((-130 . -496) 89532) ((-1268 . -102) T) ((-396 . -1065) 89516) ((-1261 . -102) T) ((-1182 . -956) 89485) ((-130 . -619) 89452) ((-52 . -619) 89434) ((-1134 . -956) 89401) ((-659 . -417) 89385) ((-1240 . -102) T) ((-1168 . -520) NIL) ((-668 . -25) T) ((-627 . -1065) 89369) ((-668 . -21) T) ((-970 . -652) 89279) ((-741 . -652) 89224) ((-721 . -652) 89196) ((-396 . -111) 89175) ((-224 . -257) 89159) ((-1063 . -1062) 89099) ((-1063 . -1109) T) ((-1013 . -1161) T) ((-824 . -1109) T) ((-459 . -652) 89014) ((-348 . -1230) T) ((-641 . -654) 88998) ((-627 . -111) 88977) ((-613 . -654) 88961) ((-602 . -102) T) ((-315 . -496) 88942) ((-592 . -132) T) ((-601 . -102) T) ((-420 . -1109) T) ((-390 . -1109) T) ((-315 . -619) 88908) ((-229 . -1109) 88886) ((-653 . -520) 88819) ((-638 . -520) 88663) ((-839 . -1058) 88642) ((-650 . -152) 88626) ((-348 . -562) T) ((-718 . -907) 88569) ((-556 . -231) 88519) ((-1268 . -288) 88485) ((-1261 . -288) 88451) ((-1089 . -294) 88402) ((-493 . -854) T) ((-225 . -1121) T) ((-1240 . -288) 88368) ((-1220 . -499) 88334) ((-1013 . -38) 88284) ((-219 . -854) T) ((-424 . -652) 88243) ((-921 . -38) 88195) ((-849 . -800) 88174) ((-849 . -797) 88153) ((-849 . -732) 88132) ((-364 . -294) T) ((-358 . -294) T) ((-350 . -294) T) ((-171 . -458) 88063) ((-433 . -38) 88047) ((-108 . -294) T) ((-225 . -23) T) ((-413 . -800) 88026) ((-413 . -797) 88005) ((-413 . -732) T) ((-506 . -292) 87980) ((-483 . -1065) 87945) ((-664 . -132) T) ((-627 . -622) 87914) ((-1122 . -520) 87847) ((-341 . -132) T) ((-171 . -408) 87826) ((-488 . -723) 87768) ((-821 . -290) 87745) ((-483 . -111) 87701) ((-659 . -1067) T) ((-822 . -1060) 87544) ((-1287 . -1092) T) ((-1249 . -458) 87475) ((-822 . -646) 87324) ((-1286 . -1092) T) ((-1096 . -132) T) ((-1063 . -723) 87266) ((-788 . -132) T) ((-786 . -132) T) ((-577 . -458) T) ((-1036 . -520) 87199) ((-627 . -1058) T) ((-598 . -1109) T) ((-539 . -175) T) ((-467 . -132) T) ((-460 . -132) T) ((-45 . -1109) T) ((-390 . -723) 87169) ((-823 . -1109) T) ((-482 . -520) 87102) ((-469 . -520) 87035) ((-459 . -372) 87005) ((-45 . -616) 86984) ((-320 . -306) T) ((-483 . -622) 86934) ((-1240 . -313) 86819) ((-676 . -619) 86781) ((-59 . -856) 86760) ((-1013 . -406) 86742) ((-554 . -619) 86724) ((-805 . -652) 86683) ((-821 . -610) 86660) ((-522 . -856) 86639) ((-502 . -856) 86618) ((-40 . -1230) T) ((-1008 . -1047) 86514) ((-50 . -132) T) ((-587 . -132) T) ((-524 . -132) T) ((-298 . -654) 86374) ((-348 . -333) 86351) ((-348 . -368) T) ((-326 . -327) 86328) ((-323 . -290) 86313) ((-40 . -562) T) ((-384 . -1211) T) ((-384 . -1214) T) ((-1044 . -1202) 86288) ((-1199 . -237) 86238) ((-1177 . -233) 86190) ((-334 . -1109) T) ((-384 . -95) T) ((-384 . -35) T) ((-1044 . -107) 86136) ((-483 . -1058) T) ((-1300 . -1065) 86120) ((-485 . -237) 86070) ((-1169 . -495) 86004) ((-1291 . -1060) 85988) ((-386 . -1065) 85972) ((-1291 . -646) 85942) ((-483 . -245) T) ((-822 . -102) T) ((-720 . -148) 85921) ((-720 . -146) 85900) ((-490 . -495) 85884) ((-491 . -340) 85853) ((-1300 . -111) 85832) ((-518 . -1109) T) ((-488 . -174) 85811) ((-1008 . -382) 85795) ((-419 . -102) T) ((-386 . -111) 85774) ((-1008 . -343) 85758) ((-282 . -992) 85742) ((-281 . -992) 85726) ((-1298 . -619) 85708) ((-1296 . -619) 85690) ((-110 . -520) NIL) ((-1182 . -1252) 85674) ((-860 . -858) 85658) ((-1188 . -1109) T) ((-103 . -1226) T) ((-959 . -956) 85619) ((-823 . -723) 85561) ((-1240 . -1161) NIL) ((-487 . -956) 85506) ((-1071 . -144) T) ((-60 . -102) 85484) ((-44 . -619) 85466) ((-78 . -619) 85448) ((-356 . -654) 85393) ((-1288 . -1109) T) ((-517 . -856) T) ((-348 . -1121) T) ((-299 . -1109) T) ((-1008 . -907) 85352) ((-299 . -616) 85331) ((-1300 . -622) 85280) ((-1268 . -38) 85177) ((-1261 . -38) 85018) ((-1240 . -38) 84814) ((-493 . -1067) T) ((-386 . -622) 84798) ((-219 . -1067) T) ((-348 . -23) T) ((-153 . -619) 84780) ((-839 . -801) 84759) ((-839 . -798) 84738) ((-1225 . -622) 84719) ((-602 . -38) 84692) ((-601 . -38) 84589) ((-876 . -562) T) ((-225 . -132) T) ((-323 . -1011) 84555) ((-79 . -619) 84537) ((-718 . -311) 84516) ((-298 . -732) 84418) ((-830 . -102) T) ((-870 . -850) T) ((-298 . -479) 84397) ((-1291 . -102) T) ((-40 . -368) T) ((-878 . -148) 84376) ((-491 . -652) 84358) ((-878 . -146) 84337) ((-1168 . -495) 84319) ((-1300 . -1058) T) ((-488 . -520) 84252) ((-1155 . -1226) T) ((-971 . -619) 84234) ((-653 . -495) 84218) ((-638 . -495) 84149) ((-821 . -619) 83880) ((-48 . -27) T) ((-1188 . -723) 83777) ((-659 . -1109) T) ((-867 . -866) T) ((-442 . -369) 83751) ((-737 . -652) 83661) ((-1111 . -102) T) ((-979 . -1109) T) ((-870 . -1109) T) ((-822 . -313) 83648) ((-539 . -533) T) ((-539 . -582) T) ((-1296 . -387) 83620) ((-1063 . -520) 83553) ((-1169 . -290) 83529) ((-242 . -233) 83498) ((-254 . -1060) 83395) ((-253 . -1060) 83292) ((-1288 . -723) 83262) ((-1176 . -93) T) ((-1003 . -93) T) ((-823 . -174) 83241) ((-254 . -646) 83183) ((-253 . -646) 83125) ((-1223 . -496) 83102) ((-229 . -520) 83035) ((-627 . -801) 83014) ((-627 . -798) 82993) ((-1223 . -619) 82905) ((-224 . -1226) T) ((-681 . -619) 82837) ((-1184 . -652) 82747) ((-1166 . -1019) 82731) ((-950 . -102) 82681) ((-356 . -732) T) ((-867 . -619) 82663) ((-1183 . -652) 82545) ((-1177 . -652) 82382) ((-1135 . -652) 82292) ((-1240 . -406) 82244) ((-1122 . -495) 82228) ((-60 . -313) 82166) ((-335 . -102) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-40 . -1121) T) ((-717 . -21) T) ((-633 . -619) 82148) ((-521 . -327) 82127) ((-717 . -25) T) ((-445 . -102) T) ((-108 . -290) NIL) ((-928 . -1121) T) ((-40 . -23) T) ((-777 . -1121) T) ((-570 . -1230) T) ((-501 . -1230) T) ((-323 . -619) 82109) ((-1013 . -233) 82091) ((-171 . -167) 82075) ((-586 . -562) T) ((-570 . -562) T) ((-501 . -562) T) ((-777 . -23) T) ((-1260 . -148) 82054) ((-1169 . -610) 82030) ((-1260 . -146) 82009) ((-1036 . -495) 81993) ((-1239 . -146) 81918) ((-1239 . -148) 81843) ((-1291 . -1297) 81822) ((-482 . -495) 81806) ((-469 . -495) 81790) ((-529 . -34) T) ((-659 . -723) 81760) ((-112 . -976) T) ((-668 . -856) 81739) ((-1188 . -174) 81690) ((-370 . -102) T) ((-242 . -240) 81669) ((-254 . -102) T) ((-253 . -102) T) ((-1249 . -956) 81638) ((-247 . -856) 81617) ((-822 . -38) 81466) ((-45 . -520) 81258) ((-1168 . -290) 81233) ((-216 . -1109) T) ((-1159 . -1109) T) ((-1159 . -616) 81212) ((-592 . -25) T) ((-592 . -21) T) ((-1111 . -313) 81150) ((-970 . -417) 81134) ((-705 . -1230) T) ((-638 . -290) 81109) ((-1096 . -645) 81057) ((-788 . -645) 81005) ((-786 . -645) 80953) ((-348 . -132) T) ((-293 . -619) 80935) ((-912 . -1109) T) ((-705 . -562) T) ((-130 . -622) 80917) ((-876 . -1121) T) ((-460 . -645) 80865) ((-912 . -910) 80849) ((-384 . -458) T) ((-493 . -1109) T) ((-950 . -313) 80787) ((-707 . -654) 80774) ((-555 . -850) T) ((-219 . -1109) T) ((-320 . -927) 80753) ((-317 . -927) T) ((-317 . -826) NIL) ((-396 . -726) T) ((-876 . -23) T) ((-117 . -654) 80740) ((-480 . -146) 80719) ((-424 . -417) 80703) ((-480 . -148) 80682) ((-110 . -495) 80664) ((-315 . -622) 80645) ((-2 . -619) 80627) ((-188 . -102) T) ((-1168 . -19) 80609) ((-1168 . -610) 80584) ((-664 . -21) T) ((-664 . -25) T) ((-599 . -1153) T) ((-1122 . -290) 80561) ((-341 . -25) T) ((-341 . -21) T) ((-242 . -652) 80311) ((-501 . -368) T) ((-1291 . -38) 80281) ((-1182 . -1060) 80104) ((-1151 . -1226) T) ((-1134 . -1060) 79947) ((-860 . -1060) 79931) ((-638 . -610) 79906) ((-1298 . -1065) 79890) ((-1296 . -1065) 79874) ((-1182 . -646) 79703) ((-1134 . -646) 79552) ((-860 . -646) 79522) ((-1260 . -1211) 79488) ((-1260 . -1214) 79454) ((-555 . -1109) T) ((-1096 . -25) T) ((-1096 . -21) T) ((-537 . -798) T) ((-537 . -801) T) ((-118 . -1230) T) ((-970 . -1067) T) ((-629 . -562) T) ((-788 . -25) T) ((-788 . -21) T) ((-786 . -21) T) ((-786 . -25) T) ((-741 . -1067) T) ((-721 . -1067) T) ((-676 . -1065) 79438) ((-523 . -1092) T) ((-467 . -25) T) ((-118 . -562) T) ((-467 . -21) T) ((-460 . -25) T) ((-460 . -21) T) ((-1260 . -95) 79404) ((-1160 . -93) T) ((-1151 . -1047) 79300) ((-823 . -294) 79279) ((-1243 . -102) 79257) ((-829 . -1109) T) ((-973 . -976) T) ((-676 . -111) 79236) ((-623 . -1226) T) ((-299 . -520) 79028) ((-1240 . -233) 78980) ((-1239 . -1211) 78946) ((-1239 . -1214) 78912) ((-254 . -313) 78850) ((-253 . -313) 78788) ((-1234 . -373) T) ((-1169 . -620) NIL) ((-1169 . -619) 78770) ((-1231 . -850) T) ((-1151 . -382) 78754) ((-1129 . -826) T) ((-96 . -93) T) ((-1129 . -927) T) ((-1122 . -610) 78731) ((-1089 . -620) 78715) ((-1013 . -652) 78665) ((-921 . -652) 78602) ((-821 . -292) 78579) ((-490 . -619) 78511) ((-614 . -152) 78458) ((-493 . -723) 78408) ((-424 . -1067) T) ((-488 . -495) 78392) ((-433 . -652) 78351) ((-331 . -856) 78330) ((-344 . -654) 78304) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -723) 78254) ((-171 . -730) 78225) ((-176 . -654) 78157) ((-587 . -21) T) ((-587 . -25) T) ((-524 . -25) T) ((-524 . -21) T) ((-481 . -152) 78107) ((-1089 . -619) 78089) ((-1070 . -619) 78071) ((-1002 . -102) T) ((-868 . -102) T) ((-805 . -417) 78034) ((-40 . -132) T) ((-705 . -368) T) ((-707 . -732) T) ((-707 . -800) T) ((-707 . -797) T) ((-214 . -902) T) ((-586 . -1121) T) ((-570 . -1121) T) ((-501 . -1121) T) ((-364 . -619) 78016) ((-358 . -619) 77998) ((-350 . -619) 77980) ((-66 . -402) T) ((-66 . -401) T) ((-108 . -620) 77910) ((-108 . -619) 77852) ((-213 . -902) T) ((-965 . -152) 77836) ((-777 . -132) T) ((-676 . -622) 77754) ((-135 . -732) T) ((-117 . -732) T) ((-1260 . -35) 77720) ((-1063 . -495) 77704) ((-586 . -23) T) ((-570 . -23) T) ((-501 . -23) T) ((-1239 . -95) 77670) ((-1239 . -35) 77636) ((-1182 . -102) T) ((-1134 . -102) T) ((-860 . -102) T) ((-229 . -495) 77620) ((-1298 . -111) 77599) ((-1296 . -111) 77578) ((-44 . -1065) 77562) ((-1298 . -622) 77508) ((-1249 . -1252) 77492) ((-861 . -858) 77476) ((-1298 . -1058) T) ((-1188 . -294) 77455) ((-110 . -290) 77430) ((-1296 . -622) 77359) ((-129 . -152) 77341) ((-1151 . -907) 77300) ((-44 . -111) 77279) ((-1231 . -1109) T) ((-1191 . -1271) T) ((-1176 . -496) 77260) ((-1176 . -619) 77226) ((-676 . -1058) T) ((-1168 . -620) NIL) ((-1168 . -619) 77208) ((-1072 . -616) 77183) ((-1072 . -1109) T) ((-1003 . -496) 77164) ((-74 . -447) T) ((-74 . -401) T) ((-1003 . -619) 77130) ((-153 . -1065) 77114) ((-676 . -235) 77093) ((-577 . -560) 77077) ((-360 . -148) 77056) ((-360 . -146) 77007) ((-357 . -148) 76986) ((-357 . -146) 76937) ((-349 . -148) 76916) ((-349 . -146) 76867) ((-267 . -146) 76846) ((-267 . -148) 76825) ((-254 . -38) 76795) ((-249 . -148) 76774) ((-118 . -368) T) ((-249 . -146) 76753) ((-253 . -38) 76723) ((-153 . -111) 76702) ((-1012 . -1047) 76590) ((-1177 . -854) NIL) ((-700 . -1230) T) ((-805 . -1067) T) ((-705 . -1121) T) ((-1296 . -1058) T) ((-1166 . -1226) T) ((-1012 . -382) 76567) ((-917 . -146) T) ((-917 . -148) 76549) ((-876 . -132) T) ((-821 . -1065) 76446) ((-705 . -23) T) ((-700 . -562) T) ((-227 . -1060) 76411) ((-653 . -619) 76343) ((-653 . -620) 76304) ((-638 . -620) NIL) ((-638 . -619) 76286) ((-493 . -174) T) ((-227 . -646) 76251) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-480 . -1214) 76217) ((-480 . -1211) 76183) ((-277 . -619) 76165) ((-276 . -619) 76147) ((-275 . -619) 76129) ((-274 . -619) 76111) ((-273 . -619) 76093) ((-506 . -657) 76075) ((-272 . -619) 76057) ((-344 . -732) T) ((-271 . -619) 76039) ((-110 . -19) 76021) ((-176 . -732) T) ((-506 . -378) 76003) ((-214 . -619) 75985) ((-526 . -1158) 75969) ((-506 . -124) T) ((-110 . -610) 75944) ((-213 . -619) 75926) ((-480 . -35) 75892) ((-480 . -95) 75858) ((-211 . -619) 75840) ((-210 . -619) 75822) ((-209 . -619) 75804) ((-208 . -619) 75786) ((-205 . -619) 75768) ((-204 . -619) 75750) ((-203 . -619) 75732) ((-202 . -619) 75714) ((-201 . -619) 75696) ((-200 . -619) 75678) ((-199 . -619) 75660) ((-542 . -1112) 75612) ((-198 . -619) 75594) ((-197 . -619) 75576) ((-45 . -495) 75513) ((-196 . -619) 75495) ((-195 . -619) 75477) ((-153 . -622) 75446) ((-1124 . -102) T) ((-821 . -111) 75336) ((-650 . -102) 75286) ((-488 . -290) 75263) ((-1122 . -619) 74994) ((-1110 . -1109) T) ((-1055 . -1226) T) ((-1299 . -1047) 74978) ((-1071 . -1060) 74965) ((-1182 . -313) 74952) ((-959 . -1060) 74795) ((-1144 . -1109) T) ((-1134 . -313) 74782) ((-629 . -1121) T) ((-1071 . -646) 74769) ((-1105 . -1092) T) ((-959 . -646) 74618) ((-1099 . -1092) T) ((-487 . -1060) 74461) ((-1082 . -1092) T) ((-1075 . -1092) T) ((-1045 . -1092) T) ((-1028 . -1092) T) ((-118 . -1121) T) ((-487 . -646) 74310) ((-825 . -102) T) ((-632 . -1092) T) ((-629 . -23) T) ((-1159 . -520) 74102) ((-489 . -1092) T) ((-392 . -102) T) ((-328 . -102) T) ((-220 . -1092) T) ((-970 . -1109) T) ((-153 . -1058) T) ((-737 . -417) 74086) ((-118 . -23) T) ((-1012 . -907) 74038) ((-741 . -1109) T) ((-721 . -1109) T) ((-459 . -1109) T) ((-413 . -1226) T) ((-320 . -436) 74022) ((-598 . -93) T) ((-1268 . -652) 73932) ((-1036 . -620) 73893) ((-1033 . -1230) T) ((-227 . -102) T) ((-1036 . -619) 73855) ((-1261 . -652) 73737) ((-822 . -233) 73721) ((-821 . -622) 73451) ((-1240 . -652) 73288) ((-1033 . -562) T) ((-839 . -654) 73261) ((-359 . -1230) T) ((-482 . -619) 73223) ((-482 . -620) 73184) ((-469 . -620) 73145) ((-469 . -619) 73107) ((-602 . -652) 73066) ((-413 . -891) 73050) ((-323 . -1065) 72885) ((-413 . -893) 72810) ((-601 . -652) 72720) ((-849 . -1047) 72616) ((-493 . -520) NIL) ((-488 . -610) 72593) ((-359 . -562) T) ((-219 . -520) NIL) ((-878 . -458) T) ((-424 . -1109) T) ((-413 . -1047) 72457) ((-323 . -111) 72278) ((-700 . -368) T) ((-227 . -288) T) ((-1223 . -622) 72255) ((-48 . -1230) T) ((-821 . -1058) 72185) ((-1182 . -1161) 72163) ((-586 . -132) T) ((-570 . -132) T) ((-501 . -132) T) ((-1169 . -292) 72139) ((-48 . -562) T) ((-1071 . -102) T) ((-959 . -102) T) ((-877 . -1060) 72084) ((-320 . -27) 72063) ((-821 . -235) 72015) ((-251 . -841) 71997) ((-242 . -854) 71976) ((-189 . -841) 71958) ((-719 . -102) T) ((-299 . -495) 71895) ((-877 . -646) 71840) ((-487 . -102) T) ((-737 . -1067) T) ((-618 . -619) 71822) ((-618 . -620) 71683) ((-413 . -382) 71667) ((-413 . -343) 71651) ((-323 . -622) 71477) ((-1182 . -38) 71306) ((-1134 . -38) 71155) ((-860 . -38) 71125) ((-396 . -654) 71109) ((-650 . -313) 71047) ((-1160 . -496) 71028) ((-1160 . -619) 70994) ((-970 . -723) 70891) ((-741 . -723) 70861) ((-224 . -107) 70845) ((-45 . -290) 70770) ((-627 . -654) 70744) ((-316 . -1109) T) ((-293 . -1065) 70731) ((-110 . -619) 70713) ((-110 . -620) 70695) ((-459 . -723) 70665) ((-822 . -256) 70604) ((-695 . -1109) 70582) ((-556 . -1109) T) ((-1184 . -1067) T) ((-1183 . -1067) T) ((-96 . -496) 70563) ((-1177 . -1067) T) ((-293 . -111) 70548) ((-1135 . -1067) T) ((-556 . -616) 70527) ((-96 . -619) 70493) ((-1013 . -854) T) ((-229 . -693) 70451) ((-700 . -1121) T) ((-1220 . -746) 70427) ((-1033 . -368) T) ((-844 . -841) 70409) ((-839 . -800) 70388) ((-413 . -907) 70347) ((-323 . -1058) T) ((-348 . -25) T) ((-348 . -21) T) ((-171 . -1060) 70257) ((-68 . -1226) T) ((-839 . -797) 70236) ((-424 . -723) 70210) ((-805 . -1109) T) ((-718 . -927) 70189) ((-705 . -132) T) ((-171 . -646) 70017) ((-700 . -23) T) ((-493 . -294) T) ((-839 . -732) 69996) ((-323 . -235) 69948) ((-323 . -245) 69927) ((-219 . -294) T) ((-130 . -373) T) ((-1260 . -458) 69906) ((-1239 . -458) 69885) ((-359 . -333) 69862) ((-359 . -368) T) ((-1149 . -619) 69844) ((-45 . -1264) 69794) ((-877 . -102) T) ((-650 . -286) 69778) ((-705 . -1069) T) ((-1287 . -102) T) ((-1286 . -102) T) ((-483 . -654) 69743) ((-474 . -1109) T) ((-45 . -610) 69668) ((-1168 . -292) 69643) ((-293 . -622) 69615) ((-40 . -645) 69554) ((-1249 . -1060) 69377) ((-861 . -1060) 69361) ((-48 . -368) T) ((-1115 . -619) 69343) ((-1249 . -646) 69172) ((-861 . -646) 69142) ((-638 . -292) 69117) ((-822 . -652) 69027) ((-577 . -1060) 69014) ((-488 . -619) 68745) ((-242 . -417) 68714) ((-959 . -313) 68701) ((-577 . -646) 68688) ((-65 . -1226) T) ((-1072 . -520) 68532) ((-677 . -1109) T) ((-629 . -132) T) ((-487 . -313) 68519) ((-612 . -1109) T) ((-552 . -102) T) ((-118 . -132) T) ((-293 . -1058) T) ((-182 . -1109) T) ((-162 . -1109) T) ((-157 . -1109) T) ((-155 . -1109) T) ((-459 . -767) T) ((-31 . -1092) T) ((-970 . -174) 68470) ((-979 . -93) T) ((-1089 . -1065) 68380) ((-627 . -800) 68359) ((-599 . -1109) T) ((-627 . -797) 68338) ((-627 . -732) T) ((-299 . -290) 68317) ((-298 . -1226) T) ((-1063 . -619) 68279) ((-1063 . -620) 68240) ((-1033 . -1121) T) ((-171 . -102) T) ((-278 . -856) T) ((-1175 . -1109) T) ((-824 . -619) 68222) ((-1122 . -292) 68199) ((-1111 . -231) 68183) ((-1012 . -311) T) ((-805 . -723) 68167) ((-364 . -1065) 68119) ((-359 . -1121) T) ((-358 . -1065) 68071) ((-420 . -619) 68053) ((-390 . -619) 68035) ((-350 . -1065) 67987) ((-229 . -619) 67919) ((-1089 . -111) 67815) ((-1033 . -23) T) ((-108 . -1065) 67765) ((-905 . -102) T) ((-847 . -102) T) ((-814 . -102) T) ((-775 . -102) T) ((-683 . -102) T) ((-480 . -458) 67744) ((-424 . -174) T) ((-364 . -111) 67682) ((-358 . -111) 67620) ((-350 . -111) 67558) ((-254 . -233) 67527) ((-253 . -233) 67496) ((-359 . -23) T) ((-71 . -1226) T) ((-227 . -38) 67461) ((-108 . -111) 67395) ((-40 . -25) T) ((-40 . -21) T) ((-676 . -726) T) ((-171 . -288) 67373) ((-48 . -1121) T) ((-928 . -25) T) ((-777 . -25) T) ((-1300 . -654) 67347) ((-1159 . -495) 67284) ((-491 . -1109) T) ((-1291 . -652) 67243) ((-1249 . -102) T) ((-1071 . -1161) T) ((-861 . -102) T) ((-242 . -1067) 67173) ((-971 . -798) 67126) ((-971 . -801) 67079) ((-386 . -654) 67063) ((-48 . -23) T) ((-821 . -801) 67014) ((-821 . -798) 66965) ((-554 . -373) T) ((-299 . -610) 66944) ((-483 . -732) T) ((-577 . -102) T) ((-1089 . -622) 66762) ((-251 . -187) T) ((-189 . -187) T) ((-877 . -313) 66719) ((-659 . -290) 66698) ((-112 . -667) T) ((-364 . -622) 66635) ((-358 . -622) 66572) ((-350 . -622) 66509) ((-76 . -1226) T) ((-108 . -622) 66459) ((-112 . -113) T) ((-1071 . -38) 66446) ((-670 . -379) 66425) ((-959 . -38) 66274) ((-737 . -1109) T) ((-487 . -38) 66123) ((-86 . -1226) T) ((-598 . -496) 66104) ((-577 . -288) T) ((-1240 . -854) NIL) ((-598 . -619) 66070) ((-1184 . -1109) T) ((-1183 . -1109) T) ((-1089 . -1058) T) ((-356 . -1047) 66047) ((-823 . -496) 66031) ((-1013 . -1067) T) ((-45 . -619) 66013) ((-45 . -620) NIL) ((-921 . -1067) T) ((-823 . -619) 65982) ((-1177 . -1109) T) ((-1156 . -102) 65960) ((-1089 . -245) 65911) ((-433 . -1067) T) ((-364 . -1058) T) ((-370 . -369) 65888) ((-358 . -1058) T) ((-350 . -1058) T) ((-254 . -240) 65867) ((-253 . -240) 65846) ((-1089 . -235) 65771) ((-1135 . -1109) T) ((-298 . -907) 65730) ((-108 . -1058) T) ((-700 . -132) T) ((-424 . -520) 65572) ((-364 . -235) 65551) ((-364 . -245) T) ((-44 . -726) T) ((-358 . -235) 65530) ((-358 . -245) T) ((-350 . -235) 65509) ((-350 . -245) T) ((-1176 . -622) 65490) ((-171 . -313) 65455) ((-108 . -245) T) ((-108 . -235) T) ((-1003 . -622) 65436) ((-323 . -798) T) ((-876 . -21) T) ((-876 . -25) T) ((-413 . -311) T) ((-506 . -34) T) ((-110 . -292) 65411) ((-1122 . -1065) 65308) ((-877 . -1161) NIL) ((-334 . -619) 65290) ((-413 . -1031) 65268) ((-1122 . -111) 65158) ((-697 . -1271) T) ((-442 . -1109) T) ((-252 . -1109) T) ((-1300 . -732) T) ((-63 . -619) 65140) ((-877 . -38) 65085) ((-529 . -1226) T) ((-608 . -152) 65069) ((-518 . -619) 65051) ((-1249 . -313) 65038) ((-737 . -723) 64887) ((-537 . -799) T) ((-537 . -800) T) ((-570 . -645) 64869) ((-501 . -645) 64829) ((-360 . -458) T) ((-357 . -458) T) ((-349 . -458) T) ((-267 . -458) 64780) ((-531 . -1109) T) ((-526 . -1109) 64730) ((-249 . -458) 64681) ((-1159 . -290) 64660) ((-1188 . -619) 64642) ((-695 . -520) 64575) ((-970 . -294) 64554) ((-556 . -520) 64346) ((-254 . -652) 64166) ((-253 . -652) 63973) ((-1288 . -619) 63942) ((-1288 . -496) 63926) ((-1182 . -233) 63910) ((-1122 . -622) 63640) ((-171 . -1161) 63619) ((-1184 . -723) 63516) ((-1183 . -723) 63357) ((-973 . -113) T) ((-899 . -102) T) ((-1177 . -723) 63153) ((-1135 . -723) 63050) ((-1166 . -680) 63034) ((-360 . -408) 62985) ((-357 . -408) 62936) ((-349 . -408) 62887) ((-1033 . -132) T) ((-805 . -520) 62799) ((-299 . -620) NIL) ((-299 . -619) 62781) ((-917 . -458) T) ((-971 . -373) 62734) ((-821 . -373) 62713) ((-516 . -515) 62692) ((-514 . -515) 62671) ((-493 . -290) NIL) ((-488 . -292) 62648) ((-424 . -294) T) ((-359 . -132) T) ((-219 . -290) NIL) ((-700 . -499) NIL) ((-99 . -1121) T) ((-171 . -38) 62476) ((-1260 . -982) 62438) ((-1156 . -313) 62376) ((-1239 . -982) 62345) ((-917 . -408) T) ((-1122 . -1058) 62275) ((-1262 . -562) T) ((-1159 . -610) 62254) ((-112 . -856) T) ((-1072 . -495) 62185) ((-586 . -21) T) ((-586 . -25) T) ((-570 . -21) T) ((-570 . -25) T) ((-501 . -25) T) ((-501 . -21) T) ((-1249 . -1161) 62163) ((-1122 . -235) 62115) ((-48 . -132) T) ((-1207 . -102) T) ((-242 . -1109) 61905) ((-877 . -406) 61882) ((-1097 . -102) T) ((-1085 . -102) T) ((-614 . -102) T) ((-481 . -102) T) ((-1249 . -38) 61711) ((-861 . -38) 61681) ((-1043 . -1060) 61655) ((-737 . -174) 61566) ((-659 . -619) 61548) ((-651 . -1092) T) ((-1043 . -646) 61532) ((-577 . -38) 61519) ((-979 . -496) 61500) ((-979 . -619) 61466) ((-965 . -102) 61416) ((-870 . -619) 61398) ((-870 . -620) 61320) ((-599 . -520) NIL) ((-1268 . -1067) T) ((-1261 . -1067) T) ((-326 . -1060) 61302) ((-1240 . -1067) T) ((-1304 . -1121) T) ((-1220 . -148) 61281) ((-326 . -646) 61263) ((-1220 . -146) 61242) ((-1194 . -102) T) ((-1193 . -102) T) ((-1192 . -102) T) ((-1184 . -174) 61193) ((-602 . -1067) T) ((-601 . -1067) T) ((-1183 . -174) 61124) ((-1177 . -174) 61055) ((-384 . -1060) 61020) ((-1160 . -622) 61001) ((-1135 . -174) 60952) ((-1013 . -1109) T) ((-980 . -1109) T) ((-921 . -1109) T) ((-384 . -646) 60917) ((-805 . -803) 60901) ((-705 . -25) T) ((-705 . -21) T) ((-118 . -645) 60878) ((-707 . -893) 60860) ((-433 . -1109) T) ((-320 . -1230) 60839) ((-317 . -1230) T) ((-171 . -406) 60823) ((-842 . -1060) 60793) ((-480 . -982) 60755) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -619) 60737) ((-833 . -1060) 60721) ((-108 . -801) T) ((-108 . -798) T) ((-707 . -1047) 60703) ((-320 . -562) 60682) ((-317 . -562) T) ((-842 . -646) 60652) ((-833 . -646) 60622) ((-1304 . -23) T) ((-135 . -1047) 60604) ((-96 . -622) 60585) ((-1002 . -652) 60567) ((-488 . -1065) 60464) ((-45 . -292) 60389) ((-242 . -723) 60331) ((-523 . -102) T) ((-488 . -111) 60221) ((-1101 . -102) 60191) ((-1043 . -102) T) ((-1182 . -652) 60101) ((-1134 . -652) 60011) ((-860 . -652) 59970) ((-650 . -834) 59949) ((-737 . -520) 59892) ((-1063 . -1065) 59876) ((-1144 . -93) T) ((-1072 . -290) 59851) ((-629 . -21) T) ((-629 . -25) T) ((-530 . -1109) T) ((-676 . -654) 59825) ((-366 . -102) T) ((-326 . -102) T) ((-390 . -1065) 59809) ((-1063 . -111) 59788) ((-822 . -417) 59772) ((-118 . -25) T) ((-89 . -619) 59754) ((-118 . -21) T) ((-614 . -313) 59549) ((-481 . -313) 59353) ((-1159 . -620) NIL) ((-390 . -111) 59332) ((-384 . -102) T) ((-216 . -619) 59314) ((-1159 . -619) 59296) ((-1177 . -520) 59065) ((-1013 . -723) 59015) ((-1135 . -520) 58985) ((-921 . -723) 58937) ((-488 . -622) 58667) ((-356 . -311) T) ((-1199 . -152) 58617) ((-965 . -313) 58555) ((-842 . -102) T) ((-433 . -723) 58539) ((-227 . -834) T) ((-833 . -102) T) ((-831 . -102) T) ((-485 . -152) 58489) ((-1260 . -1259) 58468) ((-1129 . -1230) T) ((-344 . -1047) 58435) ((-1260 . -1254) 58405) ((-1260 . -1257) 58389) ((-1239 . -1238) 58368) ((-80 . -619) 58350) ((-912 . -619) 58332) ((-1239 . -1254) 58309) ((-1129 . -562) T) ((-928 . -856) T) ((-777 . -856) T) ((-678 . -856) T) ((-493 . -620) 58239) ((-493 . -619) 58180) ((-384 . -288) T) ((-1239 . -1236) 58164) ((-1262 . -1121) T) ((-219 . -620) 58094) ((-219 . -619) 58035) ((-1298 . -654) 58009) ((-1072 . -610) 57984) ((-824 . -622) 57968) ((-59 . -152) 57952) ((-522 . -152) 57936) ((-502 . -152) 57920) ((-364 . -1295) 57904) ((-358 . -1295) 57888) ((-350 . -1295) 57872) ((-320 . -368) 57851) ((-317 . -368) T) ((-488 . -1058) 57781) ((-700 . -645) 57763) ((-1296 . -654) 57737) ((-129 . -313) NIL) ((-1262 . -23) T) ((-695 . -495) 57721) ((-64 . -619) 57703) ((-1122 . -801) 57654) ((-1122 . -798) 57605) ((-556 . -495) 57542) ((-676 . -34) T) ((-488 . -235) 57494) ((-299 . -292) 57473) ((-242 . -174) 57452) ((-822 . -1067) T) ((-44 . -654) 57410) ((-1089 . -373) 57361) ((-1096 . -146) 57340) ((-737 . -294) 57271) ((-526 . -520) 57204) ((-823 . -1065) 57155) ((-1096 . -148) 57134) ((-555 . -619) 57116) ((-364 . -373) 57095) ((-358 . -373) 57074) ((-350 . -373) 57053) ((-975 . -1226) T) ((-877 . -233) 57030) ((-823 . -111) 56972) ((-788 . -146) 56951) ((-788 . -148) 56930) ((-267 . -956) 56897) ((-254 . -854) 56876) ((-249 . -956) 56821) ((-253 . -854) 56800) ((-786 . -146) 56779) ((-786 . -148) 56758) ((-153 . -654) 56732) ((-585 . -1109) T) ((-460 . -148) 56711) ((-460 . -146) 56690) ((-676 . -732) T) ((-829 . -619) 56672) ((-1268 . -1109) T) ((-1261 . -1109) T) ((-1240 . -1109) T) ((-1220 . -1214) 56638) ((-1220 . -1211) 56604) ((-1184 . -294) 56583) ((-1183 . -294) 56534) ((-1177 . -294) 56485) ((-1135 . -294) 56464) ((-344 . -907) 56445) ((-1013 . -174) T) ((-921 . -174) T) ((-700 . -21) T) ((-700 . -25) T) ((-227 . -652) 56395) ((-602 . -1109) T) ((-601 . -1109) T) ((-480 . -1257) 56379) ((-480 . -1254) 56349) ((-424 . -290) 56277) ((-553 . -856) T) ((-320 . -1121) 56126) ((-317 . -1121) T) ((-1220 . -35) 56092) ((-1220 . -95) 56058) ((-84 . -619) 56040) ((-91 . -102) 56018) ((-1304 . -132) T) ((-720 . -1060) 55988) ((-598 . -622) 55969) ((-587 . -146) T) ((-587 . -148) 55951) ((-524 . -148) 55933) ((-524 . -146) T) ((-720 . -646) 55903) ((-320 . -23) 55755) ((-40 . -347) 55729) ((-317 . -23) T) ((-823 . -622) 55643) ((-1168 . -657) 55625) ((-1291 . -1067) T) ((-1168 . -378) 55607) ((-821 . -654) 55455) ((-1105 . -102) T) ((-1099 . -102) T) ((-1082 . -102) T) ((-171 . -233) 55439) ((-1075 . -102) T) ((-1045 . -102) T) ((-1028 . -102) T) ((-599 . -495) 55421) ((-632 . -102) T) ((-242 . -520) 55354) ((-489 . -102) T) ((-1298 . -732) T) ((-1296 . -732) T) ((-220 . -102) T) ((-1188 . -1065) 55237) ((-1071 . -652) 55209) ((-959 . -652) 55119) ((-1188 . -111) 54988) ((-882 . -1092) T) ((-487 . -652) 54898) ((-867 . -175) T) ((-823 . -1058) T) ((-687 . -1092) T) ((-682 . -1092) T) ((-521 . -102) T) ((-516 . -102) T) ((-48 . -645) 54858) ((-514 . -102) T) ((-484 . -1092) T) ((-1288 . -1065) 54828) ((-139 . -1092) T) ((-138 . -1092) T) ((-134 . -1092) T) ((-1043 . -38) 54812) ((-823 . -235) T) ((-823 . -245) 54791) ((-1288 . -111) 54756) ((-1268 . -723) 54653) ((-1261 . -723) 54494) ((-556 . -290) 54473) ((-1249 . -233) 54457) ((-1231 . -619) 54439) ((-612 . -93) T) ((-1072 . -620) NIL) ((-1072 . -619) 54421) ((-677 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1240 . -723) 54217) ((-1012 . -927) T) ((-153 . -732) T) ((-1188 . -622) 54070) ((-1122 . -373) 54049) ((-1033 . -25) T) ((-1013 . -520) NIL) ((-254 . -417) 54018) ((-253 . -417) 53987) ((-1033 . -21) T) ((-878 . -1060) 53939) ((-602 . -723) 53912) ((-601 . -723) 53809) ((-805 . -290) 53767) ((-127 . -102) 53745) ((-839 . -1047) 53641) ((-171 . -834) 53620) ((-323 . -654) 53517) ((-821 . -34) T) ((-720 . -102) T) ((-1129 . -1121) T) ((-1035 . -1226) T) ((-878 . -646) 53469) ((-384 . -38) 53434) ((-359 . -25) T) ((-359 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-251 . -102) T) ((-158 . -102) T) ((-360 . -1283) 53418) ((-357 . -1283) 53402) ((-349 . -1283) 53386) ((-171 . -354) 53365) ((-570 . -856) T) ((-1129 . -23) T) ((-87 . -619) 53347) ((-707 . -311) T) ((-842 . -38) 53317) ((-833 . -38) 53287) ((-1288 . -622) 53229) ((-1262 . -132) T) ((-1159 . -292) 53208) ((-971 . -732) 53107) ((-971 . -799) 53060) ((-971 . -800) 53013) ((-821 . -797) 52992) ((-117 . -311) T) ((-91 . -313) 52930) ((-681 . -34) T) ((-556 . -610) 52909) ((-48 . -25) T) ((-48 . -21) T) ((-821 . -800) 52860) ((-821 . -799) 52839) ((-707 . -1031) T) ((-659 . -1065) 52823) ((-877 . -652) 52753) ((-821 . -732) 52663) ((-971 . -479) 52616) ((-488 . -801) 52567) ((-488 . -798) 52518) ((-917 . -1283) 52505) ((-1188 . -1058) T) ((-659 . -111) 52484) ((-1188 . -330) 52461) ((-1212 . -102) 52439) ((-1110 . -619) 52421) ((-707 . -551) T) ((-822 . -1109) T) ((-1288 . -1058) T) ((-1144 . -496) 52402) ((-1232 . -102) T) ((-419 . -1109) T) ((-1144 . -619) 52368) ((-254 . -1067) 52298) ((-253 . -1067) 52228) ((-844 . -102) T) ((-293 . -654) 52215) ((-599 . -290) 52190) ((-695 . -693) 52148) ((-970 . -619) 52130) ((-878 . -102) T) ((-741 . -619) 52112) ((-721 . -619) 52094) ((-1268 . -174) 52045) ((-1261 . -174) 51976) ((-1240 . -174) 51907) ((-705 . -856) T) ((-1013 . -294) T) ((-459 . -619) 51889) ((-633 . -732) T) ((-60 . -1109) 51867) ((-247 . -152) 51851) ((-921 . -294) T) ((-1033 . -1021) T) ((-633 . -479) T) ((-718 . -1230) 51830) ((-659 . -622) 51748) ((-171 . -652) 51643) ((-1276 . -856) 51622) ((-602 . -174) 51601) ((-601 . -174) 51552) ((-1260 . -646) 51393) ((-1260 . -1060) 51228) ((-1239 . -646) 51042) ((-1239 . -1060) 50850) ((-718 . -562) 50761) ((-413 . -927) T) ((-413 . -826) 50740) ((-323 . -800) T) ((-979 . -622) 50721) ((-323 . -732) T) ((-424 . -619) 50703) ((-424 . -620) 50610) ((-650 . -1158) 50594) ((-110 . -657) 50576) ((-176 . -311) T) ((-127 . -313) 50514) ((-110 . -378) 50496) ((-404 . -1226) T) ((-320 . -132) 50367) ((-317 . -132) T) ((-69 . -401) T) ((-110 . -124) T) ((-526 . -495) 50351) ((-660 . -1121) T) ((-599 . -19) 50333) ((-61 . -447) T) ((-61 . -401) T) ((-830 . -1109) T) ((-599 . -610) 50308) ((-483 . -1047) 50268) ((-659 . -1058) T) ((-660 . -23) T) ((-1291 . -1109) T) ((-31 . -102) T) ((-1249 . -652) 50178) ((-861 . -652) 50137) ((-822 . -723) 49986) ((-583 . -866) T) ((-577 . -652) 49958) ((-118 . -856) NIL) ((-1182 . -417) 49942) ((-1134 . -417) 49926) ((-860 . -417) 49910) ((-879 . -102) 49861) ((-1260 . -102) T) ((-1240 . -520) 49630) ((-1239 . -102) T) ((-1212 . -313) 49568) ((-1184 . -290) 49553) ((-1183 . -290) 49538) ((-531 . -93) T) ((-1177 . -290) 49386) ((-316 . -619) 49368) ((-1111 . -1109) T) ((-1089 . -654) 49278) ((-717 . -458) T) ((-695 . -619) 49210) ((-293 . -732) T) ((-108 . -916) NIL) ((-695 . -620) 49171) ((-607 . -619) 49153) ((-583 . -619) 49135) ((-556 . -620) NIL) ((-556 . -619) 49117) ((-535 . -619) 49099) ((-517 . -515) 49078) ((-493 . -1065) 49028) ((-480 . -1060) 48863) ((-513 . -515) 48842) ((-480 . -646) 48683) ((-219 . -1065) 48633) ((-364 . -654) 48585) ((-358 . -654) 48537) ((-227 . -854) T) ((-350 . -654) 48489) ((-608 . -102) 48439) ((-488 . -373) 48418) ((-108 . -654) 48368) ((-493 . -111) 48302) ((-242 . -495) 48286) ((-348 . -148) 48268) ((-348 . -146) T) ((-171 . -375) 48239) ((-950 . -1274) 48223) ((-219 . -111) 48157) ((-878 . -313) 48122) ((-950 . -1109) 48072) ((-805 . -620) 48033) ((-805 . -619) 48015) ((-724 . -102) T) ((-335 . -1109) T) ((-216 . -622) 47992) ((-1129 . -132) T) ((-720 . -38) 47962) ((-320 . -499) 47941) ((-506 . -1226) T) ((-1260 . -288) 47907) ((-1239 . -288) 47873) ((-331 . -152) 47857) ((-445 . -1109) T) ((-1072 . -292) 47832) ((-1291 . -723) 47802) ((-1169 . -34) T) ((-1300 . -1047) 47779) ((-474 . -619) 47761) ((-490 . -34) T) ((-386 . -1047) 47745) ((-1182 . -1067) T) ((-1134 . -1067) T) ((-860 . -1067) T) ((-1071 . -854) T) ((-493 . -622) 47695) ((-219 . -622) 47645) ((-822 . -174) 47556) ((-526 . -290) 47533) ((-1268 . -294) 47512) ((-1207 . -369) 47486) ((-1097 . -269) 47470) ((-677 . -496) 47451) ((-677 . -619) 47417) ((-612 . -496) 47398) ((-118 . -1001) 47375) ((-612 . -619) 47325) ((-480 . -102) T) ((-182 . -496) 47306) ((-182 . -619) 47272) ((-162 . -496) 47253) ((-157 . -496) 47234) ((-155 . -496) 47215) ((-162 . -619) 47181) ((-157 . -619) 47147) ((-370 . -1109) T) ((-254 . -1109) T) ((-253 . -1109) T) ((-155 . -619) 47113) ((-1261 . -294) 47064) ((-1240 . -294) 47015) ((-878 . -1161) 46993) ((-1184 . -1011) 46959) ((-614 . -369) 46899) ((-1183 . -1011) 46865) ((-614 . -231) 46812) ((-700 . -856) T) ((-599 . -619) 46794) ((-599 . -620) NIL) ((-481 . -231) 46744) ((-493 . -1058) T) ((-1177 . -1011) 46710) ((-88 . -446) T) ((-88 . -401) T) ((-219 . -1058) T) ((-1135 . -1011) 46676) ((-1089 . -732) T) ((-718 . -1121) T) ((-602 . -294) 46655) ((-601 . -294) 46634) ((-493 . -245) T) ((-493 . -235) T) ((-219 . -245) T) ((-219 . -235) T) ((-1175 . -619) 46616) ((-878 . -38) 46568) ((-364 . -732) T) ((-358 . -732) T) ((-350 . -732) T) ((-108 . -800) T) ((-108 . -797) T) ((-718 . -23) T) ((-108 . -732) T) ((-526 . -1264) 46552) ((-1304 . -25) T) ((-480 . -288) 46518) ((-1304 . -21) T) ((-1239 . -313) 46457) ((-1186 . -102) T) ((-40 . -146) 46429) ((-40 . -148) 46401) ((-526 . -610) 46378) ((-1122 . -654) 46226) ((-608 . -313) 46164) ((-45 . -657) 46114) ((-45 . -672) 46064) ((-45 . -378) 46014) ((-1168 . -34) T) ((-877 . -854) NIL) ((-660 . -132) T) ((-491 . -619) 45996) ((-242 . -290) 45973) ((-188 . -1109) T) ((-1096 . -458) 45924) ((-822 . -520) 45798) ((-670 . -1060) 45782) ((-653 . -34) T) ((-638 . -34) T) ((-788 . -458) 45713) ((-670 . -646) 45697) ((-360 . -1060) 45649) ((-357 . -1060) 45601) ((-349 . -1060) 45553) ((-267 . -1060) 45396) ((-249 . -1060) 45239) ((-786 . -458) 45190) ((-360 . -646) 45142) ((-357 . -646) 45094) ((-349 . -646) 45046) ((-267 . -646) 44895) ((-249 . -646) 44744) ((-460 . -458) 44695) ((-959 . -417) 44679) ((-737 . -619) 44661) ((-254 . -723) 44603) ((-253 . -723) 44545) ((-737 . -620) 44406) ((-487 . -417) 44390) ((-344 . -306) T) ((-530 . -93) T) ((-356 . -927) T) ((-1009 . -102) 44368) ((-917 . -1060) 44333) ((-1033 . -856) T) ((-60 . -520) 44266) ((-917 . -646) 44231) ((-1239 . -1161) 44183) ((-1013 . -290) NIL) ((-227 . -1067) T) ((-384 . -834) T) ((-1122 . -34) T) ((-587 . -458) T) ((-524 . -458) T) ((-1243 . -1102) 44167) ((-1243 . -1109) 44145) ((-242 . -610) 44122) ((-1243 . -1104) 44079) ((-1184 . -619) 44061) ((-1183 . -619) 44043) ((-1177 . -619) 44025) ((-1177 . -620) NIL) ((-1135 . -619) 44007) ((-878 . -406) 43991) ((-603 . -102) T) ((-591 . -102) T) ((-542 . -102) T) ((-1260 . -38) 43832) ((-1239 . -38) 43646) ((-876 . -148) T) ((-587 . -408) T) ((-524 . -408) T) ((-1272 . -102) T) ((-1262 . -21) T) ((-1262 . -25) T) ((-1122 . -797) 43625) ((-1122 . -800) 43576) ((-1122 . -799) 43555) ((-1002 . -1109) T) ((-1036 . -34) T) ((-868 . -1109) T) ((-1122 . -732) 43465) ((-670 . -102) T) ((-651 . -102) T) ((-556 . -292) 43444) ((-1199 . -102) T) ((-482 . -34) T) ((-469 . -34) T) ((-360 . -102) T) ((-357 . -102) T) ((-349 . -102) T) ((-267 . -102) T) ((-249 . -102) T) ((-483 . -311) T) ((-1071 . -1067) T) ((-959 . -1067) T) ((-320 . -645) 43350) ((-317 . -645) 43311) ((-1182 . -1109) T) ((-487 . -1067) T) ((-485 . -102) T) ((-442 . -619) 43293) ((-1134 . -1109) T) ((-252 . -619) 43275) ((-860 . -1109) T) ((-1150 . -102) T) ((-822 . -294) 43206) ((-970 . -1065) 43089) ((-483 . -1031) T) ((-741 . -1065) 43059) ((-1043 . -652) 43018) ((-459 . -1065) 42988) ((-1156 . -1130) 42972) ((-1111 . -520) 42905) ((-970 . -111) 42774) ((-917 . -102) T) ((-741 . -111) 42739) ((-531 . -496) 42720) ((-531 . -619) 42686) ((-59 . -102) 42636) ((-526 . -620) 42597) ((-526 . -619) 42509) ((-525 . -102) 42487) ((-522 . -102) 42437) ((-503 . -102) 42415) ((-502 . -102) 42365) ((-459 . -111) 42328) ((-254 . -174) 42307) ((-253 . -174) 42286) ((-326 . -652) 42268) ((-424 . -1065) 42242) ((-1220 . -982) 42204) ((-1008 . -1121) T) ((-384 . -652) 42154) ((-1144 . -622) 42135) ((-950 . -520) 42068) ((-493 . -801) T) ((-480 . -38) 41909) ((-424 . -111) 41876) ((-493 . -798) T) ((-1009 . -313) 41814) ((-219 . -801) T) ((-219 . -798) T) ((-1008 . -23) T) ((-718 . -132) T) ((-1239 . -406) 41784) ((-842 . -652) 41729) ((-833 . -652) 41688) ((-320 . -25) 41540) ((-171 . -417) 41524) ((-320 . -21) 41395) ((-317 . -25) T) ((-317 . -21) T) ((-870 . -373) T) ((-970 . -622) 41248) ((-110 . -34) T) ((-741 . -622) 41204) ((-721 . -622) 41186) ((-488 . -654) 41034) ((-877 . -1067) T) ((-599 . -292) 41009) ((-586 . -148) T) ((-570 . -148) T) ((-501 . -148) T) ((-1182 . -723) 40838) ((-1066 . -102) 40816) ((-1134 . -723) 40665) ((-1129 . -645) 40647) ((-860 . -723) 40617) ((-676 . -1226) T) ((-1 . -102) T) ((-424 . -622) 40525) ((-242 . -619) 40256) ((-1124 . -1109) T) ((-1249 . -417) 40240) ((-1199 . -313) 40044) ((-970 . -1058) T) ((-741 . -1058) T) ((-721 . -1058) T) ((-650 . -1109) 39994) ((-1063 . -654) 39978) ((-861 . -417) 39962) ((-517 . -102) T) ((-513 . -102) T) ((-267 . -313) 39949) ((-249 . -313) 39936) ((-970 . -330) 39915) ((-390 . -654) 39899) ((-676 . -1047) 39795) ((-485 . -313) 39599) ((-254 . -520) 39532) ((-253 . -520) 39465) ((-1150 . -313) 39391) ((-825 . -1109) T) ((-805 . -1065) 39375) ((-1268 . -290) 39360) ((-1261 . -290) 39345) ((-1240 . -290) 39193) ((-392 . -1109) T) ((-328 . -1109) T) ((-424 . -1058) T) ((-171 . -1067) T) ((-59 . -313) 39131) ((-805 . -111) 39110) ((-601 . -290) 39095) ((-525 . -313) 39033) ((-522 . -313) 38971) ((-503 . -313) 38909) ((-502 . -313) 38847) ((-424 . -235) 38826) ((-488 . -34) T) ((-1013 . -620) 38756) ((-227 . -1109) T) ((-1013 . -619) 38716) ((-980 . -619) 38676) ((-980 . -620) 38651) ((-921 . -619) 38633) ((-705 . -148) T) ((-707 . -927) T) ((-707 . -826) T) ((-433 . -619) 38615) ((-1129 . -21) T) ((-1129 . -25) T) ((-676 . -382) 38599) ((-117 . -927) T) ((-878 . -233) 38583) ((-78 . -1226) T) ((-127 . -126) 38567) ((-1063 . -34) T) ((-1298 . -1047) 38541) ((-1296 . -1047) 38498) ((-1249 . -1067) T) ((-861 . -1067) T) ((-488 . -797) 38477) ((-360 . -1161) 38456) ((-357 . -1161) 38435) ((-349 . -1161) 38414) ((-488 . -800) 38365) ((-488 . -799) 38344) ((-229 . -34) T) ((-488 . -732) 38254) ((-805 . -622) 38100) ((-668 . -1060) 38084) ((-60 . -495) 38068) ((-577 . -1067) T) ((-668 . -646) 38052) ((-1182 . -174) 37943) ((-1134 . -174) 37854) ((-1071 . -1109) T) ((-1096 . -956) 37799) ((-959 . -1109) T) ((-823 . -654) 37750) ((-788 . -956) 37719) ((-719 . -1109) T) ((-786 . -956) 37686) ((-522 . -286) 37670) ((-676 . -907) 37629) ((-487 . -1109) T) ((-460 . -956) 37596) ((-79 . -1226) T) ((-360 . -38) 37561) ((-357 . -38) 37526) ((-349 . -38) 37491) ((-267 . -38) 37340) ((-249 . -38) 37189) ((-917 . -1161) T) ((-530 . -496) 37170) ((-629 . -148) 37149) ((-629 . -146) 37128) ((-530 . -619) 37094) ((-118 . -148) T) ((-118 . -146) NIL) ((-420 . -732) T) ((-805 . -1058) T) ((-348 . -458) T) ((-1268 . -1011) 37060) ((-1261 . -1011) 37026) ((-1240 . -1011) 36992) ((-917 . -38) 36957) ((-227 . -723) 36922) ((-323 . -47) 36892) ((-40 . -415) 36864) ((-141 . -619) 36846) ((-1008 . -132) T) ((-821 . -1226) T) ((-176 . -927) T) ((-555 . -373) T) ((-612 . -622) 36827) ((-348 . -408) T) ((-720 . -652) 36772) ((-677 . -622) 36753) ((-182 . -622) 36734) ((-162 . -622) 36715) ((-157 . -622) 36696) ((-155 . -622) 36677) ((-526 . -292) 36654) ((-1239 . -233) 36624) ((-882 . -102) T) ((-821 . -1047) 36451) ((-45 . -34) T) ((-687 . -102) T) ((-682 . -102) T) ((-668 . -102) T) ((-660 . -21) T) ((-660 . -25) T) ((-1111 . -495) 36435) ((-681 . -1226) T) ((-484 . -102) T) ((-247 . -102) 36385) ((-552 . -850) T) ((-138 . -102) T) ((-134 . -102) T) ((-139 . -102) T) ((-877 . -1109) T) ((-1188 . -654) 36310) ((-1071 . -723) 36297) ((-737 . -1065) 36140) ((-1182 . -520) 36087) ((-959 . -723) 35936) ((-1134 . -520) 35888) ((-1287 . -1109) T) ((-1286 . -1109) T) ((-487 . -723) 35737) ((-67 . -619) 35719) ((-737 . -111) 35548) ((-950 . -495) 35532) ((-1288 . -654) 35492) ((-823 . -732) T) ((-1184 . -1065) 35375) ((-1183 . -1065) 35210) ((-1177 . -1065) 35000) ((-1135 . -1065) 34883) ((-1012 . -1230) T) ((-1103 . -102) 34861) ((-821 . -382) 34830) ((-585 . -619) 34812) ((-552 . -1109) T) ((-1012 . -562) T) ((-1184 . -111) 34681) ((-1183 . -111) 34502) ((-1177 . -111) 34271) ((-1135 . -111) 34140) ((-1114 . -1112) 34104) ((-384 . -854) T) ((-1268 . -619) 34086) ((-1261 . -619) 34068) ((-878 . -652) 34005) ((-1240 . -619) 33987) ((-1240 . -620) NIL) ((-242 . -292) 33964) ((-40 . -458) T) ((-227 . -174) T) ((-171 . -1109) T) ((-737 . -622) 33749) ((-700 . -148) T) ((-700 . -146) NIL) ((-602 . -619) 33731) ((-601 . -619) 33713) ((-905 . -1109) T) ((-847 . -1109) T) ((-814 . -1109) T) ((-775 . -1109) T) ((-664 . -858) 33697) ((-683 . -1109) T) ((-821 . -907) 33629) ((-1231 . -373) T) ((-40 . -408) NIL) ((-1184 . -622) 33511) ((-1129 . -667) T) ((-877 . -723) 33456) ((-254 . -495) 33440) ((-253 . -495) 33424) ((-1183 . -622) 33167) ((-1177 . -622) 32962) ((-718 . -645) 32910) ((-659 . -654) 32884) ((-1135 . -622) 32766) ((-299 . -34) T) ((-1129 . -113) T) ((-737 . -1058) T) ((-587 . -1283) 32753) ((-524 . -1283) 32730) ((-1249 . -1109) T) ((-1182 . -294) 32641) ((-1134 . -294) 32572) ((-1071 . -174) T) ((-861 . -1109) T) ((-959 . -174) 32483) ((-788 . -1252) 32467) ((-650 . -520) 32400) ((-77 . -619) 32382) ((-737 . -330) 32347) ((-1188 . -732) T) ((-577 . -1109) T) ((-487 . -174) 32258) ((-247 . -313) 32196) ((-1151 . -1121) T) ((-70 . -619) 32178) ((-1288 . -732) T) ((-1184 . -1058) T) ((-1183 . -1058) T) ((-331 . -102) 32128) ((-1177 . -1058) T) ((-1151 . -23) T) ((-1135 . -1058) T) ((-91 . -1130) 32112) ((-872 . -1121) T) ((-1184 . -235) 32071) ((-1183 . -245) 32050) ((-1183 . -235) 32002) ((-1177 . -235) 31889) ((-1177 . -245) 31868) ((-323 . -907) 31774) ((-872 . -23) T) ((-171 . -723) 31602) ((-413 . -1230) T) ((-1110 . -373) T) ((-1012 . -368) T) ((-876 . -458) T) ((-1033 . -148) T) ((-950 . -290) 31579) ((-317 . -856) NIL) ((-1260 . -652) 31461) ((-880 . -102) T) ((-1239 . -652) 31316) ((-718 . -25) T) ((-413 . -562) T) ((-718 . -21) T) ((-531 . -622) 31297) ((-359 . -148) 31279) ((-359 . -146) T) ((-1156 . -1109) 31257) ((-459 . -726) T) ((-75 . -619) 31239) ((-115 . -856) T) ((-247 . -286) 31223) ((-242 . -1065) 31120) ((-81 . -619) 31102) ((-741 . -373) 31055) ((-1186 . -834) T) ((-743 . -237) 31039) ((-1169 . -1226) T) ((-142 . -237) 31021) ((-242 . -111) 30911) ((-1249 . -723) 30740) ((-48 . -148) T) ((-877 . -174) T) ((-861 . -723) 30710) ((-490 . -1226) T) ((-959 . -520) 30657) ((-659 . -732) T) ((-577 . -723) 30644) ((-1043 . -1067) T) ((-487 . -520) 30587) ((-950 . -19) 30571) ((-950 . -610) 30548) ((-822 . -620) NIL) ((-822 . -619) 30530) ((-1220 . -1060) 30413) ((-1013 . -1065) 30363) ((-419 . -619) 30345) ((-254 . -290) 30322) ((-253 . -290) 30299) ((-493 . -916) NIL) ((-320 . -29) 30269) ((-108 . -1226) T) ((-1012 . -1121) T) ((-219 . -916) NIL) ((-1220 . -646) 30166) ((-921 . -1065) 30118) ((-1089 . -1047) 30014) ((-1013 . -111) 29948) ((-717 . -1060) 29913) ((-1012 . -23) T) ((-921 . -111) 29851) ((-743 . -701) 29835) ((-717 . -646) 29800) ((-267 . -233) 29784) ((-433 . -1065) 29768) ((-384 . -1067) T) ((-242 . -622) 29498) ((-700 . -1214) NIL) ((-493 . -654) 29448) ((-480 . -652) 29330) ((-108 . -891) 29312) ((-108 . -893) 29294) ((-700 . -1211) NIL) ((-219 . -654) 29244) ((-364 . -1047) 29228) ((-358 . -1047) 29212) ((-331 . -313) 29150) ((-350 . -1047) 29134) ((-227 . -294) T) ((-433 . -111) 29113) ((-60 . -619) 29045) ((-171 . -174) T) ((-1129 . -856) T) ((-108 . -1047) 29005) ((-899 . -1109) T) ((-842 . -1067) T) ((-833 . -1067) T) ((-700 . -35) NIL) ((-700 . -95) NIL) ((-317 . -1001) 28966) ((-185 . -102) T) ((-586 . -458) T) ((-570 . -458) T) ((-501 . -458) T) ((-413 . -368) T) ((-242 . -1058) 28896) ((-1159 . -34) T) ((-483 . -927) T) ((-1008 . -645) 28844) ((-254 . -610) 28821) ((-253 . -610) 28798) ((-1089 . -382) 28782) ((-877 . -520) 28690) ((-242 . -235) 28642) ((-1168 . -1226) T) ((-1013 . -622) 28592) ((-921 . -622) 28529) ((-830 . -619) 28511) ((-1299 . -1121) T) ((-1291 . -619) 28493) ((-1249 . -174) 28384) ((-433 . -622) 28353) ((-108 . -382) 28335) ((-108 . -343) 28317) ((-1071 . -294) T) ((-959 . -294) 28248) ((-805 . -373) 28227) ((-653 . -1226) T) ((-638 . -1226) T) ((-592 . -1060) 28202) ((-487 . -294) 28133) ((-577 . -174) T) ((-331 . -286) 28117) ((-1299 . -23) T) ((-1220 . -102) T) ((-1207 . -1109) T) ((-1097 . -1109) T) ((-1085 . -1109) T) ((-592 . -646) 28092) ((-83 . -619) 28074) ((-1193 . -850) T) ((-1192 . -850) T) ((-717 . -102) T) ((-360 . -354) 28053) ((-614 . -1109) T) ((-357 . -354) 28032) ((-349 . -354) 28011) ((-481 . -1109) T) ((-1199 . -231) 27961) ((-267 . -256) 27923) ((-1151 . -132) T) ((-614 . -616) 27899) ((-1089 . -907) 27832) ((-1013 . -1058) T) ((-921 . -1058) T) ((-481 . -616) 27811) ((-1177 . -798) NIL) ((-1177 . -801) NIL) ((-1111 . -620) 27772) ((-485 . -231) 27722) ((-1111 . -619) 27704) ((-1013 . -245) T) ((-1013 . -235) T) ((-433 . -1058) T) ((-965 . -1109) 27654) ((-921 . -245) T) ((-872 . -132) T) ((-705 . -458) T) ((-849 . -1121) 27633) ((-108 . -907) NIL) ((-1220 . -288) 27599) ((-878 . -854) 27578) ((-1122 . -1226) T) ((-912 . -732) T) ((-171 . -520) 27490) ((-1008 . -25) T) ((-912 . -479) T) ((-413 . -1121) T) ((-493 . -800) T) ((-493 . -797) T) ((-917 . -354) T) ((-493 . -732) T) ((-219 . -800) T) ((-219 . -797) T) ((-1008 . -21) T) ((-219 . -732) T) ((-849 . -23) 27442) ((-1194 . -1109) T) ((-664 . -1060) 27426) ((-1193 . -1109) T) ((-530 . -622) 27407) ((-1192 . -1109) T) ((-323 . -311) 27386) ((-1044 . -237) 27332) ((-664 . -646) 27302) ((-413 . -23) T) ((-950 . -620) 27263) ((-950 . -619) 27175) ((-650 . -495) 27159) ((-45 . -1019) 27109) ((-623 . -976) T) ((-497 . -102) T) ((-335 . -619) 27091) ((-1122 . -1047) 26918) ((-599 . -657) 26900) ((-131 . -1109) T) ((-129 . -1109) T) ((-599 . -378) 26882) ((-348 . -1283) 26859) ((-445 . -619) 26841) ((-1249 . -520) 26788) ((-1096 . -1060) 26631) ((-1036 . -1226) T) ((-877 . -294) T) ((-1182 . -290) 26558) ((-1096 . -646) 26407) ((-1009 . -1004) 26391) ((-788 . -1060) 26214) ((-786 . -1060) 26057) ((-788 . -646) 25886) ((-786 . -646) 25735) ((-482 . -1226) T) ((-469 . -1226) T) ((-592 . -102) T) ((-467 . -1060) 25706) ((-460 . -1060) 25549) ((-670 . -652) 25518) ((-629 . -458) 25497) ((-467 . -646) 25468) ((-460 . -646) 25317) ((-360 . -652) 25254) ((-357 . -652) 25191) ((-349 . -652) 25128) ((-267 . -652) 25038) ((-249 . -652) 24948) ((-1291 . -387) 24920) ((-523 . -1109) T) ((-118 . -458) T) ((-1206 . -102) T) ((-1101 . -1109) 24890) ((-1043 . -1109) T) ((-1124 . -93) T) ((-900 . -856) T) ((-1268 . -111) 24759) ((-356 . -1230) T) ((-1268 . -1065) 24642) ((-1122 . -382) 24611) ((-1261 . -1065) 24446) ((-1240 . -1065) 24236) ((-1261 . -111) 24057) ((-1240 . -111) 23826) ((-1220 . -313) 23813) ((-1012 . -132) T) ((-917 . -652) 23763) ((-370 . -619) 23745) ((-356 . -562) T) ((-293 . -311) T) ((-602 . -1065) 23705) ((-601 . -1065) 23588) ((-587 . -1060) 23553) ((-524 . -1060) 23498) ((-366 . -1109) T) ((-326 . -1109) T) ((-254 . -619) 23459) ((-253 . -619) 23420) ((-587 . -646) 23385) ((-524 . -646) 23330) ((-700 . -415) 23297) ((-641 . -23) T) ((-613 . -23) T) ((-664 . -102) T) ((-602 . -111) 23250) ((-601 . -111) 23119) ((-384 . -1109) T) ((-341 . -102) T) ((-171 . -294) 23030) ((-1239 . -854) 22983) ((-720 . -1067) T) ((-1156 . -520) 22916) ((-1122 . -907) 22848) ((-842 . -1109) T) ((-833 . -1109) T) ((-831 . -1109) T) ((-97 . -102) T) ((-145 . -856) T) ((-618 . -891) 22832) ((-110 . -1226) T) ((-1096 . -102) T) ((-1072 . -34) T) ((-788 . -102) T) ((-786 . -102) T) ((-1268 . -622) 22714) ((-1261 . -622) 22457) ((-467 . -102) T) ((-460 . -102) T) ((-1240 . -622) 22252) ((-242 . -801) 22203) ((-242 . -798) 22154) ((-655 . -102) T) ((-602 . -622) 22112) ((-601 . -622) 21994) ((-1249 . -294) 21905) ((-670 . -640) 21889) ((-188 . -619) 21871) ((-650 . -290) 21848) ((-1043 . -723) 21832) ((-577 . -294) T) ((-970 . -654) 21757) ((-1299 . -132) T) ((-741 . -654) 21717) ((-721 . -654) 21704) ((-278 . -102) T) ((-459 . -654) 21634) ((-50 . -102) T) ((-587 . -102) T) ((-524 . -102) T) ((-1268 . -1058) T) ((-1261 . -1058) T) ((-1240 . -1058) T) ((-513 . -652) 21616) ((-326 . -723) 21598) ((-1268 . -235) 21557) ((-1261 . -245) 21536) ((-1261 . -235) 21488) ((-1240 . -235) 21375) ((-1240 . -245) 21354) ((-1220 . -38) 21251) ((-602 . -1058) T) ((-601 . -1058) T) ((-1013 . -801) T) ((-1013 . -798) T) ((-980 . -801) T) ((-980 . -798) T) ((-878 . -1067) T) ((-109 . -619) 21233) ((-700 . -458) T) ((-384 . -723) 21198) ((-424 . -654) 21172) ((-876 . -875) 21156) ((-717 . -38) 21121) ((-601 . -235) 21080) ((-40 . -730) 21052) ((-356 . -333) 21029) ((-356 . -368) T) ((-1089 . -311) 20980) ((-298 . -1121) 20861) ((-1115 . -1226) T) ((-173 . -102) T) ((-1243 . -619) 20828) ((-849 . -132) 20780) ((-650 . -1264) 20764) ((-842 . -723) 20734) ((-833 . -723) 20704) ((-488 . -1226) T) ((-364 . -311) T) ((-358 . -311) T) ((-350 . -311) T) ((-650 . -610) 20681) ((-413 . -132) T) ((-526 . -672) 20665) ((-108 . -311) T) ((-298 . -23) 20548) ((-526 . -657) 20532) ((-700 . -408) NIL) ((-526 . -378) 20516) ((-295 . -619) 20498) ((-91 . -1109) 20476) ((-108 . -1031) T) ((-570 . -144) T) ((-1276 . -152) 20460) ((-488 . -1047) 20287) ((-1262 . -146) 20248) ((-1262 . -148) 20209) ((-1063 . -1226) T) ((-1002 . -619) 20191) ((-868 . -619) 20173) ((-822 . -1065) 20016) ((-1287 . -93) T) ((-1286 . -93) T) ((-1182 . -620) NIL) ((-1105 . -1109) T) ((-1099 . -1109) T) ((-1096 . -313) 20003) ((-1082 . -1109) T) ((-229 . -1226) T) ((-1075 . -1109) T) ((-1045 . -1109) T) ((-1028 . -1109) T) ((-788 . -313) 19990) ((-786 . -313) 19977) ((-1182 . -619) 19959) ((-822 . -111) 19788) ((-1134 . -619) 19770) ((-632 . -1109) T) ((-583 . -175) T) ((-535 . -175) T) ((-460 . -313) 19757) ((-489 . -1109) T) ((-1134 . -620) 19505) ((-1043 . -174) T) ((-950 . -292) 19482) ((-220 . -1109) T) ((-860 . -619) 19464) ((-614 . -520) 19247) ((-81 . -622) 19188) ((-824 . -1047) 19172) ((-481 . -520) 18964) ((-970 . -732) T) ((-741 . -732) T) ((-721 . -732) T) ((-356 . -1121) T) ((-1189 . -619) 18946) ((-225 . -102) T) ((-488 . -382) 18915) ((-521 . -1109) T) ((-516 . -1109) T) ((-514 . -1109) T) ((-805 . -654) 18889) ((-1033 . -458) T) ((-965 . -520) 18822) ((-356 . -23) T) ((-641 . -132) T) ((-613 . -132) T) ((-359 . -458) T) ((-242 . -373) 18801) ((-384 . -174) T) ((-1260 . -1067) T) ((-1239 . -1067) T) ((-227 . -1011) T) ((-822 . -622) 18538) ((-705 . -393) T) ((-424 . -732) T) ((-707 . -1230) T) ((-1151 . -645) 18486) ((-586 . -875) 18470) ((-1291 . -1065) 18454) ((-1169 . -1202) 18430) ((-707 . -562) T) ((-127 . -1109) 18408) ((-720 . -1109) T) ((-664 . -38) 18378) ((-488 . -907) 18310) ((-251 . -1109) T) ((-189 . -1109) T) ((-359 . -408) T) ((-320 . -148) 18289) ((-320 . -146) 18268) ((-129 . -520) NIL) ((-117 . -562) T) ((-317 . -148) 18224) ((-317 . -146) 18180) ((-48 . -458) T) ((-163 . -1109) T) ((-158 . -1109) T) ((-1169 . -107) 18127) ((-788 . -1161) 18105) ((-695 . -34) T) ((-1291 . -111) 18084) ((-556 . -34) T) ((-490 . -107) 18068) ((-254 . -292) 18045) ((-253 . -292) 18022) ((-877 . -290) 17973) ((-45 . -1226) T) ((-1232 . -850) T) ((-822 . -1058) T) ((-668 . -652) 17942) ((-1188 . -47) 17919) ((-822 . -330) 17881) ((-1096 . -38) 17730) ((-822 . -235) 17709) ((-788 . -38) 17538) ((-786 . -38) 17387) ((-1124 . -496) 17368) ((-460 . -38) 17217) ((-1124 . -619) 17183) ((-1127 . -102) T) ((-650 . -620) 17144) ((-650 . -619) 17056) ((-587 . -1161) T) ((-524 . -1161) T) ((-1156 . -495) 17040) ((-348 . -1060) 16985) ((-1212 . -1109) 16963) ((-1151 . -25) T) ((-1151 . -21) T) ((-348 . -646) 16908) ((-1291 . -622) 16857) ((-480 . -1067) T) ((-1232 . -1109) T) ((-1240 . -798) NIL) ((-1240 . -801) NIL) ((-1008 . -856) 16836) ((-844 . -1109) T) ((-825 . -619) 16818) ((-872 . -21) T) ((-872 . -25) T) ((-805 . -732) T) ((-176 . -1230) T) ((-587 . -38) 16783) ((-524 . -38) 16748) ((-392 . -619) 16730) ((-337 . -102) T) ((-328 . -619) 16712) ((-171 . -290) 16670) ((-63 . -1226) T) ((-112 . -102) T) ((-878 . -1109) T) ((-176 . -562) T) ((-720 . -723) 16640) ((-298 . -132) 16523) ((-227 . -619) 16505) ((-227 . -620) 16435) ((-1012 . -645) 16374) ((-1291 . -1058) T) ((-1129 . -148) T) ((-638 . -1202) 16349) ((-737 . -916) 16328) ((-599 . -34) T) ((-653 . -107) 16312) ((-638 . -107) 16258) ((-1249 . -290) 16185) ((-737 . -654) 16110) ((-299 . -1226) T) ((-1188 . -1047) 16006) ((-950 . -624) 15983) ((-583 . -582) T) ((-583 . -533) T) ((-535 . -533) T) ((-1177 . -916) NIL) ((-1071 . -620) 15898) ((-1071 . -619) 15880) ((-959 . -619) 15862) ((-719 . -496) 15812) ((-348 . -102) T) ((-254 . -1065) 15709) ((-253 . -1065) 15606) ((-400 . -102) T) ((-31 . -1109) T) ((-959 . -620) 15467) ((-719 . -619) 15402) ((-1289 . -1219) 15371) ((-487 . -619) 15353) ((-487 . -620) 15214) ((-267 . -417) 15198) ((-249 . -417) 15182) ((-254 . -111) 15072) ((-253 . -111) 14962) ((-1184 . -654) 14887) ((-1183 . -654) 14784) ((-1177 . -654) 14636) ((-1135 . -654) 14561) ((-356 . -132) T) ((-82 . -447) T) ((-82 . -401) T) ((-1012 . -25) T) ((-1012 . -21) T) ((-879 . -1109) 14512) ((-40 . -1060) 14457) ((-878 . -723) 14409) ((-40 . -646) 14354) ((-384 . -294) T) ((-171 . -1011) 14305) ((-700 . -393) T) ((-1008 . -1006) 14289) ((-707 . -1121) T) ((-700 . -167) 14271) ((-1260 . -1109) T) ((-1239 . -1109) T) ((-320 . -1211) 14250) ((-320 . -1214) 14229) ((-1174 . -102) T) ((-320 . -966) 14208) ((-135 . -1121) T) ((-117 . -1121) T) ((-608 . -1274) 14192) ((-707 . -23) T) ((-608 . -1109) 14142) ((-320 . -95) 14121) ((-91 . -520) 14054) ((-176 . -368) T) ((-254 . -622) 13784) ((-253 . -622) 13514) ((-320 . -35) 13493) ((-614 . -495) 13427) ((-135 . -23) T) ((-117 . -23) T) ((-973 . -102) T) ((-724 . -1109) T) ((-481 . -495) 13364) ((-413 . -645) 13312) ((-659 . -1047) 13208) ((-965 . -495) 13192) ((-360 . -1067) T) ((-357 . -1067) T) ((-349 . -1067) T) ((-267 . -1067) T) ((-249 . -1067) T) ((-877 . -620) NIL) ((-877 . -619) 13174) ((-1287 . -496) 13155) ((-1286 . -496) 13136) ((-1299 . -21) T) ((-1287 . -619) 13102) ((-1286 . -619) 13068) ((-577 . -1011) T) ((-737 . -732) T) ((-1299 . -25) T) ((-254 . -1058) 12998) ((-253 . -1058) 12928) ((-72 . -1226) T) ((-254 . -235) 12880) ((-253 . -235) 12832) ((-40 . -102) T) ((-917 . -1067) T) ((-1191 . -102) T) ((-129 . -495) 12814) ((-1184 . -732) T) ((-1183 . -732) T) ((-1177 . -732) T) ((-1177 . -797) NIL) ((-1177 . -800) NIL) ((-961 . -102) T) ((-928 . -102) T) ((-876 . -1060) 12801) ((-1135 . -732) T) ((-777 . -102) T) ((-678 . -102) T) ((-876 . -646) 12788) ((-552 . -619) 12770) ((-480 . -1109) T) ((-344 . -1121) T) ((-176 . -1121) T) ((-323 . -927) 12749) ((-1260 . -723) 12590) ((-878 . -174) T) ((-1239 . -723) 12404) ((-849 . -21) 12356) ((-849 . -25) 12308) ((-247 . -1158) 12292) ((-127 . -520) 12225) ((-413 . -25) T) ((-413 . -21) T) ((-344 . -23) T) ((-171 . -620) 11991) ((-171 . -619) 11973) ((-176 . -23) T) ((-650 . -292) 11950) ((-526 . -34) T) ((-905 . -619) 11932) ((-89 . -1226) T) ((-847 . -619) 11914) ((-814 . -619) 11896) ((-775 . -619) 11878) ((-683 . -619) 11860) ((-242 . -654) 11708) ((-623 . -113) T) ((-1186 . -1109) T) ((-1182 . -1065) 11531) ((-1159 . -1226) T) ((-1134 . -1065) 11374) ((-860 . -1065) 11358) ((-1243 . -624) 11342) ((-1182 . -111) 11151) ((-1134 . -111) 10980) ((-860 . -111) 10959) ((-1233 . -856) T) ((-1249 . -620) NIL) ((-1249 . -619) 10941) ((-348 . -1161) T) ((-861 . -619) 10923) ((-1085 . -290) 10902) ((-80 . -1226) T) ((-1013 . -916) NIL) ((-614 . -290) 10878) ((-1212 . -520) 10811) ((-493 . -1226) T) ((-577 . -619) 10793) ((-481 . -290) 10772) ((-1220 . -652) 10682) ((-523 . -93) T) ((-1096 . -233) 10666) ((-219 . -1226) T) ((-1013 . -654) 10616) ((-965 . -290) 10593) ((-293 . -927) T) ((-823 . -311) 10572) ((-876 . -102) T) ((-788 . -233) 10556) ((-921 . -654) 10508) ((-717 . -652) 10458) ((-700 . -730) 10425) ((-641 . -21) T) ((-641 . -25) T) ((-613 . -21) T) ((-553 . -102) T) ((-348 . -38) 10390) ((-493 . -891) 10372) ((-493 . -893) 10354) ((-480 . -723) 10195) ((-219 . -891) 10177) ((-64 . -1226) T) ((-219 . -893) 10159) ((-613 . -25) T) ((-433 . -654) 10133) ((-1182 . -622) 9902) ((-493 . -1047) 9862) ((-878 . -520) 9774) ((-1134 . -622) 9566) ((-860 . -622) 9484) ((-219 . -1047) 9444) ((-242 . -34) T) ((-1009 . -1109) 9422) ((-586 . -1060) 9409) ((-570 . -1060) 9396) ((-501 . -1060) 9361) ((-1260 . -174) 9292) ((-1239 . -174) 9223) ((-586 . -646) 9210) ((-570 . -646) 9197) ((-501 . -646) 9162) ((-718 . -146) 9141) ((-718 . -148) 9120) ((-707 . -132) T) ((-137 . -471) 9097) ((-1156 . -619) 9029) ((-664 . -662) 9013) ((-129 . -290) 8988) ((-117 . -132) T) ((-483 . -1230) T) ((-614 . -610) 8964) ((-481 . -610) 8943) ((-341 . -340) 8912) ((-603 . -1109) T) ((-591 . -1109) T) ((-542 . -1109) T) ((-483 . -562) T) ((-1182 . -1058) T) ((-1134 . -1058) T) ((-860 . -1058) T) ((-242 . -797) 8891) ((-242 . -800) 8842) ((-242 . -799) 8821) ((-1182 . -330) 8798) ((-242 . -732) 8708) ((-965 . -19) 8692) ((-493 . -382) 8674) ((-493 . -343) 8656) ((-1134 . -330) 8628) ((-359 . -1283) 8605) ((-219 . -382) 8587) ((-219 . -343) 8569) ((-965 . -610) 8546) ((-1182 . -235) T) ((-1272 . -1109) T) ((-670 . -1109) T) ((-651 . -1109) T) ((-1199 . -1109) T) ((-1096 . -256) 8483) ((-592 . -652) 8443) ((-360 . -1109) T) ((-357 . -1109) T) ((-349 . -1109) T) ((-267 . -1109) T) ((-249 . -1109) T) ((-84 . -1226) T) ((-128 . -102) 8421) ((-122 . -102) 8399) ((-1199 . -616) 8378) ((-1239 . -520) 8238) ((-1150 . -1109) T) ((-1124 . -622) 8219) ((-485 . -1109) T) ((-1089 . -927) 8170) ((-1013 . -800) T) ((-485 . -616) 8149) ((-254 . -801) 8100) ((-254 . -798) 8051) ((-253 . -801) 8002) ((-40 . -1161) NIL) ((-253 . -798) 7953) ((-1013 . -797) T) ((-129 . -19) 7935) ((-1013 . -732) T) ((-705 . -1060) 7900) ((-980 . -800) T) ((-921 . -732) T) ((-917 . -1109) T) ((-129 . -610) 7875) ((-705 . -646) 7840) ((-91 . -495) 7824) ((-493 . -907) NIL) ((-899 . -619) 7806) ((-227 . -1065) 7771) ((-878 . -294) T) ((-219 . -907) NIL) ((-839 . -1121) 7750) ((-59 . -1109) 7700) ((-525 . -1109) 7678) ((-522 . -1109) 7628) ((-503 . -1109) 7606) ((-502 . -1109) 7556) ((-586 . -102) T) ((-570 . -102) T) ((-501 . -102) T) ((-480 . -174) 7487) ((-364 . -927) T) ((-358 . -927) T) ((-350 . -927) T) ((-227 . -111) 7443) ((-839 . -23) 7395) ((-433 . -732) T) ((-108 . -927) T) ((-40 . -38) 7340) ((-108 . -826) T) ((-587 . -354) T) ((-524 . -354) T) ((-842 . -290) 7319) ((-320 . -458) 7298) ((-317 . -458) T) ((-664 . -652) 7257) ((-608 . -520) 7190) ((-344 . -132) T) ((-176 . -132) T) ((-298 . -25) 7054) ((-298 . -21) 6937) ((-45 . -1202) 6916) ((-66 . -619) 6898) ((-55 . -102) T) ((-341 . -652) 6880) ((-45 . -107) 6830) ((-825 . -622) 6814) ((-1277 . -102) T) ((-1276 . -102) 6764) ((-1268 . -654) 6689) ((-1261 . -654) 6586) ((-1240 . -654) 6438) ((-1111 . -431) 6422) ((-1111 . -373) 6401) ((-392 . -622) 6385) ((-328 . -622) 6369) ((-1240 . -916) NIL) ((-1207 . -619) 6351) ((-1072 . -1226) T) ((-1096 . -652) 6261) ((-1071 . -1065) 6248) ((-1071 . -111) 6233) ((-959 . -1065) 6076) ((-959 . -111) 5905) ((-788 . -652) 5815) ((-786 . -652) 5725) ((-629 . -1060) 5712) ((-670 . -723) 5696) ((-629 . -646) 5683) ((-487 . -1065) 5526) ((-483 . -368) T) ((-467 . -652) 5482) ((-460 . -652) 5392) ((-227 . -622) 5342) ((-360 . -723) 5294) ((-357 . -723) 5246) ((-118 . -1060) 5191) ((-349 . -723) 5143) ((-267 . -723) 4992) ((-249 . -723) 4841) ((-1105 . -93) T) ((-1099 . -93) T) ((-118 . -646) 4786) ((-1082 . -93) T) ((-950 . -657) 4770) ((-1075 . -93) T) ((-487 . -111) 4599) ((-1066 . -1109) 4577) ((-1045 . -93) T) ((-950 . -378) 4561) ((-250 . -102) T) ((-1028 . -93) T) ((-74 . -619) 4543) ((-970 . -47) 4522) ((-716 . -102) T) ((-705 . -102) T) ((-1 . -1109) T) ((-627 . -1121) T) ((-1097 . -619) 4504) ((-632 . -93) T) ((-1085 . -619) 4486) ((-917 . -723) 4451) ((-127 . -495) 4435) ((-489 . -93) T) ((-627 . -23) T) ((-396 . -23) T) ((-87 . -1226) T) ((-220 . -93) T) ((-614 . -619) 4417) ((-614 . -620) NIL) ((-481 . -620) NIL) ((-481 . -619) 4399) ((-356 . -25) T) ((-356 . -21) T) ((-50 . -652) 4358) ((-517 . -1109) T) ((-513 . -1109) T) ((-128 . -313) 4296) ((-122 . -313) 4234) ((-602 . -654) 4208) ((-601 . -654) 4133) ((-587 . -652) 4083) ((-227 . -1058) T) ((-524 . -652) 4013) ((-384 . -1011) T) ((-227 . -245) T) ((-227 . -235) T) ((-1071 . -622) 3985) ((-1071 . -624) 3966) ((-965 . -620) 3927) ((-965 . -619) 3839) ((-959 . -622) 3628) ((-876 . -38) 3615) ((-719 . -622) 3565) ((-1260 . -294) 3516) ((-1239 . -294) 3467) ((-487 . -622) 3252) ((-1129 . -458) T) ((-508 . -856) T) ((-320 . -1148) 3231) ((-1008 . -148) 3210) ((-1008 . -146) 3189) ((-501 . -313) 3176) ((-299 . -1202) 3155) ((-1194 . -619) 3137) ((-1193 . -619) 3119) ((-1192 . -619) 3101) ((-877 . -1065) 3046) ((-483 . -1121) T) ((-140 . -841) 3028) ((-115 . -841) 3009) ((-629 . -102) T) ((-1212 . -495) 2993) ((-254 . -373) 2972) ((-253 . -373) 2951) ((-1071 . -1058) T) ((-299 . -107) 2901) ((-131 . -619) 2883) ((-129 . -620) NIL) ((-129 . -619) 2827) ((-118 . -102) T) ((-959 . -1058) T) ((-877 . -111) 2756) ((-483 . -23) T) ((-487 . -1058) T) ((-1071 . -235) T) ((-959 . -330) 2725) ((-487 . -330) 2682) ((-360 . -174) T) ((-357 . -174) T) ((-349 . -174) T) ((-267 . -174) 2593) ((-249 . -174) 2504) ((-970 . -1047) 2400) ((-523 . -496) 2381) ((-741 . -1047) 2352) ((-523 . -619) 2318) ((-1114 . -102) T) ((-1101 . -619) 2277) ((-1043 . -619) 2259) ((-700 . -1060) 2209) ((-1289 . -152) 2193) ((-1287 . -622) 2174) ((-1286 . -622) 2155) ((-1281 . -619) 2137) ((-1268 . -732) T) ((-700 . -646) 2087) ((-1261 . -732) T) ((-1240 . -797) NIL) ((-1240 . -800) NIL) ((-171 . -1065) 1997) ((-917 . -174) T) ((-877 . -622) 1927) ((-1240 . -732) T) ((-1012 . -347) 1901) ((-225 . -652) 1853) ((-1009 . -520) 1786) ((-849 . -856) 1765) ((-570 . -1161) T) ((-480 . -294) 1716) ((-602 . -732) T) ((-366 . -619) 1698) ((-326 . -619) 1680) ((-424 . -1047) 1576) ((-601 . -732) T) ((-413 . -856) 1527) ((-171 . -111) 1423) ((-839 . -132) 1375) ((-743 . -152) 1359) ((-1276 . -313) 1297) ((-493 . -311) T) ((-384 . -619) 1264) ((-526 . -1019) 1248) ((-384 . -620) 1162) ((-219 . -311) T) ((-142 . -152) 1144) ((-720 . -290) 1123) ((-493 . -1031) T) ((-586 . -38) 1110) ((-570 . -38) 1097) ((-501 . -38) 1062) ((-219 . -1031) T) ((-877 . -1058) T) ((-842 . -619) 1044) ((-833 . -619) 1026) ((-831 . -619) 1008) ((-822 . -916) 987) ((-1300 . -1121) T) ((-1249 . -1065) 810) ((-861 . -1065) 794) ((-877 . -245) T) ((-877 . -235) NIL) ((-695 . -1226) T) ((-1300 . -23) T) ((-822 . -654) 719) ((-556 . -1226) T) ((-424 . -343) 703) ((-577 . -1065) 690) ((-1249 . -111) 499) ((-707 . -645) 481) ((-861 . -111) 460) ((-386 . -23) T) ((-171 . -622) 238) ((-1199 . -520) 30) ((-882 . -1109) T) ((-687 . -1109) T) ((-682 . -1109) T) ((-668 . -1109) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 6040b2ff..019faaab 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3479376209) -(4450 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3479388553) +(4451 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -27,7 +27,7 @@ |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| - |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| + |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| |BooleanLogic| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| @@ -484,665 +484,667 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |leftRankPolynomial| |OMputAttr| |principal?| - |defineProperty| |pi| |makingStats?| |swap| |region| |charpol| - |sorted?| |f04arf| |nextNormalPrimitivePoly| |hessian| |infinity| - |elementary| |decimal| |OMencodingSGML| |polynomialZeros| |e01bff| - |degreePartition| |mainVariables| |functionIsOscillatory| - |lazyPremWithDefault| |cond| |semiResultantEuclideannaif| |rootsOf| - |inverseIntegralMatrixAtInfinity| |brillhartIrreducible?| - |OMParseError?| |c06gcf| |janko2| |antisymmetricTensors| |generate| - |initiallyReduce| |log10| |iprint| |setlast!| |quasiMonic?| |map| - |countable?| |ord| |OMgetSymbol| |schema| |complexNumericIfCan| - |OMgetBVar| |bitand| |kernel| |cSinh| |iifact| |OMreadStr| |bigEndian| - |viewThetaDefault| |previous| |isQuotient| |incrementBy| |e02zaf| - |blue| |low| |shade| |outerProduct| |bitior| |ReduceOrder| |draw| - |cAsech| |reindex| |firstDenom| |mathieu12| |wordsForStrongGenerators| - |iCompose| |trailingCoefficient| |maxRowIndex| |var1StepsDefault| - |expand| |externalList| |quartic| |squareTop| |lastSubResultant| - |normInvertible?| |pureLex| |currentEnv| |nonSingularModel| - |readInt8!| |commaSeparate| |numberOfComposites| |filterWhile| - |particularSolution| |goodnessOfFit| |limitedint| |trigs| |cosh2sech| - |addMatchRestricted| |bothWays| |nsqfree| |filterUntil| |upperCase!| - |viewWriteDefault| |symbol| |getMeasure| |attributeData| |airyAi| - |OMputObject| |removeRedundantFactors| |convert| |OMputFloat| - |overbar| |palglimint| |index?| |surface| |opeval| |select| - |expression| |prepareDecompose| |makeObject| |multiEuclideanTree| - |processTemplate| |iiacoth| |tanintegrate| |safeCeiling| - |dominantTerm| |height| |choosemon| |polyRicDE| |nextsubResultant2| - |numberOfFractionalTerms| |zoom| |integer| |normalDeriv| |coef| - |cRationalPower| |matrixConcat3D| |lazyEvaluate| |hermiteH| - |setStatus| |rational?| |printHeader| |badValues| |decomposeFunc| - |OMgetObject| |eyeDistance| |showScalarValues| |makeGraphImage| - |groebnerIdeal| |monomialIntPoly| |distFact| UP2UTS |tanh2coth| - |lowerCase?| |hostByteOrder| |polar| |exponential1| |setprevious!| - |getCode| |endSubProgram| |resize| ** |mappingAst| |coerceImages| - |numberOfComputedEntries| |order| |getIdentifier| - |factorSquareFreeByRecursion| |printStats!| |acschIfCan| - |factorGroebnerBasis| |rCoord| |prime?| |nextPrime| |quatern| - |transcendent?| |lintgcd| |setOfMinN| |rootSimp| |doubleRank| |f02aef| - |round| |f02wef| |noKaratsuba| |makeFloatFunction| |makeRecord| |lo| - |boundOfCauchy| |repeating?| |cycleLength| |outputMeasure| - |invertIfCan| |rangePascalTriangle| |taylorRep| |shallowExpand| - |coth2tanh| |tanQ| |changeVar| |xCoord| |incr| |nonQsign| |mpsode| - |acsch| |label| |coshIfCan| |conjug| |viewPosDefault| - |lowerPolynomial| |selectPDERoutines| |initial| |pdf2ef| - |mainVariable?| |completeEval| |normDeriv2| |cSec| - |getMultiplicationMatrix| |limit| |selectPolynomials| |leftMult| - |before?| |f02aaf| |orthonormalBasis| |rationalPoint?| |enterInCache| - |pseudoRemainder| |c06gbf| - |rewriteSetByReducingWithParticularGenerators| |bumprow| |rotate!| - |internalZeroSetSplit| |basisOfMiddleNucleus| |swapRows!| |iitan| - |node?| |scalarTypeOf| |coerceP| |minColIndex| |reduction| |nullity| - |normalForm| Y |makeCos| |d02kef| |iisin| |indicialEquations| - |thenBranch| |traceMatrix| |iiacsc| |meshFun2Var| |exprex| - |symmetric?| |trapezoidalo| |rightFactorIfCan| |factor1| |putGraph| - |polyRDE| |wrregime| |reduceLODE| |adaptive3D?| |iipow| |cap| - |leftOne| |indiceSubResultantEuclidean| |rightTrace| |divideExponents| - |returnTypeOf| |outputArgs| |tail| |finiteBasis| |getStream| - |coerceListOfPairs| |setProperty| |palgRDE0| |find| |rules| - |constructor| |ridHack1| |rootBound| |unrankImproperPartitions1| - |encodingDirectory| |lifting1| |sec2cos| |csubst| |readIfCan!| - |radicalSolve| |initials| |nothing| |rischDE| |extendIfCan| |separant| - |genericRightMinimalPolynomial| |clip| |showClipRegion| |option| - |selectNonFiniteRoutines| |leftFactor| |lambert| |leftExactQuotient| - |rk4f| |showSummary| |extendedResultant| |mainCoefficients| - |sumOfKthPowerDivisors| |trunc| |complexIntegrate| |rational| - |simplifyExp| |cyclotomicDecomposition| |getExplanations| |scan| - |linSolve| |prologue| |numberOfDivisors| |minset| |quasiAlgebraicSet| - |primitiveElement| |duplicates?| |realElementary| |tensorProduct| - |scanOneDimSubspaces| |showAttributes| |alphanumeric?| |smith| |cAcos| - |findBinding| |tracePowMod| |unknown| |complexForm| |getMatch| - |getButtonValue| |setnext!| |fintegrate| |macroExpand| |OMopenString| - |recoverAfterFail| |nativeModuleExtension| |rightTrim| - |mainExpression| |unknownEndian| |cot2tan| |cycleTail| |lfintegrate| - |twoFactor| |setPrologue!| |insertRoot!| |sncndn| - |internalSubQuasiComponent?| |leftTrim| |listLoops| |Is| |part?| - |frobenius| |isNot| |startStats!| |multisect| - |combineFeatureCompatibility| |padecf| |backOldPos| |qinterval| - |laguerre| |preprocess| |f07adf| |baseRDE| |lazyResidueClass| - |genericPosition| |say| |intPatternMatch| F |pointData| |nthCoef| - |exponential| |irreducibleFactor| |dualSignature| |multinomial| - |s19adf| |associator| |pole?| |csch2sinh| |Frobenius| |problemPoints| - |f01qdf| |fill!| |overlabel| |hclf| |d03faf| |imagI| - |basisOfRightAnnihilator| |binaryTree| |element?| |readUInt32!| - |s17acf| |increment| |bottom!| |quasiComponent| |space| |indices| - |ode| |remove| |function| |multivariate| |partialQuotients| - |controlPanel| |minPol| |OMunhandledSymbol| |atanIfCan| - |fillPascalTriangle| |fortran| |hexDigit?| RF2UTS - |tryFunctionalDecomposition?| |e02aef| |variables| |result| - |useEisensteinCriterion?| |red| |quoted?| |roughSubIdeal?| |setleft!| - |byteBuffer| |rk4qc| |open| |OMputEndBVar| |heap| |last| |eval| - |subResultantGcd| |reset| |ratDenom| |evenInfiniteProduct| |multMonom| - |trivialIdeal?| |saturate| |assoc| |imaginary| |functorData| - |external?| |harmonic| |null| |convergents| |f2st| - |internalIntegrate0| |arbitrary| |curveColorPalette| |character?| - |divideIfCan!| |pattern| |enumerate| |elseBranch| |not| - |balancedFactorisation| |write| |monicRightFactorIfCan| - |fixedPointExquo| |rotatez| |splitLinear| - |noncommutativeJordanAlgebra?| |mergeDifference| |supersub| |and| - |Lazard| |modularFactor| |save| |trueEqual| |kovacic| |jacobian| - |setMaxPoints3D| |operations| |rquo| |iisqrt3| |mesh| |or| - |KrullNumber| |taylor| |se2rfi| |bfKeys| |pushuconst| |cSin| - |semiSubResultantGcdEuclidean1| |component| |inrootof| |extract!| - |imagk| |xor| |laurent| |printTypes| |cycleElt| |realRoots| |nullary?| - |primintfldpoly| |pointColor| |deepestInitial| |critBonD| |message| - |remove!| |case| |select!| |puiseux| |newLine| |topFortranOutputStack| - |constantLeft| |hdmpToP| |bipolarCylindrical| |setchildren!| |Zero| - |removeSuperfluousCases| |zeroSetSplit| |innerSolve1| |plot| - |interReduce| |mix| |radicalEigenvector| |hi| |measure| |pol| |One| - |monicCompleteDecompose| |inv| |stoseInvertibleSetsqfreg| |increase| - |reducedDiscriminant| |d02bbf| |getOperands| |addMatch| - |lazyIntegrate| |is?| |predicates| |distdfact| |ground?| - |conditionsForIdempotents| |squareFreePart| |unparse| |create3Space| - |regularRepresentation| |minGbasis| |ground| |s14abf| |fixedDivisor| - |critpOrder| |lcm| |zeroVector| |d01anf| |cyclicGroup| |nil?| |critT| - |setAdaptive| |headRemainder| |argumentListOf| |differentialVariables| - |leadingMonomial| |eigenvector| |cAtanh| |freeOf?| |asechIfCan| - |append| |continuedFraction| |clipSurface| |leadingCoefficient| - |hasTopPredicate?| |binaryTournament| |chvar| |zeroDimPrimary?| - |s21baf| |mat| |lSpaceBasis| |principalIdeal| - |leftRegularRepresentation| |primitiveMonomials| |toseInvertibleSet| - |elt| |gcd| |output| |mainMonomials| |coHeight| |cCsch| - |quadraticForm| |LazardQuotient| |inspect| |OMencodingUnknown| - |printStatement| |bitLength| |s01eaf| |false| |reductum| - |perfectNthPower?| |completeHermite| |characteristicPolynomial| - |leaf?| |finiteBound| |modifyPointData| |nonLinearPart| |OMserve| - |orbits| |irreducibleFactors| |makeSUP| |outputSpacing| |OMputEndBind| - |meshPar2Var| |extensionDegree| |argument| |exprHasAlgebraicWeight| - |addBadValue| |alphanumeric| |hexDigit| |tablePow| |sequence| |iiasec| - |imagE| |conjunction| |roman| |triangularSystems| |exprToUPS| - |diagonal| |c06fuf| |e01bef| |polCase| |splitNodeOf!| |mapBivariate| - |nand| |host| |s17def| |triangulate| |yellow| - |zeroSetSplitIntoTriangularSystems| |conditionP| |rightOne| |in?| - |moebiusMu| |diagonalProduct| |quote| |bivariateSLPEBR| |rootPower| - |eisensteinIrreducible?| |readInt16!| |categories| |lyndon?| |maxint| - |constantRight| |wholePart| |expextendedint| |cycle| |pascalTriangle| - |setFieldInfo| |d01akf| |reducedForm| |getPickedPoints| |generic?| - |radicalEigenvectors| |factorial| |explicitlyEmpty?| |fibonacci| - |ode2| |subMatrix| |axes| |absolutelyIrreducible?| |compdegd| |iicosh| - |entry?| |redpps| |monicDecomposeIfCan| |composite| |rootSplit| - |sinIfCan| |pastel| |roughBase?| |toScale| |f04mbf| |sayLength| - |exponentialOrder| |expandTrigProducts| |cardinality| |inverseColeman| - |localUnquote| |invmod| |plusInfinity| |cAcsch| |partialFraction| - |fortranReal| |root| |readUInt16!| |any?| |d02gbf| |hypergeometric0F1| - |bitTruth| |minusInfinity| |cyclicSubmodule| |lfinfieldint| - |generalSqFr| |stripCommentsAndBlanks| |e02bdf| |stFuncN| - |leadingIdeal| |semiSubResultantGcdEuclidean2| |exponent| |hdmpToDmp| - |monomRDE| |primPartElseUnitCanonical| |f07fef| |constantIfCan| - |redmat| |mapCoef| |graphs| |swap!| |euclideanGroebner| |member?| - |extractProperty| |key| |complete| |mkPrim| |members| |mkIntegral| - |optional?| |binding| |zeroDimensional?| |identitySquareMatrix| - |createNormalPrimitivePoly| |basisOfLeftAnnihilator| - |removeDuplicates!| |geometric| |iroot| |univariatePolynomial| - |monicLeftDivide| |partialNumerators| |coerceS| |curveColor| - |filename| |packageCall| |bfEntry| |blankSeparate| |exportedOperators| - |d01gbf| |type| |relationsIdeal| |e02ahf| |setPredicates| |PDESolve| - |leftGcd| |startPolynomial| |fortranLinkerArgs| |roughEqualIdeals?| - |ceiling| |hasoln| |stiffnessAndStabilityFactor| |critB| - |lazyVariations| |parse| |doubleResultant| |sin?| |virtualDegree| - |radicalOfLeftTraceForm| |OMclose| |negative?| |setvalue!| - |flexibleArray| |remainder| |numerators| |next| |option?| |middle| - |quotedOperators| |getOperator| |seed| |innerEigenvectors| - |makeResult| |enterPointData| |numberOfFactors| |internalInfRittWu?| - |cyclicEqual?| |pleskenSplit| |equiv| |tubeRadius| |sinhIfCan| - |capacity| |logical?| |pToDmp| |eigenvalues| |e02def| |s17agf| - |messagePrint| |checkPrecision| |semiLastSubResultantEuclidean| - |exactQuotient!| |karatsuba| |multiset| |divide| |closedCurve?| - |zeroDimPrime?| |ParCond| |removeRoughlyRedundantFactorsInPol| - |screenResolution3D| |besselY| EQ |debug3D| |npcoef| |iisqrt2| - |cyclePartition| |showTheSymbolTable| |orbit| |Hausdorff| |cCos| - |root?| |intersect| |overlap| |product| |trigs2explogs| |lhs| - |elaboration| |iiacos| |pushucoef| |dequeue| |generalPosition| - |upDateBranches| |eof?| |weighted| |nthExpon| |rhs| |e02adf| - |drawToScale| |mainValue| |putProperties| |d01fcf| |associatedSystem| - |head| |singularAtInfinity?| |d03eef| |disjunction| |hasSolution?| - |halfExtendedSubResultantGcd1| |exprToGenUPS| |compound?| |s13acf| - |stoseInvertibleSetreg| |genericRightTraceForm| |listConjugateBases| - |mapMatrixIfCan| FG2F |RittWuCompare| |supDimElseRittWu?| |henselFact| - |rule| |normalized?| |e02akf| |c06ecf| |d01aqf| |prinb| |df2st| - |tRange| |imagi| |multiplyCoefficients| |polarCoordinates| |index| - |infRittWu?| |lazyPseudoQuotient| |euler| |realEigenvectors| - |normalElement| |factorSquareFreePolynomial| |computeBasis| |birth| - |optAttributes| |primes| |symbolTableOf| |parametersOf| - |resetBadValues| |scaleRoots| |Beta| |discreteLog| |s20adf| |makeEq| - |htrigs| |center| |digits| |lighting| |integralAtInfinity?| |dioSolve| - |stFunc2| |extendedIntegrate| |numerator| |s19aaf| - |intermediateResultsIF| |commutator| |pair| |toseInvertible?| - |rightRegularRepresentation| |dAndcExp| |pushdterm| |tanAn| - |pointPlot| |value| |jordanAlgebra?| |distribute| |palginfieldint| - |reseed| |symbolIfCan| |unitNormal| |s17aff| |mulmod| |startTable!| - |monomial?| |possiblyInfinite?| |rightGcd| |firstUncouplingMatrix| - |trapezoidal| |rubiksGroup| |internalLastSubResultant| |rangeIsFinite| - |maxPoints3D| |curve| |subtractIfCan| |OMgetAtp| |subCase?| - |stoseInvertible?sqfreg| |green| |cosSinInfo| |drawComplex| - |exprToXXP| |entry| |axesColorDefault| |viewport3D| |gcdPolynomial| - |inconsistent?| |minPoints| |approxNthRoot| |viewport2D| |returns| - |abelianGroup| |bipolar| |sizeLess?| |normalizedAssociate| |pair?| - |d01ajf| |wholeRagits| |diagonals| |fullPartialFraction| - |linearlyDependentOverZ?| |updatD| |movedPoints| |difference| - |generalInfiniteProduct| |charthRoot| |ScanFloatIgnoreSpaces| |split| - |hspace| |extractPoint| |algint| |HenselLift| |computeCycleEntry| - |represents| |lowerBound| |sn| |createMultiplicationMatrix| |reverse| - |e04naf| |radicalEigenvalues| |nodeOf?| |isImplies| |e01daf| |nthFlag| - |OMconnectTCP| |lexico| |fortranLogical| |prepareSubResAlgo| - |univariatePolynomials| |removeSinSq| |setValue!| |call| |asimpson| - |f04axf| |lowerCase| |rarrow| |shrinkable| |abs| |minimumDegree| |bat| - |oneDimensionalArray| |leaves| |idealiserMatrix| |tree| |getlo| - |clikeUniv| |nodes| |iiabs| |showIntensityFunctions| |writeInt8!| - |positiveSolve| |OMencodingXML| |equality| |gradient| |reduced?| - |linearPart| |resultantReduit| |crest| |merge!| |tan2trig| - |specialTrigs| |primextintfrac| |rk4| |degreeSubResultantEuclidean| - |sinhcosh| |setErrorBound| |terms| |gcdcofact| |s21bbf| - |ramifiedAtInfinity?| |iisech| |s17akf| |mainVariable| |init| |s18aff| - |iiasin| |initiallyReduced?| |alphabetic| |rspace| |compBound| |more?| - |f01brf| |decompose| |setButtonValue| |att2Result| |qroot| |dfRange| - |aLinear| |generators| |cTanh| |commutative?| |mirror| - |squareFreeLexTriangular| |tanIfCan| |SturmHabichtMultiple| - |useNagFunctions| |categoryMode| |createPrimitivePoly| |generator| - |stoseInvertibleSet| |putColorInfo| |triangSolve| |e04gcf| |OMputBind| - |definingInequation| |expPot| |writeBytes!| |minPoly| - |alternatingGroup| |linGenPos| |bracket| |incrementKthElement| - |sequences| |generalLambert| |nextPrimitivePoly| |one?| |lazy?| - |stopTableInvSet!| |fi2df| |infix| |UnVectorise| |solid| |chebyshevT| - |maxdeg| |read!| |search| |divisors| |oblateSpheroidal| - |leadingBasisTerm| |setClosed| |stack| |summation| - |createMultiplicationTable| |addPoint| |rem| |largest| |Si| - |prinshINFO| |generateIrredPoly| |insertionSort!| |relerror| - |numberOfOperations| |scripted?| |dimension| |rowEch| |quo| - |compactFraction| |idealiser| |mainPrimitivePart| |compose| |addmod| - |condition| |clipParametric| |palgRDE| |eulerE| |ODESolve| |adjoint| - |mainKernel| |Gamma| |numberOfChildren| |setEmpty!| |rightPower| |div| - |extractSplittingLeaf| |rightFactorCandidate| |lieAdmissible?| - |setRow!| |shiftRight| |SturmHabichtCoefficients| |basis| - |purelyAlgebraic?| |mkAnswer| |maxrank| |exquo| |e02ddf| |dim| - |powerSum| |lieAlgebra?| |pop!| |rightAlternative?| |d02gaf| - |coordinates| |weakBiRank| ~= |fractRadix| |OMputSymbol| - |makeViewport3D| |edf2fi| |corrPoly| |quasiRegular?| |mapUnivariate| - |characteristicSet| |minimumExponent| |isPlus| |#| |primextendedint| - |matrix| |euclideanSize| |dec| |realZeros| |dictionary| - |firstSubsetGray| ~ |algDsolve| |purelyAlgebraicLeadingMonomial?| - |rowEchelon| |s17ajf| |initializeGroupForWordProblem| - |mainSquareFreePart| |concat| |allRootsOf| - |removeRoughlyRedundantFactorsInPols| |outlineRender| |listOfMonoms| - |fmecg| |OMconnInDevice| |testModulus| |c06ebf| |shiftLeft| - |leadingExponent| |groebner| |trim| |qfactor| |prindINFO| |printInfo| - |rewriteIdealWithRemainder| |outputFixed| |kroneckerDelta| |connectTo| - |leftScalarTimes!| |clearCache| |jokerMode| |powers| |level| |elRow1!| - |simplify| |figureUnits| |signatureAst| |resultantEuclidean| - |infinityNorm| |cAsec| |vspace| |lprop| |f02aff| |setScreenResolution| - |OMreadFile| |symFunc| |numberOfPrimitivePoly| |polyPart| |normal?| - |fractRagits| |hasHi| |substring?| |e01baf| |factorByRecursion| - |antiCommutator| |unexpand| |char| |mapExponents| |ScanRoman| - |OMputAtp| |failed| |univariate?| |extractIndex| |nextPartition| - |explimitedint| |postfix| |stronglyReduced?| |OMgetBind| - |internalSubPolSet?| |tubeRadiusDefault| |bat1| |suffix?| |reverse!| - |errorInfo| |splitConstant| |d03edf| |stoseLastSubResultant| - |coefficients| |identity| |maxPoints| |genericLeftTraceForm| - |maximumExponent| |rewriteIdealWithQuasiMonicGenerators| |iicoth| - |numericalIntegration| |modulus| |getZechTable| |sincos| - |eigenvectors| |compile| |leadingSupport| |bernoulliB| |traverse| - |prefix?| |status| |setrest!| |pointLists| |degreeSubResultant| - |polygamma| |normalDenom| |setMinPoints| |iicsc| |tanSum| |credPol| - |realSolve| |cCoth| |symmetricDifference| |connect| |close!| - |factorSFBRlcUnit| |mathieu24| |autoReduced?| |s14baf| |removeZero| - |extendedSubResultantGcd| |second| |irreducible?| |e02ajf| |anfactor| - |internalDecompose| |erf| |c06gsf| |float| |measure2Result| |pushup| - |edf2efi| |hconcat| |setCondition!| |third| |symmetricGroup| |zeroOf| - |primeFactor| |nextSubsetGray| |OMUnknownCD?| |vedf2vef| |hMonic| - |basisOfCentroid| |monomials| |inputOutputBinaryFile| |safetyMargin| - |df2fi| |lexGroebner| |rowEchelonLocal| |An| |void| |rroot| - |prefixRagits| |functionIsContinuousAtEndPoints| |infieldint| - |halfExtendedResultant1| |zeroDim?| |numericalOptimization| |const| - |lowerCase!| |dilog| |midpoints| |laplacian| |s18adf| |isOp| - |derivationCoordinates| |infix?| |iiacsch| |prolateSpheroidal| - |e02gaf| |repeatUntilLoop| |moebius| |sin| |distance| |rationalPoints| - |fortranComplex| |isPower| |mask| |legendreP| |OMcloseConn| - |setRealSteps| |s17dhf| |removeSuperfluousQuasiComponents| - |removeZeroes| |linearMatrix| |cos| |balancedBinaryTree| |bernoulli| - |write!| |makeTerm| |contractSolve| |modTree| |rationalApproximation| - |matrixDimensions| |gderiv| |expr| |irCtor| |tan| |intcompBasis| - |iFTable| |torsionIfCan| |userOrdered?| |changeNameToObjf| - |createLowComplexityNormalBasis| - |removeRoughlyRedundantFactorsInContents| |f04atf| |cot| |OMputApp| - |infLex?| |gensym| |subscript| |expenseOfEvaluation| |writeUInt8!| - |primitivePart| |associatorDependence| |showTheFTable| |e04fdf| - |unprotectedRemoveRedundantFactors| |sec| |purelyTranscendental?| GE - |parabolicCylindrical| |vark| |listRepresentation| |double| - |showAllElements| |mkcomm| |zeroMatrix| |psolve| |OMgetInteger| - |shallowCopy| |sh| |csc| |log| GT |associates?| |sin2csc| |cartesian| - |leftPower| |createIrreduciblePoly| |groebner?| |atanhIfCan| - |partitions| |variable| |diff| |replaceKthElement| |asin| LE - |perfectNthRoot| |clearTheIFTable| |ratpart| |components| - |companionBlocks| |generalizedContinuumHypothesisAssumed?| - |skewSFunction| |stoseInvertible?| |iterators| BY |paren| |mathieu23| - |acos| LT |directSum| |oddintegers| |internalIntegrate| |numericIfCan| - |infiniteProduct| |df2ef| |f02akf| |setLabelValue| |sub| |prem| |atan| - |e02bef| |subNode?| |gcdcofactprim| |possiblyNewVariety?| - |chineseRemainder| |rightUnits| |fractionFreeGauss!| |submod| - |ip4Address| |s21bdf| |acot| |d02ejf| |shufflein| |ptFunc| - |invertibleElseSplit?| |Ci| |sdf2lst| |odd?| |noValueMode| - |characteristic| |open?| |asec| |FormatRoman| |inverse| |ffactor| - |primitivePart!| |basisOfRightNucleus| |quickSort| |besselK| |lookup| - |cAtan| |finite?| |acsc| |environment| |unit| |OMgetEndBVar| - |normal01| |declare!| |complexRoots| |numberOfIrreduciblePoly| - |maxColIndex| |OMputError| |augment| |expIfCan| |sinh| |setfirst!| - |gramschmidt| |addPoint2| |f01maf| |denomLODE| |bit?| |stirling2| - |printingInfo?| |leftZero| |anticoord| |SturmHabichtSequence| |cosh| - |stirling1| |nextsousResultant2| |leftCharacteristicPolynomial| - |patternMatchTimes| |lazyPquo| NOT |OMputString| |factorials| |f04qaf| - |antisymmetric?| |OMencodingBinary| |tubePointsDefault| |tanh| - |genericRightTrace| |genericLeftMinimalPolynomial| - |bivariatePolynomials| |notelem| OR |decrease| |compiledFunction| - |resultantEuclideannaif| |c02aff| |bubbleSort!| |quasiRegular| |coth| - |branchPointAtInfinity?| |copyInto!| |chainSubResultants| |hue| AND - |setEpilogue!| |split!| |deepCopy| |rootDirectory| |rootOf| - |characteristicSerie| |keys| |cosIfCan| |addPointLast| |invertibleSet| - |findCycle| |triangular?| |simplifyPower| |linkToFortran| - |LyndonWordsList1| |depth| |showTheIFTable| |resetVariableOrder| - |primitive?| |componentUpperBound| |minrank| |selectAndPolynomials| - |algebraicOf| |cubic| |modularGcd| |firstNumer| |leadingIndex| - |drawStyle| |has?| |seriesToOutputForm| |bumptab1| |debug| |segment| - |viewWriteAvailable| |parents| |dn| |e01bhf| |approxSqrt| - |setAdaptive3D| |minus!| |minPoints3D| |c05nbf| |subPolSet?| D - |consnewpol| |lazyPseudoDivide| |reverseLex| - |selectMultiDimensionalRoutines| |headAst| |horizConcat| |max| - |cycleRagits| |integralDerivationMatrix| |integers| - |getSyntaxFormsFromFile| |getGraph| |indiceSubResultant| - |sizeMultiplication| |iExquo| |complexLimit| |commutativeEquality| - |isExpt| |charClass| |semicolonSeparate| |nary?| |noLinearFactor?| - |sPol| |fortranLiteralLine| |expintegrate| |zCoord| |dihedral| - |createThreeSpace| |critMonD1| |palgextint| |OMlistSymbols| - |perspective| |makeUnit| |concat!| |frst| |oddlambert| |setleaves!| - |pomopo!| |padicallyExpand| |slex| |chiSquare1| |minordet| |ipow| - |mesh?| |yCoordinates| |pointSizeDefault| |singularitiesOf| - |normalise| |callForm?| |parts| |makeop| |listOfLists| |phiCoord| * - |antiAssociative?| |argumentList!| |idealSimplify| |mainMonomial| - |rotatex| |invmultisect| |elliptic| |cyclicEntries| |f01qcf| - |OMopenFile| |useSingleFactorBound| |iidprod| |basisOfCenter| - |uniform| |structuralConstants| |viewPhiDefault| |properties| - |leftUnit| |optimize| |superscript| |leftNorm| |viewDefaults| - |unravel| |cCosh| |resetAttributeButtons| |f02adf| |iisec| |mathieu11| - |translate| |high| |truncate| |raisePolynomial| |sign| = |typeLists| - |rightRank| |redPo| |evaluate| |bezoutDiscriminant| |modifyPoint| - |binaryFunction| |enqueue!| |print| |reducedQPowers| |s15aef| |times!| - |startTableInvSet!| |rightDivide| |cscIfCan| |selectODEIVPRoutines| - |transpose| |edf2ef| |operation| |resolve| |constantCoefficientRicDE| - |myDegree| |getOrder| < |csc2sin| LODO2FUN |isAnd| |symmetricTensors| - |OMputInteger| |stronglyReduce| |sort!| |e02bcf| |mapUp!| |create| - |e02dcf| > |reducedSystem| |s19acf| |crushedSet| |morphism| - |quadraticNorm| |f01ref| |collectUnder| |iicos| |hitherPlane| <= - |showArrayValues| |reify| |insertTop!| |nullSpace| |cExp| |ScanArabic| - |shiftRoots| |splitDenominator| |bandedHessian| |monicDivide| |po| >= - |inverseIntegralMatrix| |reduceBasisAtInfinity| - |indicialEquationAtInfinity| |imagJ| |digit| |iiatanh| - |deleteProperty!| |swapColumns!| |unary?| |curryRight| - |setTopPredicate| |clearTable!| |updatF| |dimensions| |getConstant| - |monomialIntegrate| |exprHasLogarithmicWeights| |fortranDoubleComplex| - |badNum| |readLine!| |leftTraceMatrix| |returnType!| |dual| - |endOfFile?| |multiplyExponents| |generalizedEigenvectors| |testDim| - |interpret| |unitNormalize| |OMgetString| |rootNormalize| - |bombieriNorm| |rationalFunction| + |limitPlus| |rischNormalize| - |hyperelliptic| |diophantineSystem| |f02fjf| |true| - |leadingCoefficientRicDE| |inGroundField?| |totolex| - |OMsupportsSymbol?| |rootProduct| - |leftRank| |cn| |s14aaf| - |deleteRoutine!| |contract| |cos2sec| |showFortranOutputStack| - |complex?| |sumOfDivisors| |mantissa| / |e01bgf| |interactiveEnv| - |complexElementary| |unit?| |dot| |column| |failed?| - |semiDiscriminantEuclidean| |OMgetEndAttr| |numberOfComponents| - |selectIntegrationRoutines| UTS2UP |alphabetic?| |listYoungTableaus| - |symmetricPower| |meatAxe| |category| |lllp| |alternating| - |factorFraction| |divisorCascade| |nil| |pushNewContour| - |discriminant| |cTan| |iiGamma| |printInfo!| |spherical| |front| - |domain| |randomLC| |genericLeftNorm| |iilog| |qualifier| |wreath| - |OMputEndAttr| |weights| |isList| |permutation| |package| |someBasis| - |exteriorDifferential| |inf| |fixedPoint| |fortranLiteral| |yCoord| - |acotIfCan| |subQuasiComponent?| |shift| - |removeIrreducibleRedundantFactors| |recip| |genericLeftTrace| - |d02cjf| |LazardQuotient2| |unrankImproperPartitions0| |approximate| - |d01amf| |imports| |s13adf| |createGenericMatrix| |changeMeasure| - |palglimint0| |palgint| |exprHasWeightCosWXorSinWX| |writable?| - |complex| |btwFact| |unmakeSUP| |over| |varList| |bezoutMatrix| - |rightZero| |unitsColorDefault| |dmp2rfi| |clearDenominator| - |whatInfinity| |collect| |basisOfNucleus| |lookupFunction| |rst| - |ricDsolve| |delta| |show| |ksec| |aQuartic| |getMultiplicationTable| - |identification| |bivariate?| |thetaCoord| |property| |ddFact| - |iidsum| |makeSin| |unaryFunction| |var2Steps| |patternMatch| - |graphImage| |lex| |complexEigenvalues| |ref| |drawCurves| - |domainTemplate| |setFormula!| |ratDsolve| |trace| |extension| - |denomRicDE| |nor| |computePowers| |f01mcf| |viewSizeDefault| - |trace2PowMod| |style| |LyndonWordsList| |retract| |sup| |leader| - |leastAffineMultiple| |padicFraction| |argscript| |rightNorm| |units| - |inHallBasis?| |typeForm| |fixedPoints| |ldf2lst| |empty?| - |OMputEndObject| |currentCategoryFrame| |sech2cosh| |extend| - |selectOrPolynomials| |color| |square?| |solveLinear| |readByte!| - |f02abf| |isobaric?| |contours| |copy!| |polyred| |complexZeros| - |linearlyDependent?| |symbol?| |formula| |denominator| |vertConcat| - |algebraicVariables| |binomThmExpt| |indicialEquation| |OMsend| - |rightQuotient| |rootOfIrreduciblePoly| |monicModulo| |upperCase?| - |insertMatch| |lambda| |epilogue| |zerosOf| |nextPrimitiveNormalPoly| - |mapGen| |subTriSet?| |ideal| |dark| |basisOfLeftNucleus| |dmpToHdmp| - |localReal?| |primintegrate| |cylindrical| |strongGenerators| - |principalAncestors| |rightUnit| |every?| |code| |singRicDE| - |positiveRemainder| |nilFactor| |interpolate| |point?| |changeName| - |bsolve| |shuffle| |solve| |printCode| |Lazard2| - |selectOptimizationRoutines| |categoryFrame| |LyndonBasis| - |normalizeIfCan| |nrows| |singleFactorBound| |viewZoomDefault| - |datalist| |reopen!| |presuper| |fractionPart| |numberOfVariables| - |expt| |gbasis| |pade| |ncols| |leastMonomial| |build| |repeating| - |rdregime| |tableau| |determinant| |readLineIfCan!| |approximants| - |plus| |brillhartTrials| |exptMod| |whitePoint| |bezoutResultant| - |HermiteIntegrate| |bits| |critMTonD1| |validExponential| |curryLeft| - |useSingleFactorBound?| |maxIndex| |completeSmith| |parent| - |setColumn!| |cross| |dom| |duplicates| |e01sbf| |mapDown!| - |writeLine!| |OMwrite| |binarySearchTree| |solve1| |createNormalPoly| - |perfectSqrt| |isAbsolutelyIrreducible?| |sum| |goodPoint| |f01rdf| - |OMgetEndAtp| |permutationRepresentation| |cup| |polynomial| - |partialDenominators| |stopTableGcd!| |readInt32!| - |showTheRoutinesTable| |point| |changeWeightLevel| |f01rcf| - |selectSumOfSquaresRoutines| |coefChoose| |setOrder| |newTypeLists| - |times| |createRandomElement| |useEisensteinCriterion| - |leftFactorIfCan| |interval| |cLog| |iiexp| |ldf2vmf| |OMputEndError| - |OMgetEndBind| |symbolTable| |delete!| |expintfldpoly| |c06frf| - |sturmVariationsOf| |roughBasicSet| - |dimensionOfIrreducibleRepresentation| |OMgetEndApp| |neglist| - |BasicMethod| |top| |lyndon| |setsubMatrix!| |ran| - |setScreenResolution3D| |semiResultantEuclidean1| |lp| |singular?| - |systemCommand| |rightRankPolynomial| |normFactors| - |nextLatticePermutation| |transcendenceDegree| |series| |arity| - |droot| |pushFortranOutputStack| |complement| |c05adf| - |squareFreeFactors| |tryFunctionalDecomposition| |title| |comp| - |graphCurves| |eulerPhi| |prime| |OMputEndAtp| |rischDEsys| |iiacosh| - |leftTrace| |popFortranOutputStack| |complexEigenvectors| |cCsc| - |s17aef| |beauzamyBound| |jacobi| |resultant| |node| |monom| - |baseRDEsys| |options| |laplace| |viewpoint| |f07fdf| |inR?| - |continue| |fortranCharacter| |f02agf| |sort| |getRef| |f07aef| - |OMsupportsCD?| |outputAsFortran| |makeCrit| |normal| |cycles| - |numberOfMonomials| |BumInSepFFE| |hex| |dihedralGroup| |escape| - |OMgetFloat| |mvar| |e| |lagrange| |topPredicate| |ratPoly| - |rationalIfCan| |var1Steps| |leadingTerm| |min| |collectUpper| |list| - |e02bbf| |outputBinaryFile| |univcase| |factorSquareFree| |diagonal?| - |common| |makeVariable| |string| |leftDivide| |secIfCan| |rotatey| - |expandLog| |car| |halfExtendedSubResultantGcd2| |hermite| - |doubleComplex?| |currentScope| |rightTraceMatrix| |prevPrime| - |OMgetApp| |ode1| |generalizedEigenvector| |pseudoQuotient| |random| - |cdr| |inRadical?| |stoseInternalLastSubResultant| |graeffe| - |squareFreePrim| |lfunc| |karatsubaOnce| |sparsityIF| - |genericRightDiscriminant| |bandedJacobian| |back| |setDifference| - |scalarMatrix| |magnitude| |signAround| |contains?| |bag| - |removeCosSq| |copies| |subResultantsChain| |dmpToP| - |discriminantEuclidean| |setIntersection| |irVar| |areEquivalent?| - |bitCoef| |cAsinh| |constantKernel| |latex| |withPredicates| - |initTable!| |symmetricProduct| |lazyIrreducibleFactors| |setUnion| - |OMgetVariable| |refine| |putProperty| |s20acf| |coth2trigh| - |internalAugment| |setLength!| |OMconnOutDevice| |palgextint0| - |d02bhf| |apply| |doubleFloatFormat| |bounds| - |cyclotomicFactorization| |multiple?| |separateDegrees| |littleEndian| - |iiacot| |rewriteIdealWithHeadRemainder| |doubleDisc| |polygon| - |overset?| |polygon?| |top!| |floor| |solveLinearPolynomialEquation| - |zero| |coerceL| |numberOfHues| |mainForm| |f02bjf| |OMreceive| |size| - |schwerpunkt| |viewDeltaXDefault| |conjugate| |divideIfCan| |d01alf| - |numeric| |colorFunction| |e02agf| |exists?| |toseLastSubResultant| - |s17adf| |width| |knownInfBasis| |lyndonIfCan| |applyRules| - |hasPredicate?| |revert| |radical| |And| |zeroSquareMatrix| |basicSet| - |binary| |rightExtendedGcd| |equation| |buildSyntax| |powmod| - |precision| |conjugates| |wordInStrongGenerators| |roughUnitIdeal?| - |vector| |slash| |Or| |checkRur| |primPartElseUnitCanonical!| - |complexNormalize| |elliptic?| |primaryDecomp| |normalizedDivide| - |first| |pseudoDivide| |light| |rur| |differentiate| |pr2dmp| |Not| - |aromberg| |factorList| |nthFactor| |kmax| |removeSinhSq| |rest| - |factorAndSplit| |tValues| |subResultantGcdEuclidean| - |toseSquareFreePart| |elRow2!| |rename!| |elaborate| - |computeCycleLength| |squareFreePolynomial| |realEigenvalues| - |subResultantChain| |substitute| |doublyTransitive?| |poisson| - |isTerm| |cschIfCan| |tubePoints| |branchIfCan| |accuracyIF| - |fortranDouble| |d01apf| |hash| |outputForm| |interpretString| - |removeDuplicates| |iiasinh| |logIfCan| |block| - |lastSubResultantEuclidean| |clearFortranOutputStack| |comparison| - |integral?| |physicalLength| |oddInfiniteProduct| |count| |chiSquare| - |complementaryBasis| |d01gaf| |stFunc1| |mr| |subNodeOf?| - |fullDisplay| |lflimitedint| |Ei| |super| |mindegTerm| |f01qef| |name| - |optional| |partition| |forLoop| |totalfract| |gcdprim| |integrate| - |e04mbf| |derivative| |euclideanNormalForm| |twist| |typeList| |lift| - |body| |tan2cot| |coleman| |outputAsTex| |systemSizeIF| |e02daf| - |extractBottom!| |inc| |associatedEquations| |closed| |deepestTail| - |generalTwoFactor| |reduce| |moreAlgebraic?| |aCubic| |setClipValue| - |c02agf| |scopes| |reduceByQuasiMonic| |integer?| - |shanksDiscLogAlgorithm| |stoseInvertible?reg| |explogs2trigs| - |sts2stst| |universe| |leftExtendedGcd| |satisfy?| |binomial| |xn| - |localIntegralBasis| |setPoly| |critM| |exponents| |factorsOfDegree| - |nextSublist| |makeprod| |central?| |supRittWu?| |d01bbf| |implies| - |s13aaf| |conical| |position!| |just| |increasePrecision| - |mapUnivariateIfCan| |removeConstantTerm| |makeViewport2D| |internal?| - |empty| |unitVector| |acscIfCan| |sqfree| |solveRetract| - |denominators| |fixPredicate| |f04jgf| |fortranCompilerName| - |medialSet| SEGMENT |rationalPower| |error| |innerSolve| - |antiCommutative?| |powern| |stopMusserTrials| |atoms| |port| - |linearPolynomials| |LyndonCoordinates| |any| |whileLoop| |palgint0| - |mappingMode| |qqq| |assert| |leftQuotient| |tower| |e04ycf| - |cyclotomic| |upperBound| |graphState| |setImagSteps| - |wronskianMatrix| |recolor| |imagj| |plotPolar| |startTableGcd!| - |leftDiscriminant| |semiResultantReduitEuclidean| |t| - |variationOfParameters| |vectorise| |constantToUnaryFunction| - |cyclicParents| |stopTable!| |child| |countRealRoots| |elaborateFile| - |list?| |intensity| |diagonalMatrix| |clearTheSymbolTable| - |createZechTable| GF2FG |loadNativeModule| |logGamma| - |nextIrreduciblePoly| |readUInt8!| |expenseOfEvaluationIF| - |numberOfCycles| |setref| |setProperties| |mightHaveRoots| |push| - |primeFrobenius| |mindeg| |jordanAdmissible?| |homogeneous?| |randnum| - |basisOfCommutingElements| |solveLinearlyOverQ| |rightRemainder| - |constant| |limitedIntegrate| |nextColeman| |positive?| - |complexNumeric| |lquo| |tableForDiscreteLogarithm| |newReduc| - |ListOfTerms| |e01sff| |subHeight| |standardBasisOfCyclicSubmodule| - |octon| |totalDegree| |curve?| |byte| |ranges| |palgintegrate| - |predicate| |nthr| |numberOfImproperPartitions| |simpson| - |outputAsScript| |readBytes!| |iiperm| |null?| |integerBound| - |kernels| |iteratedInitials| |s18aef| |tab| |LiePolyIfCan| |isMult| - |nthRoot| |range| |linears| |redPol| |operator| - |mainDefiningPolynomial| |cons| |flexible?| |maxrow| - |normalizeAtInfinity| |repSq| |factorset| |isEquiv| |toroidal| - |perfectSquare?| |integralLastSubResultant| |rootRadius| |prinpolINFO| - |algebraicDecompose| |step| |mdeg| |computeInt| |squareFree| |s18def| - |weight| |univariate| |leftLcm| |regime| |module| |isOpen?| |mapSolve| - |wordInGenerators| |comment| |linearAssociatedOrder| |qelt| |nlde| - |iiatan| |monicRightDivide| |rootPoly| |getBadValues| - |pointColorPalette| |gethi| |extractClosed| |qsetelt| |ef2edf| |lepol| - |adaptive| |aspFilename| |eq?| |lexTriangular| |linear| - |createPrimitiveNormalPoly| |getCurve| |inputBinaryFile| |coerce| - |sturmSequence| |xRange| |leastPower| |factor| |leviCivitaSymbol| - |physicalLength!| |df2mf| |key?| |int| |reducedContinuedFraction| - |e01saf| |stiffnessAndStabilityOfODEIF| |construct| |operators| - |ramified?| |yRange| |sqrt| |factorPolynomial| |source| |tanNa| - |multiEuclidean| |separate| |c06ekf| |d01asf| |associative?| |zRange| - |lineColorDefault| |real| |omError| |parameters| |sinh2csch| |f02bbf| - |norm| |rootKerSimp| |functionIsFracPolynomial?| |normalize| |content| - |map!| |f04adf| |imag| |showRegion| |clipWithRanges| |patternVariable| - |selectfirst| |algebraicSort| |findConstructor| |listexp| |B1solve| - |length| |qsetelt!| |simpsono| |directProduct| |subspace| - |rightDiscriminant| F2FG |localAbs| |cothIfCan| |nthExponent| - |solveInField| |fortranTypeOf| |scripts| |permanent| - |minimalPolynomial| |loopPoints| |varselect| |updateStatus!| - |viewDeltaYDefault| |cAcosh| |f04faf| |assign| |solveid| |brace| - |cotIfCan| |target| |cfirst| |ptree| |calcRanges| |removeCoshSq| - |completeHensel| |makeSeries| |weierstrass| |closedCurve| - |outputGeneral| |fortranCarriageReturn| |destruct| |power!| |s17ahf| - |decreasePrecision| |nextItem| |e02baf| |hcrf| |complexExpand| - |symmetricRemainder| |fortranInteger| |irreducibleRepresentation| - |generalizedInverse| |separateFactors| |insert!| |graphStates| |kind| - |parseString| |integral| |semiDegreeSubResultantEuclidean| |rename| - |adaptive?| |chebyshevU| |replace| |radPoly| |cAsin| |op| - |stosePrepareSubResAlgo| |matrixGcd| |OMgetAttr| |rombergo| - |solveLinearPolynomialEquationByRecursion| |lfextendedint| |e04ucf| - |size?| |aQuadratic| |clipBoolean| |subscriptedVariables| - |mergeFactors| |appendPoint| |parametric?| |ravel| |primlimitedint| - |monomial| |OMread| |colorDef| |genus| |romberg| |UpTriBddDenomInv| - |primlimintfrac| |genericLeftDiscriminant| |prod| |e04jaf| - |sumSquares| |explicitEntries?| |reshape| |string?| |expandPower| - |quoByVar| |arguments| |lazyPseudoRemainder| |pToHdmp| |sechIfCan| - |setelt| |sylvesterSequence| |iitanh| |zag| |froot| |solid?| - |linearDependenceOverZ| |iicsch| |queue| |atom?| |float?| - |LagrangeInterpolation| |radix| |taylorIfCan| |nextNormalPoly| - |superHeight| |fglmIfCan| |rk4a| |composites| |copy| - |integralBasisAtInfinity| |extendedEuclidean| |totalDifferential| - |cyclic?| |alternative?| |linear?| |union| |stoseSquareFreePart| - |ignore?| |acosIfCan| |Vectorise| |bringDown| |gcdPrimitive| - |musserTrials| |digamma| |rank| |tab1| |sumOfSquares| |numFunEvals| - |check| |tube| |reciprocalPolynomial| |getDatabase| |isConnected?| - |routines| |midpoint| |update| |getProperty| |f02axf| - |rightExactQuotient| |autoCoerce| |semiResultantEuclidean2| - |asecIfCan| |permutations| |exactQuotient| |writeByte!| - |newSubProgram| |selectsecond| |children| |integralBasis| - |subresultantVector| |e02dff| |iflist2Result| |youngGroup| |quotient| - |definingEquations| |moduleSum| |makeMulti| |lifting| |s18dcf| - |s17dgf| |countRealRootsMultiple| |resetNew| |biRank| - |drawComplexVectorField| |fTable| |torsion?| |expressIdealMember| - |SturmHabicht| |PollardSmallFactor| |recur| |even?| |goto| |readable?| - |removeRedundantFactorsInPols| |showAll?| |laurentRep| |digit?| - |halfExtendedResultant2| |dflist| |univariatePolynomialsGcds| - |factorOfDegree| |RemainderList| |position| |power| - |explicitlyFinite?| |collectQuasiMonic| |univariateSolve| |constant?| - |SFunction| |splitSquarefree| |row| |match?| |headReduced?| |lists| - |OMgetError| |rdHack1| |branchPoint?| |addiag| |belong?| |f04mcf| - |exQuo| |ScanFloatIgnoreSpacesIfCan| |fprindINFO| |OMsetEncoding| - |seriesSolve| |leftRecip| |real?| |definingPolynomial| |cSech| - |createLowComplexityTable| |palgLODE| |iomode| |OMUnknownSymbol?| - |cAcoth| |basisOfRightNucloid| |s17dcf| |constantOpIfCan| |UP2ifCan| - |f02ajf| |c06eaf| |moduloP| |declare| |optpair| |atrapezoidal| - |checkForZero| |fracPart| |GospersMethod| |elColumn2!| |Nul| - |transcendentalDecompose| |generalizedContinuumHypothesisAssumed| - |rowEchLocal| |setMaxPoints| |pmintegrate| |infieldIntegrate| - |cot2trig| |LowTriBddDenomInv| |expint| |scale| |minimize| - |constDsolve| |powerAssociative?| |divergence| |f04maf| |setStatus!| - |besselI| |socf2socdf| |resultantReduitEuclidean| |divisor| - |setMinPoints3D| |arg1| |extractIfCan| |uniform01| |monic?| |f2df| - |subSet| |createNormalElement| |restorePrecision| |log2| |qPot| - |setPosition| |iibinom| |arg2| |f01bsf| |sech| |linearAssociatedLog| - |resultantnaif| |ellipticCylindrical| |rectangularMatrix| |voidMode| - |rightLcm| |bindings| |pdct| |edf2df| |csch| |OMmakeConn| |reorder| - |usingTable?| |retractable?| |close| |irDef| |symmetricSquare| - |rightCharacteristicPolynomial| |cAcsc| |conditions| |shellSort| - |asinh| |iterationVar| |cycleSplit!| |zero?| |deriv| |coord| |e04dgf| - |sizePascalTriangle| |match| |rewriteSetWithReduction| |groebgen| - |acosh| |pointColorDefault| |stop| |identityMatrix| |f04asf| |lllip| - |OMputBVar| |display| |algebraicCoefficients?| |bright| |atanh| - |tanhIfCan| |vconcat| |besselJ| |complexSolve| |acoshIfCan| - |leftMinimalPolynomial| |removeSquaresIfCan| |c06gqf| - |makeYoungTableau| |li| |getProperties| |lazyGintegrate| |extendedint| - |acoth| |mathieu22| |quadratic| |modularGcdPrimitive| |subset?| |pow| - |OMgetEndObject| |s18acf| |asech| |certainlySubVariety?| - |quasiMonicPolynomials| |deepExpand| |safeFloor| |sqfrFactor| - |algintegrate| |coordinate| |getVariableOrder| |makeFR| |laguerreL| - |llprop| |numberOfNormalPoly| |changeThreshhold| |numFunEvals3D| - |merge| |entries| |pquo| |multiple| |OMReadError?| |mainContent| - |move| |cPower| |highCommonTerms| |input| |taylorQuoByVar| |upperCase| - |e01sef| |closeComponent| |tubePlot| |box| |currentSubProgram| - |applyQuote| |groebnerFactorize| |setAttributeButtonStep| - |factorsOfCyclicGroupSize| |generic| |bytes| |library| |s21bcf| - |infinite?| |setVariableOrder| |genericRightNorm| |karatsubaDivide| - |inverseLaplace| |arrayStack| |LiePoly| |evenlambert| |randomR| - |wholeRadix| |parabolic| |createPrimitiveElement| |push!| |iiasech| - |reflect| |uncouplingMatrices| |d02raf| |eigenMatrix| |minRowIndex| - |elem?| |pushdown| |ruleset| |probablyZeroDim?| |mainCharacterization| - |integralMatrix| |pack!| |ParCondList| |isTimes| |elements| |exp1| - |OMlistCDs| |less?| |f02xef| |OMgetType| |set| |unvectorise| |cyclic| - |nthRootIfCan| |simplifyLog| |iisinh| |OMbindTCP| |cCot| |totalLex| - |test| |id| |hostPlatform| |algebraic?| |presub| |var2StepsDefault| - |integralMatrixAtInfinity| |airyBi| |suchThat| - |lastSubResultantElseSplit| |leftRemainder| |integralCoordinates| - |isOr| |algSplitSimple| |child?| |setelt!| |integerIfCan| - |coercePreimagesImages| |linearDependence| |rightMult| |c06fpf| - |table| |pile| |semiIndiceSubResultantEuclidean| |plus!| - |permutationGroup| |logpart| |bumptab| |sylvesterMatrix| |dequeue!| - |subst| |pdf2df| |insert| |s19abf| |new| |intChoose| - |stoseIntegralLastSubResultant| |mapdiv| |obj| |meshPar1Var| - |getGoodPrime| |leftAlternative?| |mapExpon| |nthFractionalTerm| - |imagK| |plenaryPower| |eq| |prefix| |screenResolution| |cache| - |delay| |points| |changeBase| |insertBottom!| |iter| |evaluateInverse| - |cycleEntry| |rotate| |jacobiIdentity?| |innerint| |OMputEndApp| - |Aleph| |delete| |subresultantSequence| |squareMatrix| |signature| - |removeRedundantFactorsInContents| |double?| |cAcot| |palgLODE0| - |paraboloidal| |quotientByP| |variable?| |degree| |constantOperator| - |makeSketch| |completeEchelonBasis| |untab| |quadratic?| - |clipPointsDefault| |mapmult| |groebSolve| |headReduce| - |clearTheFTable| |lfextlimint| |diag| |radicalSimplify| |radicalRoots| - |objects| |unitCanonical| |cyclicCopy| |FormatArabic| |relativeApprox| - |acothIfCan| |factors| |directory| |rightScalarTimes!| |base| |script| - |transform| |solveLinearPolynomialEquationByFractions| |direction| - |closed?| |number?| |curry| |totalGroebner| |c06fqf| |OMputVariable| - |extractTop!| |rightMinimalPolynomial| |simpleBounds?| - |commonDenominator| |sortConstraints| |rightRecip| |laurentIfCan| - |retractIfCan| |monomRDEsys| |coefficient| |linearAssociatedExp| - |c05pbf| |iicot| |flatten| |selectFiniteRoutines| |exp| |f02awf| - |leftUnits| |deref| |legendre| |nullary| |tex| |ocf2ocdf| - |integralRepresents| |left| |numer| |outputFloating| - |basisOfLeftNucloid| |heapSort| |asinhIfCan| |setTex!| |flagFactor| - |/\\| |s15adf| |tanh2trigh| |OMgetEndError| |right| |outputList| - |denom| |s17dlf| |pmComplexintegrate| |asinIfCan| |setright!| - |listBranches| |irForm| |\\/| |dimensionsOf| |lazyPrem| |invertible?| - |errorKind| |representationType| |setLegalFortranSourceExtensions| - |minIndex| |sample| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |nilFactor| |quotient| |gcdPolynomial| + |tubeRadiusDefault| |pi| |constDsolve| |FormatArabic| |integral| + |selectFiniteRoutines| |readUInt16!| |before?| |iExquo| |d02raf| + |infinity| |ref| |readUInt32!| |cosIfCan| |basisOfRightNucloid| + |interReduce| |e02akf| |failed?| |digit| |hostByteOrder| |cond| + |cyclicEqual?| |inspect| |s18aff| |powerSum| |heap| |elaborateFile| + |rightOne| |quartic| |primlimintfrac| |generate| |log10| + |skewSFunction| |s15aef| |currentScope| |map| + |primPartElseUnitCanonical!| |discriminantEuclidean| + |halfExtendedResultant1| |asecIfCan| |leadingSupport| |minus!| + |bitand| |kernel| |iiatan| |cAsec| |univariateSolve| |zero?| + |triangSolve| |previous| |isQuotient| |jacobiIdentity?| |incrementBy| + |implies| |idealSimplify| |KrullNumber| |outerProduct| |palglimint| + |bitior| |draw| |errorKind| |binding| |partition| |repeating?| + |getMeasure| |basisOfCenter| |backOldPos| |nthRootIfCan| + |stoseInvertible?reg| |expand| |certainlySubVariety?| |littleEndian| + |exteriorDifferential| |upperCase| |eof?| |numberOfFractionalTerms| + |currentEnv| |idealiserMatrix| |cLog| |nil?| |filterWhile| |bat1| + |curveColor| |elementary| |modTree| |meshFun2Var| |rightZero| + |algebraicVariables| |basisOfCentroid| |polar| |extendedResultant| + |OMsupportsCD?| |filterUntil| |symbol| |unrankImproperPartitions0| + |leadingBasisTerm| |nonSingularModel| |e01sff| |digits| |convert| + |cAtan| |purelyTranscendental?| |complexLimit| |eigenMatrix| |imagj| + |definingEquations| |select| |expression| |OMencodingBinary| + |makeObject| |flexible?| |mergeDifference| |relativeApprox| + |readLineIfCan!| |over| |content| |height| |style| |choosemon| |any?| + |mapExpon| |inconsistent?| |integer| |removeCoshSq| |coef| |iicot| + |powerAssociative?| |s17acf| |semiDegreeSubResultantEuclidean| |mix| + |ceiling| |startPolynomial| |f02aaf| |semiDiscriminantEuclidean| + |semiLastSubResultantEuclidean| |queue| |fillPascalTriangle| + |pleskenSplit| |iiasin| |lieAlgebra?| |addPointLast| |putColorInfo| + |vark| |zeroDim?| |c06ecf| |iiatanh| |genericLeftDiscriminant| + |sparsityIF| |rightTraceMatrix| |drawCurves| |times!| ** |f02awf| + |complexNormalize| |interpolate| |list?| |in?| |minPoints3D| |aLinear| + |monicRightDivide| |OMencodingUnknown| |constant?| |attributeData| + |deriv| |innerint| |permutations| |s13aaf| |se2rfi| |index?| + |stoseInvertible?| |forLoop| |inf| |binomThmExpt| |subResultantGcd| + |getlo| |explogs2trigs| |makeRecord| |mainMonomial| |bernoulliB| |lo| + |quasiMonicPolynomials| |representationType| |zeroDimensional?| + |vspace| |irVar| |cycleLength| |critT| |qinterval| |reverse!| |incr| + |simplifyLog| |packageCall| |acsch| |decimal| |label| + |rationalApproximation| |e01sef| |e04gcf| |weighted| |initial| + |makeCrit| |uniform| |iiexp| |minRowIndex| |d01amf| |iiacot| |exprex| + |subHeight| |f04adf| |s17dcf| |moduleSum| |d01aqf| + |commutativeEquality| |exponential1| |hexDigit?| |supersub| + |approximants| |acothIfCan| |finite?| |zoom| |d02gbf| + |nthFractionalTerm| |LyndonWordsList| |mainCoefficients| + |genericRightDiscriminant| |readInt8!| |setClosed| |increment| + |lighting| |radicalEigenvector| Y |OMgetEndAttr| |orthonormalBasis| + |exactQuotient!| |atom?| |generators| |divergence| |prevPrime| + |rename| |elliptic?| |hasoln| |numericalOptimization| |point?| + |c05nbf| |minPoints| |surface| |domainTemplate| |invertibleSet| + |initiallyReduced?| |pop!| |unitsColorDefault| |rotatex| |intensity| + |deleteProperty!| |prod| |deepExpand| |tail| |equiv| |SFunction| + |printStatement| |coord| |listRepresentation| |constructor| |rules| + |OMputEndApp| |exactQuotient| |moebiusMu| |maxRowIndex| |bfEntry| + |rootPoly| |identitySquareMatrix| |startTableInvSet!| |outputMeasure| + |maxrow| |nothing| |setAdaptive| |laguerre| |bfKeys| |conical| + |imports| |exportedOperators| |option| |paren| |fixedPoint| + |totalfract| |leftUnits| |nthExpon| |showSummary| |cycles| + |structuralConstants| |errorInfo| |traverse| |null?| + |createGenericMatrix| |setLegalFortranSourceExtensions| + |matrixDimensions| |lprop| |indicialEquation| |branchIfCan| + |clikeUniv| |iisinh| |sts2stst| |infLex?| |iteratedInitials| + |summation| |standardBasisOfCyclicSubmodule| |closeComponent| + |environment| |showAttributes| |makeMulti| |outlineRender| |ldf2vmf| + |elem?| RF2UTS |unknown| |subscript| |OMencodingSGML| |factors| + |symmetric?| |showRegion| |macroExpand| |hypergeometric0F1| + |setprevious!| |imagK| |sumOfKthPowerDivisors| |rightTrim| |cTanh| + |e02aef| |Lazard| |brillhartTrials| |bottom!| |measure| + |rationalPoint?| |approxNthRoot| |numberOfComponents| |sup| |leftTrim| + |bandedJacobian| |scalarMatrix| |rewriteIdealWithHeadRemainder| + |alphabetic| |integralAtInfinity?| |rightAlternative?| |changeName| + |const| |isExpt| |karatsuba| |opeval| |mirror| |f04maf| |OMgetApp| + |adaptive?| |primaryDecomp| |say| |prinb| F |diagonalMatrix| |e04jaf| + |float?| |safeFloor| |multiEuclideanTree| |tubeRadius| + |splitSquarefree| |findCycle| |e04dgf| |Aleph| |writeByte!| + |swapColumns!| |subPolSet?| |integerBound| |d01gbf| |setFormula!| + |createNormalPrimitivePoly| |bitLength| |invertIfCan| |preprocess| + |invmultisect| |diagonalProduct| |var1StepsDefault| |s13adf| + |fortranLiteral| |changeMeasure| |function| |getBadValues| + |rightDivide| |remove| |e02adf| |multivariate| |numberOfMonomials| + |headRemainder| |position!| |pushuconst| |blankSeparate| + |expenseOfEvaluation| |fortran| |gcdprim| |mathieu23| |variables| + |octon| |OMsend| |result| |nodes| |viewPhiDefault| |pushdown| + |setrest!| |gensym| |open| |s18aef| |minIndex| |f02aff| |gderiv| + |last| |clipWithRanges| |eval| |reset| |accuracyIF| |lifting| + |getCode| |OMbindTCP| |tryFunctionalDecomposition?| |assoc| + |useEisensteinCriterion?| |polynomialZeros| |tubePlot| |null| + |rightScalarTimes!| |unit| |bitTruth| |listOfMonoms| |charClass| + |leastAffineMultiple| |commutative?| |createMultiplicationTable| + |squareFreeLexTriangular| |pattern| |trapezoidalo| |not| |rspace| + |pol| |write| |plenaryPower| |selectIntegrationRoutines| |multiset| + |trunc| |back| |magnitude| |dioSolve| |modularFactor| |and| |ode1| + |normalizedDivide| |save| |df2st| |lowerCase!| |sumSquares| + |OMputEndError| |prepareDecompose| |operations| |processTemplate| + |exptMod| |doubleDisc| |or| |row| |d02gaf| |taylor| |enterInCache| + |clearTheSymbolTable| |consnewpol| |viewport2D| |sqfrFactor| |real?| + |basisOfLeftAnnihilator| |setStatus!| |chebyshevU| |xor| + |sizePascalTriangle| |laurent| |bsolve| |subresultantSequence| |cSin| + |LagrangeInterpolation| |relationsIdeal| |irCtor| |ratDsolve| + |message| |triangular?| |case| |rangePascalTriangle| |puiseux| + |elliptic| |f07adf| |unary?| |schwerpunkt| |palglimint0| |s01eaf| + |sinhIfCan| |yCoord| |Zero| |drawToScale| |iiabs| |newSubProgram| + |quote| |compactFraction| |hi| |writeUInt8!| |One| |totalDegree| + |cscIfCan| |inv| |rightQuotient| |leftUnit| |BumInSepFFE| |pointLists| + |probablyZeroDim?| |makeSin| |tab| |transform| |setScreenResolution| + |ground?| |OMgetEndBVar| |s18dcf| |argumentListOf| |just| + |endSubProgram| |regime| |red| |ground| |getStream| |integrate| |lcm| + |patternVariable| |iifact| |fortranDouble| |cCot| |padicFraction| + |signAround| |getOperator| |generalizedEigenvector| + |currentSubProgram| |leadingMonomial| |monicCompleteDecompose| + |returns| |divide| |replaceKthElement| |tanIfCan| |compBound| |append| + |rightFactorIfCan| |leadingCoefficient| |coordinates| |OMgetSymbol| + |normalise| |complexIntegrate| |explicitEntries?| |iiacoth| + |primitiveMonomials| |asinIfCan| |gcd| |whitePoint| |headReduced?| + |elt| |output| |pseudoDivide| |laplace| |leadingCoefficientRicDE| + |fortranLinkerArgs| |semicolonSeparate| |lazyPseudoDivide| |swap| + |definingPolynomial| |intcompBasis| |false| |stFunc2| |reductum| + |rewriteSetWithReduction| |f04axf| |monicDecomposeIfCan| |idealiser| + |OMgetEndBind| |elseBranch| |palgint| |taylorRep| |e04ycf| + |selectsecond| |semiSubResultantGcdEuclidean1| |radix| |palgextint0| + |e02ahf| |irreducibleRepresentation| |overlabel| + |rootOfIrreduciblePoly| |sumOfDivisors| |symmetricGroup| |curryRight| + |viewDeltaXDefault| |UnVectorise| |primitivePart| |leftDivide| + |setEpilogue!| |mainValue| |s19abf| |inverseColeman| |bivariateSLPEBR| + |mainCharacterization| |infieldIntegrate| |LiePolyIfCan| |low| |terms| + |selectfirst| |normDeriv2| |variationOfParameters| |module| + |contains?| |dflist| |evaluate| |normal01| |OMputEndAtp| |lexGroebner| + |host| |nextPartition| |unaryFunction| |quoted?| |toseInvertibleSet| + |member?| |weakBiRank| |categories| |isImplies| |part?| |aCubic| + |monicDivide| |seed| |SturmHabichtMultiple| |elRow1!| |qualifier| + |stoseInvertibleSetsqfreg| |callForm?| |schema| |parabolic| |iicoth| + |tanintegrate| |perfectNthRoot| |limitedIntegrate| |subNodeOf?| + |routines| |lowerCase| |factorsOfDegree| |groebnerIdeal| |setright!| + |cSech| |OMReadError?| |removeZeroes| |omError| |zeroOf| |viewpoint| + |unitNormal| |OMlistCDs| |exprHasWeightCosWXorSinWX| |region| + |lfextlimint| |d02kef| |inverse| |cyclotomic| |children| + |primlimitedint| |showClipRegion| |plusInfinity| + |balancedFactorisation| |setPredicates| |hclf| |scaleRoots| + |bipolarCylindrical| |localUnquote| |intChoose| |OMwrite| |cosSinInfo| + |minusInfinity| |solid| |gcdcofact| |leastMonomial| |powmod| |cSec| + |e01bgf| |bumptab1| |setOrder| |mathieu22| |d02bhf| + |generalizedInverse| |secIfCan| |SturmHabichtCoefficients| + |rowEchelonLocal| |e01daf| |iitanh| |reducedSystem| + |leftCharacteristicPolynomial| |cot2trig| |univariatePolynomialsGcds| + |split!| |key| |symmetricSquare| |rischDEsys| |vectorise| + |addBadValue| |integers| |singRicDE| |var2Steps| |bezoutDiscriminant| + |wreath| |f02aef| |frobenius| |makeop| |setClipValue| |s17def| + |henselFact| |filename| |innerEigenvectors| |shade| |extractProperty| + |elaboration| |complexNumericIfCan| |midpoint| |explimitedint| |po| + |type| |cAcosh| |clearTheIFTable| |linearMatrix| |fullDisplay| + |polyred| |e02zaf| |f07fdf| |createPrimitiveElement| + |numericalIntegration| |indices| |mainMonomials| |isOpen?| + |nextColeman| |parse| |ffactor| |rarrow| |fixedDivisor| + |monomialIntPoly| |nextSublist| |initializeGroupForWordProblem| + |listBranches| |diag| |simplify| |next| |sinh2csch| |cyclicEntries| + |integralBasis| |binarySearchTree| |less?| |poisson| |charpol| + |d03faf| |mainContent| |setchildren!| |interactiveEnv| |primeFactor| + |drawComplex| |s17aff| |quadratic| |monicRightFactorIfCan| |rotatey| + |iisin| |basis| |invmod| |checkPrecision| |upperBound| |OMread| + |roughSubIdeal?| |selectNonFiniteRoutines| |f04faf| + |doubleFloatFormat| |build| |s21bbf| |conjugates| |bag| + |constantToUnaryFunction| |stoseIntegralLastSubResultant| EQ + |newTypeLists| |viewWriteAvailable| |patternMatchTimes| |chebyshevT| + |factorOfDegree| |Beta| |rightCharacteristicPolynomial| + |getMultiplicationMatrix| |An| |alphanumeric| |zag| |ode| + |separateFactors| |LowTriBddDenomInv| |OMputEndAttr| |lhs| |round| + |iiacosh| |isNot| |s19acf| |getSyntaxFormsFromFile| |isTerm| + |complete| |makeResult| |deepCopy| |rhs| |complexZeros| |nthFlag| + |shrinkable| |inverseIntegralMatrix| |c02agf| |mainSquareFreePart| + |patternMatch| |balancedBinaryTree| |modifyPoint| |iiacos| + |getProperty| |inR?| |postfix| |modulus| |modularGcdPrimitive| + |ratpart| |positive?| |coHeight| |f02bbf| |subresultantVector| + |listOfLists| |triangulate| |push!| |iroot| |rule| |mapSolve| + |figureUnits| |radicalSimplify| |primitivePart!| |cAcsch| |blue| + |distFact| |makeprod| |removeIrreducibleRedundantFactors| |irForm| + |lflimitedint| |index| |imagI| |removeSuperfluousCases| |critpOrder| + |complexElementary| |solve1| |f02xef| |assign| |sorted?| + |ramifiedAtInfinity?| |move| |wordInStrongGenerators| |f01qcf| |rroot| + |exprToXXP| |mulmod| |lazyPquo| |center| |fixedPointExquo| + |discreteLog| |expandLog| |purelyAlgebraic?| |nextSubsetGray| + |cyclicParents| |dn| |leftFactor| |partialQuotients| + |indicialEquations| |bounds| |pair| |RemainderList| |cAcsc| + |insertBottom!| |graphState| |createRandomElement| |value| |colorDef| + |OMputObject| |maxdeg| |weights| |repeating| |f02wef| |mapdiv| + |startStats!| |scopes| |froot| |cschIfCan| |expint| |mkPrim| + |rootDirectory| |linearlyDependent?| |fortranCharacter| |limit| + |stronglyReduced?| |getGraph| |allRootsOf| |graphImage| |bernoulli| + |insert!| |pushucoef| |leftTrace| |abs| |yellow| |iiasech| |entry| + |subset?| |enterPointData| |cCsch| |lquo| |basisOfRightNucleus| + |e02dff| |OMconnectTCP| |central?| UP2UTS |recip| |wordInGenerators| + |binaryFunction| |radicalRoots| |norm| |unit?| |f02axf| + |reduceBasisAtInfinity| |createNormalPoly| |univariatePolynomial| + |components| |basisOfRightAnnihilator| |Ei| |zeroSetSplit| + |partialFraction| |phiCoord| |getZechTable| |startTable!| |solveid| + |dimensionsOf| |iisech| |signatureAst| |mkAnswer| |sn| |zeroVector| + |genus| |prefixRagits| |reverse| |OMgetType| |OMputString| |f04arf| + |cPower| |halfExtendedSubResultantGcd2| |roughUnitIdeal?| |OMopenFile| + |stopTable!| |solid?| |e01bhf| |controlPanel| |rotatez| |call| + |thenBranch| |power| |shellSort| |setImagSteps| |evaluateInverse| + |lambert| |rquo| |tubePoints| |leaves| |cyclotomicFactorization| + |tree| |s20adf| |members| |rootKerSimp| |f02agf| |OMUnknownCD?| + |useEisensteinCriterion| |OMgetBind| |removeRedundantFactors| |read!| + |isList| |rdregime| |noKaratsuba| |meshPar1Var| |multisect| + |reduceByQuasiMonic| |axesColorDefault| + |removeRoughlyRedundantFactorsInPols| |scale| + |tableForDiscreteLogarithm| |rootOf| |dequeue| |minimumDegree| + |selectPolynomials| |reflect| |indiceSubResultant| |pow| |write!| + |numberOfFactors| |graphStates| |init| |symbol?| |iflist2Result| + |antiAssociative?| |indicialEquationAtInfinity| |tanh2coth| + |genericLeftTrace| |lex| |unitCanonical| |quadraticForm| |quickSort| + |fortranReal| |rightExactQuotient| |reindex| + |zeroSetSplitIntoTriangularSystems| |monicLeftDivide| + |linearAssociatedOrder| |binaryTree| |enqueue!| |innerSolve1| + |useSingleFactorBound| |dot| |perfectSqrt| |supRittWu?| |factorials| + |generator| |companionBlocks| |s17akf| |resultantEuclidean| |slash| + |functionIsContinuousAtEndPoints| |d01anf| |sincos| |monomial?| + |cotIfCan| |lazyPrem| |hermite| |mindegTerm| |maxrank| |vedf2vef| + |child| |approxSqrt| |unvectorise| |minPol| |splitLinear| + |highCommonTerms| |explicitlyFinite?| |iterationVar| + |sizeMultiplication| |wronskianMatrix| |cycleEntry| |search| |romberg| + |OMputFloat| |mkIntegral| |traceMatrix| |functionIsFracPolynomial?| + |stack| |combineFeatureCompatibility| |iisqrt3| |getGoodPrime| + |leftExactQuotient| |rem| |OMgetEndObject| |putProperty| |permutation| + |makeEq| |generalPosition| |positiveRemainder| |getRef| |quo| + |integer?| |leftFactorIfCan| |partialNumerators| |nextPrimitivePoly| + |newReduc| |tableau| |makeFloatFunction| |condition| |leftMult| |bat| + |internalSubPolSet?| |viewport3D| |d02cjf| |Nul| |parseString| + |makeTerm| |denominator| |uncouplingMatrices| |div| + |linearDependenceOverZ| |f04qaf| |eyeDistance| |cyclicCopy| + |characteristicSerie| |besselK| |leftRank| |permutationGroup| + |lowerCase?| |conditionP| |exquo| |dim| |cfirst| |identification| + |reducedQPowers| |element?| |plot| |getButtonValue| |roughBase?| ~= + |imagJ| |isAbsolutelyIrreducible?| |OMunhandledSymbol| |remainder| + |doubleComplex?| |LazardQuotient| |checkRur| |represents| |leastPower| + |eigenvectors| |possiblyInfinite?| |#| |lfunc| |matrix| |computeInt| + |dec| |e02ddf| |c05adf| |possiblyNewVariety?| ~ |d01bbf| |firstDenom| + |qroot| |createIrreduciblePoly| |birth| |concat| |mindeg| + |cycleSplit!| |ipow| |twoFactor| |cyclic| |setAdaptive3D| |overbar| + |s15adf| |untab| |quasiRegular| |boundOfCauchy| |numFunEvals| + |initiallyReduce| |iicsch| |UpTriBddDenomInv| |s18acf| |printInfo| + |leftRankPolynomial| |raisePolynomial| |pole?| |vertConcat| + |clearCache| |absolutelyIrreducible?| |fortranLogical| |level| + |coerceS| |arbitrary| |specialTrigs| |s21baf| |upDateBranches| |cCsc| + |limitPlus| |setColumn!| |coefficients| |LazardQuotient2| |one?| + |kroneckerDelta| |e02bbf| |lookup| |measure2Result| |qPot| + |rightRecip| |pointPlot| |substring?| |calcRanges| |s20acf| |goto| + |oddInfiniteProduct| |char| |normalize| |toScale| |whileLoop| |failed| + |modularGcd| |initials| |antisymmetric?| |transcendentalDecompose| + |constantIfCan| |changeThreshhold| |readInt32!| |logpart| |s14aaf| + |aQuadratic| |suffix?| |dfRange| |showScalarValues| |optAttributes| + |printInfo!| |close!| |nextPrime| |leviCivitaSymbol| |setnext!| + |outputSpacing| |curve| |atanIfCan| |numerators| |jordanAdmissible?| + |minColIndex| |fixPredicate| |square?| |compile| |chineseRemainder| + |selectMultiDimensionalRoutines| |squareFreeFactors| |stronglyReduce| + |prefix?| |status| |karatsubaOnce| |bivariate?| + |branchPointAtInfinity?| |isPower| |algSplitSimple| |Hausdorff| + |iprint| |lowerBound| |associatedEquations| |expandPower| |groebner?| + |quadratic?| |fractionPart| |multiEuclidean| |duplicates?| |check| + |setPrologue!| |mapExponents| |cExp| |stoseInvertibleSetreg| |second| + |ran| |squareFree| |hcrf| |csch2sinh| |erf| |rightPower| |float| + |s17aef| |mesh?| |arrayStack| |e01bef| |stirling2| |third| + |tanh2trigh| |mat| |primextintfrac| |movedPoints| |remove!| + |rischNormalize| |prepareSubResAlgo| |identity| |divideExponents| + |fortranTypeOf| |OMputAttr| |outputBinaryFile| |sign| |linear?| + |revert| |void| |setPosition| |compdegd| |jordanAlgebra?| |xn| + |create3Space| |curveColorPalette| |edf2df| |readable?| |connectTo| + |dilog| |perspective| |palgint0| |f04mbf| |laurentIfCan| |cross| + |infix?| |rename!| |spherical| |lazy?| |d01akf| |chiSquare| |sin| + |quatern| |clipBoolean| |pushup| |deleteRoutine!| |mask| |rischDE| + |realZeros| |cCos| |coth2trigh| |redmat| |numFunEvals3D| |cos| + |returnType!| |insertRoot!| |bumptab| |subtractIfCan| |firstNumer| + |removeSquaresIfCan| |generalizedContinuumHypothesisAssumed| + |homogeneous?| |reduction| |solveLinear| |expr| |f04jgf| |tan| + |fintegrate| |setlast!| |sort!| |showTheRoutinesTable| + |genericRightTraceForm| |makeGraphImage| |cot| |legendreP| |primes| + |odd?| |factorSFBRlcUnit| |beauzamyBound| |mathieu12| |headAst| + |OMputEndBind| |primintegrate| |option?| |clipPointsDefault| |sec| + |numberOfVariables| |child?| |separate| GE + |createMultiplicationMatrix| |closed| |univariatePolynomials| |double| + |quoByVar| |permanent| |realElementary| |select!| |thetaCoord| + |copyInto!| |Frobenius| |csc| |log| GT |iibinom| + |tryFunctionalDecomposition| |polCase| |ScanRoman| |printingInfo?| + |zeroSquareMatrix| |complexExpand| |s18def| |univcase| |variable| + |setScreenResolution3D| |asin| LE |sayLength| |yCoordinates| |LiePoly| + |ScanArabic| |regularRepresentation| |lSpaceBasis| |rk4| |atanhIfCan| + |difference| |iterators| BY |extractSplittingLeaf| |acos| LT + |contract| |tube| |maxPoints| |returnTypeOf| |elaborate| + |complementaryBasis| |OMgetEndError| |makeUnit| + |removeRedundantFactorsInPols| |OMmakeConn| |atan| |iicosh| + |plotPolar| |distribute| |localIntegralBasis| |dictionary| |mapCoef| + |principal?| |stoseSquareFreePart| |typeLists| |transcendent?| |acot| + |hyperelliptic| |monomials| |duplicates| |monomRDEsys| |limitedint| + |reducedForm| |character?| |leftScalarTimes!| |front| |readByte!| + |asec| |sncndn| |edf2efi| |subscriptedVariables| |extendIfCan| + |c06gqf| |stopTableInvSet!| |dual| |OMcloseConn| |merge| |root?| + |acsc| |leadingIndex| |mappingMode| |quasiMonic?| |OMgetAtp| + |declare!| |cylindrical| |symmetricRemainder| |internalAugment| + |noValueMode| |randnum| |fortranCompilerName| |sinh| |dominantTerm| + |sylvesterMatrix| |jacobi| |meshPar2Var| |changeWeightLevel| + |listConjugateBases| |rowEchLocal| |c06ekf| |nullity| |mapmult| + |mathieu24| |cosh| |range| |horizConcat| |wordsForStrongGenerators| + |removeSinSq| |e02bcf| NOT |leftZero| |newLine| |ddFact| + |problemPoints| |expt| |setelt!| |tanh| |e04naf| |f01bsf| + |lazyPseudoRemainder| |OMputAtp| OR |minimalPolynomial| + |rightFactorCandidate| |middle| |degreeSubResultantEuclidean| + |symbolTableOf| |tensorProduct| |coth| |exponentialOrder| |shiftRoots| + |graphCurves| |deepestTail| AND |computeCycleLength| |weight| + |chainSubResultants| |factorSquareFree| |semiResultantEuclidean1| + |basicSet| |reciprocalPolynomial| |keys| |cos2sec| |splitNodeOf!| + |evenlambert| |minGbasis| |partitions| |ReduceOrder| |depth| + |showAll?| |reorder| |generalInfiniteProduct| |inputOutputBinaryFile| + |pointSizeDefault| |genericLeftTraceForm| |outputArgs| + |firstSubsetGray| |s17dlf| |rightRank| |randomLC| |ignore?| |lintgcd| + |palginfieldint| |entry?| |startTableGcd!| |debug| |setPoly| |segment| + |parents| |makeYoungTableau| |defineProperty| |bigEndian| |graphs| + |f02abf| |concat!| |countable?| |diophantineSystem| D |separant| + |e01sbf| |mapMatrixIfCan| |divideIfCan!| |basisOfCommutingElements| + |fortranInteger| |intersect| |endOfFile?| |hconcat| + |internalSubQuasiComponent?| |mergeFactors| |f01rcf| + |strongGenerators| |setLength!| |setRealSteps| |principalIdeal| + |d01asf| |getPickedPoints| |setValue!| |qqq| |subCase?| |drawStyle| + |anticoord| |fi2df| |groebSolve| |jokerMode| |characteristic| + |autoReduced?| |dequeue!| |resultant| |mapUp!| |pToHdmp| |loopPoints| + |setMaxPoints| |d01gaf| |f01qdf| |topFortranOutputStack| |medialSet| + |linearAssociatedLog| |mainVariable?| |max| |extensionDegree| |s14abf| + |iidsum| |entries| |diagonal?| |lieAdmissible?| |integerIfCan| + |showFortranOutputStack| |parts| |mapBivariate| |eulerPhi| + |univariate?| * |algDsolve| |quotedOperators| |gbasis| |sinhcosh| + |binary| |scanOneDimSubspaces| |radicalEigenvalues| + |expandTrigProducts| |generalTwoFactor| |splitDenominator| + |squareFreePolynomial| |diff| |cAsech| |laurentRep| |singular?| + |usingTable?| |properties| |singularitiesOf| |leftDiscriminant| + |optimize| |critM| |randomR| |getProperties| |leftLcm| + |genericLeftNorm| |normalForm| |isobaric?| |charthRoot| |translate| + |safetyMargin| |getDatabase| |mapDown!| |maximumExponent| = |trigs| + |pmComplexintegrate| |swap!| |squareTop| |frst| |setOfMinN| |ord| + |f02fjf| |print| |finiteBasis| |elements| |principalAncestors| + |makingStats?| |s17dhf| |parametersOf| |associative?| |acosIfCan| + |has?| |resolve| |redpps| |listLoops| |operation| + |genericRightMinimalPolynomial| FG2F < |enumerate| |hue| + |solveLinearlyOverQ| |overlap| |generic?| |asimpson| |leftQuotient| + |reseed| |selectSumOfSquaresRoutines| |varselect| > |OMconnOutDevice| + |leftRegularRepresentation| |headReduce| |open?| |multiplyExponents| + |baseRDEsys| |setCondition!| |appendPoint| |stoseInvertible?sqfreg| <= + |SturmHabichtSequence| |infix| |redPo| |fill!| |constantLeft| |s14baf| + |pdf2df| |cardinality| |nsqfree| |sechIfCan| |realEigenvalues| >= + |pmintegrate| |removeCosSq| |setErrorBound| |viewThetaDefault| + |setRow!| |rationalPower| |completeEval| |complex?| |argument| + |cycleRagits| |purelyAlgebraicLeadingMonomial?| |palgLODE| + |makeVariable| |powers| |rightExtendedGcd| |coercePreimagesImages| + |df2fi| |isConnected?| |nand| |create| |cosh2sech| |lookupFunction| + |halfExtendedResultant2| |stFunc1| |alphanumeric?| |retractable?| + |interpret| |prime| |semiResultantReduitEuclidean| |bandedHessian| + |moreAlgebraic?| |lazyGintegrate| + |virtualDegree| |rootSimp| |iilog| + |pquo| |rightRankPolynomial| |true| |Is| |nodeOf?| |exponents| + |extractIndex| |rightUnit| - |cn| |perfectSquare?| |makeCos| + |euclideanGroebner| |FormatRoman| |ScanFloatIgnoreSpaces| |mantissa| + |rewriteIdealWithQuasiMonicGenerators| |wholeRadix| |RittWuCompare| / + |shallowCopy| |rightRemainder| |pade| |Vectorise| |contours| + |safeCeiling| |rootsOf| |setleaves!| |exp1| |symbolIfCan| |stirling1| + |outputFloating| |resetBadValues| |removeSuperfluousQuasiComponents| + |oddlambert| |product| |category| |writable?| |bringDown| + |recoverAfterFail| |clip| |nil| |writeLine!| |updateStatus!| + |functorData| |clearTheFTable| |lastSubResultant| + |generalizedEigenvectors| |lineColorDefault| |factorial| |domain| + |relerror| |seriesToOutputForm| |coefChoose| |quasiComponent| + |linGenPos| |innerSolve| |buildSyntax| |package| |testDim| |coerceL| + |parametric?| |green| |rowEchelon| |block| |initTable!| |leadingIdeal| + |e04fdf| |shift| |hdmpToP| |radicalEigenvectors| |antiCommutative?| + |uniform01| |exprHasAlgebraicWeight| |integralDerivationMatrix| + |approximate| |subResultantChain| |prolateSpheroidal| |atrapezoidal| + |linearAssociatedExp| |groebner| |removeZero| |shiftRight| + |trace2PowMod| |extendedSubResultantGcd| |complex| |e02dcf| + |sylvesterSequence| |extendedint| |varList| |rational?| |coordinate| + |numberOfCycles| |irDef| |linearDependence| |rightMult| |messagePrint| + |basisOfMiddleNucleus| |every?| |radicalOfLeftTraceForm| |delta| + |quotientByP| |show| |doubleRank| |smith| |eq?| |cAcos| |rightGcd| + |tan2cot| |property| |nextsousResultant2| |rst| |LyndonBasis| + |exponential| |trigs2explogs| |normFactors| |setLabelValue| |hspace| + |cSinh| |exQuo| |supDimElseRittWu?| |integralLastSubResultant| + |topPredicate| |euler| |trace| |copy!| |split| + |inverseIntegralMatrixAtInfinity| |nextLatticePermutation| |s21bcf| + |imagE| |viewDeltaYDefault| |decrease| |sh| |retract| |reduced?| + |leader| |pomopo!| |curryLeft| |nativeModuleExtension| |collectUnder| + |units| |space| |basisOfLeftNucloid| |typeForm| + |fortranCarriageReturn| |torsion?| |linSolve| |e01saf| |numberOfHues| + |gcdPrimitive| |readBytes!| |adaptive3D?| |doublyTransitive?| + |external?| |f02adf| |semiSubResultantGcdEuclidean2| |d01ajf| |s21bdf| + |numberOfOperations| |unitNormalize| |f04atf| |toseInvertible?| + |s17ajf| |formula| |symmetricProduct| |factorFraction| |clipSurface| + |realRoots| |zCoord| |explicitlyEmpty?| |monic?| |rombergo| + |OMputVariable| |lambda| |bracket| |e02gaf| + |lastSubResultantEuclidean| |ODESolve| |composites| |irreducible?| + |lexTriangular| |encodingDirectory| |componentUpperBound| |mpsode| + |checkForZero| |setref| |trim| |credPol| |toseLastSubResultant| + |nonLinearPart| |sub| |powern| |code| |f01rdf| |mapGen| |printHeader| + |variable?| |getVariableOrder| |ellipticCylindrical| + |monomialIntegrate| |brillhartIrreducible?| |c06fpf| + |firstUncouplingMatrix| |csc2sin| |disjunction| |ratPoly| |ricDsolve| + |normalizeIfCan| |nrows| |constantRight| |npcoef| |datalist| + |findBinding| |mainExpression| |ScanFloatIgnoreSpacesIfCan| |coleman| + |rightDiscriminant| |irreducibleFactor| |OMclose| |swapRows!| |ncols| + |printStats!| |unitVector| |f2df| |extractPoint| |iicos| |hasHi| + |setfirst!| |plus| |rootRadius| |linearPart| |realEigenvectors| + |currentCategoryFrame| |airyBi| |mainForm| |transcendenceDegree| + |infinite?| |conjunction| |is?| |associates?| |power!| + |expressIdealMember| |dihedral| |addMatchRestricted| |dom| + |musserTrials| |scripted?| |iiperm| |iipow| |mapUnivariate| + |divisorCascade| |heapSort| |stiffnessAndStabilityOfODEIF| + |compiledFunction| |prologue| |sum| |padicallyExpand| |composite| + |rightRegularRepresentation| |OMputApp| |removeSinhSq| |polynomial| + |iisec| |fracPart| |exponent| |d02ejf| |OMgetEndApp| |point| + |fibonacci| |inGroundField?| |extractTop!| |useSingleFactorBound?| + |tanhIfCan| |times| |harmonic| |setProperties| |hasTopPredicate?| + |nullary?| |wholeRagits| |createPrimitiveNormalPoly| |lifting1| + |OMgetString| |solveLinearPolynomialEquationByRecursion| |symbolTable| + |coshIfCan| |repeatUntilLoop| |lazyIrreducibleFactors| + |integralBasisAtInfinity| |clearFortranOutputStack| |s17adf| |nthRoot| + |byteBuffer| |useNagFunctions| |top| |stopMusserTrials| |prem| + |trapezoidal| |minrank| |hasSolution?| |lp| + |exprHasLogarithmicWeights| |systemCommand| |qfactor| + |incrementKthElement| |adjoint| |degree| |series| |coefficient| + |unknownEndian| |createLowComplexityTable| |pushFortranOutputStack| + |e01baf| |e02ajf| |OMgetEndAtp| |title| |comp| |subTriSet?| + |dualSignature| |badValues| |copies| |makeFR| |acscIfCan| + |rectangularMatrix| |popFortranOutputStack| |showTheFTable| |f02bjf| + |pile| |fprindINFO| |OMserve| F2FG |node| |monom| |ksec| |options| + |iitan| |resultantReduit| |iisqrt2| |wholePart| |tracePowMod| + |continue| |PDESolve| |sort| |OMParseError?| |roman| |outputAsFortran| + LODO2FUN |gramschmidt| |normal| |negative?| |singleFactorBound| + |rationalIfCan| |acschIfCan| |realSolve| |e| |algint| |dimension| + |outputAsTex| |hitherPlane| |factorAndSplit| |prinpolINFO| + |normalElement| |bothWays| |SturmHabicht| |min| + |lastSubResultantElseSplit| |list| |arity| |subSet| + |rightMinimalPolynomial| |setVariableOrder| |predicates| |common| + |string| |sin2csc| |s17ahf| |hdmpToDmp| |numberOfDivisors| |sech2cosh| + |car| |rootSplit| |digamma| |cap| |sec2cos| |characteristicSet| + |asinhIfCan| |resultantEuclideannaif| |pushNewContour| |operators| + |neglist| |random| |cdr| |totolex| |slex| |dAndcExp| |rubiksGroup| + |vconcat| |convergents| |binaryTournament| |moebius| |shufflein| + |diagonals| |setDifference| |rootNormalize| |e02bef| |lfextendedint| + |permutationRepresentation| |ideal| |OMgetVariable| |mathieu11| + |mightHaveRoots| |extendedEuclidean| |primintfldpoly| + |setIntersection| |upperCase!| |ode2| |maxIndex| |OMsetEncoding| + |conjug| |sequences| |constantOperator| |comparison| |knownInfBasis| + |createThreeSpace| |setUnion| |anfactor| |getCurve| + |selectAndPolynomials| |showArrayValues| + |halfExtendedSubResultantGcd1| |GospersMethod| |multinomial| + |prindINFO| |mainKernel| |fortranDoubleComplex| |apply| |c06gcf| + |atoms| |orbits| |triangularSystems| |localAbs| |decomposeFunc| + |var1Steps| |laguerreL| |expextendedint| |voidMode| + |semiIndiceSubResultantEuclidean| |cot2tan| |universe| |isAnd| + |addPoint2| |zero| |setvalue!| |node?| |crest| |factorGroebnerBasis| + |cCoth| |size| |createNormalElement| |complexForm| |systemSizeIF| + |splitConstant| |distdfact| |numeric| |PollardSmallFactor| |aQuartic| + |factorSquareFreePolynomial| |width| |cyclePartition| |sqfree| |droot| + |rowEch| |simpleBounds?| |factorByRecursion| |minimumExponent| + |radical| |And| |cartesian| |monomRDE| |viewZoomDefault| + |leftRemainder| |equation| |extend| |genericRightNorm| |HenselLift| + |precision| |OMreceive| |csubst| |vector| |tValues| |Or| + |algebraicDecompose| |decreasePrecision| |discriminant| |ramified?| + |fullPartialFraction| |cup| |first| |OMsupportsSymbol?| |chiSquare1| + |leftOne| |differentiate| |besselJ| |Not| |setTex!| |push| |c02aff| + |ptFunc| |minset| |rest| |sinIfCan| |tab1| |pushdterm| + |internalLastSubResultant| |associatorDependence| |exprToGenUPS| + |f2st| |chvar| |distance| |pointColor| |BasicMethod| |substitute| + |bombieriNorm| |inputBinaryFile| |seriesSolve| |e04ucf| |isMult| + |viewPosDefault| |makeSketch| |refine| |totalDifferential| |high| + |lyndonIfCan| |hash| |removeDuplicates| |subMatrix| |subNode?| |reify| + |completeSmith| |dark| |integral?| |generalLambert| |leadingTerm| + |critMonD1| |count| |Gamma| |exprToUPS| |linearPolynomials| + |cycleTail| |mr| |algebraicOf| |f01maf| |elColumn2!| |s19adf| + |rewriteIdealWithRemainder| |super| |name| |rightLcm| |cycle| + |optional| |janko2| |internalDecompose| |d03edf| |irreducibleFactors| + |cothIfCan| |merge!| |llprop| |OMgetObject| |lift| |body| |badNum| + |rCoord| |plus!| |restorePrecision| |leftExtendedGcd| + |symmetricTensors| |conditionsForIdempotents| |inc| + |getMultiplicationTable| |createPrimitivePoly| |scalarTypeOf| |recur| + |reduce| |selectOrPolynomials| |solveRetract| |rootProduct| |getMatch| + |e02daf| |commonDenominator| |isPlus| |iomode| |flexibleArray| + |rationalPoints| |reopen!| |symmetricDifference| |showTheSymbolTable| + |computeCycleEntry| |pastel| |antiCommutator| |readIfCan!| + |subResultantGcdEuclidean| |leftPower| |cTan| |computeBasis| + |integralCoordinates| |factorPolynomial| |complement| |gcdcofactprim| + |partialDenominators| |karatsubaDivide| |complexSolve| |mdeg| + |primPartElseUnitCanonical| |bubbleSort!| |quasiAlgebraicSet| + |invertibleElseSplit?| |sumOfSquares| |sturmSequence| |size?| + |rangeIsFinite| |lowerPolynomial| |flagFactor| |primeFrobenius| + |nextItem| |lyndon| |particularSolution| |lfintegrate| |leftRecip| + |minordet| |normInvertible?| SEGMENT |basisOfLeftNucleus| |error| + |internalIntegrate0| |zeroDimPrimary?| |completeEchelonBasis| |port| + |deepestInitial| |linearlyDependentOverZ?| |redPol| |any| + |antisymmetricTensors| |rationalFunction| |insertTop!| + |indiceSubResultantEuclidean| |assert| |compound?| |tower| + |associator| |truncate| |applyRules| |palgextint| + |complexEigenvectors| |axes| |diagonal| |parent| |nthExponent| + |ratDenom| |outputFixed| |collectUpper| |t| |numberOfChildren| + |cyclic?| |LyndonCoordinates| |lexico| |satisfy?| |tanAn| |denomLODE| + |constantOpIfCan| |physicalLength| |tan2trig| |denominators| + |bindings| |log2| |c06gsf| |loadNativeModule| |stoseLastSubResultant| + |cubic| |squareFreePart| |OMputBind| |numberOfNormalPoly| |even?| + |pascalTriangle| |prime?| |sortConstraints| |OMputInteger| + |primextendedint| |areEquivalent?| |coerceP| |iiGamma| |orbit| + |readLine!| |pointColorPalette| |constant| |radicalSolve| |makeSUP| + |toseSquareFreePart| |normalDeriv| |complexNumeric| |setleft!| + |e02baf| |f07fef| |color| |connect| |directSum| |extractBottom!| + |maxPoints3D| |acoshIfCan| |byte| |airyAi| |fortranComplex| + |predicate| |categoryMode| |presuper| |Ci| |isOr| |sample| + |stopTableGcd!| |unexpand| |selectPDERoutines| + |stiffnessAndStabilityFactor| |kernels| |primitiveElement| |tanNa| + |e01bff| |inverseLaplace| |c06fuf| |createZechTable| |s13acf| + |dmp2rfi| |operator| |cons| |fmecg| |updatD| |goodnessOfFit| + |trueEqual| |rightTrace| |binomial| |dmpToHdmp| |normalizeAtInfinity| + |screenResolution| |cyclicSubmodule| |btwFact| |critBonD| + |setsubMatrix!| |step| |polygon| |pureLex| |nullSpace| |bit?| + |univariate| |showAllElements| |pseudoRemainder| UTS2UP |alternative?| + |leftGcd| |hasPredicate?| |addPoint| |comment| |solveInField| |qelt| + |deref| |shuffle| |midpoints| |OMlistSymbols| |setEmpty!| |besselI| + |simplifyPower| |removeDuplicates!| |qsetelt| |euclideanSize| + |bitCoef| |tRange| |squareMatrix| |leftTraceMatrix| |pdct| |linear| + |capacity| |acotIfCan| |replace| |coerce| |unparse| |xRange| |factor| + |evenInfiniteProduct| |differentialVariables| |baseRDE| |sdf2lst| + |setFieldInfo| |int| |extension| |perfectNthPower?| |curve?| + |construct| |hex| |elRow2!| |yRange| |sqrt| |definingInequation| + |d01apf| |source| |linears| |gethi| + |solveLinearPolynomialEquationByFractions| |selectODEIVPRoutines| + |leftMinimalPolynomial| |UP2ifCan| |zRange| |parameters| |real| + |showIntensityFunctions| |superscript| |increasePrecision| |resize| + |unmakeSUP| |oddintegers| |e04mbf| |coerceListOfPairs| |pdf2ef| |map!| + |cRationalPower| |imag| |s17dgf| |OMconnInDevice| |degreeSubResultant| + |closedCurve?| |degreePartition| |OMreadFile| |more?| |length| + |localReal?| |qsetelt!| |directProduct| |critB| |alphabetic?| |delay| + |totalLex| |argscript| |groebnerFactorize| |kovacic| |pseudoQuotient| + |scripts| |clearDenominator| |lfinfieldint| |c06gbf| |nary?| + |reverseLex| |overset?| |bezoutResultant| |OMgetError| |light| + |mkcomm| GF2FG |brace| |imagi| |target| |ptree| |rational| |string?| + |largest| |factor1| |geometric| |groebgen| |repSq| |laplacian| + |destruct| |solve| |OMUnknownSymbol?| |delete!| |component| + |socf2socdf| |radPoly| |subQuasiComponent?| |shallowExpand| + |completeHensel| |legendre| |OMreadStr| |polyRicDE| |abelianGroup| + |conjugate| |kind| |logical?| |ranges| |extendedIntegrate| + |putProperties| |multMonom| |removeRedundantFactorsInContents| + |tubePointsDefault| |mainPrimitivePart| |taylorIfCan| |op| + |denomRicDE| |linkToFortran| |iFTable| |monicModulo| |expPot| + |eigenvector| |lazyResidueClass| |rootPower| |integralMatrix| + |unprotectedRemoveRedundantFactors| |internalIntegrate| + |completeHermite| |direction| |complexRoots| |ravel| |cAsinh| + |monomial| |leftNorm| |writeInt8!| |rightNorm| |setTopPredicate| + |c05pbf| |extractClosed| |setProperty| |transpose| |algebraicSort| + |testModulus| |matrixConcat3D| |mapUnivariateIfCan| |dihedralGroup| + |mappingAst| |reshape| |arguments| |derivative| |Si| |inRadical?| + |setelt| |increase| |f02ajf| |countRealRootsMultiple| |outputForm| + |zeroDimPrime?| |polygamma| |mainVariables| |f01brf| |symFunc| + |fractRadix| |whatInfinity| |listYoungTableaus| |points| + |commaSeparate| |hostPlatform| |setAttributeButtonStep| |jacobian| + |rdHack1| |copy| |rur| |lazyVariations| + |rewriteSetByReducingWithParticularGenerators| |generalSqFr| + |inrootof| |noLinearFactor?| |union| |polygon?| |palgintegrate| + |HermiteIntegrate| |pointColorDefault| |logGamma| |zeroMatrix| + |printCode| |rank| |compose| |simplifyExp| |resultantReduitEuclidean| + |torsionIfCan| |putGraph| |upperCase?| |bipolar| |factorset| |s18adf| + |multiplyCoefficients| |divideIfCan| |update| |nor| |cAsin| + |autoCoerce| |closed?| |coth2tanh| |nullary| |double?| + |genericRightTrace| |inHallBasis?| |expintfldpoly| |pToDmp| |palgRDE0| + |numerator| |d01fcf| |trivialIdeal?| |escape| |makeSeries| + |nextNormalPoly| |pack!| |ef2edf| |LyndonWordsList1| + |stoseInternalLastSubResultant| |findConstructor| |constantKernel| + |genericPosition| |cAtanh| |eisensteinIrreducible?| |coerceImages| + |numericIfCan| |edf2ef| |decompose| |numberOfIrreduciblePoly| + |writeBytes!| |viewDefaults| |positiveSolve| |ParCond| |clearTable!| + |functionIsOscillatory| |branchPoint?| |numberOfPrimitivePoly| + |digit?| |reducedDiscriminant| |rightUnits| |lazyEvaluate| |c06ebf| + |resetNew| |removeConstantTerm| |position| |top!| |hexDigit| + |characteristicPolynomial| |OMputSymbol| |physicalLength!| + |symmetricPower| |c06eaf| |match?| |interpretString| |normalDenom| + |lists| |setMaxPoints3D| |euclideanNormalForm| |crushedSet| |pr2dmp| + |doubleResultant| |changeBase| |stripCommentsAndBlanks| + |numberOfComposites| |algebraic?| |prinshINFO| + |factorsOfCyclicGroupSize| |nthr| |identityMatrix| |psolve| + |polarCoordinates| |nextIrreduciblePoly| |extract!| + |cyclotomicDecomposition| |divisor| |polyRDE| |userOrdered?| |tanQ| + |sizeLess?| |collect| |isOp| |bumprow| |declare| |addmod| + |eigenvalues| |number?| |bits| |associatedSystem| |isEquiv| |cAcot| + |Lazard2| |sPol| |d01alf| |lepol| |find| |s19aaf| |insertMatch| + |ocf2ocdf| |genericLeftMinimalPolynomial| |intPatternMatch| |c06frf| + |ParCondList| |computePowers| |setButtonValue| |showTheIFTable| + |listexp| |saturate| |OMgetFloat| |weierstrass| + |numberOfComputedEntries| |superHeight| |arg1| |infiniteProduct| + |graeffe| |stosePrepareSubResAlgo| |maxColIndex| |minPoly| |unravel| + |OMencodingXML| |updatF| |fixedPoints| |polyPart| |arg2| + |lazyPremWithDefault| |sech| |addiag| |d02bbf| |latex| |biRank| + |freeOf?| |readInt16!| |removeRoughlyRedundantFactorsInPol| |morphism| + |generateIrredPoly| |csch| |constantCoefficientRicDE| |aromberg| + |iiasinh| |moduloP| |e02bdf| |close| |df2mf| |setMinPoints| |tablePow| + |conditions| |floor| |asinh| |leaf?| |makeViewport3D| |hermiteH| + |meatAxe| |shiftLeft| |fractionFreeGauss!| |makeViewport2D| + |changeNameToObjf| |match| |setMinPoints3D| |twist| |acosh| |f04asf| + |basisOfNucleus| |clipParametric| |stop| |readUInt8!| |rotate!| + |display| |presub| |bright| |generic| |e02def| |atanh| + |numberOfImproperPartitions| |changeVar| |toroidal| + |derivationCoordinates| |selectOptimizationRoutines| + |fortranLiteralLine| |imagk| |li| |curry| |f01mcf| |acoth| |wrregime| + |OMputError| |sin?| |palgLODE0| |infRittWu?| |colorFunction| + |getExplanations| |intermediateResultsIF| |df2ef| |asech| |ridHack1| + |head| |OMgetInteger| |bivariatePolynomials| |pointData| + |normalizedAssociate| |isTimes| |adaptive| |att2Result| |critMTonD1| + |epilogue| |integralRepresents| |equality| |closedCurve| + |sturmVariationsOf| |order| |matrixGcd| |OMopenString| + |squareFreePrim| |multiple| |B1solve| |imaginary| |input| |cCosh| + |mvar| |ldf2lst| |fglmIfCan| |applyQuote| |box| + |semiResultantEuclideannaif| |belong?| |resetVariableOrder| |edf2fi| + |drawComplexVectorField| |withPredicates| |library| |asechIfCan| + |iCompose| |screenResolution3D| |solveLinearPolynomialEquation| + |finiteBound| |quadraticNorm| |getOperands| |alternatingGroup| + |leadingExponent| |lllp| |submod| |lyndon?| |insertionSort!| + |sequence| |myDegree| |factorList| |optpair| |logIfCan| |stFuncN| + |key?| |dimensions| |createLowComplexityNormalBasis| |extractIfCan| + |normal?| |ruleset| |lllip| |setStatus| |expenseOfEvaluationIF| + |algintegrate| |iicsc| |palgRDE| |s17agf| |simpson| |typeList| + |xCoord| |iiacsch| |set| |internalZeroSetSplit| |internal?| + |printTypes| |viewSizeDefault| |bytes| |totalGroebner| |zerosOf| + |rk4qc| |test| |paraboloidal| |categoryFrame| |id| |e02agf| + |var2StepsDefault| |rootBound| |f02akf| |suchThat| |OMgetBVar| + |singularAtInfinity?| |nthCoef| |lazyPseudoQuotient| |getIdentifier| + |expintegrate| |aspFilename| |f04mcf| |reduceLODE| + |subResultantsChain| |simpsono| |outputGeneral| |gradient| |table| + |besselY| |scan| |iiasec| |validExponential| |stoseInvertibleSet| + |augment| |subst| |notelem| |insert| |new| |lagrange| |roughBasicSet| + |empty?| |nextNormalPrimitivePoly| |obj| |f01ref| |commutator| + |nthFactor| |resetAttributeButtons| |reducedContinuedFraction| + |fTable| |pair?| |eq| |minimize| |prefix| |primitive?| |cache| + |removeRoughlyRedundantFactorsInContents| |addMatch| |alternating| + |ip4Address| |continuedFraction| |iter| |rk4a| |divisors| |OMgetAttr| + |outputAsScript| |corrPoly| |cycleElt| |getConstant| |delete| + |signature| |multiple?| |c06fqf| |getOrder| |OMputBVar| |youngGroup| + |externalList| |exists?| |trailingCoefficient| |complexEigenvalues| + |goodPoint| |cAcoth| |modifyPointData| |nonQsign| |root| |normalized?| + |maxint| |eulerE| |internalInfRittWu?| |OMputEndBVar| |fractRagits| + |unrankImproperPartitions1| |nextPrimitiveNormalPoly| |objects| + |semiResultantEuclidean2| |column| |resultantnaif| |empty| + |generalizedContinuumHypothesisAssumed?| |dmpToP| |directory| |d03eef| + |base| |script| |infieldint| |argumentList!| |OMputEndObject| |tanSum| + |nlde| |infinityNorm| |mainVariable| |viewWriteDefault| |expIfCan| + |iidprod| |countRealRoots| |integralMatrixAtInfinity| |debug3D| + |f01qef| |invertible?| |collectQuasiMonic| |retractIfCan| + |nextsubResultant2| |subspace| |cyclicGroup| |rotate| |flatten| + |dimensionOfIrreducibleRepresentation| |factorSquareFreeByRecursion| + |exp| |hessian| |someBasis| |taylorQuoByVar| |bezoutMatrix| |kmax| + |tex| |oneDimensionalArray| |recolor| |left| |numer| + |oblateSpheroidal| |iiacsc| |optional?| |parabolicCylindrical| + |lazyIntegrate| |hMonic| |/\\| |rk4f| |padecf| |mesh| |right| + |outputList| |denom| |noncommutativeJordanAlgebra?| |determinant| + |contractSolve| |mainDefiningPolynomial| |quasiRegular?| + |shanksDiscLogAlgorithm| |leftAlternative?| |f07aef| |interval| |\\/| + |separateDegrees| |ListOfTerms| |htrigs| |roughEqualIdeals?| + |algebraicCoefficients?| |nil| |infinite| |arbitraryExponent| + |approximate| |complex| |shallowMutable| |canonical| |noetherian| + |central| |partiallyOrderedSet| |arbitraryPrecision| + |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| + |additiveValuation| |unitsKnown| |canonicalUnitNormal| + |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| + |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 377029a4..da7be047 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5377 +1,5382 @@ -(3227980 . 3479376233) -((-1317 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-2951 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3943 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-1242 (-569)) |#2|) 44)) (-2507 (($ $) 81)) (-3598 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-4036 (((-569) (-1 (-112) |#2|) $) 27) (((-569) |#2| $) NIL) (((-569) |#2| $ (-569)) 97)) (-2882 (((-649 |#2|) $) 13)) (-4198 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3834 (($ (-1 |#2| |#2|) $) 37)) (-1346 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4298 (($ |#2| $ (-569)) NIL) (($ $ $ (-569)) 67)) (-1574 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3208 (((-112) (-1 (-112) |#2|) $) 23)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL) (($ $ (-1242 (-569))) 66)) (-4328 (($ $ (-569)) 76) (($ $ (-1242 (-569))) 75)) (-3560 (((-776) (-1 (-112) |#2|) $) 34) (((-776) |#2| $) NIL)) (-2785 (($ $ $ (-569)) 69)) (-3962 (($ $) 68)) (-3809 (($ (-649 |#2|)) 73)) (-2443 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-649 $)) 86)) (-3796 (((-867) $) 93)) (-1980 (((-112) (-1 (-112) |#2|) $) 22)) (-2920 (((-112) $ $) 96)) (-2944 (((-112) $ $) 100))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -1317 ((-112) |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|))) (-19 |#2|) (-1225)) (T -18)) -NIL -(-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -1317 ((-112) |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-19 |#1|) (-140) (-1225)) (T -19)) -NIL -(-13 (-377 |t#1|) (-10 -7 (-6 -4448))) -(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T)) -((-2208 (((-3 $ "failed") $ $) 12)) (-3024 (($ $) NIL) (($ $ $) 9)) (* (($ (-927) $) NIL) (($ (-776) $) 16) (($ (-569) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -2208 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -2208 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24))) -(((-21) (-140)) (T -21)) -((-3024 (*1 *1 *1) (-4 *1 (-21))) (-3024 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-131) (-651 (-569)) (-10 -8 (-15 -3024 ($ $)) (-15 -3024 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1108) . T)) -((-4143 (((-112) $) 10)) (-4427 (($) 15)) (* (($ (-927) $) 14) (($ (-776) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 * (|#1| (-927) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16))) -(((-23) (-140)) (T -23)) -((-1804 (*1 *1) (-4 *1 (-23))) (-4427 (*1 *1) (-4 *1 (-23))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776))))) -(-13 (-25) (-10 -8 (-15 (-1804) ($) -3709) (-15 -4427 ($) -3709) (-15 -4143 ((-112) $)) (-15 * ($ (-776) $)))) -(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((* (($ (-927) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-927) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14))) -(((-25) (-140)) (T -25)) -((-3012 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927))))) -(-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ (-927) $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-3194 (((-649 $) (-958 $)) 32) (((-649 $) (-1181 $)) 16) (((-649 $) (-1181 $) (-1185)) 20)) (-2565 (($ (-958 $)) 30) (($ (-1181 $)) 11) (($ (-1181 $) (-1185)) 60)) (-1333 (((-649 $) (-958 $)) 33) (((-649 $) (-1181 $)) 18) (((-649 $) (-1181 $) (-1185)) 19)) (-2793 (($ (-958 $)) 31) (($ (-1181 $)) 13) (($ (-1181 $) (-1185)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|)))) -((-2417 (((-112) $ $) 7)) (-3194 (((-649 $) (-958 $)) 88) (((-649 $) (-1181 $)) 87) (((-649 $) (-1181 $) (-1185)) 86)) (-2565 (($ (-958 $)) 91) (($ (-1181 $)) 90) (($ (-1181 $) (-1185)) 89)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 100)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-1333 (((-649 $) (-958 $)) 94) (((-649 $) (-1181 $)) 93) (((-649 $) (-1181 $) (-1185)) 92)) (-2793 (($ (-958 $)) 97) (($ (-1181 $)) 96) (($ (-1181 $) (-1185)) 95)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 99)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75))) -(((-27) (-140)) (T -27)) -((-2793 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-2793 (*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27)))) (-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-1333 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) (-2565 (*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27)))) (-2565 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27)) (-5 *2 (-649 *1))))) -(-13 (-367) (-1010) (-10 -8 (-15 -2793 ($ (-958 $))) (-15 -2793 ($ (-1181 $))) (-15 -2793 ($ (-1181 $) (-1185))) (-15 -1333 ((-649 $) (-958 $))) (-15 -1333 ((-649 $) (-1181 $))) (-15 -1333 ((-649 $) (-1181 $) (-1185))) (-15 -2565 ($ (-958 $))) (-15 -2565 ($ (-1181 $))) (-15 -2565 ($ (-1181 $) (-1185))) (-15 -3194 ((-649 $) (-958 $))) (-15 -3194 ((-649 $) (-1181 $))) (-15 -3194 ((-649 $) (-1181 $) (-1185))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1010) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-3194 (((-649 $) (-958 $)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-1181 $) (-1185)) 55) (((-649 $) $) 22) (((-649 $) $ (-1185)) 46)) (-2565 (($ (-958 $)) NIL) (($ (-1181 $)) NIL) (($ (-1181 $) (-1185)) 57) (($ $) 20) (($ $ (-1185)) 40)) (-1333 (((-649 $) (-958 $)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-1181 $) (-1185)) 53) (((-649 $) $) 18) (((-649 $) $ (-1185)) 48)) (-2793 (($ (-958 $)) NIL) (($ (-1181 $)) NIL) (($ (-1181 $) (-1185)) NIL) (($ $) 15) (($ $ (-1185)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3194 ((-649 |#1|) |#1| (-1185))) (-15 -2565 (|#1| |#1| (-1185))) (-15 -3194 ((-649 |#1|) |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -1333 ((-649 |#1|) |#1| (-1185))) (-15 -2793 (|#1| |#1| (-1185))) (-15 -1333 ((-649 |#1|) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|)))) (-29 |#2|) (-561)) (T -28)) -NIL -(-10 -8 (-15 -3194 ((-649 |#1|) |#1| (-1185))) (-15 -2565 (|#1| |#1| (-1185))) (-15 -3194 ((-649 |#1|) |#1|)) (-15 -2565 (|#1| |#1|)) (-15 -1333 ((-649 |#1|) |#1| (-1185))) (-15 -2793 (|#1| |#1| (-1185))) (-15 -1333 ((-649 |#1|) |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -3194 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -3194 ((-649 |#1|) (-1181 |#1|))) (-15 -3194 ((-649 |#1|) (-958 |#1|))) (-15 -2565 (|#1| (-1181 |#1|) (-1185))) (-15 -2565 (|#1| (-1181 |#1|))) (-15 -2565 (|#1| (-958 |#1|))) (-15 -1333 ((-649 |#1|) (-1181 |#1|) (-1185))) (-15 -1333 ((-649 |#1|) (-1181 |#1|))) (-15 -1333 ((-649 |#1|) (-958 |#1|))) (-15 -2793 (|#1| (-1181 |#1|) (-1185))) (-15 -2793 (|#1| (-1181 |#1|))) (-15 -2793 (|#1| (-958 |#1|)))) -((-2417 (((-112) $ $) 7)) (-3194 (((-649 $) (-958 $)) 88) (((-649 $) (-1181 $)) 87) (((-649 $) (-1181 $) (-1185)) 86) (((-649 $) $) 134) (((-649 $) $ (-1185)) 132)) (-2565 (($ (-958 $)) 91) (($ (-1181 $)) 90) (($ (-1181 $) (-1185)) 89) (($ $) 135) (($ $ (-1185)) 133)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1185)) $) 203)) (-3767 (((-412 (-1181 $)) $ (-617 $)) 235 (|has| |#1| (-561)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-3663 (((-649 (-617 $)) $) 166)) (-2208 (((-3 $ "failed") $ $) 20)) (-4296 (($ $ (-649 (-617 $)) (-649 $)) 156) (($ $ (-649 (-297 $))) 155) (($ $ (-297 $)) 154)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 100)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-1333 (((-649 $) (-958 $)) 94) (((-649 $) (-1181 $)) 93) (((-649 $) (-1181 $) (-1185)) 92) (((-649 $) $) 138) (((-649 $) $ (-1185)) 136)) (-2793 (($ (-958 $)) 97) (($ (-1181 $)) 96) (($ (-1181 $) (-1185)) 95) (($ $) 139) (($ $ (-1185)) 137)) (-4381 (((-3 (-958 |#1|) "failed") $) 253 (|has| |#1| (-1057))) (((-3 (-412 (-958 |#1|)) "failed") $) 237 (|has| |#1| (-561))) (((-3 |#1| "failed") $) 199) (((-3 (-569) "failed") $) 196 (|has| |#1| (-1046 (-569)))) (((-3 (-1185) "failed") $) 190) (((-3 (-617 $) "failed") $) 141) (((-3 (-412 (-569)) "failed") $) 130 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 (((-958 |#1|) $) 252 (|has| |#1| (-1057))) (((-412 (-958 |#1|)) $) 236 (|has| |#1| (-561))) ((|#1| $) 198) (((-569) $) 197 (|has| |#1| (-1046 (-569)))) (((-1185) $) 189) (((-617 $) $) 140) (((-412 (-569)) $) 131 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-2368 (($ $ $) 61)) (-2957 (((-694 |#1|) (-694 $)) 243 (|has| |#1| (-1057))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 242 (|has| |#1| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 129 (-2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (((-694 (-569)) (-694 $)) 128 (-2776 (-1759 (|has| |#1| (-1057)) (|has| |#1| (-644 (-569)))) (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 195 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 194 (|has| |#1| (-892 (-569))))) (-2687 (($ (-649 $)) 160) (($ $) 159)) (-3810 (((-649 (-114)) $) 167)) (-3746 (((-114) (-114)) 168)) (-2349 (((-112) $) 35)) (-2719 (((-112) $) 188 (|has| $ (-1046 (-569))))) (-2177 (($ $) 220 (|has| |#1| (-1057)))) (-4399 (((-1133 |#1| (-617 $)) $) 219 (|has| |#1| (-1057)))) (-3742 (($ $ (-569)) 99)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2341 (((-1181 $) (-617 $)) 185 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 174)) (-2391 (((-3 (-617 $) "failed") $) 164)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3736 (((-649 (-617 $)) $) 165)) (-1354 (($ (-114) (-649 $)) 173) (($ (-114) $) 172)) (-4250 (((-3 (-649 $) "failed") $) 214 (|has| |#1| (-1120)))) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) 223 (|has| |#1| (-1057)))) (-2427 (((-3 (-649 $) "failed") $) 216 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) 222 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) 221 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) 215 (|has| |#1| (-1120)))) (-1825 (((-112) $ (-1185)) 171) (((-112) $ (-114)) 170)) (-1817 (($ $) 78)) (-1427 (((-776) $) 163)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 201)) (-1835 ((|#1| $) 202)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-1852 (((-112) $ (-1185)) 176) (((-112) $ $) 175)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-4024 (((-112) $) 187 (|has| $ (-1046 (-569))))) (-1725 (($ $ (-1185) (-776) (-1 $ $)) 227 (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ (-649 $))) 226 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 225 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) 224 (|has| |#1| (-1057))) (($ $ (-649 (-114)) (-649 $) (-1185)) 213 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1185)) 212 (|has| |#1| (-619 (-541)))) (($ $) 211 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185))) 210 (|has| |#1| (-619 (-541)))) (($ $ (-1185)) 209 (|has| |#1| (-619 (-541)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-649 $))) 183) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 182) (($ $ (-649 (-114)) (-649 (-1 $ $))) 181) (($ $ (-1185) (-1 $ $)) 180) (($ $ (-1185) (-1 $ (-649 $))) 179) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 178) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 177) (($ $ (-649 $) (-649 $)) 148) (($ $ $ $) 147) (($ $ (-297 $)) 146) (($ $ (-649 (-297 $))) 145) (($ $ (-649 (-617 $)) (-649 $)) 144) (($ $ (-617 $) $) 143)) (-2431 (((-776) $) 64)) (-1869 (($ (-114) (-649 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2190 (($ $ $) 162) (($ $) 161)) (-3517 (($ $ (-1185)) 251 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 250 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 249 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) 248 (|has| |#1| (-1057)))) (-3181 (($ $) 230 (|has| |#1| (-561)))) (-4412 (((-1133 |#1| (-617 $)) $) 229 (|has| |#1| (-561)))) (-4061 (($ $) 186 (|has| $ (-1057)))) (-1410 (((-541) $) 257 (|has| |#1| (-619 (-541)))) (($ (-423 $)) 228 (|has| |#1| (-561))) (((-898 (-383)) $) 193 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 192 (|has| |#1| (-619 (-898 (-569)))))) (-3476 (($ $ $) 256 (|has| |#1| (-478)))) (-2180 (($ $ $) 255 (|has| |#1| (-478)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-958 |#1|)) 254 (|has| |#1| (-1057))) (($ (-412 (-958 |#1|))) 238 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 234 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 233 (|has| |#1| (-561))) (($ (-412 |#1|)) 232 (|has| |#1| (-561))) (($ (-1133 |#1| (-617 $))) 218 (|has| |#1| (-1057))) (($ |#1|) 200) (($ (-1185)) 191) (($ (-617 $)) 142)) (-2239 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-4213 (($ (-649 $)) 158) (($ $) 157)) (-4052 (((-112) (-114)) 169)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-4215 (($ (-1185) (-649 $)) 208) (($ (-1185) $ $ $ $) 207) (($ (-1185) $ $ $) 206) (($ (-1185) $ $) 205) (($ (-1185) $) 204)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1185)) 247 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 246 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 245 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) 244 (|has| |#1| (-1057)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73) (($ (-1133 |#1| (-617 $)) (-1133 |#1| (-617 $))) 231 (|has| |#1| (-561)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 98)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-173))) (($ |#1| $) 239 (|has| |#1| (-173))))) -(((-29 |#1|) (-140) (-561)) (T -29)) -((-2793 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-1333 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4)))) (-2565 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) (-3194 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) (-2565 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) (-3194 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -2793 ($ $)) (-15 -1333 ((-649 $) $)) (-15 -2793 ($ $ (-1185))) (-15 -1333 ((-649 $) $ (-1185))) (-15 -2565 ($ $)) (-15 -3194 ((-649 $) $)) (-15 -2565 ($ $ (-1185))) (-15 -3194 ((-649 $) $ (-1185))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) . T) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1057)) ((-621 #4=(-1185)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) . T) ((-293) . T) ((-310) . T) ((-312 $) . T) ((-305) . T) ((-367) . T) ((-381 |#1|) |has| |#1| (-1057)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-435 |#1|) . T) ((-457) . T) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) . T) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) ((-644 |#1|) |has| |#1| (-1057)) ((-722 #0#) . T) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) . T) ((-731) . T) ((-906 (-1185)) |has| |#1| (-1057)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) . T) ((-1010) . T) ((-1046 (-412 (-569))) -2776 (|has| |#1| (-1046 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) ((-1046 #1#) |has| |#1| (-561)) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #2#) . T) ((-1046 #3#) |has| |#1| (-1057)) ((-1046 #4#) . T) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) |has| |#1| (-173)) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) |has| |#1| (-173)) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1225) . T) ((-1229) . T)) -((-3812 (((-1102 (-226)) $) NIL)) (-3798 (((-1102 (-226)) $) NIL)) (-3442 (($ $ (-226)) 164)) (-4341 (($ (-958 (-569)) (-1185) (-1185) (-1102 (-412 (-569))) (-1102 (-412 (-569)))) 104)) (-4417 (((-649 (-649 (-949 (-226)))) $) 180)) (-3796 (((-867) $) 194))) -(((-30) (-13 (-961) (-10 -8 (-15 -4341 ($ (-958 (-569)) (-1185) (-1185) (-1102 (-412 (-569))) (-1102 (-412 (-569))))) (-15 -3442 ($ $ (-226)))))) (T -30)) -((-4341 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1185)) (-5 *4 (-1102 (-412 (-569)))) (-5 *1 (-30)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30))))) -(-13 (-961) (-10 -8 (-15 -4341 ($ (-958 (-569)) (-1185) (-1185) (-1102 (-412 (-569))) (-1102 (-412 (-569))))) (-15 -3442 ($ $ (-226))))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 11)) (-1520 (((-112) $ $) NIL)) (-4363 (((-1143) $) 9)) (-2920 (((-112) $ $) NIL))) -(((-31) (-13 (-1091) (-10 -8 (-15 -4363 ((-1143) $)) (-15 -3586 ((-1143) $))))) (T -31)) -((-4363 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31))))) -(-13 (-1091) (-10 -8 (-15 -4363 ((-1143) $)) (-15 -3586 ((-1143) $)))) -((-2793 ((|#2| (-1181 |#2|) (-1185)) 41)) (-3746 (((-114) (-114)) 55)) (-2341 (((-1181 |#2|) (-617 |#2|)) 149 (|has| |#1| (-1046 (-569))))) (-2019 ((|#2| |#1| (-569)) 137 (|has| |#1| (-1046 (-569))))) (-1780 ((|#2| (-1181 |#2|) |#2|) 29)) (-3325 (((-867) (-649 |#2|)) 86)) (-4061 ((|#2| |#2|) 144 (|has| |#1| (-1046 (-569))))) (-4052 (((-112) (-114)) 17)) (** ((|#2| |#2| (-412 (-569))) 103 (|has| |#1| (-1046 (-569)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| (-1181 |#2|) (-1185))) (-15 -3746 ((-114) (-114))) (-15 -4052 ((-112) (-114))) (-15 -1780 (|#2| (-1181 |#2|) |#2|)) (-15 -3325 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1046 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -2341 ((-1181 |#2|) (-617 |#2|))) (-15 -4061 (|#2| |#2|)) (-15 -2019 (|#2| |#1| (-569)))) |%noBranch|)) (-561) (-435 |#1|)) (T -32)) -((-2019 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1046 *4)) (-4 *3 (-561)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-1046 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1046 (-569))) (-4 *4 (-561)) (-5 *2 (-1181 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1046 (-569))) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561)) (-5 *2 (-867)) (-5 *1 (-32 *4 *5)))) (-1780 (*1 *2 *3 *2) (-12 (-5 *3 (-1181 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-32 *4 *2)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *2)) (-5 *4 (-1185)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-561))))) -(-10 -7 (-15 -2793 (|#2| (-1181 |#2|) (-1185))) (-15 -3746 ((-114) (-114))) (-15 -4052 ((-112) (-114))) (-15 -1780 (|#2| (-1181 |#2|) |#2|)) (-15 -3325 ((-867) (-649 |#2|))) (IF (|has| |#1| (-1046 (-569))) (PROGN (-15 ** (|#2| |#2| (-412 (-569)))) (-15 -2341 ((-1181 |#2|) (-617 |#2|))) (-15 -4061 (|#2| |#2|)) (-15 -2019 (|#2| |#1| (-569)))) |%noBranch|)) -((-3914 (((-112) $ (-776)) 20)) (-4427 (($) 10)) (-2314 (((-112) $ (-776)) 19)) (-4254 (((-112) $ (-776)) 17)) (-3790 (((-112) $ $) 8)) (-3162 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -4427 (|#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3162 ((-112) |#1|)) (-15 -3790 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -4427 (|#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3162 ((-112) |#1|)) (-15 -3790 ((-112) |#1| |#1|))) -((-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2314 (((-112) $ (-776)) 9)) (-4254 (((-112) $ (-776)) 10)) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3962 (($ $) 13)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-34) (-140)) (T -34)) -((-3790 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3962 (*1 *1 *1) (-4 *1 (-34))) (-3635 (*1 *1) (-4 *1 (-34))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4254 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-2314 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-3914 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) (-4427 (*1 *1) (-4 *1 (-34))) (-2428 (*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-34)) (-5 *2 (-776))))) -(-13 (-1225) (-10 -8 (-15 -3790 ((-112) $ $)) (-15 -3962 ($ $)) (-15 -3635 ($)) (-15 -3162 ((-112) $)) (-15 -4254 ((-112) $ (-776))) (-15 -2314 ((-112) $ (-776))) (-15 -3914 ((-112) $ (-776))) (-15 -4427 ($) -3709) (IF (|has| $ (-6 -4447)) (-15 -2428 ((-776) $)) |%noBranch|))) -(((-1225) . T)) -((-4161 (($ $) 11)) (-4140 (($ $) 10)) (-4183 (($ $) 9)) (-1503 (($ $) 8)) (-4175 (($ $) 7)) (-4151 (($ $) 6))) -(((-35) (-140)) (T -35)) -((-4161 (*1 *1 *1) (-4 *1 (-35))) (-4140 (*1 *1 *1) (-4 *1 (-35))) (-4183 (*1 *1 *1) (-4 *1 (-35))) (-1503 (*1 *1 *1) (-4 *1 (-35))) (-4175 (*1 *1 *1) (-4 *1 (-35))) (-4151 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -4151 ($ $)) (-15 -4175 ($ $)) (-15 -1503 ($ $)) (-15 -4183 ($ $)) (-15 -4140 ($ $)) (-15 -4161 ($ $)))) -((-2417 (((-112) $ $) 19 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2188 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 126)) (-2563 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 149)) (-1568 (($ $) 147)) (-4287 (($) 73) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 72)) (-2002 (((-1280) $ |#1| |#1|) 100 (|has| $ (-6 -4448))) (((-1280) $ (-569) (-569)) 179 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 160 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2951 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 201 (|has| $ (-6 -4448))) (($ $) 200 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3914 (((-112) $ (-776)) 8)) (-2052 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 135 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 156 (|has| $ (-6 -4448)))) (-1344 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 158 (|has| $ (-6 -4448)))) (-2747 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 154 (|has| $ (-6 -4448)))) (-3943 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 190 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-1242 (-569)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 161 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 159 (|has| $ (-6 -4448))) (($ $ "rest" $) 157 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 155 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 134 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 133 (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 46 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 217)) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 56 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 176 (|has| $ (-6 -4447)))) (-2550 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 148)) (-2359 (((-3 |#2| "failed") |#1| $) 62)) (-4427 (($) 7 T CONST)) (-2507 (($ $) 202 (|has| $ (-6 -4448)))) (-2251 (($ $) 212)) (-3525 (($ $ (-776)) 143) (($ $) 141)) (-2017 (($ $) 215 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3550 (($ $) 59 (-2776 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))) (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 47 (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 221) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 216 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 55 (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 175 (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 57 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 54 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 53 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 177 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 174 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 173 (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 191 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 89) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 189)) (-2199 (((-112) $) 193)) (-4036 (((-569) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 209) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 208 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 207 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 31 (|has| $ (-6 -4447))) (((-649 |#2|) $) 80 (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 115 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 124)) (-1534 (((-112) $ $) 132 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-4300 (($ (-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 170)) (-2314 (((-112) $ (-776)) 9)) (-4426 ((|#1| $) 97 (|has| |#1| (-855))) (((-569) $) 181 (|has| (-569) (-855)))) (-3380 (($ $ $) 199 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2292 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-4198 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 30 (|has| $ (-6 -4447))) (((-649 |#2|) $) 81 (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 116 (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-3256 ((|#1| $) 96 (|has| |#1| (-855))) (((-569) $) 182 (|has| (-569) (-855)))) (-2839 (($ $ $) 198 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 35 (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4448))) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 111 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 110)) (-3382 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 226)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 129)) (-1887 (((-112) $) 125)) (-3435 (((-1167) $) 22 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1724 (($ $ (-776)) 146) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 144)) (-2795 (((-649 |#1|) $) 64)) (-3804 (((-112) |#1| $) 65)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 40)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 41) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 220) (($ $ $ (-569)) 219)) (-4298 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 163) (($ $ $ (-569)) 162)) (-1696 (((-649 |#1|) $) 94) (((-649 (-569)) $) 184)) (-1414 (((-112) |#1| $) 93) (((-112) (-569) $) 185)) (-3547 (((-1128) $) 21 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3513 ((|#2| $) 98 (|has| |#1| (-855))) (($ $ (-776)) 140) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 138)) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 52) (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 172)) (-1682 (($ $ |#2|) 99 (|has| $ (-6 -4448))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 180 (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 42)) (-4038 (((-112) $) 192)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 33 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 113 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 27 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 26 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 25 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 24 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 122 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 121 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 120 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 119 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 183 (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-4199 (((-649 |#2|) $) 92) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 186)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 188) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) 187) (($ $ (-1242 (-569))) 166) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first") 139) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value") 127)) (-2602 (((-569) $ $) 130)) (-2434 (($) 50) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 49)) (-3301 (($ $ (-569)) 223) (($ $ (-1242 (-569))) 222)) (-4328 (($ $ (-569)) 165) (($ $ (-1242 (-569))) 164)) (-3966 (((-112) $) 128)) (-1641 (($ $) 152)) (-4142 (($ $) 153 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 151)) (-4322 (($ $) 150)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 32 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 114 (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) 203 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541)))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 51) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 171)) (-2866 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 225) (($ $ $) 224)) (-2443 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 169) (($ (-649 $)) 168) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 137) (($ $ $) 136)) (-3796 (((-867) $) 18 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))))) (-4001 (((-649 $) $) 123)) (-4280 (((-112) $ $) 131 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1520 (((-112) $ $) 23 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 43)) (-1733 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") |#1| $) 109)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 34 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 112 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 196 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2956 (((-112) $ $) 195 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2920 (((-112) $ $) 20 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2966 (((-112) $ $) 197 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2944 (((-112) $ $) 194 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-36 |#1| |#2|) (-140) (-1108) (-1108)) (T -36)) -((-1733 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| -2006 *3) (|:| -2216 *4)))))) -(-13 (-1201 |t#1| |t#2|) (-671 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|))) (-10 -8 (-15 -1733 ((-3 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-102) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855))) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))) ((-151 #1=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-619 (-541)) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 #2=(-569) #1#) . T) ((-289 |#1| |#2|) . T) ((-291 #2# #1#) . T) ((-291 |#1| |#2|) . T) ((-312 #1#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-285 #1#) . T) ((-377 #1#) . T) ((-494 #1#) . T) ((-494 |#2|) . T) ((-609 #2# #1#) . T) ((-609 |#1| |#2|) . T) ((-519 #1# #1#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-615 |#1| |#2|) . T) ((-656 #1#) . T) ((-671 #1#) . T) ((-855) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)) ((-1018 #1#) . T) ((-1108) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855))) ((-1157 #1#) . T) ((-1201 |#1| |#2|) . T) ((-1225) . T) ((-1263 #1#) . T)) -((-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-38 |#2|) (-173)) (T -37)) -NIL -(-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-38 |#1|) (-140) (-173)) (T -38)) -NIL -(-13 (-1057) (-722 |t#1|) (-621 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2241 (((-423 |#1|) |#1|) 41)) (-3800 (((-423 |#1|) |#1|) 30) (((-423 |#1|) |#1| (-649 (-48))) 33)) (-3538 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2241 ((-423 |#1|) |#1|)) (-15 -3538 ((-112) |#1|))) (-1251 (-48))) (T -39)) -((-3538 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) (-2241 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48)))))) -(-10 -7 (-15 -3800 ((-423 |#1|) |#1| (-649 (-48)))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2241 ((-423 |#1|) |#1|)) (-15 -3538 ((-112) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2877 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-4355 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3039 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1547 (((-694 (-412 |#2|)) (-1275 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3140 (((-412 |#2|) $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3764 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2227 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3473 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-2123 (((-112)) NIL)) (-3317 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-2247 (($ (-1275 (-412 |#2|)) (-1275 $)) NIL) (($ (-1275 (-412 |#2|))) 61) (($ (-1275 |#2|) |#2|) 134)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2368 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1833 (((-694 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-412 |#2|))) (|:| |vec| (-1275 (-412 |#2|)))) (-694 $) (-1275 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-2980 (((-1275 $) (-1275 $)) NIL)) (-3598 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-2603 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-1523 (((-112) |#1| |#1|) NIL)) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| (-412 |#2|) (-372)))) (-2303 (((-112)) NIL)) (-3811 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2379 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-2642 (($ $) NIL)) (-1616 (($) NIL (|has| (-412 |#2|) (-353)))) (-2807 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-3701 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-1473 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1466 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2349 (((-112) $) NIL)) (-3045 (((-776)) NIL)) (-3751 (((-1275 $) (-1275 $)) 109)) (-3829 (((-412 |#2|) $) NIL)) (-1388 (((-649 (-958 |#1|)) (-1185)) NIL (|has| |#1| (-367)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3859 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2731 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3585 ((|#3| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3435 (((-1167) $) NIL)) (-3486 (((-1280) (-776)) 87)) (-1334 (((-694 (-412 |#2|))) 56)) (-2979 (((-694 (-412 |#2|))) 49)) (-1817 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4397 (($ (-1275 |#2|) |#2|) 135)) (-4272 (((-694 (-412 |#2|))) 50)) (-4247 (((-694 (-412 |#2|))) 48)) (-2841 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-4277 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 68)) (-3963 (((-1275 $)) 47)) (-4002 (((-1275 $)) 46)) (-2173 (((-112) $) NIL)) (-3557 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2307 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-3015 (((-3 |#2| "failed")) NIL)) (-3547 (((-1128) $) NIL)) (-3926 (((-776)) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| (-412 |#2|) (-367)))) (-1870 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3800 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2431 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1869 ((|#1| $ |#1| |#1|) NIL)) (-2893 (((-3 |#2| "failed")) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3059 (((-412 |#2|) (-1275 $)) NIL) (((-412 |#2|)) 44)) (-2166 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3517 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2594 (((-694 (-412 |#2|)) (-1275 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-4061 ((|#3|) 55)) (-4234 (($) NIL (|has| (-412 |#2|) (-353)))) (-2415 (((-1275 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) (-1275 $) (-1275 $)) NIL) (((-1275 (-412 |#2|)) $) 62) (((-694 (-412 |#2|)) (-1275 $)) 110)) (-1410 (((-1275 (-412 |#2|)) $) NIL) (($ (-1275 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-3562 (((-1275 $) (-1275 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| (-412 |#2|) (-1046 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2239 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-1886 ((|#3| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-2784 (((-112)) 42)) (-4050 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-2664 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4279 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1954 (((-112)) NIL)) (-1804 (($) 17 T CONST)) (-1815 (($) 27 T CONST)) (-2832 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -3486 ((-1280) (-776))))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) |#3|) (T -40)) -((-3486 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *2 (-1280)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1251 (-412 *5))) (-14 *7 *6)))) -(-13 (-346 |#1| |#2| |#3|) (-10 -7 (-15 -3486 ((-1280) (-776))))) -((-1961 ((|#2| |#2|) 47)) (-1479 ((|#2| |#2|) 139 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-3023 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-1931 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-3830 ((|#2| (-114) |#2| (-776)) 135 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-457) (-1046 (-569))))))) (-3376 (((-1181 |#2|) |#2|) 44)) (-1728 ((|#2| |#2| (-649 (-617 |#2|))) 18) ((|#2| |#2| (-649 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1728 (|#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| (-649 |#2|))) (-15 -1728 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -3376 ((-1181 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1046 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1931 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -3830 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|)) (-561) (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 |#1| (-617 $)) $)) (-15 -4412 ((-1133 |#1| (-617 $)) $)) (-15 -3796 ($ (-1133 |#1| (-617 $))))))) (T -41)) -((-3830 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1046 (-569)))) (-4 *5 (-561)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *5 (-617 $)) $)) (-15 -4412 ((-1133 *5 (-617 $)) $)) (-15 -3796 ($ (-1133 *5 (-617 $))))))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-3023 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-1931 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-3376 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1181 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) (-15 -4412 ((-1133 *4 (-617 $)) $)) (-15 -3796 ($ (-1133 *4 (-617 $))))))))) (-1728 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-617 *2))) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) (-15 -4412 ((-1133 *4 (-617 $)) $)) (-15 -3796 ($ (-1133 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1728 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) (-15 -4412 ((-1133 *4 (-617 $)) $)) (-15 -3796 ($ (-1133 *4 (-617 $))))))) (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) (-1728 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-1728 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $))))))))) (-1961 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-367) (-305) (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) (-15 -4412 ((-1133 *3 (-617 $)) $)) (-15 -3796 ($ (-1133 *3 (-617 $)))))))))) -(-10 -7 (-15 -1961 (|#2| |#2|)) (-15 -1728 (|#2| |#2|)) (-15 -1728 (|#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| (-649 |#2|))) (-15 -1728 (|#2| |#2| (-649 (-617 |#2|)))) (-15 -3376 ((-1181 |#2|) |#2|)) (IF (|has| |#1| (-13 (-457) (-1046 (-569)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -1931 (|#2| |#2|)) (-15 -3023 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -3830 (|#2| (-114) |#2| (-776)))) |%noBranch|) |%noBranch|)) -((-3800 (((-423 (-1181 |#3|)) (-1181 |#3|) (-649 (-48))) 23) (((-423 |#3|) |#3| (-649 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3800 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3800 ((-423 (-1181 |#3|)) (-1181 |#3|) (-649 (-48))))) (-855) (-798) (-955 (-48) |#2| |#1|)) (T -42)) -((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5))))) -(-10 -7 (-15 -3800 ((-423 |#3|) |#3| (-649 (-48)))) (-15 -3800 ((-423 (-1181 |#3|)) (-1181 |#3|) (-649 (-48))))) -((-2416 (((-776) |#2|) 72)) (-2922 (((-776) |#2|) 76)) (-2049 (((-649 |#2|)) 39)) (-3025 (((-776) |#2|) 75)) (-1480 (((-776) |#2|) 71)) (-4016 (((-776) |#2|) 74)) (-4068 (((-649 (-694 |#1|))) 67)) (-2728 (((-649 |#2|)) 62)) (-1687 (((-649 |#2|) |#2|) 50)) (-3113 (((-649 |#2|)) 64)) (-1531 (((-649 |#2|)) 63)) (-4401 (((-649 (-694 |#1|))) 55)) (-3200 (((-649 |#2|)) 61)) (-2016 (((-649 |#2|) |#2|) 49)) (-3706 (((-649 |#2|)) 57)) (-2571 (((-649 (-694 |#1|))) 68)) (-2899 (((-649 |#2|)) 66)) (-2403 (((-1275 |#2|) (-1275 |#2|)) 101 (|has| |#1| (-310))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3025 ((-776) |#2|)) (-15 -2922 ((-776) |#2|)) (-15 -1480 ((-776) |#2|)) (-15 -2416 ((-776) |#2|)) (-15 -4016 ((-776) |#2|)) (-15 -3706 ((-649 |#2|))) (-15 -2016 ((-649 |#2|) |#2|)) (-15 -1687 ((-649 |#2|) |#2|)) (-15 -3200 ((-649 |#2|))) (-15 -2728 ((-649 |#2|))) (-15 -1531 ((-649 |#2|))) (-15 -3113 ((-649 |#2|))) (-15 -2899 ((-649 |#2|))) (-15 -4401 ((-649 (-694 |#1|)))) (-15 -4068 ((-649 (-694 |#1|)))) (-15 -2571 ((-649 (-694 |#1|)))) (-15 -2049 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -2403 ((-1275 |#2|) (-1275 |#2|))) |%noBranch|)) (-561) (-422 |#1|)) (T -43)) -((-2403 (*1 *2 *2) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) (-2049 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-2571 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4068 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4401 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-2899 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3113 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1531 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-2728 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-3200 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-1687 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-3706 (*1 *2) (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-422 *3)))) (-4016 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-2922 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4)))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) (-4 *3 (-422 *4))))) -(-10 -7 (-15 -3025 ((-776) |#2|)) (-15 -2922 ((-776) |#2|)) (-15 -1480 ((-776) |#2|)) (-15 -2416 ((-776) |#2|)) (-15 -4016 ((-776) |#2|)) (-15 -3706 ((-649 |#2|))) (-15 -2016 ((-649 |#2|) |#2|)) (-15 -1687 ((-649 |#2|) |#2|)) (-15 -3200 ((-649 |#2|))) (-15 -2728 ((-649 |#2|))) (-15 -1531 ((-649 |#2|))) (-15 -3113 ((-649 |#2|))) (-15 -2899 ((-649 |#2|))) (-15 -4401 ((-649 (-694 |#1|)))) (-15 -4068 ((-649 (-694 |#1|)))) (-15 -2571 ((-649 (-694 |#1|)))) (-15 -2049 ((-649 |#2|))) (IF (|has| |#1| (-310)) (-15 -2403 ((-1275 |#2|) (-1275 |#2|))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#1|)) (-1275 $)) NIL) (((-1275 (-694 |#1|))) 24)) (-3076 (((-1275 $)) 55)) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-3207 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-3400 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) NIL)) (-1564 ((|#1| $) NIL)) (-2183 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-4379 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-3319 (((-1181 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#1| $) NIL)) (-4375 (((-1181 |#1|) $) NIL (|has| |#1| (-561)))) (-3850 ((|#1| (-1275 $)) NIL) ((|#1|) NIL)) (-4136 (((-1181 |#1|) $) NIL)) (-2413 (((-112)) 101)) (-2247 (($ (-1275 |#1|) (-1275 $)) NIL) (($ (-1275 |#1|)) NIL)) (-3086 (((-3 $ "failed") $) 14 (|has| |#1| (-561)))) (-3978 (((-927)) 56)) (-4095 (((-112)) NIL)) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL)) (-2411 (((-112)) NIL)) (-2399 (((-112)) 103)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#1| (-561)))) (-2904 (((-3 $ "failed")) NIL (|has| |#1| (-561)))) (-2999 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) NIL)) (-3339 ((|#1| $) NIL)) (-1866 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-4059 (((-3 $ "failed") $) NIL (|has| |#1| (-561)))) (-1308 (((-1181 (-958 |#1|))) NIL (|has| |#1| (-367)))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#1| $) NIL)) (-4167 (((-1181 |#1|) $) NIL (|has| |#1| (-561)))) (-3674 ((|#1| (-1275 $)) NIL) ((|#1|) NIL)) (-2761 (((-1181 |#1|) $) NIL)) (-4307 (((-112)) 100)) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) 108)) (-3703 (((-112)) 107)) (-4324 (((-112)) 109)) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) 102)) (-1869 ((|#1| $ (-569)) 58)) (-2415 (((-1275 |#1|) $ (-1275 $)) 52) (((-694 |#1|) (-1275 $) (-1275 $)) NIL) (((-1275 |#1|) $) 28) (((-694 |#1|) (-1275 $)) NIL)) (-1410 (((-1275 |#1|) $) NIL) (($ (-1275 |#1|)) NIL)) (-1829 (((-649 (-958 |#1|)) (-1275 $)) NIL) (((-649 (-958 |#1|))) NIL)) (-2180 (($ $ $) NIL)) (-2324 (((-112)) 97)) (-3796 (((-867) $) 74) (($ (-1275 |#1|)) 22)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 54)) (-2643 (((-649 (-1275 |#1|))) NIL (|has| |#1| (-561)))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) 93)) (-3451 (($ (-694 |#1|) $) 18)) (-2489 (($ $ $) NIL)) (-3649 (((-112)) 99)) (-2887 (((-112)) 94)) (-3967 (((-112)) 92)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1150 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-422 |#1|) (-653 (-1150 |#2| |#1|)) (-10 -8 (-15 -3796 ($ (-1275 |#1|))))) (-367) (-927) (-649 (-1185)) (-1275 (-694 |#1|))) (T -44)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-14 *6 (-1275 (-694 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1185)))))) -(-13 (-422 |#1|) (-653 (-1150 |#2| |#1|)) (-10 -8 (-15 -3796 ($ (-1275 |#1|))))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2188 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-2563 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1568 (($ $) NIL)) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448))) (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2951 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855))))) (-3358 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-2052 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) 33 (|has| $ (-6 -4448)))) (-1344 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-2747 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 35 (|has| $ (-6 -4448)))) (-3943 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-1242 (-569)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (($ $ "rest" $) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value" (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2550 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-2359 (((-3 |#2| "failed") |#1| $) 43)) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3525 (($ $ (-776)) NIL) (($ $) 29)) (-2017 (($ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) (((-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 20 (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 20 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-4300 (($ (-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 38 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2292 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-4198 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855))) (((-569) $) 40 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-3382 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) 49 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-1724 (($ $ (-776)) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-2795 (((-649 |#1|) $) 22)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-4298 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 |#1|) $) NIL) (((-649 (-569)) $) NIL)) (-1414 (((-112) |#1| $) NIL) (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855))) (($ $ (-776)) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 27)) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-4199 (((-649 |#2|) $) NIL) (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 19)) (-3162 (((-112) $) 18)) (-3635 (($) 14)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ (-569)) NIL) (($ $ (-1242 (-569))) NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "first") NIL) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $ "value") NIL)) (-2602 (((-569) $ $) NIL)) (-2434 (($) 13) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3301 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3966 (((-112) $) NIL)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2866 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL) (($ $ $) NIL)) (-2443 (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL) (($ (-649 $)) NIL) (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 31) (($ $ $) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1733 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") |#1| $) 51)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2966 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-855)))) (-2428 (((-776) $) 25 (|has| $ (-6 -4447))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1108) (-1108)) (T -45)) +(3227990 . 3479388578) +((-2163 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-2632 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3945 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-1243 (-570)) |#2|) 44)) (-1500 (($ $) 81)) (-3600 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-4039 (((-570) (-1 (-112) |#2|) $) 27) (((-570) |#2| $) NIL) (((-570) |#2| $ (-570)) 97)) (-2885 (((-650 |#2|) $) 13)) (-2735 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3837 (($ (-1 |#2| |#2|) $) 37)) (-1347 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-4299 (($ |#2| $ (-570)) NIL) (($ $ $ (-570)) 67)) (-4089 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3116 (((-112) (-1 (-112) |#2|) $) 23)) (-1872 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) NIL) (($ $ (-1243 (-570))) 66)) (-4331 (($ $ (-570)) 76) (($ $ (-1243 (-570))) 75)) (-3562 (((-777) (-1 (-112) |#2|) $) 34) (((-777) |#2| $) NIL)) (-2662 (($ $ $ (-570)) 69)) (-3964 (($ $) 68)) (-3811 (($ (-650 |#2|)) 73)) (-2445 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-650 $)) 86)) (-3798 (((-868) $) 93)) (-1431 (((-112) (-1 (-112) |#2|) $) 22)) (-2923 (((-112) $ $) 96)) (-2948 (((-112) $ $) 100))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2632 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -2662 (|#1| |#1| |#1| (-570))) (-15 -2163 ((-112) |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -4039 ((-570) |#2| |#1| (-570))) (-15 -4039 ((-570) |#2| |#1|)) (-15 -4039 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -2163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2735 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3945 (|#2| |#1| (-1243 (-570)) |#2|)) (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -4331 (|#1| |#1| (-1243 (-570)))) (-15 -4331 (|#1| |#1| (-570))) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2445 (|#1| (-650 |#1|))) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -4089 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1872 (|#2| |#1| (-570))) (-15 -1872 (|#2| |#1| (-570) |#2|)) (-15 -3945 (|#2| |#1| (-570) |#2|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -2885 ((-650 |#2|) |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3964 (|#1| |#1|))) (-19 |#2|) (-1226)) (T -18)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2632 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1500 (|#1| |#1|)) (-15 -2662 (|#1| |#1| |#1| (-570))) (-15 -2163 ((-112) |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -4039 ((-570) |#2| |#1| (-570))) (-15 -4039 ((-570) |#2| |#1|)) (-15 -4039 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -2163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2735 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3945 (|#2| |#1| (-1243 (-570)) |#2|)) (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -4331 (|#1| |#1| (-1243 (-570)))) (-15 -4331 (|#1| |#1| (-570))) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2445 (|#1| (-650 |#1|))) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -4089 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1872 (|#2| |#1| (-570))) (-15 -1872 (|#2| |#1| (-570) |#2|)) (-15 -3945 (|#2| |#1| (-570) |#2|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -2885 ((-650 |#2|) |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3964 (|#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4449))) (($ $) 89 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-1500 (($ $) 91 (|has| $ (-6 -4449)))) (-2256 (($ $) 101)) (-3552 (($ $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 52)) (-4039 (((-570) (-1 (-112) |#1|) $) 98) (((-570) |#1| $) 97 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 96 (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 88 (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 87 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 43 (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2973 (($ $ |#1|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1243 (-570))) 64)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 92 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 71)) (-2445 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 85 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 84 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2969 (((-112) $ $) 86 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 83 (|has| |#1| (-856)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-19 |#1|) (-141) (-1226)) (T -19)) +NIL +(-13 (-378 |t#1|) (-10 -7 (-6 -4449))) +(((-34) . T) ((-102) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1226) . T)) +((-2620 (((-3 $ "failed") $ $) 12)) (-3026 (($ $) NIL) (($ $ $) 9)) (* (($ (-928) $) NIL) (($ (-777) $) 16) (($ (-570) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -2620 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -2620 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24))) +(((-21) (-141)) (T -21)) +((-3026 (*1 *1 *1) (-4 *1 (-21))) (-3026 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-652 (-570)) (-10 -8 (-15 -3026 ($ $)) (-15 -3026 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1109) . T)) +((-1359 (((-112) $) 10)) (-3734 (($) 15)) (* (($ (-928) $) 14) (($ (-777) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-777) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 -3734 (|#1|)) (-15 * (|#1| (-928) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-777) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 -3734 (|#1|)) (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16))) +(((-23) (-141)) (T -23)) +((-1809 (*1 *1) (-4 *1 (-23))) (-3734 (*1 *1) (-4 *1 (-23))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-777))))) +(-13 (-25) (-10 -8 (-15 (-1809) ($) -3711) (-15 -3734 ($) -3711) (-15 -1359 ((-112) $)) (-15 * ($ (-777) $)))) +(((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((* (($ (-928) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-928) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14))) +(((-25) (-141)) (T -25)) +((-3014 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-928))))) +(-13 (-1109) (-10 -8 (-15 -3014 ($ $ $)) (-15 * ($ (-928) $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-4266 (((-650 $) (-959 $)) 32) (((-650 $) (-1182 $)) 16) (((-650 $) (-1182 $) (-1186)) 20)) (-1964 (($ (-959 $)) 30) (($ (-1182 $)) 11) (($ (-1182 $) (-1186)) 60)) (-3044 (((-650 $) (-959 $)) 33) (((-650 $) (-1182 $)) 18) (((-650 $) (-1182 $) (-1186)) 19)) (-2300 (($ (-959 $)) 31) (($ (-1182 $)) 13) (($ (-1182 $) (-1186)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -4266 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4266 ((-650 |#1|) (-1182 |#1|))) (-15 -4266 ((-650 |#1|) (-959 |#1|))) (-15 -1964 (|#1| (-1182 |#1|) (-1186))) (-15 -1964 (|#1| (-1182 |#1|))) (-15 -1964 (|#1| (-959 |#1|))) (-15 -3044 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -3044 ((-650 |#1|) (-1182 |#1|))) (-15 -3044 ((-650 |#1|) (-959 |#1|))) (-15 -2300 (|#1| (-1182 |#1|) (-1186))) (-15 -2300 (|#1| (-1182 |#1|))) (-15 -2300 (|#1| (-959 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -4266 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4266 ((-650 |#1|) (-1182 |#1|))) (-15 -4266 ((-650 |#1|) (-959 |#1|))) (-15 -1964 (|#1| (-1182 |#1|) (-1186))) (-15 -1964 (|#1| (-1182 |#1|))) (-15 -1964 (|#1| (-959 |#1|))) (-15 -3044 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -3044 ((-650 |#1|) (-1182 |#1|))) (-15 -3044 ((-650 |#1|) (-959 |#1|))) (-15 -2300 (|#1| (-1182 |#1|) (-1186))) (-15 -2300 (|#1| (-1182 |#1|))) (-15 -2300 (|#1| (-959 |#1|)))) +((-2419 (((-112) $ $) 7)) (-4266 (((-650 $) (-959 $)) 88) (((-650 $) (-1182 $)) 87) (((-650 $) (-1182 $) (-1186)) 86)) (-1964 (($ (-959 $)) 91) (($ (-1182 $)) 90) (($ (-1182 $) (-1186)) 89)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-3815 (($ $) 100)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-3044 (((-650 $) (-959 $)) 94) (((-650 $) (-1182 $)) 93) (((-650 $) (-1182 $) (-1186)) 92)) (-2300 (($ (-959 $)) 97) (($ (-1182 $)) 96) (($ (-1182 $) (-1186)) 95)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3701 (((-112) $) 79)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 99)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 98)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75))) +(((-27) (-141)) (T -27)) +((-2300 (*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27)))) (-2300 (*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27)))) (-2300 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-1964 (*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27)))) (-1964 (*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27)))) (-1964 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-4266 (*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) (-4266 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27)) (-5 *2 (-650 *1))))) +(-13 (-368) (-1011) (-10 -8 (-15 -2300 ($ (-959 $))) (-15 -2300 ($ (-1182 $))) (-15 -2300 ($ (-1182 $) (-1186))) (-15 -3044 ((-650 $) (-959 $))) (-15 -3044 ((-650 $) (-1182 $))) (-15 -3044 ((-650 $) (-1182 $) (-1186))) (-15 -1964 ($ (-959 $))) (-15 -1964 ($ (-1182 $))) (-15 -1964 ($ (-1182 $) (-1186))) (-15 -4266 ((-650 $) (-959 $))) (-15 -4266 ((-650 $) (-1182 $))) (-15 -4266 ((-650 $) (-1182 $) (-1186))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1011) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-4266 (((-650 $) (-959 $)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-1182 $) (-1186)) 55) (((-650 $) $) 22) (((-650 $) $ (-1186)) 46)) (-1964 (($ (-959 $)) NIL) (($ (-1182 $)) NIL) (($ (-1182 $) (-1186)) 57) (($ $) 20) (($ $ (-1186)) 40)) (-3044 (((-650 $) (-959 $)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-1182 $) (-1186)) 53) (((-650 $) $) 18) (((-650 $) $ (-1186)) 48)) (-2300 (($ (-959 $)) NIL) (($ (-1182 $)) NIL) (($ (-1182 $) (-1186)) NIL) (($ $) 15) (($ $ (-1186)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -4266 ((-650 |#1|) |#1| (-1186))) (-15 -1964 (|#1| |#1| (-1186))) (-15 -4266 ((-650 |#1|) |#1|)) (-15 -1964 (|#1| |#1|)) (-15 -3044 ((-650 |#1|) |#1| (-1186))) (-15 -2300 (|#1| |#1| (-1186))) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -4266 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4266 ((-650 |#1|) (-1182 |#1|))) (-15 -4266 ((-650 |#1|) (-959 |#1|))) (-15 -1964 (|#1| (-1182 |#1|) (-1186))) (-15 -1964 (|#1| (-1182 |#1|))) (-15 -1964 (|#1| (-959 |#1|))) (-15 -3044 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -3044 ((-650 |#1|) (-1182 |#1|))) (-15 -3044 ((-650 |#1|) (-959 |#1|))) (-15 -2300 (|#1| (-1182 |#1|) (-1186))) (-15 -2300 (|#1| (-1182 |#1|))) (-15 -2300 (|#1| (-959 |#1|)))) (-29 |#2|) (-562)) (T -28)) +NIL +(-10 -8 (-15 -4266 ((-650 |#1|) |#1| (-1186))) (-15 -1964 (|#1| |#1| (-1186))) (-15 -4266 ((-650 |#1|) |#1|)) (-15 -1964 (|#1| |#1|)) (-15 -3044 ((-650 |#1|) |#1| (-1186))) (-15 -2300 (|#1| |#1| (-1186))) (-15 -3044 ((-650 |#1|) |#1|)) (-15 -2300 (|#1| |#1|)) (-15 -4266 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -4266 ((-650 |#1|) (-1182 |#1|))) (-15 -4266 ((-650 |#1|) (-959 |#1|))) (-15 -1964 (|#1| (-1182 |#1|) (-1186))) (-15 -1964 (|#1| (-1182 |#1|))) (-15 -1964 (|#1| (-959 |#1|))) (-15 -3044 ((-650 |#1|) (-1182 |#1|) (-1186))) (-15 -3044 ((-650 |#1|) (-1182 |#1|))) (-15 -3044 ((-650 |#1|) (-959 |#1|))) (-15 -2300 (|#1| (-1182 |#1|) (-1186))) (-15 -2300 (|#1| (-1182 |#1|))) (-15 -2300 (|#1| (-959 |#1|)))) +((-2419 (((-112) $ $) 7)) (-4266 (((-650 $) (-959 $)) 88) (((-650 $) (-1182 $)) 87) (((-650 $) (-1182 $) (-1186)) 86) (((-650 $) $) 134) (((-650 $) $ (-1186)) 132)) (-1964 (($ (-959 $)) 91) (($ (-1182 $)) 90) (($ (-1182 $) (-1186)) 89) (($ $) 135) (($ $ (-1186)) 133)) (-1359 (((-112) $) 17)) (-1709 (((-650 (-1186)) $) 203)) (-3768 (((-413 (-1182 $)) $ (-618 $)) 235 (|has| |#1| (-562)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-3665 (((-650 (-618 $)) $) 166)) (-2620 (((-3 $ "failed") $ $) 20)) (-4297 (($ $ (-650 (-618 $)) (-650 $)) 156) (($ $ (-650 (-298 $))) 155) (($ $ (-298 $)) 154)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-3815 (($ $) 100)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-3044 (((-650 $) (-959 $)) 94) (((-650 $) (-1182 $)) 93) (((-650 $) (-1182 $) (-1186)) 92) (((-650 $) $) 138) (((-650 $) $ (-1186)) 136)) (-2300 (($ (-959 $)) 97) (($ (-1182 $)) 96) (($ (-1182 $) (-1186)) 95) (($ $) 139) (($ $ (-1186)) 137)) (-4382 (((-3 (-959 |#1|) "failed") $) 253 (|has| |#1| (-1058))) (((-3 (-413 (-959 |#1|)) "failed") $) 237 (|has| |#1| (-562))) (((-3 |#1| "failed") $) 199) (((-3 (-570) "failed") $) 196 (|has| |#1| (-1047 (-570)))) (((-3 (-1186) "failed") $) 190) (((-3 (-618 $) "failed") $) 141) (((-3 (-413 (-570)) "failed") $) 130 (-2779 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-3152 (((-959 |#1|) $) 252 (|has| |#1| (-1058))) (((-413 (-959 |#1|)) $) 236 (|has| |#1| (-562))) ((|#1| $) 198) (((-570) $) 197 (|has| |#1| (-1047 (-570)))) (((-1186) $) 189) (((-618 $) $) 140) (((-413 (-570)) $) 131 (-2779 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-2372 (($ $ $) 61)) (-2004 (((-695 |#1|) (-695 $)) 243 (|has| |#1| (-1058))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 242 (|has| |#1| (-1058))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 129 (-2779 (-1760 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-1760 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (((-695 (-570)) (-695 $)) 128 (-2779 (-1760 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-1760 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3701 (((-112) $) 79)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 195 (|has| |#1| (-893 (-384)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 194 (|has| |#1| (-893 (-570))))) (-1594 (($ (-650 $)) 160) (($ $) 159)) (-3406 (((-650 (-115)) $) 167)) (-3748 (((-115) (-115)) 168)) (-2481 (((-112) $) 35)) (-2639 (((-112) $) 188 (|has| $ (-1047 (-570))))) (-4004 (($ $) 220 (|has| |#1| (-1058)))) (-4400 (((-1134 |#1| (-618 $)) $) 219 (|has| |#1| (-1058)))) (-3309 (($ $ (-570)) 99)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-4111 (((-1182 $) (-618 $)) 185 (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) 174)) (-3451 (((-3 (-618 $) "failed") $) 164)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3739 (((-650 (-618 $)) $) 165)) (-1355 (($ (-115) (-650 $)) 173) (($ (-115) $) 172)) (-4193 (((-3 (-650 $) "failed") $) 214 (|has| |#1| (-1121)))) (-2536 (((-3 (-2 (|:| |val| $) (|:| -3283 (-570))) "failed") $) 223 (|has| |#1| (-1058)))) (-3607 (((-3 (-650 $) "failed") $) 216 (|has| |#1| (-25)))) (-3544 (((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 $))) "failed") $) 217 (|has| |#1| (-25)))) (-1657 (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-1186)) 222 (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-115)) 221 (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $) 215 (|has| |#1| (-1121)))) (-3257 (((-112) $ (-1186)) 171) (((-112) $ (-115)) 170)) (-1820 (($ $) 78)) (-1428 (((-777) $) 163)) (-3551 (((-1129) $) 11)) (-1830 (((-112) $) 201)) (-1838 ((|#1| $) 202)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-4124 (((-112) $ (-1186)) 176) (((-112) $ $) 175)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3699 (((-112) $) 187 (|has| $ (-1047 (-570))))) (-1725 (($ $ (-1186) (-777) (-1 $ $)) 227 (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ (-650 $))) 226 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) 225 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) 224 (|has| |#1| (-1058))) (($ $ (-650 (-115)) (-650 $) (-1186)) 213 (|has| |#1| (-620 (-542)))) (($ $ (-115) $ (-1186)) 212 (|has| |#1| (-620 (-542)))) (($ $) 211 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186))) 210 (|has| |#1| (-620 (-542)))) (($ $ (-1186)) 209 (|has| |#1| (-620 (-542)))) (($ $ (-115) (-1 $ $)) 184) (($ $ (-115) (-1 $ (-650 $))) 183) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 182) (($ $ (-650 (-115)) (-650 (-1 $ $))) 181) (($ $ (-1186) (-1 $ $)) 180) (($ $ (-1186) (-1 $ (-650 $))) 179) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 178) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 177) (($ $ (-650 $) (-650 $)) 148) (($ $ $ $) 147) (($ $ (-298 $)) 146) (($ $ (-650 (-298 $))) 145) (($ $ (-650 (-618 $)) (-650 $)) 144) (($ $ (-618 $) $) 143)) (-3788 (((-777) $) 64)) (-1872 (($ (-115) (-650 $)) 153) (($ (-115) $ $ $ $) 152) (($ (-115) $ $ $) 151) (($ (-115) $ $) 150) (($ (-115) $) 149)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-2707 (($ $ $) 162) (($ $) 161)) (-3519 (($ $ (-1186)) 251 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 250 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 249 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) 248 (|has| |#1| (-1058)))) (-2397 (($ $) 230 (|has| |#1| (-562)))) (-4413 (((-1134 |#1| (-618 $)) $) 229 (|has| |#1| (-562)))) (-1881 (($ $) 186 (|has| $ (-1058)))) (-1411 (((-542) $) 257 (|has| |#1| (-620 (-542)))) (($ (-424 $)) 228 (|has| |#1| (-562))) (((-899 (-384)) $) 193 (|has| |#1| (-620 (-899 (-384))))) (((-899 (-570)) $) 192 (|has| |#1| (-620 (-899 (-570)))))) (-3897 (($ $ $) 256 (|has| |#1| (-479)))) (-4307 (($ $ $) 255 (|has| |#1| (-479)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ (-959 |#1|)) 254 (|has| |#1| (-1058))) (($ (-413 (-959 |#1|))) 238 (|has| |#1| (-562))) (($ (-413 (-959 (-413 |#1|)))) 234 (|has| |#1| (-562))) (($ (-959 (-413 |#1|))) 233 (|has| |#1| (-562))) (($ (-413 |#1|)) 232 (|has| |#1| (-562))) (($ (-1134 |#1| (-618 $))) 218 (|has| |#1| (-1058))) (($ |#1|) 200) (($ (-1186)) 191) (($ (-618 $)) 142)) (-2917 (((-3 $ "failed") $) 241 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-4215 (($ (-650 $)) 158) (($ $) 157)) (-4217 (((-112) (-115)) 169)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-4214 (($ (-1186) (-650 $)) 208) (($ (-1186) $ $ $ $) 207) (($ (-1186) $ $ $) 206) (($ (-1186) $ $) 205) (($ (-1186) $) 204)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1186)) 247 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 246 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 245 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) 244 (|has| |#1| (-1058)))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73) (($ (-1134 |#1| (-618 $)) (-1134 |#1| (-618 $))) 231 (|has| |#1| (-562)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 98)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-174))) (($ |#1| $) 239 (|has| |#1| (-174))))) +(((-29 |#1|) (-141) (-562)) (T -29)) +((-2300 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) (-3044 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) (-3044 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *4)))) (-1964 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) (-4266 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3)))) (-1964 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) (-4266 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-436 |t#1|) (-10 -8 (-15 -2300 ($ $)) (-15 -3044 ((-650 $) $)) (-15 -2300 ($ $ (-1186))) (-15 -3044 ((-650 $) $ (-1186))) (-15 -1964 ($ $)) (-15 -4266 ((-650 $) $)) (-15 -1964 ($ $ (-1186))) (-15 -4266 ((-650 $) $ (-1186))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 #1=(-413 (-959 |#1|))) |has| |#1| (-562)) ((-622 (-570)) . T) ((-622 #2=(-618 $)) . T) ((-622 #3=(-959 |#1|)) |has| |#1| (-1058)) ((-622 #4=(-1186)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-245) . T) ((-294) . T) ((-311) . T) ((-313 $) . T) ((-306) . T) ((-368) . T) ((-382 |#1|) |has| |#1| (-1058)) ((-406 |#1|) . T) ((-417 |#1|) . T) ((-436 |#1|) . T) ((-458) . T) ((-479) |has| |#1| (-479)) ((-520 (-618 $) $) . T) ((-520 $ $) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) |has| |#1| (-174)) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) . T) ((-645 (-570)) -12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) ((-645 |#1|) |has| |#1| (-1058)) ((-723 #0#) . T) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) . T) ((-732) . T) ((-907 (-1186)) |has| |#1| (-1058)) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-927) . T) ((-1011) . T) ((-1047 (-413 (-570))) -2779 (|has| |#1| (-1047 (-413 (-570)))) (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) ((-1047 #1#) |has| |#1| (-562)) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #2#) . T) ((-1047 #3#) |has| |#1| (-1058)) ((-1047 #4#) . T) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) |has| |#1| (-174)) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) |has| |#1| (-174)) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1226) . T) ((-1230) . T)) +((-3814 (((-1103 (-227)) $) NIL)) (-3800 (((-1103 (-227)) $) NIL)) (-3547 (($ $ (-227)) 164)) (-3546 (($ (-959 (-570)) (-1186) (-1186) (-1103 (-413 (-570))) (-1103 (-413 (-570)))) 104)) (-2055 (((-650 (-650 (-950 (-227)))) $) 180)) (-3798 (((-868) $) 194))) +(((-30) (-13 (-962) (-10 -8 (-15 -3546 ($ (-959 (-570)) (-1186) (-1186) (-1103 (-413 (-570))) (-1103 (-413 (-570))))) (-15 -3547 ($ $ (-227)))))) (T -30)) +((-3546 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-959 (-570))) (-5 *3 (-1186)) (-5 *4 (-1103 (-413 (-570)))) (-5 *1 (-30)))) (-3547 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-962) (-10 -8 (-15 -3546 ($ (-959 (-570)) (-1186) (-1186) (-1103 (-413 (-570))) (-1103 (-413 (-570))))) (-15 -3547 ($ $ (-227))))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-1144) $) 11)) (-1319 (((-112) $ $) NIL)) (-4364 (((-1144) $) 9)) (-2923 (((-112) $ $) NIL))) +(((-31) (-13 (-1092) (-10 -8 (-15 -4364 ((-1144) $)) (-15 -3587 ((-1144) $))))) (T -31)) +((-4364 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31))))) +(-13 (-1092) (-10 -8 (-15 -4364 ((-1144) $)) (-15 -3587 ((-1144) $)))) +((-2300 ((|#2| (-1182 |#2|) (-1186)) 41)) (-3748 (((-115) (-115)) 55)) (-4111 (((-1182 |#2|) (-618 |#2|)) 149 (|has| |#1| (-1047 (-570))))) (-2142 ((|#2| |#1| (-570)) 137 (|has| |#1| (-1047 (-570))))) (-3969 ((|#2| (-1182 |#2|) |#2|) 29)) (-3488 (((-868) (-650 |#2|)) 86)) (-1881 ((|#2| |#2|) 144 (|has| |#1| (-1047 (-570))))) (-4217 (((-112) (-115)) 17)) (** ((|#2| |#2| (-413 (-570))) 103 (|has| |#1| (-1047 (-570)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -2300 (|#2| (-1182 |#2|) (-1186))) (-15 -3748 ((-115) (-115))) (-15 -4217 ((-112) (-115))) (-15 -3969 (|#2| (-1182 |#2|) |#2|)) (-15 -3488 ((-868) (-650 |#2|))) (IF (|has| |#1| (-1047 (-570))) (PROGN (-15 ** (|#2| |#2| (-413 (-570)))) (-15 -4111 ((-1182 |#2|) (-618 |#2|))) (-15 -1881 (|#2| |#2|)) (-15 -2142 (|#2| |#1| (-570)))) |%noBranch|)) (-562) (-436 |#1|)) (T -32)) +((-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-4 *2 (-436 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1047 *4)) (-4 *3 (-562)))) (-1881 (*1 *2 *2) (-12 (-4 *3 (-1047 (-570))) (-4 *3 (-562)) (-5 *1 (-32 *3 *2)) (-4 *2 (-436 *3)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-618 *5)) (-4 *5 (-436 *4)) (-4 *4 (-1047 (-570))) (-4 *4 (-562)) (-5 *2 (-1182 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-1047 (-570))) (-4 *4 (-562)) (-5 *1 (-32 *4 *2)) (-4 *2 (-436 *4)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-562)) (-5 *2 (-868)) (-5 *1 (-32 *4 *5)))) (-3969 (*1 *2 *3 *2) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) (-5 *1 (-32 *4 *2)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-436 *4)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-32 *3 *4)) (-4 *4 (-436 *3)))) (-2300 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *2)) (-5 *4 (-1186)) (-4 *2 (-436 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-562))))) +(-10 -7 (-15 -2300 (|#2| (-1182 |#2|) (-1186))) (-15 -3748 ((-115) (-115))) (-15 -4217 ((-112) (-115))) (-15 -3969 (|#2| (-1182 |#2|) |#2|)) (-15 -3488 ((-868) (-650 |#2|))) (IF (|has| |#1| (-1047 (-570))) (PROGN (-15 ** (|#2| |#2| (-413 (-570)))) (-15 -4111 ((-1182 |#2|) (-618 |#2|))) (-15 -1881 (|#2| |#2|)) (-15 -2142 (|#2| |#1| (-570)))) |%noBranch|)) +((-3636 (((-112) $ (-777)) 20)) (-3734 (($) 10)) (-3846 (((-112) $ (-777)) 19)) (-2063 (((-112) $ (-777)) 17)) (-3123 (((-112) $ $) 8)) (-4303 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3734 (|#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777))) (-15 -4303 ((-112) |#1|)) (-15 -3123 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3734 (|#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777))) (-15 -4303 ((-112) |#1|)) (-15 -3123 ((-112) |#1| |#1|))) +((-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-3846 (((-112) $ (-777)) 9)) (-2063 (((-112) $ (-777)) 10)) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-3964 (($ $) 13)) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-34) (-141)) (T -34)) +((-3123 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3964 (*1 *1 *1) (-4 *1 (-34))) (-4359 (*1 *1) (-4 *1 (-34))) (-4303 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2063 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) (-3846 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) (-3636 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) (-3734 (*1 *1) (-4 *1 (-34))) (-2431 (*1 *2 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-34)) (-5 *2 (-777))))) +(-13 (-1226) (-10 -8 (-15 -3123 ((-112) $ $)) (-15 -3964 ($ $)) (-15 -4359 ($)) (-15 -4303 ((-112) $)) (-15 -2063 ((-112) $ (-777))) (-15 -3846 ((-112) $ (-777))) (-15 -3636 ((-112) $ (-777))) (-15 -3734 ($) -3711) (IF (|has| $ (-6 -4448)) (-15 -2431 ((-777) $)) |%noBranch|))) +(((-1226) . T)) +((-4165 (($ $) 11)) (-4141 (($ $) 10)) (-4186 (($ $) 9)) (-1504 (($ $) 8)) (-4176 (($ $) 7)) (-4153 (($ $) 6))) +(((-35) (-141)) (T -35)) +((-4165 (*1 *1 *1) (-4 *1 (-35))) (-4141 (*1 *1 *1) (-4 *1 (-35))) (-4186 (*1 *1 *1) (-4 *1 (-35))) (-1504 (*1 *1 *1) (-4 *1 (-35))) (-4176 (*1 *1 *1) (-4 *1 (-35))) (-4153 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -4153 ($ $)) (-15 -4176 ($ $)) (-15 -1504 ($ $)) (-15 -4186 ($ $)) (-15 -4141 ($ $)) (-15 -4165 ($ $)))) +((-2419 (((-112) $ $) 19 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2190 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 126)) (-2566 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 149)) (-1568 (($ $) 147)) (-4290 (($) 73) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 72)) (-2926 (((-1281) $ |#1| |#1|) 100 (|has| $ (-6 -4449))) (((-1281) $ (-570) (-570)) 179 (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) 160 (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2632 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 201 (|has| $ (-6 -4449))) (($ $) 200 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3470 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 135 (|has| $ (-6 -4449)))) (-1716 (($ $ $) 156 (|has| $ (-6 -4449)))) (-2631 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 158 (|has| $ (-6 -4449)))) (-3246 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 154 (|has| $ (-6 -4449)))) (-3945 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 190 (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-1243 (-570)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 161 (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "last" (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 159 (|has| $ (-6 -4449))) (($ $ "rest" $) 157 (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "first" (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 155 (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "value" (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 134 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 133 (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 46 (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 217)) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 56 (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 176 (|has| $ (-6 -4448)))) (-2553 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 148)) (-2361 (((-3 |#2| "failed") |#1| $) 62)) (-3734 (($) 7 T CONST)) (-1500 (($ $) 202 (|has| $ (-6 -4449)))) (-2256 (($ $) 212)) (-3527 (($ $ (-777)) 143) (($ $) 141)) (-3786 (($ $) 215 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-3552 (($ $) 59 (-2779 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448))) (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 47 (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 221) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 216 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 55 (|has| $ (-6 -4448))) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 178 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 175 (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 57 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 54 (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 53 (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 177 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 174 (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 173 (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 191 (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) 89) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) 189)) (-2430 (((-112) $) 193)) (-4039 (((-570) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 209) (((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 208 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) (((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) 207 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 31 (|has| $ (-6 -4448))) (((-650 |#2|) $) 80 (|has| $ (-6 -4448))) (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 115 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 124)) (-3471 (((-112) $ $) 132 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-4300 (($ (-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 170)) (-3846 (((-112) $ (-777)) 9)) (-1720 ((|#1| $) 97 (|has| |#1| (-856))) (((-570) $) 181 (|has| (-570) (-856)))) (-3382 (($ $ $) 199 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-3583 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2735 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 30 (|has| $ (-6 -4448))) (((-650 |#2|) $) 81 (|has| $ (-6 -4448))) (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 116 (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448)))) (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448))))) (-3434 ((|#1| $) 96 (|has| |#1| (-856))) (((-570) $) 182 (|has| (-570) (-856)))) (-2876 (($ $ $) 198 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 35 (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4449))) (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 111 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 110)) (-3384 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 226)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 129)) (-4142 (((-112) $) 125)) (-4122 (((-1168) $) 22 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-1723 (($ $ (-777)) 146) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 144)) (-2799 (((-650 |#1|) $) 64)) (-4242 (((-112) |#1| $) 65)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 40)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 41) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) 220) (($ $ $ (-570)) 219)) (-4299 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) 163) (($ $ $ (-570)) 162)) (-2044 (((-650 |#1|) $) 94) (((-650 (-570)) $) 184)) (-1480 (((-112) |#1| $) 93) (((-112) (-570) $) 185)) (-3551 (((-1129) $) 21 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-3515 ((|#2| $) 98 (|has| |#1| (-856))) (($ $ (-777)) 140) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 138)) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 52) (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 172)) (-2973 (($ $ |#2|) 99 (|has| $ (-6 -4449))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 180 (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 42)) (-2356 (((-112) $) 192)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 33 (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 113 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) 27 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 26 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 25 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 24 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 87 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 85 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) 84 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 122 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 121 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 120 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) 119 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 183 (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2880 (((-650 |#2|) $) 92) (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 186)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 188) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) 187) (($ $ (-1243 (-570))) 166) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "first") 139) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "value") 127)) (-3536 (((-570) $ $) 130)) (-2709 (($) 50) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 49)) (-3886 (($ $ (-570)) 223) (($ $ (-1243 (-570))) 222)) (-4331 (($ $ (-570)) 165) (($ $ (-1243 (-570))) 164)) (-3680 (((-112) $) 128)) (-3566 (($ $) 152)) (-2447 (($ $) 153 (|has| $ (-6 -4449)))) (-1497 (((-777) $) 151)) (-2360 (($ $) 150)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 32 (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-777) |#2| $) 82 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 114 (|has| $ (-6 -4448)))) (-2662 (($ $ $ (-570)) 203 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542)))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 51) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 171)) (-2832 (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 225) (($ $ $) 224)) (-2445 (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 169) (($ (-650 $)) 168) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 137) (($ $ $) 136)) (-3798 (((-868) $) 18 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868)))))) (-1974 (((-650 $) $) 123)) (-2650 (((-112) $ $) 131 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-1319 (((-112) $ $) 23 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 43)) (-1732 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") |#1| $) 109)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 34 (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 112 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 196 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2959 (((-112) $ $) 195 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2923 (((-112) $ $) 20 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2969 (((-112) $ $) 197 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2948 (((-112) $ $) 194 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-36 |#1| |#2|) (-141) (-1109) (-1109)) (T -36)) +((-1732 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| -2009 *3) (|:| -2219 *4)))))) +(-13 (-1202 |t#1| |t#2|) (-672 (-2 (|:| -2009 |t#1|) (|:| -2219 |t#2|))) (-10 -8 (-15 -1732 ((-3 (-2 (|:| -2009 |t#1|) (|:| -2219 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((-102) -2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856))) ((-619 (-868)) -2779 (|has| |#2| (-1109)) (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868)))) ((-152 #1=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((-620 (-542)) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))) ((-231 #0#) . T) ((-237 #0#) . T) ((-290 #2=(-570) #1#) . T) ((-290 |#1| |#2|) . T) ((-292 #2# #1#) . T) ((-292 |#1| |#2|) . T) ((-313 #1#) -12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-286 #1#) . T) ((-378 #1#) . T) ((-495 #1#) . T) ((-495 |#2|) . T) ((-610 #2# #1#) . T) ((-610 |#1| |#2|) . T) ((-520 #1# #1#) -12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-616 |#1| |#2|) . T) ((-657 #1#) . T) ((-672 #1#) . T) ((-856) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)) ((-1019 #1#) . T) ((-1109) -2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856))) ((-1158 #1#) . T) ((-1202 |#1| |#2|) . T) ((-1226) . T) ((-1264 #1#) . T)) +((-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-38 |#1|) (-141) (-174)) (T -38)) +NIL +(-13 (-1058) (-723 |t#1|) (-622 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3144 (((-424 |#1|) |#1|) 41)) (-3801 (((-424 |#1|) |#1|) 30) (((-424 |#1|) |#1| (-650 (-48))) 33)) (-3171 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -3801 ((-424 |#1|) |#1| (-650 (-48)))) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -3144 ((-424 |#1|) |#1|)) (-15 -3171 ((-112) |#1|))) (-1252 (-48))) (T -39)) +((-3171 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48))))) (-3144 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48))))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48))))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-48))) (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48)))))) +(-10 -7 (-15 -3801 ((-424 |#1|) |#1| (-650 (-48)))) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -3144 ((-424 |#1|) |#1|)) (-15 -3171 ((-112) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2681 (((-2 (|:| |num| (-1276 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| (-413 |#2|) (-368)))) (-2318 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2234 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-2365 (((-695 (-413 |#2|)) (-1276 $)) NIL) (((-695 (-413 |#2|))) NIL)) (-3142 (((-413 |#2|) $) NIL)) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-413 |#2|) (-354)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2555 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-4073 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-3475 (((-777)) NIL (|has| (-413 |#2|) (-373)))) (-4278 (((-112)) NIL)) (-2904 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-3 (-413 |#2|) "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-413 |#2|) $) NIL)) (-2427 (($ (-1276 (-413 |#2|)) (-1276 $)) NIL) (($ (-1276 (-413 |#2|))) 61) (($ (-1276 |#2|) |#2|) 134)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-413 |#2|) (-354)))) (-2372 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-2684 (((-695 (-413 |#2|)) $ (-1276 $)) NIL) (((-695 (-413 |#2|)) $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-413 |#2|))) (|:| |vec| (-1276 (-413 |#2|)))) (-695 $) (-1276 $)) NIL) (((-695 (-413 |#2|)) (-695 $)) NIL)) (-2236 (((-1276 $) (-1276 $)) NIL)) (-3600 (($ |#3|) NIL) (((-3 $ "failed") (-413 |#3|)) NIL (|has| (-413 |#2|) (-368)))) (-2229 (((-3 $ "failed") $) NIL)) (-3610 (((-650 (-650 |#1|))) NIL (|has| |#1| (-373)))) (-1644 (((-112) |#1| |#1|) NIL)) (-3979 (((-928)) NIL)) (-3408 (($) NIL (|has| (-413 |#2|) (-373)))) (-2164 (((-112)) NIL)) (-3512 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2380 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| (-413 |#2|) (-368)))) (-1908 (($ $) NIL)) (-3740 (($) NIL (|has| (-413 |#2|) (-354)))) (-4316 (((-112) $) NIL (|has| (-413 |#2|) (-354)))) (-3640 (($ $ (-777)) NIL (|has| (-413 |#2|) (-354))) (($ $) NIL (|has| (-413 |#2|) (-354)))) (-3701 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-4202 (((-928) $) NIL (|has| (-413 |#2|) (-354))) (((-839 (-928)) $) NIL (|has| (-413 |#2|) (-354)))) (-2481 (((-112) $) NIL)) (-1646 (((-777)) NIL)) (-3757 (((-1276 $) (-1276 $)) 109)) (-2233 (((-413 |#2|) $) NIL)) (-1408 (((-650 (-959 |#1|)) (-1186)) NIL (|has| |#1| (-368)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-2780 ((|#3| $) NIL (|has| (-413 |#2|) (-368)))) (-2484 (((-928) $) NIL (|has| (-413 |#2|) (-373)))) (-3586 ((|#3| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4122 (((-1168) $) NIL)) (-3440 (((-1281) (-777)) 87)) (-3145 (((-695 (-413 |#2|))) 56)) (-2122 (((-695 (-413 |#2|))) 49)) (-1820 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-4198 (($ (-1276 |#2|) |#2|) 135)) (-4377 (((-695 (-413 |#2|))) 50)) (-3917 (((-695 (-413 |#2|))) 48)) (-3092 (((-2 (|:| |num| (-695 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 133)) (-3622 (((-2 (|:| |num| (-1276 |#2|)) (|:| |den| |#2|)) $) 68)) (-3306 (((-1276 $)) 47)) (-2061 (((-1276 $)) 46)) (-1653 (((-112) $) NIL)) (-3558 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2310 (($) NIL (|has| (-413 |#2|) (-354)) CONST)) (-2155 (($ (-928)) NIL (|has| (-413 |#2|) (-373)))) (-2716 (((-3 |#2| "failed")) NIL)) (-3551 (((-1129) $) NIL)) (-2254 (((-777)) NIL)) (-2335 (($) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| (-413 |#2|) (-368)))) (-1869 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-413 |#2|) (-354)))) (-3801 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-413 |#2|) (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2410 (((-3 $ "failed") $ $) NIL (|has| (-413 |#2|) (-368)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-3788 (((-777) $) NIL (|has| (-413 |#2|) (-368)))) (-1872 ((|#1| $ |#1| |#1|) NIL)) (-1801 (((-3 |#2| "failed")) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-3511 (((-413 |#2|) (-1276 $)) NIL) (((-413 |#2|)) 44)) (-2174 (((-777) $) NIL (|has| (-413 |#2|) (-354))) (((-3 (-777) "failed") $ $) NIL (|has| (-413 |#2|) (-354)))) (-3519 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 |#2| |#2|)) 129) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-4169 (((-695 (-413 |#2|)) (-1276 $) (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368)))) (-1881 ((|#3|) 55)) (-2042 (($) NIL (|has| (-413 |#2|) (-354)))) (-1861 (((-1276 (-413 |#2|)) $ (-1276 $)) NIL) (((-695 (-413 |#2|)) (-1276 $) (-1276 $)) NIL) (((-1276 (-413 |#2|)) $) 62) (((-695 (-413 |#2|)) (-1276 $)) 110)) (-1411 (((-1276 (-413 |#2|)) $) NIL) (($ (-1276 (-413 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| (-413 |#2|) (-354)))) (-2699 (((-1276 $) (-1276 $)) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 |#2|)) NIL) (($ (-413 (-570))) NIL (-2779 (|has| (-413 |#2|) (-1047 (-413 (-570)))) (|has| (-413 |#2|) (-368)))) (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2917 (($ $) NIL (|has| (-413 |#2|) (-354))) (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-146)))) (-4042 ((|#3| $) NIL)) (-2862 (((-777)) NIL T CONST)) (-2535 (((-112)) 42)) (-4030 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL)) (-3258 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2537 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2468 (((-112)) NIL)) (-1809 (($) 17 T CONST)) (-1817 (($) 27 T CONST)) (-2835 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| (-413 |#2|) (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 |#2|)) NIL) (($ (-413 |#2|) $) NIL) (($ (-413 (-570)) $) NIL (|has| (-413 |#2|) (-368))) (($ $ (-413 (-570))) NIL (|has| (-413 |#2|) (-368))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-347 |#1| |#2| |#3|) (-10 -7 (-15 -3440 ((-1281) (-777))))) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) |#3|) (T -40)) +((-3440 (*1 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-4 *5 (-1252 *4)) (-5 *2 (-1281)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1252 (-413 *5))) (-14 *7 *6)))) +(-13 (-347 |#1| |#2| |#3|) (-10 -7 (-15 -3440 ((-1281) (-777))))) +((-3398 ((|#2| |#2|) 47)) (-3016 ((|#2| |#2|) 139 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-3603 ((|#2| |#2|) 100 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-3916 ((|#2| |#2|) 101 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-2283 ((|#2| (-115) |#2| (-777)) 135 (-12 (|has| |#2| (-436 |#1|)) (|has| |#1| (-13 (-458) (-1047 (-570))))))) (-3224 (((-1182 |#2|) |#2|) 44)) (-3675 ((|#2| |#2| (-650 (-618 |#2|))) 18) ((|#2| |#2| (-650 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3398 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3675 (|#2| |#2| |#2|)) (-15 -3675 (|#2| |#2| (-650 |#2|))) (-15 -3675 (|#2| |#2| (-650 (-618 |#2|)))) (-15 -3224 ((-1182 |#2|) |#2|)) (IF (|has| |#1| (-13 (-458) (-1047 (-570)))) (IF (|has| |#2| (-436 |#1|)) (PROGN (-15 -3916 (|#2| |#2|)) (-15 -3603 (|#2| |#2|)) (-15 -3016 (|#2| |#2|)) (-15 -2283 (|#2| (-115) |#2| (-777)))) |%noBranch|) |%noBranch|)) (-562) (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 |#1| (-618 $)) $)) (-15 -4413 ((-1134 |#1| (-618 $)) $)) (-15 -3798 ($ (-1134 |#1| (-618 $))))))) (T -41)) +((-2283 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-777)) (-4 *5 (-13 (-458) (-1047 (-570)))) (-4 *5 (-562)) (-5 *1 (-41 *5 *2)) (-4 *2 (-436 *5)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *5 (-618 $)) $)) (-15 -4413 ((-1134 *5 (-618 $)) $)) (-15 -3798 ($ (-1134 *5 (-618 $))))))))) (-3016 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) (-15 -4413 ((-1134 *3 (-618 $)) $)) (-15 -3798 ($ (-1134 *3 (-618 $))))))))) (-3603 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) (-15 -4413 ((-1134 *3 (-618 $)) $)) (-15 -3798 ($ (-1134 *3 (-618 $))))))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) (-15 -4413 ((-1134 *3 (-618 $)) $)) (-15 -3798 ($ (-1134 *3 (-618 $))))))))) (-3224 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-1182 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *4 (-618 $)) $)) (-15 -4413 ((-1134 *4 (-618 $)) $)) (-15 -3798 ($ (-1134 *4 (-618 $))))))))) (-3675 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-618 *2))) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *4 (-618 $)) $)) (-15 -4413 ((-1134 *4 (-618 $)) $)) (-15 -3798 ($ (-1134 *4 (-618 $))))))) (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) (-3675 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *4 (-618 $)) $)) (-15 -4413 ((-1134 *4 (-618 $)) $)) (-15 -3798 ($ (-1134 *4 (-618 $))))))) (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) (-3675 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) (-15 -4413 ((-1134 *3 (-618 $)) $)) (-15 -3798 ($ (-1134 *3 (-618 $))))))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) (-15 -4413 ((-1134 *3 (-618 $)) $)) (-15 -3798 ($ (-1134 *3 (-618 $))))))))) (-3398 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-368) (-306) (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) (-15 -4413 ((-1134 *3 (-618 $)) $)) (-15 -3798 ($ (-1134 *3 (-618 $)))))))))) +(-10 -7 (-15 -3398 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3675 (|#2| |#2| |#2|)) (-15 -3675 (|#2| |#2| (-650 |#2|))) (-15 -3675 (|#2| |#2| (-650 (-618 |#2|)))) (-15 -3224 ((-1182 |#2|) |#2|)) (IF (|has| |#1| (-13 (-458) (-1047 (-570)))) (IF (|has| |#2| (-436 |#1|)) (PROGN (-15 -3916 (|#2| |#2|)) (-15 -3603 (|#2| |#2|)) (-15 -3016 (|#2| |#2|)) (-15 -2283 (|#2| (-115) |#2| (-777)))) |%noBranch|) |%noBranch|)) +((-3801 (((-424 (-1182 |#3|)) (-1182 |#3|) (-650 (-48))) 23) (((-424 |#3|) |#3| (-650 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3801 ((-424 |#3|) |#3| (-650 (-48)))) (-15 -3801 ((-424 (-1182 |#3|)) (-1182 |#3|) (-650 (-48))))) (-856) (-799) (-956 (-48) |#2| |#1|)) (T -42)) +((-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *7 (-956 (-48) *6 *5)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799)) (-5 *2 (-424 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-956 (-48) *6 *5))))) +(-10 -7 (-15 -3801 ((-424 |#3|) |#3| (-650 (-48)))) (-15 -3801 ((-424 (-1182 |#3|)) (-1182 |#3|) (-650 (-48))))) +((-1936 (((-777) |#2|) 72)) (-2816 (((-777) |#2|) 76)) (-3117 (((-650 |#2|)) 39)) (-2406 (((-777) |#2|) 75)) (-3121 (((-777) |#2|) 71)) (-4123 (((-777) |#2|) 74)) (-1326 (((-650 (-695 |#1|))) 67)) (-2224 (((-650 |#2|)) 62)) (-2240 (((-650 |#2|) |#2|) 50)) (-4155 (((-650 |#2|)) 64)) (-3115 (((-650 |#2|)) 63)) (-3161 (((-650 (-695 |#1|))) 55)) (-3649 (((-650 |#2|)) 61)) (-1783 (((-650 |#2|) |#2|) 49)) (-2840 (((-650 |#2|)) 57)) (-1400 (((-650 (-695 |#1|))) 68)) (-1377 (((-650 |#2|)) 66)) (-2077 (((-1276 |#2|) (-1276 |#2|)) 101 (|has| |#1| (-311))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -2406 ((-777) |#2|)) (-15 -2816 ((-777) |#2|)) (-15 -3121 ((-777) |#2|)) (-15 -1936 ((-777) |#2|)) (-15 -4123 ((-777) |#2|)) (-15 -2840 ((-650 |#2|))) (-15 -1783 ((-650 |#2|) |#2|)) (-15 -2240 ((-650 |#2|) |#2|)) (-15 -3649 ((-650 |#2|))) (-15 -2224 ((-650 |#2|))) (-15 -3115 ((-650 |#2|))) (-15 -4155 ((-650 |#2|))) (-15 -1377 ((-650 |#2|))) (-15 -3161 ((-650 (-695 |#1|)))) (-15 -1326 ((-650 (-695 |#1|)))) (-15 -1400 ((-650 (-695 |#1|)))) (-15 -3117 ((-650 |#2|))) (IF (|has| |#1| (-311)) (-15 -2077 ((-1276 |#2|) (-1276 |#2|))) |%noBranch|)) (-562) (-423 |#1|)) (T -43)) +((-2077 (*1 *2 *2) (-12 (-5 *2 (-1276 *4)) (-4 *4 (-423 *3)) (-4 *3 (-311)) (-4 *3 (-562)) (-5 *1 (-43 *3 *4)))) (-3117 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1400 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1326 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-3161 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-1377 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-4155 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-3115 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-2224 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-3649 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-2240 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1783 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-2840 (*1 *2) (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-423 *3)))) (-4123 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-1936 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-3121 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-2816 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4)))) (-2406 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) (-4 *3 (-423 *4))))) +(-10 -7 (-15 -2406 ((-777) |#2|)) (-15 -2816 ((-777) |#2|)) (-15 -3121 ((-777) |#2|)) (-15 -1936 ((-777) |#2|)) (-15 -4123 ((-777) |#2|)) (-15 -2840 ((-650 |#2|))) (-15 -1783 ((-650 |#2|) |#2|)) (-15 -2240 ((-650 |#2|) |#2|)) (-15 -3649 ((-650 |#2|))) (-15 -2224 ((-650 |#2|))) (-15 -3115 ((-650 |#2|))) (-15 -4155 ((-650 |#2|))) (-15 -1377 ((-650 |#2|))) (-15 -3161 ((-650 (-695 |#1|)))) (-15 -1326 ((-650 (-695 |#1|)))) (-15 -1400 ((-650 (-695 |#1|)))) (-15 -3117 ((-650 |#2|))) (IF (|has| |#1| (-311)) (-15 -2077 ((-1276 |#2|) (-1276 |#2|))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-1601 (((-1276 (-695 |#1|)) (-1276 $)) NIL) (((-1276 (-695 |#1|))) 24)) (-4392 (((-1276 $)) 55)) (-3734 (($) NIL T CONST)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (|has| |#1| (-562)))) (-3025 (((-3 $ "failed")) NIL (|has| |#1| (-562)))) (-1460 (((-695 |#1|) (-1276 $)) NIL) (((-695 |#1|)) NIL)) (-3754 ((|#1| $) NIL)) (-3277 (((-695 |#1|) $ (-1276 $)) NIL) (((-695 |#1|) $) NIL)) (-2487 (((-3 $ "failed") $) NIL (|has| |#1| (-562)))) (-3019 (((-1182 (-959 |#1|))) NIL (|has| |#1| (-368)))) (-2559 (($ $ (-928)) NIL)) (-3928 ((|#1| $) NIL)) (-3387 (((-1182 |#1|) $) NIL (|has| |#1| (-562)))) (-3235 ((|#1| (-1276 $)) NIL) ((|#1|) NIL)) (-2099 (((-1182 |#1|) $) NIL)) (-1654 (((-112)) 101)) (-2427 (($ (-1276 |#1|) (-1276 $)) NIL) (($ (-1276 |#1|)) NIL)) (-2229 (((-3 $ "failed") $) 14 (|has| |#1| (-562)))) (-3979 (((-928)) 56)) (-1438 (((-112)) NIL)) (-1752 (($ $ (-928)) NIL)) (-4414 (((-112)) NIL)) (-1451 (((-112)) NIL)) (-2882 (((-112)) 103)) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (|has| |#1| (-562)))) (-1822 (((-3 $ "failed")) NIL (|has| |#1| (-562)))) (-3792 (((-695 |#1|) (-1276 $)) NIL) (((-695 |#1|)) NIL)) (-2215 ((|#1| $) NIL)) (-2961 (((-695 |#1|) $ (-1276 $)) NIL) (((-695 |#1|) $) NIL)) (-3645 (((-3 $ "failed") $) NIL (|has| |#1| (-562)))) (-2463 (((-1182 (-959 |#1|))) NIL (|has| |#1| (-368)))) (-3619 (($ $ (-928)) NIL)) (-3926 ((|#1| $) NIL)) (-3823 (((-1182 |#1|) $) NIL (|has| |#1| (-562)))) (-2908 ((|#1| (-1276 $)) NIL) ((|#1|) NIL)) (-2005 (((-1182 |#1|) $) NIL)) (-4420 (((-112)) 100)) (-4122 (((-1168) $) NIL)) (-2585 (((-112)) 108)) (-2522 (((-112)) 107)) (-1363 (((-112)) 109)) (-3551 (((-1129) $) NIL)) (-1422 (((-112)) 102)) (-1872 ((|#1| $ (-570)) 58)) (-1861 (((-1276 |#1|) $ (-1276 $)) 52) (((-695 |#1|) (-1276 $) (-1276 $)) NIL) (((-1276 |#1|) $) 28) (((-695 |#1|) (-1276 $)) NIL)) (-1411 (((-1276 |#1|) $) NIL) (($ (-1276 |#1|)) NIL)) (-3594 (((-650 (-959 |#1|)) (-1276 $)) NIL) (((-650 (-959 |#1|))) NIL)) (-4307 (($ $ $) NIL)) (-1743 (((-112)) 97)) (-3798 (((-868) $) 74) (($ (-1276 |#1|)) 22)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) 54)) (-3532 (((-650 (-1276 |#1|))) NIL (|has| |#1| (-562)))) (-3666 (($ $ $ $) NIL)) (-2939 (((-112)) 93)) (-3453 (($ (-695 |#1|) $) 18)) (-3616 (($ $ $) NIL)) (-3089 (((-112)) 99)) (-2313 (((-112)) 94)) (-3772 (((-112)) 92)) (-1809 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 83) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1151 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-423 |#1|) (-654 (-1151 |#2| |#1|)) (-10 -8 (-15 -3798 ($ (-1276 |#1|))))) (-368) (-928) (-650 (-1186)) (-1276 (-695 |#1|))) (T -44)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-368)) (-14 *6 (-1276 (-695 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-928)) (-14 *5 (-650 (-1186)))))) +(-13 (-423 |#1|) (-654 (-1151 |#2| |#1|)) (-10 -8 (-15 -3798 ($ (-1276 |#1|))))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2190 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2566 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-1568 (($ $) NIL)) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449))) (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2632 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856))))) (-3360 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3470 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449)))) (-1716 (($ $ $) 33 (|has| $ (-6 -4449)))) (-2631 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449)))) (-3246 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 35 (|has| $ (-6 -4449)))) (-3945 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-1243 (-570)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "last" (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449))) (($ $ "rest" $) NIL (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "first" (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "value" (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2553 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2361 (((-3 |#2| "failed") |#1| $) 43)) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3527 (($ $ (-777)) NIL) (($ $) 29)) (-3786 (($ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) NIL)) (-2430 (((-112) $) NIL)) (-4039 (((-570) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) (((-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 20 (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448))) (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 20 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-4300 (($ (-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856))) (((-570) $) 38 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-3583 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2735 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448))) (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856))) (((-570) $) 40 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449))) (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-3384 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-2278 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-4142 (((-112) $) NIL)) (-4122 (((-1168) $) 49 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-1723 (($ $ (-777)) NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2799 (((-650 |#1|) $) 22)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-4299 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 |#1|) $) NIL) (((-650 (-570)) $) NIL)) (-1480 (((-112) |#1| $) NIL) (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856))) (($ $ (-777)) NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 27)) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2356 (((-112) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2880 (((-650 |#2|) $) NIL) (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 19)) (-4303 (((-112) $) 18)) (-4359 (($) 14)) (-1872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ (-570)) NIL) (($ $ (-1243 (-570))) NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "first") NIL) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $ "value") NIL)) (-3536 (((-570) $ $) NIL)) (-2709 (($) 13) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3886 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3680 (((-112) $) NIL)) (-3566 (($ $) NIL)) (-2447 (($ $) NIL (|has| $ (-6 -4449)))) (-1497 (((-777) $) NIL)) (-2360 (($ $) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2832 (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL) (($ $ $) NIL)) (-2445 (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL) (($ (-650 $)) NIL) (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 31) (($ $ $) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1732 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") |#1| $) 51)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2969 (((-112) $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-856)))) (-2431 (((-777) $) 25 (|has| $ (-6 -4448))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1109) (-1109)) (T -45)) NIL (-36 |#1| |#2|) -((-2198 (((-112) $) 12)) (-1346 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-412 (-569)) $) 25) (($ $ (-412 (-569))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2198 ((-112) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-47 |#2| |#3|) (-1057) (-797)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -2198 ((-112) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4339 ((|#2| $) 76)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-47 |#1| |#2|) (-140) (-1057) (-797)) (T -47)) -((-1857 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-1849 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-112)))) (-3923 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *2 (-367))))) -(-13 (-1057) (-111 |t#1| |t#1|) (-10 -8 (-15 -1857 (|t#1| $)) (-15 -1849 ($ $)) (-15 -4339 (|t#2| $)) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -2198 ((-112) $)) (-15 -3923 ($ |t#1| |t#2|)) (-15 -1883 ($ $)) (-15 -4383 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-367)) (-15 -3035 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-6 (-173)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-561)) (-6 (-561)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-6 (-38 (-412 (-569)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3194 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2565 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4143 (((-112) $) 9)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3663 (((-649 (-617 $)) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1333 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2793 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-412 (-569)))) (|:| |vec| (-1275 (-412 (-569))))) (-694 $) (-1275 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3598 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) NIL)) (-2349 (((-112) $) 11)) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-4399 (((-1133 (-569) (-617 $)) $) NIL)) (-3742 (($ $ (-569)) NIL)) (-3829 (((-1181 $) (-1181 $) (-617 $)) NIL) (((-1181 $) (-1181 $) (-649 (-617 $))) NIL) (($ $ (-617 $)) NIL) (($ $ (-649 (-617 $))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2341 (((-1181 $) (-617 $)) NIL (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) NIL)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) NIL)) (-1354 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) NIL)) (-1817 (($ $) NIL)) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2431 (((-776) $) NIL)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-4412 (((-1133 (-569) (-617 $)) $) NIL)) (-4061 (($ $) NIL (|has| $ (-1057)))) (-1410 (((-383) $) NIL) (((-226) $) NIL) (((-170 (-383)) $) NIL)) (-3796 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1133 (-569) (-617 $))) NIL)) (-2721 (((-776)) NIL T CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-4052 (((-112) (-114)) NIL)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 6 T CONST)) (-1815 (($) 10 T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) 13)) (-3035 (($ $ $) NIL)) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) NIL) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL))) -(((-48) (-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $))))))) (T -48)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) (-3598 (*1 *1 *1) (-5 *1 (-48))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48))))) -(-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $)))))) -((-2417 (((-112) $ $) NIL)) (-3826 (((-649 (-511)) $) 17)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 7)) (-3586 (((-1190) $) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-49) (-13 (-1108) (-10 -8 (-15 -3826 ((-649 (-511)) $)) (-15 -3586 ((-1190) $))))) (T -49)) -((-3826 (*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-49))))) -(-13 (-1108) (-10 -8 (-15 -3826 ((-649 (-511)) $)) (-15 -3586 ((-1190) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 87)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4132 (((-112) $) 30)) (-4381 (((-3 |#1| "failed") $) 33)) (-3150 ((|#1| $) 34)) (-1883 (($ $) 40)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1857 ((|#1| $) 31)) (-2362 (($ $) 76)) (-3435 (((-1167) $) NIL)) (-3704 (((-112) $) 43)) (-3547 (((-1128) $) NIL)) (-2332 (($ (-776)) 74)) (-4389 (($ (-649 (-569))) 75)) (-4339 (((-776) $) 44)) (-3796 (((-867) $) 93) (($ (-569)) 71) (($ |#1|) 69)) (-4383 ((|#1| $ $) 28)) (-2721 (((-776)) 73 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 45 T CONST)) (-1815 (($) 17 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-625 |#1|) (-1046 |#1|) (-10 -8 (-15 -1857 (|#1| $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 (|#1| $ $)) (-15 -2332 ($ (-776))) (-15 -4389 ($ (-649 (-569)))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-776) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)))) (-1057) (-649 (-1185))) (T -50)) -((-1857 (*1 *2 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185))))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))))) (-4383 (*1 *2 *1 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185))))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) (-14 *4 (-649 (-1185))))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-50 *3 *4)) (-14 *4 (-649 (-1185)))))) -(-13 (-625 |#1|) (-1046 |#1|) (-10 -8 (-15 -1857 (|#1| $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 (|#1| $ $)) (-15 -2332 ($ (-776))) (-15 -4389 ($ (-649 (-569)))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-776) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)))) -((-4132 (((-112) (-52)) 18)) (-4381 (((-3 |#1| "failed") (-52)) 20)) (-3150 ((|#1| (-52)) 21)) (-3796 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -3796 ((-52) |#1|)) (-15 -4381 ((-3 |#1| "failed") (-52))) (-15 -4132 ((-112) (-52))) (-15 -3150 (|#1| (-52)))) (-1225)) (T -51)) -((-3150 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1225)))) (-4381 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1225))))) -(-10 -7 (-15 -3796 ((-52) |#1|)) (-15 -4381 ((-3 |#1| "failed") (-52))) (-15 -4132 ((-112) (-52))) (-15 -3150 (|#1| (-52)))) -((-2417 (((-112) $ $) NIL)) (-4304 (((-779) $) 8)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3261 (((-1112) $) 10)) (-3796 (((-867) $) 15)) (-1520 (((-112) $ $) NIL)) (-3656 (($ (-1112) (-779)) 16)) (-2920 (((-112) $ $) 12))) -(((-52) (-13 (-1108) (-10 -8 (-15 -3656 ($ (-1112) (-779))) (-15 -3261 ((-1112) $)) (-15 -4304 ((-779) $))))) (T -52)) -((-3656 (*1 *1 *2 *3) (-12 (-5 *2 (-1112)) (-5 *3 (-779)) (-5 *1 (-52)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-52)))) (-4304 (*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52))))) -(-13 (-1108) (-10 -8 (-15 -3656 ($ (-1112) (-779))) (-15 -3261 ((-1112) $)) (-15 -4304 ((-779) $)))) -((-3451 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3451 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1057) (-653 |#1|) (-857 |#1|)) (T -53)) -((-3451 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1057)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5))))) -(-10 -7 (-15 -3451 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1972 ((|#3| |#3| (-649 (-1185))) 46)) (-3488 ((|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3| (-927)) 32) ((|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3|)) (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3| (-927))) (-15 -1972 (|#3| |#3| (-649 (-1185))))) (-1108) (-13 (-1057) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -54)) -((-1972 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-3488 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 (-1084 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1108)) (-4 *6 (-13 (-1057) (-892 *5) (-619 (-898 *5)))) (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3488 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-1084 *4 *5 *2))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3|)) (-15 -3488 (|#3| (-649 (-1084 |#1| |#2| |#3|)) |#3| (-927))) (-15 -1972 (|#3| |#3| (-649 (-1185))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 14)) (-4381 (((-3 (-776) "failed") $) 34)) (-3150 (((-776) $) NIL)) (-2349 (((-112) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) 18)) (-3796 (((-867) $) 23) (($ (-776)) 29)) (-1520 (((-112) $ $) NIL)) (-1742 (($) 11 T CONST)) (-2920 (((-112) $ $) 20))) -(((-55) (-13 (-1108) (-1046 (-776)) (-10 -8 (-15 -1742 ($) -3709) (-15 -4143 ((-112) $)) (-15 -2349 ((-112) $))))) (T -55)) -((-1742 (*1 *1) (-5 *1 (-55))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1108) (-1046 (-776)) (-10 -8 (-15 -1742 ($) -3709) (-15 -4143 ((-112) $)) (-15 -2349 ((-112) $)))) -((-3914 (((-112) $ (-776)) 27)) (-2400 (($ $ (-569) |#3|) 66)) (-3259 (($ $ (-569) |#4|) 70)) (-4044 ((|#3| $ (-569)) 79)) (-2882 (((-649 |#2|) $) 47)) (-2314 (((-112) $ (-776)) 31)) (-2004 (((-112) |#2| $) 74)) (-3834 (($ (-1 |#2| |#2|) $) 55)) (-1346 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-4254 (((-112) $ (-776)) 29)) (-1682 (($ $ |#2|) 52)) (-3208 (((-112) (-1 (-112) |#2|) $) 21)) (-1869 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) 35)) (-3560 (((-776) (-1 (-112) |#2|) $) 41) (((-776) |#2| $) 76)) (-3962 (($ $) 51)) (-3041 ((|#4| $ (-569)) 82)) (-3796 (((-867) $) 88)) (-1980 (((-112) (-1 (-112) |#2|) $) 20)) (-2920 (((-112) $ $) 73)) (-2428 (((-776) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3259 (|#1| |#1| (-569) |#4|)) (-15 -2400 (|#1| |#1| (-569) |#3|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3041 (|#4| |#1| (-569))) (-15 -4044 (|#3| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3962 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1225) (-377 |#2|) (-377 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3259 (|#1| |#1| (-569) |#4|)) (-15 -2400 (|#1| |#1| (-569) |#3|)) (-15 -2882 ((-649 |#2|) |#1|)) (-15 -3041 (|#4| |#1| (-569))) (-15 -4044 (|#3| |#1| (-569))) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776))) (-15 -3962 (|#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) (-569) |#1|) 45)) (-2400 (($ $ (-569) |#2|) 43)) (-3259 (($ $ (-569) |#3|) 42)) (-4427 (($) 7 T CONST)) (-4044 ((|#2| $ (-569)) 47)) (-3846 ((|#1| $ (-569) (-569) |#1|) 44)) (-3776 ((|#1| $ (-569) (-569)) 49)) (-2882 (((-649 |#1|) $) 31)) (-3225 (((-776) $) 52)) (-4300 (($ (-776) (-776) |#1|) 58)) (-3236 (((-776) $) 51)) (-2314 (((-112) $ (-776)) 9)) (-4241 (((-569) $) 56)) (-1537 (((-569) $) 54)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 55)) (-2742 (((-569) $) 53)) (-3834 (($ (-1 |#1| |#1|) $) 35)) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) 57)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3041 ((|#3| $ (-569)) 46)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-57 |#1| |#2| |#3|) (-140) (-1225) (-377 |t#1|) (-377 |t#1|)) (T -57)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-4300 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1225)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1682 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-569)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-776)))) (-1869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1225)))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1225)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1225)) (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 *3)))) (-3943 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-3846 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) (-2400 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1225)) (-4 *3 (-377 *4)) (-4 *5 (-377 *4)))) (-3259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1225)) (-4 *5 (-377 *4)) (-4 *3 (-377 *4)))) (-3834 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1346 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))) -(-13 (-494 |t#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -4300 ($ (-776) (-776) |t#1|)) (-15 -1682 ($ $ |t#1|)) (-15 -4241 ((-569) $)) (-15 -1378 ((-569) $)) (-15 -1537 ((-569) $)) (-15 -2742 ((-569) $)) (-15 -3225 ((-776) $)) (-15 -3236 ((-776) $)) (-15 -1869 (|t#1| $ (-569) (-569))) (-15 -3776 (|t#1| $ (-569) (-569))) (-15 -1869 (|t#1| $ (-569) (-569) |t#1|)) (-15 -4044 (|t#2| $ (-569))) (-15 -3041 (|t#3| $ (-569))) (-15 -2882 ((-649 |t#1|) $)) (-15 -3943 (|t#1| $ (-569) (-569) |t#1|)) (-15 -3846 (|t#1| $ (-569) (-569) |t#1|)) (-15 -2400 ($ $ (-569) |t#2|)) (-15 -3259 ($ $ (-569) |t#3|)) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -3834 ($ (-1 |t#1| |t#1|) $)) (-15 -1346 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1346 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-1610 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1346 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1610 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1346 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1225) (-1225)) (T -58)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-58 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1610 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1346 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2274 (($ (-649 |#1|)) 11) (($ (-776) |#1|) 14)) (-4300 (($ (-776) |#1|) 13)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 10)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2274 ($ (-649 |#1|))) (-15 -2274 ($ (-776) |#1|)))) (-1225)) (T -59)) -((-2274 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-59 *3)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1225))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2274 ($ (-649 |#1|))) (-15 -2274 ($ (-776) |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2400 (($ $ (-569) (-59 |#1|)) NIL)) (-3259 (($ $ (-569) (-59 |#1|)) NIL)) (-4427 (($) NIL T CONST)) (-4044 (((-59 |#1|) $ (-569)) NIL)) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-59 |#1|) $ (-569)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4448))) (-1225)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4448))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 74) (((-3 $ "failed") (-1275 (-319 (-569)))) 63) (((-3 $ "failed") (-1275 (-958 (-383)))) 94) (((-3 $ "failed") (-1275 (-958 (-569)))) 84) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 52) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 39)) (-3150 (($ (-1275 (-319 (-383)))) 70) (($ (-1275 (-319 (-569)))) 59) (($ (-1275 (-958 (-383)))) 90) (($ (-1275 (-958 (-569)))) 80) (($ (-1275 (-412 (-958 (-383))))) 48) (($ (-1275 (-412 (-958 (-569))))) 32)) (-3362 (((-1280) $) 124)) (-3796 (((-867) $) 118) (($ (-649 (-333))) 103) (($ (-333)) 97) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 101) (($ (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704)))) 31))) -(((-61 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704))))))) (-1185)) (T -61)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704)))) (-5 *1 (-61 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3809) (-704))))))) -((-3362 (((-1280) $) 54) (((-1280)) 55)) (-3796 (((-867) $) 51))) -(((-62 |#1|) (-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) (-1185)) (T -62)) -((-3362 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-62 *3)) (-14 *3 (-1185))))) -(-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 153) (((-3 $ "failed") (-1275 (-319 (-569)))) 143) (((-3 $ "failed") (-1275 (-958 (-383)))) 173) (((-3 $ "failed") (-1275 (-958 (-569)))) 163) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 132) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 120)) (-3150 (($ (-1275 (-319 (-383)))) 149) (($ (-1275 (-319 (-569)))) 139) (($ (-1275 (-958 (-383)))) 169) (($ (-1275 (-958 (-569)))) 159) (($ (-1275 (-412 (-958 (-383))))) 128) (($ (-1275 (-412 (-958 (-569))))) 113)) (-3362 (((-1280) $) 106)) (-3796 (((-867) $) 100) (($ (-649 (-333))) 30) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 33) (($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) 98))) -(((-63 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))) (-1185)) (T -63)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) (-5 *1 (-63 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))) -((-4381 (((-3 $ "failed") (-319 (-383))) 41) (((-3 $ "failed") (-319 (-569))) 46) (((-3 $ "failed") (-958 (-383))) 50) (((-3 $ "failed") (-958 (-569))) 54) (((-3 $ "failed") (-412 (-958 (-383)))) 36) (((-3 $ "failed") (-412 (-958 (-569)))) 29)) (-3150 (($ (-319 (-383))) 39) (($ (-319 (-569))) 44) (($ (-958 (-383))) 48) (($ (-958 (-569))) 52) (($ (-412 (-958 (-383)))) 34) (($ (-412 (-958 (-569)))) 26)) (-3362 (((-1280) $) 76)) (-3796 (((-867) $) 69) (($ (-649 (-333))) 61) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 64) (($ (-343 (-3809 (QUOTE X)) (-3809) (-704))) 25))) -(((-64 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809) (-704)))))) (-1185)) (T -64)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809 (QUOTE X)) (-3809) (-704))) (-5 *1 (-64 *3)) (-14 *3 (-1185))))) -(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809) (-704)))))) -((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 114) (((-3 $ "failed") (-694 (-319 (-569)))) 102) (((-3 $ "failed") (-694 (-958 (-383)))) 136) (((-3 $ "failed") (-694 (-958 (-569)))) 125) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 90) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 76)) (-3150 (($ (-694 (-319 (-383)))) 110) (($ (-694 (-319 (-569)))) 98) (($ (-694 (-958 (-383)))) 132) (($ (-694 (-958 (-569)))) 121) (($ (-694 (-412 (-958 (-383))))) 86) (($ (-694 (-412 (-958 (-569))))) 69)) (-3362 (((-1280) $) 144)) (-3796 (((-867) $) 138) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 32) (($ (-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704)))) 59))) -(((-65 |#1|) (-13 (-388) (-621 (-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704))))) (-1185)) (T -65)) -NIL -(-13 (-388) (-621 (-694 (-343 (-3809) (-3809 (QUOTE X) (QUOTE HESS)) (-704))))) -((-4381 (((-3 $ "failed") (-319 (-383))) 60) (((-3 $ "failed") (-319 (-569))) 65) (((-3 $ "failed") (-958 (-383))) 69) (((-3 $ "failed") (-958 (-569))) 73) (((-3 $ "failed") (-412 (-958 (-383)))) 55) (((-3 $ "failed") (-412 (-958 (-569)))) 48)) (-3150 (($ (-319 (-383))) 58) (($ (-319 (-569))) 63) (($ (-958 (-383))) 67) (($ (-958 (-569))) 71) (($ (-412 (-958 (-383)))) 53) (($ (-412 (-958 (-569)))) 45)) (-3362 (((-1280) $) 82)) (-3796 (((-867) $) 76) (($ (-649 (-333))) 29) (($ (-333)) 34) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 32) (($ (-343 (-3809) (-3809 (QUOTE XC)) (-704))) 40))) -(((-66 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE XC)) (-704)))))) (-1185)) (T -66)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809) (-3809 (QUOTE XC)) (-704))) (-5 *1 (-66 *3)) (-14 *3 (-1185))))) -(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE XC)) (-704)))))) -((-3362 (((-1280) $) 68)) (-3796 (((-867) $) 62) (($ (-694 (-704))) 54) (($ (-649 (-333))) 53) (($ (-333)) 60) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 58))) -(((-67 |#1|) (-387) (-1185)) (T -67)) -NIL -(-387) -((-3362 (((-1280) $) 69)) (-3796 (((-867) $) 63) (($ (-694 (-704))) 55) (($ (-649 (-333))) 54) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 60))) -(((-68 |#1|) (-387) (-1185)) (T -68)) -NIL -(-387) -((-3362 (((-1280) $) NIL) (((-1280)) 33)) (-3796 (((-867) $) NIL))) -(((-69 |#1|) (-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) (-1185)) (T -69)) -((-3362 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-69 *3)) (-14 *3 (-1185))))) -(-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) -((-3362 (((-1280) $) 75)) (-3796 (((-867) $) 69) (($ (-694 (-704))) 61) (($ (-649 (-333))) 63) (($ (-333)) 66) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 60))) -(((-70 |#1|) (-387) (-1185)) (T -70)) -NIL -(-387) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 111) (((-3 $ "failed") (-1275 (-319 (-569)))) 100) (((-3 $ "failed") (-1275 (-958 (-383)))) 131) (((-3 $ "failed") (-1275 (-958 (-569)))) 121) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 76)) (-3150 (($ (-1275 (-319 (-383)))) 107) (($ (-1275 (-319 (-569)))) 96) (($ (-1275 (-958 (-383)))) 127) (($ (-1275 (-958 (-569)))) 117) (($ (-1275 (-412 (-958 (-383))))) 85) (($ (-1275 (-412 (-958 (-569))))) 69)) (-3362 (((-1280) $) 144)) (-3796 (((-867) $) 138) (($ (-649 (-333))) 133) (($ (-333)) 136) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 61) (($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) 62))) -(((-71 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))) (-1185)) (T -71)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) (-5 *1 (-71 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))) -((-3362 (((-1280) $) 33) (((-1280)) 32)) (-3796 (((-867) $) 36))) -(((-72 |#1|) (-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) (-1185)) (T -72)) -((-3362 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-72 *3)) (-14 *3 (-1185))))) -(-13 (-400) (-10 -7 (-15 -3362 ((-1280))))) -((-3362 (((-1280) $) 65)) (-3796 (((-867) $) 59) (($ (-694 (-704))) 51) (($ (-649 (-333))) 53) (($ (-333)) 56) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 50))) -(((-73 |#1|) (-387) (-1185)) (T -73)) -NIL -(-387) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 130) (((-3 $ "failed") (-1275 (-319 (-569)))) 120) (((-3 $ "failed") (-1275 (-958 (-383)))) 150) (((-3 $ "failed") (-1275 (-958 (-569)))) 140) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 110) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 98)) (-3150 (($ (-1275 (-319 (-383)))) 126) (($ (-1275 (-319 (-569)))) 116) (($ (-1275 (-958 (-383)))) 146) (($ (-1275 (-958 (-569)))) 136) (($ (-1275 (-412 (-958 (-383))))) 106) (($ (-1275 (-412 (-958 (-569))))) 91)) (-3362 (((-1280) $) 83)) (-3796 (((-867) $) 28) (($ (-649 (-333))) 73) (($ (-333)) 69) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 76) (($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) 70))) -(((-74 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))))) (-1185)) (T -74)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) (-5 *1 (-74 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 135) (((-3 $ "failed") (-1275 (-319 (-569)))) 124) (((-3 $ "failed") (-1275 (-958 (-383)))) 155) (((-3 $ "failed") (-1275 (-958 (-569)))) 145) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 113) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 100)) (-3150 (($ (-1275 (-319 (-383)))) 131) (($ (-1275 (-319 (-569)))) 120) (($ (-1275 (-958 (-383)))) 151) (($ (-1275 (-958 (-569)))) 141) (($ (-1275 (-412 (-958 (-383))))) 109) (($ (-1275 (-412 (-958 (-569))))) 93)) (-3362 (((-1280) $) 85)) (-3796 (((-867) $) 77) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) NIL) (($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704))))))) (-1185) (-1185) (-1185)) (T -75)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185)) (-14 *5 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE EPS)) (-3809 (QUOTE -1541)) (-704))))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 141) (((-3 $ "failed") (-1275 (-319 (-569)))) 130) (((-3 $ "failed") (-1275 (-958 (-383)))) 161) (((-3 $ "failed") (-1275 (-958 (-569)))) 151) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 119) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 106)) (-3150 (($ (-1275 (-319 (-383)))) 137) (($ (-1275 (-319 (-569)))) 126) (($ (-1275 (-958 (-383)))) 157) (($ (-1275 (-958 (-569)))) 147) (($ (-1275 (-412 (-958 (-383))))) 115) (($ (-1275 (-412 (-958 (-569))))) 99)) (-3362 (((-1280) $) 91)) (-3796 (((-867) $) 83) (($ (-649 (-333))) NIL) (($ (-333)) NIL) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) NIL) (($ (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704))))))) (-1185) (-1185) (-1185)) (T -76)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185)) (-14 *5 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE EPS)) (-3809 (QUOTE YA) (QUOTE YB)) (-704))))))) -((-4381 (((-3 $ "failed") (-319 (-383))) 83) (((-3 $ "failed") (-319 (-569))) 88) (((-3 $ "failed") (-958 (-383))) 92) (((-3 $ "failed") (-958 (-569))) 96) (((-3 $ "failed") (-412 (-958 (-383)))) 78) (((-3 $ "failed") (-412 (-958 (-569)))) 71)) (-3150 (($ (-319 (-383))) 81) (($ (-319 (-569))) 86) (($ (-958 (-383))) 90) (($ (-958 (-569))) 94) (($ (-412 (-958 (-383)))) 76) (($ (-412 (-958 (-569)))) 68)) (-3362 (((-1280) $) 63)) (-3796 (((-867) $) 51) (($ (-649 (-333))) 47) (($ (-333)) 57) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 55) (($ (-343 (-3809) (-3809 (QUOTE X)) (-704))) 48))) -(((-77 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704)))))) (-1185)) (T -77)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809) (-3809 (QUOTE X)) (-704))) (-5 *1 (-77 *3)) (-14 *3 (-1185))))) -(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704)))))) -((-4381 (((-3 $ "failed") (-319 (-383))) 47) (((-3 $ "failed") (-319 (-569))) 52) (((-3 $ "failed") (-958 (-383))) 56) (((-3 $ "failed") (-958 (-569))) 60) (((-3 $ "failed") (-412 (-958 (-383)))) 42) (((-3 $ "failed") (-412 (-958 (-569)))) 35)) (-3150 (($ (-319 (-383))) 45) (($ (-319 (-569))) 50) (($ (-958 (-383))) 54) (($ (-958 (-569))) 58) (($ (-412 (-958 (-383)))) 40) (($ (-412 (-958 (-569)))) 32)) (-3362 (((-1280) $) 81)) (-3796 (((-867) $) 75) (($ (-649 (-333))) 67) (($ (-333)) 72) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 70) (($ (-343 (-3809) (-3809 (QUOTE X)) (-704))) 31))) -(((-78 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704)))))) (-1185)) (T -78)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809) (-3809 (QUOTE X)) (-704))) (-5 *1 (-78 *3)) (-14 *3 (-1185))))) -(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809) (-3809 (QUOTE X)) (-704)))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 90) (((-3 $ "failed") (-1275 (-319 (-569)))) 79) (((-3 $ "failed") (-1275 (-958 (-383)))) 110) (((-3 $ "failed") (-1275 (-958 (-569)))) 100) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 68) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 55)) (-3150 (($ (-1275 (-319 (-383)))) 86) (($ (-1275 (-319 (-569)))) 75) (($ (-1275 (-958 (-383)))) 106) (($ (-1275 (-958 (-569)))) 96) (($ (-1275 (-412 (-958 (-383))))) 64) (($ (-1275 (-412 (-958 (-569))))) 48)) (-3362 (((-1280) $) 126)) (-3796 (((-867) $) 120) (($ (-649 (-333))) 113) (($ (-333)) 38) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 116) (($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) 39))) -(((-79 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))) (-1185)) (T -79)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704)))) (-5 *1 (-79 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE XC)) (-704))))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 154) (((-3 $ "failed") (-1275 (-319 (-569)))) 144) (((-3 $ "failed") (-1275 (-958 (-383)))) 174) (((-3 $ "failed") (-1275 (-958 (-569)))) 164) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 134) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 122)) (-3150 (($ (-1275 (-319 (-383)))) 150) (($ (-1275 (-319 (-569)))) 140) (($ (-1275 (-958 (-383)))) 170) (($ (-1275 (-958 (-569)))) 160) (($ (-1275 (-412 (-958 (-383))))) 130) (($ (-1275 (-412 (-958 (-569))))) 115)) (-3362 (((-1280) $) 108)) (-3796 (((-867) $) 102) (($ (-649 (-333))) 93) (($ (-333)) 100) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 98) (($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) 94))) -(((-80 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))))) (-1185)) (T -80)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) (-5 *1 (-80 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 79) (((-3 $ "failed") (-1275 (-319 (-569)))) 68) (((-3 $ "failed") (-1275 (-958 (-383)))) 99) (((-3 $ "failed") (-1275 (-958 (-569)))) 89) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 57) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 44)) (-3150 (($ (-1275 (-319 (-383)))) 75) (($ (-1275 (-319 (-569)))) 64) (($ (-1275 (-958 (-383)))) 95) (($ (-1275 (-958 (-569)))) 85) (($ (-1275 (-412 (-958 (-383))))) 53) (($ (-1275 (-412 (-958 (-569))))) 37)) (-3362 (((-1280) $) 125)) (-3796 (((-867) $) 119) (($ (-649 (-333))) 110) (($ (-333)) 116) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 114) (($ (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704)))) 36))) -(((-81 |#1|) (-13 (-446) (-621 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))) (-1185)) (T -81)) -NIL -(-13 (-446) (-621 (-1275 (-343 (-3809) (-3809 (QUOTE X)) (-704))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 98) (((-3 $ "failed") (-1275 (-319 (-569)))) 87) (((-3 $ "failed") (-1275 (-958 (-383)))) 118) (((-3 $ "failed") (-1275 (-958 (-569)))) 108) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 76) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 63)) (-3150 (($ (-1275 (-319 (-383)))) 94) (($ (-1275 (-319 (-569)))) 83) (($ (-1275 (-958 (-383)))) 114) (($ (-1275 (-958 (-569)))) 104) (($ (-1275 (-412 (-958 (-383))))) 72) (($ (-1275 (-412 (-958 (-569))))) 56)) (-3362 (((-1280) $) 48)) (-3796 (((-867) $) 42) (($ (-649 (-333))) 32) (($ (-333)) 35) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 38) (($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) 33))) -(((-82 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704))))))) (-1185)) (T -82)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) (-5 *1 (-82 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704))))))) -((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 118) (((-3 $ "failed") (-694 (-319 (-569)))) 107) (((-3 $ "failed") (-694 (-958 (-383)))) 140) (((-3 $ "failed") (-694 (-958 (-569)))) 129) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 96) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 83)) (-3150 (($ (-694 (-319 (-383)))) 114) (($ (-694 (-319 (-569)))) 103) (($ (-694 (-958 (-383)))) 136) (($ (-694 (-958 (-569)))) 125) (($ (-694 (-412 (-958 (-383))))) 92) (($ (-694 (-412 (-958 (-569))))) 76)) (-3362 (((-1280) $) 66)) (-3796 (((-867) $) 53) (($ (-649 (-333))) 60) (($ (-333)) 49) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 58) (($ (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) 50))) -(((-83 |#1|) (-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704))))))) (-1185)) (T -83)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704)))) (-5 *1 (-83 *3)) (-14 *3 (-1185))))) -(-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X) (QUOTE -1541)) (-3809) (-704))))))) -((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 113) (((-3 $ "failed") (-694 (-319 (-569)))) 101) (((-3 $ "failed") (-694 (-958 (-383)))) 135) (((-3 $ "failed") (-694 (-958 (-569)))) 124) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 89) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 75)) (-3150 (($ (-694 (-319 (-383)))) 109) (($ (-694 (-319 (-569)))) 97) (($ (-694 (-958 (-383)))) 131) (($ (-694 (-958 (-569)))) 120) (($ (-694 (-412 (-958 (-383))))) 85) (($ (-694 (-412 (-958 (-569))))) 68)) (-3362 (((-1280) $) 60)) (-3796 (((-867) $) 54) (($ (-649 (-333))) 48) (($ (-333)) 51) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 45) (($ (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) 46))) -(((-84 |#1|) (-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704))))))) (-1185)) (T -84)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) (-5 *1 (-84 *3)) (-14 *3 (-1185))))) -(-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE X)) (-3809) (-704))))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 105) (((-3 $ "failed") (-1275 (-319 (-569)))) 94) (((-3 $ "failed") (-1275 (-958 (-383)))) 125) (((-3 $ "failed") (-1275 (-958 (-569)))) 115) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 83) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 70)) (-3150 (($ (-1275 (-319 (-383)))) 101) (($ (-1275 (-319 (-569)))) 90) (($ (-1275 (-958 (-383)))) 121) (($ (-1275 (-958 (-569)))) 111) (($ (-1275 (-412 (-958 (-383))))) 79) (($ (-1275 (-412 (-958 (-569))))) 63)) (-3362 (((-1280) $) 47)) (-3796 (((-867) $) 41) (($ (-649 (-333))) 50) (($ (-333)) 37) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 53) (($ (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) 38))) -(((-85 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704))))))) (-1185)) (T -85)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704)))) (-5 *1 (-85 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809) (-704))))))) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 80) (((-3 $ "failed") (-1275 (-319 (-569)))) 69) (((-3 $ "failed") (-1275 (-958 (-383)))) 100) (((-3 $ "failed") (-1275 (-958 (-569)))) 90) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 58) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 45)) (-3150 (($ (-1275 (-319 (-383)))) 76) (($ (-1275 (-319 (-569)))) 65) (($ (-1275 (-958 (-383)))) 96) (($ (-1275 (-958 (-569)))) 86) (($ (-1275 (-412 (-958 (-383))))) 54) (($ (-1275 (-412 (-958 (-569))))) 38)) (-3362 (((-1280) $) 126)) (-3796 (((-867) $) 120) (($ (-649 (-333))) 111) (($ (-333)) 117) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 115) (($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) 37))) -(((-86 |#1|) (-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))) (-1185)) (T -86)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))) (-5 *1 (-86 *3)) (-14 *3 (-1185))))) -(-13 (-446) (-10 -8 (-15 -3796 ($ (-1275 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))))))) -((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 117) (((-3 $ "failed") (-694 (-319 (-569)))) 105) (((-3 $ "failed") (-694 (-958 (-383)))) 139) (((-3 $ "failed") (-694 (-958 (-569)))) 128) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 93) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 79)) (-3150 (($ (-694 (-319 (-383)))) 113) (($ (-694 (-319 (-569)))) 101) (($ (-694 (-958 (-383)))) 135) (($ (-694 (-958 (-569)))) 124) (($ (-694 (-412 (-958 (-383))))) 89) (($ (-694 (-412 (-958 (-569))))) 72)) (-3362 (((-1280) $) 63)) (-3796 (((-867) $) 57) (($ (-649 (-333))) 47) (($ (-333)) 54) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 52) (($ (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704)))) 48))) -(((-87 |#1|) (-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704))))))) (-1185)) (T -87)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704)))) (-5 *1 (-87 *3)) (-14 *3 (-1185))))) -(-13 (-388) (-10 -8 (-15 -3796 ($ (-694 (-343 (-3809 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3809) (-704))))))) -((-3362 (((-1280) $) 45)) (-3796 (((-867) $) 39) (($ (-1275 (-704))) 100) (($ (-649 (-333))) 31) (($ (-333)) 36) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 34))) -(((-88 |#1|) (-445) (-1185)) (T -88)) -NIL -(-445) -((-4381 (((-3 $ "failed") (-319 (-383))) 48) (((-3 $ "failed") (-319 (-569))) 53) (((-3 $ "failed") (-958 (-383))) 57) (((-3 $ "failed") (-958 (-569))) 61) (((-3 $ "failed") (-412 (-958 (-383)))) 43) (((-3 $ "failed") (-412 (-958 (-569)))) 36)) (-3150 (($ (-319 (-383))) 46) (($ (-319 (-569))) 51) (($ (-958 (-383))) 55) (($ (-958 (-569))) 59) (($ (-412 (-958 (-383)))) 41) (($ (-412 (-958 (-569)))) 33)) (-3362 (((-1280) $) 91)) (-3796 (((-867) $) 85) (($ (-649 (-333))) 79) (($ (-333)) 82) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 77) (($ (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))) 32))) -(((-89 |#1|) (-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))))) (-1185)) (T -89)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704))) (-5 *1 (-89 *3)) (-14 *3 (-1185))))) -(-13 (-401) (-10 -8 (-15 -3796 ($ (-343 (-3809 (QUOTE X)) (-3809 (QUOTE -1541)) (-704)))))) -((-4238 (((-1275 (-694 |#1|)) (-694 |#1|)) 64)) (-2121 (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 (-649 (-927))))) |#2| (-927)) 54)) (-3594 (((-2 (|:| |minor| (-649 (-927))) (|:| -4312 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927)) 75 (|has| |#1| (-367))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -2121 ((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 (-649 (-927))))) |#2| (-927))) (-15 -4238 ((-1275 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -3594 ((-2 (|:| |minor| (-649 (-927))) (|:| -4312 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|)) (-561) (-661 |#1|)) (T -90)) -((-3594 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |minor| (-649 (-927))) (|:| -4312 *3) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-694 *4)) (-4 *5 (-661 *4)))) (-2121 (*1 *2 *3 *4) (-12 (-4 *5 (-561)) (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 (-649 (-927)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5))))) -(-10 -7 (-15 -2121 ((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 (-649 (-927))))) |#2| (-927))) (-15 -4238 ((-1275 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-367)) (-15 -3594 ((-2 (|:| |minor| (-649 (-927))) (|:| -4312 |#2|) (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 |#2|))) |#2| (-927))) |%noBranch|)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3310 ((|#1| $) 42)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-4235 ((|#1| |#1| $) 37)) (-2412 ((|#1| $) 35)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) NIL)) (-3894 (($ |#1| $) 38)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1781 ((|#1| $) 36)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 18)) (-3635 (($) 46)) (-2804 (((-776) $) 33)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 17)) (-3796 (((-867) $) 32 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-4228 (($ (-649 |#1|)) 44)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 15 (|has| |#1| (-1108)))) (-2428 (((-776) $) 12 (|has| $ (-6 -4447))))) -(((-91 |#1|) (-13 (-1129 |#1|) (-10 -8 (-15 -4228 ($ (-649 |#1|))))) (-1108)) (T -91)) -((-4228 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-91 *3))))) -(-13 (-1129 |#1|) (-10 -8 (-15 -4228 ($ (-649 |#1|))))) -((-3796 (((-867) $) 13) (($ (-1190)) 9) (((-1190) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -3796 ((-1190) |#1|)) (-15 -3796 (|#1| (-1190))) (-15 -3796 ((-867) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -3796 ((-1190) |#1|)) (-15 -3796 (|#1| (-1190))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-1190)) 17) (((-1190) $) 16)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-93) (-140)) (T -93)) -NIL -(-13 (-1108) (-495 (-1190))) -(((-102) . T) ((-621 #0=(-1190)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T)) -((-2723 (($ $) 10)) (-2734 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|))) (-95)) (T -94)) -NIL -(-10 -8 (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|))) -((-2701 (($ $) 11)) (-2675 (($ $) 10)) (-2723 (($ $) 9)) (-2734 (($ $) 8)) (-2712 (($ $) 7)) (-2689 (($ $) 6))) -(((-95) (-140)) (T -95)) -((-2701 (*1 *1 *1) (-4 *1 (-95))) (-2675 (*1 *1 *1) (-4 *1 (-95))) (-2723 (*1 *1 *1) (-4 *1 (-95))) (-2734 (*1 *1 *1) (-4 *1 (-95))) (-2712 (*1 *1 *1) (-4 *1 (-95))) (-2689 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2689 ($ $)) (-15 -2712 ($ $)) (-15 -2734 ($ $)) (-15 -2723 ($ $)) (-15 -2675 ($ $)) (-15 -2701 ($ $)))) -((-2417 (((-112) $ $) NIL)) (-3573 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-96) (-13 (-1091) (-10 -8 (-15 -3573 ((-1143) $))))) (T -96)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-96))))) -(-13 (-1091) (-10 -8 (-15 -3573 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-2317 (((-383) (-1167) (-383)) 46) (((-383) (-1167) (-1167) (-383)) 44)) (-4217 (((-383) (-383)) 35)) (-2911 (((-1280)) 37)) (-3435 (((-1167) $) NIL)) (-1819 (((-383) (-1167) (-1167)) 50) (((-383) (-1167)) 52)) (-3547 (((-1128) $) NIL)) (-1630 (((-383) (-1167) (-1167)) 51)) (-2777 (((-383) (-1167) (-1167)) 53) (((-383) (-1167)) 54)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-97) (-13 (-1108) (-10 -7 (-15 -1819 ((-383) (-1167) (-1167))) (-15 -1819 ((-383) (-1167))) (-15 -2777 ((-383) (-1167) (-1167))) (-15 -2777 ((-383) (-1167))) (-15 -1630 ((-383) (-1167) (-1167))) (-15 -2911 ((-1280))) (-15 -4217 ((-383) (-383))) (-15 -2317 ((-383) (-1167) (-383))) (-15 -2317 ((-383) (-1167) (-1167) (-383))) (-6 -4447)))) (T -97)) -((-1819 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2777 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) (-2911 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-97)))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97)))) (-2317 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97)))) (-2317 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97))))) -(-13 (-1108) (-10 -7 (-15 -1819 ((-383) (-1167) (-1167))) (-15 -1819 ((-383) (-1167))) (-15 -2777 ((-383) (-1167) (-1167))) (-15 -2777 ((-383) (-1167))) (-15 -1630 ((-383) (-1167) (-1167))) (-15 -2911 ((-1280))) (-15 -4217 ((-383) (-383))) (-15 -2317 ((-383) (-1167) (-383))) (-15 -2317 ((-383) (-1167) (-1167) (-383))) (-6 -4447))) -NIL -(((-98) (-140)) (T -98)) -NIL -(-13 (-10 -7 (-6 -4447) (-6 (-4449 "*")) (-6 -4448) (-6 -4444) (-6 -4442) (-6 -4441) (-6 -4440) (-6 -4445) (-6 -4439) (-6 -4438) (-6 -4437) (-6 -4436) (-6 -4435) (-6 -4443) (-6 -4446) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4434))) -((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-2960 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-569))) 24)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 16)) (-3547 (((-1128) $) NIL)) (-1869 ((|#1| $ |#1|) 13)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 22)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 8 T CONST)) (-2920 (((-112) $ $) 10)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) 34) (($ $ (-776)) NIL) (($ $ (-569)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -2960 ($ (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1| (-569)))))) (-1057)) (T -99)) -((-2960 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3)))) (-2960 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-99 *3))))) -(-13 (-478) (-289 |#1| |#1|) (-10 -8 (-15 -2960 ($ (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2960 ($ (-1 |#1| |#1| (-569)))))) -((-1750 (((-423 |#2|) |#2| (-649 |#2|)) 10) (((-423 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1750 ((-423 |#2|) |#2| |#2|)) (-15 -1750 ((-423 |#2|) |#2| (-649 |#2|)))) (-13 (-457) (-147)) (-1251 |#1|)) (T -100)) -((-1750 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3)))) (-1750 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -1750 ((-423 |#2|) |#2| |#2|)) (-15 -1750 ((-423 |#2|) |#2| (-649 |#2|)))) -((-2417 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2417 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2417 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-2920 (((-112) $ $) 6))) -(((-102) (-140)) (T -102)) -((-2417 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2920 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2920 ((-112) $ $)) (-15 -2417 ((-112) $ $)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) 24 (|has| $ (-6 -4448)))) (-4416 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1718 (($ $ $) NIL (|has| $ (-6 -4448)))) (-2869 (($ $ (-649 |#1|)) 34)) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 12)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 36)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2953 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3264 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|)) 53)) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 11)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) 13)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 9)) (-3635 (($) 35)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2615 (($ (-776) |#1|) 37)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2615 ($ (-776) |#1|)) (-15 -2869 ($ $ (-649 |#1|))) (-15 -2953 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2953 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|))))) (-1108)) (T -103)) -((-2615 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1108)))) (-2869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3)))) (-2953 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1108)))) (-2953 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3)))) (-3264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (-5 *1 (-103 *2)))) (-3264 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1108)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2615 ($ (-776) |#1|)) (-15 -2869 ($ $ (-649 |#1|))) (-15 -2953 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2953 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3264 ($ $ |#1| (-1 (-649 |#1|) |#1| |#1| |#1|))))) -((-4294 ((|#3| |#2| |#2|) 36)) (-3249 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4449 "*"))))) (-3106 ((|#3| |#2| |#2|) 38)) (-2925 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4449 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4294 (|#3| |#2| |#2|)) (-15 -3106 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4449 "*"))) (PROGN (-15 -3249 (|#1| |#2| |#2|)) (-15 -2925 (|#1| |#2|))) |%noBranch|)) (-1057) (-1251 |#1|) (-692 |#1| |#4| |#5|) (-377 |#1|) (-377 |#1|)) (T -104)) -((-2925 (*1 *2 *3) (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2)) (-4 *4 (-692 *2 *5 *6)))) (-3249 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2)) (-4 *4 (-692 *2 *5 *6)))) (-3106 (*1 *2 *3 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)))) (-4294 (*1 *2 *3 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4))))) -(-10 -7 (-15 -4294 (|#3| |#2| |#2|)) (-15 -3106 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4449 "*"))) (PROGN (-15 -3249 (|#1| |#2| |#2|)) (-15 -2925 (|#1| |#2|))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1775 (((-649 (-1185))) 37)) (-2027 (((-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226)))) (-1185)) 39)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-105) (-13 (-1108) (-10 -7 (-15 -1775 ((-649 (-1185)))) (-15 -2027 ((-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226)))) (-1185))) (-6 -4447)))) (T -105)) -((-1775 (*1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-105)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226))))) (-5 *1 (-105))))) -(-13 (-1108) (-10 -7 (-15 -1775 ((-649 (-1185)))) (-15 -2027 ((-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) (|:| |singularities| (-1165 (-226)))) (-1185))) (-6 -4447))) -((-3423 (($ (-649 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3423 (|#1| (-649 |#2|)))) (-107 |#2|) (-1225)) (T -106)) -NIL -(-10 -8 (-15 -3423 (|#1| (-649 |#2|)))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-107 |#1|) (-140) (-1225)) (T -107)) -((-3423 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-107 *3)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))) (-3894 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225))))) -(-13 (-494 |t#1|) (-10 -8 (-6 -4448) (-15 -3423 ($ (-649 |t#1|))) (-15 -1781 (|t#1| $)) (-15 -3894 ($ |t#1| $)) (-15 -1877 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-569) $) NIL (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3465 (((-569) $) NIL (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL) (((-1012 2) $) 10)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-569) $) NIL (|has| (-569) (-550)))) (-3495 (($ (-412 (-569))) 9)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3035 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL))) -(((-108) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 2)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3495 ($ (-412 (-569))))))) (T -108)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108))))) -(-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 2)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3495 ($ (-412 (-569)))))) -((-2903 (((-649 (-971)) $) 13)) (-3573 (((-511) $) 9)) (-3796 (((-867) $) 20)) (-2012 (($ (-511) (-649 (-971))) 15))) -(((-109) (-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2903 ((-649 (-971)) $)) (-15 -2012 ($ (-511) (-649 (-971))))))) (T -109)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109)))) (-2012 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109))))) -(-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2903 ((-649 (-971)) $)) (-15 -2012 ($ (-511) (-649 (-971)))))) -((-2417 (((-112) $ $) NIL)) (-2436 (($ $) NIL)) (-1783 (($ $ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-112) $ (-1242 (-569)) (-112)) NIL (|has| $ (-6 -4448))) (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-1698 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3598 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3846 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4448)))) (-3776 (((-112) $ (-569)) NIL)) (-4036 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1108))) (((-569) (-112) $) NIL (|has| (-112) (-1108))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2882 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-1771 (($ $ $) NIL)) (-1749 (($ $) NIL)) (-3143 (($ $ $) NIL)) (-4300 (($ (-776) (-112)) 10)) (-1918 (($ $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL)) (-4198 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2009 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL)) (-3834 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-112) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1682 (($ $ (-112)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-4199 (((-649 (-112)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (($ $ (-1242 (-569))) NIL) (((-112) $ (-569)) NIL) (((-112) $ (-569) (-112)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3560 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3809 (($ (-649 (-112))) NIL)) (-2443 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3796 (((-867) $) NIL)) (-3251 (($ (-776) (-112)) 11)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1759 (($ $ $) NIL)) (-4419 (($ $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-4406 (($ $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-110) (-13 (-123) (-10 -8 (-15 -3251 ($ (-776) (-112)))))) (T -110)) -((-3251 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -3251 ($ (-776) (-112))))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) -(((-111 |#1| |#2|) (-140) (-1057) (-1057)) (T -111)) -NIL -(-13 (-653 |t#1|) (-1064 |t#2|) (-10 -7 (-6 -4442) (-6 -4441))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-2436 (($ $) 10)) (-1783 (($ $ $) 15)) (-3018 (($) 7 T CONST)) (-4266 (($ $) 6)) (-3473 (((-776)) 24)) (-3406 (($) 32)) (-1771 (($ $ $) 13)) (-1749 (($ $) 9)) (-3143 (($ $ $) 16)) (-1918 (($ $ $) 17)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) 30)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 28)) (-3625 (($ $ $) 20)) (-3547 (((-1128) $) NIL)) (-1882 (($) 8 T CONST)) (-2069 (($ $ $) 21)) (-1410 (((-541) $) 34)) (-3796 (((-867) $) 36)) (-1520 (((-112) $ $) NIL)) (-1759 (($ $ $) 11)) (-4419 (($ $ $) 14)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 19)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 22)) (-4406 (($ $ $) 12))) -(((-112) (-13 (-849) (-666) (-975) (-619 (-541)) (-10 -8 (-15 -1783 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -4266 ($ $))))) (T -112)) -((-1783 (*1 *1 *1 *1) (-5 *1 (-112))) (-1918 (*1 *1 *1 *1) (-5 *1 (-112))) (-3143 (*1 *1 *1 *1) (-5 *1 (-112))) (-4266 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-849) (-666) (-975) (-619 (-541)) (-10 -8 (-15 -1783 ($ $ $)) (-15 -1918 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -4266 ($ $)))) -((-2924 (((-3 (-1 |#1| (-649 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-649 |#1|))) 11) (((-3 |#1| "failed") (-114) (-649 |#1|)) 25)) (-3581 (((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-649 (-1 |#1| (-649 |#1|)))) 30)) (-4340 (((-114) |#1|) 63)) (-4070 (((-3 |#1| "failed") (-114)) 58))) -(((-113 |#1|) (-10 -7 (-15 -2924 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -2924 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -2924 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2924 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -3581 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -3581 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3581 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -4340 ((-114) |#1|)) (-15 -4070 ((-3 |#1| "failed") (-114)))) (-1108)) (T -113)) -((-4070 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1108)))) (-4340 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1108)))) (-3581 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1108)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-3581 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-2924 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1108)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-2924 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1108)) (-5 *1 (-113 *4)))) (-2924 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1108))))) -(-10 -7 (-15 -2924 ((-3 |#1| "failed") (-114) (-649 |#1|))) (-15 -2924 ((-114) (-114) (-1 |#1| (-649 |#1|)))) (-15 -2924 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2924 ((-3 (-1 |#1| (-649 |#1|)) "failed") (-114))) (-15 -3581 ((-114) (-114) (-649 (-1 |#1| (-649 |#1|))))) (-15 -3581 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3581 ((-3 (-649 (-1 |#1| (-649 |#1|))) "failed") (-114))) (-15 -4340 ((-114) |#1|)) (-15 -4070 ((-3 |#1| "failed") (-114)))) -((-2417 (((-112) $ $) NIL)) (-3766 (((-776) $) 91) (($ $ (-776)) 37)) (-2987 (((-112) $) 41)) (-1572 (($ $ (-1167) (-779)) 58) (($ $ (-511) (-779)) 33)) (-3698 (($ $ (-45 (-1167) (-779))) 16)) (-3125 (((-3 (-779) "failed") $ (-1167)) 27) (((-696 (-779)) $ (-511)) 32)) (-2903 (((-45 (-1167) (-779)) $) 15)) (-3746 (($ (-1185)) 20) (($ (-1185) (-776)) 23) (($ (-1185) (-55)) 24)) (-1788 (((-112) $) 39)) (-2853 (((-112) $) 43)) (-3573 (((-1185) $) 8)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1825 (((-112) $ (-1185)) 11)) (-4207 (($ $ (-1 (-541) (-649 (-541)))) 64) (((-3 (-1 (-541) (-649 (-541))) "failed") $) 71)) (-3547 (((-1128) $) NIL)) (-2817 (((-112) $ (-511)) 36)) (-2286 (($ $ (-1 (-112) $ $)) 45)) (-4158 (((-3 (-1 (-867) (-649 (-867))) "failed") $) 69) (($ $ (-1 (-867) (-649 (-867)))) 51) (($ $ (-1 (-867) (-867))) 53)) (-2985 (($ $ (-1167)) 55) (($ $ (-511)) 56)) (-3962 (($ $) 77)) (-3556 (($ $ (-1 (-112) $ $)) 46)) (-3796 (((-867) $) 60)) (-1520 (((-112) $ $) NIL)) (-3661 (($ $ (-511)) 34)) (-3324 (((-55) $) 72)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 89)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 103))) -(((-114) (-13 (-855) (-840 (-1185)) (-10 -8 (-15 -2903 ((-45 (-1167) (-779)) $)) (-15 -3962 ($ $)) (-15 -3746 ($ (-1185))) (-15 -3746 ($ (-1185) (-776))) (-15 -3746 ($ (-1185) (-55))) (-15 -1788 ((-112) $)) (-15 -2987 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -3766 ((-776) $)) (-15 -3766 ($ $ (-776))) (-15 -2286 ($ $ (-1 (-112) $ $))) (-15 -3556 ($ $ (-1 (-112) $ $))) (-15 -4158 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4158 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4158 ($ $ (-1 (-867) (-867)))) (-15 -4207 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4207 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -2817 ((-112) $ (-511))) (-15 -3661 ($ $ (-511))) (-15 -2985 ($ $ (-1167))) (-15 -2985 ($ $ (-511))) (-15 -3125 ((-3 (-779) "failed") $ (-1167))) (-15 -3125 ((-696 (-779)) $ (-511))) (-15 -1572 ($ $ (-1167) (-779))) (-15 -1572 ($ $ (-511) (-779))) (-15 -3698 ($ $ (-45 (-1167) (-779))))))) (T -114)) -((-2903 (*1 *2 *1) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114)))) (-3962 (*1 *1 *1) (-5 *1 (-114))) (-3746 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-114)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *1 (-114)))) (-3746 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3556 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-4158 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-4207 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) (-2817 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3661 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-2985 (*1 *1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-114)))) (-2985 (*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) (-3125 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-779)) (-5 *1 (-114)))) (-3125 (*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114)))) (-1572 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-779)) (-5 *1 (-114)))) (-1572 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114)))) (-3698 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114))))) -(-13 (-855) (-840 (-1185)) (-10 -8 (-15 -2903 ((-45 (-1167) (-779)) $)) (-15 -3962 ($ $)) (-15 -3746 ($ (-1185))) (-15 -3746 ($ (-1185) (-776))) (-15 -3746 ($ (-1185) (-55))) (-15 -1788 ((-112) $)) (-15 -2987 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -3766 ((-776) $)) (-15 -3766 ($ $ (-776))) (-15 -2286 ($ $ (-1 (-112) $ $))) (-15 -3556 ($ $ (-1 (-112) $ $))) (-15 -4158 ((-3 (-1 (-867) (-649 (-867))) "failed") $)) (-15 -4158 ($ $ (-1 (-867) (-649 (-867))))) (-15 -4158 ($ $ (-1 (-867) (-867)))) (-15 -4207 ($ $ (-1 (-541) (-649 (-541))))) (-15 -4207 ((-3 (-1 (-541) (-649 (-541))) "failed") $)) (-15 -2817 ((-112) $ (-511))) (-15 -3661 ($ $ (-511))) (-15 -2985 ($ $ (-1167))) (-15 -2985 ($ $ (-511))) (-15 -3125 ((-3 (-779) "failed") $ (-1167))) (-15 -3125 ((-696 (-779)) $ (-511))) (-15 -1572 ($ $ (-1167) (-779))) (-15 -1572 ($ $ (-511) (-779))) (-15 -3698 ($ $ (-45 (-1167) (-779)))))) -((-3735 (((-569) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -3735 ((-569) |#2|))) (-13 (-367) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -115)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-1046 (-412 *2)))) (-5 *2 (-569)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -3735 ((-569) |#2|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-569)) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1978 (($ (-1181 (-569)) (-569)) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-4337 (($ $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1466 (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 (((-569)) NIL)) (-4074 (((-569) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3166 (($ $ (-569)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-1165 (-569)) $) NIL)) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-569) $ (-569)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-874 |#1|) (-569)) (T -116)) -NIL -(-874 |#1|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-116 |#1|) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-116 |#1|) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-116 |#1|) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-116 |#1|) (-1046 (-569))))) (-3150 (((-116 |#1|) $) NIL) (((-1185) $) NIL (|has| (-116 |#1|) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-116 |#1|) (-1046 (-569)))) (((-569) $) NIL (|has| (-116 |#1|) (-1046 (-569))))) (-2612 (($ $) NIL) (($ (-569) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-116 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-116 |#1|))) (|:| |vec| (-1275 (-116 |#1|)))) (-694 $) (-1275 $)) NIL) (((-694 (-116 |#1|)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-116 |#1|) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-116 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-116 |#1|) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-116 |#1|) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1160)))) (-2051 (((-112) $) NIL (|has| (-116 |#1|) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-2839 (($ $ $) NIL (|has| (-116 |#1|) (-855)))) (-1346 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-116 |#1|) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-116 |#1|) (-310)))) (-3465 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-116 |#1|) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-116 |#1|)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-297 (-116 |#1|))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-297 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-312 (-116 |#1|)))) (($ $ (-649 (-1185)) (-649 (-116 |#1|))) NIL (|has| (-116 |#1|) (-519 (-1185) (-116 |#1|)))) (($ $ (-1185) (-116 |#1|)) NIL (|has| (-116 |#1|) (-519 (-1185) (-116 |#1|))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-289 (-116 |#1|) (-116 |#1|))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-116 |#1|) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-116 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-116 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-116 |#1|) (-1030))) (((-226) $) NIL (|has| (-116 |#1|) (-1030)))) (-1855 (((-175 (-412 (-569))) $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-116 |#1|)) NIL) (($ (-1185)) NIL (|has| (-116 |#1|) (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-915))) (|has| (-116 |#1|) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ (-569)) NIL)) (-2271 (($ $) NIL (|has| (-116 |#1|) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-116 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-116 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-116 |#1|) (-906 (-1185)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-776)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-116 |#1|) (-855)))) (-3035 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-1000 (-116 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) (-569)) (T -117)) -((-3091 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569)))) (-2612 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-1000 (-116 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) -((-3943 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-2280 (((-649 $) $) 31)) (-1534 (((-112) $ $) 36)) (-2004 (((-112) |#2| $) 40)) (-2275 (((-649 |#2|) $) 25)) (-1887 (((-112) $) 18)) (-1869 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3966 (((-112) $) 57)) (-3796 (((-867) $) 47)) (-4001 (((-649 $) $) 32)) (-2920 (((-112) $ $) 38)) (-2428 (((-776) $) 50))) -(((-118 |#1| |#2|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -3943 (|#1| |#1| "right" |#1|)) (-15 -3943 (|#1| |#1| "left" |#1|)) (-15 -1869 (|#1| |#1| "right")) (-15 -1869 (|#1| |#1| "left")) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -2275 ((-649 |#2|) |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -2428 ((-776) |#1|))) (-119 |#2|) (-1225)) (T -118)) -NIL -(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -3943 (|#1| |#1| "right" |#1|)) (-15 -3943 (|#1| |#1| "left" |#1|)) (-15 -1869 (|#1| |#1| "right")) (-15 -1869 (|#1| |#1| "left")) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -2275 ((-649 |#2|) |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2004 ((-112) |#2| |#1|)) (-15 -2428 ((-776) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 53 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 55 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) (($ $ "left" $) 56 (|has| $ (-6 -4448))) (($ $ "right" $) 54 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-4410 (($ $) 58)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-4398 (($ $) 60)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-119 |#1|) (-140) (-1225)) (T -119)) -((-4398 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-4410 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-3943 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-1718 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225)))) (-3943 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3)) (-4 *3 (-1225)))) (-4416 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225))))) -(-13 (-1018 |t#1|) (-10 -8 (-15 -4398 ($ $)) (-15 -1869 ($ $ "left")) (-15 -4410 ($ $)) (-15 -1869 ($ $ "right")) (IF (|has| $ (-6 -4448)) (PROGN (-15 -3943 ($ $ "left" $)) (-15 -1718 ($ $ $)) (-15 -3943 ($ $ "right" $)) (-15 -4416 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-2854 (((-112) |#1|) 29)) (-3246 (((-776) (-776)) 28) (((-776)) 27)) (-1335 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -1335 ((-112) |#1|)) (-15 -1335 ((-112) |#1| (-112))) (-15 -3246 ((-776))) (-15 -3246 ((-776) (-776))) (-15 -2854 ((-112) |#1|))) (-1251 (-569))) (T -120)) -((-2854 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-3246 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-3246 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-1335 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) (-1335 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569)))))) -(-10 -7 (-15 -1335 ((-112) |#1|)) (-15 -1335 ((-112) |#1| (-112))) (-15 -3246 ((-776))) (-15 -3246 ((-776) (-776))) (-15 -2854 ((-112) |#1|))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 18)) (-2241 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-4416 (($ $ $) 21 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 23 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 20)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 27)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 22)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1645 (($ |#1| $) 28)) (-3894 (($ |#1| $) 15)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 11)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3267 (($ (-649 |#1|)) 16)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3267 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)) (-15 -1645 ($ |#1| $)) (-15 -2241 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-855)) (T -121)) -((-3267 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3)))) (-3894 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-1645 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) (-2241 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-855))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3267 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)) (-15 -1645 ($ |#1| $)) (-15 -2241 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2436 (($ $) 13)) (-1749 (($ $) 11)) (-3143 (($ $ $) 23)) (-1918 (($ $ $) 21)) (-4419 (($ $ $) 19)) (-4406 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -3143 (|#1| |#1| |#1|)) (-15 -1918 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -4406 (|#1| |#1| |#1|)) (-15 -4419 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -3143 (|#1| |#1| |#1|)) (-15 -1918 (|#1| |#1| |#1|)) (-15 -1749 (|#1| |#1|)) (-15 -2436 (|#1| |#1|)) (-15 -4406 (|#1| |#1| |#1|)) (-15 -4419 (|#1| |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-2436 (($ $) 104)) (-1783 (($ $ $) 26)) (-2002 (((-1280) $ (-569) (-569)) 67 (|has| $ (-6 -4448)))) (-1317 (((-112) $) 99 (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-2951 (($ $) 103 (-12 (|has| (-112) (-855)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4448)))) (-3358 (($ $) 98 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-3914 (((-112) $ (-776)) 38)) (-3943 (((-112) $ (-1242 (-569)) (-112)) 89 (|has| $ (-6 -4448))) (((-112) $ (-569) (-112)) 55 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4447)))) (-4427 (($) 39 T CONST)) (-2507 (($ $) 101 (|has| $ (-6 -4448)))) (-2251 (($ $) 91)) (-3550 (($ $) 69 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4447))) (($ (-112) $) 70 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-3598 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-3846 (((-112) $ (-569) (-112)) 54 (|has| $ (-6 -4448)))) (-3776 (((-112) $ (-569)) 56)) (-4036 (((-569) (-112) $ (-569)) 96 (|has| (-112) (-1108))) (((-569) (-112) $) 95 (|has| (-112) (-1108))) (((-569) (-1 (-112) (-112)) $) 94)) (-2882 (((-649 (-112)) $) 46 (|has| $ (-6 -4447)))) (-1771 (($ $ $) 27)) (-1749 (($ $) 31)) (-3143 (($ $ $) 29)) (-4300 (($ (-776) (-112)) 78)) (-1918 (($ $ $) 30)) (-2314 (((-112) $ (-776)) 37)) (-4426 (((-569) $) 64 (|has| (-569) (-855)))) (-3380 (($ $ $) 14)) (-4198 (($ $ $) 97 (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2009 (((-649 (-112)) $) 47 (|has| $ (-6 -4447)))) (-2004 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 63 (|has| (-569) (-855)))) (-2839 (($ $ $) 15)) (-3834 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-4254 (((-112) $ (-776)) 36)) (-3435 (((-1167) $) 10)) (-4298 (($ $ $ (-569)) 88) (($ (-112) $ (-569)) 87)) (-1696 (((-649 (-569)) $) 61)) (-1414 (((-112) (-569) $) 60)) (-3547 (((-1128) $) 11)) (-3513 (((-112) $) 65 (|has| (-569) (-855)))) (-1574 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-1682 (($ $ (-112)) 66 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-112)) (-649 (-112))) 53 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-297 (-112))) 51 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-649 (-297 (-112)))) 50 (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))))) (-3790 (((-112) $ $) 32)) (-1957 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-4199 (((-649 (-112)) $) 59)) (-3162 (((-112) $) 35)) (-3635 (($) 34)) (-1869 (($ $ (-1242 (-569))) 84) (((-112) $ (-569)) 58) (((-112) $ (-569) (-112)) 57)) (-4328 (($ $ (-1242 (-569))) 86) (($ $ (-569)) 85)) (-3560 (((-776) (-112) $) 48 (-12 (|has| (-112) (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) 100 (|has| $ (-6 -4448)))) (-3962 (($ $) 33)) (-1410 (((-541) $) 68 (|has| (-112) (-619 (-541))))) (-3809 (($ (-649 (-112))) 77)) (-2443 (($ (-649 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4447)))) (-1759 (($ $ $) 28)) (-4419 (($ $ $) 106)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-4406 (($ $ $) 105)) (-2428 (((-776) $) 40 (|has| $ (-6 -4447))))) -(((-123) (-140)) (T -123)) -((-1749 (*1 *1 *1) (-4 *1 (-123))) (-1918 (*1 *1 *1 *1) (-4 *1 (-123))) (-3143 (*1 *1 *1 *1) (-4 *1 (-123))) (-1759 (*1 *1 *1 *1) (-4 *1 (-123))) (-1771 (*1 *1 *1 *1) (-4 *1 (-123))) (-1783 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-855) (-666) (-19 (-112)) (-10 -8 (-15 -1749 ($ $)) (-15 -1918 ($ $ $)) (-15 -3143 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1783 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-112)) . T) ((-619 (-541)) |has| (-112) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))) ((-656 #0#) . T) ((-666) . T) ((-19 #0#) . T) ((-855) . T) ((-1108) . T) ((-1225) . T)) -((-3834 (($ (-1 |#2| |#2|) $) 22)) (-3962 (($ $) 16)) (-2428 (((-776) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3962 (|#1| |#1|))) (-125 |#2|) (-1108)) (T -124)) -NIL -(-10 -8 (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3962 (|#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 53 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 55 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) (($ $ "left" $) 56 (|has| $ (-6 -4448))) (($ $ "right" $) 54 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-4410 (($ $) 58)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 61)) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-4398 (($ $) 60)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-125 |#1|) (-140) (-1108)) (T -125)) -((-3347 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1108))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3347 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-119 |#1|) . T) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 18)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) 22 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 23 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 21 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 24)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3894 (($ |#1| $) 15)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 11)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 20)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1859 (($ (-649 |#1|)) 16)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4448) (-15 -1859 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)))) (-855)) (T -126)) -((-1859 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3)))) (-3894 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4448) (-15 -1859 ($ (-649 |#1|))) (-15 -3894 ($ |#1| $)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 30)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) 32 (|has| $ (-6 -4448)))) (-4416 (($ $ $) 36 (|has| $ (-6 -4448)))) (-1718 (($ $ $) 34 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 23)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3347 (($ $ |#1| $) 16)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 22)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) 25)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 20)) (-3635 (($) 11)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1688 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 10 (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1688 ($ |#1|)) (-15 -1688 ($ $ |#1| $)))) (-1108)) (T -127)) -((-1688 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108)))) (-1688 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1688 ($ |#1|)) (-15 -1688 ($ $ |#1| $)))) -((-2417 (((-112) $ $) NIL (|has| (-129) (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-855)))) (-2951 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-129) (-855))))) (-3358 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-129) $ (-569) (-129)) 26 (|has| $ (-6 -4448))) (((-129) $ (-1242 (-569)) (-129)) NIL (|has| $ (-6 -4448)))) (-3447 (((-776) $ (-776)) 34)) (-1417 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-1698 (($ (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4447))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-129) $ (-569) (-129)) 25 (|has| $ (-6 -4448)))) (-3776 (((-129) $ (-569)) 20)) (-4036 (((-569) (-1 (-112) (-129)) $) NIL) (((-569) (-129) $) NIL (|has| (-129) (-1108))) (((-569) (-129) $ (-569)) NIL (|has| (-129) (-1108)))) (-2882 (((-649 (-129)) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-129)) 14)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 27 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-129) (-855)))) (-4198 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-855)))) (-2009 (((-649 (-129)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-3256 (((-569) $) 30 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-129) (-855)))) (-3834 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| (-129) (-1108)))) (-4298 (($ (-129) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| (-129) (-1108)))) (-3513 (((-129) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-1682 (($ $ (-129)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-129)))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108)))) (($ $ (-297 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108)))) (($ $ (-649 (-129)) (-649 (-129))) NIL (-12 (|has| (-129) (-312 (-129))) (|has| (-129) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-4199 (((-649 (-129)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 12)) (-1869 (((-129) $ (-569) (-129)) NIL) (((-129) $ (-569)) 23) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447))) (((-776) (-129) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-129) (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-129) (-619 (-541))))) (-3809 (($ (-649 (-129))) 47)) (-2443 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-649 $)) NIL)) (-3796 (((-964 (-129)) $) 35) (((-1167) $) 44) (((-867) $) NIL (|has| (-129) (-618 (-867))))) (-2072 (((-776) $) 18)) (-1719 (($ (-776)) 8)) (-1520 (((-112) $ $) NIL (|has| (-129) (-1108)))) (-1980 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2920 (((-112) $ $) 32 (|has| (-129) (-1108)))) (-2966 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-129) (-855)))) (-2428 (((-776) $) 15 (|has| $ (-6 -4447))))) -(((-128) (-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1167)) (-10 -8 (-15 -1719 ($ (-776))) (-15 -2072 ((-776) $)) (-15 -3447 ((-776) $ (-776))) (-6 -4447)))) (T -128)) -((-1719 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-2072 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128)))) (-3447 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-618 (-964 (-129))) (-618 (-1167)) (-10 -8 (-15 -1719 ($ (-776))) (-15 -2072 ((-776) $)) (-15 -3447 ((-776) $ (-776))) (-6 -4447))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) 26)) (-4427 (($) NIL T CONST)) (-3406 (($) 35)) (-3380 (($ $ $) NIL) (($) 24 T CONST)) (-2839 (($ $ $) NIL) (($) 25 T CONST)) (-2731 (((-927) $) 33)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 31)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-144)) 15) (((-144) $) 17)) (-3724 (($ (-776)) 8)) (-1368 (($ $ $) 37)) (-1353 (($ $ $) 36)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) 22)) (-2956 (((-112) $ $) 20)) (-2920 (((-112) $ $) 18)) (-2966 (((-112) $ $) 21)) (-2944 (((-112) $ $) 19))) -(((-129) (-13 (-849) (-495 (-144)) (-10 -8 (-15 -3724 ($ (-776))) (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -129)) -((-3724 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129)))) (-1353 (*1 *1 *1 *1) (-5 *1 (-129))) (-1368 (*1 *1 *1 *1) (-5 *1 (-129))) (-4427 (*1 *1) (-5 *1 (-129)))) -(-13 (-849) (-495 (-144)) (-10 -8 (-15 -3724 ($ (-776))) (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) +((-2343 (((-112) $) 12)) (-1347 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-413 (-570)) $) 25) (($ $ (-413 (-570))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -2343 ((-112) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-47 |#2| |#3|) (-1058) (-798)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -2343 ((-112) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-2343 (((-112) $) 74)) (-3925 (($ |#1| |#2|) 73)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3324 ((|#2| $) 76)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3326 ((|#1| $ |#2|) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-47 |#1| |#2|) (-141) (-1058) (-798)) (T -47)) +((-1860 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-1851 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-112)))) (-3925 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-1885 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-3326 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *2 (-368))))) +(-13 (-1058) (-111 |t#1| |t#1|) (-10 -8 (-15 -1860 (|t#1| $)) (-15 -1851 ($ $)) (-15 -3324 (|t#2| $)) (-15 -1347 ($ (-1 |t#1| |t#1|) $)) (-15 -2343 ((-112) $)) (-15 -3925 ($ |t#1| |t#2|)) (-15 -1885 ($ $)) (-15 -3326 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-368)) (-15 -3037 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-562)) (-6 (-562)) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (-6 (-38 (-413 (-570)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-294) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-4266 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-1964 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-1359 (((-112) $) 9)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-3665 (((-650 (-618 $)) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4297 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-3815 (($ $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-3044 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-2300 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-4382 (((-3 (-618 $) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL)) (-3152 (((-618 $) $) NIL) (((-570) $) NIL) (((-413 (-570)) $) NIL)) (-2372 (($ $ $) NIL)) (-2004 (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-413 (-570)))) (|:| |vec| (-1276 (-413 (-570))))) (-695 $) (-1276 $)) NIL) (((-695 (-413 (-570))) (-695 $)) NIL)) (-3600 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1594 (($ $) NIL) (($ (-650 $)) NIL)) (-3406 (((-650 (-115)) $) NIL)) (-3748 (((-115) (-115)) NIL)) (-2481 (((-112) $) 11)) (-2639 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-4400 (((-1134 (-570) (-618 $)) $) NIL)) (-3309 (($ $ (-570)) NIL)) (-2233 (((-1182 $) (-1182 $) (-618 $)) NIL) (((-1182 $) (-1182 $) (-650 (-618 $))) NIL) (($ $ (-618 $)) NIL) (($ $ (-650 (-618 $))) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-4111 (((-1182 $) (-618 $)) NIL (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) NIL)) (-3451 (((-3 (-618 $) "failed") $) NIL)) (-1841 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3739 (((-650 (-618 $)) $) NIL)) (-1355 (($ (-115) $) NIL) (($ (-115) (-650 $)) NIL)) (-3257 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) NIL)) (-1820 (($ $) NIL)) (-1428 (((-777) $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4124 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3699 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1725 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3788 (((-777) $) NIL)) (-1872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2707 (($ $) NIL) (($ $ $) NIL)) (-3519 (($ $ (-777)) NIL) (($ $) NIL)) (-4413 (((-1134 (-570) (-618 $)) $) NIL)) (-1881 (($ $) NIL (|has| $ (-1058)))) (-1411 (((-384) $) NIL) (((-227) $) NIL) (((-171 (-384)) $) NIL)) (-3798 (((-868) $) NIL) (($ (-618 $)) NIL) (($ (-413 (-570))) NIL) (($ $) NIL) (($ (-570)) NIL) (($ (-1134 (-570) (-618 $))) NIL)) (-2862 (((-777)) NIL T CONST)) (-4215 (($ $) NIL) (($ (-650 $)) NIL)) (-4217 (((-112) (-115)) NIL)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 6 T CONST)) (-1817 (($) 10 T CONST)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2923 (((-112) $ $) 13)) (-3037 (($ $ $) NIL)) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-413 (-570))) NIL) (($ $ (-570)) NIL) (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ $ $) NIL) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL))) +(((-48) (-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -3798 ($ (-1134 (-570) (-618 $)))) (-15 -4400 ((-1134 (-570) (-618 $)) $)) (-15 -4413 ((-1134 (-570) (-618 $)) $)) (-15 -3600 ($ $)) (-15 -2233 ((-1182 $) (-1182 $) (-618 $))) (-15 -2233 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -2233 ($ $ (-618 $))) (-15 -2233 ($ $ (-650 (-618 $))))))) (T -48)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) (-4413 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) (-3600 (*1 *1 *1) (-5 *1 (-48))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-618 (-48))) (-5 *1 (-48)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-650 (-618 (-48)))) (-5 *1 (-48)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-48))) (-5 *1 (-48)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-48)))) (-5 *1 (-48))))) +(-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -3798 ($ (-1134 (-570) (-618 $)))) (-15 -4400 ((-1134 (-570) (-618 $)) $)) (-15 -4413 ((-1134 (-570) (-618 $)) $)) (-15 -3600 ($ $)) (-15 -2233 ((-1182 $) (-1182 $) (-618 $))) (-15 -2233 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -2233 ($ $ (-618 $))) (-15 -2233 ($ $ (-650 (-618 $)))))) +((-2419 (((-112) $ $) NIL)) (-3826 (((-650 (-512)) $) 17)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 7)) (-3587 (((-1191) $) 18)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-49) (-13 (-1109) (-10 -8 (-15 -3826 ((-650 (-512)) $)) (-15 -3587 ((-1191) $))))) (T -49)) +((-3826 (*1 *2 *1) (-12 (-5 *2 (-650 (-512))) (-5 *1 (-49)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-49))))) +(-13 (-1109) (-10 -8 (-15 -3826 ((-650 (-512)) $)) (-15 -3587 ((-1191) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 87)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3007 (((-112) $) 30)) (-4382 (((-3 |#1| "failed") $) 33)) (-3152 ((|#1| $) 34)) (-1885 (($ $) 40)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1860 ((|#1| $) 31)) (-1407 (($ $) 76)) (-4122 (((-1168) $) NIL)) (-2624 (((-112) $) 43)) (-3551 (((-1129) $) NIL)) (-2335 (($ (-777)) 74)) (-4390 (($ (-650 (-570))) 75)) (-3324 (((-777) $) 44)) (-3798 (((-868) $) 93) (($ (-570)) 71) (($ |#1|) 69)) (-3326 ((|#1| $ $) 28)) (-2862 (((-777)) 73 T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 45 T CONST)) (-1817 (($) 17 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 66)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-626 |#1|) (-1047 |#1|) (-10 -8 (-15 -1860 (|#1| $)) (-15 -1407 ($ $)) (-15 -1885 ($ $)) (-15 -3326 (|#1| $ $)) (-15 -2335 ($ (-777))) (-15 -4390 ($ (-650 (-570)))) (-15 -2624 ((-112) $)) (-15 -3007 ((-112) $)) (-15 -3324 ((-777) $)) (-15 -1347 ($ (-1 |#1| |#1|) $)))) (-1058) (-650 (-1186))) (T -50)) +((-1860 (*1 *2 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186))))) (-1407 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))))) (-1885 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))))) (-3326 (*1 *2 *1 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186))))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-4390 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) (-14 *4 (-650 (-1186))))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-50 *3 *4)) (-14 *4 (-650 (-1186)))))) +(-13 (-626 |#1|) (-1047 |#1|) (-10 -8 (-15 -1860 (|#1| $)) (-15 -1407 ($ $)) (-15 -1885 ($ $)) (-15 -3326 (|#1| $ $)) (-15 -2335 ($ (-777))) (-15 -4390 ($ (-650 (-570)))) (-15 -2624 ((-112) $)) (-15 -3007 ((-112) $)) (-15 -3324 ((-777) $)) (-15 -1347 ($ (-1 |#1| |#1|) $)))) +((-3007 (((-112) (-52)) 18)) (-4382 (((-3 |#1| "failed") (-52)) 20)) (-3152 ((|#1| (-52)) 21)) (-3798 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3798 ((-52) |#1|)) (-15 -4382 ((-3 |#1| "failed") (-52))) (-15 -3007 ((-112) (-52))) (-15 -3152 (|#1| (-52)))) (-1226)) (T -51)) +((-3152 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1226)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1226)))) (-4382 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1226)))) (-3798 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1226))))) +(-10 -7 (-15 -3798 ((-52) |#1|)) (-15 -4382 ((-3 |#1| "failed") (-52))) (-15 -3007 ((-112) (-52))) (-15 -3152 (|#1| (-52)))) +((-2419 (((-112) $ $) NIL)) (-4305 (((-780) $) 8)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3263 (((-1113) $) 10)) (-3798 (((-868) $) 15)) (-1319 (((-112) $ $) NIL)) (-3658 (($ (-1113) (-780)) 16)) (-2923 (((-112) $ $) 12))) +(((-52) (-13 (-1109) (-10 -8 (-15 -3658 ($ (-1113) (-780))) (-15 -3263 ((-1113) $)) (-15 -4305 ((-780) $))))) (T -52)) +((-3658 (*1 *1 *2 *3) (-12 (-5 *2 (-1113)) (-5 *3 (-780)) (-5 *1 (-52)))) (-3263 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-52)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-52))))) +(-13 (-1109) (-10 -8 (-15 -3658 ($ (-1113) (-780))) (-15 -3263 ((-1113) $)) (-15 -4305 ((-780) $)))) +((-3453 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3453 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1058) (-654 |#1|) (-858 |#1|)) (T -53)) +((-3453 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-654 *5)) (-4 *5 (-1058)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-858 *5))))) +(-10 -7 (-15 -3453 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1983 ((|#3| |#3| (-650 (-1186))) 46)) (-3668 ((|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3| (-928)) 32) ((|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3668 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3|)) (-15 -3668 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3| (-928))) (-15 -1983 (|#3| |#3| (-650 (-1186))))) (-1109) (-13 (-1058) (-893 |#1|) (-620 (-899 |#1|))) (-13 (-436 |#2|) (-893 |#1|) (-620 (-899 |#1|)))) (T -54)) +((-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) (-3668 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-650 (-1085 *5 *6 *2))) (-5 *4 (-928)) (-4 *5 (-1109)) (-4 *6 (-13 (-1058) (-893 *5) (-620 (-899 *5)))) (-4 *2 (-13 (-436 *6) (-893 *5) (-620 (-899 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3668 (*1 *2 *3 *2) (-12 (-5 *3 (-650 (-1085 *4 *5 *2))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3668 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3|)) (-15 -3668 (|#3| (-650 (-1085 |#1| |#2| |#3|)) |#3| (-928))) (-15 -1983 (|#3| |#3| (-650 (-1186))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 14)) (-4382 (((-3 (-777) "failed") $) 34)) (-3152 (((-777) $) NIL)) (-2481 (((-112) $) 16)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) 18)) (-3798 (((-868) $) 23) (($ (-777)) 29)) (-1319 (((-112) $ $) NIL)) (-2472 (($) 11 T CONST)) (-2923 (((-112) $ $) 20))) +(((-55) (-13 (-1109) (-1047 (-777)) (-10 -8 (-15 -2472 ($) -3711) (-15 -1359 ((-112) $)) (-15 -2481 ((-112) $))))) (T -55)) +((-2472 (*1 *1) (-5 *1 (-55))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-2481 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1109) (-1047 (-777)) (-10 -8 (-15 -2472 ($) -3711) (-15 -1359 ((-112) $)) (-15 -2481 ((-112) $)))) +((-3636 (((-112) $ (-777)) 27)) (-2986 (($ $ (-570) |#3|) 66)) (-2478 (($ $ (-570) |#4|) 70)) (-1774 ((|#3| $ (-570)) 79)) (-2885 (((-650 |#2|) $) 47)) (-3846 (((-112) $ (-777)) 31)) (-1935 (((-112) |#2| $) 74)) (-3837 (($ (-1 |#2| |#2|) $) 55)) (-1347 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2063 (((-112) $ (-777)) 29)) (-2973 (($ $ |#2|) 52)) (-3116 (((-112) (-1 (-112) |#2|) $) 21)) (-1872 ((|#2| $ (-570) (-570)) NIL) ((|#2| $ (-570) (-570) |#2|) 35)) (-3562 (((-777) (-1 (-112) |#2|) $) 41) (((-777) |#2| $) 76)) (-3964 (($ $) 51)) (-4357 ((|#4| $ (-570)) 82)) (-3798 (((-868) $) 88)) (-1431 (((-112) (-1 (-112) |#2|) $) 20)) (-2923 (((-112) $ $) 73)) (-2431 (((-777) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2478 (|#1| |#1| (-570) |#4|)) (-15 -2986 (|#1| |#1| (-570) |#3|)) (-15 -2885 ((-650 |#2|) |#1|)) (-15 -4357 (|#4| |#1| (-570))) (-15 -1774 (|#3| |#1| (-570))) (-15 -1872 (|#2| |#1| (-570) (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) (-570))) (-15 -2973 (|#1| |#1| |#2|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -1935 ((-112) |#2| |#1|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777))) (-15 -3964 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1226) (-378 |#2|) (-378 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2478 (|#1| |#1| (-570) |#4|)) (-15 -2986 (|#1| |#1| (-570) |#3|)) (-15 -2885 ((-650 |#2|) |#1|)) (-15 -4357 (|#4| |#1| (-570))) (-15 -1774 (|#3| |#1| (-570))) (-15 -1872 (|#2| |#1| (-570) (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) (-570))) (-15 -2973 (|#1| |#1| |#2|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -1935 ((-112) |#2| |#1|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777))) (-15 -3964 (|#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) (-570) |#1|) 45)) (-2986 (($ $ (-570) |#2|) 43)) (-2478 (($ $ (-570) |#3|) 42)) (-3734 (($) 7 T CONST)) (-1774 ((|#2| $ (-570)) 47)) (-3849 ((|#1| $ (-570) (-570) |#1|) 44)) (-3778 ((|#1| $ (-570) (-570)) 49)) (-2885 (((-650 |#1|) $) 31)) (-3227 (((-777) $) 52)) (-4300 (($ (-777) (-777) |#1|) 58)) (-3239 (((-777) $) 51)) (-3846 (((-112) $ (-777)) 9)) (-1515 (((-570) $) 56)) (-2523 (((-570) $) 54)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1579 (((-570) $) 55)) (-4110 (((-570) $) 53)) (-3837 (($ (-1 |#1| |#1|) $) 35)) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) 57)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) (-570)) 50) ((|#1| $ (-570) (-570) |#1|) 48)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-4357 ((|#3| $ (-570)) 46)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-57 |#1| |#2| |#3|) (-141) (-1226) (-378 |t#1|) (-378 |t#1|)) (T -57)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-4300 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-777)) (-4 *3 (-1226)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2973 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1226)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-570)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-777)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-777)))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-1226)))) (-3778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-1226)))) (-1872 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1226)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1226)) (-4 *5 (-378 *4)) (-4 *2 (-378 *4)))) (-4357 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1226)) (-4 *5 (-378 *4)) (-4 *2 (-378 *4)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-650 *3)))) (-3945 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1226)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) (-3849 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1226)) (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) (-2986 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1226)) (-4 *3 (-378 *4)) (-4 *5 (-378 *4)))) (-2478 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1226)) (-4 *5 (-378 *4)) (-4 *3 (-378 *4)))) (-3837 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1347 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1347 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))) +(-13 (-495 |t#1|) (-10 -8 (-6 -4449) (-6 -4448) (-15 -4300 ($ (-777) (-777) |t#1|)) (-15 -2973 ($ $ |t#1|)) (-15 -1515 ((-570) $)) (-15 -1579 ((-570) $)) (-15 -2523 ((-570) $)) (-15 -4110 ((-570) $)) (-15 -3227 ((-777) $)) (-15 -3239 ((-777) $)) (-15 -1872 (|t#1| $ (-570) (-570))) (-15 -3778 (|t#1| $ (-570) (-570))) (-15 -1872 (|t#1| $ (-570) (-570) |t#1|)) (-15 -1774 (|t#2| $ (-570))) (-15 -4357 (|t#3| $ (-570))) (-15 -2885 ((-650 |t#1|) $)) (-15 -3945 (|t#1| $ (-570) (-570) |t#1|)) (-15 -3849 (|t#1| $ (-570) (-570) |t#1|)) (-15 -2986 ($ $ (-570) |t#2|)) (-15 -2478 ($ $ (-570) |t#3|)) (-15 -1347 ($ (-1 |t#1| |t#1|) $)) (-15 -3837 ($ (-1 |t#1| |t#1|) $)) (-15 -1347 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1347 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-4292 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3600 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1347 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -4292 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1347 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1226) (-1226)) (T -58)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1226)) (-4 *2 (-1226)) (-5 *1 (-58 *5 *2)))) (-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1226)) (-4 *5 (-1226)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -4292 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1347 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-4397 (($ (-650 |#1|)) 11) (($ (-777) |#1|) 14)) (-4300 (($ (-777) |#1|) 13)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 10)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4397 ($ (-650 |#1|))) (-15 -4397 ($ (-777) |#1|)))) (-1226)) (T -59)) +((-4397 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-59 *3)))) (-4397 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-59 *3)) (-4 *3 (-1226))))) +(-13 (-19 |#1|) (-10 -8 (-15 -4397 ($ (-650 |#1|))) (-15 -4397 ($ (-777) |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2986 (($ $ (-570) (-59 |#1|)) NIL)) (-2478 (($ $ (-570) (-59 |#1|)) NIL)) (-3734 (($) NIL T CONST)) (-1774 (((-59 |#1|) $ (-570)) NIL)) (-3849 ((|#1| $ (-570) (-570) |#1|) NIL)) (-3778 ((|#1| $ (-570) (-570)) NIL)) (-2885 (((-650 |#1|) $) NIL)) (-3227 (((-777) $) NIL)) (-4300 (($ (-777) (-777) |#1|) NIL)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1515 (((-570) $) NIL)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1579 (((-570) $) NIL)) (-4110 (((-570) $) NIL)) (-3837 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-4357 (((-59 |#1|) $ (-570)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4449))) (-1226)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4449))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 74) (((-3 $ "failed") (-1276 (-320 (-570)))) 63) (((-3 $ "failed") (-1276 (-959 (-384)))) 94) (((-3 $ "failed") (-1276 (-959 (-570)))) 84) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 52) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 39)) (-3152 (($ (-1276 (-320 (-384)))) 70) (($ (-1276 (-320 (-570)))) 59) (($ (-1276 (-959 (-384)))) 90) (($ (-1276 (-959 (-570)))) 80) (($ (-1276 (-413 (-959 (-384))))) 48) (($ (-1276 (-413 (-959 (-570))))) 32)) (-3363 (((-1281) $) 124)) (-3798 (((-868) $) 118) (($ (-650 (-334))) 103) (($ (-334)) 97) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 101) (($ (-1276 (-344 (-3811 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3811) (-705)))) 31))) +(((-61 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3811) (-705))))))) (-1186)) (T -61)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3811) (-705)))) (-5 *1 (-61 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3811) (-705))))))) +((-3363 (((-1281) $) 54) (((-1281)) 55)) (-3798 (((-868) $) 51))) +(((-62 |#1|) (-13 (-401) (-10 -7 (-15 -3363 ((-1281))))) (-1186)) (T -62)) +((-3363 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-62 *3)) (-14 *3 (-1186))))) +(-13 (-401) (-10 -7 (-15 -3363 ((-1281))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 153) (((-3 $ "failed") (-1276 (-320 (-570)))) 143) (((-3 $ "failed") (-1276 (-959 (-384)))) 173) (((-3 $ "failed") (-1276 (-959 (-570)))) 163) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 132) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 120)) (-3152 (($ (-1276 (-320 (-384)))) 149) (($ (-1276 (-320 (-570)))) 139) (($ (-1276 (-959 (-384)))) 169) (($ (-1276 (-959 (-570)))) 159) (($ (-1276 (-413 (-959 (-384))))) 128) (($ (-1276 (-413 (-959 (-570))))) 113)) (-3363 (((-1281) $) 106)) (-3798 (((-868) $) 100) (($ (-650 (-334))) 30) (($ (-334)) 35) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 33) (($ (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705)))) 98))) +(((-63 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705))))))) (-1186)) (T -63)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705)))) (-5 *1 (-63 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705))))))) +((-4382 (((-3 $ "failed") (-320 (-384))) 41) (((-3 $ "failed") (-320 (-570))) 46) (((-3 $ "failed") (-959 (-384))) 50) (((-3 $ "failed") (-959 (-570))) 54) (((-3 $ "failed") (-413 (-959 (-384)))) 36) (((-3 $ "failed") (-413 (-959 (-570)))) 29)) (-3152 (($ (-320 (-384))) 39) (($ (-320 (-570))) 44) (($ (-959 (-384))) 48) (($ (-959 (-570))) 52) (($ (-413 (-959 (-384)))) 34) (($ (-413 (-959 (-570)))) 26)) (-3363 (((-1281) $) 76)) (-3798 (((-868) $) 69) (($ (-650 (-334))) 61) (($ (-334)) 66) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 64) (($ (-344 (-3811 (QUOTE X)) (-3811) (-705))) 25))) +(((-64 |#1|) (-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811 (QUOTE X)) (-3811) (-705)))))) (-1186)) (T -64)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-344 (-3811 (QUOTE X)) (-3811) (-705))) (-5 *1 (-64 *3)) (-14 *3 (-1186))))) +(-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811 (QUOTE X)) (-3811) (-705)))))) +((-4382 (((-3 $ "failed") (-695 (-320 (-384)))) 114) (((-3 $ "failed") (-695 (-320 (-570)))) 102) (((-3 $ "failed") (-695 (-959 (-384)))) 136) (((-3 $ "failed") (-695 (-959 (-570)))) 125) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 90) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 76)) (-3152 (($ (-695 (-320 (-384)))) 110) (($ (-695 (-320 (-570)))) 98) (($ (-695 (-959 (-384)))) 132) (($ (-695 (-959 (-570)))) 121) (($ (-695 (-413 (-959 (-384))))) 86) (($ (-695 (-413 (-959 (-570))))) 69)) (-3363 (((-1281) $) 144)) (-3798 (((-868) $) 138) (($ (-650 (-334))) 29) (($ (-334)) 34) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 32) (($ (-695 (-344 (-3811) (-3811 (QUOTE X) (QUOTE HESS)) (-705)))) 59))) +(((-65 |#1|) (-13 (-389) (-622 (-695 (-344 (-3811) (-3811 (QUOTE X) (QUOTE HESS)) (-705))))) (-1186)) (T -65)) +NIL +(-13 (-389) (-622 (-695 (-344 (-3811) (-3811 (QUOTE X) (QUOTE HESS)) (-705))))) +((-4382 (((-3 $ "failed") (-320 (-384))) 60) (((-3 $ "failed") (-320 (-570))) 65) (((-3 $ "failed") (-959 (-384))) 69) (((-3 $ "failed") (-959 (-570))) 73) (((-3 $ "failed") (-413 (-959 (-384)))) 55) (((-3 $ "failed") (-413 (-959 (-570)))) 48)) (-3152 (($ (-320 (-384))) 58) (($ (-320 (-570))) 63) (($ (-959 (-384))) 67) (($ (-959 (-570))) 71) (($ (-413 (-959 (-384)))) 53) (($ (-413 (-959 (-570)))) 45)) (-3363 (((-1281) $) 82)) (-3798 (((-868) $) 76) (($ (-650 (-334))) 29) (($ (-334)) 34) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 32) (($ (-344 (-3811) (-3811 (QUOTE XC)) (-705))) 40))) +(((-66 |#1|) (-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811) (-3811 (QUOTE XC)) (-705)))))) (-1186)) (T -66)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-344 (-3811) (-3811 (QUOTE XC)) (-705))) (-5 *1 (-66 *3)) (-14 *3 (-1186))))) +(-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811) (-3811 (QUOTE XC)) (-705)))))) +((-3363 (((-1281) $) 68)) (-3798 (((-868) $) 62) (($ (-695 (-705))) 54) (($ (-650 (-334))) 53) (($ (-334)) 60) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 58))) +(((-67 |#1|) (-388) (-1186)) (T -67)) +NIL +(-388) +((-3363 (((-1281) $) 69)) (-3798 (((-868) $) 63) (($ (-695 (-705))) 55) (($ (-650 (-334))) 54) (($ (-334)) 57) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 60))) +(((-68 |#1|) (-388) (-1186)) (T -68)) +NIL +(-388) +((-3363 (((-1281) $) NIL) (((-1281)) 33)) (-3798 (((-868) $) NIL))) +(((-69 |#1|) (-13 (-401) (-10 -7 (-15 -3363 ((-1281))))) (-1186)) (T -69)) +((-3363 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-69 *3)) (-14 *3 (-1186))))) +(-13 (-401) (-10 -7 (-15 -3363 ((-1281))))) +((-3363 (((-1281) $) 75)) (-3798 (((-868) $) 69) (($ (-695 (-705))) 61) (($ (-650 (-334))) 63) (($ (-334)) 66) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 60))) +(((-70 |#1|) (-388) (-1186)) (T -70)) +NIL +(-388) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 111) (((-3 $ "failed") (-1276 (-320 (-570)))) 100) (((-3 $ "failed") (-1276 (-959 (-384)))) 131) (((-3 $ "failed") (-1276 (-959 (-570)))) 121) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 89) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 76)) (-3152 (($ (-1276 (-320 (-384)))) 107) (($ (-1276 (-320 (-570)))) 96) (($ (-1276 (-959 (-384)))) 127) (($ (-1276 (-959 (-570)))) 117) (($ (-1276 (-413 (-959 (-384))))) 85) (($ (-1276 (-413 (-959 (-570))))) 69)) (-3363 (((-1281) $) 144)) (-3798 (((-868) $) 138) (($ (-650 (-334))) 133) (($ (-334)) 136) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 61) (($ (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705)))) 62))) +(((-71 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705))))))) (-1186)) (T -71)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705)))) (-5 *1 (-71 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705))))))) +((-3363 (((-1281) $) 33) (((-1281)) 32)) (-3798 (((-868) $) 36))) +(((-72 |#1|) (-13 (-401) (-10 -7 (-15 -3363 ((-1281))))) (-1186)) (T -72)) +((-3363 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-72 *3)) (-14 *3 (-1186))))) +(-13 (-401) (-10 -7 (-15 -3363 ((-1281))))) +((-3363 (((-1281) $) 65)) (-3798 (((-868) $) 59) (($ (-695 (-705))) 51) (($ (-650 (-334))) 53) (($ (-334)) 56) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 50))) +(((-73 |#1|) (-388) (-1186)) (T -73)) +NIL +(-388) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 130) (((-3 $ "failed") (-1276 (-320 (-570)))) 120) (((-3 $ "failed") (-1276 (-959 (-384)))) 150) (((-3 $ "failed") (-1276 (-959 (-570)))) 140) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 110) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 98)) (-3152 (($ (-1276 (-320 (-384)))) 126) (($ (-1276 (-320 (-570)))) 116) (($ (-1276 (-959 (-384)))) 146) (($ (-1276 (-959 (-570)))) 136) (($ (-1276 (-413 (-959 (-384))))) 106) (($ (-1276 (-413 (-959 (-570))))) 91)) (-3363 (((-1281) $) 83)) (-3798 (((-868) $) 28) (($ (-650 (-334))) 73) (($ (-334)) 69) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 76) (($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705)))) 70))) +(((-74 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705))))))) (-1186)) (T -74)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705)))) (-5 *1 (-74 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705))))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 135) (((-3 $ "failed") (-1276 (-320 (-570)))) 124) (((-3 $ "failed") (-1276 (-959 (-384)))) 155) (((-3 $ "failed") (-1276 (-959 (-570)))) 145) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 113) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 100)) (-3152 (($ (-1276 (-320 (-384)))) 131) (($ (-1276 (-320 (-570)))) 120) (($ (-1276 (-959 (-384)))) 151) (($ (-1276 (-959 (-570)))) 141) (($ (-1276 (-413 (-959 (-384))))) 109) (($ (-1276 (-413 (-959 (-570))))) 93)) (-3363 (((-1281) $) 85)) (-3798 (((-868) $) 77) (($ (-650 (-334))) NIL) (($ (-334)) NIL) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) NIL) (($ (-1276 (-344 (-3811 (QUOTE X) (QUOTE EPS)) (-3811 (QUOTE -1542)) (-705)))) 72))) +(((-75 |#1| |#2| |#3|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X) (QUOTE EPS)) (-3811 (QUOTE -1542)) (-705))))))) (-1186) (-1186) (-1186)) (T -75)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE X) (QUOTE EPS)) (-3811 (QUOTE -1542)) (-705)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186)) (-14 *5 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X) (QUOTE EPS)) (-3811 (QUOTE -1542)) (-705))))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 141) (((-3 $ "failed") (-1276 (-320 (-570)))) 130) (((-3 $ "failed") (-1276 (-959 (-384)))) 161) (((-3 $ "failed") (-1276 (-959 (-570)))) 151) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 119) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 106)) (-3152 (($ (-1276 (-320 (-384)))) 137) (($ (-1276 (-320 (-570)))) 126) (($ (-1276 (-959 (-384)))) 157) (($ (-1276 (-959 (-570)))) 147) (($ (-1276 (-413 (-959 (-384))))) 115) (($ (-1276 (-413 (-959 (-570))))) 99)) (-3363 (((-1281) $) 91)) (-3798 (((-868) $) 83) (($ (-650 (-334))) NIL) (($ (-334)) NIL) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) NIL) (($ (-1276 (-344 (-3811 (QUOTE EPS)) (-3811 (QUOTE YA) (QUOTE YB)) (-705)))) 78))) +(((-76 |#1| |#2| |#3|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE EPS)) (-3811 (QUOTE YA) (QUOTE YB)) (-705))))))) (-1186) (-1186) (-1186)) (T -76)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE EPS)) (-3811 (QUOTE YA) (QUOTE YB)) (-705)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186)) (-14 *5 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE EPS)) (-3811 (QUOTE YA) (QUOTE YB)) (-705))))))) +((-4382 (((-3 $ "failed") (-320 (-384))) 83) (((-3 $ "failed") (-320 (-570))) 88) (((-3 $ "failed") (-959 (-384))) 92) (((-3 $ "failed") (-959 (-570))) 96) (((-3 $ "failed") (-413 (-959 (-384)))) 78) (((-3 $ "failed") (-413 (-959 (-570)))) 71)) (-3152 (($ (-320 (-384))) 81) (($ (-320 (-570))) 86) (($ (-959 (-384))) 90) (($ (-959 (-570))) 94) (($ (-413 (-959 (-384)))) 76) (($ (-413 (-959 (-570)))) 68)) (-3363 (((-1281) $) 63)) (-3798 (((-868) $) 51) (($ (-650 (-334))) 47) (($ (-334)) 57) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 55) (($ (-344 (-3811) (-3811 (QUOTE X)) (-705))) 48))) +(((-77 |#1|) (-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811) (-3811 (QUOTE X)) (-705)))))) (-1186)) (T -77)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-344 (-3811) (-3811 (QUOTE X)) (-705))) (-5 *1 (-77 *3)) (-14 *3 (-1186))))) +(-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811) (-3811 (QUOTE X)) (-705)))))) +((-4382 (((-3 $ "failed") (-320 (-384))) 47) (((-3 $ "failed") (-320 (-570))) 52) (((-3 $ "failed") (-959 (-384))) 56) (((-3 $ "failed") (-959 (-570))) 60) (((-3 $ "failed") (-413 (-959 (-384)))) 42) (((-3 $ "failed") (-413 (-959 (-570)))) 35)) (-3152 (($ (-320 (-384))) 45) (($ (-320 (-570))) 50) (($ (-959 (-384))) 54) (($ (-959 (-570))) 58) (($ (-413 (-959 (-384)))) 40) (($ (-413 (-959 (-570)))) 32)) (-3363 (((-1281) $) 81)) (-3798 (((-868) $) 75) (($ (-650 (-334))) 67) (($ (-334)) 72) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 70) (($ (-344 (-3811) (-3811 (QUOTE X)) (-705))) 31))) +(((-78 |#1|) (-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811) (-3811 (QUOTE X)) (-705)))))) (-1186)) (T -78)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-344 (-3811) (-3811 (QUOTE X)) (-705))) (-5 *1 (-78 *3)) (-14 *3 (-1186))))) +(-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811) (-3811 (QUOTE X)) (-705)))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 90) (((-3 $ "failed") (-1276 (-320 (-570)))) 79) (((-3 $ "failed") (-1276 (-959 (-384)))) 110) (((-3 $ "failed") (-1276 (-959 (-570)))) 100) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 68) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 55)) (-3152 (($ (-1276 (-320 (-384)))) 86) (($ (-1276 (-320 (-570)))) 75) (($ (-1276 (-959 (-384)))) 106) (($ (-1276 (-959 (-570)))) 96) (($ (-1276 (-413 (-959 (-384))))) 64) (($ (-1276 (-413 (-959 (-570))))) 48)) (-3363 (((-1281) $) 126)) (-3798 (((-868) $) 120) (($ (-650 (-334))) 113) (($ (-334)) 38) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 116) (($ (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705)))) 39))) +(((-79 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705))))))) (-1186)) (T -79)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705)))) (-5 *1 (-79 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE XC)) (-705))))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 154) (((-3 $ "failed") (-1276 (-320 (-570)))) 144) (((-3 $ "failed") (-1276 (-959 (-384)))) 174) (((-3 $ "failed") (-1276 (-959 (-570)))) 164) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 134) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 122)) (-3152 (($ (-1276 (-320 (-384)))) 150) (($ (-1276 (-320 (-570)))) 140) (($ (-1276 (-959 (-384)))) 170) (($ (-1276 (-959 (-570)))) 160) (($ (-1276 (-413 (-959 (-384))))) 130) (($ (-1276 (-413 (-959 (-570))))) 115)) (-3363 (((-1281) $) 108)) (-3798 (((-868) $) 102) (($ (-650 (-334))) 93) (($ (-334)) 100) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 98) (($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705)))) 94))) +(((-80 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705))))))) (-1186)) (T -80)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705)))) (-5 *1 (-80 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705))))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 79) (((-3 $ "failed") (-1276 (-320 (-570)))) 68) (((-3 $ "failed") (-1276 (-959 (-384)))) 99) (((-3 $ "failed") (-1276 (-959 (-570)))) 89) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 57) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 44)) (-3152 (($ (-1276 (-320 (-384)))) 75) (($ (-1276 (-320 (-570)))) 64) (($ (-1276 (-959 (-384)))) 95) (($ (-1276 (-959 (-570)))) 85) (($ (-1276 (-413 (-959 (-384))))) 53) (($ (-1276 (-413 (-959 (-570))))) 37)) (-3363 (((-1281) $) 125)) (-3798 (((-868) $) 119) (($ (-650 (-334))) 110) (($ (-334)) 116) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 114) (($ (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705)))) 36))) +(((-81 |#1|) (-13 (-447) (-622 (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705))))) (-1186)) (T -81)) +NIL +(-13 (-447) (-622 (-1276 (-344 (-3811) (-3811 (QUOTE X)) (-705))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 98) (((-3 $ "failed") (-1276 (-320 (-570)))) 87) (((-3 $ "failed") (-1276 (-959 (-384)))) 118) (((-3 $ "failed") (-1276 (-959 (-570)))) 108) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 76) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 63)) (-3152 (($ (-1276 (-320 (-384)))) 94) (($ (-1276 (-320 (-570)))) 83) (($ (-1276 (-959 (-384)))) 114) (($ (-1276 (-959 (-570)))) 104) (($ (-1276 (-413 (-959 (-384))))) 72) (($ (-1276 (-413 (-959 (-570))))) 56)) (-3363 (((-1281) $) 48)) (-3798 (((-868) $) 42) (($ (-650 (-334))) 32) (($ (-334)) 35) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 38) (($ (-1276 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705)))) 33))) +(((-82 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705))))))) (-1186)) (T -82)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705)))) (-5 *1 (-82 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705))))))) +((-4382 (((-3 $ "failed") (-695 (-320 (-384)))) 118) (((-3 $ "failed") (-695 (-320 (-570)))) 107) (((-3 $ "failed") (-695 (-959 (-384)))) 140) (((-3 $ "failed") (-695 (-959 (-570)))) 129) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 96) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 83)) (-3152 (($ (-695 (-320 (-384)))) 114) (($ (-695 (-320 (-570)))) 103) (($ (-695 (-959 (-384)))) 136) (($ (-695 (-959 (-570)))) 125) (($ (-695 (-413 (-959 (-384))))) 92) (($ (-695 (-413 (-959 (-570))))) 76)) (-3363 (((-1281) $) 66)) (-3798 (((-868) $) 53) (($ (-650 (-334))) 60) (($ (-334)) 49) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 58) (($ (-695 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705)))) 50))) +(((-83 |#1|) (-13 (-389) (-10 -8 (-15 -3798 ($ (-695 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705))))))) (-1186)) (T -83)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-695 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705)))) (-5 *1 (-83 *3)) (-14 *3 (-1186))))) +(-13 (-389) (-10 -8 (-15 -3798 ($ (-695 (-344 (-3811 (QUOTE X) (QUOTE -1542)) (-3811) (-705))))))) +((-4382 (((-3 $ "failed") (-695 (-320 (-384)))) 113) (((-3 $ "failed") (-695 (-320 (-570)))) 101) (((-3 $ "failed") (-695 (-959 (-384)))) 135) (((-3 $ "failed") (-695 (-959 (-570)))) 124) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 89) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 75)) (-3152 (($ (-695 (-320 (-384)))) 109) (($ (-695 (-320 (-570)))) 97) (($ (-695 (-959 (-384)))) 131) (($ (-695 (-959 (-570)))) 120) (($ (-695 (-413 (-959 (-384))))) 85) (($ (-695 (-413 (-959 (-570))))) 68)) (-3363 (((-1281) $) 60)) (-3798 (((-868) $) 54) (($ (-650 (-334))) 48) (($ (-334)) 51) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 45) (($ (-695 (-344 (-3811 (QUOTE X)) (-3811) (-705)))) 46))) +(((-84 |#1|) (-13 (-389) (-10 -8 (-15 -3798 ($ (-695 (-344 (-3811 (QUOTE X)) (-3811) (-705))))))) (-1186)) (T -84)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-695 (-344 (-3811 (QUOTE X)) (-3811) (-705)))) (-5 *1 (-84 *3)) (-14 *3 (-1186))))) +(-13 (-389) (-10 -8 (-15 -3798 ($ (-695 (-344 (-3811 (QUOTE X)) (-3811) (-705))))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 105) (((-3 $ "failed") (-1276 (-320 (-570)))) 94) (((-3 $ "failed") (-1276 (-959 (-384)))) 125) (((-3 $ "failed") (-1276 (-959 (-570)))) 115) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 83) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 70)) (-3152 (($ (-1276 (-320 (-384)))) 101) (($ (-1276 (-320 (-570)))) 90) (($ (-1276 (-959 (-384)))) 121) (($ (-1276 (-959 (-570)))) 111) (($ (-1276 (-413 (-959 (-384))))) 79) (($ (-1276 (-413 (-959 (-570))))) 63)) (-3363 (((-1281) $) 47)) (-3798 (((-868) $) 41) (($ (-650 (-334))) 50) (($ (-334)) 37) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 53) (($ (-1276 (-344 (-3811 (QUOTE X)) (-3811) (-705)))) 38))) +(((-85 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X)) (-3811) (-705))))))) (-1186)) (T -85)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE X)) (-3811) (-705)))) (-5 *1 (-85 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X)) (-3811) (-705))))))) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 80) (((-3 $ "failed") (-1276 (-320 (-570)))) 69) (((-3 $ "failed") (-1276 (-959 (-384)))) 100) (((-3 $ "failed") (-1276 (-959 (-570)))) 90) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 58) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 45)) (-3152 (($ (-1276 (-320 (-384)))) 76) (($ (-1276 (-320 (-570)))) 65) (($ (-1276 (-959 (-384)))) 96) (($ (-1276 (-959 (-570)))) 86) (($ (-1276 (-413 (-959 (-384))))) 54) (($ (-1276 (-413 (-959 (-570))))) 38)) (-3363 (((-1281) $) 126)) (-3798 (((-868) $) 120) (($ (-650 (-334))) 111) (($ (-334)) 117) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 115) (($ (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705)))) 37))) +(((-86 |#1|) (-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705))))))) (-1186)) (T -86)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705)))) (-5 *1 (-86 *3)) (-14 *3 (-1186))))) +(-13 (-447) (-10 -8 (-15 -3798 ($ (-1276 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705))))))) +((-4382 (((-3 $ "failed") (-695 (-320 (-384)))) 117) (((-3 $ "failed") (-695 (-320 (-570)))) 105) (((-3 $ "failed") (-695 (-959 (-384)))) 139) (((-3 $ "failed") (-695 (-959 (-570)))) 128) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 93) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 79)) (-3152 (($ (-695 (-320 (-384)))) 113) (($ (-695 (-320 (-570)))) 101) (($ (-695 (-959 (-384)))) 135) (($ (-695 (-959 (-570)))) 124) (($ (-695 (-413 (-959 (-384))))) 89) (($ (-695 (-413 (-959 (-570))))) 72)) (-3363 (((-1281) $) 63)) (-3798 (((-868) $) 57) (($ (-650 (-334))) 47) (($ (-334)) 54) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 52) (($ (-695 (-344 (-3811 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3811) (-705)))) 48))) +(((-87 |#1|) (-13 (-389) (-10 -8 (-15 -3798 ($ (-695 (-344 (-3811 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3811) (-705))))))) (-1186)) (T -87)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-695 (-344 (-3811 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3811) (-705)))) (-5 *1 (-87 *3)) (-14 *3 (-1186))))) +(-13 (-389) (-10 -8 (-15 -3798 ($ (-695 (-344 (-3811 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3811) (-705))))))) +((-3363 (((-1281) $) 45)) (-3798 (((-868) $) 39) (($ (-1276 (-705))) 100) (($ (-650 (-334))) 31) (($ (-334)) 36) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 34))) +(((-88 |#1|) (-446) (-1186)) (T -88)) +NIL +(-446) +((-4382 (((-3 $ "failed") (-320 (-384))) 48) (((-3 $ "failed") (-320 (-570))) 53) (((-3 $ "failed") (-959 (-384))) 57) (((-3 $ "failed") (-959 (-570))) 61) (((-3 $ "failed") (-413 (-959 (-384)))) 43) (((-3 $ "failed") (-413 (-959 (-570)))) 36)) (-3152 (($ (-320 (-384))) 46) (($ (-320 (-570))) 51) (($ (-959 (-384))) 55) (($ (-959 (-570))) 59) (($ (-413 (-959 (-384)))) 41) (($ (-413 (-959 (-570)))) 33)) (-3363 (((-1281) $) 91)) (-3798 (((-868) $) 85) (($ (-650 (-334))) 79) (($ (-334)) 82) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 77) (($ (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705))) 32))) +(((-89 |#1|) (-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705)))))) (-1186)) (T -89)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705))) (-5 *1 (-89 *3)) (-14 *3 (-1186))))) +(-13 (-402) (-10 -8 (-15 -3798 ($ (-344 (-3811 (QUOTE X)) (-3811 (QUOTE -1542)) (-705)))))) +((-2398 (((-1276 (-695 |#1|)) (-695 |#1|)) 64)) (-4082 (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 (-650 (-928))))) |#2| (-928)) 54)) (-2541 (((-2 (|:| |minor| (-650 (-928))) (|:| -4313 |#2|) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 |#2|))) |#2| (-928)) 75 (|has| |#1| (-368))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -4082 ((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 (-650 (-928))))) |#2| (-928))) (-15 -2398 ((-1276 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-368)) (-15 -2541 ((-2 (|:| |minor| (-650 (-928))) (|:| -4313 |#2|) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 |#2|))) |#2| (-928))) |%noBranch|)) (-562) (-662 |#1|)) (T -90)) +((-2541 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |minor| (-650 (-928))) (|:| -4313 *3) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5)))) (-2398 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-1276 (-695 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-695 *4)) (-4 *5 (-662 *4)))) (-4082 (*1 *2 *3 *4) (-12 (-4 *5 (-562)) (-5 *2 (-2 (|:| -2568 (-695 *5)) (|:| |vec| (-1276 (-650 (-928)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5))))) +(-10 -7 (-15 -4082 ((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 (-650 (-928))))) |#2| (-928))) (-15 -2398 ((-1276 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-368)) (-15 -2541 ((-2 (|:| |minor| (-650 (-928))) (|:| -4313 |#2|) (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 |#2|))) |#2| (-928))) |%noBranch|)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3312 ((|#1| $) 42)) (-3636 (((-112) $ (-777)) NIL)) (-3734 (($) NIL T CONST)) (-2141 ((|#1| |#1| $) 37)) (-1561 ((|#1| $) 35)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1334 ((|#1| $) NIL)) (-2213 (($ |#1| $) 38)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4067 ((|#1| $) 36)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 18)) (-4359 (($) 46)) (-2806 (((-777) $) 33)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 17)) (-3798 (((-868) $) 32 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) NIL)) (-2563 (($ (-650 |#1|)) 44)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 15 (|has| |#1| (-1109)))) (-2431 (((-777) $) 12 (|has| $ (-6 -4448))))) +(((-91 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -2563 ($ (-650 |#1|))))) (-1109)) (T -91)) +((-2563 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-91 *3))))) +(-13 (-1130 |#1|) (-10 -8 (-15 -2563 ($ (-650 |#1|))))) +((-3798 (((-868) $) 13) (($ (-1191)) 9) (((-1191) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3798 ((-1191) |#1|)) (-15 -3798 (|#1| (-1191))) (-15 -3798 ((-868) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3798 ((-1191) |#1|)) (-15 -3798 (|#1| (-1191))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-1191)) 17) (((-1191) $) 16)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-93) (-141)) (T -93)) +NIL +(-13 (-1109) (-496 (-1191))) +(((-102) . T) ((-622 #0=(-1191)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T)) +((-2726 (($ $) 10)) (-2737 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2737 (|#1| |#1|)) (-15 -2726 (|#1| |#1|))) (-95)) (T -94)) +NIL +(-10 -8 (-15 -2737 (|#1| |#1|)) (-15 -2726 (|#1| |#1|))) +((-2704 (($ $) 11)) (-2678 (($ $) 10)) (-2726 (($ $) 9)) (-2737 (($ $) 8)) (-2715 (($ $) 7)) (-2692 (($ $) 6))) +(((-95) (-141)) (T -95)) +((-2704 (*1 *1 *1) (-4 *1 (-95))) (-2678 (*1 *1 *1) (-4 *1 (-95))) (-2726 (*1 *1 *1) (-4 *1 (-95))) (-2737 (*1 *1 *1) (-4 *1 (-95))) (-2715 (*1 *1 *1) (-4 *1 (-95))) (-2692 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2692 ($ $)) (-15 -2715 ($ $)) (-15 -2737 ($ $)) (-15 -2726 ($ $)) (-15 -2678 ($ $)) (-15 -2704 ($ $)))) +((-2419 (((-112) $ $) NIL)) (-3574 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-96) (-13 (-1092) (-10 -8 (-15 -3574 ((-1144) $))))) (T -96)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-96))))) +(-13 (-1092) (-10 -8 (-15 -3574 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-4098 (((-384) (-1168) (-384)) 46) (((-384) (-1168) (-1168) (-384)) 44)) (-3961 (((-384) (-384)) 35)) (-4309 (((-1281)) 37)) (-4122 (((-1168) $) NIL)) (-3946 (((-384) (-1168) (-1168)) 50) (((-384) (-1168)) 52)) (-3551 (((-1129) $) NIL)) (-2417 (((-384) (-1168) (-1168)) 51)) (-3150 (((-384) (-1168) (-1168)) 53) (((-384) (-1168)) 54)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-97) (-13 (-1109) (-10 -7 (-15 -3946 ((-384) (-1168) (-1168))) (-15 -3946 ((-384) (-1168))) (-15 -3150 ((-384) (-1168) (-1168))) (-15 -3150 ((-384) (-1168))) (-15 -2417 ((-384) (-1168) (-1168))) (-15 -4309 ((-1281))) (-15 -3961 ((-384) (-384))) (-15 -4098 ((-384) (-1168) (-384))) (-15 -4098 ((-384) (-1168) (-1168) (-384))) (-6 -4448)))) (T -97)) +((-3946 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-2417 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) (-4309 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-97)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-97)))) (-4098 (*1 *2 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97)))) (-4098 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97))))) +(-13 (-1109) (-10 -7 (-15 -3946 ((-384) (-1168) (-1168))) (-15 -3946 ((-384) (-1168))) (-15 -3150 ((-384) (-1168) (-1168))) (-15 -3150 ((-384) (-1168))) (-15 -2417 ((-384) (-1168) (-1168))) (-15 -4309 ((-1281))) (-15 -3961 ((-384) (-384))) (-15 -4098 ((-384) (-1168) (-384))) (-15 -4098 ((-384) (-1168) (-1168) (-384))) (-6 -4448))) +NIL +(((-98) (-141)) (T -98)) +NIL +(-13 (-10 -7 (-6 -4448) (-6 (-4450 "*")) (-6 -4449) (-6 -4445) (-6 -4443) (-6 -4442) (-6 -4441) (-6 -4446) (-6 -4440) (-6 -4439) (-6 -4438) (-6 -4437) (-6 -4436) (-6 -4444) (-6 -4447) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4435))) +((-2419 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-4127 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-570))) 24)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 16)) (-3551 (((-1129) $) NIL)) (-1872 ((|#1| $ |#1|) 13)) (-3897 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-3798 (((-868) $) 22)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 8 T CONST)) (-2923 (((-112) $ $) 10)) (-3037 (($ $ $) NIL)) (** (($ $ (-928)) 34) (($ $ (-777)) NIL) (($ $ (-570)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-479) (-290 |#1| |#1|) (-10 -8 (-15 -4127 ($ (-1 |#1| |#1|))) (-15 -4127 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4127 ($ (-1 |#1| |#1| (-570)))))) (-1058)) (T -99)) +((-4127 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3)))) (-4127 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3)))) (-4127 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-99 *3))))) +(-13 (-479) (-290 |#1| |#1|) (-10 -8 (-15 -4127 ($ (-1 |#1| |#1|))) (-15 -4127 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4127 ($ (-1 |#1| |#1| (-570)))))) +((-1978 (((-424 |#2|) |#2| (-650 |#2|)) 10) (((-424 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1978 ((-424 |#2|) |#2| |#2|)) (-15 -1978 ((-424 |#2|) |#2| (-650 |#2|)))) (-13 (-458) (-148)) (-1252 |#1|)) (T -100)) +((-1978 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-13 (-458) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-100 *5 *3)))) (-1978 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-458) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -1978 ((-424 |#2|) |#2| |#2|)) (-15 -1978 ((-424 |#2|) |#2| (-650 |#2|)))) +((-2419 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -2419 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -2419 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-2923 (((-112) $ $) 6))) +(((-102) (-141)) (T -102)) +((-2419 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2923 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2923 ((-112) $ $)) (-15 -2419 ((-112) $ $)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) 24 (|has| $ (-6 -4449)))) (-1959 (($ $ $) NIL (|has| $ (-6 -4449)))) (-3717 (($ $ $) NIL (|has| $ (-6 -4449)))) (-3045 (($ $ (-650 |#1|)) 34)) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "left" $) NIL (|has| $ (-6 -4449))) (($ $ "right" $) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4411 (($ $) 12)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3349 (($ $ |#1| $) 36)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2866 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-2921 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-650 |#1|) |#1| |#1| |#1|)) 53)) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4399 (($ $) 11)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) 13)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 9)) (-4359 (($) 35)) (-1872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3536 (((-570) $ $) NIL)) (-3680 (((-112) $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2126 (($ (-777) |#1|) 37)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -2126 ($ (-777) |#1|)) (-15 -3045 ($ $ (-650 |#1|))) (-15 -2866 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2866 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2921 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2921 ($ $ |#1| (-1 (-650 |#1|) |#1| |#1| |#1|))))) (-1109)) (T -103)) +((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-103 *3)) (-4 *3 (-1109)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3)))) (-2866 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1109)))) (-2866 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3)))) (-2921 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (-5 *1 (-103 *2)))) (-2921 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-650 *2) *2 *2 *2)) (-4 *2 (-1109)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -2126 ($ (-777) |#1|)) (-15 -3045 ($ $ (-650 |#1|))) (-15 -2866 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2866 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2921 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2921 ($ $ |#1| (-1 (-650 |#1|) |#1| |#1| |#1|))))) +((-2751 ((|#3| |#2| |#2|) 36)) (-3866 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4450 "*"))))) (-4394 ((|#3| |#2| |#2|) 38)) (-2017 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4450 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2751 (|#3| |#2| |#2|)) (-15 -4394 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4450 "*"))) (PROGN (-15 -3866 (|#1| |#2| |#2|)) (-15 -2017 (|#1| |#2|))) |%noBranch|)) (-1058) (-1252 |#1|) (-693 |#1| |#4| |#5|) (-378 |#1|) (-378 |#1|)) (T -104)) +((-2017 (*1 *2 *3) (-12 (|has| *2 (-6 (-4450 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2)) (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1252 *2)) (-4 *4 (-693 *2 *5 *6)))) (-3866 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4450 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2)) (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1252 *2)) (-4 *4 (-693 *2 *5 *6)))) (-4394 (*1 *2 *3 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1252 *4)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)))) (-2751 (*1 *2 *3 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1252 *4)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4))))) +(-10 -7 (-15 -2751 (|#3| |#2| |#2|)) (-15 -4394 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4450 "*"))) (PROGN (-15 -3866 (|#1| |#2| |#2|)) (-15 -2017 (|#1| |#2|))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1589 (((-650 (-1186))) 37)) (-1580 (((-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227)))) (-1186)) 39)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-105) (-13 (-1109) (-10 -7 (-15 -1589 ((-650 (-1186)))) (-15 -1580 ((-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227)))) (-1186))) (-6 -4448)))) (T -105)) +((-1589 (*1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-105)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227))))) (-5 *1 (-105))))) +(-13 (-1109) (-10 -7 (-15 -1589 ((-650 (-1186)))) (-15 -1580 ((-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) (|:| |singularities| (-1166 (-227)))) (-1186))) (-6 -4448))) +((-2089 (($ (-650 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -2089 (|#1| (-650 |#2|)))) (-107 |#2|) (-1226)) (T -106)) +NIL +(-10 -8 (-15 -2089 (|#1| (-650 |#2|)))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-107 |#1|) (-141) (-1226)) (T -107)) +((-2089 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-4 *1 (-107 *3)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1226)))) (-2213 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1226)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1226))))) +(-13 (-495 |t#1|) (-10 -8 (-6 -4449) (-15 -2089 ($ (-650 |t#1|))) (-15 -4067 (|t#1| $)) (-15 -2213 ($ |t#1| $)) (-15 -1334 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-570) $) NIL (|has| (-570) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-570) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-570) (-1047 (-570))))) (-3152 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-570) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| (-570) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-570) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-3367 (((-112) $) NIL (|has| (-570) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-570) (-856)))) (-1347 (($ (-1 (-570) (-570)) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-570) (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) NIL)) (-4140 (((-570) $) NIL (|has| (-570) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-570) $) NIL)) (-1411 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 8) (($ (-570)) NIL) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL) (((-1013 2) $) 10)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 (((-570) $) NIL (|has| (-570) (-551)))) (-2894 (($ (-413 (-570))) 9)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| (-570) (-826)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3037 (($ $ $) NIL) (($ (-570) (-570)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL))) +(((-108) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 2)) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -2894 ($ (-413 (-570))))))) (T -108)) +((-2545 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108))))) +(-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 2)) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -2894 ($ (-413 (-570)))))) +((-2906 (((-650 (-972)) $) 13)) (-3574 (((-512) $) 9)) (-3798 (((-868) $) 20)) (-1373 (($ (-512) (-650 (-972))) 15))) +(((-109) (-13 (-619 (-868)) (-10 -8 (-15 -3574 ((-512) $)) (-15 -2906 ((-650 (-972)) $)) (-15 -1373 ($ (-512) (-650 (-972))))))) (T -109)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-109)))) (-2906 (*1 *2 *1) (-12 (-5 *2 (-650 (-972))) (-5 *1 (-109)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-109))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3574 ((-512) $)) (-15 -2906 ((-650 (-972)) $)) (-15 -1373 ($ (-512) (-650 (-972)))))) +((-2419 (((-112) $ $) NIL)) (-2439 (($ $) NIL)) (-1786 (($ $ $) NIL)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) $) NIL (|has| (-112) (-856))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2632 (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| (-112) (-856)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4449)))) (-3360 (($ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3945 (((-112) $ (-1243 (-570)) (-112)) NIL (|has| $ (-6 -4449))) (((-112) $ (-570) (-112)) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-1697 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-3600 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-3849 (((-112) $ (-570) (-112)) NIL (|has| $ (-6 -4449)))) (-3778 (((-112) $ (-570)) NIL)) (-4039 (((-570) (-112) $ (-570)) NIL (|has| (-112) (-1109))) (((-570) (-112) $) NIL (|has| (-112) (-1109))) (((-570) (-1 (-112) (-112)) $) NIL)) (-2885 (((-650 (-112)) $) NIL (|has| $ (-6 -4448)))) (-1773 (($ $ $) NIL)) (-1748 (($ $) NIL)) (-3992 (($ $ $) NIL)) (-4300 (($ (-777) (-112)) 10)) (-3000 (($ $ $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL)) (-2735 (($ $ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2282 (((-650 (-112)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL)) (-3837 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-4299 (($ $ $ (-570)) NIL) (($ (-112) $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-112) $) NIL (|has| (-570) (-856)))) (-4089 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2973 (($ $ (-112)) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-112)) (-650 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-298 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-650 (-298 (-112)))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-2880 (((-650 (-112)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 (($ $ (-1243 (-570))) NIL) (((-112) $ (-570)) NIL) (((-112) $ (-570) (-112)) NIL)) (-4331 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-3562 (((-777) (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109)))) (((-777) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-112) (-620 (-542))))) (-3811 (($ (-650 (-112))) NIL)) (-2445 (($ (-650 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3798 (((-868) $) NIL)) (-4081 (($ (-777) (-112)) 11)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1760 (($ $ $) NIL)) (-4423 (($ $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-4407 (($ $ $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-110) (-13 (-124) (-10 -8 (-15 -4081 ($ (-777) (-112)))))) (T -110)) +((-4081 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -4081 ($ (-777) (-112))))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +(((-111 |#1| |#2|) (-141) (-1058) (-1058)) (T -111)) +NIL +(-13 (-654 |t#1|) (-1065 |t#2|) (-10 -7 (-6 -4443) (-6 -4442))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-2439 (($ $) 10)) (-1786 (($ $ $) 15)) (-3020 (($) 7 T CONST)) (-4268 (($ $) 6)) (-3475 (((-777)) 24)) (-3408 (($) 32)) (-1773 (($ $ $) 13)) (-1748 (($ $) 9)) (-3992 (($ $ $) 16)) (-3000 (($ $ $) 17)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) 30)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) 28)) (-1365 (($ $ $) 20)) (-3551 (((-1129) $) NIL)) (-1883 (($) 8 T CONST)) (-1569 (($ $ $) 21)) (-1411 (((-542) $) 34)) (-3798 (((-868) $) 36)) (-1319 (((-112) $ $) NIL)) (-1760 (($ $ $) 11)) (-4423 (($ $ $) 14)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 19)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 22)) (-4407 (($ $ $) 12))) +(((-112) (-13 (-850) (-667) (-976) (-620 (-542)) (-10 -8 (-15 -1786 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -4268 ($ $))))) (T -112)) +((-1786 (*1 *1 *1 *1) (-5 *1 (-112))) (-3000 (*1 *1 *1 *1) (-5 *1 (-112))) (-3992 (*1 *1 *1 *1) (-5 *1 (-112))) (-4268 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-850) (-667) (-976) (-620 (-542)) (-10 -8 (-15 -1786 ($ $ $)) (-15 -3000 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -4268 ($ $)))) +((-1773 (($ $ $) 6)) (-1748 (($ $) 8)) (-1760 (($ $ $) 7))) +(((-113) (-141)) (T -113)) +((-1748 (*1 *1 *1) (-4 *1 (-113))) (-1760 (*1 *1 *1 *1) (-4 *1 (-113))) (-1773 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1226) (-10 -8 (-15 -1748 ($ $)) (-15 -1760 ($ $ $)) (-15 -1773 ($ $ $)))) +(((-1226) . T)) +((-1926 (((-3 (-1 |#1| (-650 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-650 |#1|))) 11) (((-3 |#1| "failed") (-115) (-650 |#1|)) 25)) (-3942 (((-3 (-650 (-1 |#1| (-650 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-650 (-1 |#1| (-650 |#1|)))) 30)) (-3438 (((-115) |#1|) 63)) (-3686 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -1926 ((-3 |#1| "failed") (-115) (-650 |#1|))) (-15 -1926 ((-115) (-115) (-1 |#1| (-650 |#1|)))) (-15 -1926 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1926 ((-3 (-1 |#1| (-650 |#1|)) "failed") (-115))) (-15 -3942 ((-115) (-115) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3942 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3942 ((-3 (-650 (-1 |#1| (-650 |#1|))) "failed") (-115))) (-15 -3438 ((-115) |#1|)) (-15 -3686 ((-3 |#1| "failed") (-115)))) (-1109)) (T -114)) +((-3686 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1109)))) (-3438 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1109)))) (-3942 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-1 *4 (-650 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1109)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-3942 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 (-1 *4 (-650 *4)))) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-1926 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-650 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1109)))) (-1926 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-1926 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-650 *4))) (-4 *4 (-1109)) (-5 *1 (-114 *4)))) (-1926 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-650 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1109))))) +(-10 -7 (-15 -1926 ((-3 |#1| "failed") (-115) (-650 |#1|))) (-15 -1926 ((-115) (-115) (-1 |#1| (-650 |#1|)))) (-15 -1926 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1926 ((-3 (-1 |#1| (-650 |#1|)) "failed") (-115))) (-15 -3942 ((-115) (-115) (-650 (-1 |#1| (-650 |#1|))))) (-15 -3942 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3942 ((-3 (-650 (-1 |#1| (-650 |#1|))) "failed") (-115))) (-15 -3438 ((-115) |#1|)) (-15 -3686 ((-3 |#1| "failed") (-115)))) +((-2419 (((-112) $ $) NIL)) (-2793 (((-777) $) 91) (($ $ (-777)) 37)) (-1803 (((-112) $) 41)) (-3932 (($ $ (-1168) (-780)) 58) (($ $ (-512) (-780)) 33)) (-3294 (($ $ (-45 (-1168) (-780))) 16)) (-3127 (((-3 (-780) "failed") $ (-1168)) 27) (((-697 (-780)) $ (-512)) 32)) (-2906 (((-45 (-1168) (-780)) $) 15)) (-3748 (($ (-1186)) 20) (($ (-1186) (-777)) 23) (($ (-1186) (-55)) 24)) (-3296 (((-112) $) 39)) (-3863 (((-112) $) 43)) (-3574 (((-1186) $) 8)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3257 (((-112) $ (-1186)) 11)) (-4209 (($ $ (-1 (-542) (-650 (-542)))) 64) (((-3 (-1 (-542) (-650 (-542))) "failed") $) 71)) (-3551 (((-1129) $) NIL)) (-2941 (((-112) $ (-512)) 36)) (-4199 (($ $ (-1 (-112) $ $)) 45)) (-4160 (((-3 (-1 (-868) (-650 (-868))) "failed") $) 69) (($ $ (-1 (-868) (-650 (-868)))) 51) (($ $ (-1 (-868) (-868))) 53)) (-1565 (($ $ (-1168)) 55) (($ $ (-512)) 56)) (-3964 (($ $) 77)) (-3439 (($ $ (-1 (-112) $ $)) 46)) (-3798 (((-868) $) 60)) (-1319 (((-112) $ $) NIL)) (-3663 (($ $ (-512)) 34)) (-3385 (((-55) $) 72)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 89)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 103))) +(((-115) (-13 (-856) (-841 (-1186)) (-10 -8 (-15 -2906 ((-45 (-1168) (-780)) $)) (-15 -3964 ($ $)) (-15 -3748 ($ (-1186))) (-15 -3748 ($ (-1186) (-777))) (-15 -3748 ($ (-1186) (-55))) (-15 -3296 ((-112) $)) (-15 -1803 ((-112) $)) (-15 -3863 ((-112) $)) (-15 -2793 ((-777) $)) (-15 -2793 ($ $ (-777))) (-15 -4199 ($ $ (-1 (-112) $ $))) (-15 -3439 ($ $ (-1 (-112) $ $))) (-15 -4160 ((-3 (-1 (-868) (-650 (-868))) "failed") $)) (-15 -4160 ($ $ (-1 (-868) (-650 (-868))))) (-15 -4160 ($ $ (-1 (-868) (-868)))) (-15 -4209 ($ $ (-1 (-542) (-650 (-542))))) (-15 -4209 ((-3 (-1 (-542) (-650 (-542))) "failed") $)) (-15 -2941 ((-112) $ (-512))) (-15 -3663 ($ $ (-512))) (-15 -1565 ($ $ (-1168))) (-15 -1565 ($ $ (-512))) (-15 -3127 ((-3 (-780) "failed") $ (-1168))) (-15 -3127 ((-697 (-780)) $ (-512))) (-15 -3932 ($ $ (-1168) (-780))) (-15 -3932 ($ $ (-512) (-780))) (-15 -3294 ($ $ (-45 (-1168) (-780))))))) (T -115)) +((-2906 (*1 *2 *1) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115)))) (-3964 (*1 *1 *1) (-5 *1 (-115))) (-3748 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-115)))) (-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *1 (-115)))) (-3748 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-115)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-115)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3439 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-4160 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-868))) (-5 *1 (-115)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115)))) (-4209 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115)))) (-2941 (*1 *2 *1 *3) (-12 (-5 *3 (-512)) (-5 *2 (-112)) (-5 *1 (-115)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115)))) (-1565 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-115)))) (-1565 (*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115)))) (-3127 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-780)) (-5 *1 (-115)))) (-3127 (*1 *2 *1 *3) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-780))) (-5 *1 (-115)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-780)) (-5 *1 (-115)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-780)) (-5 *1 (-115)))) (-3294 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115))))) +(-13 (-856) (-841 (-1186)) (-10 -8 (-15 -2906 ((-45 (-1168) (-780)) $)) (-15 -3964 ($ $)) (-15 -3748 ($ (-1186))) (-15 -3748 ($ (-1186) (-777))) (-15 -3748 ($ (-1186) (-55))) (-15 -3296 ((-112) $)) (-15 -1803 ((-112) $)) (-15 -3863 ((-112) $)) (-15 -2793 ((-777) $)) (-15 -2793 ($ $ (-777))) (-15 -4199 ($ $ (-1 (-112) $ $))) (-15 -3439 ($ $ (-1 (-112) $ $))) (-15 -4160 ((-3 (-1 (-868) (-650 (-868))) "failed") $)) (-15 -4160 ($ $ (-1 (-868) (-650 (-868))))) (-15 -4160 ($ $ (-1 (-868) (-868)))) (-15 -4209 ($ $ (-1 (-542) (-650 (-542))))) (-15 -4209 ((-3 (-1 (-542) (-650 (-542))) "failed") $)) (-15 -2941 ((-112) $ (-512))) (-15 -3663 ($ $ (-512))) (-15 -1565 ($ $ (-1168))) (-15 -1565 ($ $ (-512))) (-15 -3127 ((-3 (-780) "failed") $ (-1168))) (-15 -3127 ((-697 (-780)) $ (-512))) (-15 -3932 ($ $ (-1168) (-780))) (-15 -3932 ($ $ (-512) (-780))) (-15 -3294 ($ $ (-45 (-1168) (-780)))))) +((-1681 (((-570) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -1681 ((-570) |#2|))) (-13 (-368) (-1047 (-413 (-570)))) (-1252 |#1|)) (T -116)) +((-1681 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-1047 (-413 *2)))) (-5 *2 (-570)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -1681 ((-570) |#2|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $ (-570)) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-4346 (($ (-1182 (-570)) (-570)) NIL)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3119 (($ $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-4202 (((-777) $) NIL)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2132 (((-570)) NIL)) (-4133 (((-570) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3500 (($ $ (-570)) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-1410 (((-1166 (-570)) $) NIL)) (-2115 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-570) $ (-570)) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL))) +(((-117 |#1|) (-875 |#1|) (-570)) (T -117)) +NIL +(-875 |#1|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-117 |#1|) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-117 |#1|) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-117 |#1|) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-117 |#1|) (-1047 (-570))))) (-3152 (((-117 |#1|) $) NIL) (((-1186) $) NIL (|has| (-117 |#1|) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-117 |#1|) (-1047 (-570)))) (((-570) $) NIL (|has| (-117 |#1|) (-1047 (-570))))) (-1962 (($ $) NIL) (($ (-570) $) NIL)) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-117 |#1|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-117 |#1|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-117 |#1|))) (|:| |vec| (-1276 (-117 |#1|)))) (-695 $) (-1276 $)) NIL) (((-695 (-117 |#1|)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-117 |#1|) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| (-117 |#1|) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-117 |#1|) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-117 |#1|) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-117 |#1|) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1161)))) (-3367 (((-112) $) NIL (|has| (-117 |#1|) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-117 |#1|) (-856)))) (-2876 (($ $ $) NIL (|has| (-117 |#1|) (-856)))) (-1347 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-117 |#1|) (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-117 |#1|) (-311)))) (-4140 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-117 |#1|) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-117 |#1|)) (-650 (-117 |#1|))) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-298 (-117 |#1|))) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-650 (-298 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-313 (-117 |#1|)))) (($ $ (-650 (-1186)) (-650 (-117 |#1|))) NIL (|has| (-117 |#1|) (-520 (-1186) (-117 |#1|)))) (($ $ (-1186) (-117 |#1|)) NIL (|has| (-117 |#1|) (-520 (-1186) (-117 |#1|))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-290 (-117 |#1|) (-117 |#1|))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| (-117 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-117 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-777)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-117 |#1|) $) NIL)) (-1411 (((-899 (-570)) $) NIL (|has| (-117 |#1|) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-117 |#1|) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-117 |#1|) (-620 (-542)))) (((-384) $) NIL (|has| (-117 |#1|) (-1031))) (((-227) $) NIL (|has| (-117 |#1|) (-1031)))) (-4322 (((-176 (-413 (-570))) $) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-117 |#1|)) NIL) (($ (-1186)) NIL (|has| (-117 |#1|) (-1047 (-1186))))) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-916))) (|has| (-117 |#1|) (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-413 (-570)) $ (-570)) NIL)) (-2216 (($ $) NIL (|has| (-117 |#1|) (-826)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL (|has| (-117 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-117 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-117 |#1|) (-907 (-1186)))) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-777)) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-117 |#1|) (-856)))) (-3037 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1001 (-117 |#1|)) (-10 -8 (-15 -3093 ((-413 (-570)) $ (-570))) (-15 -4322 ((-176 (-413 (-570))) $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)))) (-570)) (T -118)) +((-3093 (*1 *2 *1 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-570)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-118 *3)) (-14 *3 (-570)))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-570)))) (-1962 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1001 (-117 |#1|)) (-10 -8 (-15 -3093 ((-413 (-570)) $ (-570))) (-15 -4322 ((-176 (-413 (-570))) $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)))) +((-3945 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1713 (((-650 $) $) 31)) (-3471 (((-112) $ $) 36)) (-1935 (((-112) |#2| $) 40)) (-2278 (((-650 |#2|) $) 25)) (-4142 (((-112) $) 18)) (-1872 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3680 (((-112) $) 57)) (-3798 (((-868) $) 47)) (-1974 (((-650 $) $) 32)) (-2923 (((-112) $ $) 38)) (-2431 (((-777) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -3945 (|#1| |#1| "right" |#1|)) (-15 -3945 (|#1| |#1| "left" |#1|)) (-15 -1872 (|#1| |#1| "right")) (-15 -1872 (|#1| |#1| "left")) (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -3471 ((-112) |#1| |#1|)) (-15 -2278 ((-650 |#2|) |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -1872 (|#2| |#1| "value")) (-15 -4142 ((-112) |#1|)) (-15 -1713 ((-650 |#1|) |#1|)) (-15 -1974 ((-650 |#1|) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -1935 ((-112) |#2| |#1|)) (-15 -2431 ((-777) |#1|))) (-120 |#2|) (-1226)) (T -119)) +NIL +(-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -3945 (|#1| |#1| "right" |#1|)) (-15 -3945 (|#1| |#1| "left" |#1|)) (-15 -1872 (|#1| |#1| "right")) (-15 -1872 (|#1| |#1| "left")) (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -3471 ((-112) |#1| |#1|)) (-15 -2278 ((-650 |#2|) |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -1872 (|#2| |#1| "value")) (-15 -4142 ((-112) |#1|)) (-15 -1713 ((-650 |#1|) |#1|)) (-15 -1974 ((-650 |#1|) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -1935 ((-112) |#2| |#1|)) (-15 -2431 ((-777) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1959 (($ $ $) 53 (|has| $ (-6 -4449)))) (-3717 (($ $ $) 55 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449))) (($ $ "left" $) 56 (|has| $ (-6 -4449))) (($ $ "right" $) 54 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-3734 (($) 7 T CONST)) (-4411 (($ $) 58)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4399 (($ $) 60)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3536 (((-570) $ $) 45)) (-3680 (((-112) $) 47)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-120 |#1|) (-141) (-1226)) (T -120)) +((-4399 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1226)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1226)))) (-4411 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1226)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1226)))) (-3945 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4449)) (-4 *1 (-120 *3)) (-4 *3 (-1226)))) (-3717 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-120 *2)) (-4 *2 (-1226)))) (-3945 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4449)) (-4 *1 (-120 *3)) (-4 *3 (-1226)))) (-1959 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-120 *2)) (-4 *2 (-1226))))) +(-13 (-1019 |t#1|) (-10 -8 (-15 -4399 ($ $)) (-15 -1872 ($ $ "left")) (-15 -4411 ($ $)) (-15 -1872 ($ $ "right")) (IF (|has| $ (-6 -4449)) (PROGN (-15 -3945 ($ $ "left" $)) (-15 -3717 ($ $ $)) (-15 -3945 ($ $ "right" $)) (-15 -1959 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3970 (((-112) |#1|) 29)) (-1641 (((-777) (-777)) 28) (((-777)) 27)) (-3219 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -3219 ((-112) |#1|)) (-15 -3219 ((-112) |#1| (-112))) (-15 -1641 ((-777))) (-15 -1641 ((-777) (-777))) (-15 -3970 ((-112) |#1|))) (-1252 (-570))) (T -121)) +((-3970 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570))))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570))))) (-1641 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570))))) (-3219 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570))))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570)))))) +(-10 -7 (-15 -3219 ((-112) |#1|)) (-15 -3219 ((-112) |#1| (-112))) (-15 -1641 ((-777))) (-15 -1641 ((-777) (-777))) (-15 -3970 ((-112) |#1|))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) 18)) (-3144 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-1959 (($ $ $) 21 (|has| $ (-6 -4449)))) (-3717 (($ $ $) 23 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "left" $) NIL (|has| $ (-6 -4449))) (($ $ "right" $) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4411 (($ $) 20)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3349 (($ $ |#1| $) 27)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4399 (($ $) 22)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2618 (($ |#1| $) 28)) (-2213 (($ |#1| $) 15)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 17)) (-4359 (($) 11)) (-1872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3536 (((-570) $ $) NIL)) (-3680 (((-112) $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2062 (($ (-650 |#1|)) 16)) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4449) (-6 -4448) (-15 -2062 ($ (-650 |#1|))) (-15 -2213 ($ |#1| $)) (-15 -2618 ($ |#1| $)) (-15 -3144 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-856)) (T -122)) +((-2062 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-122 *3)))) (-2213 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856)))) (-2618 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856)))) (-3144 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-856))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4449) (-6 -4448) (-15 -2062 ($ (-650 |#1|))) (-15 -2213 ($ |#1| $)) (-15 -2618 ($ |#1| $)) (-15 -3144 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2439 (($ $) 13)) (-1748 (($ $) 11)) (-3992 (($ $ $) 23)) (-3000 (($ $ $) 21)) (-4423 (($ $ $) 19)) (-4407 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -3992 (|#1| |#1| |#1|)) (-15 -3000 (|#1| |#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -4407 (|#1| |#1| |#1|)) (-15 -4423 (|#1| |#1| |#1|)) (-15 -1748 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -3992 (|#1| |#1| |#1|)) (-15 -3000 (|#1| |#1| |#1|)) (-15 -2439 (|#1| |#1|)) (-15 -4407 (|#1| |#1| |#1|)) (-15 -4423 (|#1| |#1| |#1|)) (-15 -1748 (|#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-2439 (($ $) 102)) (-1786 (($ $ $) 27)) (-2926 (((-1281) $ (-570) (-570)) 65 (|has| $ (-6 -4449)))) (-2163 (((-112) $) 97 (|has| (-112) (-856))) (((-112) (-1 (-112) (-112) (-112)) $) 91)) (-2632 (($ $) 101 (-12 (|has| (-112) (-856)) (|has| $ (-6 -4449)))) (($ (-1 (-112) (-112) (-112)) $) 100 (|has| $ (-6 -4449)))) (-3360 (($ $) 96 (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $) 90)) (-3636 (((-112) $ (-777)) 36)) (-3945 (((-112) $ (-1243 (-570)) (-112)) 87 (|has| $ (-6 -4449))) (((-112) $ (-570) (-112)) 53 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-112)) $) 70 (|has| $ (-6 -4448)))) (-3734 (($) 37 T CONST)) (-1500 (($ $) 99 (|has| $ (-6 -4449)))) (-2256 (($ $) 89)) (-3552 (($ $) 67 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4448))) (($ (-112) $) 68 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4448))))) (-3600 (((-112) (-1 (-112) (-112) (-112)) $) 73 (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 72 (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 69 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4448))))) (-3849 (((-112) $ (-570) (-112)) 52 (|has| $ (-6 -4449)))) (-3778 (((-112) $ (-570)) 54)) (-4039 (((-570) (-112) $ (-570)) 94 (|has| (-112) (-1109))) (((-570) (-112) $) 93 (|has| (-112) (-1109))) (((-570) (-1 (-112) (-112)) $) 92)) (-2885 (((-650 (-112)) $) 44 (|has| $ (-6 -4448)))) (-1773 (($ $ $) 107)) (-1748 (($ $) 105)) (-3992 (($ $ $) 28)) (-4300 (($ (-777) (-112)) 76)) (-3000 (($ $ $) 29)) (-3846 (((-112) $ (-777)) 35)) (-1720 (((-570) $) 62 (|has| (-570) (-856)))) (-3382 (($ $ $) 14)) (-2735 (($ $ $) 95 (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $ $) 88)) (-2282 (((-650 (-112)) $) 45 (|has| $ (-6 -4448)))) (-1935 (((-112) (-112) $) 47 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 61 (|has| (-570) (-856)))) (-2876 (($ $ $) 15)) (-3837 (($ (-1 (-112) (-112)) $) 40 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-112) (-112) (-112)) $ $) 81) (($ (-1 (-112) (-112)) $) 39)) (-2063 (((-112) $ (-777)) 34)) (-4122 (((-1168) $) 10)) (-4299 (($ $ $ (-570)) 86) (($ (-112) $ (-570)) 85)) (-2044 (((-650 (-570)) $) 59)) (-1480 (((-112) (-570) $) 58)) (-3551 (((-1129) $) 11)) (-3515 (((-112) $) 63 (|has| (-570) (-856)))) (-4089 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 74)) (-2973 (($ $ (-112)) 64 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-112)) (-650 (-112))) 51 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-112) (-112)) 50 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-298 (-112))) 49 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-650 (-298 (-112)))) 48 (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))))) (-3123 (((-112) $ $) 30)) (-2821 (((-112) (-112) $) 60 (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-2880 (((-650 (-112)) $) 57)) (-4303 (((-112) $) 33)) (-4359 (($) 32)) (-1872 (($ $ (-1243 (-570))) 82) (((-112) $ (-570)) 56) (((-112) $ (-570) (-112)) 55)) (-4331 (($ $ (-1243 (-570))) 84) (($ $ (-570)) 83)) (-3562 (((-777) (-112) $) 46 (-12 (|has| (-112) (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4448)))) (-2662 (($ $ $ (-570)) 98 (|has| $ (-6 -4449)))) (-3964 (($ $) 31)) (-1411 (((-542) $) 66 (|has| (-112) (-620 (-542))))) (-3811 (($ (-650 (-112))) 75)) (-2445 (($ (-650 $)) 80) (($ $ $) 79) (($ (-112) $) 78) (($ $ (-112)) 77)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1431 (((-112) (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4448)))) (-1760 (($ $ $) 106)) (-4423 (($ $ $) 104)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-4407 (($ $ $) 103)) (-2431 (((-777) $) 38 (|has| $ (-6 -4448))))) +(((-124) (-141)) (T -124)) +((-3000 (*1 *1 *1 *1) (-4 *1 (-124))) (-3992 (*1 *1 *1 *1) (-4 *1 (-124))) (-1786 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-856) (-113) (-667) (-19 (-112)) (-10 -8 (-15 -3000 ($ $ $)) (-15 -3992 ($ $ $)) (-15 -1786 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-619 (-868)) . T) ((-152 #0=(-112)) . T) ((-620 (-542)) |has| (-112) (-620 (-542))) ((-290 #1=(-570) #0#) . T) ((-292 #1# #0#) . T) ((-313 #0#) -12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))) ((-378 #0#) . T) ((-495 #0#) . T) ((-610 #1# #0#) . T) ((-520 #0# #0#) -12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))) ((-657 #0#) . T) ((-667) . T) ((-19 #0#) . T) ((-856) . T) ((-1109) . T) ((-1226) . T)) +((-3837 (($ (-1 |#2| |#2|) $) 22)) (-3964 (($ $) 16)) (-2431 (((-777) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3964 (|#1| |#1|))) (-126 |#2|) (-1109)) (T -125)) +NIL +(-10 -8 (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3964 (|#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1959 (($ $ $) 53 (|has| $ (-6 -4449)))) (-3717 (($ $ $) 55 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449))) (($ $ "left" $) 56 (|has| $ (-6 -4449))) (($ $ "right" $) 54 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-3734 (($) 7 T CONST)) (-4411 (($ $) 58)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-3349 (($ $ |#1| $) 61)) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4399 (($ $) 60)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3536 (((-570) $ $) 45)) (-3680 (((-112) $) 47)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-126 |#1|) (-141) (-1109)) (T -126)) +((-3349 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1109))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4449) (-6 -4448) (-15 -3349 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-120 |#1|) . T) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) 18)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) 22 (|has| $ (-6 -4449)))) (-1959 (($ $ $) 23 (|has| $ (-6 -4449)))) (-3717 (($ $ $) 21 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "left" $) NIL (|has| $ (-6 -4449))) (($ $ "right" $) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4411 (($ $) 24)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3349 (($ $ |#1| $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4399 (($ $) NIL)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2213 (($ |#1| $) 15)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 17)) (-4359 (($) 11)) (-1872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3536 (((-570) $ $) NIL)) (-3680 (((-112) $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 20)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3416 (($ (-650 |#1|)) 16)) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4449) (-15 -3416 ($ (-650 |#1|))) (-15 -2213 ($ |#1| $)))) (-856)) (T -127)) +((-3416 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-127 *3)))) (-2213 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-856))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4449) (-15 -3416 ($ (-650 |#1|))) (-15 -2213 ($ |#1| $)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) 30)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) 32 (|has| $ (-6 -4449)))) (-1959 (($ $ $) 36 (|has| $ (-6 -4449)))) (-3717 (($ $ $) 34 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "left" $) NIL (|has| $ (-6 -4449))) (($ $ "right" $) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4411 (($ $) 23)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3349 (($ $ |#1| $) 16)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4399 (($ $) 22)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) 25)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 20)) (-4359 (($) 11)) (-1872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3536 (((-570) $ $) NIL)) (-3680 (((-112) $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2327 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 10 (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -2327 ($ |#1|)) (-15 -2327 ($ $ |#1| $)))) (-1109)) (T -128)) +((-2327 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109)))) (-2327 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109))))) +(-13 (-126 |#1|) (-10 -8 (-15 -2327 ($ |#1|)) (-15 -2327 ($ $ |#1| $)))) +((-2419 (((-112) $ $) NIL (|has| (-130) (-1109)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-856)))) (-2632 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| (-130) (-856))))) (-3360 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 (((-130) $ (-570) (-130)) 26 (|has| $ (-6 -4449))) (((-130) $ (-1243 (-570)) (-130)) NIL (|has| $ (-6 -4449)))) (-2849 (((-777) $ (-777)) 34)) (-1418 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-130) (-1109))))) (-1697 (($ (-130) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-130) (-1109)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4448)) (|has| (-130) (-1109)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4448))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4448)))) (-3849 (((-130) $ (-570) (-130)) 25 (|has| $ (-6 -4449)))) (-3778 (((-130) $ (-570)) 20)) (-4039 (((-570) (-1 (-112) (-130)) $) NIL) (((-570) (-130) $) NIL (|has| (-130) (-1109))) (((-570) (-130) $ (-570)) NIL (|has| (-130) (-1109)))) (-2885 (((-650 (-130)) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) (-130)) 14)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 27 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| (-130) (-856)))) (-2735 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-856)))) (-2282 (((-650 (-130)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-130) (-1109))))) (-3434 (((-570) $) 30 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-130) (-856)))) (-3837 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| (-130) (-1109)))) (-4299 (($ (-130) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| (-130) (-1109)))) (-3515 (((-130) $) NIL (|has| (-570) (-856)))) (-4089 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2973 (($ $ (-130)) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-130)))) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109)))) (($ $ (-298 (-130))) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109)))) (($ $ (-650 (-130)) (-650 (-130))) NIL (-12 (|has| (-130) (-313 (-130))) (|has| (-130) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-130) (-1109))))) (-2880 (((-650 (-130)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 12)) (-1872 (((-130) $ (-570) (-130)) NIL) (((-130) $ (-570)) 23) (($ $ (-1243 (-570))) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4448))) (((-777) (-130) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-130) (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-130) (-620 (-542))))) (-3811 (($ (-650 (-130))) 47)) (-2445 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 48) (($ (-650 $)) NIL)) (-3798 (((-965 (-130)) $) 35) (((-1168) $) 44) (((-868) $) NIL (|has| (-130) (-619 (-868))))) (-3795 (((-777) $) 18)) (-3310 (($ (-777)) 8)) (-1319 (((-112) $ $) NIL (|has| (-130) (-1109)))) (-1431 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| (-130) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-130) (-856)))) (-2923 (((-112) $ $) 32 (|has| (-130) (-1109)))) (-2969 (((-112) $ $) NIL (|has| (-130) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-130) (-856)))) (-2431 (((-777) $) 15 (|has| $ (-6 -4448))))) +(((-129) (-13 (-19 (-130)) (-619 (-965 (-130))) (-619 (-1168)) (-10 -8 (-15 -3310 ($ (-777))) (-15 -3795 ((-777) $)) (-15 -2849 ((-777) $ (-777))) (-6 -4448)))) (T -129)) +((-3310 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-129)))) (-2849 (*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-619 (-965 (-130))) (-619 (-1168)) (-10 -8 (-15 -3310 ($ (-777))) (-15 -3795 ((-777) $)) (-15 -2849 ((-777) $ (-777))) (-6 -4448))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) 26)) (-3734 (($) NIL T CONST)) (-3408 (($) 35)) (-3382 (($ $ $) NIL) (($) 24 T CONST)) (-2876 (($ $ $) NIL) (($) 25 T CONST)) (-2484 (((-928) $) 33)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) 31)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-3726 (($ (-777)) 8)) (-1370 (($ $ $) 37)) (-1354 (($ $ $) 36)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) 22)) (-2959 (((-112) $ $) 20)) (-2923 (((-112) $ $) 18)) (-2969 (((-112) $ $) 21)) (-2948 (((-112) $ $) 19))) +(((-130) (-13 (-850) (-496 (-145)) (-10 -8 (-15 -3726 ($ (-777))) (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711)))) (T -130)) +((-3726 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-130)))) (-1354 (*1 *1 *1 *1) (-5 *1 (-130))) (-1370 (*1 *1 *1 *1) (-5 *1 (-130))) (-3734 (*1 *1) (-5 *1 (-130)))) +(-13 (-850) (-496 (-145)) (-10 -8 (-15 -3726 ($ (-777))) (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2417 (((-112) $ $) NIL)) (-1639 (($) 6 T CONST)) (-3457 (($) 7 T CONST)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 14)) (-1358 (($) 8 T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 10))) -(((-130) (-13 (-1108) (-10 -8 (-15 -3457 ($) -3709) (-15 -1358 ($) -3709) (-15 -1639 ($) -3709)))) (T -130)) -((-3457 (*1 *1) (-5 *1 (-130))) (-1358 (*1 *1) (-5 *1 (-130))) (-1639 (*1 *1) (-5 *1 (-130)))) -(-13 (-1108) (-10 -8 (-15 -3457 ($) -3709) (-15 -1358 ($) -3709) (-15 -1639 ($) -3709))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16))) -(((-131) (-140)) (T -131)) -((-2208 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -2208 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-4114 (((-1280) $ (-776)) 14)) (-4036 (((-776) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-132) (-140)) (T -132)) -((-4036 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776)))) (-4114 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1280))))) -(-13 (-1108) (-10 -8 (-15 -4036 ((-776) $)) (-15 -4114 ((-1280) $ (-776))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-133) (-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $))))) (T -133)) -((-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-133))))) -(-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $)))) -((-2417 (((-112) $ $) 49)) (-4143 (((-112) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-776) "failed") $) 58)) (-3150 (((-776) $) 56)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) 37)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2682 (((-112)) 59)) (-4084 (((-112) (-112)) 61)) (-2733 (((-112) $) 30)) (-1347 (((-112) $) 55)) (-3796 (((-867) $) 28) (($ (-776)) 20)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 18 T CONST)) (-1815 (($) 19 T CONST)) (-4327 (($ (-776)) 21)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) 40)) (-2920 (((-112) $ $) 32)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 35)) (-3024 (((-3 $ "failed") $ $) 42)) (-3012 (($ $ $) 38)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ $) 54)) (* (($ (-776) $) 48) (($ (-927) $) NIL) (($ $ $) 45))) -(((-134) (-13 (-855) (-23) (-731) (-1046 (-776)) (-10 -8 (-6 (-4449 "*")) (-15 -3024 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4327 ($ (-776))) (-15 -2733 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2682 ((-112))) (-15 -4084 ((-112) (-112)))))) (T -134)) -((-3024 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-4327 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2682 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-855) (-23) (-731) (-1046 (-776)) (-10 -8 (-6 (-4449 "*")) (-15 -3024 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4327 ($ (-776))) (-15 -2733 ((-112) $)) (-15 -1347 ((-112) $)) (-15 -2682 ((-112))) (-15 -4084 ((-112) (-112))))) -((-3935 (((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-1346 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3935 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1346 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-569) (-776) (-173) (-173)) (T -135)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -3935 ((-136 |#1| |#2| |#4|) (-649 |#4|) (-136 |#1| |#2| |#3|))) (-15 -1346 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-2417 (((-112) $ $) NIL)) (-2909 (($ (-649 |#3|)) 64)) (-2937 (($ $) 126) (($ $ (-569) (-569)) 125)) (-4427 (($) 20)) (-4381 (((-3 |#3| "failed") $) 86)) (-3150 ((|#3| $) NIL)) (-1372 (($ $ (-649 (-569))) 127)) (-3921 (((-649 |#3|) $) 59)) (-3978 (((-776) $) 69)) (-2103 (($ $ $) 120)) (-3801 (($) 68)) (-3435 (((-1167) $) NIL)) (-2461 (($) 19)) (-3547 (((-1128) $) NIL)) (-1869 ((|#3| $) 71) ((|#3| $ (-569)) 72) ((|#3| $ (-569) (-569)) 73) ((|#3| $ (-569) (-569) (-569)) 74) ((|#3| $ (-569) (-569) (-569) (-569)) 75) ((|#3| $ (-649 (-569))) 76)) (-4339 (((-776) $) 70)) (-3029 (($ $ (-569) $ (-569)) 121) (($ $ (-569) (-569)) 123)) (-3796 (((-867) $) 94) (($ |#3|) 95) (($ (-241 |#2| |#3|)) 102) (($ (-1150 |#2| |#3|)) 105) (($ (-649 |#3|)) 77) (($ (-649 $)) 83)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 96 T CONST)) (-1815 (($) 97 T CONST)) (-2920 (((-112) $ $) 107)) (-3024 (($ $) 113) (($ $ $) 111)) (-3012 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-569)) 116) (($ (-569) $) 115) (($ $ $) 122))) -(((-136 |#1| |#2| |#3|) (-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -3796 ($ (-241 |#2| |#3|))) (-15 -3796 ($ (-1150 |#2| |#3|))) (-15 -3796 ($ (-649 |#3|))) (-15 -3796 ($ (-649 $))) (-15 -3978 ((-776) $)) (-15 -1869 (|#3| $)) (-15 -1869 (|#3| $ (-569))) (-15 -1869 (|#3| $ (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-649 (-569)))) (-15 -2103 ($ $ $)) (-15 * ($ $ $)) (-15 -3029 ($ $ (-569) $ (-569))) (-15 -3029 ($ $ (-569) (-569))) (-15 -2937 ($ $)) (-15 -2937 ($ $ (-569) (-569))) (-15 -1372 ($ $ (-649 (-569)))) (-15 -2461 ($)) (-15 -3801 ($)) (-15 -3921 ((-649 |#3|) $)) (-15 -2909 ($ (-649 |#3|))) (-15 -4427 ($)))) (-569) (-776) (-173)) (T -136)) -((-2103 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1150 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 *2) (-4 *5 (-173)))) (-1869 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569)) (-14 *4 (-776)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-776)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-569)) (-14 *5 (-776)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3029 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-3029 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-2937 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-776)) (-4 *5 (-173)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2461 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3801 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2909 (*1 *1 *2) (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) (-14 *4 (-776)))) (-4427 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) (-4 *4 (-173))))) -(-13 (-470 |#3| (-776)) (-475 (-569) (-776)) (-10 -8 (-15 -3796 ($ (-241 |#2| |#3|))) (-15 -3796 ($ (-1150 |#2| |#3|))) (-15 -3796 ($ (-649 |#3|))) (-15 -3796 ($ (-649 $))) (-15 -3978 ((-776) $)) (-15 -1869 (|#3| $)) (-15 -1869 (|#3| $ (-569))) (-15 -1869 (|#3| $ (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-569) (-569) (-569) (-569))) (-15 -1869 (|#3| $ (-649 (-569)))) (-15 -2103 ($ $ $)) (-15 * ($ $ $)) (-15 -3029 ($ $ (-569) $ (-569))) (-15 -3029 ($ $ (-569) (-569))) (-15 -2937 ($ $)) (-15 -2937 ($ $ (-569) (-569))) (-15 -1372 ($ $ (-649 (-569)))) (-15 -2461 ($)) (-15 -3801 ($)) (-15 -3921 ((-649 |#3|) $)) (-15 -2909 ($ (-649 |#3|))) (-15 -4427 ($)))) -((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-137) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -137)) -((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137))))) -(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) 10)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 13)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-138) (-13 (-1091) (-10 -8 (-15 -3896 ((-187) $)) (-15 -3586 ((-649 (-1143)) $))))) (T -138)) -((-3896 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-138))))) -(-13 (-1091) (-10 -8 (-15 -3896 ((-187) $)) (-15 -3586 ((-649 (-1143)) $)))) -((-2417 (((-112) $ $) NIL)) (-1767 (((-649 (-870)) $) NIL)) (-3573 (((-511) $) NIL)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) NIL)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-1673 (((-649 (-112)) $) NIL)) (-3796 (((-867) $) NIL) (((-188) $) 6)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-139) (-13 (-186) (-618 (-188)))) (T -139)) -NIL -(-13 (-186) (-618 (-188))) -((-3206 (((-649 (-184 (-139))) $) 13)) (-2823 (((-649 (-184 (-139))) $) 14)) (-2029 (((-649 (-843)) $) 10)) (-1576 (((-139) $) 7)) (-3796 (((-867) $) 16))) -(((-140) (-13 (-618 (-867)) (-10 -8 (-15 -1576 ((-139) $)) (-15 -2029 ((-649 (-843)) $)) (-15 -3206 ((-649 (-184 (-139))) $)) (-15 -2823 ((-649 (-184 (-139))) $))))) (T -140)) -((-1576 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140)))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140))))) -(-13 (-618 (-867)) (-10 -8 (-15 -1576 ((-139) $)) (-15 -2029 ((-649 (-843)) $)) (-15 -3206 ((-649 (-184 (-139))) $)) (-15 -2823 ((-649 (-184 (-139))) $)))) -((-2417 (((-112) $ $) NIL)) (-4209 (($) 17 T CONST)) (-3610 (($) NIL (|has| (-144) (-372)))) (-3969 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2541 (($ $ $) NIL)) (-4179 (((-112) $ $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| (-144) (-372)))) (-4257 (($) NIL) (($ (-649 (-144))) NIL)) (-1796 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-1794 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (($ (-144) $) 61 (|has| $ (-6 -4447)))) (-1698 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3406 (($) NIL (|has| (-144) (-372)))) (-2882 (((-649 (-144)) $) 70 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-3380 (((-144) $) NIL (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-2839 (((-144) $) NIL (|has| (-144) (-855)))) (-3834 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) 65)) (-2268 (($) 18 T CONST)) (-2731 (((-927) $) NIL (|has| (-144) (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 30)) (-1877 (((-144) $) 62)) (-3894 (($ (-144) $) 60)) (-2150 (($ (-927)) NIL (|has| (-144) (-372)))) (-1903 (($) 16 T CONST)) (-3547 (((-1128) $) NIL)) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1781 (((-144) $) 63)) (-3208 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 58)) (-2983 (($) 15 T CONST)) (-2237 (($ $ $) 32) (($ $ (-144)) NIL)) (-2434 (($ (-649 (-144))) NIL) (($) NIL)) (-3560 (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-1167) $) 37) (((-541) $) NIL (|has| (-144) (-619 (-541)))) (((-649 (-144)) $) 35)) (-3809 (($ (-649 (-144))) NIL)) (-3327 (($ $) 33 (|has| (-144) (-372)))) (-3796 (((-867) $) 55)) (-2851 (($ (-1167)) 14) (($ (-649 (-144))) 52)) (-1970 (((-776) $) NIL)) (-3868 (($) 59) (($ (-649 (-144))) NIL)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 (-144))) NIL)) (-1980 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1902 (($) 21 T CONST)) (-2311 (($) 20 T CONST)) (-2920 (((-112) $ $) 24)) (-2428 (((-776) $) 57 (|has| $ (-6 -4447))))) -(((-141) (-13 (-1108) (-619 (-1167)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -2851 ($ (-1167))) (-15 -2851 ($ (-649 (-144)))) (-15 -2983 ($) -3709) (-15 -1903 ($) -3709) (-15 -4209 ($) -3709) (-15 -2268 ($) -3709) (-15 -2311 ($) -3709) (-15 -1902 ($) -3709)))) (T -141)) -((-2851 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-141)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141)))) (-2983 (*1 *1) (-5 *1 (-141))) (-1903 (*1 *1) (-5 *1 (-141))) (-4209 (*1 *1) (-5 *1 (-141))) (-2268 (*1 *1) (-5 *1 (-141))) (-2311 (*1 *1) (-5 *1 (-141))) (-1902 (*1 *1) (-5 *1 (-141)))) -(-13 (-1108) (-619 (-1167)) (-430 (-144)) (-619 (-649 (-144))) (-10 -8 (-15 -2851 ($ (-1167))) (-15 -2851 ($ (-649 (-144)))) (-15 -2983 ($) -3709) (-15 -1903 ($) -3709) (-15 -4209 ($) -3709) (-15 -2268 ($) -3709) (-15 -2311 ($) -3709) (-15 -1902 ($) -3709))) -((-2974 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4377 ((|#1| |#3|) 9)) (-3110 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-1000 |#1|) (-377 |#2|)) (T -142)) -((-2974 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-377 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-377 *4)))) (-4377 (*1 *2 *3) (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-377 *4))))) -(-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3074 (($ $ $) 8)) (-1948 (($ $) 7)) (-3613 (($ $ $) 6))) -(((-143) (-140)) (T -143)) -((-3074 (*1 *1 *1 *1) (-4 *1 (-143))) (-1948 (*1 *1 *1) (-4 *1 (-143))) (-3613 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -3613 ($ $ $)) (-15 -1948 ($ $)) (-15 -3074 ($ $ $)))) -((-2417 (((-112) $ $) NIL)) (-3190 (((-112) $) 39)) (-4209 (($ $) 55)) (-1695 (($) 26 T CONST)) (-3473 (((-776)) 13)) (-3406 (($) 25)) (-1929 (($) 27 T CONST)) (-1348 (((-776) $) 21)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-1454 (((-112) $) 41)) (-2268 (($ $) 56)) (-2731 (((-927) $) 23)) (-3435 (((-1167) $) 49)) (-2150 (($ (-927)) 20)) (-1708 (((-112) $) 37)) (-3547 (((-1128) $) NIL)) (-3370 (($) 28 T CONST)) (-4030 (((-112) $) 35)) (-3796 (((-867) $) 30)) (-2491 (($ (-776)) 19) (($ (-1167)) 54)) (-1520 (((-112) $ $) NIL)) (-1622 (((-112) $) 45)) (-3048 (((-112) $) 43)) (-2978 (((-112) $ $) 11)) (-2956 (((-112) $ $) 9)) (-2920 (((-112) $ $) 7)) (-2966 (((-112) $ $) 10)) (-2944 (((-112) $ $) 8))) -(((-144) (-13 (-849) (-10 -8 (-15 -1348 ((-776) $)) (-15 -2491 ($ (-776))) (-15 -2491 ($ (-1167))) (-15 -1695 ($) -3709) (-15 -1929 ($) -3709) (-15 -3370 ($) -3709) (-15 -4209 ($ $)) (-15 -2268 ($ $)) (-15 -4030 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -3048 ((-112) $)) (-15 -3190 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -1622 ((-112) $))))) (T -144)) -((-1348 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-144)))) (-1695 (*1 *1) (-5 *1 (-144))) (-1929 (*1 *1) (-5 *1 (-144))) (-3370 (*1 *1) (-5 *1 (-144))) (-4209 (*1 *1 *1) (-5 *1 (-144))) (-2268 (*1 *1 *1) (-5 *1 (-144))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-849) (-10 -8 (-15 -1348 ((-776) $)) (-15 -2491 ($ (-776))) (-15 -2491 ($ (-1167))) (-15 -1695 ($) -3709) (-15 -1929 ($) -3709) (-15 -3370 ($) -3709) (-15 -4209 ($ $)) (-15 -2268 ($ $)) (-15 -4030 ((-112) $)) (-15 -1708 ((-112) $)) (-15 -3048 ((-112) $)) (-15 -3190 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -1622 ((-112) $)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2239 (((-3 $ "failed") $) 39)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-145) (-140)) (T -145)) -((-2239 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1057) (-10 -8 (-15 -2239 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1886 ((|#1| (-694 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -1886 (|#1| (-694 |#1|) |#1|))) (-173)) (T -146)) -((-1886 (*1 *2 *3 *2) (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -1886 (|#1| (-694 |#1|) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-147) (-140)) (T -147)) -NIL -(-13 (-1057)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3780 (((-2 (|:| -1993 (-776)) (|:| -1435 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776)) 76)) (-3904 (((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|) 56)) (-2010 (((-2 (|:| -1435 (-412 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-3273 ((|#1| |#3| |#3|) 44)) (-1725 ((|#3| |#3| (-412 |#2|) (-412 |#2|)) 20)) (-1860 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|) 53))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -2010 ((-2 (|:| -1435 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3904 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -3780 ((-2 (|:| -1993 (-776)) (|:| -1435 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -3273 (|#1| |#3| |#3|)) (-15 -1725 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -1860 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|))) (-1229) (-1251 |#1|) (-1251 (-412 |#2|))) (T -148)) -((-1860 (*1 *2 *3 *3) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5)) (|:| |c2| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))) (-1725 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1251 *3)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1229)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1251 (-412 *4))))) (-3780 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *6)) (-4 *5 (-1229)) (-4 *6 (-1251 *5)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1251 *3)))) (-3904 (*1 *2 *3) (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5))))) (-2010 (*1 *2 *3) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -1435 (-412 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5)))))) -(-10 -7 (-15 -2010 ((-2 (|:| -1435 (-412 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3904 ((-3 (-2 (|:| |radicand| (-412 |#2|)) (|:| |deg| (-776))) "failed") |#3|)) (-15 -3780 ((-2 (|:| -1993 (-776)) (|:| -1435 (-412 |#2|)) (|:| |radicand| |#2|)) (-412 |#2|) (-776))) (-15 -3273 (|#1| |#3| |#3|)) (-15 -1725 (|#3| |#3| (-412 |#2|) (-412 |#2|))) (-15 -1860 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| |deg| (-776))) |#3| |#3|))) -((-3466 (((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)) 35))) -(((-149 |#1| |#2|) (-10 -7 (-15 -3466 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)))) (-550) (-166 |#1|)) (T -149)) -((-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5)) (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -3466 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)))) -((-1417 (($ (-1 (-112) |#2|) $) 35)) (-3550 (($ $) 42)) (-1698 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3598 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1574 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3208 (((-112) (-1 (-112) |#2|) $) 22)) (-3560 (((-776) (-1 (-112) |#2|) $) 18) (((-776) |#2| $) NIL)) (-1980 (((-112) (-1 (-112) |#2|) $) 21)) (-2428 (((-776) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -3550 (|#1| |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|))) (-151 |#2|) (-1225)) (T -150)) -NIL -(-10 -8 (-15 -3550 (|#1| |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1417 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 42 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447))) (($ |#1| $) 43 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 41 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 50)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-151 |#1|) (-140) (-1225)) (T -151)) -((-3809 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-151 *3)))) (-1574 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-3598 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-3598 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3)) (-4 *3 (-1225)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3)) (-4 *3 (-1225)))) (-3598 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)))) (-1698 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) (-3550 (*1 *1 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)) (-4 *2 (-1108))))) -(-13 (-494 |t#1|) (-10 -8 (-15 -3809 ($ (-649 |t#1|))) (-15 -1574 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4447)) (PROGN (-15 -3598 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3598 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1698 ($ (-1 (-112) |t#1|) $)) (-15 -1417 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -3598 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1698 ($ |t#1| $)) (-15 -3550 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) 113)) (-2349 (((-112) $) NIL)) (-3923 (($ |#2| (-649 (-927))) 73)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3373 (($ (-927)) 60)) (-2377 (((-134)) 26)) (-3796 (((-867) $) 88) (($ (-569)) 56) (($ |#2|) 57)) (-4383 ((|#2| $ (-649 (-927))) 76)) (-2721 (((-776)) 23 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 51 T CONST)) (-1815 (($) 54 T CONST)) (-2920 (((-112) $ $) 37)) (-3035 (($ $ |#2|) NIL)) (-3024 (($ $) 46) (($ $ $) 44)) (-3012 (($ $ $) 42)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1057) (-38 |#2|) (-1282 |#2|) (-10 -8 (-15 -3373 ($ (-927))) (-15 -3923 ($ |#2| (-649 (-927)))) (-15 -4383 (|#2| $ (-649 (-927)))) (-15 -3086 ((-3 $ "failed") $)))) (-927) (-367) (-1001 |#1| |#2|)) (T -152)) -((-3086 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367)) (-14 *4 (-1001 *2 *3)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-367)) (-14 *5 (-1001 *3 *4)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-4 *2 (-367)) (-14 *5 (-1001 *4 *2)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) (-14 *5 (-1001 *4 *2))))) -(-13 (-1057) (-38 |#2|) (-1282 |#2|) (-10 -8 (-15 -3373 ($ (-927))) (-15 -3923 ($ |#2| (-649 (-927)))) (-15 -4383 (|#2| $ (-649 (-927)))) (-15 -3086 ((-3 $ "failed") $)))) -((-3838 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226)) 62)) (-2386 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 99) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933)) 100)) (-1592 (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226))))) 103) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-949 (-226)))) 102) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569))) 94) (((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933)) 95))) -(((-153) (-10 -7 (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -3838 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-949 (-226))))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))))))) (T -153)) -((-1592 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226))))))) (-1592 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226)))))) (-3838 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-226)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 *4)))) (|:| |xValues| (-1102 *4)) (|:| |yValues| (-1102 *4)))) (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4)))))) (-2386 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))) (-1592 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-933)) (-5 *2 (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) (-5 *1 (-153))))) -(-10 -7 (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933))) (-15 -2386 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-933) (-412 (-569)) (-412 (-569)))) (-15 -3838 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226)))) (-226) (-226) (-226) (-226))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-949 (-226))))) (-15 -1592 ((-2 (|:| |brans| (-649 (-649 (-949 (-226))))) (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226)))) (-649 (-649 (-949 (-226))))))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2685 (((-649 (-1143)) $) 20)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-154) (-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $))))) (T -154)) -((-2685 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-154)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-154))))) -(-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $)))) -((-3177 (((-649 (-170 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -3177 ((-649 (-170 |#2|)) |#1| |#2|))) (-1251 (-170 (-569))) (-13 (-367) (-853))) (T -155)) -((-3177 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1251 (-170 (-569)))) (-4 *4 (-13 (-367) (-853)))))) -(-10 -7 (-15 -3177 ((-649 (-170 |#2|)) |#1| |#2|))) -((-2417 (((-112) $ $) NIL)) (-2115 (((-1224) $) 12)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-156) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1224) $))))) (T -156)) -((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-156)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-156))))) -(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1224) $)))) -((-2417 (((-112) $ $) NIL)) (-1922 (($) 41)) (-1715 (($) 40)) (-3469 (((-927)) 46)) (-3435 (((-1167) $) NIL)) (-2787 (((-569) $) 44)) (-3547 (((-1128) $) NIL)) (-2212 (($) 42)) (-3168 (($ (-569)) 47)) (-3796 (((-867) $) 53)) (-1364 (($) 43)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 38)) (-3012 (($ $ $) 35)) (* (($ (-927) $) 45) (($ (-226) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -3012 ($ $ $)) (-15 -1715 ($)) (-15 -1922 ($)) (-15 -2212 ($)) (-15 -1364 ($)) (-15 -2787 ((-569) $)) (-15 -3469 ((-927))) (-15 -3168 ($ (-569)))))) (T -157)) -((-3012 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) (-1715 (*1 *1) (-5 *1 (-157))) (-1922 (*1 *1) (-5 *1 (-157))) (-2212 (*1 *1) (-5 *1 (-157))) (-1364 (*1 *1) (-5 *1 (-157))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157)))) (-3469 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-927) $)) (-15 * ($ (-226) $)) (-15 -3012 ($ $ $)) (-15 -1715 ($)) (-15 -1922 ($)) (-15 -2212 ($)) (-15 -1364 ($)) (-15 -2787 ((-569) $)) (-15 -3469 ((-927))) (-15 -3168 ($ (-569))))) -((-2365 ((|#2| |#2| (-1100 |#2|)) 98) ((|#2| |#2| (-1185)) 75)) (-2103 ((|#2| |#2| (-1100 |#2|)) 97) ((|#2| |#2| (-1185)) 74)) (-3074 ((|#2| |#2| |#2|) 25)) (-3746 (((-114) (-114)) 111)) (-2875 ((|#2| (-649 |#2|)) 130)) (-1560 ((|#2| (-649 |#2|)) 152)) (-3733 ((|#2| (-649 |#2|)) 138)) (-1356 ((|#2| |#2|) 136)) (-3127 ((|#2| (-649 |#2|)) 124)) (-2898 ((|#2| (-649 |#2|)) 125)) (-4115 ((|#2| (-649 |#2|)) 150)) (-2766 ((|#2| |#2| (-1185)) 63) ((|#2| |#2|) 62)) (-1948 ((|#2| |#2|) 21)) (-3613 ((|#2| |#2| |#2|) 24)) (-4052 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3613 (|#2| |#2| |#2|)) (-15 -3074 (|#2| |#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -2766 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1100 |#2|))) (-15 -2103 (|#2| |#2| (-1185))) (-15 -2103 (|#2| |#2| (-1100 |#2|))) (-15 -1356 (|#2| |#2|)) (-15 -4115 (|#2| (-649 |#2|))) (-15 -3733 (|#2| (-649 |#2|))) (-15 -1560 (|#2| (-649 |#2|))) (-15 -3127 (|#2| (-649 |#2|))) (-15 -2898 (|#2| (-649 |#2|))) (-15 -2875 (|#2| (-649 |#2|)))) (-561) (-435 |#1|)) (T -158)) -((-2875 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-561)))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-2103 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-2766 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) (-4 *2 (-435 *4)))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3074 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3613 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) (-4 *4 (-435 *3)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4))))) -(-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3613 (|#2| |#2| |#2|)) (-15 -3074 (|#2| |#2| |#2|)) (-15 -1948 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -2766 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1185))) (-15 -2365 (|#2| |#2| (-1100 |#2|))) (-15 -2103 (|#2| |#2| (-1185))) (-15 -2103 (|#2| |#2| (-1100 |#2|))) (-15 -1356 (|#2| |#2|)) (-15 -4115 (|#2| (-649 |#2|))) (-15 -3733 (|#2| (-649 |#2|))) (-15 -1560 (|#2| (-649 |#2|))) (-15 -3127 (|#2| (-649 |#2|))) (-15 -2898 (|#2| (-649 |#2|))) (-15 -2875 (|#2| (-649 |#2|)))) -((-2753 ((|#1| |#1| |#1|) 67)) (-2759 ((|#1| |#1| |#1|) 64)) (-3074 ((|#1| |#1| |#1|) 58)) (-3575 ((|#1| |#1|) 45)) (-1674 ((|#1| |#1| (-649 |#1|)) 55)) (-1948 ((|#1| |#1|) 48)) (-3613 ((|#1| |#1| |#1|) 51))) -(((-159 |#1|) (-10 -7 (-15 -3613 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -1674 (|#1| |#1| (-649 |#1|))) (-15 -3575 (|#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2759 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|))) (-550)) (T -159)) -((-2753 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-2759 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3074 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3575 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-1674 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2)))) (-1948 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) (-3613 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))) -(-10 -7 (-15 -3613 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -1674 (|#1| |#1| (-649 |#1|))) (-15 -3575 (|#1| |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2759 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|))) -((-2365 (($ $ (-1185)) 12) (($ $ (-1100 $)) 11)) (-2103 (($ $ (-1185)) 10) (($ $ (-1100 $)) 9)) (-3074 (($ $ $) 8)) (-2766 (($ $) 14) (($ $ (-1185)) 13)) (-1948 (($ $) 7)) (-3613 (($ $ $) 6))) -(((-160) (-140)) (T -160)) -((-2766 (*1 *1 *1) (-4 *1 (-160))) (-2766 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) (-2365 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) (-2365 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160)))) (-2103 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -2766 ($ $)) (-15 -2766 ($ $ (-1185))) (-15 -2365 ($ $ (-1185))) (-15 -2365 ($ $ (-1100 $))) (-15 -2103 ($ $ (-1185))) (-15 -2103 ($ $ (-1100 $))))) -(((-143) . T)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-161) (-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $))))) (T -161)) -((-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-161))))) -(-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $)))) -((-2417 (((-112) $ $) NIL)) (-2655 (($ (-569)) 14) (($ $ $) 15)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9))) -(((-162) (-13 (-1108) (-10 -8 (-15 -2655 ($ (-569))) (-15 -2655 ($ $ $))))) (T -162)) -((-2655 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162)))) (-2655 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1108) (-10 -8 (-15 -2655 ($ (-569))) (-15 -2655 ($ $ $)))) -((-3746 (((-114) (-1185)) 102))) -(((-163) (-10 -7 (-15 -3746 ((-114) (-1185))))) (T -163)) -((-3746 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -3746 ((-114) (-1185)))) -((-1314 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1314 (|#3| |#3|))) (-1057) (-1251 |#1|) (-1251 |#2|)) (T -164)) -((-1314 (*1 *2 *2) (-12 (-4 *3 (-1057)) (-4 *4 (-1251 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1251 *4))))) -(-10 -7 (-15 -1314 (|#3| |#3|))) -((-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 223)) (-3140 ((|#2| $) 102)) (-2771 (($ $) 256)) (-2626 (($ $) 250)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 47)) (-2746 (($ $) 254)) (-2601 (($ $) 248)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 144)) (-2368 (($ $ $) 229)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 160) (((-694 |#2|) (-694 $)) 154)) (-3598 (($ (-1181 |#2|)) 125) (((-3 $ "failed") (-412 (-1181 |#2|))) NIL)) (-3086 (((-3 $ "failed") $) 214)) (-3377 (((-3 (-412 (-569)) "failed") $) 204)) (-1441 (((-112) $) 199)) (-1606 (((-412 (-569)) $) 202)) (-3978 (((-927)) 96)) (-2379 (($ $ $) 231)) (-2149 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1312 (($) 245)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 193) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 198)) (-3829 ((|#2| $) 100)) (-3859 (((-1181 |#2|) $) 127)) (-1346 (($ (-1 |#2| |#2|) $) 108)) (-2662 (($ $) 247)) (-3585 (((-1181 |#2|) $) 126)) (-1817 (($ $) 207)) (-1734 (($) 103)) (-2156 (((-423 (-1181 $)) (-1181 $)) 95)) (-3814 (((-423 (-1181 $)) (-1181 $)) 64)) (-2407 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4389 (($ $) 246)) (-2431 (((-776) $) 226)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 236)) (-3059 ((|#2| (-1275 $)) NIL) ((|#2|) 98)) (-3517 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-4061 (((-1181 |#2|)) 120)) (-2758 (($ $) 255)) (-2614 (($ $) 249)) (-2415 (((-1275 |#2|) $ (-1275 $)) 136) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $) 116) (((-694 |#2|) (-1275 $)) NIL)) (-1410 (((-1275 |#2|) $) NIL) (($ (-1275 |#2|)) NIL) (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) (((-898 (-569)) $) 184) (((-898 (-383)) $) 188) (((-170 (-383)) $) 172) (((-170 (-226)) $) 167) (((-541) $) 180)) (-3476 (($ $) 104)) (-3796 (((-867) $) 143) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-412 (-569))) NIL) (($ $) NIL)) (-1886 (((-1181 |#2|) $) 32)) (-2721 (((-776)) 106)) (-1520 (((-112) $ $) 13)) (-4161 (($ $) 259)) (-2701 (($ $) 253)) (-4140 (($ $) 257)) (-2675 (($ $) 251)) (-1899 ((|#2| $) 242)) (-4151 (($ $) 258)) (-2689 (($ $) 252)) (-2271 (($ $) 162)) (-2920 (((-112) $ $) 110)) (-3024 (($ $) 112) (($ $ $) NIL)) (-3012 (($ $ $) 111)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) 276) (($ $ $) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3796 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-170 (-226)) |#1|)) (-15 -1410 ((-170 (-383)) |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1312 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2149 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3476 (|#1| |#1|)) (-15 -1734 (|#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3598 ((-3 |#1| "failed") (-412 (-1181 |#2|)))) (-15 -3585 ((-1181 |#2|) |#1|)) (-15 -1410 (|#1| (-1181 |#2|))) (-15 -3598 (|#1| (-1181 |#2|))) (-15 -4061 ((-1181 |#2|))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -1886 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3829 (|#2| |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3978 ((-927))) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-166 |#2|) (-173)) (T -165)) -((-2721 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3978 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-927)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3059 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-4061 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1181 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3796 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-170 (-226)) |#1|)) (-15 -1410 ((-170 (-383)) |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1312 (|#1|)) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2149 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3476 (|#1| |#1|)) (-15 -1734 (|#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3598 ((-3 |#1| "failed") (-412 (-1181 |#2|)))) (-15 -3585 ((-1181 |#2|) |#1|)) (-15 -1410 (|#1| (-1181 |#2|))) (-15 -3598 (|#1| (-1181 |#2|))) (-15 -4061 ((-1181 |#2|))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -1886 ((-1181 |#2|) |#1|)) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3829 (|#2| |#1|)) (-15 -3140 (|#2| |#1|)) (-15 -3978 ((-927))) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4355 (($ $) 103 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-3039 (((-112) $) 105 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1547 (((-694 |#1|) (-1275 $)) 53) (((-694 |#1|)) 68)) (-3140 ((|#1| $) 59)) (-2771 (($ $) 229 (|has| |#1| (-1210)))) (-2626 (($ $) 212 (|has| |#1| (-1210)))) (-3715 (((-1198 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 243 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1830 (($ $) 122 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3764 (((-423 $) $) 123 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3813 (($ $) 242 (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 246 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-2227 (((-112) $ $) 113 (|has| |#1| (-310)))) (-3473 (((-776)) 96 (|has| |#1| (-372)))) (-2746 (($ $) 228 (|has| |#1| (-1210)))) (-2601 (($ $) 213 (|has| |#1| (-1210)))) (-4118 (($ $) 227 (|has| |#1| (-1210)))) (-2647 (($ $) 214 (|has| |#1| (-1210)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3150 (((-569) $) 177 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 174)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55) (($ (-1275 |#1|)) 71)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2368 (($ $ $) 117 (|has| |#1| (-310)))) (-1833 (((-694 |#1|) $ (-1275 $)) 60) (((-694 |#1|) $) 66)) (-2957 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3598 (($ (-1181 |#1|)) 166) (((-3 $ "failed") (-412 (-1181 |#1|))) 163 (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) 37)) (-3824 ((|#1| $) 254)) (-3377 (((-3 (-412 (-569)) "failed") $) 247 (|has| |#1| (-550)))) (-1441 (((-112) $) 249 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 248 (|has| |#1| (-550)))) (-3978 (((-927)) 61)) (-3406 (($) 99 (|has| |#1| (-372)))) (-2379 (($ $ $) 116 (|has| |#1| (-310)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111 (|has| |#1| (-310)))) (-1616 (($) 157 (|has| |#1| (-353)))) (-2807 (((-112) $) 158 (|has| |#1| (-353)))) (-3701 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-1473 (((-112) $) 124 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2149 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1210))))) (-1312 (($) 239 (|has| |#1| (-1210)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 262 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 261 (|has| |#1| (-892 (-383))))) (-1466 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 241 (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3829 ((|#1| $) 58)) (-3885 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-310)))) (-3859 (((-1181 |#1|) $) 51 (|has| |#1| (-367)))) (-1346 (($ (-1 |#1| |#1|) $) 263)) (-2731 (((-927) $) 98 (|has| |#1| (-372)))) (-2662 (($ $) 236 (|has| |#1| (-1210)))) (-3585 (((-1181 |#1|) $) 164)) (-1839 (($ (-649 $)) 109 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 108 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 125 (|has| |#1| (-367)))) (-2307 (($) 151 (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| |#1| (-372)))) (-1734 (($) 258)) (-3836 ((|#1| $) 255)) (-3547 (((-1128) $) 11)) (-2332 (($) 168)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-1870 (($ (-649 $)) 107 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (($ $ $) 106 (-2776 (|has| |#1| (-310)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 154 (|has| |#1| (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 245 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3814 (((-423 (-1181 $)) (-1181 $)) 244 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3800 (((-423 $) $) 121 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118 (|has| |#1| (-310)))) (-2407 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 101 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-310)))) (-4389 (($ $) 237 (|has| |#1| (-1210)))) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 269 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 267 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 266 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 265 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 264 (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) 114 (|has| |#1| (-310)))) (-1869 (($ $ |#1|) 270 (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115 (|has| |#1| (-310)))) (-3059 ((|#1| (-1275 $)) 54) ((|#1|) 67)) (-2166 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3517 (($ $ (-1 |#1| |#1|) (-776)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-649 (-1185)) (-649 (-776))) 138 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 139 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 140 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 141 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 143 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 145 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-4061 (((-1181 |#1|)) 167)) (-4128 (($ $) 226 (|has| |#1| (-1210)))) (-2661 (($ $) 215 (|has| |#1| (-1210)))) (-4234 (($) 156 (|has| |#1| (-353)))) (-2783 (($ $) 225 (|has| |#1| (-1210)))) (-2635 (($ $) 216 (|has| |#1| (-1210)))) (-2758 (($ $) 224 (|has| |#1| (-1210)))) (-2614 (($ $) 217 (|has| |#1| (-1210)))) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56) (((-1275 |#1|) $) 73) (((-694 |#1|) (-1275 $)) 72)) (-1410 (((-1275 |#1|) $) 70) (($ (-1275 |#1|)) 69) (((-1181 |#1|) $) 179) (($ (-1181 |#1|)) 165) (((-898 (-569)) $) 260 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 259 (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) 211 (|has| |#1| (-1030))) (((-170 (-226)) $) 210 (|has| |#1| (-1030))) (((-541) $) 209 (|has| |#1| (-619 (-541))))) (-3476 (($ $) 257)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 153 (-2776 (-1759 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-353))))) (-3101 (($ |#1| |#1|) 256)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 95 (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) 100 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-2239 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (-2776 (-1759 (|has| $ (-145)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))) (|has| |#1| (-145))))) (-1886 (((-1181 |#1|) $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-4161 (($ $) 235 (|has| |#1| (-1210)))) (-2701 (($ $) 223 (|has| |#1| (-1210)))) (-2664 (((-112) $ $) 104 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915)))))) (-4140 (($ $) 234 (|has| |#1| (-1210)))) (-2675 (($ $) 222 (|has| |#1| (-1210)))) (-4183 (($ $) 233 (|has| |#1| (-1210)))) (-2723 (($ $) 221 (|has| |#1| (-1210)))) (-1899 ((|#1| $) 251 (|has| |#1| (-1210)))) (-1503 (($ $) 232 (|has| |#1| (-1210)))) (-2734 (($ $) 220 (|has| |#1| (-1210)))) (-4175 (($ $) 231 (|has| |#1| (-1210)))) (-2712 (($ $) 219 (|has| |#1| (-1210)))) (-4151 (($ $) 230 (|has| |#1| (-1210)))) (-2689 (($ $) 218 (|has| |#1| (-1210)))) (-2271 (($ $) 252 (|has| |#1| (-1068)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#1| |#1|) (-776)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-649 (-1185)) (-649 (-776))) 134 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 135 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 136 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 137 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 142 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))))) (($ $) 144 (-2776 (-1759 (|has| |#1| (-367)) (|has| |#1| (-234))) (|has| |#1| (-234)) (-1759 (|has| |#1| (-234)) (|has| |#1| (-367)))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 129 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-412 (-569))) 240 (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210)))) (($ $ $) 238 (|has| |#1| (-1210))) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367))))) -(((-166 |#1|) (-140) (-173)) (T -166)) -((-3829 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-1734 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3476 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3101 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3836 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2271 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1210)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1068)) (-4 *3 (-1210)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569)))))) -(-13 (-729 |t#1| (-1181 |t#1|)) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-405 |t#1|) (-890 |t#1|) (-381 |t#1|) (-173) (-10 -8 (-6 -3101) (-15 -1734 ($)) (-15 -3476 ($ $)) (-15 -3101 ($ |t#1| |t#1|)) (-15 -3836 (|t#1| $)) (-15 -3824 (|t#1| $)) (-15 -3829 (|t#1| $)) (IF (|has| |t#1| (-561)) (PROGN (-6 (-561)) (-15 -2407 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-310)) (-6 (-310)) |%noBranch|) (IF (|has| |t#1| (-6 -4446)) (-6 -4446) |%noBranch|) (IF (|has| |t#1| (-6 -4443)) (-6 -4443) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1030)) (PROGN (-6 (-619 (-170 (-226)))) (-6 (-619 (-170 (-383))))) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2271 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1210)) (PROGN (-6 (-1210)) (-15 -1899 (|t#1| $)) (IF (|has| |t#1| (-1010)) (-6 (-1010)) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2149 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-310)) (-6 (-915)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-35) |has| |#1| (-1210)) ((-95) |has| |#1| (-1210)) ((-102) . T) ((-111 #0# #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-618 (-867)) . T) ((-173) . T) ((-619 (-170 (-226))) |has| |#1| (-1030)) ((-619 (-170 (-383))) |has| |#1| (-1030)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-619 #1=(-1181 |#1|)) . T) ((-232 |#1|) . T) ((-234) -2776 (|has| |#1| (-353)) (|has| |#1| (-234))) ((-244) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-287) |has| |#1| (-1210)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-310) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2776 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| #1#) . T) ((-414 |#1| #1#) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-498) |has| |#1| (-1210)) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-651 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-729 |#1| #1#) . T) ((-731) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) -12 (|has| |#1| (-310)) (|has| |#1| (-915))) ((-926) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (|has| |#1| (-310))) ((-1010) -12 (|has| |#1| (-1010)) (|has| |#1| (-1210))) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-353)) ((-1210) |has| |#1| (-1210)) ((-1213) |has| |#1| (-1210)) ((-1225) . T) ((-1229) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)) (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) -((-3800 (((-423 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -3800 ((-423 |#2|) |#2|))) (-310) (-1251 (-170 |#1|))) (T -167)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1251 (-170 *4)))))) -(-10 -7 (-15 -3800 ((-423 |#2|) |#2|))) -((-1633 (((-1143) (-1143) (-294)) 8)) (-3684 (((-649 (-696 (-283))) (-1167)) 81)) (-3532 (((-696 (-283)) (-1143)) 76))) -(((-168) (-13 (-1225) (-10 -7 (-15 -1633 ((-1143) (-1143) (-294))) (-15 -3532 ((-696 (-283)) (-1143))) (-15 -3684 ((-649 (-696 (-283))) (-1167)))))) (T -168)) -((-1633 (*1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-294)) (-5 *1 (-168)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-1143)) (-5 *2 (-696 (-283))) (-5 *1 (-168)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168))))) -(-13 (-1225) (-10 -7 (-15 -1633 ((-1143) (-1143) (-294))) (-15 -3532 ((-696 (-283)) (-1143))) (-15 -3684 ((-649 (-696 (-283))) (-1167))))) -((-1346 (((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)) 14))) -(((-169 |#1| |#2|) (-10 -7 (-15 -1346 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)))) (-173) (-173)) (T -169)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6))))) -(-10 -7 (-15 -1346 ((-170 |#2|) (-1 |#2| |#1|) (-170 |#1|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 34)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4355 (($ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-3039 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-1547 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) NIL)) (-3140 ((|#1| $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-1210)))) (-2626 (($ $) NIL (|has| |#1| (-1210)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-1830 (($ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3764 (((-423 $) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3813 (($ $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-310)))) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-2746 (($ $) NIL (|has| |#1| (-1210)))) (-2601 (($ $) NIL (|has| |#1| (-1210)))) (-4118 (($ $) NIL (|has| |#1| (-1210)))) (-2647 (($ $) NIL (|has| |#1| (-1210)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|) (-1275 $)) NIL) (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2368 (($ $ $) NIL (|has| |#1| (-310)))) (-1833 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3598 (($ (-1181 |#1|)) NIL) (((-3 $ "failed") (-412 (-1181 |#1|))) NIL (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| $) 13)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1441 (((-112) $) NIL (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL (|has| |#1| (-310)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-310)))) (-1616 (($) NIL (|has| |#1| (-353)))) (-2807 (((-112) $) NIL (|has| |#1| (-353)))) (-3701 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-1473 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-2149 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1068)) (|has| |#1| (-1210))))) (-1312 (($) NIL (|has| |#1| (-1210)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-1466 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2349 (((-112) $) 36)) (-3742 (($ $ (-569)) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210))))) (-3829 ((|#1| $) 47)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-3859 (((-1181 |#1|) $) NIL (|has| |#1| (-367)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-2662 (($ $) NIL (|has| |#1| (-1210)))) (-3585 (((-1181 |#1|) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-2307 (($) NIL (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1734 (($) NIL)) (-3836 ((|#1| $) 15)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-310)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-310))) (($ $ $) NIL (|has| |#1| (-310)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#1| (-310)) (|has| |#1| (-915))))) (-3800 (((-423 $) $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-367))))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-310)))) (-2407 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 48 (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-310)))) (-4389 (($ $) NIL (|has| |#1| (-1210)))) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) NIL (|has| |#1| (-310)))) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-310)))) (-3059 ((|#1| (-1275 $)) NIL) ((|#1|) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3517 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-4061 (((-1181 |#1|)) NIL)) (-4128 (($ $) NIL (|has| |#1| (-1210)))) (-2661 (($ $) NIL (|has| |#1| (-1210)))) (-4234 (($) NIL (|has| |#1| (-353)))) (-2783 (($ $) NIL (|has| |#1| (-1210)))) (-2635 (($ $) NIL (|has| |#1| (-1210)))) (-2758 (($ $) NIL (|has| |#1| (-1210)))) (-2614 (($ $) NIL (|has| |#1| (-1210)))) (-2415 (((-1275 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) (-1275 $) (-1275 $)) NIL) (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1410 (((-1275 |#1|) $) NIL) (($ (-1275 |#1|)) NIL) (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-170 (-383)) $) NIL (|has| |#1| (-1030))) (((-170 (-226)) $) NIL (|has| |#1| (-1030))) (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3476 (($ $) 46)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-353))))) (-3101 (($ |#1| |#1|) 38)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 37) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-2239 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-1886 (((-1181 |#1|) $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-4161 (($ $) NIL (|has| |#1| (-1210)))) (-2701 (($ $) NIL (|has| |#1| (-1210)))) (-2664 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-310)) (|has| |#1| (-915))) (|has| |#1| (-561))))) (-4140 (($ $) NIL (|has| |#1| (-1210)))) (-2675 (($ $) NIL (|has| |#1| (-1210)))) (-4183 (($ $) NIL (|has| |#1| (-1210)))) (-2723 (($ $) NIL (|has| |#1| (-1210)))) (-1899 ((|#1| $) NIL (|has| |#1| (-1210)))) (-1503 (($ $) NIL (|has| |#1| (-1210)))) (-2734 (($ $) NIL (|has| |#1| (-1210)))) (-4175 (($ $) NIL (|has| |#1| (-1210)))) (-2712 (($ $) NIL (|has| |#1| (-1210)))) (-4151 (($ $) NIL (|has| |#1| (-1210)))) (-2689 (($ $) NIL (|has| |#1| (-1210)))) (-2271 (($ $) NIL (|has| |#1| (-1068)))) (-1804 (($) 28 T CONST)) (-1815 (($) 30 T CONST)) (-3266 (((-1167) $) 23 (|has| |#1| (-833))) (((-1167) $ (-112)) 25 (|has| |#1| (-833))) (((-1280) (-827) $) 26 (|has| |#1| (-833))) (((-1280) (-827) $ (-112)) 27 (|has| |#1| (-833)))) (-2832 (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 40)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-412 (-569))) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1210)))) (($ $ $) NIL (|has| |#1| (-1210))) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367))))) -(((-170 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-173)) (T -170)) -NIL -(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) -((-1410 (((-898 |#1|) |#3|) 22))) -(((-171 |#1| |#2| |#3|) (-10 -7 (-15 -1410 ((-898 |#1|) |#3|))) (-1108) (-13 (-619 (-898 |#1|)) (-173)) (-166 |#2|)) (T -171)) -((-1410 (*1 *2 *3) (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4)) (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1108)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -1410 ((-898 |#1|) |#3|))) -((-2417 (((-112) $ $) NIL)) (-3948 (((-112) $) 9)) (-2355 (((-112) $ (-112)) 11)) (-4300 (($) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3962 (($ $) 14)) (-3796 (((-867) $) 18)) (-4368 (((-112) $) 8)) (-4133 (((-112) $ (-112)) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-172) (-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -4368 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4133 ((-112) $ (-112))) (-15 -2355 ((-112) $ (-112))) (-15 -3962 ($ $))))) (T -172)) -((-4300 (*1 *1) (-5 *1 (-172))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-4133 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-2355 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) (-3962 (*1 *1 *1) (-5 *1 (-172)))) -(-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -4368 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -4133 ((-112) $ (-112))) (-15 -2355 ((-112) $ (-112))) (-15 -3962 ($ $)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-173) (-140)) (T -173)) -NIL -(-13 (-1057) (-111 $ $) (-10 -7 (-6 (-4449 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2543 (($ $) 6))) -(((-174) (-140)) (T -174)) -((-2543 (*1 *1 *1) (-4 *1 (-174)))) -(-13 (-10 -8 (-15 -2543 ($ $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 ((|#1| $) 81)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-1944 (($ $) 21)) (-3806 (($ |#1| (-1165 |#1|)) 50)) (-3086 (((-3 $ "failed") $) 123)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-1701 (((-1165 |#1|) $) 88)) (-2022 (((-1165 |#1|) $) 85)) (-3279 (((-1165 |#1|) $) 86)) (-2349 (((-112) $) NIL)) (-2055 (((-1165 |#1|) $) 94)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-3166 (($ $ (-569)) 97)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3640 (((-1165 |#1|) $) 95)) (-1739 (((-1165 (-412 |#1|)) $) 14)) (-1855 (($ (-412 |#1|)) 17) (($ |#1| (-1165 |#1|) (-1165 |#1|)) 40)) (-2007 (($ $) 99)) (-3796 (((-867) $) 140) (($ (-569)) 53) (($ |#1|) 54) (($ (-412 |#1|)) 38) (($ (-412 (-569))) NIL) (($ $) NIL)) (-2721 (((-776)) 69 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3244 (((-1165 (-412 |#1|)) $) 20)) (-1804 (($) 27 T CONST)) (-1815 (($) 30 T CONST)) (-2920 (((-112) $ $) 37)) (-3035 (($ $ $) 121)) (-3024 (($ $) 112) (($ $ $) 109)) (-3012 (($ $ $) 107)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-412 |#1|) $) 117) (($ $ (-412 |#1|)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL))) -(((-175 |#1|) (-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -1855 ($ (-412 |#1|))) (-15 -1855 ($ |#1| (-1165 |#1|) (-1165 |#1|))) (-15 -3806 ($ |#1| (-1165 |#1|))) (-15 -2022 ((-1165 |#1|) $)) (-15 -3279 ((-1165 |#1|) $)) (-15 -1701 ((-1165 |#1|) $)) (-15 -1938 (|#1| $)) (-15 -1944 ($ $)) (-15 -3244 ((-1165 (-412 |#1|)) $)) (-15 -1739 ((-1165 (-412 |#1|)) $)) (-15 -2055 ((-1165 |#1|) $)) (-15 -3640 ((-1165 |#1|) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $)))) (-310)) (T -175)) -((-1855 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3)))) (-1855 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3279 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1938 (*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) (-2007 (*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))) -(-13 (-38 |#1|) (-38 (-412 |#1|)) (-367) (-10 -8 (-15 -1855 ($ (-412 |#1|))) (-15 -1855 ($ |#1| (-1165 |#1|) (-1165 |#1|))) (-15 -3806 ($ |#1| (-1165 |#1|))) (-15 -2022 ((-1165 |#1|) $)) (-15 -3279 ((-1165 |#1|) $)) (-15 -1701 ((-1165 |#1|) $)) (-15 -1938 (|#1| $)) (-15 -1944 ($ $)) (-15 -3244 ((-1165 (-412 |#1|)) $)) (-15 -1739 ((-1165 (-412 |#1|)) $)) (-15 -2055 ((-1165 |#1|) $)) (-15 -3640 ((-1165 |#1|) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $)))) -((-3700 (($ (-109) $) 15)) (-1625 (((-696 (-109)) (-511) $) 14)) (-3796 (((-867) $) 18)) (-4125 (((-649 (-109)) $) 8))) -(((-176) (-13 (-618 (-867)) (-10 -8 (-15 -4125 ((-649 (-109)) $)) (-15 -3700 ($ (-109) $)) (-15 -1625 ((-696 (-109)) (-511) $))))) (T -176)) -((-4125 (*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176)))) (-3700 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176)))) (-1625 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176))))) -(-13 (-618 (-867)) (-10 -8 (-15 -4125 ((-649 (-109)) $)) (-15 -3700 ($ (-109) $)) (-15 -1625 ((-696 (-109)) (-511) $)))) -((-3755 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 38)) (-3063 (((-949 |#1|) (-949 |#1|)) 22)) (-2597 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 34)) (-1456 (((-949 |#1|) (-949 |#1|)) 20)) (-4336 (((-949 |#1|) (-949 |#1|)) 28)) (-2650 (((-949 |#1|) (-949 |#1|)) 27)) (-4233 (((-949 |#1|) (-949 |#1|)) 26)) (-2361 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 35)) (-4121 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 33)) (-2893 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 32)) (-3204 (((-949 |#1|) (-949 |#1|)) 21)) (-3627 (((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|) 41)) (-2666 (((-949 |#1|) (-949 |#1|)) 8)) (-1802 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 37)) (-2226 (((-1 (-949 |#1|) (-949 |#1|)) |#1|) 36))) -(((-177 |#1|) (-10 -7 (-15 -2666 ((-949 |#1|) (-949 |#1|))) (-15 -1456 ((-949 |#1|) (-949 |#1|))) (-15 -3204 ((-949 |#1|) (-949 |#1|))) (-15 -3063 ((-949 |#1|) (-949 |#1|))) (-15 -4233 ((-949 |#1|) (-949 |#1|))) (-15 -2650 ((-949 |#1|) (-949 |#1|))) (-15 -4336 ((-949 |#1|) (-949 |#1|))) (-15 -2893 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -4121 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2597 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2361 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2226 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1802 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3755 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3627 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|))) (-13 (-367) (-1210) (-1010))) (T -177)) -((-3627 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2226 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2361 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2597 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-4121 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-2893 (*1 *2 *3) (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-2650 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-3204 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) (-5 *1 (-177 *3))))) -(-10 -7 (-15 -2666 ((-949 |#1|) (-949 |#1|))) (-15 -1456 ((-949 |#1|) (-949 |#1|))) (-15 -3204 ((-949 |#1|) (-949 |#1|))) (-15 -3063 ((-949 |#1|) (-949 |#1|))) (-15 -4233 ((-949 |#1|) (-949 |#1|))) (-15 -2650 ((-949 |#1|) (-949 |#1|))) (-15 -4336 ((-949 |#1|) (-949 |#1|))) (-15 -2893 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -4121 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2597 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2361 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -2226 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -1802 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3755 ((-1 (-949 |#1|) (-949 |#1|)) |#1|)) (-15 -3627 ((-1 (-949 |#1|) (-949 |#1|)) |#1| |#1|))) -((-1886 ((|#2| |#3|) 28))) -(((-178 |#1| |#2| |#3|) (-10 -7 (-15 -1886 (|#2| |#3|))) (-173) (-1251 |#1|) (-729 |#1| |#2|)) (T -178)) -((-1886 (*1 *2 *3) (-12 (-4 *4 (-173)) (-4 *2 (-1251 *4)) (-5 *1 (-178 *4 *2 *3)) (-4 *3 (-729 *4 *2))))) -(-10 -7 (-15 -1886 (|#2| |#3|))) -((-3131 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 44 (|has| (-958 |#2|) (-892 |#1|))))) -(((-179 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|)) (-1108) (-13 (-892 |#1|) (-173)) (-166 |#2|)) (T -179)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5)) (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3))))) -(-10 -7 (IF (|has| (-958 |#2|) (-892 |#1|)) (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) |%noBranch|)) -((-1421 (((-649 |#1|) (-649 |#1|) |#1|) 41)) (-2620 (((-649 |#1|) |#1| (-649 |#1|)) 20)) (-2706 (((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|)) 36) ((|#1| (-649 |#1|) (-649 |#1|)) 32))) -(((-180 |#1|) (-10 -7 (-15 -2620 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -2706 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -2706 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -1421 ((-649 |#1|) (-649 |#1|) |#1|))) (-310)) (T -180)) -((-1421 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3)))) (-2706 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310)) (-5 *1 (-180 *4)))) (-2706 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310)))) (-2620 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3))))) -(-10 -7 (-15 -2620 ((-649 |#1|) |#1| (-649 |#1|))) (-15 -2706 (|#1| (-649 |#1|) (-649 |#1|))) (-15 -2706 ((-649 |#1|) (-649 (-649 |#1|)) (-649 |#1|))) (-15 -1421 ((-649 |#1|) (-649 |#1|) |#1|))) -((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 10)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-181) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))) (T -181)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-181)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-181))))) -(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $)))) -((-2037 (((-2 (|:| |start| |#2|) (|:| -4360 (-423 |#2|))) |#2|) 66)) (-2299 ((|#1| |#1|) 58)) (-3474 (((-170 |#1|) |#2|) 93)) (-3758 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-3984 ((|#2| |#2|) 91)) (-2068 (((-423 |#2|) |#2| |#1|) 121) (((-423 |#2|) |#2| |#1| (-112)) 88)) (-3829 ((|#1| |#2|) 120)) (-3410 ((|#2| |#2|) 135)) (-3800 (((-423 |#2|) |#2|) 158) (((-423 |#2|) |#2| |#1|) 33) (((-423 |#2|) |#2| |#1| (-112)) 157)) (-3056 (((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2|) 156) (((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2| (-112)) 81)) (-3177 (((-649 (-170 |#1|)) |#2| |#1|) 42) (((-649 (-170 |#1|)) |#2|) 43))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3177 ((-649 (-170 |#1|)) |#2|)) (-15 -3177 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2| (-112))) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2|)) (-15 -3800 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3800 ((-423 |#2|) |#2| |#1|)) (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3410 (|#2| |#2|)) (-15 -3829 (|#1| |#2|)) (-15 -2068 ((-423 |#2|) |#2| |#1| (-112))) (-15 -2068 ((-423 |#2|) |#2| |#1|)) (-15 -3984 (|#2| |#2|)) (-15 -3758 (|#1| |#2| |#1|)) (-15 -3758 (|#1| |#2|)) (-15 -3474 ((-170 |#1|) |#2|)) (-15 -2299 (|#1| |#1|)) (-15 -2037 ((-2 (|:| |start| |#2|) (|:| -4360 (-423 |#2|))) |#2|))) (-13 (-367) (-853)) (-1251 (-170 |#1|))) (T -182)) -((-2037 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-2 (|:| |start| *3) (|:| -4360 (-423 *3)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-2299 (*1 *2 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3474 (*1 *2 *3) (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3)) (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1251 *2)))) (-3758 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3758 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1251 (-170 *3))))) (-2068 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-2068 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3829 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) (-4 *3 (-1251 (-170 *2))))) (-3410 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) (-4 *2 (-1251 (-170 *3))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3800 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3056 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *4)))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3056 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853))) (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *5)))) (-5 *1 (-182 *5 *3)) (-4 *3 (-1251 (-170 *5))))) (-3177 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))) -(-10 -7 (-15 -3177 ((-649 (-170 |#1|)) |#2|)) (-15 -3177 ((-649 (-170 |#1|)) |#2| |#1|)) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2| (-112))) (-15 -3056 ((-649 (-2 (|:| -4360 (-649 |#2|)) (|:| -3647 |#1|))) |#2| |#2|)) (-15 -3800 ((-423 |#2|) |#2| |#1| (-112))) (-15 -3800 ((-423 |#2|) |#2| |#1|)) (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3410 (|#2| |#2|)) (-15 -3829 (|#1| |#2|)) (-15 -2068 ((-423 |#2|) |#2| |#1| (-112))) (-15 -2068 ((-423 |#2|) |#2| |#1|)) (-15 -3984 (|#2| |#2|)) (-15 -3758 (|#1| |#2| |#1|)) (-15 -3758 (|#1| |#2|)) (-15 -3474 ((-170 |#1|) |#2|)) (-15 -2299 (|#1| |#1|)) (-15 -2037 ((-2 (|:| |start| |#2|) (|:| -4360 (-423 |#2|))) |#2|))) -((-1786 (((-3 |#2| "failed") |#2|) 20)) (-3533 (((-776) |#2|) 23)) (-2246 ((|#2| |#2| |#2|) 25))) -(((-183 |#1| |#2|) (-10 -7 (-15 -1786 ((-3 |#2| "failed") |#2|)) (-15 -3533 ((-776) |#2|)) (-15 -2246 (|#2| |#2| |#2|))) (-1225) (-679 |#1|)) (T -183)) -((-2246 (*1 *2 *2 *2) (-12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3)))) (-3533 (*1 *2 *3) (-12 (-4 *4 (-1225)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) (-4 *3 (-679 *4)))) (-1786 (*1 *2 *2) (|partial| -12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3))))) -(-10 -7 (-15 -1786 ((-3 |#2| "failed") |#2|)) (-15 -3533 ((-776) |#2|)) (-15 -2246 (|#2| |#2| |#2|))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1576 ((|#1| $) 7)) (-3796 (((-867) $) 14)) (-1520 (((-112) $ $) NIL)) (-3939 (((-649 (-1190)) $) 10)) (-2920 (((-112) $ $) 12))) -(((-184 |#1|) (-13 (-1108) (-10 -8 (-15 -1576 (|#1| $)) (-15 -3939 ((-649 (-1190)) $)))) (-186)) (T -184)) -((-1576 (*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-184 *3)) (-4 *3 (-186))))) -(-13 (-1108) (-10 -8 (-15 -1576 (|#1| $)) (-15 -3939 ((-649 (-1190)) $)))) -((-1767 (((-649 (-870)) $) 16)) (-3896 (((-187) $) 8)) (-1673 (((-649 (-112)) $) 13)) (-3324 (((-55) $) 10))) -(((-185 |#1|) (-10 -8 (-15 -1767 ((-649 (-870)) |#1|)) (-15 -1673 ((-649 (-112)) |#1|)) (-15 -3896 ((-187) |#1|)) (-15 -3324 ((-55) |#1|))) (-186)) (T -185)) -NIL -(-10 -8 (-15 -1767 ((-649 (-870)) |#1|)) (-15 -1673 ((-649 (-112)) |#1|)) (-15 -3896 ((-187) |#1|)) (-15 -3324 ((-55) |#1|))) -((-2417 (((-112) $ $) 7)) (-1767 (((-649 (-870)) $) 19)) (-3573 (((-511) $) 16)) (-3435 (((-1167) $) 10)) (-3896 (((-187) $) 21)) (-1825 (((-112) $ (-511)) 14)) (-3547 (((-1128) $) 11)) (-1673 (((-649 (-112)) $) 20)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-3324 (((-55) $) 15)) (-2920 (((-112) $ $) 6))) -(((-186) (-140)) (T -186)) -((-3896 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112))))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870)))))) -(-13 (-840 (-511)) (-10 -8 (-15 -3896 ((-187) $)) (-15 -1673 ((-649 (-112)) $)) (-15 -1767 ((-649 (-870)) $)))) -(((-102) . T) ((-618 (-867)) . T) ((-840 (-511)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-8 (($) 7 T CONST)) (-3796 (((-867) $) 12)) (-9 (($) 6 T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 10))) -(((-187) (-13 (-1108) (-10 -8 (-15 -9 ($) -3709) (-15 -8 ($) -3709) (-15 -7 ($) -3709)))) (T -187)) -((-9 (*1 *1) (-5 *1 (-187))) (-8 (*1 *1) (-5 *1 (-187))) (-7 (*1 *1) (-5 *1 (-187)))) -(-13 (-1108) (-10 -8 (-15 -9 ($) -3709) (-15 -8 ($) -3709) (-15 -7 ($) -3709))) -((-2417 (((-112) $ $) NIL)) (-1767 (((-649 (-870)) $) NIL)) (-3573 (((-511) $) 8)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) 10)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-3842 (((-696 $) (-511)) 17)) (-1673 (((-649 (-112)) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) 12)) (-2920 (((-112) $ $) NIL))) -(((-188) (-13 (-186) (-10 -8 (-15 -3842 ((-696 $) (-511)))))) (T -188)) -((-3842 (*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188))))) -(-13 (-186) (-10 -8 (-15 -3842 ((-696 $) (-511))))) -((-1396 ((|#2| |#2|) 28)) (-4060 (((-112) |#2|) 19)) (-3824 (((-319 |#1|) |#2|) 12)) (-3836 (((-319 |#1|) |#2|) 14)) (-3509 ((|#2| |#2| (-1185)) 69) ((|#2| |#2|) 70)) (-1628 (((-170 (-319 |#1|)) |#2|) 10)) (-3038 ((|#2| |#2| (-1185)) 66) ((|#2| |#2|) 60))) -(((-189 |#1| |#2|) (-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -3824 ((-319 |#1|) |#2|)) (-15 -3836 ((-319 |#1|) |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -1628 ((-170 (-319 |#1|)) |#2|))) (-13 (-561) (-1046 (-569))) (-13 (-27) (-1210) (-435 (-170 |#1|)))) (T -189)) -((-1628 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-170 (-319 *4))) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3038 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) (-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4)))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3))))))) -(-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -3824 ((-319 |#1|) |#2|)) (-15 -3836 ((-319 |#1|) |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -1628 ((-170 (-319 |#1|)) |#2|))) -((-1536 (((-1275 (-694 (-958 |#1|))) (-1275 (-694 |#1|))) 26)) (-3796 (((-1275 (-694 (-412 (-958 |#1|)))) (-1275 (-694 |#1|))) 37))) -(((-190 |#1|) (-10 -7 (-15 -1536 ((-1275 (-694 (-958 |#1|))) (-1275 (-694 |#1|)))) (-15 -3796 ((-1275 (-694 (-412 (-958 |#1|)))) (-1275 (-694 |#1|))))) (-173)) (T -190)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1275 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173)) (-5 *2 (-1275 (-694 (-958 *4)))) (-5 *1 (-190 *4))))) -(-10 -7 (-15 -1536 ((-1275 (-694 (-958 |#1|))) (-1275 (-694 |#1|)))) (-15 -3796 ((-1275 (-694 (-412 (-958 |#1|)))) (-1275 (-694 |#1|))))) -((-3070 (((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569)))) 88)) (-2683 (((-1187 (-412 (-569))) (-649 (-569)) (-649 (-569))) 99)) (-2410 (((-1187 (-412 (-569))) (-569)) 55)) (-2001 (((-1187 (-412 (-569))) (-569)) 74)) (-1725 (((-412 (-569)) (-1187 (-412 (-569)))) 84)) (-1322 (((-1187 (-412 (-569))) (-569)) 37)) (-2859 (((-1187 (-412 (-569))) (-569)) 67)) (-4259 (((-1187 (-412 (-569))) (-569)) 61)) (-3277 (((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569)))) 82)) (-2007 (((-1187 (-412 (-569))) (-569)) 29)) (-1561 (((-412 (-569)) (-1187 (-412 (-569))) (-1187 (-412 (-569)))) 86)) (-3054 (((-1187 (-412 (-569))) (-569)) 35)) (-4042 (((-1187 (-412 (-569))) (-649 (-569))) 95))) -(((-191) (-10 -7 (-15 -2007 ((-1187 (-412 (-569))) (-569))) (-15 -2410 ((-1187 (-412 (-569))) (-569))) (-15 -1322 ((-1187 (-412 (-569))) (-569))) (-15 -3054 ((-1187 (-412 (-569))) (-569))) (-15 -4259 ((-1187 (-412 (-569))) (-569))) (-15 -2859 ((-1187 (-412 (-569))) (-569))) (-15 -2001 ((-1187 (-412 (-569))) (-569))) (-15 -1561 ((-412 (-569)) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -3277 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -1725 ((-412 (-569)) (-1187 (-412 (-569))))) (-15 -3070 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -4042 ((-1187 (-412 (-569))) (-649 (-569)))) (-15 -2683 ((-1187 (-412 (-569))) (-649 (-569)) (-649 (-569)))))) (T -191)) -((-2683 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-3070 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-3277 (*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)))) (-1561 (*1 *2 *3 *3) (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-191)))) (-2001 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2859 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-4259 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-3054 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-1322 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) (-2007 (*1 *2 *3) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))) -(-10 -7 (-15 -2007 ((-1187 (-412 (-569))) (-569))) (-15 -2410 ((-1187 (-412 (-569))) (-569))) (-15 -1322 ((-1187 (-412 (-569))) (-569))) (-15 -3054 ((-1187 (-412 (-569))) (-569))) (-15 -4259 ((-1187 (-412 (-569))) (-569))) (-15 -2859 ((-1187 (-412 (-569))) (-569))) (-15 -2001 ((-1187 (-412 (-569))) (-569))) (-15 -1561 ((-412 (-569)) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -3277 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -1725 ((-412 (-569)) (-1187 (-412 (-569))))) (-15 -3070 ((-1187 (-412 (-569))) (-1187 (-412 (-569))) (-1187 (-412 (-569))))) (-15 -4042 ((-1187 (-412 (-569))) (-649 (-569)))) (-15 -2683 ((-1187 (-412 (-569))) (-649 (-569)) (-649 (-569))))) -((-3454 (((-423 (-1181 (-569))) (-569)) 38)) (-1608 (((-649 (-1181 (-569))) (-569)) 33)) (-3665 (((-1181 (-569)) (-569)) 28))) -(((-192) (-10 -7 (-15 -1608 ((-649 (-1181 (-569))) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -3454 ((-423 (-1181 (-569))) (-569))))) (T -192)) -((-3454 (*1 *2 *3) (-12 (-5 *2 (-423 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569)))) (-3665 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-192)) (-5 *3 (-569)))) (-1608 (*1 *2 *3) (-12 (-5 *2 (-649 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569))))) -(-10 -7 (-15 -1608 ((-649 (-1181 (-569))) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -3454 ((-423 (-1181 (-569))) (-569)))) -((-2879 (((-1165 (-226)) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 132)) (-2718 (((-649 (-1167)) (-1165 (-226))) NIL)) (-2205 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 108)) (-1680 (((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226)))) NIL)) (-3161 (((-649 (-1167)) (-649 (-226))) NIL)) (-2278 (((-226) (-1102 (-848 (-226)))) 31)) (-3783 (((-226) (-1102 (-848 (-226)))) 32)) (-1329 (((-383) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 126)) (-2582 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 68)) (-2145 (((-1167) (-226)) NIL)) (-1390 (((-1167) (-649 (-1167))) 27)) (-3215 (((-1043) (-1185) (-1185) (-1043)) 13))) -(((-193) (-10 -7 (-15 -2205 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2582 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -1329 ((-383) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -1390 ((-1167) (-649 (-1167)))) (-15 -3215 ((-1043) (-1185) (-1185) (-1043))))) (T -193)) -((-3215 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-193)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-193)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-193)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-193)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185)) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-193)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) (-2582 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-193)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-193))))) -(-10 -7 (-15 -2205 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2582 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -1329 ((-383) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -1390 ((-1167) (-649 (-1167)))) (-15 -3215 ((-1043) (-1185) (-1185) (-1043)))) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 61) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 33) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-194) (-792)) (T -194)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 66) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-195) (-792)) (T -195)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 81) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 46) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-196) (-792)) (T -196)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 63) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 36) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-197) (-792)) (T -197)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 75) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-198) (-792)) (T -198)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 90) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-199) (-792)) (T -199)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 90) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 51) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-200) (-792)) (T -200)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 77) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 42) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-201) (-792)) (T -201)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 78)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-202) (-792)) (T -202)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 79)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 44)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-203) (-792)) (T -203)) -NIL -(-792) -((-2417 (((-112) $ $) NIL)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 105) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 86) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-204) (-792)) (T -204)) -NIL -(-792) -((-3099 (((-3 (-2 (|:| -3906 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 110)) (-2995 (((-569) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 60)) (-1900 (((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 91))) -(((-205) (-10 -7 (-15 -3099 ((-3 (-2 (|:| -3906 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1900 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2995 ((-569) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -205)) -((-2995 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-569)) (-5 *1 (-205)))) (-1900 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-205)))) (-3099 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -3906 (-114)) (|:| |w| (-226)))) (-5 *1 (-205))))) -(-10 -7 (-15 -3099 ((-3 (-2 (|:| -3906 (-114)) (|:| |w| (-226))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1900 ((-3 (-649 (-226)) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2995 ((-569) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) -((-3590 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 49)) (-3808 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 160)) (-2042 (((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226)))) 112)) (-3414 (((-383) (-694 (-319 (-226)))) 140)) (-1765 (((-694 (-319 (-226))) (-1275 (-319 (-226))) (-649 (-1185))) 136)) (-2179 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 37)) (-3695 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 53)) (-1725 (((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1185)) (-1275 (-319 (-226)))) 125)) (-1656 (((-383) (-383) (-649 (-383))) 133) (((-383) (-383) (-383)) 128)) (-3544 (((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 45))) -(((-206) (-10 -7 (-15 -1656 ((-383) (-383) (-383))) (-15 -1656 ((-383) (-383) (-649 (-383)))) (-15 -3414 ((-383) (-694 (-319 (-226))))) (-15 -1765 ((-694 (-319 (-226))) (-1275 (-319 (-226))) (-649 (-1185)))) (-15 -1725 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1185)) (-1275 (-319 (-226))))) (-15 -2042 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3590 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3695 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3544 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2179 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -206)) -((-2179 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) (-5 *1 (-206)))) (-1725 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1185))) (-5 *4 (-1275 (-319 (-226)))) (-5 *1 (-206)))) (-1765 (*1 *2 *3 *4) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185))) (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206)))) (-1656 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206)))) (-1656 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206))))) -(-10 -7 (-15 -1656 ((-383) (-383) (-383))) (-15 -1656 ((-383) (-383) (-649 (-383)))) (-15 -3414 ((-383) (-694 (-319 (-226))))) (-15 -1765 ((-694 (-319 (-226))) (-1275 (-319 (-226))) (-649 (-1185)))) (-15 -1725 ((-694 (-319 (-226))) (-694 (-319 (-226))) (-649 (-1185)) (-1275 (-319 (-226))))) (-15 -2042 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-694 (-319 (-226))))) (-15 -3808 ((-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383))) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3590 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3695 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3544 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2179 ((-383) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) -((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 75)) (-2920 (((-112) $ $) NIL))) -(((-207) (-805)) (T -207)) -NIL -(-805) -((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 43)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 73)) (-2920 (((-112) $ $) NIL))) -(((-208) (-805)) (T -208)) -NIL -(-805) -((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 40)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 76)) (-2920 (((-112) $ $) NIL))) -(((-209) (-805)) (T -209)) -NIL -(-805) -((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 48)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 88)) (-2920 (((-112) $ $) NIL))) -(((-210) (-805)) (T -210)) -NIL -(-805) -((-3105 (((-649 (-1185)) (-1185) (-776)) 26)) (-3917 (((-319 (-226)) (-319 (-226))) 35)) (-3510 (((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 87)) (-3622 (((-112) (-226) (-226) (-649 (-319 (-226)))) 47))) -(((-211) (-10 -7 (-15 -3105 ((-649 (-1185)) (-1185) (-776))) (-15 -3917 ((-319 (-226)) (-319 (-226)))) (-15 -3622 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -3510 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))))) (T -211)) -((-3510 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *2 (-112)) (-5 *1 (-211)))) (-3622 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-211)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1185))) (-5 *1 (-211)) (-5 *3 (-1185))))) -(-10 -7 (-15 -3105 ((-649 (-1185)) (-1185) (-776))) (-15 -3917 ((-319 (-226)) (-319 (-226)))) (-15 -3622 ((-112) (-226) (-226) (-649 (-319 (-226))))) (-15 -3510 ((-112) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))))) -((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 28)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2035 (((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 70)) (-2920 (((-112) $ $) NIL))) -(((-212) (-901)) (T -212)) -NIL -(-901) -((-2417 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 24)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2035 (((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) NIL)) (-2920 (((-112) $ $) NIL))) -(((-213) (-901)) (T -213)) -NIL -(-901) -((-2417 (((-112) $ $) NIL)) (-3785 ((|#2| $ (-776) |#2|) 11)) (-3776 ((|#2| $ (-776)) 10)) (-4300 (($) 8)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 26)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 13))) -(((-214 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -3776 (|#2| $ (-776))) (-15 -3785 (|#2| $ (-776) |#2|)))) (-927) (-1108)) (T -214)) -((-4300 (*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1108)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-1108)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)))) (-3785 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)) (-4 *2 (-1108))))) -(-13 (-1108) (-10 -8 (-15 -4300 ($)) (-15 -3776 (|#2| $ (-776))) (-15 -3785 (|#2| $ (-776) |#2|)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3567 (((-1280) $) 37) (((-1280) $ (-927) (-927)) 44)) (-1869 (($ $ (-997)) 19) (((-246 (-1167)) $ (-1185)) 15)) (-4158 (((-1280) $) 35)) (-3796 (((-867) $) 32) (($ (-649 |#1|)) 8)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $ $) 27)) (-3012 (($ $ $) 22))) -(((-215 |#1|) (-13 (-1108) (-621 (-649 |#1|)) (-10 -8 (-15 -1869 ($ $ (-997))) (-15 -1869 ((-246 (-1167)) $ (-1185))) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3567 ((-1280) $ (-927) (-927))))) (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))) (T -215)) -((-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-997)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-246 (-1167))) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ *3)) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-3024 (*1 *1 *1 *1) (-12 (-5 *1 (-215 *2)) (-4 *2 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $))))))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) (-15 -3567 (*2 $))))))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) (-15 -3567 (*2 $))))))) (-3567 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-215 *4)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) (-15 -3567 (*2 $)))))))) -(-13 (-1108) (-621 (-649 |#1|)) (-10 -8 (-15 -1869 ($ $ (-997))) (-15 -1869 ((-246 (-1167)) $ (-1185))) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3567 ((-1280) $ (-927) (-927))))) -((-2046 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2046 (|#2| |#4| (-1 |#2| |#2|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -216)) -((-2046 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1251 (-412 *2))) (-4 *2 (-1251 *5)) (-5 *1 (-216 *5 *2 *6 *3)) (-4 *3 (-346 *5 *2 *6))))) -(-10 -7 (-15 -2046 (|#2| |#4| (-1 |#2| |#2|)))) -((-1626 ((|#2| |#2| (-776) |#2|) 58)) (-3147 ((|#2| |#2| (-776) |#2|) 54)) (-3893 (((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|)))) 82)) (-3456 (((-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))) |#2|) 76)) (-2551 (((-112) |#2|) 74)) (-3386 (((-423 |#2|) |#2|) 94)) (-3800 (((-423 |#2|) |#2|) 93)) (-3247 ((|#2| |#2| (-776) |#2|) 52)) (-1827 (((-2 (|:| |cont| |#1|) (|:| -4360 (-649 (-2 (|:| |irr| |#2|) (|:| -4180 (-569)))))) |#2| (-112)) 88))) -(((-217 |#1| |#2|) (-10 -7 (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3386 ((-423 |#2|) |#2|)) (-15 -1827 ((-2 (|:| |cont| |#1|) (|:| -4360 (-649 (-2 (|:| |irr| |#2|) (|:| -4180 (-569)))))) |#2| (-112))) (-15 -3456 ((-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))) |#2|)) (-15 -3893 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))))) (-15 -3247 (|#2| |#2| (-776) |#2|)) (-15 -3147 (|#2| |#2| (-776) |#2|)) (-15 -1626 (|#2| |#2| (-776) |#2|)) (-15 -2551 ((-112) |#2|))) (-353) (-1251 |#1|)) (T -217)) -((-2551 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))) (-1626 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1251 *4)))) (-3147 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1251 *4)))) (-3247 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) (-4 *2 (-1251 *4)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *5)))) (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5)) (-5 *1 (-217 *4 *5)))) (-3456 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *3)))) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-353)) (-5 *2 (-2 (|:| |cont| *5) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-217 *5 *3)) (-4 *3 (-1251 *5)))) (-3386 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -3800 ((-423 |#2|) |#2|)) (-15 -3386 ((-423 |#2|) |#2|)) (-15 -1827 ((-2 (|:| |cont| |#1|) (|:| -4360 (-649 (-2 (|:| |irr| |#2|) (|:| -4180 (-569)))))) |#2| (-112))) (-15 -3456 ((-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))) |#2|)) (-15 -3893 ((-649 |#2|) (-649 (-2 (|:| |deg| (-776)) (|:| -3931 |#2|))))) (-15 -3247 (|#2| |#2| (-776) |#2|)) (-15 -3147 (|#2| |#2| (-776) |#2|)) (-15 -1626 (|#2| |#2| (-776) |#2|)) (-15 -2551 ((-112) |#2|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-569) $) NIL (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3465 (((-569) $) NIL (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) NIL)) (-1323 (($ (-412 (-569))) 9)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL) (((-1012 10) $) 10)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-569) $) NIL (|has| (-569) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3035 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL))) -(((-218) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 10)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -1323 ($ (-412 (-569))))))) (T -218)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218))))) -(-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 10)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -1323 ($ (-412 (-569)))))) -((-2417 (((-112) $ $) NIL)) (-4331 (((-1126) $) 13)) (-3435 (((-1167) $) NIL)) (-2122 (((-488) $) 10)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 23) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 15)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-219) (-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -4331 ((-1126) $)) (-15 -3586 ((-1143) $))))) (T -219)) -((-2122 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-219)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-219))))) -(-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -4331 ((-1126) $)) (-15 -3586 ((-1143) $)))) -((-3579 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)) (-1167)) 29) (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|))) 25)) (-4325 (((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1185) (-848 |#2|) (-848 |#2|) (-112)) 17))) -(((-220 |#1| |#2|) (-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)))) (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)) (-1167))) (-15 -4325 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1185) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-29 |#1|))) (T -220)) -((-4325 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1185)) (-5 *6 (-112)) (-4 *7 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-4 *3 (-13 (-1210) (-965) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1100 (-848 *3))) (-5 *5 (-1167)) (-4 *3 (-13 (-1210) (-965) (-29 *6))) (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6 *3)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-848 *3))) (-4 *3 (-13 (-1210) (-965) (-29 *5))) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5 *3))))) -(-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)))) (-15 -3579 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1100 (-848 |#2|)) (-1167))) (-15 -4325 ((-3 (|:| |f1| (-848 |#2|)) (|:| |f2| (-649 (-848 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1185) (-848 |#2|) (-848 |#2|) (-112)))) -((-3579 (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))) (-1167)) 49) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|))))) 46) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))) (-1167)) 50) (((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|)))) 22))) -(((-221 |#1|) (-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))) (-1167))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))) (-1167)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (T -221)) -((-3579 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1100 (-848 (-412 (-958 *6))))) (-5 *5 (-1167)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1100 (-848 (-319 *6)))) (-5 *5 (-1167)) (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1100 (-848 (-319 *5)))) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5))))) -(-10 -7 (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-319 |#1|))) (-1167))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))))) (-15 -3579 ((-3 (|:| |f1| (-848 (-319 |#1|))) (|:| |f2| (-649 (-848 (-319 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-412 (-958 |#1|)) (-1100 (-848 (-412 (-958 |#1|)))) (-1167)))) -((-3598 (((-2 (|:| -1814 (-1181 |#1|)) (|:| |deg| (-927))) (-1181 |#1|)) 26)) (-1380 (((-649 (-319 |#2|)) (-319 |#2|) (-927)) 54))) -(((-222 |#1| |#2|) (-10 -7 (-15 -3598 ((-2 (|:| -1814 (-1181 |#1|)) (|:| |deg| (-927))) (-1181 |#1|))) (-15 -1380 ((-649 (-319 |#2|)) (-319 |#2|) (-927)))) (-1057) (-561)) (T -222)) -((-1380 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6))) (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1057)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-2 (|:| -1814 (-1181 *4)) (|:| |deg| (-927)))) (-5 *1 (-222 *4 *5)) (-5 *3 (-1181 *4)) (-4 *5 (-561))))) -(-10 -7 (-15 -3598 ((-2 (|:| -1814 (-1181 |#1|)) (|:| |deg| (-927))) (-1181 |#1|))) (-15 -1380 ((-649 (-319 |#2|)) (-319 |#2|) (-927)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3464 ((|#1| $) NIL)) (-3310 ((|#1| $) 30)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-1529 (($ $) NIL)) (-2507 (($ $) 39)) (-4235 ((|#1| |#1| $) NIL)) (-2412 ((|#1| $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3845 (((-776) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) NIL)) (-2969 ((|#1| |#1| $) 35)) (-4319 ((|#1| |#1| $) 37)) (-3894 (($ |#1| $) NIL)) (-1427 (((-776) $) 33)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3064 ((|#1| $) NIL)) (-4374 ((|#1| $) 31)) (-3592 ((|#1| $) 29)) (-1781 ((|#1| $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-2928 ((|#1| |#1| $) NIL)) (-3162 (((-112) $) 9)) (-3635 (($) NIL)) (-4295 ((|#1| $) NIL)) (-2109 (($) NIL) (($ (-649 |#1|)) 16)) (-2804 (((-776) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1693 ((|#1| $) 13)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-3417 ((|#1| $) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-223 |#1|) (-13 (-256 |#1|) (-10 -8 (-15 -2109 ($ (-649 |#1|))))) (-1108)) (T -223)) -((-2109 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-223 *3))))) -(-13 (-256 |#1|) (-10 -8 (-15 -2109 ($ (-649 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3965 (($ (-319 |#1|)) 27)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4132 (((-112) $) NIL)) (-4381 (((-3 (-319 |#1|) "failed") $) NIL)) (-3150 (((-319 |#1|) $) NIL)) (-1883 (($ $) 35)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-1346 (($ (-1 (-319 |#1|) (-319 |#1|)) $) NIL)) (-1857 (((-319 |#1|) $) NIL)) (-2362 (($ $) 34)) (-3435 (((-1167) $) NIL)) (-3704 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($ (-776)) NIL)) (-3077 (($ $) 36)) (-4339 (((-569) $) NIL)) (-3796 (((-867) $) 68) (($ (-569)) NIL) (($ (-319 |#1|)) NIL)) (-4383 (((-319 |#1|) $ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 29 T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) 32)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 28) (($ (-319 |#1|) $) 22))) -(((-224 |#1| |#2|) (-13 (-625 (-319 |#1|)) (-1046 (-319 |#1|)) (-10 -8 (-15 -1857 ((-319 |#1|) $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 ((-319 |#1|) $ $)) (-15 -2332 ($ (-776))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1346 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -3965 ($ (-319 |#1|))) (-15 -3077 ($ $)))) (-13 (-1057) (-855)) (-649 (-1185))) (T -224)) -((-1857 (*1 *2 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-2362 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) (-14 *3 (-649 (-1185))))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) (-14 *3 (-649 (-1185))))) (-4383 (*1 *2 *1 *1) (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1057) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185))))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1057) (-855))) (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185))))) (-3077 (*1 *1 *1) (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) (-14 *3 (-649 (-1185)))))) -(-13 (-625 (-319 |#1|)) (-1046 (-319 |#1|)) (-10 -8 (-15 -1857 ((-319 |#1|) $)) (-15 -2362 ($ $)) (-15 -1883 ($ $)) (-15 -4383 ((-319 |#1|) $ $)) (-15 -2332 ($ (-776))) (-15 -3704 ((-112) $)) (-15 -4132 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1346 ($ (-1 (-319 |#1|) (-319 |#1|)) $)) (-15 -3965 ($ (-319 |#1|))) (-15 -3077 ($ $)))) -((-3971 (((-112) (-1167)) 26)) (-3763 (((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112)) 35)) (-4078 (((-3 (-112) "failed") (-1181 |#2|) (-848 |#2|) (-848 |#2|) (-112)) 84) (((-3 (-112) "failed") (-958 |#1|) (-1185) (-848 |#2|) (-848 |#2|) (-112)) 85))) -(((-225 |#1| |#2|) (-10 -7 (-15 -3971 ((-112) (-1167))) (-15 -3763 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-958 |#1|) (-1185) (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-1181 |#2|) (-848 |#2|) (-848 |#2|) (-112)))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-29 |#1|))) (T -225)) -((-4078 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1181 *6)) (-5 *4 (-848 *6)) (-4 *6 (-13 (-1210) (-29 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-225 *5 *6)))) (-4078 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1185)) (-5 *5 (-848 *7)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *7 (-13 (-1210) (-29 *6))) (-5 *1 (-225 *6 *7)))) (-3763 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1210) (-29 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-225 *6 *4)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1210) (-29 *4)))))) -(-10 -7 (-15 -3971 ((-112) (-1167))) (-15 -3763 ((-3 (-848 |#2|) "failed") (-617 |#2|) |#2| (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-958 |#1|) (-1185) (-848 |#2|) (-848 |#2|) (-112))) (-15 -4078 ((-3 (-112) "failed") (-1181 |#2|) (-848 |#2|) (-848 |#2|) (-112)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 99)) (-1938 (((-569) $) 35)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2917 (($ $) NIL)) (-2771 (($ $) 88)) (-2626 (($ $) 76)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) 67)) (-2227 (((-112) $ $) NIL)) (-2746 (($ $) 86)) (-2601 (($ $) 74)) (-2919 (((-569) $) 129)) (-4118 (($ $) 91)) (-2647 (($ $) 78)) (-4427 (($) NIL T CONST)) (-1482 (($ $) NIL)) (-4381 (((-3 (-569) "failed") $) 128) (((-3 (-412 (-569)) "failed") $) 125)) (-3150 (((-569) $) 126) (((-412 (-569)) $) 123)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 104)) (-2621 (((-412 (-569)) $ (-776)) 118) (((-412 (-569)) $ (-776) (-776)) 117)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3500 (((-927)) 29) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-3712 (((-112) $) NIL)) (-1312 (($) 46)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1466 (((-569) $) 42)) (-2349 (((-112) $) 100)) (-3742 (($ $ (-569)) NIL)) (-3829 (($ $) NIL)) (-2051 (((-112) $) 98)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) 64) (($) 38 (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-2839 (($ $ $) 63) (($) 37 (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-3034 (((-569) $) 27)) (-4112 (($ $) 33)) (-1342 (($ $) 68)) (-2662 (($ $) 73)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3630 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-3547 (((-1128) $) 102)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL)) (-3465 (($ $) NIL)) (-2557 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) 111)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1993 (((-569) $) 28)) (-4252 (($) 45)) (-4389 (($ $) 72)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-3517 (($ $ (-776)) NIL) (($ $) 105)) (-3884 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-4128 (($ $) 89)) (-2661 (($ $) 79)) (-2783 (($ $) 90)) (-2635 (($ $) 77)) (-2758 (($ $) 87)) (-2614 (($ $) 75)) (-1410 (((-383) $) 114) (((-226) $) 14) (((-898 (-383)) $) NIL) (((-541) $) 52)) (-3796 (((-867) $) 49) (($ (-569)) 71) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 71) (($ (-412 (-569))) NIL)) (-2721 (((-776)) NIL T CONST)) (-2040 (($ $) NIL)) (-3251 (((-927)) 36) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) NIL)) (-4363 (((-927)) 25)) (-4161 (($ $) 94)) (-2701 (($ $) 82) (($ $ $) 121)) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) 92)) (-2675 (($ $) 80)) (-4183 (($ $) 97)) (-2723 (($ $) 85)) (-1503 (($ $) 95)) (-2734 (($ $) 83)) (-4175 (($ $) 96)) (-2712 (($ $) 84)) (-4151 (($ $) 93)) (-2689 (($ $) 81)) (-2271 (($ $) 120)) (-1804 (($) 23 T CONST)) (-1815 (($) 43 T CONST)) (-3266 (((-1167) $) 18) (((-1167) $ (-112)) 20) (((-1280) (-827) $) 21) (((-1280) (-827) $ (-112)) 22)) (-2392 (($ $) 108)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2165 (($ $ $) 110)) (-2978 (((-112) $ $) 57)) (-2956 (((-112) $ $) 54)) (-2920 (((-112) $ $) 65)) (-2966 (((-112) $ $) 56)) (-2944 (((-112) $ $) 53)) (-3035 (($ $ $) 44) (($ $ (-569)) 66)) (-3024 (($ $) 58) (($ $ $) 60)) (-3012 (($ $ $) 59)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 69) (($ $ (-412 (-569))) 153) (($ $ $) 70)) (* (($ (-927) $) 34) (($ (-776) $) NIL) (($ (-569) $) 62) (($ $ $) 61) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-226) (-13 (-409) (-234) (-833) (-1210) (-619 (-541)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -4252 ($)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -2701 ($ $ $)) (-15 -2392 ($ $)) (-15 -2165 ($ $ $)) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776)))))) (T -226)) -((** (*1 *1 *1 *1) (-5 *1 (-226))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226)))) (-4252 (*1 *1) (-5 *1 (-226))) (-4112 (*1 *1 *1) (-5 *1 (-226))) (-1342 (*1 *1 *1) (-5 *1 (-226))) (-2701 (*1 *1 *1 *1) (-5 *1 (-226))) (-2392 (*1 *1 *1) (-5 *1 (-226))) (-2165 (*1 *1 *1 *1) (-5 *1 (-226))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))) (-2621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226))))) -(-13 (-409) (-234) (-833) (-1210) (-619 (-541)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -4252 ($)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -2701 ($ $ $)) (-15 -2392 ($ $)) (-15 -2165 ($ $ $)) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776))))) -((-2533 (((-170 (-226)) (-776) (-170 (-226))) 11) (((-226) (-776) (-226)) 12)) (-3692 (((-170 (-226)) (-170 (-226))) 13) (((-226) (-226)) 14)) (-1982 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 19) (((-226) (-226) (-226)) 22)) (-3977 (((-170 (-226)) (-170 (-226))) 27) (((-226) (-226)) 26)) (-2090 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 57) (((-226) (-226) (-226)) 49)) (-2730 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 62) (((-226) (-226) (-226)) 60)) (-4164 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 15) (((-226) (-226) (-226)) 16)) (-4099 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 17) (((-226) (-226) (-226)) 18)) (-4273 (((-170 (-226)) (-170 (-226))) 74) (((-226) (-226)) 73)) (-1407 (((-226) (-226)) 68) (((-170 (-226)) (-170 (-226))) 72)) (-2392 (((-170 (-226)) (-170 (-226))) 8) (((-226) (-226)) 9)) (-2165 (((-170 (-226)) (-170 (-226)) (-170 (-226))) 35) (((-226) (-226) (-226)) 31))) -(((-227) (-10 -7 (-15 -2392 ((-226) (-226))) (-15 -2392 ((-170 (-226)) (-170 (-226)))) (-15 -2165 ((-226) (-226) (-226))) (-15 -2165 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -3692 ((-226) (-226))) (-15 -3692 ((-170 (-226)) (-170 (-226)))) (-15 -3977 ((-226) (-226))) (-15 -3977 ((-170 (-226)) (-170 (-226)))) (-15 -2533 ((-226) (-776) (-226))) (-15 -2533 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -4164 ((-226) (-226) (-226))) (-15 -4164 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2090 ((-226) (-226) (-226))) (-15 -2090 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4099 ((-226) (-226) (-226))) (-15 -4099 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2730 ((-226) (-226) (-226))) (-15 -2730 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1407 ((-170 (-226)) (-170 (-226)))) (-15 -1407 ((-226) (-226))) (-15 -4273 ((-226) (-226))) (-15 -4273 ((-170 (-226)) (-170 (-226)))) (-15 -1982 ((-226) (-226) (-226))) (-15 -1982 ((-170 (-226)) (-170 (-226)) (-170 (-226)))))) (T -227)) -((-1982 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-1982 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4273 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4273 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2730 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4099 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2090 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2090 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-4164 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-4164 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227)))) (-2533 (*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-3692 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) (-2392 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227))))) -(-10 -7 (-15 -2392 ((-226) (-226))) (-15 -2392 ((-170 (-226)) (-170 (-226)))) (-15 -2165 ((-226) (-226) (-226))) (-15 -2165 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -3692 ((-226) (-226))) (-15 -3692 ((-170 (-226)) (-170 (-226)))) (-15 -3977 ((-226) (-226))) (-15 -3977 ((-170 (-226)) (-170 (-226)))) (-15 -2533 ((-226) (-776) (-226))) (-15 -2533 ((-170 (-226)) (-776) (-170 (-226)))) (-15 -4164 ((-226) (-226) (-226))) (-15 -4164 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2090 ((-226) (-226) (-226))) (-15 -2090 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -4099 ((-226) (-226) (-226))) (-15 -4099 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -2730 ((-226) (-226) (-226))) (-15 -2730 ((-170 (-226)) (-170 (-226)) (-170 (-226)))) (-15 -1407 ((-170 (-226)) (-170 (-226)))) (-15 -1407 ((-226) (-226))) (-15 -4273 ((-226) (-226))) (-15 -4273 ((-170 (-226)) (-170 (-226)))) (-15 -1982 ((-226) (-226) (-226))) (-15 -1982 ((-170 (-226)) (-170 (-226)) (-170 (-226))))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) NIL)) (-3182 (($ $ $) NIL)) (-2937 (($ (-1275 |#1|)) NIL) (($ $) NIL)) (-2915 (($ |#1| |#1| |#1|) 33)) (-1551 (((-112) $) NIL)) (-1532 (($ $ (-569) (-569)) NIL)) (-2986 (($ $ (-569) (-569)) NIL)) (-1952 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-1383 (($ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3312 (($ $ (-569) (-569) $) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2400 (($ $ (-569) (-1275 |#1|)) NIL)) (-3259 (($ $ (-569) (-1275 |#1|)) NIL)) (-4092 (($ |#1| |#1| |#1|) 32)) (-3419 (($ (-776) |#1|) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) NIL (|has| |#1| (-310)))) (-4044 (((-1275 |#1|) $ (-569)) NIL)) (-1754 (($ |#1|) 31)) (-3393 (($ |#1|) 30)) (-2891 (($ |#1|) 29)) (-3978 (((-776) $) NIL (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-1539 (((-776) $) NIL (|has| |#1| (-561)))) (-2970 (((-649 (-1275 |#1|)) $) NIL (|has| |#1| (-561)))) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#1| $) NIL (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#1|))) 11)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2884 (((-649 (-649 |#1|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) NIL (|has| |#1| (-367)))) (-2513 (($) 12)) (-2838 (($ $ $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-3687 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-3387 (((-112) $) NIL)) (-3242 ((|#1| $) NIL (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-1275 |#1|) $ (-569)) NIL)) (-3796 (($ (-1275 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1275 |#1|) $ (-1275 |#1|)) 15) (((-1275 |#1|) (-1275 |#1|) $) NIL) (((-949 |#1|) $ (-949 |#1|)) 21)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-228 |#1|) (-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -2513 ($)) (-15 -2891 ($ |#1|)) (-15 -3393 ($ |#1|)) (-15 -1754 ($ |#1|)) (-15 -4092 ($ |#1| |#1| |#1|)) (-15 -2915 ($ |#1| |#1| |#1|)))) (-13 (-367) (-1210))) (T -228)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210))) (-5 *1 (-228 *3)))) (-2513 (*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-2891 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-3393 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-1754 (*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-4092 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) (-2915 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))) -(-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 * ((-949 |#1|) $ (-949 |#1|))) (-15 -2513 ($)) (-15 -2891 ($ |#1|)) (-15 -3393 ($ |#1|)) (-15 -1754 ($ |#1|)) (-15 -4092 ($ |#1| |#1| |#1|)) (-15 -2915 ($ |#1| |#1| |#1|)))) -((-1796 (($ (-1 (-112) |#2|) $) 16)) (-1794 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2434 (($) NIL) (($ (-649 |#2|)) 11)) (-2920 (((-112) $ $) 25))) -(((-229 |#1| |#2|) (-10 -8 (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-230 |#2|) (-1108)) (T -229)) -NIL -(-10 -8 (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-230 |#1|) (-140) (-1108)) (T -230)) -NIL -(-13 (-236 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3517 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) 14) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) 22) (($ $ (-776)) NIL) (($ $) 19)) (-2832 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-776)) 17) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL))) -(((-231 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1185))) (-15 -2832 (|#1| |#1| (-649 (-1185)))) (-15 -2832 (|#1| |#1| (-1185) (-776))) (-15 -2832 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|)))) (-232 |#2|) (-1057)) (T -231)) -NIL -(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1185))) (-15 -2832 (|#1| |#1| (-649 (-1185)))) (-15 -2832 (|#1| |#1| (-1185) (-776))) (-15 -2832 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2832 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-776)) 55) (($ $ (-649 (-1185)) (-649 (-776))) 48 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 47 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 46 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 45 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 43 (|has| |#1| (-234))) (($ $) 41 (|has| |#1| (-234)))) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-776)) 53) (($ $ (-649 (-1185)) (-649 (-776))) 52 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 51 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 50 (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 49 (|has| |#1| (-906 (-1185)))) (($ $ (-776)) 44 (|has| |#1| (-234))) (($ $) 42 (|has| |#1| (-234)))) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-232 |#1|) (-140) (-1057)) (T -232)) -((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1057)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057)))) (-2832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) (-4 *4 (-1057))))) -(-13 (-1057) (-10 -8 (-15 -3517 ($ $ (-1 |t#1| |t#1|))) (-15 -3517 ($ $ (-1 |t#1| |t#1|) (-776))) (-15 -2832 ($ $ (-1 |t#1| |t#1|))) (-15 -2832 ($ $ (-1 |t#1| |t#1|) (-776))) (IF (|has| |t#1| (-234)) (-6 (-234)) |%noBranch|) (IF (|has| |t#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-234) |has| |#1| (-234)) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3517 (($ $) NIL) (($ $ (-776)) 13)) (-2832 (($ $) 8) (($ $ (-776)) 15))) -(((-233 |#1|) (-10 -8 (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1|))) (-234)) (T -233)) -NIL -(-10 -8 (-15 -2832 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-776))) (-15 -2832 (|#1| |#1|)) (-15 -3517 (|#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $) 42) (($ $ (-776)) 40)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 41) (($ $ (-776)) 39)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-234) (-140)) (T -234)) -((-3517 (*1 *1 *1) (-4 *1 (-234))) (-2832 (*1 *1 *1) (-4 *1 (-234))) (-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776))))) -(-13 (-1057) (-10 -8 (-15 -3517 ($ $)) (-15 -2832 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -2832 ($ $ (-776))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2434 (($) 12) (($ (-649 |#2|)) NIL)) (-3962 (($ $) 14)) (-3809 (($ (-649 |#2|)) 10)) (-3796 (((-867) $) 21))) -(((-235 |#1| |#2|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3962 (|#1| |#1|))) (-236 |#2|) (-1108)) (T -235)) -NIL -(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2434 (|#1| (-649 |#2|))) (-15 -2434 (|#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3962 (|#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-236 |#1|) (-140) (-1108)) (T -236)) -((-2434 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1108)))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-236 *3)))) (-1794 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-236 *2)) (-4 *2 (-1108)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3)) (-4 *3 (-1108)))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3)) (-4 *3 (-1108))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2434 ($)) (-15 -2434 ($ (-649 |t#1|))) (IF (|has| $ (-6 -4447)) (PROGN (-15 -1794 ($ |t#1| $)) (-15 -1794 ($ (-1 (-112) |t#1|) $)) (-15 -1796 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-2174 (((-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776))))) (-297 (-958 (-569)))) 42))) -(((-237) (-10 -7 (-15 -2174 ((-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776))))) (-297 (-958 (-569))))))) (T -237)) -((-2174 (*1 *2 *3) (-12 (-5 *3 (-297 (-958 (-569)))) (-5 *2 (-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776)))))) (-5 *1 (-237))))) -(-10 -7 (-15 -2174 ((-2 (|:| |varOrder| (-649 (-1185))) (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) (|:| |hom| (-649 (-1275 (-776))))) (-297 (-958 (-569)))))) -((-3473 (((-776)) 56)) (-2957 (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) 53) (((-694 |#3|) (-694 $)) 44) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-2377 (((-134)) 62)) (-3517 (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3796 (((-1275 |#3|) $) NIL) (($ |#3|) NIL) (((-867) $) NIL) (($ (-569)) 12) (($ (-412 (-569))) NIL)) (-2721 (((-776)) 15)) (-3035 (($ $ |#3|) 59))) -(((-238 |#1| |#2| |#3|) (-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)) (-15 -2721 ((-776))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -3473 ((-776))) (-15 -3035 (|#1| |#1| |#3|)) (-15 -2377 ((-134))) (-15 -3796 ((-1275 |#3|) |#1|))) (-239 |#2| |#3|) (-776) (-1225)) (T -238)) -((-2377 (*1 *2) (-12 (-14 *4 (-776)) (-4 *5 (-1225)) (-5 *2 (-134)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-3473 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) (-2721 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776)) (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5))))) -(-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|)) (-15 -2721 ((-776))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -3473 ((-776))) (-15 -3035 (|#1| |#1| |#3|)) (-15 -2377 ((-134))) (-15 -3796 ((-1275 |#3|) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#2| (-1108)))) (-4143 (((-112) $) 73 (|has| |#2| (-131)))) (-3636 (($ (-927)) 126 (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-3151 (($ $ $) 122 (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) 8)) (-3473 (((-776)) 108 (|has| |#2| (-372)))) (-2919 (((-569) $) 120 (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) 53 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-4381 (((-3 (-569) "failed") $) 68 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) 65 (-1759 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1108)))) (-3150 (((-569) $) 67 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) 64 (-1759 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) 63 (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) 107 (-1759 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 106 (-1759 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 105 (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) 104 (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) 80 (|has| |#2| (-731)))) (-3406 (($) 111 (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) 52)) (-3712 (((-112) $) 118 (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) 31 (|has| $ (-6 -4447)))) (-2349 (((-112) $) 82 (|has| |#2| (-731)))) (-2051 (((-112) $) 119 (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 117 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2009 (((-649 |#2|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 116 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3834 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) 36)) (-2731 (((-927) $) 110 (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-2150 (($ (-927)) 109 (|has| |#2| (-372)))) (-3547 (((-1128) $) 21 (|has| |#2| (-1108)))) (-3513 ((|#2| $) 43 (|has| (-569) (-855)))) (-1682 (($ $ |#2|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ (-569) |#2|) 51) ((|#2| $ (-569)) 50)) (-3040 ((|#2| $ $) 125 (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) 127)) (-2377 (((-134)) 124 (|has| |#2| (-367)))) (-3517 (($ $) 99 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) 97 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) 95 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) 94 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) 93 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) 92 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) 85 (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4447))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-1275 |#2|) $) 128) (($ (-569)) 69 (-2776 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) 66 (-1759 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) 61 (|has| |#2| (-1108))) (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-2721 (((-776)) 103 (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) 23 (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4447)))) (-2271 (($ $) 121 (|has| |#2| (-853)))) (-1804 (($) 72 (|has| |#2| (-131)) CONST)) (-1815 (($) 83 (|has| |#2| (-731)) CONST)) (-2832 (($ $) 98 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) 96 (-1759 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) 91 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) 90 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) 89 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) 88 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) 87 (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1057)))) (-2978 (((-112) $ $) 114 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2956 (((-112) $ $) 113 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2920 (((-112) $ $) 20 (|has| |#2| (-1108)))) (-2966 (((-112) $ $) 115 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-2944 (((-112) $ $) 112 (-2776 (|has| |#2| (-853)) (|has| |#2| (-798))))) (-3035 (($ $ |#2|) 123 (|has| |#2| (-367)))) (-3024 (($ $ $) 102 (|has| |#2| (-1057))) (($ $) 101 (|has| |#2| (-1057)))) (-3012 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-776)) 81 (|has| |#2| (-731))) (($ $ (-927)) 78 (|has| |#2| (-731)))) (* (($ (-569) $) 100 (|has| |#2| (-1057))) (($ $ $) 79 (|has| |#2| (-731))) (($ $ |#2|) 77 (|has| |#2| (-731))) (($ |#2| $) 76 (|has| |#2| (-731))) (($ (-776) $) 74 (|has| |#2| (-131))) (($ (-927) $) 71 (|has| |#2| (-25)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-239 |#1| |#2|) (-140) (-776) (-1225)) (T -239)) -((-3848 (*1 *1 *2) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1225)) (-4 *1 (-239 *3 *4)))) (-3636 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1057)) (-4 *4 (-1225)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731))))) -(-13 (-609 (-569) |t#2|) (-618 (-1275 |t#2|)) (-10 -8 (-6 -4447) (-15 -3848 ($ (-1275 |t#2|))) (IF (|has| |t#2| (-1108)) (-6 (-416 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1057)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-381 |t#2|)) (-15 -3636 ($ (-927))) (-15 -3040 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-731)) (PROGN (-6 (-731)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#2| (-173)) (PROGN (-6 (-38 |t#2|)) (-6 (-173))) |%noBranch|) (IF (|has| |t#2| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |t#2| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |t#2| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#2| (-367)) (-6 (-1282 |t#2|)) |%noBranch|))) -(((-21) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-23) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-25) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) -2776 (|has| |#2| (-1108)) (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-111 $ $) |has| |#2| (-173)) ((-131) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131))) ((-621 #0=(-412 (-569))) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))) ((-621 (-569)) -2776 (|has| |#2| (-1057)) (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-621 |#2|) -2776 (|has| |#2| (-1108)) (|has| |#2| (-173))) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-618 (-867))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-618 (-1275 |#2|)) . T) ((-173) |has| |#2| (-173)) ((-232 |#2|) |has| |#2| (-1057)) ((-234) -12 (|has| |#2| (-234)) (|has| |#2| (-1057))) ((-289 #1=(-569) |#2|) . T) ((-291 #1# |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-372) |has| |#2| (-372)) ((-381 |#2|) |has| |#2| (-1057)) ((-416 |#2|) |has| |#2| (-1108)) ((-494 |#2|) . T) ((-609 #1# |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-651 (-569)) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-651 $) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-653 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-653 $) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-645 |#2|) -2776 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-644 (-569)) -12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057))) ((-644 |#2|) |has| |#2| (-1057)) ((-722 |#2|) -2776 (|has| |#2| (-367)) (|has| |#2| (-173))) ((-731) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-796) |has| |#2| (-853)) ((-797) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-798) |has| |#2| (-798)) ((-799) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-800) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-853) |has| |#2| (-853)) ((-855) -2776 (|has| |#2| (-853)) (|has| |#2| (-798))) ((-906 (-1185)) -12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057))) ((-1046 #0#) -12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108))) ((-1046 (-569)) -12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) ((-1046 |#2|) |has| |#2| (-1108)) ((-1059 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1059 $) |has| |#2| (-173)) ((-1064 |#2|) -2776 (|has| |#2| (-1057)) (|has| |#2| (-367)) (|has| |#2| (-173))) ((-1064 $) |has| |#2| (-173)) ((-1057) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1066) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-173))) ((-1120) -2776 (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-731)) (|has| |#2| (-173))) ((-1108) -2776 (|has| |#2| (-1108)) (|has| |#2| (-1057)) (|has| |#2| (-853)) (|has| |#2| (-798)) (|has| |#2| (-731)) (|has| |#2| (-372)) (|has| |#2| (-367)) (|has| |#2| (-173)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1225) . T) ((-1282 |#2|) |has| |#2| (-367))) -((-1610 (((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 21)) (-3598 ((|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|) 23)) (-1346 (((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)) 18))) -(((-240 |#1| |#2| |#3|) (-10 -7 (-15 -1610 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3598 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1346 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)))) (-776) (-1225) (-1225)) (T -240)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-5 *2 (-241 *5 *7)) (-5 *1 (-240 *5 *6 *7)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) (-4 *6 (-1225)) (-4 *2 (-1225)) (-5 *1 (-240 *5 *6 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776)) (-4 *7 (-1225)) (-4 *5 (-1225)) (-5 *2 (-241 *6 *5)) (-5 *1 (-240 *6 *7 *5))))) -(-10 -7 (-15 -1610 ((-241 |#1| |#3|) (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -3598 (|#3| (-1 |#3| |#2| |#3|) (-241 |#1| |#2|) |#3|)) (-15 -1346 ((-241 |#1| |#3|) (-1 |#3| |#2|) (-241 |#1| |#2|)))) -((-2417 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-4143 (((-112) $) NIL (|has| |#2| (-131)))) (-3636 (($ (-927)) 65 (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) 70 (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) 17)) (-3473 (((-776)) NIL (|has| |#2| (-372)))) (-2919 (((-569) $) NIL (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) 32 (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) 61 (|has| |#2| (-731)))) (-3406 (($) NIL (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) 59)) (-3712 (((-112) $) NIL (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) 15 (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#2| (-731)))) (-2051 (((-112) $) NIL (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 20 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 (((-569) $) 58 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) 47)) (-2731 (((-927) $) NIL (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3547 (((-1128) $) NIL (|has| |#2| (-1108)))) (-3513 ((|#2| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) 21)) (-3040 ((|#2| $ $) NIL (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) 18)) (-2377 (((-134)) NIL (|has| |#2| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#2|) $) 10) (($ (-569)) NIL (-2776 (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) 13 (|has| |#2| (-1108))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#2| (-853)))) (-1804 (($) 40 (|has| |#2| (-131)) CONST)) (-1815 (($) 44 (|has| |#2| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2920 (((-112) $ $) 31 (|has| |#2| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2944 (((-112) $ $) 68 (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $ $) NIL (|has| |#2| (-1057))) (($ $) NIL (|has| |#2| (-1057)))) (-3012 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1057))) (($ $ $) 50 (|has| |#2| (-731))) (($ $ |#2|) 48 (|has| |#2| (-731))) (($ |#2| $) 49 (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-241 |#1| |#2|) (-239 |#1| |#2|) (-776) (-1225)) (T -241)) -NIL -(-239 |#1| |#2|) -((-1967 (((-569) (-649 (-1167))) 36) (((-569) (-1167)) 29)) (-1666 (((-1280) (-649 (-1167))) 40) (((-1280) (-1167)) 39)) (-1798 (((-1167)) 16)) (-3425 (((-1167) (-569) (-1167)) 23)) (-2170 (((-649 (-1167)) (-649 (-1167)) (-569) (-1167)) 37) (((-1167) (-1167) (-569) (-1167)) 35)) (-4160 (((-649 (-1167)) (-649 (-1167))) 15) (((-649 (-1167)) (-1167)) 11))) -(((-242) (-10 -7 (-15 -4160 ((-649 (-1167)) (-1167))) (-15 -4160 ((-649 (-1167)) (-649 (-1167)))) (-15 -1798 ((-1167))) (-15 -3425 ((-1167) (-569) (-1167))) (-15 -2170 ((-1167) (-1167) (-569) (-1167))) (-15 -2170 ((-649 (-1167)) (-649 (-1167)) (-569) (-1167))) (-15 -1666 ((-1280) (-1167))) (-15 -1666 ((-1280) (-649 (-1167)))) (-15 -1967 ((-569) (-1167))) (-15 -1967 ((-569) (-649 (-1167)))))) (T -242)) -((-1967 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-569)) (-5 *1 (-242)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-242)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1280)) (-5 *1 (-242)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-242)))) (-2170 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 (-1167))) (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *1 (-242)))) (-2170 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242)))) (-1798 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-242)))) (-4160 (*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)))) (-4160 (*1 *2 *3) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)) (-5 *3 (-1167))))) -(-10 -7 (-15 -4160 ((-649 (-1167)) (-1167))) (-15 -4160 ((-649 (-1167)) (-649 (-1167)))) (-15 -1798 ((-1167))) (-15 -3425 ((-1167) (-569) (-1167))) (-15 -2170 ((-1167) (-1167) (-569) (-1167))) (-15 -2170 ((-649 (-1167)) (-649 (-1167)) (-569) (-1167))) (-15 -1666 ((-1280) (-1167))) (-15 -1666 ((-1280) (-649 (-1167)))) (-15 -1967 ((-569) (-1167))) (-15 -1967 ((-569) (-649 (-1167))))) -((** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) NIL))) -(((-243 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-244)) (T -243)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 47)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 51)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 48)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 50) (($ $ (-412 (-569))) 49))) -(((-244) (-140)) (T -244)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569)))) (-1817 (*1 *1 *1) (-4 *1 (-244)))) -(-13 (-293) (-38 (-412 (-569))) (-10 -8 (-15 ** ($ $ (-569))) (-15 -1817 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-293) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-722 #0#) . T) ((-731) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-1568 (($ $) 58)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-1458 (($ $ $) 54 (|has| $ (-6 -4448)))) (-1631 (($ $ $) 53 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-1360 (($ $) 57)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2056 (($ $) 56)) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 60)) (-2122 (($ $) 59)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-2866 (($ $ $) 55 (|has| $ (-6 -4448)))) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-245 |#1|) (-140) (-1225)) (T -245)) -((-1724 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-2122 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1360 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-2056 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1458 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))) (-1631 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225))))) -(-13 (-1018 |t#1|) (-10 -8 (-15 -1724 (|t#1| $)) (-15 -2122 ($ $)) (-15 -1568 ($ $)) (-15 -1360 ($ $)) (-15 -2056 ($ $)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2866 ($ $ $)) (-15 -1458 ($ $ $)) (-15 -1631 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) 10 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "rest" $) NIL (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3525 (($ $) NIL) (($ $ (-776)) NIL)) (-2017 (($ $) NIL (|has| |#1| (-1108)))) (-3550 (($ $) 7 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108))) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4198 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3382 (($ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-776) $ "count") 16)) (-2602 (((-569) $ $) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3228 (($ (-649 |#1|)) 22)) (-3966 (((-112) $) NIL)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2866 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2443 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3796 (($ (-649 |#1|)) 17) (((-649 |#1|) $) 18) (((-867) $) 21 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 14 (|has| $ (-6 -4447))))) -(((-246 |#1|) (-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3228 ($ (-649 |#1|))) (-15 -1869 ($ $ "unique")) (-15 -1869 ($ $ "sort")) (-15 -1869 ((-776) $ "count")))) (-855)) (T -246)) -((-3228 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855))))) -(-13 (-671 |#1|) (-495 (-649 |#1|)) (-10 -8 (-15 -3228 ($ (-649 |#1|))) (-15 -1869 ($ $ "unique")) (-15 -1869 ($ $ "sort")) (-15 -1869 ((-776) $ "count")))) -((-3606 (((-3 (-776) "failed") |#1| |#1| (-776)) 43))) -(((-247 |#1|) (-10 -7 (-15 -3606 ((-3 (-776) "failed") |#1| |#1| (-776)))) (-13 (-731) (-372) (-10 -7 (-15 ** (|#1| |#1| (-569)))))) (T -247)) -((-3606 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-776)) (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569)))))) (-5 *1 (-247 *3))))) -(-10 -7 (-15 -3606 ((-3 (-776) "failed") |#1| |#1| (-776)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-869 |#1|)) $) NIL)) (-3767 (((-1181 $) $ (-869 |#1|)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4130 (($ $ (-649 (-569))) NIL)) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-241 (-2428 |#1|) (-776)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) NIL) (($ (-1181 $) (-869 |#1|)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-241 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 (((-241 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-2492 (($ (-1 (-241 (-2428 |#1|) (-776)) (-241 (-2428 |#1|) (-776))) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 (((-241 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-241 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-248 |#1| |#2|) (-13 (-955 |#2| (-241 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) (-649 (-1185)) (-1057)) (T -248)) -((-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4)) (-14 *3 (-649 (-1185))) (-4 *4 (-1057))))) -(-13 (-955 |#2| (-241 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) -((-2417 (((-112) $ $) NIL)) (-1600 (((-1280) $) 17)) (-2968 (((-184 (-250)) $) 11)) (-4237 (($ (-184 (-250))) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1576 (((-250) $) 7)) (-3796 (((-867) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 15))) -(((-249) (-13 (-1108) (-10 -8 (-15 -1576 ((-250) $)) (-15 -2968 ((-184 (-250)) $)) (-15 -4237 ($ (-184 (-250)))) (-15 -1600 ((-1280) $))))) (T -249)) -((-1576 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-4237 (*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-249))))) -(-13 (-1108) (-10 -8 (-15 -1576 ((-250) $)) (-15 -2968 ((-184 (-250)) $)) (-15 -4237 ($ (-184 (-250)))) (-15 -1600 ((-1280) $)))) -((-2417 (((-112) $ $) NIL)) (-1767 (((-649 (-870)) $) NIL)) (-3573 (((-511) $) NIL)) (-3435 (((-1167) $) NIL)) (-3896 (((-187) $) NIL)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-1735 (((-336) $) 7)) (-1673 (((-649 (-112)) $) NIL)) (-3796 (((-867) $) NIL) (((-188) $) 8)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-250) (-13 (-186) (-618 (-188)) (-10 -8 (-15 -1735 ((-336) $))))) (T -250)) -((-1735 (*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250))))) -(-13 (-186) (-618 (-188)) (-10 -8 (-15 -1735 ((-336) $)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 (((-1190) $ (-776)) 13)) (-3796 (((-867) $) 20)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 16)) (-2428 (((-776) $) 9))) -(((-251) (-13 (-1108) (-10 -8 (-15 -2428 ((-776) $)) (-15 -1869 ((-1190) $ (-776)))))) (T -251)) -((-2428 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1190)) (-5 *1 (-251))))) -(-13 (-1108) (-10 -8 (-15 -2428 ((-776) $)) (-15 -1869 ((-1190) $ (-776))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3636 (($ (-927)) NIL (|has| |#4| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#4| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#4| (-372)))) (-2919 (((-569) $) NIL (|has| |#4| (-853)))) (-3943 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1108))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))) (-3150 ((|#4| $) NIL (|has| |#4| (-1108))) (((-569) $) NIL (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))) (-2957 (((-2 (|:| -1863 (-694 |#4|)) (|:| |vec| (-1275 |#4|))) (-694 $) (-1275 $)) NIL (|has| |#4| (-1057))) (((-694 |#4|) (-694 $)) NIL (|has| |#4| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (-3406 (($) NIL (|has| |#4| (-372)))) (-3846 ((|#4| $ (-569) |#4|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#4| $ (-569)) NIL)) (-3712 (((-112) $) NIL (|has| |#4| (-853)))) (-2882 (((-649 |#4|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (-2051 (((-112) $) NIL (|has| |#4| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2009 (((-649 |#4|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3834 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#4| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#4| (-372)))) (-3547 (((-1128) $) NIL)) (-3513 ((|#4| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#4|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-4199 (((-649 |#4|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#4| $ (-569) |#4|) NIL) ((|#4| $ (-569)) 16)) (-3040 ((|#4| $ $) NIL (|has| |#4| (-1057)))) (-3848 (($ (-1275 |#4|)) NIL)) (-2377 (((-134)) NIL (|has| |#4| (-367)))) (-3517 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1057))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))))) (-3560 (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#4|) $) NIL) (((-867) $) NIL) (($ |#4|) NIL (|has| |#4| (-1108))) (($ (-569)) NIL (-2776 (-12 (|has| |#4| (-1046 (-569))) (|has| |#4| (-1108))) (|has| |#4| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#4| (-1046 (-412 (-569)))) (|has| |#4| (-1108))))) (-2721 (((-776)) NIL (|has| |#4| (-1057)) CONST)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#4| (-853)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) CONST)) (-2832 (($ $ (-1 |#4| |#4|) (-776)) NIL (|has| |#4| (-1057))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057)))) (($ $) NIL (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-2944 (((-112) $ $) NIL (-2776 (|has| |#4| (-798)) (|has| |#4| (-853))))) (-3035 (($ $ |#4|) NIL (|has| |#4| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057))))) (($ $ (-927)) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (* (($ |#2| $) 18) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-731))) (($ |#4| $) NIL (|has| |#4| (-731))) (($ $ $) NIL (-2776 (-12 (|has| |#4| (-234)) (|has| |#4| (-1057))) (-12 (|has| |#4| (-644 (-569))) (|has| |#4| (-1057))) (|has| |#4| (-731)) (-12 (|has| |#4| (-906 (-1185))) (|has| |#4| (-1057)))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-252 |#1| |#2| |#3| |#4|) (-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|)) (-927) (-1057) (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-653 |#2|)) (T -252)) -NIL -(-13 (-239 |#1| |#4|) (-653 |#2|) (-653 |#3|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3636 (($ (-927)) NIL (|has| |#3| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#3| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#3| (-372)))) (-2919 (((-569) $) NIL (|has| |#3| (-853)))) (-3943 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1108))) (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))) (-3150 ((|#3| $) NIL (|has| |#3| (-1108))) (((-569) $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))) (-2957 (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) NIL (|has| |#3| (-1057))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (-3406 (($) NIL (|has| |#3| (-372)))) (-3846 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#3| $ (-569)) NIL)) (-3712 (((-112) $) NIL (|has| |#3| (-853)))) (-2882 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (-2051 (((-112) $) NIL (|has| |#3| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2009 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3834 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#3| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#3| (-372)))) (-3547 (((-1128) $) NIL)) (-3513 ((|#3| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#3|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-4199 (((-649 |#3|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) 15)) (-3040 ((|#3| $ $) NIL (|has| |#3| (-1057)))) (-3848 (($ (-1275 |#3|)) NIL)) (-2377 (((-134)) NIL (|has| |#3| (-367)))) (-3517 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))))) (-3560 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#3|) $) NIL) (((-867) $) NIL) (($ |#3|) NIL (|has| |#3| (-1108))) (($ (-569)) NIL (-2776 (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108))))) (-2721 (((-776)) NIL (|has| |#3| (-1057)) CONST)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#3| (-853)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) CONST)) (-2832 (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2944 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3035 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057))))) (($ $ (-927)) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (* (($ |#2| $) 17) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ $ $) NIL (-2776 (-12 (|has| |#3| (-234)) (|has| |#3| (-1057))) (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057))) (|has| |#3| (-731)) (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-253 |#1| |#2| |#3|) (-13 (-239 |#1| |#3|) (-653 |#2|)) (-776) (-1057) (-653 |#2|)) (T -253)) -NIL -(-13 (-239 |#1| |#3|) (-653 |#2|)) -((-3072 (((-649 (-776)) $) 56) (((-649 (-776)) $ |#3|) 59)) (-3766 (((-776) $) 58) (((-776) $ |#3|) 61)) (-1590 (($ $) 76)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1466 (((-776) $ |#3|) 43) (((-776) $) 38)) (-3389 (((-1 $ (-776)) |#3|) 15) (((-1 $ (-776)) $) 88)) (-3152 ((|#4| $) 69)) (-3173 (((-112) $) 67)) (-1510 (($ $) 75)) (-1725 (($ $ (-649 (-297 $))) 114) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-649 |#3|) (-649 |#2|)) 100)) (-3517 (($ $ |#4|) NIL) (($ $ (-649 |#4|)) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) NIL) (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1848 (((-649 |#3|) $) 86)) (-4339 ((|#5| $) NIL) (((-776) $ |#4|) NIL) (((-649 (-776)) $ (-649 |#4|)) NIL) (((-776) $ |#3|) 49)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-412 (-569))) NIL) (($ $) NIL))) -(((-254 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#3| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#3| |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#1|)) (-15 -1590 (|#1| |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -3766 ((-776) |#1| |#3|)) (-15 -3072 ((-649 (-776)) |#1| |#3|)) (-15 -3766 ((-776) |#1|)) (-15 -3072 ((-649 (-776)) |#1|)) (-15 -4339 ((-776) |#1| |#3|)) (-15 -1466 ((-776) |#1|)) (-15 -1466 ((-776) |#1| |#3|)) (-15 -1848 ((-649 |#3|) |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#3|)) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -4339 ((-776) |#1| |#4|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 (|#5| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#4| (-776))) (-15 -3517 (|#1| |#1| (-649 |#4|))) (-15 -3517 (|#1| |#1| |#4|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-255 |#2| |#3| |#4| |#5|) (-1057) (-855) (-268 |#3|) (-798)) (T -254)) -NIL -(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#3| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#3|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#3| |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#1|)) (-15 -1590 (|#1| |#1|)) (-15 -1510 (|#1| |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -3766 ((-776) |#1| |#3|)) (-15 -3072 ((-649 (-776)) |#1| |#3|)) (-15 -3766 ((-776) |#1|)) (-15 -3072 ((-649 (-776)) |#1|)) (-15 -4339 ((-776) |#1| |#3|)) (-15 -1466 ((-776) |#1|)) (-15 -1466 ((-776) |#1| |#3|)) (-15 -1848 ((-649 |#3|) |#1|)) (-15 -3389 ((-1 |#1| (-776)) |#3|)) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 |#4|))) (-15 -4339 ((-776) |#1| |#4|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 (|#5| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#4| (-776))) (-15 -3517 (|#1| |#1| (-649 |#4|))) (-15 -3517 (|#1| |#1| |#4|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3072 (((-649 (-776)) $) 216) (((-649 (-776)) $ |#2|) 214)) (-3766 (((-776) $) 215) (((-776) $ |#2|) 213)) (-1712 (((-649 |#3|) $) 112)) (-3767 (((-1181 $) $ |#3|) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-1590 (($ $) 209)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) ((|#3| $) 139) ((|#2| $) 224)) (-3346 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1883 (($ $) 156)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-2870 (($ $ |#1| |#4| $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ |#2|) 219) (((-776) $) 218)) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-1700 (($ (-1181 |#1|) |#3|) 119) (($ (-1181 $) |#3|) 118)) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| |#4|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 122)) (-2272 ((|#4| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-2492 (($ (-1 |#4| |#4|) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-3389 (((-1 $ (-776)) |#2|) 221) (((-1 $ (-776)) $) 208 (|has| |#1| (-234)))) (-2306 (((-3 |#3| "failed") $) 125)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150)) (-3152 ((|#3| $) 211)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3435 (((-1167) $) 10)) (-3173 (((-112) $) 212)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) 115)) (-1510 (($ $) 210)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) 206 (|has| |#1| (-234))) (($ $ |#2| |#1|) 205 (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) 204 (|has| |#1| (-234)))) (-3059 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3517 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43) (($ $) 240 (|has| |#1| (-234))) (($ $ (-776)) 238 (|has| |#1| (-234))) (($ $ (-1185)) 236 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 235 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 234 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 233 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1848 (((-649 |#2|) $) 220)) (-4339 ((|#4| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131) (((-776) $ |#2|) 217)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ |#4|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39) (($ $) 239 (|has| |#1| (-234))) (($ $ (-776)) 237 (|has| |#1| (-234))) (($ $ (-1185)) 232 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 231 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 230 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 229 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-255 |#1| |#2| |#3| |#4|) (-140) (-1057) (-855) (-268 |t#2|) (-798)) (T -255)) -((-3389 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4)))) (-1466 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-4339 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) (-3766 (*1 *2 *1 *3) (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-798)) (-4 *2 (-268 *4)))) (-1510 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-1590 (*1 *1 *1) (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855)) (-4 *4 (-268 *3)) (-4 *5 (-798)))) (-3389 (*1 *2 *1) (-12 (-4 *3 (-234)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6))))) -(-13 (-955 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1046 |t#2|) (-10 -8 (-15 -3389 ((-1 $ (-776)) |t#2|)) (-15 -1848 ((-649 |t#2|) $)) (-15 -1466 ((-776) $ |t#2|)) (-15 -1466 ((-776) $)) (-15 -4339 ((-776) $ |t#2|)) (-15 -3072 ((-649 (-776)) $)) (-15 -3766 ((-776) $)) (-15 -3072 ((-649 (-776)) $ |t#2|)) (-15 -3766 ((-776) $ |t#2|)) (-15 -3173 ((-112) $)) (-15 -3152 (|t#3| $)) (-15 -1510 ($ $)) (-15 -1590 ($ $)) (IF (|has| |t#1| (-234)) (PROGN (-6 (-519 |t#2| |t#1|)) (-6 (-519 |t#2| $)) (-6 (-312 $)) (-15 -3389 ((-1 $ (-776)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#2|) . T) ((-621 |#3|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#4|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#2| |#1|) |has| |#1| (-234)) ((-519 |#2| $) |has| |#1| (-234)) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#4| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1046 |#2|) . T) ((-1046 |#3|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) |has| |#1| (-915))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3464 ((|#1| $) 55)) (-3310 ((|#1| $) 45)) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-1529 (($ $) 61)) (-2507 (($ $) 49)) (-4235 ((|#1| |#1| $) 47)) (-2412 ((|#1| $) 46)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3845 (((-776) $) 62)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-2969 ((|#1| |#1| $) 53)) (-4319 ((|#1| |#1| $) 52)) (-3894 (($ |#1| $) 41)) (-1427 (((-776) $) 56)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3064 ((|#1| $) 63)) (-4374 ((|#1| $) 51)) (-3592 ((|#1| $) 50)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-2928 ((|#1| |#1| $) 59)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-4295 ((|#1| $) 60)) (-2109 (($) 58) (($ (-649 |#1|)) 57)) (-2804 (((-776) $) 44)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1693 ((|#1| $) 54)) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-3417 ((|#1| $) 64)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-256 |#1|) (-140) (-1225)) (T -256)) -((-2109 (*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-256 *3)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-1693 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-2969 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-4319 (*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) (-2507 (*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(-13 (-1129 |t#1|) (-1003 |t#1|) (-10 -8 (-15 -2109 ($)) (-15 -2109 ($ (-649 |t#1|))) (-15 -1427 ((-776) $)) (-15 -3464 (|t#1| $)) (-15 -1693 (|t#1| $)) (-15 -2969 (|t#1| |t#1| $)) (-15 -4319 (|t#1| |t#1| $)) (-15 -4374 (|t#1| $)) (-15 -3592 (|t#1| $)) (-15 -2507 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1003 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1129 |#1|) . T) ((-1225) . T)) -((-3670 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 153)) (-1420 (((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383))) 173) (((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 171) (((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 176) (((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 172) (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 164) (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 163) (((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383))) 145) (((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265))) 143) (((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383))) 144) (((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265))) 141)) (-1370 (((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383))) 175) (((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 174) (((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 178) (((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 177) (((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383))) 166) (((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265))) 165) (((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383))) 151) (((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265))) 150) (((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383))) 149) (((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265))) 148) (((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383))) 113) (((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265))) 112) (((-1276) (-1 (-226) (-226)) (-1102 (-383))) 107) (((-1276) (-1 (-226) (-226)) (-1102 (-383)) (-649 (-265))) 105))) -(((-257) (-10 -7 (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -3670 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -257)) -((-3670 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *2 (-1276)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *2 (-1276)) (-5 *1 (-257)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257))))) -(-10 -7 (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-1 (-226) (-226)) (-1102 (-383)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 (-1 (-226) (-226))) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-383)) (-1102 (-383)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 (-1 (-226) (-226) (-226))) (-1102 (-383)) (-1102 (-383)))) (-15 -3670 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))))) -((-1370 (((-1276) (-297 |#2|) (-1185) (-1185) (-649 (-265))) 101))) -(((-258 |#1| |#2|) (-10 -7 (-15 -1370 ((-1276) (-297 |#2|) (-1185) (-1185) (-649 (-265))))) (-13 (-561) (-855) (-1046 (-569))) (-435 |#1|)) (T -258)) -((-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-1185)) (-5 *5 (-649 (-265))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1046 (-569)))) (-5 *2 (-1276)) (-5 *1 (-258 *6 *7))))) -(-10 -7 (-15 -1370 ((-1276) (-297 |#2|) (-1185) (-1185) (-649 (-265))))) -((-2609 (((-569) (-569)) 73)) (-3668 (((-569) (-569)) 74)) (-3601 (((-226) (-226)) 75)) (-4017 (((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226))) 72)) (-2214 (((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)) (-112)) 70))) -(((-259) (-10 -7 (-15 -2214 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)) (-112))) (-15 -4017 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -2609 ((-569) (-569))) (-15 -3668 ((-569) (-569))) (-15 -3601 ((-226) (-226))))) (T -259)) -((-3601 (*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259)))) (-3668 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-2609 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259)))) (-4017 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226))) (-5 *2 (-1277)) (-5 *1 (-259)))) (-2214 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226))) (-5 *5 (-112)) (-5 *2 (-1277)) (-5 *1 (-259))))) -(-10 -7 (-15 -2214 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)) (-112))) (-15 -4017 ((-1277) (-1 (-170 (-226)) (-170 (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -2609 ((-569) (-569))) (-15 -3668 ((-569) (-569))) (-15 -3601 ((-226) (-226)))) -((-3796 (((-1100 (-383)) (-1100 (-319 |#1|))) 16))) -(((-260 |#1|) (-10 -7 (-15 -3796 ((-1100 (-383)) (-1100 (-319 |#1|))))) (-13 (-855) (-561) (-619 (-383)))) (T -260)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-1100 (-319 *4))) (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1100 (-383))) (-5 *1 (-260 *4))))) -(-10 -7 (-15 -3796 ((-1100 (-383)) (-1100 (-319 |#1|))))) -((-1420 (((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383))) 75) (((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 74) (((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383))) 65) (((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 64) (((-1141 (-226)) (-885 |#1|) (-1100 (-383))) 56) (((-1141 (-226)) (-885 |#1|) (-1100 (-383)) (-649 (-265))) 55)) (-1370 (((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383))) 78) (((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 77) (((-1277) |#1| (-1100 (-383)) (-1100 (-383))) 68) (((-1277) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265))) 67) (((-1277) (-885 |#1|) (-1100 (-383))) 60) (((-1277) (-885 |#1|) (-1100 (-383)) (-649 (-265))) 59) (((-1276) (-883 |#1|) (-1100 (-383))) 47) (((-1276) (-883 |#1|) (-1100 (-383)) (-649 (-265))) 46) (((-1276) |#1| (-1100 (-383))) 38) (((-1276) |#1| (-1100 (-383)) (-649 (-265))) 36))) -(((-261 |#1|) (-10 -7 (-15 -1370 ((-1276) |#1| (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) |#1| (-1100 (-383)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383))))) (-13 (-619 (-541)) (-1108))) (T -261)) -((-1420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *5)))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *5)))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *6)))) (-1420 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1420 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1370 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1277)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1370 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *5)))) (-1420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *5)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1100 (-383))) (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276)) (-5 *1 (-261 *5)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276)) (-5 *1 (-261 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1276)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108)))))) -(-10 -7 (-15 -1370 ((-1276) |#1| (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) |#1| (-1100 (-383)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1276) (-883 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-885 |#1|) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-885 |#1|) (-1100 (-383)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) |#1| (-1100 (-383)) (-1100 (-383)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1370 ((-1277) (-888 |#1|) (-1100 (-383)) (-1100 (-383)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383)) (-649 (-265)))) (-15 -1420 ((-1141 (-226)) (-888 |#1|) (-1100 (-383)) (-1100 (-383))))) -((-1370 (((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265))) 23) (((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226))) 24) (((-1276) (-649 (-949 (-226))) (-649 (-265))) 16) (((-1276) (-649 (-949 (-226)))) 17) (((-1276) (-649 (-226)) (-649 (-226)) (-649 (-265))) 20) (((-1276) (-649 (-226)) (-649 (-226))) 21))) -(((-262) (-10 -7 (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1370 ((-1276) (-649 (-949 (-226))))) (-15 -1370 ((-1276) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265)))))) (T -262)) -((-1370 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1277)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-262)))) (-1370 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1276)) (-5 *1 (-262))))) -(-10 -7 (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1276) (-649 (-226)) (-649 (-226)) (-649 (-265)))) (-15 -1370 ((-1276) (-649 (-949 (-226))))) (-15 -1370 ((-1276) (-649 (-949 (-226))) (-649 (-265)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)))) (-15 -1370 ((-1277) (-649 (-226)) (-649 (-226)) (-649 (-226)) (-649 (-265))))) -((-3352 (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 25)) (-3130 (((-927) (-649 (-265)) (-927)) 52)) (-3378 (((-927) (-649 (-265)) (-927)) 51)) (-3157 (((-649 (-383)) (-649 (-265)) (-649 (-383))) 68)) (-2070 (((-383) (-649 (-265)) (-383)) 57)) (-3542 (((-927) (-649 (-265)) (-927)) 53)) (-1965 (((-112) (-649 (-265)) (-112)) 27)) (-3331 (((-1167) (-649 (-265)) (-1167)) 19)) (-3148 (((-1167) (-649 (-265)) (-1167)) 26)) (-1695 (((-1141 (-226)) (-649 (-265))) 46)) (-3725 (((-649 (-1102 (-383))) (-649 (-265)) (-649 (-1102 (-383)))) 40)) (-3782 (((-879) (-649 (-265)) (-879)) 32)) (-1743 (((-879) (-649 (-265)) (-879)) 33)) (-4145 (((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226)))) 63)) (-3916 (((-112) (-649 (-265)) (-112)) 14)) (-3788 (((-112) (-649 (-265)) (-112)) 13))) -(((-263) (-10 -7 (-15 -3788 ((-112) (-649 (-265)) (-112))) (-15 -3916 ((-112) (-649 (-265)) (-112))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ((-1167) (-649 (-265)) (-1167))) (-15 -3148 ((-1167) (-649 (-265)) (-1167))) (-15 -1965 ((-112) (-649 (-265)) (-112))) (-15 -3782 ((-879) (-649 (-265)) (-879))) (-15 -1743 ((-879) (-649 (-265)) (-879))) (-15 -3725 ((-649 (-1102 (-383))) (-649 (-265)) (-649 (-1102 (-383))))) (-15 -3378 ((-927) (-649 (-265)) (-927))) (-15 -3130 ((-927) (-649 (-265)) (-927))) (-15 -1695 ((-1141 (-226)) (-649 (-265)))) (-15 -3542 ((-927) (-649 (-265)) (-927))) (-15 -2070 ((-383) (-649 (-265)) (-383))) (-15 -4145 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3157 ((-649 (-383)) (-649 (-265)) (-649 (-383)))))) (T -263)) -((-3157 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-4145 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-2070 (*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3542 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-263)))) (-3130 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3378 (*1 *2 *3 *2) (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3725 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1743 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-1965 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3148 (*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3331 (*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3352 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3916 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) (-3788 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))) -(-10 -7 (-15 -3788 ((-112) (-649 (-265)) (-112))) (-15 -3916 ((-112) (-649 (-265)) (-112))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) (-649 (-265)) (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ((-1167) (-649 (-265)) (-1167))) (-15 -3148 ((-1167) (-649 (-265)) (-1167))) (-15 -1965 ((-112) (-649 (-265)) (-112))) (-15 -3782 ((-879) (-649 (-265)) (-879))) (-15 -1743 ((-879) (-649 (-265)) (-879))) (-15 -3725 ((-649 (-1102 (-383))) (-649 (-265)) (-649 (-1102 (-383))))) (-15 -3378 ((-927) (-649 (-265)) (-927))) (-15 -3130 ((-927) (-649 (-265)) (-927))) (-15 -1695 ((-1141 (-226)) (-649 (-265)))) (-15 -3542 ((-927) (-649 (-265)) (-927))) (-15 -2070 ((-383) (-649 (-265)) (-383))) (-15 -4145 ((-1 (-949 (-226)) (-949 (-226))) (-649 (-265)) (-1 (-949 (-226)) (-949 (-226))))) (-15 -3157 ((-649 (-383)) (-649 (-265)) (-649 (-383))))) -((-1594 (((-3 |#1| "failed") (-649 (-265)) (-1185)) 17))) -(((-264 |#1|) (-10 -7 (-15 -1594 ((-3 |#1| "failed") (-649 (-265)) (-1185)))) (-1225)) (T -264)) -((-1594 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *1 (-264 *2)) (-4 *2 (-1225))))) -(-10 -7 (-15 -1594 ((-3 |#1| "failed") (-649 (-265)) (-1185)))) -((-2417 (((-112) $ $) NIL)) (-3352 (($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 24)) (-3130 (($ (-927)) 81)) (-3378 (($ (-927)) 80)) (-2736 (($ (-649 (-383))) 87)) (-2070 (($ (-383)) 66)) (-3542 (($ (-927)) 82)) (-1965 (($ (-112)) 33)) (-3331 (($ (-1167)) 28)) (-3148 (($ (-1167)) 29)) (-1695 (($ (-1141 (-226))) 76)) (-3725 (($ (-649 (-1102 (-383)))) 72)) (-3743 (($ (-649 (-1102 (-383)))) 68) (($ (-649 (-1102 (-412 (-569))))) 71)) (-1790 (($ (-383)) 38) (($ (-879)) 42)) (-2057 (((-112) (-649 $) (-1185)) 100)) (-1594 (((-3 (-52) "failed") (-649 $) (-1185)) 102)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2024 (($ (-383)) 43) (($ (-879)) 44)) (-2415 (($ (-1 (-949 (-226)) (-949 (-226)))) 65)) (-4145 (($ (-1 (-949 (-226)) (-949 (-226)))) 83)) (-3480 (($ (-1 (-226) (-226))) 48) (($ (-1 (-226) (-226) (-226))) 52) (($ (-1 (-226) (-226) (-226) (-226))) 56)) (-3796 (((-867) $) 93)) (-1592 (($ (-112)) 34) (($ (-649 (-1102 (-383)))) 60)) (-1520 (((-112) $ $) NIL)) (-3788 (($ (-112)) 35)) (-2920 (((-112) $ $) 97))) -(((-265) (-13 (-1108) (-10 -8 (-15 -3788 ($ (-112))) (-15 -1592 ($ (-112))) (-15 -3352 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ($ (-1167))) (-15 -3148 ($ (-1167))) (-15 -1965 ($ (-112))) (-15 -1592 ($ (-649 (-1102 (-383))))) (-15 -2415 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1790 ($ (-383))) (-15 -1790 ($ (-879))) (-15 -2024 ($ (-383))) (-15 -2024 ($ (-879))) (-15 -3480 ($ (-1 (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -2070 ($ (-383))) (-15 -3743 ($ (-649 (-1102 (-383))))) (-15 -3743 ($ (-649 (-1102 (-412 (-569)))))) (-15 -3725 ($ (-649 (-1102 (-383))))) (-15 -1695 ($ (-1141 (-226)))) (-15 -3378 ($ (-927))) (-15 -3130 ($ (-927))) (-15 -3542 ($ (-927))) (-15 -4145 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2736 ($ (-649 (-383)))) (-15 -1594 ((-3 (-52) "failed") (-649 $) (-1185))) (-15 -2057 ((-112) (-649 $) (-1185)))))) (T -265)) -((-3788 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-3352 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-265)))) (-3331 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) (-2415 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-2024 (*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265)))) (-3480 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265)))) (-2070 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-412 (-569))))) (-5 *1 (-265)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-265)))) (-3378 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3130 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265)))) (-4145 (*1 *1 *2) (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) (-2736 (*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265)))) (-1594 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-52)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-112)) (-5 *1 (-265))))) -(-13 (-1108) (-10 -8 (-15 -3788 ($ (-112))) (-15 -1592 ($ (-112))) (-15 -3352 ($ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3331 ($ (-1167))) (-15 -3148 ($ (-1167))) (-15 -1965 ($ (-112))) (-15 -1592 ($ (-649 (-1102 (-383))))) (-15 -2415 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -1790 ($ (-383))) (-15 -1790 ($ (-879))) (-15 -2024 ($ (-383))) (-15 -2024 ($ (-879))) (-15 -3480 ($ (-1 (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226)))) (-15 -3480 ($ (-1 (-226) (-226) (-226) (-226)))) (-15 -2070 ($ (-383))) (-15 -3743 ($ (-649 (-1102 (-383))))) (-15 -3743 ($ (-649 (-1102 (-412 (-569)))))) (-15 -3725 ($ (-649 (-1102 (-383))))) (-15 -1695 ($ (-1141 (-226)))) (-15 -3378 ($ (-927))) (-15 -3130 ($ (-927))) (-15 -3542 ($ (-927))) (-15 -4145 ($ (-1 (-949 (-226)) (-949 (-226))))) (-15 -2736 ($ (-649 (-383)))) (-15 -1594 ((-3 (-52) "failed") (-649 $) (-1185))) (-15 -2057 ((-112) (-649 $) (-1185))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3072 (((-649 (-776)) $) NIL) (((-649 (-776)) $ |#2|) NIL)) (-3766 (((-776) $) NIL) (((-776) $ |#2|) NIL)) (-1712 (((-649 |#3|) $) NIL)) (-3767 (((-1181 $) $ |#3|) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 |#3|)) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1590 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1133 |#1| |#2|) "failed") $) 23)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1133 |#1| |#2|) $) NIL)) (-3346 (($ $ $ |#3|) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 |#3|) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))))) (-1466 (((-776) $ |#2|) NIL) (((-776) $) 10)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) |#3|) NIL) (($ (-1181 $) |#3|) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) NIL)) (-2272 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL)) (-2492 (($ (-1 (-536 |#3|) (-536 |#3|)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3389 (((-1 $ (-776)) |#2|) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-2306 (((-3 |#3| "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3152 ((|#3| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-3173 (((-112) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) NIL)) (-1510 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-649 |#3|) (-649 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-649 |#3|) (-649 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 $)) NIL (|has| |#1| (-234))) (($ $ |#2| |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 |#2|) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-3059 (($ $ |#3|) NIL (|has| |#1| (-173)))) (-3517 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1848 (((-649 |#2|) $) NIL)) (-4339 (((-536 |#3|) $) NIL) (((-776) $ |#3|) NIL) (((-649 (-776)) $ (-649 |#3|)) NIL) (((-776) $ |#2|) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ |#3|) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1133 |#1| |#2|)) 32) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ |#3|) NIL) (($ $ (-649 |#3|)) NIL) (($ $ |#3| (-776)) NIL) (($ $ (-649 |#3|) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-266 |#1| |#2| |#3|) (-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1046 (-1133 |#1| |#2|))) (-1057) (-855) (-268 |#2|)) (T -266)) -NIL -(-13 (-255 |#1| |#2| |#3| (-536 |#3|)) (-1046 (-1133 |#1| |#2|))) -((-3766 (((-776) $) 37)) (-4381 (((-3 |#2| "failed") $) 22)) (-3150 ((|#2| $) 33)) (-3517 (($ $) 14) (($ $ (-776)) 18)) (-3796 (((-867) $) 32) (($ |#2|) 11)) (-2920 (((-112) $ $) 26)) (-2944 (((-112) $ $) 36))) -(((-267 |#1| |#2|) (-10 -8 (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -3766 ((-776) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-268 |#2|) (-855)) (T -267)) -NIL -(-10 -8 (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -3766 ((-776) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-3766 (((-776) $) 23)) (-2672 ((|#1| $) 24)) (-4381 (((-3 |#1| "failed") $) 28)) (-3150 ((|#1| $) 29)) (-1466 (((-776) $) 25)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3389 (($ |#1| (-776)) 26)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $) 22) (($ $ (-776)) 21)) (-3796 (((-867) $) 12) (($ |#1|) 27)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19))) -(((-268 |#1|) (-140) (-855)) (T -268)) -((-3796 (*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3389 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855))))) -(-13 (-855) (-1046 |t#1|) (-10 -8 (-15 -3389 ($ |t#1| (-776))) (-15 -1466 ((-776) $)) (-15 -2672 (|t#1| $)) (-15 -3766 ((-776) $)) (-15 -3517 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -3796 ($ |t#1|)))) -(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-855) . T) ((-1046 |#1|) . T) ((-1108) . T)) -((-1712 (((-649 (-1185)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 54)) (-3105 (((-649 (-1185)) (-319 (-226)) (-776)) 96)) (-3980 (((-3 (-319 (-226)) "failed") (-319 (-226))) 64)) (-1755 (((-319 (-226)) (-319 (-226))) 82)) (-4378 (((-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 39)) (-4376 (((-112) (-649 (-319 (-226)))) 106)) (-4344 (((-112) (-319 (-226))) 37)) (-2159 (((-649 (-1167)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) 134)) (-1890 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 110)) (-2289 (((-649 (-319 (-226))) (-649 (-319 (-226)))) 108)) (-2613 (((-694 (-226)) (-649 (-319 (-226))) (-776)) 122)) (-3968 (((-112) (-319 (-226))) 32) (((-112) (-649 (-319 (-226)))) 107)) (-1888 (((-649 (-226)) (-649 (-848 (-226))) (-226)) 15)) (-2640 (((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 128)) (-2631 (((-1043) (-1185) (-1043)) 47))) -(((-269) (-10 -7 (-15 -1888 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -4378 ((-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3980 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -1755 ((-319 (-226)) (-319 (-226)))) (-15 -4376 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-319 (-226)))) (-15 -2613 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -2289 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -1890 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4344 ((-112) (-319 (-226)))) (-15 -1712 ((-649 (-1185)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3105 ((-649 (-1185)) (-319 (-226)) (-776))) (-15 -2631 ((-1043) (-1185) (-1043))) (-15 -2640 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2159 ((-649 (-1167)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))))) (T -269)) -((-2159 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) (-5 *2 (-649 (-1167))) (-5 *1 (-269)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-383)) (-5 *1 (-269)))) (-2631 (*1 *2 *3 *2) (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-269)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1185))) (-5 *1 (-269)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-649 (-1185))) (-5 *1 (-269)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269)))) (-2613 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-269)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-3980 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269)))) (-4378 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-269)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4)) (-5 *1 (-269))))) -(-10 -7 (-15 -1888 ((-649 (-226)) (-649 (-848 (-226))) (-226))) (-15 -4378 ((-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3980 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -1755 ((-319 (-226)) (-319 (-226)))) (-15 -4376 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-649 (-319 (-226))))) (-15 -3968 ((-112) (-319 (-226)))) (-15 -2613 ((-694 (-226)) (-649 (-319 (-226))) (-776))) (-15 -2289 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -1890 ((-649 (-319 (-226))) (-649 (-319 (-226))))) (-15 -4344 ((-112) (-319 (-226)))) (-15 -1712 ((-649 (-1185)) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3105 ((-649 (-1185)) (-319 (-226)) (-776))) (-15 -2631 ((-1043) (-1185) (-1043))) (-15 -2640 ((-383) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2159 ((-649 (-1167)) (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))))) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 56)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-270) (-844)) (T -270)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 72) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 63)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 41) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 43)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-271) (-844)) (T -271)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 90) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 85)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 52) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 65)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-272) (-844)) (T -272)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 73)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 45) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-273) (-844)) (T -273)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 65)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 31) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-274) (-844)) (T -274)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 90)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 33) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-275) (-844)) (T -275)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 87)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 32) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-276) (-844)) (T -276)) -NIL -(-844) -((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3618 (((-649 (-569)) $) 29)) (-4339 (((-776) $) 27)) (-3796 (((-867) $) 36) (($ (-649 (-569))) 23)) (-1520 (((-112) $ $) NIL)) (-4082 (($ (-776)) 33)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 17))) -(((-277) (-13 (-855) (-10 -8 (-15 -3796 ($ (-649 (-569)))) (-15 -4339 ((-776) $)) (-15 -3618 ((-649 (-569)) $)) (-15 -4082 ($ (-776)))))) (T -277)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277))))) -(-13 (-855) (-10 -8 (-15 -3796 ($ (-649 (-569)))) (-15 -4339 ((-776) $)) (-15 -3618 ((-649 (-569)) $)) (-15 -4082 ($ (-776))))) -((-2771 ((|#2| |#2|) 77)) (-2626 ((|#2| |#2|) 65)) (-2294 (((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2746 ((|#2| |#2|) 75)) (-2601 ((|#2| |#2|) 63)) (-4118 ((|#2| |#2|) 79)) (-2647 ((|#2| |#2|) 67)) (-1312 ((|#2|) 46)) (-3746 (((-114) (-114)) 100)) (-2662 ((|#2| |#2|) 61)) (-3202 (((-112) |#2|) 147)) (-3945 ((|#2| |#2|) 195)) (-1533 ((|#2| |#2|) 171)) (-1769 ((|#2|) 59)) (-2094 ((|#2|) 58)) (-4262 ((|#2| |#2|) 191)) (-1544 ((|#2| |#2|) 167)) (-2304 ((|#2| |#2|) 199)) (-2913 ((|#2| |#2|) 175)) (-3068 ((|#2| |#2|) 163)) (-3296 ((|#2| |#2|) 165)) (-3950 ((|#2| |#2|) 201)) (-2536 ((|#2| |#2|) 177)) (-2518 ((|#2| |#2|) 197)) (-4386 ((|#2| |#2|) 173)) (-1956 ((|#2| |#2|) 193)) (-2964 ((|#2| |#2|) 169)) (-2984 ((|#2| |#2|) 207)) (-3778 ((|#2| |#2|) 183)) (-3551 ((|#2| |#2|) 203)) (-2309 ((|#2| |#2|) 179)) (-4236 ((|#2| |#2|) 211)) (-1906 ((|#2| |#2|) 187)) (-2596 ((|#2| |#2|) 213)) (-1548 ((|#2| |#2|) 189)) (-1423 ((|#2| |#2|) 209)) (-3458 ((|#2| |#2|) 185)) (-3338 ((|#2| |#2|) 205)) (-2107 ((|#2| |#2|) 181)) (-4389 ((|#2| |#2|) 62)) (-4128 ((|#2| |#2|) 80)) (-2661 ((|#2| |#2|) 68)) (-2783 ((|#2| |#2|) 78)) (-2635 ((|#2| |#2|) 66)) (-2758 ((|#2| |#2|) 76)) (-2614 ((|#2| |#2|) 64)) (-4052 (((-112) (-114)) 98)) (-4161 ((|#2| |#2|) 83)) (-2701 ((|#2| |#2|) 71)) (-4140 ((|#2| |#2|) 81)) (-2675 ((|#2| |#2|) 69)) (-4183 ((|#2| |#2|) 85)) (-2723 ((|#2| |#2|) 73)) (-1503 ((|#2| |#2|) 86)) (-2734 ((|#2| |#2|) 74)) (-4175 ((|#2| |#2|) 84)) (-2712 ((|#2| |#2|) 72)) (-4151 ((|#2| |#2|) 82)) (-2689 ((|#2| |#2|) 70))) -(((-278 |#1| |#2|) (-10 -7 (-15 -4389 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2723 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1312 (|#2|)) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2094 (|#2|)) (-15 -1769 (|#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2107 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -2294 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3202 ((-112) |#2|))) (-561) (-13 (-435 |#1|) (-1010))) (T -278)) -((-3202 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) (-4 *3 (-13 (-435 *4) (-1010))))) (-2294 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-435 *4) (-1010))) (-4 *4 (-561)) (-5 *1 (-278 *4 *2)))) (-2596 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4236 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1423 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2984 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3551 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3950 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2518 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1956 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4262 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1906 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2107 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2913 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4386 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3068 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-1769 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-2094 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) (-4 *4 (-13 (-435 *3) (-1010))))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010))))) (-1312 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) (-4 *3 (-561)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2723 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010))))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010)))))) -(-10 -7 (-15 -4389 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2626 (|#2| |#2|)) (-15 -2635 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2675 (|#2| |#2|)) (-15 -2689 (|#2| |#2|)) (-15 -2701 (|#2| |#2|)) (-15 -2712 (|#2| |#2|)) (-15 -2723 (|#2| |#2|)) (-15 -2734 (|#2| |#2|)) (-15 -2746 (|#2| |#2|)) (-15 -2758 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4118 (|#2| |#2|)) (-15 -4128 (|#2| |#2|)) (-15 -4140 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -4175 (|#2| |#2|)) (-15 -4183 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1312 (|#2|)) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2094 (|#2|)) (-15 -1769 (|#2|)) (-15 -3296 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -4386 (|#2| |#2|)) (-15 -2913 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2107 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3458 (|#2| |#2|)) (-15 -1906 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -4262 (|#2| |#2|)) (-15 -1956 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2518 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -3950 (|#2| |#2|)) (-15 -3551 (|#2| |#2|)) (-15 -3338 (|#2| |#2|)) (-15 -2984 (|#2| |#2|)) (-15 -1423 (|#2| |#2|)) (-15 -4236 (|#2| |#2|)) (-15 -2596 (|#2| |#2|)) (-15 -2294 ((-3 |#2| "failed") |#2| (-649 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3202 ((-112) |#2|))) -((-3253 (((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1185)) 153)) (-1497 ((|#2| (-412 (-569)) |#2|) 49)) (-3009 ((|#2| |#2| (-617 |#2|)) 146)) (-3014 (((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1185)) 145)) (-1618 ((|#2| |#2| (-1185)) 20) ((|#2| |#2|) 23)) (-3832 ((|#2| |#2| (-1185)) 159) ((|#2| |#2|) 157))) -(((-279 |#1| |#2|) (-10 -7 (-15 -3832 (|#2| |#2|)) (-15 -3832 (|#2| |#2| (-1185))) (-15 -3014 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1185))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1185))) (-15 -3253 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1185))) (-15 -3009 (|#2| |#2| (-617 |#2|))) (-15 -1497 (|#2| (-412 (-569)) |#2|))) (-13 (-561) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -279)) -((-1497 (*1 *2 *3 *2) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3009 (*1 *2 *2 *3) (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)))) (-3253 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1185)) (-4 *2 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *5 *2)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3014 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3))) (|:| |vals| (-649 *3)))) (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-3832 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3832 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))) -(-10 -7 (-15 -3832 (|#2| |#2|)) (-15 -3832 (|#2| |#2| (-1185))) (-15 -3014 ((-2 (|:| |func| |#2|) (|:| |kers| (-649 (-617 |#2|))) (|:| |vals| (-649 |#2|))) |#2| (-1185))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1185))) (-15 -3253 ((-3 |#2| "failed") (-649 (-617 |#2|)) |#2| (-1185))) (-15 -3009 (|#2| |#2| (-617 |#2|))) (-15 -1497 (|#2| (-412 (-569)) |#2|))) -((-4162 (((-3 |#3| "failed") |#3|) 120)) (-2771 ((|#3| |#3|) 142)) (-2327 (((-3 |#3| "failed") |#3|) 89)) (-2626 ((|#3| |#3|) 132)) (-2071 (((-3 |#3| "failed") |#3|) 65)) (-2746 ((|#3| |#3|) 140)) (-1962 (((-3 |#3| "failed") |#3|) 53)) (-2601 ((|#3| |#3|) 130)) (-3942 (((-3 |#3| "failed") |#3|) 122)) (-4118 ((|#3| |#3|) 144)) (-3392 (((-3 |#3| "failed") |#3|) 91)) (-2647 ((|#3| |#3|) 134)) (-4260 (((-3 |#3| "failed") |#3| (-776)) 41)) (-3552 (((-3 |#3| "failed") |#3|) 81)) (-2662 ((|#3| |#3|) 129)) (-2745 (((-3 |#3| "failed") |#3|) 51)) (-4389 ((|#3| |#3|) 128)) (-3541 (((-3 |#3| "failed") |#3|) 123)) (-4128 ((|#3| |#3|) 145)) (-2935 (((-3 |#3| "failed") |#3|) 92)) (-2661 ((|#3| |#3|) 135)) (-3853 (((-3 |#3| "failed") |#3|) 121)) (-2783 ((|#3| |#3|) 143)) (-3869 (((-3 |#3| "failed") |#3|) 90)) (-2635 ((|#3| |#3|) 133)) (-1505 (((-3 |#3| "failed") |#3|) 67)) (-2758 ((|#3| |#3|) 141)) (-2796 (((-3 |#3| "failed") |#3|) 55)) (-2614 ((|#3| |#3|) 131)) (-2670 (((-3 |#3| "failed") |#3|) 73)) (-4161 ((|#3| |#3|) 148)) (-1705 (((-3 |#3| "failed") |#3|) 114)) (-2701 ((|#3| |#3|) 152)) (-4403 (((-3 |#3| "failed") |#3|) 69)) (-4140 ((|#3| |#3|) 146)) (-4415 (((-3 |#3| "failed") |#3|) 57)) (-2675 ((|#3| |#3|) 136)) (-1853 (((-3 |#3| "failed") |#3|) 77)) (-4183 ((|#3| |#3|) 150)) (-3995 (((-3 |#3| "failed") |#3|) 61)) (-2723 ((|#3| |#3|) 138)) (-1470 (((-3 |#3| "failed") |#3|) 79)) (-1503 ((|#3| |#3|) 151)) (-3637 (((-3 |#3| "failed") |#3|) 63)) (-2734 ((|#3| |#3|) 139)) (-4359 (((-3 |#3| "failed") |#3|) 75)) (-4175 ((|#3| |#3|) 149)) (-3082 (((-3 |#3| "failed") |#3|) 117)) (-2712 ((|#3| |#3|) 153)) (-4166 (((-3 |#3| "failed") |#3|) 71)) (-4151 ((|#3| |#3|) 147)) (-3972 (((-3 |#3| "failed") |#3|) 59)) (-2689 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-412 (-569))) 47 (|has| |#1| (-367))))) -(((-280 |#1| |#2| |#3|) (-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|)))) (-38 (-412 (-569))) (-1266 |#1|) (-1237 |#1| |#2|)) (T -280)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1266 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1237 *4 *5)))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2723 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4))))) -(-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|)))) -((-4162 (((-3 |#3| "failed") |#3|) 70)) (-2771 ((|#3| |#3|) 137)) (-2327 (((-3 |#3| "failed") |#3|) 54)) (-2626 ((|#3| |#3|) 125)) (-2071 (((-3 |#3| "failed") |#3|) 66)) (-2746 ((|#3| |#3|) 135)) (-1962 (((-3 |#3| "failed") |#3|) 50)) (-2601 ((|#3| |#3|) 123)) (-3942 (((-3 |#3| "failed") |#3|) 74)) (-4118 ((|#3| |#3|) 139)) (-3392 (((-3 |#3| "failed") |#3|) 58)) (-2647 ((|#3| |#3|) 127)) (-4260 (((-3 |#3| "failed") |#3| (-776)) 38)) (-3552 (((-3 |#3| "failed") |#3|) 48)) (-2662 ((|#3| |#3|) 111)) (-2745 (((-3 |#3| "failed") |#3|) 46)) (-4389 ((|#3| |#3|) 122)) (-3541 (((-3 |#3| "failed") |#3|) 76)) (-4128 ((|#3| |#3|) 140)) (-2935 (((-3 |#3| "failed") |#3|) 60)) (-2661 ((|#3| |#3|) 128)) (-3853 (((-3 |#3| "failed") |#3|) 72)) (-2783 ((|#3| |#3|) 138)) (-3869 (((-3 |#3| "failed") |#3|) 56)) (-2635 ((|#3| |#3|) 126)) (-1505 (((-3 |#3| "failed") |#3|) 68)) (-2758 ((|#3| |#3|) 136)) (-2796 (((-3 |#3| "failed") |#3|) 52)) (-2614 ((|#3| |#3|) 124)) (-2670 (((-3 |#3| "failed") |#3|) 78)) (-4161 ((|#3| |#3|) 143)) (-1705 (((-3 |#3| "failed") |#3|) 62)) (-2701 ((|#3| |#3|) 131)) (-4403 (((-3 |#3| "failed") |#3|) 112)) (-4140 ((|#3| |#3|) 141)) (-4415 (((-3 |#3| "failed") |#3|) 100)) (-2675 ((|#3| |#3|) 129)) (-1853 (((-3 |#3| "failed") |#3|) 116)) (-4183 ((|#3| |#3|) 145)) (-3995 (((-3 |#3| "failed") |#3|) 107)) (-2723 ((|#3| |#3|) 133)) (-1470 (((-3 |#3| "failed") |#3|) 117)) (-1503 ((|#3| |#3|) 146)) (-3637 (((-3 |#3| "failed") |#3|) 109)) (-2734 ((|#3| |#3|) 134)) (-4359 (((-3 |#3| "failed") |#3|) 80)) (-4175 ((|#3| |#3|) 144)) (-3082 (((-3 |#3| "failed") |#3|) 64)) (-2712 ((|#3| |#3|) 132)) (-4166 (((-3 |#3| "failed") |#3|) 113)) (-4151 ((|#3| |#3|) 142)) (-3972 (((-3 |#3| "failed") |#3|) 103)) (-2689 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-412 (-569))) 44 (|has| |#1| (-367))))) -(((-281 |#1| |#2| |#3| |#4|) (-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|)))) (-38 (-412 (-569))) (-1235 |#1|) (-1258 |#1| |#2|) (-991 |#2|)) (T -281)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1258 *4 *5)) (-4 *6 (-991 *5)))) (-4389 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2626 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2635 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2675 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2689 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2701 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2712 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2723 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2734 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2746 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2758 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4128 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4140 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4175 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-4183 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4))))) -(-13 (-991 |#3|) (-10 -7 (IF (|has| |#1| (-367)) (-15 ** (|#3| |#3| (-412 (-569)))) |%noBranch|) (-15 -4389 (|#3| |#3|)) (-15 -2662 (|#3| |#3|)) (-15 -2601 (|#3| |#3|)) (-15 -2614 (|#3| |#3|)) (-15 -2626 (|#3| |#3|)) (-15 -2635 (|#3| |#3|)) (-15 -2647 (|#3| |#3|)) (-15 -2661 (|#3| |#3|)) (-15 -2675 (|#3| |#3|)) (-15 -2689 (|#3| |#3|)) (-15 -2701 (|#3| |#3|)) (-15 -2712 (|#3| |#3|)) (-15 -2723 (|#3| |#3|)) (-15 -2734 (|#3| |#3|)) (-15 -2746 (|#3| |#3|)) (-15 -2758 (|#3| |#3|)) (-15 -2771 (|#3| |#3|)) (-15 -2783 (|#3| |#3|)) (-15 -4118 (|#3| |#3|)) (-15 -4128 (|#3| |#3|)) (-15 -4140 (|#3| |#3|)) (-15 -4151 (|#3| |#3|)) (-15 -4161 (|#3| |#3|)) (-15 -4175 (|#3| |#3|)) (-15 -4183 (|#3| |#3|)) (-15 -1503 (|#3| |#3|)))) -((-4338 (((-112) $) 20)) (-2031 (((-1190) $) 7)) (-2060 (((-3 (-511) "failed") $) 14)) (-1822 (((-3 (-649 $) "failed") $) NIL)) (-1467 (((-3 (-511) "failed") $) 21)) (-2993 (((-3 (-1112) "failed") $) 18)) (-4041 (((-112) $) 16)) (-3796 (((-867) $) NIL)) (-2881 (((-112) $) 9))) -(((-282) (-13 (-618 (-867)) (-10 -8 (-15 -2031 ((-1190) $)) (-15 -4041 ((-112) $)) (-15 -2993 ((-3 (-1112) "failed") $)) (-15 -4338 ((-112) $)) (-15 -1467 ((-3 (-511) "failed") $)) (-15 -2881 ((-112) $)) (-15 -2060 ((-3 (-511) "failed") $)) (-15 -1822 ((-3 (-649 $) "failed") $))))) (T -282)) -((-2031 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-282)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2993 (*1 *2 *1) (|partial| -12 (-5 *2 (-1112)) (-5 *1 (-282)))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-1467 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) (-2060 (*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) (-1822 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282))))) -(-13 (-618 (-867)) (-10 -8 (-15 -2031 ((-1190) $)) (-15 -4041 ((-112) $)) (-15 -2993 ((-3 (-1112) "failed") $)) (-15 -4338 ((-112) $)) (-15 -1467 ((-3 (-511) "failed") $)) (-15 -2881 ((-112) $)) (-15 -2060 ((-3 (-511) "failed") $)) (-15 -1822 ((-3 (-649 $) "failed") $)))) -((-3159 (((-602) $) 10)) (-4418 (((-590) $) 8)) (-2735 (((-294) $) 12)) (-2106 (($ (-590) (-602) (-294)) NIL)) (-3796 (((-867) $) 19))) -(((-283) (-13 (-618 (-867)) (-10 -8 (-15 -2106 ($ (-590) (-602) (-294))) (-15 -4418 ((-590) $)) (-15 -3159 ((-602) $)) (-15 -2735 ((-294) $))))) (T -283)) -((-2106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283))))) -(-13 (-618 (-867)) (-10 -8 (-15 -2106 ($ (-590) (-602) (-294))) (-15 -4418 ((-590) $)) (-15 -3159 ((-602) $)) (-15 -2735 ((-294) $)))) -((-1417 (($ (-1 (-112) |#2|) $) 24)) (-3550 (($ $) 38)) (-1794 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1698 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2292 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4298 (($ |#2| $ (-569)) 20) (($ $ $ (-569)) 22)) (-4328 (($ $ (-569)) 11) (($ $ (-1242 (-569))) 14)) (-2866 (($ $ |#2|) 32) (($ $ $) NIL)) (-2443 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-649 $)) NIL))) -(((-284 |#1| |#2|) (-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3550 (|#1| |#1|))) (-285 |#2|) (-1225)) (T -284)) -NIL -(-10 -8 (-15 -2292 (|#1| |#1| |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -1698 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1698 (|#1| |#2| |#1|)) (-15 -3550 (|#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) 86)) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 84 (|has| |#1| (-1108)))) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1108)))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-2292 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3894 (($ |#1| $ (-569)) 89) (($ $ $ (-569)) 88)) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-3301 (($ $ (-569)) 92) (($ $ (-1242 (-569))) 91)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2866 (($ $ |#1|) 94) (($ $ $) 93)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-285 |#1|) (-140) (-1225)) (T -285)) -((-2866 (*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-3301 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-3894 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1225)))) (-3894 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-2292 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-1796 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) (-1794 (*1 *1 *2 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) (-2017 (*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-855))))) -(-13 (-656 |t#1|) (-10 -8 (-6 -4448) (-15 -2866 ($ $ |t#1|)) (-15 -2866 ($ $ $)) (-15 -3301 ($ $ (-569))) (-15 -3301 ($ $ (-1242 (-569)))) (-15 -1794 ($ (-1 (-112) |t#1|) $)) (-15 -3894 ($ |t#1| $ (-569))) (-15 -3894 ($ $ $ (-569))) (-15 -2292 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1796 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -1794 ($ |t#1| $)) (-15 -2017 ($ $))) |%noBranch|) (IF (|has| |t#1| (-855)) (-15 -2292 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) +((-2419 (((-112) $ $) NIL)) (-3327 (($) 6 T CONST)) (-1383 (($) 7 T CONST)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 14)) (-2829 (($) 8 T CONST)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 10))) +(((-131) (-13 (-1109) (-10 -8 (-15 -1383 ($) -3711) (-15 -2829 ($) -3711) (-15 -3327 ($) -3711)))) (T -131)) +((-1383 (*1 *1) (-5 *1 (-131))) (-2829 (*1 *1) (-5 *1 (-131))) (-3327 (*1 *1) (-5 *1 (-131)))) +(-13 (-1109) (-10 -8 (-15 -1383 ($) -3711) (-15 -2829 ($) -3711) (-15 -3327 ($) -3711))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16))) +(((-132) (-141)) (T -132)) +((-2620 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -2620 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-2583 (((-1281) $ (-777)) 14)) (-4039 (((-777) $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-133) (-141)) (T -133)) +((-4039 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-777)))) (-2583 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-777)) (-5 *2 (-1281))))) +(-13 (-1109) (-10 -8 (-15 -4039 ((-777) $)) (-15 -2583 ((-1281) $ (-777))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-650 (-1144)) $) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-134) (-13 (-1092) (-10 -8 (-15 -3587 ((-650 (-1144)) $))))) (T -134)) +((-3587 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-134))))) +(-13 (-1092) (-10 -8 (-15 -3587 ((-650 (-1144)) $)))) +((-2419 (((-112) $ $) 49)) (-1359 (((-112) $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-777) "failed") $) 58)) (-3152 (((-777) $) 56)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) 37)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-4360 (((-112)) 59)) (-2623 (((-112) (-112)) 61)) (-1530 (((-112) $) 30)) (-2833 (((-112) $) 55)) (-3798 (((-868) $) 28) (($ (-777)) 20)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 18 T CONST)) (-1817 (($) 19 T CONST)) (-1677 (($ (-777)) 21)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) 40)) (-2923 (((-112) $ $) 32)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 35)) (-3026 (((-3 $ "failed") $ $) 42)) (-3014 (($ $ $) 38)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL) (($ $ $) 54)) (* (($ (-777) $) 48) (($ (-928) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-856) (-23) (-732) (-1047 (-777)) (-10 -8 (-6 (-4450 "*")) (-15 -3026 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1677 ($ (-777))) (-15 -1530 ((-112) $)) (-15 -2833 ((-112) $)) (-15 -4360 ((-112))) (-15 -2623 ((-112) (-112)))))) (T -135)) +((-3026 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-1677 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-135)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4360 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-856) (-23) (-732) (-1047 (-777)) (-10 -8 (-6 (-4450 "*")) (-15 -3026 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1677 ($ (-777))) (-15 -1530 ((-112) $)) (-15 -2833 ((-112) $)) (-15 -4360 ((-112))) (-15 -2623 ((-112) (-112))))) +((-3940 (((-137 |#1| |#2| |#4|) (-650 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1347 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3940 ((-137 |#1| |#2| |#4|) (-650 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1347 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-570) (-777) (-174) (-174)) (T -136)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570)) (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570)) (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3940 ((-137 |#1| |#2| |#4|) (-650 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1347 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-2419 (((-112) $ $) NIL)) (-4112 (($ (-650 |#3|)) 64)) (-3933 (($ $) 126) (($ $ (-570) (-570)) 125)) (-3734 (($) 20)) (-4382 (((-3 |#3| "failed") $) 86)) (-3152 ((|#3| $) NIL)) (-2323 (($ $ (-650 (-570))) 127)) (-3923 (((-650 |#3|) $) 59)) (-3979 (((-777) $) 69)) (-3053 (($ $ $) 120)) (-2516 (($) 68)) (-4122 (((-1168) $) NIL)) (-2482 (($) 19)) (-3551 (((-1129) $) NIL)) (-1872 ((|#3| $) 71) ((|#3| $ (-570)) 72) ((|#3| $ (-570) (-570)) 73) ((|#3| $ (-570) (-570) (-570)) 74) ((|#3| $ (-570) (-570) (-570) (-570)) 75) ((|#3| $ (-650 (-570))) 76)) (-3324 (((-777) $) 70)) (-2694 (($ $ (-570) $ (-570)) 121) (($ $ (-570) (-570)) 123)) (-3798 (((-868) $) 94) (($ |#3|) 95) (($ (-242 |#2| |#3|)) 102) (($ (-1151 |#2| |#3|)) 105) (($ (-650 |#3|)) 77) (($ (-650 $)) 83)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 96 T CONST)) (-1817 (($) 97 T CONST)) (-2923 (((-112) $ $) 107)) (-3026 (($ $) 113) (($ $ $) 111)) (-3014 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-570)) 116) (($ (-570) $) 115) (($ $ $) 122))) +(((-137 |#1| |#2| |#3|) (-13 (-471 |#3| (-777)) (-476 (-570) (-777)) (-10 -8 (-15 -3798 ($ (-242 |#2| |#3|))) (-15 -3798 ($ (-1151 |#2| |#3|))) (-15 -3798 ($ (-650 |#3|))) (-15 -3798 ($ (-650 $))) (-15 -3979 ((-777) $)) (-15 -1872 (|#3| $)) (-15 -1872 (|#3| $ (-570))) (-15 -1872 (|#3| $ (-570) (-570))) (-15 -1872 (|#3| $ (-570) (-570) (-570))) (-15 -1872 (|#3| $ (-570) (-570) (-570) (-570))) (-15 -1872 (|#3| $ (-650 (-570)))) (-15 -3053 ($ $ $)) (-15 * ($ $ $)) (-15 -2694 ($ $ (-570) $ (-570))) (-15 -2694 ($ $ (-570) (-570))) (-15 -3933 ($ $)) (-15 -3933 ($ $ (-570) (-570))) (-15 -2323 ($ $ (-650 (-570)))) (-15 -2482 ($)) (-15 -2516 ($)) (-15 -3923 ((-650 |#3|) $)) (-15 -4112 ($ (-650 |#3|))) (-15 -3734 ($)))) (-570) (-777) (-174)) (T -137)) +((-3053 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-242 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1151 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 *2) (-4 *5 (-174)))) (-1872 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-570)) (-14 *4 (-777)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-1872 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-1872 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-777)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-650 (-570))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-570)) (-14 *5 (-777)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-2694 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-777)) (-4 *5 (-174)))) (-2694 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-777)) (-4 *5 (-174)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-3933 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-777)) (-4 *5 (-174)))) (-2323 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) (-2482 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-2516 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-650 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) (-14 *4 (-777)))) (-3734 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) (-4 *4 (-174))))) +(-13 (-471 |#3| (-777)) (-476 (-570) (-777)) (-10 -8 (-15 -3798 ($ (-242 |#2| |#3|))) (-15 -3798 ($ (-1151 |#2| |#3|))) (-15 -3798 ($ (-650 |#3|))) (-15 -3798 ($ (-650 $))) (-15 -3979 ((-777) $)) (-15 -1872 (|#3| $)) (-15 -1872 (|#3| $ (-570))) (-15 -1872 (|#3| $ (-570) (-570))) (-15 -1872 (|#3| $ (-570) (-570) (-570))) (-15 -1872 (|#3| $ (-570) (-570) (-570) (-570))) (-15 -1872 (|#3| $ (-650 (-570)))) (-15 -3053 ($ $ $)) (-15 * ($ $ $)) (-15 -2694 ($ $ (-570) $ (-570))) (-15 -2694 ($ $ (-570) (-570))) (-15 -3933 ($ $)) (-15 -3933 ($ $ (-570) (-570))) (-15 -2323 ($ $ (-650 (-570)))) (-15 -2482 ($)) (-15 -2516 ($)) (-15 -3923 ((-650 |#3|) $)) (-15 -4112 ($ (-650 |#3|))) (-15 -3734 ($)))) +((-2419 (((-112) $ $) NIL)) (-2118 (((-1144) $) 11)) (-2108 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-138) (-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $))))) (T -138)) +((-2108 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138))))) +(-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3898 (((-188) $) 10)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-650 (-1144)) $) 13)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-139) (-13 (-1092) (-10 -8 (-15 -3898 ((-188) $)) (-15 -3587 ((-650 (-1144)) $))))) (T -139)) +((-3898 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-139))))) +(-13 (-1092) (-10 -8 (-15 -3898 ((-188) $)) (-15 -3587 ((-650 (-1144)) $)))) +((-2419 (((-112) $ $) NIL)) (-1769 (((-650 (-871)) $) NIL)) (-3574 (((-512) $) NIL)) (-4122 (((-1168) $) NIL)) (-3898 (((-188) $) NIL)) (-3257 (((-112) $ (-512)) NIL)) (-3551 (((-1129) $) NIL)) (-3336 (((-650 (-112)) $) NIL)) (-3798 (((-868) $) NIL) (((-189) $) 6)) (-1319 (((-112) $ $) NIL)) (-3385 (((-55) $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-140) (-13 (-187) (-619 (-189)))) (T -140)) +NIL +(-13 (-187) (-619 (-189))) +((-2935 (((-650 (-185 (-140))) $) 13)) (-2826 (((-650 (-185 (-140))) $) 14)) (-1592 (((-650 (-844)) $) 10)) (-1574 (((-140) $) 7)) (-3798 (((-868) $) 16))) +(((-141) (-13 (-619 (-868)) (-10 -8 (-15 -1574 ((-140) $)) (-15 -1592 ((-650 (-844)) $)) (-15 -2935 ((-650 (-185 (-140))) $)) (-15 -2826 ((-650 (-185 (-140))) $))))) (T -141)) +((-1574 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-650 (-844))) (-5 *1 (-141)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-619 (-868)) (-10 -8 (-15 -1574 ((-140) $)) (-15 -1592 ((-650 (-844)) $)) (-15 -2935 ((-650 (-185 (-140))) $)) (-15 -2826 ((-650 (-185 (-140))) $)))) +((-2419 (((-112) $ $) NIL)) (-1385 (($) 17 T CONST)) (-3466 (($) NIL (|has| (-145) (-373)))) (-3971 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-3612 (($ $ $) NIL)) (-2220 (((-112) $ $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| (-145) (-373)))) (-4259 (($) NIL) (($ (-650 (-145))) NIL)) (-2660 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2571 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448))) (($ (-145) $) 61 (|has| $ (-6 -4448)))) (-1697 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-3600 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4448))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4448))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-3408 (($) NIL (|has| (-145) (-373)))) (-2885 (((-650 (-145)) $) 70 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-3382 (((-145) $) NIL (|has| (-145) (-856)))) (-2282 (((-650 (-145)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2876 (((-145) $) NIL (|has| (-145) (-856)))) (-3837 (($ (-1 (-145) (-145)) $) 69 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-145) (-145)) $) 65)) (-1956 (($) 18 T CONST)) (-2484 (((-928) $) NIL (|has| (-145) (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-2842 (($ $ $) 30)) (-1334 (((-145) $) 62)) (-2213 (($ (-145) $) 60)) (-2155 (($ (-928)) NIL (|has| (-145) (-373)))) (-4041 (($) 16 T CONST)) (-3551 (((-1129) $) NIL)) (-4089 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-4067 (((-145) $) 63)) (-3116 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-145)) (-650 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-298 (-145)))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 58)) (-1330 (($) 15 T CONST)) (-2688 (($ $ $) 32) (($ $ (-145)) NIL)) (-2709 (($ (-650 (-145))) NIL) (($) NIL)) (-3562 (((-777) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109)))) (((-777) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-1168) $) 37) (((-542) $) NIL (|has| (-145) (-620 (-542)))) (((-650 (-145)) $) 35)) (-3811 (($ (-650 (-145))) NIL)) (-3624 (($ $) 33 (|has| (-145) (-373)))) (-3798 (((-868) $) 55)) (-1741 (($ (-1168)) 14) (($ (-650 (-145))) 52)) (-2977 (((-777) $) NIL)) (-3871 (($) 59) (($ (-650 (-145))) NIL)) (-1319 (((-112) $ $) NIL)) (-2089 (($ (-650 (-145))) NIL)) (-1431 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-2102 (($) 21 T CONST)) (-1652 (($) 20 T CONST)) (-2923 (((-112) $ $) 24)) (-2431 (((-777) $) 57 (|has| $ (-6 -4448))))) +(((-142) (-13 (-1109) (-620 (-1168)) (-431 (-145)) (-620 (-650 (-145))) (-10 -8 (-15 -1741 ($ (-1168))) (-15 -1741 ($ (-650 (-145)))) (-15 -1330 ($) -3711) (-15 -4041 ($) -3711) (-15 -1385 ($) -3711) (-15 -1956 ($) -3711) (-15 -1652 ($) -3711) (-15 -2102 ($) -3711)))) (T -142)) +((-1741 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-142)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-650 (-145))) (-5 *1 (-142)))) (-1330 (*1 *1) (-5 *1 (-142))) (-4041 (*1 *1) (-5 *1 (-142))) (-1385 (*1 *1) (-5 *1 (-142))) (-1956 (*1 *1) (-5 *1 (-142))) (-1652 (*1 *1) (-5 *1 (-142))) (-2102 (*1 *1) (-5 *1 (-142)))) +(-13 (-1109) (-620 (-1168)) (-431 (-145)) (-620 (-650 (-145))) (-10 -8 (-15 -1741 ($ (-1168))) (-15 -1741 ($ (-650 (-145)))) (-15 -1330 ($) -3711) (-15 -4041 ($) -3711) (-15 -1385 ($) -3711) (-15 -1956 ($) -3711) (-15 -1652 ($) -3711) (-15 -2102 ($) -3711))) +((-2899 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3606 ((|#1| |#3|) 9)) (-3860 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3606 (|#1| |#3|)) (-15 -3860 (|#3| |#3|)) (-15 -2899 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-562) (-1001 |#1|) (-378 |#2|)) (T -143)) +((-2899 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-378 *5)))) (-3860 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-378 *4)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-378 *4))))) +(-10 -7 (-15 -3606 (|#1| |#3|)) (-15 -3860 (|#3| |#3|)) (-15 -2899 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2375 (($ $ $) 8)) (-3067 (($ $) 7)) (-3755 (($ $ $) 6))) +(((-144) (-141)) (T -144)) +((-2375 (*1 *1 *1 *1) (-4 *1 (-144))) (-3067 (*1 *1 *1) (-4 *1 (-144))) (-3755 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -3755 ($ $ $)) (-15 -3067 ($ $)) (-15 -2375 ($ $ $)))) +((-2419 (((-112) $ $) NIL)) (-3985 (((-112) $) 39)) (-1385 (($ $) 55)) (-3160 (($) 26 T CONST)) (-3475 (((-777)) 13)) (-3408 (($) 25)) (-1813 (($) 27 T CONST)) (-2930 (((-777) $) 21)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2408 (((-112) $) 41)) (-1956 (($ $) 56)) (-2484 (((-928) $) 23)) (-4122 (((-1168) $) 49)) (-2155 (($ (-928)) 20)) (-1526 (((-112) $) 37)) (-3551 (((-1129) $) NIL)) (-4007 (($) 28 T CONST)) (-4032 (((-112) $) 35)) (-3798 (((-868) $) 30)) (-2494 (($ (-777)) 19) (($ (-1168)) 54)) (-1319 (((-112) $ $) NIL)) (-3006 (((-112) $) 45)) (-3852 (((-112) $) 43)) (-2981 (((-112) $ $) 11)) (-2959 (((-112) $ $) 9)) (-2923 (((-112) $ $) 7)) (-2969 (((-112) $ $) 10)) (-2948 (((-112) $ $) 8))) +(((-145) (-13 (-850) (-10 -8 (-15 -2930 ((-777) $)) (-15 -2494 ($ (-777))) (-15 -2494 ($ (-1168))) (-15 -3160 ($) -3711) (-15 -1813 ($) -3711) (-15 -4007 ($) -3711) (-15 -1385 ($ $)) (-15 -1956 ($ $)) (-15 -4032 ((-112) $)) (-15 -1526 ((-112) $)) (-15 -3852 ((-112) $)) (-15 -3985 ((-112) $)) (-15 -2408 ((-112) $)) (-15 -3006 ((-112) $))))) (T -145)) +((-2930 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-145)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-145)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-145)))) (-3160 (*1 *1) (-5 *1 (-145))) (-1813 (*1 *1) (-5 *1 (-145))) (-4007 (*1 *1) (-5 *1 (-145))) (-1385 (*1 *1 *1) (-5 *1 (-145))) (-1956 (*1 *1 *1) (-5 *1 (-145))) (-4032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-850) (-10 -8 (-15 -2930 ((-777) $)) (-15 -2494 ($ (-777))) (-15 -2494 ($ (-1168))) (-15 -3160 ($) -3711) (-15 -1813 ($) -3711) (-15 -4007 ($) -3711) (-15 -1385 ($ $)) (-15 -1956 ($ $)) (-15 -4032 ((-112) $)) (-15 -1526 ((-112) $)) (-15 -3852 ((-112) $)) (-15 -3985 ((-112) $)) (-15 -2408 ((-112) $)) (-15 -3006 ((-112) $)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2917 (((-3 $ "failed") $) 39)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-146) (-141)) (T -146)) +((-2917 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1058) (-10 -8 (-15 -2917 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-4042 ((|#1| (-695 |#1|) |#1|) 23))) +(((-147 |#1|) (-10 -7 (-15 -4042 (|#1| (-695 |#1|) |#1|))) (-174)) (T -147)) +((-4042 (*1 *2 *3 *2) (-12 (-5 *3 (-695 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -4042 (|#1| (-695 |#1|) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-148) (-141)) (T -148)) +NIL +(-13 (-1058)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-1581 (((-2 (|:| -3283 (-777)) (|:| -1436 (-413 |#2|)) (|:| |radicand| |#2|)) (-413 |#2|) (-777)) 76)) (-3889 (((-3 (-2 (|:| |radicand| (-413 |#2|)) (|:| |deg| (-777))) "failed") |#3|) 56)) (-2364 (((-2 (|:| -1436 (-413 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-4342 ((|#1| |#3| |#3|) 44)) (-1725 ((|#3| |#3| (-413 |#2|) (-413 |#2|)) 20)) (-3535 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| |deg| (-777))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -2364 ((-2 (|:| -1436 (-413 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3889 ((-3 (-2 (|:| |radicand| (-413 |#2|)) (|:| |deg| (-777))) "failed") |#3|)) (-15 -1581 ((-2 (|:| -3283 (-777)) (|:| -1436 (-413 |#2|)) (|:| |radicand| |#2|)) (-413 |#2|) (-777))) (-15 -4342 (|#1| |#3| |#3|)) (-15 -1725 (|#3| |#3| (-413 |#2|) (-413 |#2|))) (-15 -3535 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| |deg| (-777))) |#3| |#3|))) (-1230) (-1252 |#1|) (-1252 (-413 |#2|))) (T -149)) +((-3535 (*1 *2 *3 *3) (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-413 *5)) (|:| |c2| (-413 *5)) (|:| |deg| (-777)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1252 (-413 *5))))) (-1725 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-413 *5)) (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1252 *3)))) (-4342 (*1 *2 *3 *3) (-12 (-4 *4 (-1252 *2)) (-4 *2 (-1230)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1252 (-413 *4))))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *6)) (-4 *5 (-1230)) (-4 *6 (-1252 *5)) (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-777)) (-4 *7 (-1252 *3)))) (-3889 (*1 *2 *3) (|partial| -12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| |radicand| (-413 *5)) (|:| |deg| (-777)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1252 (-413 *5))))) (-2364 (*1 *2 *3) (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| -1436 (-413 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1252 (-413 *5)))))) +(-10 -7 (-15 -2364 ((-2 (|:| -1436 (-413 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3889 ((-3 (-2 (|:| |radicand| (-413 |#2|)) (|:| |deg| (-777))) "failed") |#3|)) (-15 -1581 ((-2 (|:| -3283 (-777)) (|:| -1436 (-413 |#2|)) (|:| |radicand| |#2|)) (-413 |#2|) (-777))) (-15 -4342 (|#1| |#3| |#3|)) (-15 -1725 (|#3| |#3| (-413 |#2|) (-413 |#2|))) (-15 -3535 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| |deg| (-777))) |#3| |#3|))) +((-4226 (((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -4226 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)))) (-551) (-167 |#1|)) (T -150)) +((-4226 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5)) (-4 *5 (-167 *4)) (-4 *4 (-551)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -4226 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)))) +((-1418 (($ (-1 (-112) |#2|) $) 35)) (-3552 (($ $) 42)) (-1697 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3600 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-4089 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3116 (((-112) (-1 (-112) |#2|) $) 22)) (-3562 (((-777) (-1 (-112) |#2|) $) 18) (((-777) |#2| $) NIL)) (-1431 (((-112) (-1 (-112) |#2|) $) 21)) (-2431 (((-777) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -3552 (|#1| |#1|)) (-15 -1697 (|#1| |#2| |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1418 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1697 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4089 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2431 ((-777) |#1|))) (-152 |#2|) (-1226)) (T -151)) +NIL +(-10 -8 (-15 -3552 (|#1| |#1|)) (-15 -1697 (|#1| |#2| |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1418 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1697 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4089 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2431 ((-777) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-1418 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3552 (($ $) 42 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448))) (($ |#1| $) 43 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 41 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 50)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-152 |#1|) (-141) (-1226)) (T -152)) +((-3811 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-4 *1 (-152 *3)))) (-4089 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1226)))) (-3600 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)))) (-3600 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)))) (-1697 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *3)) (-4 *3 (-1226)))) (-1418 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *3)) (-4 *3 (-1226)))) (-3600 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)))) (-1697 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)) (-4 *2 (-1109)))) (-3552 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)) (-4 *2 (-1109))))) +(-13 (-495 |t#1|) (-10 -8 (-15 -3811 ($ (-650 |t#1|))) (-15 -4089 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -3600 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3600 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1697 ($ (-1 (-112) |t#1|) $)) (-15 -1418 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -3600 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1697 ($ |t#1| $)) (-15 -3552 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) 113)) (-2481 (((-112) $) NIL)) (-3925 (($ |#2| (-650 (-928))) 73)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3372 (($ (-928)) 60)) (-3374 (((-135)) 26)) (-3798 (((-868) $) 88) (($ (-570)) 56) (($ |#2|) 57)) (-3326 ((|#2| $ (-650 (-928))) 76)) (-2862 (((-777)) 23 T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 51 T CONST)) (-1817 (($) 54 T CONST)) (-2923 (((-112) $ $) 37)) (-3037 (($ $ |#2|) NIL)) (-3026 (($ $) 46) (($ $ $) 44)) (-3014 (($ $ $) 42)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 48) (($ $ $) 66) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1058) (-38 |#2|) (-1283 |#2|) (-10 -8 (-15 -3372 ($ (-928))) (-15 -3925 ($ |#2| (-650 (-928)))) (-15 -3326 (|#2| $ (-650 (-928)))) (-15 -2229 ((-3 $ "failed") $)))) (-928) (-368) (-1002 |#1| |#2|)) (T -153)) +((-2229 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-928)) (-4 *3 (-368)) (-14 *4 (-1002 *2 *3)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-368)) (-14 *5 (-1002 *3 *4)))) (-3925 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-928)) (-4 *2 (-368)) (-14 *5 (-1002 *4 *2)))) (-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-650 (-928))) (-4 *2 (-368)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-928)) (-14 *5 (-1002 *4 *2))))) +(-13 (-1058) (-38 |#2|) (-1283 |#2|) (-10 -8 (-15 -3372 ($ (-928))) (-15 -3925 ($ |#2| (-650 (-928)))) (-15 -3326 (|#2| $ (-650 (-928)))) (-15 -2229 ((-3 $ "failed") $)))) +((-1724 (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))) (-227) (-227) (-227) (-227)) 62)) (-4156 (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570))) 99) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934)) 100)) (-3058 (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227))))) 103) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-950 (-227)))) 102) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570))) 94) (((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934)) 95))) +(((-154) (-10 -7 (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -4156 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -4156 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -1724 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-950 (-227))))) (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))))))) (T -154)) +((-3058 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 (-227))))))) (-3058 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)) (-5 *3 (-650 (-950 (-227)))))) (-1724 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 *4)))) (|:| |xValues| (-1103 *4)) (|:| |yValues| (-1103 *4)))) (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 *4)))))) (-4156 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570))) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))) (-3058 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570))) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-934)) (-5 *2 (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -4156 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934))) (-15 -4156 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-934) (-413 (-570)) (-413 (-570)))) (-15 -1724 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227)))) (-227) (-227) (-227) (-227))) (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-950 (-227))))) (-15 -3058 ((-2 (|:| |brans| (-650 (-650 (-950 (-227))))) (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227)))) (-650 (-650 (-950 (-227))))))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-2689 (((-650 (-1144)) $) 20)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 27) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-1144) $) 9)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-155) (-13 (-1092) (-10 -8 (-15 -2689 ((-650 (-1144)) $)) (-15 -3587 ((-1144) $))))) (T -155)) +((-2689 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-155)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-155))))) +(-13 (-1092) (-10 -8 (-15 -2689 ((-650 (-1144)) $)) (-15 -3587 ((-1144) $)))) +((-2119 (((-650 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2119 ((-650 (-171 |#2|)) |#1| |#2|))) (-1252 (-171 (-570))) (-13 (-368) (-854))) (T -156)) +((-2119 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1252 (-171 (-570)))) (-4 *4 (-13 (-368) (-854)))))) +(-10 -7 (-15 -2119 ((-650 (-171 |#2|)) |#1| |#2|))) +((-2419 (((-112) $ $) NIL)) (-2118 (((-1225) $) 12)) (-2108 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-157) (-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1225) $))))) (T -157)) +((-2108 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-157)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-157))))) +(-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1225) $)))) +((-2419 (((-112) $ $) NIL)) (-2217 (($) 41)) (-1837 (($) 40)) (-3167 (((-928)) 46)) (-4122 (((-1168) $) NIL)) (-2950 (((-570) $) 44)) (-3551 (((-1129) $) NIL)) (-3080 (($) 42)) (-3720 (($ (-570)) 47)) (-3798 (((-868) $) 53)) (-2149 (($) 43)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 38)) (-3014 (($ $ $) 35)) (* (($ (-928) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-928) $)) (-15 * ($ (-227) $)) (-15 -3014 ($ $ $)) (-15 -1837 ($)) (-15 -2217 ($)) (-15 -3080 ($)) (-15 -2149 ($)) (-15 -2950 ((-570) $)) (-15 -3167 ((-928))) (-15 -3720 ($ (-570)))))) (T -158)) +((-3014 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-1837 (*1 *1) (-5 *1 (-158))) (-2217 (*1 *1) (-5 *1 (-158))) (-3080 (*1 *1) (-5 *1 (-158))) (-2149 (*1 *1) (-5 *1 (-158))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-158)))) (-3167 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-158)))) (-3720 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-928) $)) (-15 * ($ (-227) $)) (-15 -3014 ($ $ $)) (-15 -1837 ($)) (-15 -2217 ($)) (-15 -3080 ($)) (-15 -2149 ($)) (-15 -2950 ((-570) $)) (-15 -3167 ((-928))) (-15 -3720 ($ (-570))))) +((-1616 ((|#2| |#2| (-1101 |#2|)) 98) ((|#2| |#2| (-1186)) 75)) (-3053 ((|#2| |#2| (-1101 |#2|)) 97) ((|#2| |#2| (-1186)) 74)) (-2375 ((|#2| |#2| |#2|) 25)) (-3748 (((-115) (-115)) 111)) (-2448 ((|#2| (-650 |#2|)) 130)) (-3267 ((|#2| (-650 |#2|)) 152)) (-3266 ((|#2| (-650 |#2|)) 138)) (-1843 ((|#2| |#2|) 136)) (-2879 ((|#2| (-650 |#2|)) 124)) (-4375 ((|#2| (-650 |#2|)) 125)) (-2667 ((|#2| (-650 |#2|)) 150)) (-2334 ((|#2| |#2| (-1186)) 63) ((|#2| |#2|) 62)) (-3067 ((|#2| |#2|) 21)) (-3755 ((|#2| |#2| |#2|) 24)) (-4217 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -2375 (|#2| |#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2334 (|#2| |#2| (-1186))) (-15 -1616 (|#2| |#2| (-1186))) (-15 -1616 (|#2| |#2| (-1101 |#2|))) (-15 -3053 (|#2| |#2| (-1186))) (-15 -3053 (|#2| |#2| (-1101 |#2|))) (-15 -1843 (|#2| |#2|)) (-15 -2667 (|#2| (-650 |#2|))) (-15 -3266 (|#2| (-650 |#2|))) (-15 -3267 (|#2| (-650 |#2|))) (-15 -2879 (|#2| (-650 |#2|))) (-15 -4375 (|#2| (-650 |#2|))) (-15 -2448 (|#2| (-650 |#2|)))) (-562) (-436 |#1|)) (T -159)) +((-2448 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-2879 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-562)))) (-1843 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) (-4 *2 (-436 *4)))) (-1616 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)))) (-1616 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) (-4 *2 (-436 *4)))) (-2334 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) (-4 *2 (-436 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-2375 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-3755 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-159 *3 *4)) (-4 *4 (-436 *3)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-436 *4))))) +(-10 -7 (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3755 (|#2| |#2| |#2|)) (-15 -2375 (|#2| |#2| |#2|)) (-15 -3067 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2334 (|#2| |#2| (-1186))) (-15 -1616 (|#2| |#2| (-1186))) (-15 -1616 (|#2| |#2| (-1101 |#2|))) (-15 -3053 (|#2| |#2| (-1186))) (-15 -3053 (|#2| |#2| (-1101 |#2|))) (-15 -1843 (|#2| |#2|)) (-15 -2667 (|#2| (-650 |#2|))) (-15 -3266 (|#2| (-650 |#2|))) (-15 -3267 (|#2| (-650 |#2|))) (-15 -2879 (|#2| (-650 |#2|))) (-15 -4375 (|#2| (-650 |#2|))) (-15 -2448 (|#2| (-650 |#2|)))) +((-2565 ((|#1| |#1| |#1|) 67)) (-3048 ((|#1| |#1| |#1|) 64)) (-2375 ((|#1| |#1| |#1|) 58)) (-1374 ((|#1| |#1|) 45)) (-3449 ((|#1| |#1| (-650 |#1|)) 55)) (-3067 ((|#1| |#1|) 48)) (-3755 ((|#1| |#1| |#1|) 51))) +(((-160 |#1|) (-10 -7 (-15 -3755 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3449 (|#1| |#1| (-650 |#1|))) (-15 -1374 (|#1| |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|))) (-551)) (T -160)) +((-2565 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-3048 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-2375 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-1374 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-3449 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-551)) (-5 *1 (-160 *2)))) (-3067 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) (-3755 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))) +(-10 -7 (-15 -3755 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3449 (|#1| |#1| (-650 |#1|))) (-15 -1374 (|#1| |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -3048 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|))) +((-1616 (($ $ (-1186)) 12) (($ $ (-1101 $)) 11)) (-3053 (($ $ (-1186)) 10) (($ $ (-1101 $)) 9)) (-2375 (($ $ $) 8)) (-2334 (($ $) 14) (($ $ (-1186)) 13)) (-3067 (($ $) 7)) (-3755 (($ $ $) 6))) +(((-161) (-141)) (T -161)) +((-2334 (*1 *1 *1) (-4 *1 (-161))) (-2334 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) (-1616 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161)))) (-3053 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) (-3053 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -2334 ($ $)) (-15 -2334 ($ $ (-1186))) (-15 -1616 ($ $ (-1186))) (-15 -1616 ($ $ (-1101 $))) (-15 -3053 ($ $ (-1186))) (-15 -3053 ($ $ (-1101 $))))) +(((-144) . T)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-650 (-1144)) $) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-162) (-13 (-1092) (-10 -8 (-15 -3587 ((-650 (-1144)) $))))) (T -162)) +((-3587 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-162))))) +(-13 (-1092) (-10 -8 (-15 -3587 ((-650 (-1144)) $)))) +((-2419 (((-112) $ $) NIL)) (-3869 (($ (-570)) 14) (($ $ $) 15)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 18)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-163) (-13 (-1109) (-10 -8 (-15 -3869 ($ (-570))) (-15 -3869 ($ $ $))))) (T -163)) +((-3869 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-163)))) (-3869 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1109) (-10 -8 (-15 -3869 ($ (-570))) (-15 -3869 ($ $ $)))) +((-3748 (((-115) (-1186)) 102))) +(((-164) (-10 -7 (-15 -3748 ((-115) (-1186))))) (T -164)) +((-3748 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -3748 ((-115) (-1186)))) +((-1880 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1880 (|#3| |#3|))) (-1058) (-1252 |#1|) (-1252 |#2|)) (T -165)) +((-1880 (*1 *2 *2) (-12 (-4 *3 (-1058)) (-4 *4 (-1252 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1252 *4))))) +(-10 -7 (-15 -1880 (|#3| |#3|))) +((-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 223)) (-3142 ((|#2| $) 102)) (-2774 (($ $) 256)) (-2629 (($ $) 250)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 47)) (-2749 (($ $) 254)) (-2604 (($ $) 248)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3152 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 144)) (-2372 (($ $ $) 229)) (-2004 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) 160) (((-695 |#2|) (-695 $)) 154)) (-3600 (($ (-1182 |#2|)) 125) (((-3 $ "failed") (-413 (-1182 |#2|))) NIL)) (-2229 (((-3 $ "failed") $) 214)) (-3369 (((-3 (-413 (-570)) "failed") $) 204)) (-3108 (((-112) $) 199)) (-3875 (((-413 (-570)) $) 202)) (-3979 (((-928)) 96)) (-2380 (($ $ $) 231)) (-4065 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1313 (($) 245)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 193) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 198)) (-2233 ((|#2| $) 100)) (-2780 (((-1182 |#2|) $) 127)) (-1347 (($ (-1 |#2| |#2|) $) 108)) (-2665 (($ $) 247)) (-3586 (((-1182 |#2|) $) 126)) (-1820 (($ $) 207)) (-4208 (($) 103)) (-3484 (((-424 (-1182 $)) (-1182 $)) 95)) (-3623 (((-424 (-1182 $)) (-1182 $)) 64)) (-2410 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-4390 (($ $) 246)) (-3788 (((-777) $) 226)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 236)) (-3511 ((|#2| (-1276 $)) NIL) ((|#2|) 98)) (-3519 (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-1881 (((-1182 |#2|)) 120)) (-2761 (($ $) 255)) (-2616 (($ $) 249)) (-1861 (((-1276 |#2|) $ (-1276 $)) 136) (((-695 |#2|) (-1276 $) (-1276 $)) NIL) (((-1276 |#2|) $) 116) (((-695 |#2|) (-1276 $)) NIL)) (-1411 (((-1276 |#2|) $) NIL) (($ (-1276 |#2|)) NIL) (((-1182 |#2|) $) NIL) (($ (-1182 |#2|)) NIL) (((-899 (-570)) $) 184) (((-899 (-384)) $) 188) (((-171 (-384)) $) 172) (((-171 (-227)) $) 167) (((-542) $) 180)) (-3897 (($ $) 104)) (-3798 (((-868) $) 143) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-413 (-570))) NIL) (($ $) NIL)) (-4042 (((-1182 |#2|) $) 32)) (-2862 (((-777)) 106)) (-1319 (((-112) $ $) 13)) (-4165 (($ $) 259)) (-2704 (($ $) 253)) (-4141 (($ $) 257)) (-2678 (($ $) 251)) (-2990 ((|#2| $) 242)) (-4153 (($ $) 258)) (-2692 (($ $) 252)) (-2216 (($ $) 162)) (-2923 (((-112) $ $) 110)) (-3026 (($ $) 112) (($ $ $) NIL)) (-3014 (($ $ $) 111)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-413 (-570))) 276) (($ $ $) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3798 (|#1| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1966 ((-2 (|:| -1738 |#1|) (|:| -4435 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3788 ((-777) |#1|)) (-15 -1854 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -2372 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -1411 ((-542) |#1|)) (-15 -1411 ((-171 (-227)) |#1|)) (-15 -1411 ((-171 (-384)) |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -4390 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1313 (|#1|)) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3623 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3484 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -4065 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2990 (|#2| |#1|)) (-15 -2216 (|#1| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3897 (|#1| |#1|)) (-15 -4208 (|#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3600 ((-3 |#1| "failed") (-413 (-1182 |#2|)))) (-15 -3586 ((-1182 |#2|) |#1|)) (-15 -1411 (|#1| (-1182 |#2|))) (-15 -3600 (|#1| (-1182 |#2|))) (-15 -1881 ((-1182 |#2|))) (-15 -2004 ((-695 |#2|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -1411 ((-1182 |#2|) |#1|)) (-15 -3511 (|#2|)) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -2780 ((-1182 |#2|) |#1|)) (-15 -4042 ((-1182 |#2|) |#1|)) (-15 -3511 (|#2| (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -2233 (|#2| |#1|)) (-15 -3142 (|#2| |#1|)) (-15 -3979 ((-928))) (-15 -3798 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -1319 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-2862 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3979 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-928)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3511 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1881 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1182 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3798 (|#1| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1966 ((-2 (|:| -1738 |#1|) (|:| -4435 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3788 ((-777) |#1|)) (-15 -1854 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -2372 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -1411 ((-542) |#1|)) (-15 -1411 ((-171 (-227)) |#1|)) (-15 -1411 ((-171 (-384)) |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -4390 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1313 (|#1|)) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3623 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3484 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -4065 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2990 (|#2| |#1|)) (-15 -2216 (|#1| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3897 (|#1| |#1|)) (-15 -4208 (|#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3600 ((-3 |#1| "failed") (-413 (-1182 |#2|)))) (-15 -3586 ((-1182 |#2|) |#1|)) (-15 -1411 (|#1| (-1182 |#2|))) (-15 -3600 (|#1| (-1182 |#2|))) (-15 -1881 ((-1182 |#2|))) (-15 -2004 ((-695 |#2|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -1411 ((-1182 |#2|) |#1|)) (-15 -3511 (|#2|)) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -2780 ((-1182 |#2|) |#1|)) (-15 -4042 ((-1182 |#2|) |#1|)) (-15 -3511 (|#2| (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -2233 (|#2| |#1|)) (-15 -3142 (|#2| |#1|)) (-15 -3979 ((-928))) (-15 -3798 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -1319 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 102 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-2318 (($ $) 103 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-2234 (((-112) $) 105 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-2365 (((-695 |#1|) (-1276 $)) 53) (((-695 |#1|)) 68)) (-3142 ((|#1| $) 59)) (-2774 (($ $) 229 (|has| |#1| (-1211)))) (-2629 (($ $) 212 (|has| |#1| (-1211)))) (-2299 (((-1199 (-928) (-777)) (-570)) 155 (|has| |#1| (-354)))) (-2620 (((-3 $ "failed") $ $) 20)) (-2900 (((-424 (-1182 $)) (-1182 $)) 243 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3696 (($ $) 122 (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-2555 (((-424 $) $) 123 (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-3815 (($ $) 242 (-12 (|has| |#1| (-1011)) (|has| |#1| (-1211))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 246 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-4073 (((-112) $ $) 113 (|has| |#1| (-311)))) (-3475 (((-777)) 96 (|has| |#1| (-373)))) (-2749 (($ $) 228 (|has| |#1| (-1211)))) (-2604 (($ $) 213 (|has| |#1| (-1211)))) (-4119 (($ $) 227 (|has| |#1| (-1211)))) (-2648 (($ $) 214 (|has| |#1| (-1211)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 178 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 176 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 173)) (-3152 (((-570) $) 177 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 175 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 174)) (-2427 (($ (-1276 |#1|) (-1276 $)) 55) (($ (-1276 |#1|)) 71)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-354)))) (-2372 (($ $ $) 117 (|has| |#1| (-311)))) (-2684 (((-695 |#1|) $ (-1276 $)) 60) (((-695 |#1|) $) 66)) (-2004 (((-695 (-570)) (-695 $)) 172 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 171 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 170) (((-695 |#1|) (-695 $)) 169)) (-3600 (($ (-1182 |#1|)) 166) (((-3 $ "failed") (-413 (-1182 |#1|))) 163 (|has| |#1| (-368)))) (-2229 (((-3 $ "failed") $) 37)) (-3827 ((|#1| $) 254)) (-3369 (((-3 (-413 (-570)) "failed") $) 247 (|has| |#1| (-551)))) (-3108 (((-112) $) 249 (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) 248 (|has| |#1| (-551)))) (-3979 (((-928)) 61)) (-3408 (($) 99 (|has| |#1| (-373)))) (-2380 (($ $ $) 116 (|has| |#1| (-311)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 111 (|has| |#1| (-311)))) (-3740 (($) 157 (|has| |#1| (-354)))) (-4316 (((-112) $) 158 (|has| |#1| (-354)))) (-3640 (($ $ (-777)) 149 (|has| |#1| (-354))) (($ $) 148 (|has| |#1| (-354)))) (-3701 (((-112) $) 124 (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-4065 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1211))))) (-1313 (($) 239 (|has| |#1| (-1211)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 262 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 261 (|has| |#1| (-893 (-384))))) (-4202 (((-928) $) 160 (|has| |#1| (-354))) (((-839 (-928)) $) 146 (|has| |#1| (-354)))) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 241 (-12 (|has| |#1| (-1011)) (|has| |#1| (-1211))))) (-2233 ((|#1| $) 58)) (-3641 (((-3 $ "failed") $) 150 (|has| |#1| (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 120 (|has| |#1| (-311)))) (-2780 (((-1182 |#1|) $) 51 (|has| |#1| (-368)))) (-1347 (($ (-1 |#1| |#1|) $) 263)) (-2484 (((-928) $) 98 (|has| |#1| (-373)))) (-2665 (($ $) 236 (|has| |#1| (-1211)))) (-3586 (((-1182 |#1|) $) 164)) (-1841 (($ (-650 $)) 109 (-2779 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (($ $ $) 108 (-2779 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-4122 (((-1168) $) 10)) (-1820 (($ $) 125 (|has| |#1| (-368)))) (-2310 (($) 151 (|has| |#1| (-354)) CONST)) (-2155 (($ (-928)) 97 (|has| |#1| (-373)))) (-4208 (($) 258)) (-3839 ((|#1| $) 255)) (-3551 (((-1129) $) 11)) (-2335 (($) 168)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 110 (-2779 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-1869 (($ (-650 $)) 107 (-2779 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (($ $ $) 106 (-2779 (|has| |#1| (-311)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 154 (|has| |#1| (-354)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 245 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3623 (((-424 (-1182 $)) (-1182 $)) 244 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3801 (((-424 $) $) 121 (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-311))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118 (|has| |#1| (-311)))) (-2410 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 101 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 112 (|has| |#1| (-311)))) (-4390 (($ $) 237 (|has| |#1| (-1211)))) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) 269 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 267 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 266 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 265 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 264 (|has| |#1| (-520 (-1186) |#1|)))) (-3788 (((-777) $) 114 (|has| |#1| (-311)))) (-1872 (($ $ |#1|) 270 (|has| |#1| (-290 |#1| |#1|)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 115 (|has| |#1| (-311)))) (-3511 ((|#1| (-1276 $)) 54) ((|#1|) 67)) (-2174 (((-777) $) 159 (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) 147 (|has| |#1| (-354)))) (-3519 (($ $ (-1 |#1| |#1|) (-777)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-650 (-1186)) (-650 (-777))) 138 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 139 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 140 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 141 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 143 (-2779 (-1760 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-1760 (|has| |#1| (-235)) (|has| |#1| (-368))))) (($ $) 145 (-2779 (-1760 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-1760 (|has| |#1| (-235)) (|has| |#1| (-368)))))) (-4169 (((-695 |#1|) (-1276 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-368)))) (-1881 (((-1182 |#1|)) 167)) (-4129 (($ $) 226 (|has| |#1| (-1211)))) (-2664 (($ $) 215 (|has| |#1| (-1211)))) (-2042 (($) 156 (|has| |#1| (-354)))) (-2786 (($ $) 225 (|has| |#1| (-1211)))) (-2636 (($ $) 216 (|has| |#1| (-1211)))) (-2761 (($ $) 224 (|has| |#1| (-1211)))) (-2616 (($ $) 217 (|has| |#1| (-1211)))) (-1861 (((-1276 |#1|) $ (-1276 $)) 57) (((-695 |#1|) (-1276 $) (-1276 $)) 56) (((-1276 |#1|) $) 73) (((-695 |#1|) (-1276 $)) 72)) (-1411 (((-1276 |#1|) $) 70) (($ (-1276 |#1|)) 69) (((-1182 |#1|) $) 179) (($ (-1182 |#1|)) 165) (((-899 (-570)) $) 260 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 259 (|has| |#1| (-620 (-899 (-384))))) (((-171 (-384)) $) 211 (|has| |#1| (-1031))) (((-171 (-227)) $) 210 (|has| |#1| (-1031))) (((-542) $) 209 (|has| |#1| (-620 (-542))))) (-3897 (($ $) 257)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 153 (-2779 (-1760 (|has| $ (-146)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (|has| |#1| (-354))))) (-3103 (($ |#1| |#1|) 256)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ (-413 (-570))) 95 (-2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) 100 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-2917 (($ $) 152 (|has| |#1| (-354))) (((-3 $ "failed") $) 50 (-2779 (-1760 (|has| $ (-146)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (|has| |#1| (-146))))) (-4042 (((-1182 |#1|) $) 52)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-2077 (((-1276 $)) 74)) (-4165 (($ $) 235 (|has| |#1| (-1211)))) (-2704 (($ $) 223 (|has| |#1| (-1211)))) (-3258 (((-112) $ $) 104 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))))) (-4141 (($ $) 234 (|has| |#1| (-1211)))) (-2678 (($ $) 222 (|has| |#1| (-1211)))) (-4186 (($ $) 233 (|has| |#1| (-1211)))) (-2726 (($ $) 221 (|has| |#1| (-1211)))) (-2990 ((|#1| $) 251 (|has| |#1| (-1211)))) (-1504 (($ $) 232 (|has| |#1| (-1211)))) (-2737 (($ $) 220 (|has| |#1| (-1211)))) (-4176 (($ $) 231 (|has| |#1| (-1211)))) (-2715 (($ $) 219 (|has| |#1| (-1211)))) (-4153 (($ $) 230 (|has| |#1| (-1211)))) (-2692 (($ $) 218 (|has| |#1| (-1211)))) (-2216 (($ $) 252 (|has| |#1| (-1069)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1 |#1| |#1|) (-777)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-650 (-1186)) (-650 (-777))) 134 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 135 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 136 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 137 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 142 (-2779 (-1760 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-1760 (|has| |#1| (-235)) (|has| |#1| (-368))))) (($ $) 144 (-2779 (-1760 (|has| |#1| (-368)) (|has| |#1| (-235))) (|has| |#1| (-235)) (-1760 (|has| |#1| (-235)) (|has| |#1| (-368)))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 129 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-413 (-570))) 240 (-12 (|has| |#1| (-1011)) (|has| |#1| (-1211)))) (($ $ $) 238 (|has| |#1| (-1211))) (($ $ (-570)) 126 (|has| |#1| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-413 (-570)) $) 128 (|has| |#1| (-368))) (($ $ (-413 (-570))) 127 (|has| |#1| (-368))))) +(((-167 |#1|) (-141) (-174)) (T -167)) +((-2233 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4208 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3897 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3103 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2410 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-2216 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-2990 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1211)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1069)) (-4 *3 (-1211)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-3369 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570)))))) +(-13 (-730 |t#1| (-1182 |t#1|)) (-417 |t#1|) (-233 |t#1|) (-343 |t#1|) (-406 |t#1|) (-891 |t#1|) (-382 |t#1|) (-174) (-10 -8 (-6 -3103) (-15 -4208 ($)) (-15 -3897 ($ $)) (-15 -3103 ($ |t#1| |t#1|)) (-15 -3839 (|t#1| $)) (-15 -3827 (|t#1| $)) (-15 -2233 (|t#1| $)) (IF (|has| |t#1| (-562)) (PROGN (-6 (-562)) (-15 -2410 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-311)) (-6 (-311)) |%noBranch|) (IF (|has| |t#1| (-6 -4447)) (-6 -4447) |%noBranch|) (IF (|has| |t#1| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1031)) (PROGN (-6 (-620 (-171 (-227)))) (-6 (-620 (-171 (-384))))) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -2216 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1211)) (PROGN (-6 (-1211)) (-15 -2990 (|t#1| $)) (IF (|has| |t#1| (-1011)) (-6 (-1011)) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -4065 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-311)) (-6 (-916)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-38 |#1|) . T) ((-38 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-35) |has| |#1| (-1211)) ((-95) |has| |#1| (-1211)) ((-102) . T) ((-111 #0# #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2779 (|has| |#1| (-354)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-354)) (|has| |#1| (-368))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-619 (-868)) . T) ((-174) . T) ((-620 (-171 (-227))) |has| |#1| (-1031)) ((-620 (-171 (-384))) |has| |#1| (-1031)) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-620 #1=(-1182 |#1|)) . T) ((-233 |#1|) . T) ((-235) -2779 (|has| |#1| (-354)) (|has| |#1| (-235))) ((-245) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-288) |has| |#1| (-1211)) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-294) -2779 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-311) -2779 (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-368) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-408) |has| |#1| (-354)) ((-373) -2779 (|has| |#1| (-373)) (|has| |#1| (-354))) ((-354) |has| |#1| (-354)) ((-375 |#1| #1#) . T) ((-415 |#1| #1#) . T) ((-343 |#1|) . T) ((-382 |#1|) . T) ((-406 |#1|) . T) ((-417 |#1|) . T) ((-458) -2779 (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-499) |has| |#1| (-1211)) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-562) -2779 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-652 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-646 |#1|) . T) ((-646 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-723 |#1|) . T) ((-723 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-730 |#1| #1#) . T) ((-732) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-916) -12 (|has| |#1| (-311)) (|has| |#1| (-916))) ((-927) -2779 (|has| |#1| (-354)) (|has| |#1| (-368)) (|has| |#1| (-311))) ((-1011) -12 (|has| |#1| (-1011)) (|has| |#1| (-1211))) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-354)) ((-1211) |has| |#1| (-1211)) ((-1214) |has| |#1| (-1211)) ((-1226) . T) ((-1230) -2779 (|has| |#1| (-354)) (|has| |#1| (-368)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) +((-3801 (((-424 |#2|) |#2|) 69))) +(((-168 |#1| |#2|) (-10 -7 (-15 -3801 ((-424 |#2|) |#2|))) (-311) (-1252 (-171 |#1|))) (T -168)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1252 (-171 *4)))))) +(-10 -7 (-15 -3801 ((-424 |#2|) |#2|))) +((-1632 (((-1144) (-1144) (-295)) 8)) (-1338 (((-650 (-697 (-284))) (-1168)) 81)) (-2698 (((-697 (-284)) (-1144)) 76))) +(((-169) (-13 (-1226) (-10 -7 (-15 -1632 ((-1144) (-1144) (-295))) (-15 -2698 ((-697 (-284)) (-1144))) (-15 -1338 ((-650 (-697 (-284))) (-1168)))))) (T -169)) +((-1632 (*1 *2 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-295)) (-5 *1 (-169)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-1144)) (-5 *2 (-697 (-284))) (-5 *1 (-169)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-697 (-284)))) (-5 *1 (-169))))) +(-13 (-1226) (-10 -7 (-15 -1632 ((-1144) (-1144) (-295))) (-15 -2698 ((-697 (-284)) (-1144))) (-15 -1338 ((-650 (-697 (-284))) (-1168))))) +((-1347 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -1347 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -1347 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 34)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2318 (($ $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2234 (((-112) $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2365 (((-695 |#1|) (-1276 $)) NIL) (((-695 |#1|)) NIL)) (-3142 ((|#1| $) NIL)) (-2774 (($ $) NIL (|has| |#1| (-1211)))) (-2629 (($ $) NIL (|has| |#1| (-1211)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-354)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3696 (($ $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-2555 (((-424 $) $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-3815 (($ $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1211))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-311)))) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-2749 (($ $) NIL (|has| |#1| (-1211)))) (-2604 (($ $) NIL (|has| |#1| (-1211)))) (-4119 (($ $) NIL (|has| |#1| (-1211)))) (-2648 (($ $) NIL (|has| |#1| (-1211)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-2427 (($ (-1276 |#1|) (-1276 $)) NIL) (($ (-1276 |#1|)) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-354)))) (-2372 (($ $ $) NIL (|has| |#1| (-311)))) (-2684 (((-695 |#1|) $ (-1276 $)) NIL) (((-695 |#1|) $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3600 (($ (-1182 |#1|)) NIL) (((-3 $ "failed") (-413 (-1182 |#1|))) NIL (|has| |#1| (-368)))) (-2229 (((-3 $ "failed") $) NIL)) (-3827 ((|#1| $) 13)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-551)))) (-3108 (((-112) $) NIL (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) NIL (|has| |#1| (-551)))) (-3979 (((-928)) NIL)) (-3408 (($) NIL (|has| |#1| (-373)))) (-2380 (($ $ $) NIL (|has| |#1| (-311)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-311)))) (-3740 (($) NIL (|has| |#1| (-354)))) (-4316 (((-112) $) NIL (|has| |#1| (-354)))) (-3640 (($ $ (-777)) NIL (|has| |#1| (-354))) (($ $) NIL (|has| |#1| (-354)))) (-3701 (((-112) $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-4065 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1069)) (|has| |#1| (-1211))))) (-1313 (($) NIL (|has| |#1| (-1211)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| |#1| (-893 (-384))))) (-4202 (((-928) $) NIL (|has| |#1| (-354))) (((-839 (-928)) $) NIL (|has| |#1| (-354)))) (-2481 (((-112) $) 36)) (-3309 (($ $ (-570)) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1211))))) (-2233 ((|#1| $) 47)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-311)))) (-2780 (((-1182 |#1|) $) NIL (|has| |#1| (-368)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-2665 (($ $) NIL (|has| |#1| (-1211)))) (-3586 (((-1182 |#1|) $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-311))) (($ $ $) NIL (|has| |#1| (-311)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-2310 (($) NIL (|has| |#1| (-354)) CONST)) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-4208 (($) NIL)) (-3839 ((|#1| $) 15)) (-3551 (((-1129) $) NIL)) (-2335 (($) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-311)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-311))) (($ $ $) NIL (|has| |#1| (-311)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| |#1| (-354)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#1| (-311)) (|has| |#1| (-916))))) (-3801 (((-424 $) $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-368))))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-311))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-311)))) (-2410 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 48 (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-311)))) (-4390 (($ $) NIL (|has| |#1| (-1211)))) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-3788 (((-777) $) NIL (|has| |#1| (-311)))) (-1872 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-311)))) (-3511 ((|#1| (-1276 $)) NIL) ((|#1|) NIL)) (-2174 (((-777) $) NIL (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) NIL (|has| |#1| (-354)))) (-3519 (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-4169 (((-695 |#1|) (-1276 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-1881 (((-1182 |#1|)) NIL)) (-4129 (($ $) NIL (|has| |#1| (-1211)))) (-2664 (($ $) NIL (|has| |#1| (-1211)))) (-2042 (($) NIL (|has| |#1| (-354)))) (-2786 (($ $) NIL (|has| |#1| (-1211)))) (-2636 (($ $) NIL (|has| |#1| (-1211)))) (-2761 (($ $) NIL (|has| |#1| (-1211)))) (-2616 (($ $) NIL (|has| |#1| (-1211)))) (-1861 (((-1276 |#1|) $ (-1276 $)) NIL) (((-695 |#1|) (-1276 $) (-1276 $)) NIL) (((-1276 |#1|) $) NIL) (((-695 |#1|) (-1276 $)) NIL)) (-1411 (((-1276 |#1|) $) NIL) (($ (-1276 |#1|)) NIL) (((-1182 |#1|) $) NIL) (($ (-1182 |#1|)) NIL) (((-899 (-570)) $) NIL (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#1| (-620 (-899 (-384))))) (((-171 (-384)) $) NIL (|has| |#1| (-1031))) (((-171 (-227)) $) NIL (|has| |#1| (-1031))) (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3897 (($ $) 46)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-354))))) (-3103 (($ |#1| |#1|) 38)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) 37) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-2917 (($ $) NIL (|has| |#1| (-354))) (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-4042 (((-1182 |#1|) $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-1211)))) (-2704 (($ $) NIL (|has| |#1| (-1211)))) (-3258 (((-112) $ $) NIL (-2779 (-12 (|has| |#1| (-311)) (|has| |#1| (-916))) (|has| |#1| (-562))))) (-4141 (($ $) NIL (|has| |#1| (-1211)))) (-2678 (($ $) NIL (|has| |#1| (-1211)))) (-4186 (($ $) NIL (|has| |#1| (-1211)))) (-2726 (($ $) NIL (|has| |#1| (-1211)))) (-2990 ((|#1| $) NIL (|has| |#1| (-1211)))) (-1504 (($ $) NIL (|has| |#1| (-1211)))) (-2737 (($ $) NIL (|has| |#1| (-1211)))) (-4176 (($ $) NIL (|has| |#1| (-1211)))) (-2715 (($ $) NIL (|has| |#1| (-1211)))) (-4153 (($ $) NIL (|has| |#1| (-1211)))) (-2692 (($ $) NIL (|has| |#1| (-1211)))) (-2216 (($ $) NIL (|has| |#1| (-1069)))) (-1809 (($) 28 T CONST)) (-1817 (($) 30 T CONST)) (-1985 (((-1168) $) 23 (|has| |#1| (-834))) (((-1168) $ (-112)) 25 (|has| |#1| (-834))) (((-1281) (-828) $) 26 (|has| |#1| (-834))) (((-1281) (-828) $ (-112)) 27 (|has| |#1| (-834)))) (-2835 (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 40)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-413 (-570))) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1211)))) (($ $ $) NIL (|has| |#1| (-1211))) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-368))) (($ $ (-413 (-570))) NIL (|has| |#1| (-368))))) +(((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|))) (-174)) (T -171)) +NIL +(-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|))) +((-1411 (((-899 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1411 ((-899 |#1|) |#3|))) (-1109) (-13 (-620 (-899 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-1411 (*1 *2 *3) (-12 (-4 *5 (-13 (-620 *2) (-174))) (-5 *2 (-899 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1109)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -1411 ((-899 |#1|) |#3|))) +((-2419 (((-112) $ $) NIL)) (-2265 (((-112) $) 9)) (-1988 (((-112) $ (-112)) 11)) (-4300 (($) 13)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3964 (($ $) 14)) (-3798 (((-868) $) 18)) (-3995 (((-112) $) 8)) (-4135 (((-112) $ (-112)) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-173) (-13 (-1109) (-10 -8 (-15 -4300 ($)) (-15 -3995 ((-112) $)) (-15 -2265 ((-112) $)) (-15 -4135 ((-112) $ (-112))) (-15 -1988 ((-112) $ (-112))) (-15 -3964 ($ $))))) (T -173)) +((-4300 (*1 *1) (-5 *1 (-173))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4135 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1988 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3964 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1109) (-10 -8 (-15 -4300 ($)) (-15 -3995 ((-112) $)) (-15 -2265 ((-112) $)) (-15 -4135 ((-112) $ (-112))) (-15 -1988 ((-112) $ (-112))) (-15 -3964 ($ $)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-174) (-141)) (T -174)) +NIL +(-13 (-1058) (-111 $ $) (-10 -7 (-6 (-4450 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2514 (($ $) 6))) +(((-175) (-141)) (T -175)) +((-2514 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -2514 ($ $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 ((|#1| $) 81)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL)) (-2721 (($ $) 21)) (-4310 (($ |#1| (-1166 |#1|)) 50)) (-2229 (((-3 $ "failed") $) 123)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2181 (((-1166 |#1|) $) 88)) (-2383 (((-1166 |#1|) $) 85)) (-3626 (((-1166 |#1|) $) 86)) (-2481 (((-112) $) NIL)) (-2521 (((-1166 |#1|) $) 94)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1841 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-3500 (($ $ (-570)) 97)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3689 (((-1166 |#1|) $) 95)) (-3415 (((-1166 (-413 |#1|)) $) 14)) (-4322 (($ (-413 |#1|)) 17) (($ |#1| (-1166 |#1|) (-1166 |#1|)) 40)) (-2115 (($ $) 99)) (-3798 (((-868) $) 140) (($ (-570)) 53) (($ |#1|) 54) (($ (-413 |#1|)) 38) (($ (-413 (-570))) NIL) (($ $) NIL)) (-2862 (((-777)) 69 T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1528 (((-1166 (-413 |#1|)) $) 20)) (-1809 (($) 27 T CONST)) (-1817 (($) 30 T CONST)) (-2923 (((-112) $ $) 37)) (-3037 (($ $ $) 121)) (-3026 (($ $) 112) (($ $ $) 109)) (-3014 (($ $ $) 107)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-413 |#1|) $) 117) (($ $ (-413 |#1|)) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-413 |#1|)) (-368) (-10 -8 (-15 -4322 ($ (-413 |#1|))) (-15 -4322 ($ |#1| (-1166 |#1|) (-1166 |#1|))) (-15 -4310 ($ |#1| (-1166 |#1|))) (-15 -2383 ((-1166 |#1|) $)) (-15 -3626 ((-1166 |#1|) $)) (-15 -2181 ((-1166 |#1|) $)) (-15 -3356 (|#1| $)) (-15 -2721 ($ $)) (-15 -1528 ((-1166 (-413 |#1|)) $)) (-15 -3415 ((-1166 (-413 |#1|)) $)) (-15 -2521 ((-1166 |#1|) $)) (-15 -3689 ((-1166 |#1|) $)) (-15 -3500 ($ $ (-570))) (-15 -2115 ($ $)))) (-311)) (T -176)) +((-4322 (*1 *1 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-311)) (-5 *1 (-176 *3)))) (-4322 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2)))) (-4310 (*1 *1 *2 *3) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3356 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))) (-2721 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-2521 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) (-2115 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311))))) +(-13 (-38 |#1|) (-38 (-413 |#1|)) (-368) (-10 -8 (-15 -4322 ($ (-413 |#1|))) (-15 -4322 ($ |#1| (-1166 |#1|) (-1166 |#1|))) (-15 -4310 ($ |#1| (-1166 |#1|))) (-15 -2383 ((-1166 |#1|) $)) (-15 -3626 ((-1166 |#1|) $)) (-15 -2181 ((-1166 |#1|) $)) (-15 -3356 (|#1| $)) (-15 -2721 ($ $)) (-15 -1528 ((-1166 (-413 |#1|)) $)) (-15 -3415 ((-1166 (-413 |#1|)) $)) (-15 -2521 ((-1166 |#1|) $)) (-15 -3689 ((-1166 |#1|) $)) (-15 -3500 ($ $ (-570))) (-15 -2115 ($ $)))) +((-3523 (($ (-109) $) 15)) (-3231 (((-697 (-109)) (-512) $) 14)) (-3798 (((-868) $) 18)) (-3690 (((-650 (-109)) $) 8))) +(((-177) (-13 (-619 (-868)) (-10 -8 (-15 -3690 ((-650 (-109)) $)) (-15 -3523 ($ (-109) $)) (-15 -3231 ((-697 (-109)) (-512) $))))) (T -177)) +((-3690 (*1 *2 *1) (-12 (-5 *2 (-650 (-109))) (-5 *1 (-177)))) (-3523 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-3231 (*1 *2 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-177))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3690 ((-650 (-109)) $)) (-15 -3523 ($ (-109) $)) (-15 -3231 ((-697 (-109)) (-512) $)))) +((-4168 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 38)) (-2600 (((-950 |#1|) (-950 |#1|)) 22)) (-3095 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 34)) (-1401 (((-950 |#1|) (-950 |#1|)) 20)) (-4269 (((-950 |#1|) (-950 |#1|)) 28)) (-4404 (((-950 |#1|) (-950 |#1|)) 27)) (-1949 (((-950 |#1|) (-950 |#1|)) 26)) (-4401 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 35)) (-3217 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 33)) (-1801 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 32)) (-2743 (((-950 |#1|) (-950 |#1|)) 21)) (-1590 (((-1 (-950 |#1|) (-950 |#1|)) |#1| |#1|) 41)) (-3495 (((-950 |#1|) (-950 |#1|)) 8)) (-1982 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 37)) (-3986 (((-1 (-950 |#1|) (-950 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -3495 ((-950 |#1|) (-950 |#1|))) (-15 -1401 ((-950 |#1|) (-950 |#1|))) (-15 -2743 ((-950 |#1|) (-950 |#1|))) (-15 -2600 ((-950 |#1|) (-950 |#1|))) (-15 -1949 ((-950 |#1|) (-950 |#1|))) (-15 -4404 ((-950 |#1|) (-950 |#1|))) (-15 -4269 ((-950 |#1|) (-950 |#1|))) (-15 -1801 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3217 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3095 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4401 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3986 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -1982 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4168 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -1590 ((-1 (-950 |#1|) (-950 |#1|)) |#1| |#1|))) (-13 (-368) (-1211) (-1011))) (T -178)) +((-1590 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-4168 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-3986 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-4401 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-3095 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-3217 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-1801 (*1 *2 *3) (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))))) (-4269 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3)))) (-4404 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3)))) (-2743 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3495 ((-950 |#1|) (-950 |#1|))) (-15 -1401 ((-950 |#1|) (-950 |#1|))) (-15 -2743 ((-950 |#1|) (-950 |#1|))) (-15 -2600 ((-950 |#1|) (-950 |#1|))) (-15 -1949 ((-950 |#1|) (-950 |#1|))) (-15 -4404 ((-950 |#1|) (-950 |#1|))) (-15 -4269 ((-950 |#1|) (-950 |#1|))) (-15 -1801 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3217 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3095 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4401 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -3986 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -1982 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -4168 ((-1 (-950 |#1|) (-950 |#1|)) |#1|)) (-15 -1590 ((-1 (-950 |#1|) (-950 |#1|)) |#1| |#1|))) +((-4042 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -4042 (|#2| |#3|))) (-174) (-1252 |#1|) (-730 |#1| |#2|)) (T -179)) +((-4042 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1252 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-730 *4 *2))))) +(-10 -7 (-15 -4042 (|#2| |#3|))) +((-2125 (((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)) 44 (|has| (-959 |#2|) (-893 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-959 |#2|) (-893 |#1|)) (-15 -2125 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) |%noBranch|)) (-1109) (-13 (-893 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *3 (-167 *6)) (-4 (-959 *6) (-893 *5)) (-4 *6 (-13 (-893 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-959 |#2|) (-893 |#1|)) (-15 -2125 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) |%noBranch|)) +((-1672 (((-650 |#1|) (-650 |#1|) |#1|) 41)) (-1396 (((-650 |#1|) |#1| (-650 |#1|)) 20)) (-2527 (((-650 |#1|) (-650 (-650 |#1|)) (-650 |#1|)) 36) ((|#1| (-650 |#1|) (-650 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -1396 ((-650 |#1|) |#1| (-650 |#1|))) (-15 -2527 (|#1| (-650 |#1|) (-650 |#1|))) (-15 -2527 ((-650 |#1|) (-650 (-650 |#1|)) (-650 |#1|))) (-15 -1672 ((-650 |#1|) (-650 |#1|) |#1|))) (-311)) (T -181)) +((-1672 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3)))) (-2527 (*1 *2 *3 *2) (-12 (-5 *3 (-650 (-650 *4))) (-5 *2 (-650 *4)) (-4 *4 (-311)) (-5 *1 (-181 *4)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-181 *2)) (-4 *2 (-311)))) (-1396 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -1396 ((-650 |#1|) |#1| (-650 |#1|))) (-15 -2527 (|#1| (-650 |#1|) (-650 |#1|))) (-15 -2527 ((-650 |#1|) (-650 (-650 |#1|)) (-650 |#1|))) (-15 -1672 ((-650 |#1|) (-650 |#1|) |#1|))) +((-2419 (((-112) $ $) NIL)) (-3873 (((-1225) $) 13)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1419 (((-1144) $) 10)) (-3798 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-182) (-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -3873 ((-1225) $))))) (T -182)) +((-1419 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-182)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-182))))) +(-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -3873 ((-1225) $)))) +((-1443 (((-2 (|:| |start| |#2|) (|:| -1629 (-424 |#2|))) |#2|) 66)) (-2984 ((|#1| |#1|) 58)) (-1804 (((-171 |#1|) |#2|) 93)) (-3248 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2798 ((|#2| |#2|) 91)) (-1449 (((-424 |#2|) |#2| |#1|) 121) (((-424 |#2|) |#2| |#1| (-112)) 88)) (-2233 ((|#1| |#2|) 120)) (-4108 ((|#2| |#2|) 135)) (-3801 (((-424 |#2|) |#2|) 158) (((-424 |#2|) |#2| |#1|) 33) (((-424 |#2|) |#2| |#1| (-112)) 157)) (-3269 (((-650 (-2 (|:| -1629 (-650 |#2|)) (|:| -3650 |#1|))) |#2| |#2|) 156) (((-650 (-2 (|:| -1629 (-650 |#2|)) (|:| -3650 |#1|))) |#2| |#2| (-112)) 81)) (-2119 (((-650 (-171 |#1|)) |#2| |#1|) 42) (((-650 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -2119 ((-650 (-171 |#1|)) |#2|)) (-15 -2119 ((-650 (-171 |#1|)) |#2| |#1|)) (-15 -3269 ((-650 (-2 (|:| -1629 (-650 |#2|)) (|:| -3650 |#1|))) |#2| |#2| (-112))) (-15 -3269 ((-650 (-2 (|:| -1629 (-650 |#2|)) (|:| -3650 |#1|))) |#2| |#2|)) (-15 -3801 ((-424 |#2|) |#2| |#1| (-112))) (-15 -3801 ((-424 |#2|) |#2| |#1|)) (-15 -3801 ((-424 |#2|) |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -2233 (|#1| |#2|)) (-15 -1449 ((-424 |#2|) |#2| |#1| (-112))) (-15 -1449 ((-424 |#2|) |#2| |#1|)) (-15 -2798 (|#2| |#2|)) (-15 -3248 (|#1| |#2| |#1|)) (-15 -3248 (|#1| |#2|)) (-15 -1804 ((-171 |#1|) |#2|)) (-15 -2984 (|#1| |#1|)) (-15 -1443 ((-2 (|:| |start| |#2|) (|:| -1629 (-424 |#2|))) |#2|))) (-13 (-368) (-854)) (-1252 (-171 |#1|))) (T -183)) +((-1443 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-2 (|:| |start| *3) (|:| -1629 (-424 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-2984 (*1 *2 *2) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1252 (-171 *2))))) (-1804 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-368) (-854))) (-4 *3 (-1252 *2)))) (-3248 (*1 *2 *3) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1252 (-171 *2))))) (-3248 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1252 (-171 *2))))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1252 (-171 *3))))) (-1449 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-1449 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-2233 (*1 *2 *3) (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1252 (-171 *2))))) (-4108 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1252 (-171 *3))))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-3801 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-2 (|:| -1629 (-650 *3)) (|:| -3650 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-3269 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-368) (-854))) (-5 *2 (-650 (-2 (|:| -1629 (-650 *3)) (|:| -3650 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1252 (-171 *5))))) (-2119 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4)))))) +(-10 -7 (-15 -2119 ((-650 (-171 |#1|)) |#2|)) (-15 -2119 ((-650 (-171 |#1|)) |#2| |#1|)) (-15 -3269 ((-650 (-2 (|:| -1629 (-650 |#2|)) (|:| -3650 |#1|))) |#2| |#2| (-112))) (-15 -3269 ((-650 (-2 (|:| -1629 (-650 |#2|)) (|:| -3650 |#1|))) |#2| |#2|)) (-15 -3801 ((-424 |#2|) |#2| |#1| (-112))) (-15 -3801 ((-424 |#2|) |#2| |#1|)) (-15 -3801 ((-424 |#2|) |#2|)) (-15 -4108 (|#2| |#2|)) (-15 -2233 (|#1| |#2|)) (-15 -1449 ((-424 |#2|) |#2| |#1| (-112))) (-15 -1449 ((-424 |#2|) |#2| |#1|)) (-15 -2798 (|#2| |#2|)) (-15 -3248 (|#1| |#2| |#1|)) (-15 -3248 (|#1| |#2|)) (-15 -1804 ((-171 |#1|) |#2|)) (-15 -2984 (|#1| |#1|)) (-15 -1443 ((-2 (|:| |start| |#2|) (|:| -1629 (-424 |#2|))) |#2|))) +((-4329 (((-3 |#2| "failed") |#2|) 20)) (-2792 (((-777) |#2|) 23)) (-3614 ((|#2| |#2| |#2|) 25))) +(((-184 |#1| |#2|) (-10 -7 (-15 -4329 ((-3 |#2| "failed") |#2|)) (-15 -2792 ((-777) |#2|)) (-15 -3614 (|#2| |#2| |#2|))) (-1226) (-680 |#1|)) (T -184)) +((-3614 (*1 *2 *2 *2) (-12 (-4 *3 (-1226)) (-5 *1 (-184 *3 *2)) (-4 *2 (-680 *3)))) (-2792 (*1 *2 *3) (-12 (-4 *4 (-1226)) (-5 *2 (-777)) (-5 *1 (-184 *4 *3)) (-4 *3 (-680 *4)))) (-4329 (*1 *2 *2) (|partial| -12 (-4 *3 (-1226)) (-5 *1 (-184 *3 *2)) (-4 *2 (-680 *3))))) +(-10 -7 (-15 -4329 ((-3 |#2| "failed") |#2|)) (-15 -2792 ((-777) |#2|)) (-15 -3614 (|#2| |#2| |#2|))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1574 ((|#1| $) 7)) (-3798 (((-868) $) 14)) (-1319 (((-112) $ $) NIL)) (-3941 (((-650 (-1191)) $) 10)) (-2923 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1109) (-10 -8 (-15 -1574 (|#1| $)) (-15 -3941 ((-650 (-1191)) $)))) (-187)) (T -185)) +((-1574 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1109) (-10 -8 (-15 -1574 (|#1| $)) (-15 -3941 ((-650 (-1191)) $)))) +((-1769 (((-650 (-871)) $) 16)) (-3898 (((-188) $) 8)) (-3336 (((-650 (-112)) $) 13)) (-3385 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -1769 ((-650 (-871)) |#1|)) (-15 -3336 ((-650 (-112)) |#1|)) (-15 -3898 ((-188) |#1|)) (-15 -3385 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -1769 ((-650 (-871)) |#1|)) (-15 -3336 ((-650 (-112)) |#1|)) (-15 -3898 ((-188) |#1|)) (-15 -3385 ((-55) |#1|))) +((-2419 (((-112) $ $) 7)) (-1769 (((-650 (-871)) $) 19)) (-3574 (((-512) $) 16)) (-4122 (((-1168) $) 10)) (-3898 (((-188) $) 21)) (-3257 (((-112) $ (-512)) 14)) (-3551 (((-1129) $) 11)) (-3336 (((-650 (-112)) $) 20)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3385 (((-55) $) 15)) (-2923 (((-112) $ $) 6))) +(((-187) (-141)) (T -187)) +((-3898 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-112))))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-871)))))) +(-13 (-841 (-512)) (-10 -8 (-15 -3898 ((-188) $)) (-15 -3336 ((-650 (-112)) $)) (-15 -1769 ((-650 (-871)) $)))) +(((-102) . T) ((-619 (-868)) . T) ((-841 (-512)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-8 (($) 7 T CONST)) (-3798 (((-868) $) 12)) (-9 (($) 6 T CONST)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 10))) +(((-188) (-13 (-1109) (-10 -8 (-15 -9 ($) -3711) (-15 -8 ($) -3711) (-15 -7 ($) -3711)))) (T -188)) +((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) +(-13 (-1109) (-10 -8 (-15 -9 ($) -3711) (-15 -8 ($) -3711) (-15 -7 ($) -3711))) +((-2419 (((-112) $ $) NIL)) (-1769 (((-650 (-871)) $) NIL)) (-3574 (((-512) $) 8)) (-4122 (((-1168) $) NIL)) (-3898 (((-188) $) 10)) (-3257 (((-112) $ (-512)) NIL)) (-3551 (((-1129) $) NIL)) (-4014 (((-697 $) (-512)) 17)) (-3336 (((-650 (-112)) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3385 (((-55) $) 12)) (-2923 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -4014 ((-697 $) (-512)))))) (T -189)) +((-4014 (*1 *2 *3) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -4014 ((-697 $) (-512))))) +((-2924 ((|#2| |#2|) 28)) (-1782 (((-112) |#2|) 19)) (-3827 (((-320 |#1|) |#2|) 12)) (-3839 (((-320 |#1|) |#2|) 14)) (-1465 ((|#2| |#2| (-1186)) 69) ((|#2| |#2|) 70)) (-3477 (((-171 (-320 |#1|)) |#2|) 10)) (-2159 ((|#2| |#2| (-1186)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -1465 (|#2| |#2|)) (-15 -1465 (|#2| |#2| (-1186))) (-15 -2159 (|#2| |#2|)) (-15 -2159 (|#2| |#2| (-1186))) (-15 -3827 ((-320 |#1|) |#2|)) (-15 -3839 ((-320 |#1|) |#2|)) (-15 -1782 ((-112) |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -3477 ((-171 (-320 |#1|)) |#2|))) (-13 (-562) (-1047 (-570))) (-13 (-27) (-1211) (-436 (-171 |#1|)))) (T -190)) +((-3477 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-171 (-320 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) (-2924 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *3)))))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) (-3839 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) (-2159 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *4)))))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *3)))))) (-1465 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *4)))))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *3))))))) +(-10 -7 (-15 -1465 (|#2| |#2|)) (-15 -1465 (|#2| |#2| (-1186))) (-15 -2159 (|#2| |#2|)) (-15 -2159 (|#2| |#2| (-1186))) (-15 -3827 ((-320 |#1|) |#2|)) (-15 -3839 ((-320 |#1|) |#2|)) (-15 -1782 ((-112) |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -3477 ((-171 (-320 |#1|)) |#2|))) +((-3706 (((-1276 (-695 (-959 |#1|))) (-1276 (-695 |#1|))) 26)) (-3798 (((-1276 (-695 (-413 (-959 |#1|)))) (-1276 (-695 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -3706 ((-1276 (-695 (-959 |#1|))) (-1276 (-695 |#1|)))) (-15 -3798 ((-1276 (-695 (-413 (-959 |#1|)))) (-1276 (-695 |#1|))))) (-174)) (T -191)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-1276 (-695 *4))) (-4 *4 (-174)) (-5 *2 (-1276 (-695 (-413 (-959 *4))))) (-5 *1 (-191 *4)))) (-3706 (*1 *2 *3) (-12 (-5 *3 (-1276 (-695 *4))) (-4 *4 (-174)) (-5 *2 (-1276 (-695 (-959 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -3706 ((-1276 (-695 (-959 |#1|))) (-1276 (-695 |#1|)))) (-15 -3798 ((-1276 (-695 (-413 (-959 |#1|)))) (-1276 (-695 |#1|))))) +((-2018 (((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570)))) 88)) (-1344 (((-1188 (-413 (-570))) (-650 (-570)) (-650 (-570))) 99)) (-1336 (((-1188 (-413 (-570))) (-570)) 55)) (-2830 (((-1188 (-413 (-570))) (-570)) 74)) (-1725 (((-413 (-570)) (-1188 (-413 (-570)))) 84)) (-1395 (((-1188 (-413 (-570))) (-570)) 37)) (-3261 (((-1188 (-413 (-570))) (-570)) 67)) (-2450 (((-1188 (-413 (-570))) (-570)) 61)) (-3514 (((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570)))) 82)) (-2115 (((-1188 (-413 (-570))) (-570)) 29)) (-3400 (((-413 (-570)) (-1188 (-413 (-570))) (-1188 (-413 (-570)))) 86)) (-4320 (((-1188 (-413 (-570))) (-570)) 35)) (-1570 (((-1188 (-413 (-570))) (-650 (-570))) 95))) +(((-192) (-10 -7 (-15 -2115 ((-1188 (-413 (-570))) (-570))) (-15 -1336 ((-1188 (-413 (-570))) (-570))) (-15 -1395 ((-1188 (-413 (-570))) (-570))) (-15 -4320 ((-1188 (-413 (-570))) (-570))) (-15 -2450 ((-1188 (-413 (-570))) (-570))) (-15 -3261 ((-1188 (-413 (-570))) (-570))) (-15 -2830 ((-1188 (-413 (-570))) (-570))) (-15 -3400 ((-413 (-570)) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -3514 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -1725 ((-413 (-570)) (-1188 (-413 (-570))))) (-15 -2018 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -1570 ((-1188 (-413 (-570))) (-650 (-570)))) (-15 -1344 ((-1188 (-413 (-570))) (-650 (-570)) (-650 (-570)))))) (T -192)) +((-1344 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-2018 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570))) (-5 *1 (-192)))) (-3514 (*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)))) (-3400 (*1 *2 *3 *3) (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570))) (-5 *1 (-192)))) (-2830 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) (-2450 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) (-4320 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) (-1395 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) (-1336 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) (-2115 (*1 *2 *3) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570))))) +(-10 -7 (-15 -2115 ((-1188 (-413 (-570))) (-570))) (-15 -1336 ((-1188 (-413 (-570))) (-570))) (-15 -1395 ((-1188 (-413 (-570))) (-570))) (-15 -4320 ((-1188 (-413 (-570))) (-570))) (-15 -2450 ((-1188 (-413 (-570))) (-570))) (-15 -3261 ((-1188 (-413 (-570))) (-570))) (-15 -2830 ((-1188 (-413 (-570))) (-570))) (-15 -3400 ((-413 (-570)) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -3514 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -1725 ((-413 (-570)) (-1188 (-413 (-570))))) (-15 -2018 ((-1188 (-413 (-570))) (-1188 (-413 (-570))) (-1188 (-413 (-570))))) (-15 -1570 ((-1188 (-413 (-570))) (-650 (-570)))) (-15 -1344 ((-1188 (-413 (-570))) (-650 (-570)) (-650 (-570))))) +((-2279 (((-424 (-1182 (-570))) (-570)) 38)) (-4068 (((-650 (-1182 (-570))) (-570)) 33)) (-1973 (((-1182 (-570)) (-570)) 28))) +(((-193) (-10 -7 (-15 -4068 ((-650 (-1182 (-570))) (-570))) (-15 -1973 ((-1182 (-570)) (-570))) (-15 -2279 ((-424 (-1182 (-570))) (-570))))) (T -193)) +((-2279 (*1 *2 *3) (-12 (-5 *2 (-424 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-193)) (-5 *3 (-570)))) (-4068 (*1 *2 *3) (-12 (-5 *2 (-650 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570))))) +(-10 -7 (-15 -4068 ((-650 (-1182 (-570))) (-570))) (-15 -1973 ((-1182 (-570)) (-570))) (-15 -2279 ((-424 (-1182 (-570))) (-570)))) +((-2907 (((-1166 (-227)) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3805 (((-650 (-1168)) (-1166 (-227))) NIL)) (-3637 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 108)) (-2771 (((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227)))) NIL)) (-4212 (((-650 (-1168)) (-650 (-227))) NIL)) (-1486 (((-227) (-1103 (-849 (-227)))) 31)) (-3820 (((-227) (-1103 (-849 (-227)))) 32)) (-4029 (((-384) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-2340 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 68)) (-1764 (((-1168) (-227)) NIL)) (-3959 (((-1168) (-650 (-1168))) 27)) (-1655 (((-1044) (-1186) (-1186) (-1044)) 13))) +(((-194) (-10 -7 (-15 -3637 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2340 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1486 ((-227) (-1103 (-849 (-227))))) (-15 -3820 ((-227) (-1103 (-849 (-227))))) (-15 -4029 ((-384) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2771 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -2907 ((-1166 (-227)) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1764 ((-1168) (-227))) (-15 -4212 ((-650 (-1168)) (-650 (-227)))) (-15 -3805 ((-650 (-1168)) (-1166 (-227)))) (-15 -3959 ((-1168) (-650 (-1168)))) (-15 -1655 ((-1044) (-1186) (-1186) (-1044))))) (T -194)) +((-1655 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-194)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-194)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-194)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-194)))) (-2771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186)) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-194)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-194)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -3637 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2340 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1486 ((-227) (-1103 (-849 (-227))))) (-15 -3820 ((-227) (-1103 (-849 (-227))))) (-15 -4029 ((-384) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2771 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -2907 ((-1166 (-227)) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1764 ((-1168) (-227))) (-15 -4212 ((-650 (-1168)) (-650 (-227)))) (-15 -3805 ((-650 (-1168)) (-1166 (-227)))) (-15 -3959 ((-1168) (-650 (-1168)))) (-15 -1655 ((-1044) (-1186) (-1186) (-1044)))) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 61) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-195) (-793)) (T -195)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 66) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-196) (-793)) (T -196)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 81) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-197) (-793)) (T -197)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 63) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-198) (-793)) (T -198)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 75) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-199) (-793)) (T -199)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 90) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-200) (-793)) (T -200)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 90) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-201) (-793)) (T -201)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 77) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-202) (-793)) (T -202)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 78)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-203) (-793)) (T -203)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 79)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-204) (-793)) (T -204)) +NIL +(-793) +((-2419 (((-112) $ $) NIL)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 105) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-205) (-793)) (T -205)) +NIL +(-793) +((-1968 (((-3 (-2 (|:| -3908 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 110)) (-3319 (((-570) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 60)) (-3091 (((-3 (-650 (-227)) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 91))) +(((-206) (-10 -7 (-15 -1968 ((-3 (-2 (|:| -3908 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3091 ((-3 (-650 (-227)) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3319 ((-570) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-3319 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-570)) (-5 *1 (-206)))) (-3091 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-206)))) (-1968 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3908 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -1968 ((-3 (-2 (|:| -3908 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3091 ((-3 (-650 (-227)) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3319 ((-570) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3478 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3271 (((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 160)) (-3738 (((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-695 (-320 (-227)))) 112)) (-1459 (((-384) (-695 (-320 (-227)))) 140)) (-3962 (((-695 (-320 (-227))) (-1276 (-320 (-227))) (-650 (-1186))) 136)) (-4184 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-4250 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-1725 (((-695 (-320 (-227))) (-695 (-320 (-227))) (-650 (-1186)) (-1276 (-320 (-227)))) 125)) (-2368 (((-384) (-384) (-650 (-384))) 133) (((-384) (-384) (-384)) 128)) (-1727 (((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -2368 ((-384) (-384) (-384))) (-15 -2368 ((-384) (-384) (-650 (-384)))) (-15 -1459 ((-384) (-695 (-320 (-227))))) (-15 -3962 ((-695 (-320 (-227))) (-1276 (-320 (-227))) (-650 (-1186)))) (-15 -1725 ((-695 (-320 (-227))) (-695 (-320 (-227))) (-650 (-1186)) (-1276 (-320 (-227))))) (-15 -3738 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-695 (-320 (-227))))) (-15 -3271 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3478 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4250 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1727 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4184 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-4184 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384)))) (-5 *1 (-207)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-695 (-320 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384)))) (-5 *1 (-207)))) (-1725 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-695 (-320 (-227)))) (-5 *3 (-650 (-1186))) (-5 *4 (-1276 (-320 (-227)))) (-5 *1 (-207)))) (-3962 (*1 *2 *3 *4) (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *4 (-650 (-1186))) (-5 *2 (-695 (-320 (-227)))) (-5 *1 (-207)))) (-1459 (*1 *2 *3) (-12 (-5 *3 (-695 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-207)))) (-2368 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-384))) (-5 *2 (-384)) (-5 *1 (-207)))) (-2368 (*1 *2 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-207))))) +(-10 -7 (-15 -2368 ((-384) (-384) (-384))) (-15 -2368 ((-384) (-384) (-650 (-384)))) (-15 -1459 ((-384) (-695 (-320 (-227))))) (-15 -3962 ((-695 (-320 (-227))) (-1276 (-320 (-227))) (-650 (-1186)))) (-15 -1725 ((-695 (-320 (-227))) (-695 (-320 (-227))) (-650 (-1186)) (-1276 (-320 (-227))))) (-15 -3738 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-695 (-320 (-227))))) (-15 -3271 ((-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3478 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4250 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1727 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4184 ((-384) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2419 (((-112) $ $) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3196 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2923 (((-112) $ $) NIL))) +(((-208) (-806)) (T -208)) +NIL +(-806) +((-2419 (((-112) $ $) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3196 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2923 (((-112) $ $) NIL))) +(((-209) (-806)) (T -209)) +NIL +(-806) +((-2419 (((-112) $ $) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3196 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2923 (((-112) $ $) NIL))) +(((-210) (-806)) (T -210)) +NIL +(-806) +((-2419 (((-112) $ $) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3196 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2923 (((-112) $ $) NIL))) +(((-211) (-806)) (T -211)) +NIL +(-806) +((-3107 (((-650 (-1186)) (-1186) (-777)) 26)) (-2729 (((-320 (-227)) (-320 (-227))) 35)) (-1551 (((-112) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 87)) (-2227 (((-112) (-227) (-227) (-650 (-320 (-227)))) 47))) +(((-212) (-10 -7 (-15 -3107 ((-650 (-1186)) (-1186) (-777))) (-15 -2729 ((-320 (-227)) (-320 (-227)))) (-15 -2227 ((-112) (-227) (-227) (-650 (-320 (-227))))) (-15 -1551 ((-112) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))))) (T -212)) +((-1551 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2227 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-650 (-320 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2729 (*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-212)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-650 (-1186))) (-5 *1 (-212)) (-5 *3 (-1186))))) +(-10 -7 (-15 -3107 ((-650 (-1186)) (-1186) (-777))) (-15 -2729 ((-320 (-227)) (-320 (-227)))) (-15 -2227 ((-112) (-227) (-227) (-650 (-320 (-227))))) (-15 -1551 ((-112) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))))) +((-2419 (((-112) $ $) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 28)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3359 (((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 70)) (-2923 (((-112) $ $) NIL))) +(((-213) (-902)) (T -213)) +NIL +(-902) +((-2419 (((-112) $ $) NIL)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 24)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3359 (((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) NIL)) (-2923 (((-112) $ $) NIL))) +(((-214) (-902)) (T -214)) +NIL +(-902) +((-2419 (((-112) $ $) NIL)) (-3787 ((|#2| $ (-777) |#2|) 11)) (-3778 ((|#2| $ (-777)) 10)) (-4300 (($) 8)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 26)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -4300 ($)) (-15 -3778 (|#2| $ (-777))) (-15 -3787 (|#2| $ (-777) |#2|)))) (-928) (-1109)) (T -215)) +((-4300 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1109)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *2 (-1109)) (-5 *1 (-215 *4 *2)) (-14 *4 (-928)))) (-3787 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-215 *4 *2)) (-14 *4 (-928)) (-4 *2 (-1109))))) +(-13 (-1109) (-10 -8 (-15 -4300 ($)) (-15 -3778 (|#2| $ (-777))) (-15 -3787 (|#2| $ (-777) |#2|)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2038 (((-1281) $) 37) (((-1281) $ (-928) (-928)) 44)) (-1872 (($ $ (-998)) 19) (((-247 (-1168)) $ (-1186)) 15)) (-4160 (((-1281) $) 35)) (-3798 (((-868) $) 32) (($ (-650 |#1|)) 8)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $ $) 27)) (-3014 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1109) (-622 (-650 |#1|)) (-10 -8 (-15 -1872 ($ $ (-998))) (-15 -1872 ((-247 (-1168)) $ (-1186))) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $)) (-15 -2038 ((-1281) $ (-928) (-928))))) (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $))))) (T -216)) +((-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-998)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $))))))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-247 (-1168))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ *3)) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $))))))) (-3014 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $))))))) (-3026 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $))))))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 (*2 $)) (-15 -2038 (*2 $))))))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 (*2 $)) (-15 -2038 (*2 $))))))) (-2038 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1281)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 (*2 $)) (-15 -2038 (*2 $)))))))) +(-13 (-1109) (-622 (-650 |#1|)) (-10 -8 (-15 -1872 ($ $ (-998))) (-15 -1872 ((-247 (-1168)) $ (-1186))) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $)) (-15 -2038 ((-1281) $ (-928) (-928))))) +((-4055 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4055 (|#2| |#4| (-1 |#2| |#2|)))) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -217)) +((-4055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-368)) (-4 *6 (-1252 (-413 *2))) (-4 *2 (-1252 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-347 *5 *2 *6))))) +(-10 -7 (-15 -4055 (|#2| |#4| (-1 |#2| |#2|)))) +((-3357 ((|#2| |#2| (-777) |#2|) 58)) (-3101 ((|#2| |#2| (-777) |#2|) 54)) (-2105 (((-650 |#2|) (-650 (-2 (|:| |deg| (-777)) (|:| -1566 |#2|)))) 82)) (-4424 (((-650 (-2 (|:| |deg| (-777)) (|:| -1566 |#2|))) |#2|) 76)) (-3198 (((-112) |#2|) 74)) (-2795 (((-424 |#2|) |#2|) 94)) (-3801 (((-424 |#2|) |#2|) 93)) (-1771 ((|#2| |#2| (-777) |#2|) 52)) (-3480 (((-2 (|:| |cont| |#1|) (|:| -1629 (-650 (-2 (|:| |irr| |#2|) (|:| -2306 (-570)))))) |#2| (-112)) 88))) +(((-218 |#1| |#2|) (-10 -7 (-15 -3801 ((-424 |#2|) |#2|)) (-15 -2795 ((-424 |#2|) |#2|)) (-15 -3480 ((-2 (|:| |cont| |#1|) (|:| -1629 (-650 (-2 (|:| |irr| |#2|) (|:| -2306 (-570)))))) |#2| (-112))) (-15 -4424 ((-650 (-2 (|:| |deg| (-777)) (|:| -1566 |#2|))) |#2|)) (-15 -2105 ((-650 |#2|) (-650 (-2 (|:| |deg| (-777)) (|:| -1566 |#2|))))) (-15 -1771 (|#2| |#2| (-777) |#2|)) (-15 -3101 (|#2| |#2| (-777) |#2|)) (-15 -3357 (|#2| |#2| (-777) |#2|)) (-15 -3198 ((-112) |#2|))) (-354) (-1252 |#1|)) (T -218)) +((-3198 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1252 *4)))) (-3357 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1252 *4)))) (-3101 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1252 *4)))) (-1771 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1252 *4)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |deg| (-777)) (|:| -1566 *5)))) (-4 *5 (-1252 *4)) (-4 *4 (-354)) (-5 *2 (-650 *5)) (-5 *1 (-218 *4 *5)))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -1566 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1252 *4)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-354)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1252 *5)))) (-2795 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1252 *4)))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -3801 ((-424 |#2|) |#2|)) (-15 -2795 ((-424 |#2|) |#2|)) (-15 -3480 ((-2 (|:| |cont| |#1|) (|:| -1629 (-650 (-2 (|:| |irr| |#2|) (|:| -2306 (-570)))))) |#2| (-112))) (-15 -4424 ((-650 (-2 (|:| |deg| (-777)) (|:| -1566 |#2|))) |#2|)) (-15 -2105 ((-650 |#2|) (-650 (-2 (|:| |deg| (-777)) (|:| -1566 |#2|))))) (-15 -1771 (|#2| |#2| (-777) |#2|)) (-15 -3101 (|#2| |#2| (-777) |#2|)) (-15 -3357 (|#2| |#2| (-777) |#2|)) (-15 -3198 ((-112) |#2|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-570) $) NIL (|has| (-570) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-570) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-570) (-1047 (-570))))) (-3152 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-570) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| (-570) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-570) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-3367 (((-112) $) NIL (|has| (-570) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-570) (-856)))) (-1347 (($ (-1 (-570) (-570)) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-570) (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) NIL)) (-4140 (((-570) $) NIL (|has| (-570) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-570) $) NIL)) (-1505 (($ (-413 (-570))) 9)) (-1411 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 8) (($ (-570)) NIL) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL) (((-1013 10) $) 10)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 (((-570) $) NIL (|has| (-570) (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| (-570) (-826)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3037 (($ $ $) NIL) (($ (-570) (-570)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL))) +(((-219) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 10)) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -1505 ($ (-413 (-570))))))) (T -219)) +((-2545 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219))))) +(-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 10)) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -1505 ($ (-413 (-570)))))) +((-2419 (((-112) $ $) NIL)) (-4332 (((-1127) $) 13)) (-4122 (((-1168) $) NIL)) (-4188 (((-489) $) 10)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 23) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-1144) $) 15)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-220) (-13 (-1092) (-10 -8 (-15 -4188 ((-489) $)) (-15 -4332 ((-1127) $)) (-15 -3587 ((-1144) $))))) (T -220)) +((-4188 (*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-220)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-220)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-220))))) +(-13 (-1092) (-10 -8 (-15 -4188 ((-489) $)) (-15 -4332 ((-1127) $)) (-15 -3587 ((-1144) $)))) +((-1840 (((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)) (-1168)) 29) (((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|))) 25)) (-1476 (((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1186) (-849 |#2|) (-849 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -1840 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)))) (-15 -1840 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)) (-1168))) (-15 -1476 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1186) (-849 |#2|) (-849 |#2|) (-112)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-966) (-29 |#1|))) (T -221)) +((-1476 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1186)) (-5 *6 (-112)) (-4 *7 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-4 *3 (-13 (-1211) (-966) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-849 *3)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1101 (-849 *3))) (-5 *5 (-1168)) (-4 *3 (-13 (-1211) (-966) (-29 *6))) (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-849 *3))) (-4 *3 (-13 (-1211) (-966) (-29 *5))) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -1840 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)))) (-15 -1840 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1101 (-849 |#2|)) (-1168))) (-15 -1476 ((-3 (|:| |f1| (-849 |#2|)) (|:| |f2| (-650 (-849 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1186) (-849 |#2|) (-849 |#2|) (-112)))) +((-1840 (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))) (-1168)) 49) (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|))))) 46) (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))) (-1168)) 50) (((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))))) (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))) (-1168))) (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))))) (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))) (-1168)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (T -222)) +((-1840 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1101 (-849 (-413 (-959 *6))))) (-5 *5 (-1168)) (-5 *3 (-413 (-959 *6))) (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-849 (-413 (-959 *5))))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1101 (-849 (-320 *6)))) (-5 *5 (-1168)) (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1101 (-849 (-320 *5)))) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))))) (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-320 |#1|))) (-1168))) (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))))) (-15 -1840 ((-3 (|:| |f1| (-849 (-320 |#1|))) (|:| |f2| (-650 (-849 (-320 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-413 (-959 |#1|)) (-1101 (-849 (-413 (-959 |#1|)))) (-1168)))) +((-3600 (((-2 (|:| -1750 (-1182 |#1|)) (|:| |deg| (-928))) (-1182 |#1|)) 26)) (-1381 (((-650 (-320 |#2|)) (-320 |#2|) (-928)) 54))) +(((-223 |#1| |#2|) (-10 -7 (-15 -3600 ((-2 (|:| -1750 (-1182 |#1|)) (|:| |deg| (-928))) (-1182 |#1|))) (-15 -1381 ((-650 (-320 |#2|)) (-320 |#2|) (-928)))) (-1058) (-562)) (T -223)) +((-1381 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *6 (-562)) (-5 *2 (-650 (-320 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-320 *6)) (-4 *5 (-1058)))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-2 (|:| -1750 (-1182 *4)) (|:| |deg| (-928)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1182 *4)) (-4 *5 (-562))))) +(-10 -7 (-15 -3600 ((-2 (|:| -1750 (-1182 |#1|)) (|:| |deg| (-928))) (-1182 |#1|))) (-15 -1381 ((-650 (-320 |#2|)) (-320 |#2|) (-928)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4040 ((|#1| $) NIL)) (-3312 ((|#1| $) 30)) (-3636 (((-112) $ (-777)) NIL)) (-3734 (($) NIL T CONST)) (-4159 (($ $) NIL)) (-1500 (($ $) 39)) (-2141 ((|#1| |#1| $) NIL)) (-1561 ((|#1| $) NIL)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-3847 (((-777) $) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1334 ((|#1| $) NIL)) (-3661 ((|#1| |#1| $) 35)) (-2187 ((|#1| |#1| $) 37)) (-2213 (($ |#1| $) NIL)) (-1428 (((-777) $) 33)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2724 ((|#1| $) NIL)) (-3289 ((|#1| $) 31)) (-3723 ((|#1| $) 29)) (-4067 ((|#1| $) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2328 ((|#1| |#1| $) NIL)) (-4303 (((-112) $) 9)) (-4359 (($) NIL)) (-2864 ((|#1| $) NIL)) (-2301 (($) NIL) (($ (-650 |#1|)) 16)) (-2806 (((-777) $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1642 ((|#1| $) 13)) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) NIL)) (-1756 ((|#1| $) NIL)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-224 |#1|) (-13 (-257 |#1|) (-10 -8 (-15 -2301 ($ (-650 |#1|))))) (-1109)) (T -224)) +((-2301 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-224 *3))))) +(-13 (-257 |#1|) (-10 -8 (-15 -2301 ($ (-650 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3548 (($ (-320 |#1|)) 27)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3007 (((-112) $) NIL)) (-4382 (((-3 (-320 |#1|) "failed") $) NIL)) (-3152 (((-320 |#1|) $) NIL)) (-1885 (($ $) 35)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-1347 (($ (-1 (-320 |#1|) (-320 |#1|)) $) NIL)) (-1860 (((-320 |#1|) $) NIL)) (-1407 (($ $) 34)) (-4122 (((-1168) $) NIL)) (-2624 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2335 (($ (-777)) NIL)) (-1384 (($ $) 36)) (-3324 (((-570) $) NIL)) (-3798 (((-868) $) 68) (($ (-570)) NIL) (($ (-320 |#1|)) NIL)) (-3326 (((-320 |#1|) $ $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 29 T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) 32)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 23)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 28) (($ (-320 |#1|) $) 22))) +(((-225 |#1| |#2|) (-13 (-626 (-320 |#1|)) (-1047 (-320 |#1|)) (-10 -8 (-15 -1860 ((-320 |#1|) $)) (-15 -1407 ($ $)) (-15 -1885 ($ $)) (-15 -3326 ((-320 |#1|) $ $)) (-15 -2335 ($ (-777))) (-15 -2624 ((-112) $)) (-15 -3007 ((-112) $)) (-15 -3324 ((-570) $)) (-15 -1347 ($ (-1 (-320 |#1|) (-320 |#1|)) $)) (-15 -3548 ($ (-320 |#1|))) (-15 -1384 ($ $)))) (-13 (-1058) (-856)) (-650 (-1186))) (T -225)) +((-1860 (*1 *2 *1) (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-1407 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) (-14 *3 (-650 (-1186))))) (-1885 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) (-14 *3 (-650 (-1186))))) (-3326 (*1 *2 *1 *1) (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-320 *3) (-320 *3))) (-4 *3 (-13 (-1058) (-856))) (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186))))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-320 *3)) (-4 *3 (-13 (-1058) (-856))) (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186))))) (-1384 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) (-14 *3 (-650 (-1186)))))) +(-13 (-626 (-320 |#1|)) (-1047 (-320 |#1|)) (-10 -8 (-15 -1860 ((-320 |#1|) $)) (-15 -1407 ($ $)) (-15 -1885 ($ $)) (-15 -3326 ((-320 |#1|) $ $)) (-15 -2335 ($ (-777))) (-15 -2624 ((-112) $)) (-15 -3007 ((-112) $)) (-15 -3324 ((-570) $)) (-15 -1347 ($ (-1 (-320 |#1|) (-320 |#1|)) $)) (-15 -3548 ($ (-320 |#1|))) (-15 -1384 ($ $)))) +((-2818 (((-112) (-1168)) 26)) (-2434 (((-3 (-849 |#2|) "failed") (-618 |#2|) |#2| (-849 |#2|) (-849 |#2|) (-112)) 35)) (-3203 (((-3 (-112) "failed") (-1182 |#2|) (-849 |#2|) (-849 |#2|) (-112)) 84) (((-3 (-112) "failed") (-959 |#1|) (-1186) (-849 |#2|) (-849 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -2818 ((-112) (-1168))) (-15 -2434 ((-3 (-849 |#2|) "failed") (-618 |#2|) |#2| (-849 |#2|) (-849 |#2|) (-112))) (-15 -3203 ((-3 (-112) "failed") (-959 |#1|) (-1186) (-849 |#2|) (-849 |#2|) (-112))) (-15 -3203 ((-3 (-112) "failed") (-1182 |#2|) (-849 |#2|) (-849 |#2|) (-112)))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-29 |#1|))) (T -226)) +((-3203 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1182 *6)) (-5 *4 (-849 *6)) (-4 *6 (-13 (-1211) (-29 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-226 *5 *6)))) (-3203 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-959 *6)) (-5 *4 (-1186)) (-5 *5 (-849 *7)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *7 (-13 (-1211) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-2434 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-849 *4)) (-5 *3 (-618 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1211) (-29 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-226 *6 *4)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1211) (-29 *4)))))) +(-10 -7 (-15 -2818 ((-112) (-1168))) (-15 -2434 ((-3 (-849 |#2|) "failed") (-618 |#2|) |#2| (-849 |#2|) (-849 |#2|) (-112))) (-15 -3203 ((-3 (-112) "failed") (-959 |#1|) (-1186) (-849 |#2|) (-849 |#2|) (-112))) (-15 -3203 ((-3 (-112) "failed") (-1182 |#2|) (-849 |#2|) (-849 |#2|) (-112)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 99)) (-3356 (((-570) $) 35)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-3667 (($ $) NIL)) (-2774 (($ $) 88)) (-2629 (($ $) 76)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-3815 (($ $) 67)) (-4073 (((-112) $ $) NIL)) (-2749 (($ $) 86)) (-2604 (($ $) 74)) (-2579 (((-570) $) 129)) (-4119 (($ $) 91)) (-2648 (($ $) 78)) (-3734 (($) NIL T CONST)) (-2109 (($ $) NIL)) (-4382 (((-3 (-570) "failed") $) 128) (((-3 (-413 (-570)) "failed") $) 125)) (-3152 (((-570) $) 126) (((-413 (-570)) $) 123)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) 104)) (-1507 (((-413 (-570)) $ (-777)) 118) (((-413 (-570)) $ (-777) (-777)) 117)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-3503 (((-928)) 29) (((-928) (-928)) NIL (|has| $ (-6 -4439)))) (-2135 (((-112) $) NIL)) (-1313 (($) 46)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL)) (-4202 (((-570) $) 42)) (-2481 (((-112) $) 100)) (-3309 (($ $ (-570)) NIL)) (-2233 (($ $) NIL)) (-3367 (((-112) $) 98)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) 64) (($) 38 (-12 (-1748 (|has| $ (-6 -4431))) (-1748 (|has| $ (-6 -4439)))))) (-2876 (($ $ $) 63) (($) 37 (-12 (-1748 (|has| $ (-6 -4431))) (-1748 (|has| $ (-6 -4439)))))) (-3033 (((-570) $) 27)) (-3691 (($ $) 33)) (-1343 (($ $) 68)) (-2665 (($ $) 73)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-3830 (((-928) (-570)) NIL (|has| $ (-6 -4439)))) (-3551 (((-1129) $) 102)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL)) (-4140 (($ $) NIL)) (-2560 (($ (-570) (-570)) NIL) (($ (-570) (-570) (-928)) 111)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3283 (((-570) $) 28)) (-3046 (($) 45)) (-4390 (($ $) 72)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-1410 (((-928)) NIL) (((-928) (-928)) NIL (|has| $ (-6 -4439)))) (-3519 (($ $ (-777)) NIL) (($ $) 105)) (-3510 (((-928) (-570)) NIL (|has| $ (-6 -4439)))) (-4129 (($ $) 89)) (-2664 (($ $) 79)) (-2786 (($ $) 90)) (-2636 (($ $) 77)) (-2761 (($ $) 87)) (-2616 (($ $) 75)) (-1411 (((-384) $) 114) (((-227) $) 14) (((-899 (-384)) $) NIL) (((-542) $) 52)) (-3798 (((-868) $) 49) (($ (-570)) 71) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-570)) 71) (($ (-413 (-570))) NIL)) (-2862 (((-777)) NIL T CONST)) (-1442 (($ $) NIL)) (-4081 (((-928)) 36) (((-928) (-928)) NIL (|has| $ (-6 -4439)))) (-1319 (((-112) $ $) NIL)) (-4364 (((-928)) 25)) (-4165 (($ $) 94)) (-2704 (($ $) 82) (($ $ $) 121)) (-3258 (((-112) $ $) NIL)) (-4141 (($ $) 92)) (-2678 (($ $) 80)) (-4186 (($ $) 97)) (-2726 (($ $) 85)) (-1504 (($ $) 95)) (-2737 (($ $) 83)) (-4176 (($ $) 96)) (-2715 (($ $) 84)) (-4153 (($ $) 93)) (-2692 (($ $) 81)) (-2216 (($ $) 120)) (-1809 (($) 23 T CONST)) (-1817 (($) 43 T CONST)) (-1985 (((-1168) $) 18) (((-1168) $ (-112)) 20) (((-1281) (-828) $) 21) (((-1281) (-828) $ (-112)) 22)) (-3563 (($ $) 108)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2098 (($ $ $) 110)) (-2981 (((-112) $ $) 57)) (-2959 (((-112) $ $) 54)) (-2923 (((-112) $ $) 65)) (-2969 (((-112) $ $) 56)) (-2948 (((-112) $ $) 53)) (-3037 (($ $ $) 44) (($ $ (-570)) 66)) (-3026 (($ $) 58) (($ $ $) 60)) (-3014 (($ $ $) 59)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 69) (($ $ (-413 (-570))) 153) (($ $ $) 70)) (* (($ (-928) $) 34) (($ (-777) $) NIL) (($ (-570) $) 62) (($ $ $) 61) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-227) (-13 (-410) (-235) (-834) (-1211) (-620 (-542)) (-10 -8 (-15 -3037 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -3046 ($)) (-15 -3691 ($ $)) (-15 -1343 ($ $)) (-15 -2704 ($ $ $)) (-15 -3563 ($ $)) (-15 -2098 ($ $ $)) (-15 -1507 ((-413 (-570)) $ (-777))) (-15 -1507 ((-413 (-570)) $ (-777) (-777)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3037 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-227)))) (-3046 (*1 *1) (-5 *1 (-227))) (-3691 (*1 *1 *1) (-5 *1 (-227))) (-1343 (*1 *1 *1) (-5 *1 (-227))) (-2704 (*1 *1 *1 *1) (-5 *1 (-227))) (-3563 (*1 *1 *1) (-5 *1 (-227))) (-2098 (*1 *1 *1 *1) (-5 *1 (-227))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227)))) (-1507 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227))))) +(-13 (-410) (-235) (-834) (-1211) (-620 (-542)) (-10 -8 (-15 -3037 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -3046 ($)) (-15 -3691 ($ $)) (-15 -1343 ($ $)) (-15 -2704 ($ $ $)) (-15 -3563 ($ $)) (-15 -2098 ($ $ $)) (-15 -1507 ((-413 (-570)) $ (-777))) (-15 -1507 ((-413 (-570)) $ (-777) (-777))))) +((-3951 (((-171 (-227)) (-777) (-171 (-227))) 11) (((-227) (-777) (-227)) 12)) (-3976 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1633 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-3399 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-4291 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2405 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-3520 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-3784 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-3252 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-3727 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-3563 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-2098 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -3563 ((-227) (-227))) (-15 -3563 ((-171 (-227)) (-171 (-227)))) (-15 -2098 ((-227) (-227) (-227))) (-15 -2098 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3976 ((-227) (-227))) (-15 -3976 ((-171 (-227)) (-171 (-227)))) (-15 -3399 ((-227) (-227))) (-15 -3399 ((-171 (-227)) (-171 (-227)))) (-15 -3951 ((-227) (-777) (-227))) (-15 -3951 ((-171 (-227)) (-777) (-171 (-227)))) (-15 -3520 ((-227) (-227) (-227))) (-15 -3520 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4291 ((-227) (-227) (-227))) (-15 -4291 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3784 ((-227) (-227) (-227))) (-15 -3784 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2405 ((-227) (-227) (-227))) (-15 -2405 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3727 ((-171 (-227)) (-171 (-227)))) (-15 -3727 ((-227) (-227))) (-15 -3252 ((-227) (-227))) (-15 -3252 ((-171 (-227)) (-171 (-227)))) (-15 -1633 ((-227) (-227) (-227))) (-15 -1633 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-1633 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1633 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2405 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2405 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3784 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3784 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4291 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3520 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3520 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3951 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-777)) (-5 *1 (-228)))) (-3951 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-777)) (-5 *1 (-228)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3399 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2098 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2098 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3563 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -3563 ((-227) (-227))) (-15 -3563 ((-171 (-227)) (-171 (-227)))) (-15 -2098 ((-227) (-227) (-227))) (-15 -2098 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3976 ((-227) (-227))) (-15 -3976 ((-171 (-227)) (-171 (-227)))) (-15 -3399 ((-227) (-227))) (-15 -3399 ((-171 (-227)) (-171 (-227)))) (-15 -3951 ((-227) (-777) (-227))) (-15 -3951 ((-171 (-227)) (-777) (-171 (-227)))) (-15 -3520 ((-227) (-227) (-227))) (-15 -3520 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4291 ((-227) (-227) (-227))) (-15 -4291 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3784 ((-227) (-227) (-227))) (-15 -3784 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2405 ((-227) (-227) (-227))) (-15 -2405 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3727 ((-171 (-227)) (-171 (-227)))) (-15 -3727 ((-227) (-227))) (-15 -3252 ((-227) (-227))) (-15 -3252 ((-171 (-227)) (-171 (-227)))) (-15 -1633 ((-227) (-227) (-227))) (-15 -1633 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3469 (($ (-777) (-777)) NIL)) (-2466 (($ $ $) NIL)) (-3933 (($ (-1276 |#1|)) NIL) (($ $) NIL)) (-2918 (($ |#1| |#1| |#1|) 33)) (-1630 (((-112) $) NIL)) (-3238 (($ $ (-570) (-570)) NIL)) (-1679 (($ $ (-570) (-570)) NIL)) (-3553 (($ $ (-570) (-570) (-570) (-570)) NIL)) (-2927 (($ $) NIL)) (-2525 (((-112) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3762 (($ $ (-570) (-570) $) NIL)) (-3945 ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) NIL)) (-2986 (($ $ (-570) (-1276 |#1|)) NIL)) (-2478 (($ $ (-570) (-1276 |#1|)) NIL)) (-2298 (($ |#1| |#1| |#1|) 32)) (-1650 (($ (-777) |#1|) NIL)) (-3734 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| |#1| (-311)))) (-1774 (((-1276 |#1|) $ (-570)) NIL)) (-2268 (($ |#1|) 31)) (-2075 (($ |#1|) 30)) (-1563 (($ |#1|) 29)) (-3979 (((-777) $) NIL (|has| |#1| (-562)))) (-3849 ((|#1| $ (-570) (-570) |#1|) NIL)) (-3778 ((|#1| $ (-570) (-570)) NIL)) (-2885 (((-650 |#1|) $) NIL)) (-2758 (((-777) $) NIL (|has| |#1| (-562)))) (-3766 (((-650 (-1276 |#1|)) $) NIL (|has| |#1| (-562)))) (-3227 (((-777) $) NIL)) (-4300 (($ (-777) (-777) |#1|) NIL)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-3646 ((|#1| $) NIL (|has| |#1| (-6 (-4450 "*"))))) (-1515 (((-570) $) NIL)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1579 (((-570) $) NIL)) (-4110 (((-570) $) NIL)) (-2433 (($ (-650 (-650 |#1|))) 11)) (-3837 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2139 (((-650 (-650 |#1|)) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1972 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2574 (($) 12)) (-2763 (($ $ $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570))) NIL)) (-1668 (($ (-650 |#1|)) NIL) (($ (-650 $)) NIL)) (-2881 (((-112) $) NIL)) (-4415 ((|#1| $) NIL (|has| |#1| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-4357 (((-1276 |#1|) $ (-570)) NIL)) (-3798 (($ (-1276 |#1|)) NIL) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2501 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-570) $) NIL) (((-1276 |#1|) $ (-1276 |#1|)) 15) (((-1276 |#1|) (-1276 |#1|) $) NIL) (((-950 |#1|) $ (-950 |#1|)) 21)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-229 |#1|) (-13 (-693 |#1| (-1276 |#1|) (-1276 |#1|)) (-10 -8 (-15 * ((-950 |#1|) $ (-950 |#1|))) (-15 -2574 ($)) (-15 -1563 ($ |#1|)) (-15 -2075 ($ |#1|)) (-15 -2268 ($ |#1|)) (-15 -2298 ($ |#1| |#1| |#1|)) (-15 -2918 ($ |#1| |#1| |#1|)))) (-13 (-368) (-1211))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211))) (-5 *1 (-229 *3)))) (-2574 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) (-1563 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) (-2075 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) (-2268 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) (-2298 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) (-2918 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211)))))) +(-13 (-693 |#1| (-1276 |#1|) (-1276 |#1|)) (-10 -8 (-15 * ((-950 |#1|) $ (-950 |#1|))) (-15 -2574 ($)) (-15 -1563 ($ |#1|)) (-15 -2075 ($ |#1|)) (-15 -2268 ($ |#1|)) (-15 -2298 ($ |#1| |#1| |#1|)) (-15 -2918 ($ |#1| |#1| |#1|)))) +((-2660 (($ (-1 (-112) |#2|) $) 16)) (-2571 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2709 (($) NIL) (($ (-650 |#2|)) 11)) (-2923 (((-112) $ $) 25))) +(((-230 |#1| |#2|) (-10 -8 (-15 -2660 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2571 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -2709 (|#1| (-650 |#2|))) (-15 -2709 (|#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-231 |#2|) (-1109)) (T -230)) +NIL +(-10 -8 (-15 -2660 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2571 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -2709 (|#1| (-650 |#2|))) (-15 -2709 (|#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-2660 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3552 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2709 (($) 50) (($ (-650 |#1|)) 49)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 51)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-231 |#1|) (-141) (-1109)) (T -231)) +NIL +(-13 (-237 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3519 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) 14) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) 22) (($ $ (-777)) NIL) (($ $) 19)) (-2835 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-777)) 17) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL))) +(((-232 |#1| |#2|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -2835 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2835 (|#1| |#1| (-1186))) (-15 -2835 (|#1| |#1| (-650 (-1186)))) (-15 -2835 (|#1| |#1| (-1186) (-777))) (-15 -2835 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2835 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2835 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|)))) (-233 |#2|) (-1058)) (T -232)) +NIL +(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -2835 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2835 (|#1| |#1| (-1186))) (-15 -2835 (|#1| |#1| (-650 (-1186)))) (-15 -2835 (|#1| |#1| (-1186) (-777))) (-15 -2835 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2835 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -2835 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3519 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-777)) 55) (($ $ (-650 (-1186)) (-650 (-777))) 48 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 47 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 46 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 45 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 43 (|has| |#1| (-235))) (($ $) 41 (|has| |#1| (-235)))) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-777)) 53) (($ $ (-650 (-1186)) (-650 (-777))) 52 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 51 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 50 (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 49 (|has| |#1| (-907 (-1186)))) (($ $ (-777)) 44 (|has| |#1| (-235))) (($ $) 42 (|has| |#1| (-235)))) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-233 |#1|) (-141) (-1058)) (T -233)) +((-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4)) (-4 *4 (-1058)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058)))) (-2835 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4)) (-4 *4 (-1058))))) +(-13 (-1058) (-10 -8 (-15 -3519 ($ $ (-1 |t#1| |t#1|))) (-15 -3519 ($ $ (-1 |t#1| |t#1|) (-777))) (-15 -2835 ($ $ (-1 |t#1| |t#1|))) (-15 -2835 ($ $ (-1 |t#1| |t#1|) (-777))) (IF (|has| |t#1| (-235)) (-6 (-235)) |%noBranch|) (IF (|has| |t#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-235) |has| |#1| (-235)) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3519 (($ $) NIL) (($ $ (-777)) 13)) (-2835 (($ $) 8) (($ $ (-777)) 15))) +(((-234 |#1|) (-10 -8 (-15 -2835 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-777))) (-15 -2835 (|#1| |#1|)) (-15 -3519 (|#1| |#1|))) (-235)) (T -234)) +NIL +(-10 -8 (-15 -2835 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-777))) (-15 -2835 (|#1| |#1|)) (-15 -3519 (|#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3519 (($ $) 42) (($ $ (-777)) 40)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $) 41) (($ $ (-777)) 39)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-235) (-141)) (T -235)) +((-3519 (*1 *1 *1) (-4 *1 (-235))) (-2835 (*1 *1 *1) (-4 *1 (-235))) (-3519 (*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777)))) (-2835 (*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777))))) +(-13 (-1058) (-10 -8 (-15 -3519 ($ $)) (-15 -2835 ($ $)) (-15 -3519 ($ $ (-777))) (-15 -2835 ($ $ (-777))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2709 (($) 12) (($ (-650 |#2|)) NIL)) (-3964 (($ $) 14)) (-3811 (($ (-650 |#2|)) 10)) (-3798 (((-868) $) 21))) +(((-236 |#1| |#2|) (-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -2709 (|#1| (-650 |#2|))) (-15 -2709 (|#1|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -3964 (|#1| |#1|))) (-237 |#2|) (-1109)) (T -236)) +NIL +(-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -2709 (|#1| (-650 |#2|))) (-15 -2709 (|#1|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -3964 (|#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-2660 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3552 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2709 (($) 50) (($ (-650 |#1|)) 49)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 51)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-237 |#1|) (-141) (-1109)) (T -237)) +((-2709 (*1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1109)))) (-2709 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-237 *3)))) (-2571 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-237 *2)) (-4 *2 (-1109)))) (-2571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-237 *3)) (-4 *3 (-1109)))) (-2660 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-237 *3)) (-4 *3 (-1109))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2709 ($)) (-15 -2709 ($ (-650 |t#1|))) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2571 ($ |t#1| $)) (-15 -2571 ($ (-1 (-112) |t#1|) $)) (-15 -2660 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-1758 (((-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1276 (-777))) "failed")) (|:| |hom| (-650 (-1276 (-777))))) (-298 (-959 (-570)))) 42))) +(((-238) (-10 -7 (-15 -1758 ((-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1276 (-777))) "failed")) (|:| |hom| (-650 (-1276 (-777))))) (-298 (-959 (-570))))))) (T -238)) +((-1758 (*1 *2 *3) (-12 (-5 *3 (-298 (-959 (-570)))) (-5 *2 (-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1276 (-777))) "failed")) (|:| |hom| (-650 (-1276 (-777)))))) (-5 *1 (-238))))) +(-10 -7 (-15 -1758 ((-2 (|:| |varOrder| (-650 (-1186))) (|:| |inhom| (-3 (-650 (-1276 (-777))) "failed")) (|:| |hom| (-650 (-1276 (-777))))) (-298 (-959 (-570)))))) +((-3475 (((-777)) 56)) (-2004 (((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 $) (-1276 $)) 53) (((-695 |#3|) (-695 $)) 44) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-3374 (((-135)) 62)) (-3519 (($ $ (-1 |#3| |#3|) (-777)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-3798 (((-1276 |#3|) $) NIL) (($ |#3|) NIL) (((-868) $) NIL) (($ (-570)) 12) (($ (-413 (-570))) NIL)) (-2862 (((-777)) 15)) (-3037 (($ $ |#3|) 59))) +(((-239 |#1| |#2| |#3|) (-10 -8 (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|)) (-15 -2862 ((-777))) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -3798 (|#1| |#3|)) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -2004 ((-695 |#3|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 |#1|) (-1276 |#1|))) (-15 -3475 ((-777))) (-15 -3037 (|#1| |#1| |#3|)) (-15 -3374 ((-135))) (-15 -3798 ((-1276 |#3|) |#1|))) (-240 |#2| |#3|) (-777) (-1226)) (T -239)) +((-3374 (*1 *2) (-12 (-14 *4 (-777)) (-4 *5 (-1226)) (-5 *2 (-135)) (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) (-3475 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1226)) (-5 *2 (-777)) (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) (-2862 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1226)) (-5 *2 (-777)) (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5))))) +(-10 -8 (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|)) (-15 -2862 ((-777))) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -3798 (|#1| |#3|)) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -2004 ((-695 |#3|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 |#1|) (-1276 |#1|))) (-15 -3475 ((-777))) (-15 -3037 (|#1| |#1| |#3|)) (-15 -3374 ((-135))) (-15 -3798 ((-1276 |#3|) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#2| (-1109)))) (-1359 (((-112) $) 73 (|has| |#2| (-132)))) (-3241 (($ (-928)) 126 (|has| |#2| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-1647 (($ $ $) 122 (|has| |#2| (-799)))) (-2620 (((-3 $ "failed") $ $) 75 (|has| |#2| (-132)))) (-3636 (((-112) $ (-777)) 8)) (-3475 (((-777)) 108 (|has| |#2| (-373)))) (-2579 (((-570) $) 120 (|has| |#2| (-854)))) (-3945 ((|#2| $ (-570) |#2|) 53 (|has| $ (-6 -4449)))) (-3734 (($) 7 T CONST)) (-4382 (((-3 (-570) "failed") $) 68 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) 65 (-1760 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1109)))) (-3152 (((-570) $) 67 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) 64 (-1760 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) 63 (|has| |#2| (-1109)))) (-2004 (((-695 (-570)) (-695 $)) 107 (-1760 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 106 (-1760 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) 105 (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) 104 (|has| |#2| (-1058)))) (-2229 (((-3 $ "failed") $) 80 (|has| |#2| (-732)))) (-3408 (($) 111 (|has| |#2| (-373)))) (-3849 ((|#2| $ (-570) |#2|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#2| $ (-570)) 52)) (-2135 (((-112) $) 118 (|has| |#2| (-854)))) (-2885 (((-650 |#2|) $) 31 (|has| $ (-6 -4448)))) (-2481 (((-112) $) 82 (|has| |#2| (-732)))) (-3367 (((-112) $) 119 (|has| |#2| (-854)))) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 117 (-2779 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-2282 (((-650 |#2|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 116 (-2779 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-3837 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2|) $) 36)) (-2484 (((-928) $) 110 (|has| |#2| (-373)))) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#2| (-1109)))) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-2155 (($ (-928)) 109 (|has| |#2| (-373)))) (-3551 (((-1129) $) 21 (|has| |#2| (-1109)))) (-3515 ((|#2| $) 43 (|has| (-570) (-856)))) (-2973 (($ $ |#2|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) 27 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 26 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 24 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#2| $ (-570) |#2|) 51) ((|#2| $ (-570)) 50)) (-2331 ((|#2| $ $) 125 (|has| |#2| (-1058)))) (-3850 (($ (-1276 |#2|)) 127)) (-3374 (((-135)) 124 (|has| |#2| (-368)))) (-3519 (($ $) 99 (-1760 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) 97 (-1760 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) 95 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) 94 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) 93 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) 92 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) 85 (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1058)))) (-3562 (((-777) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4448))) (((-777) |#2| $) 29 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-1276 |#2|) $) 128) (($ (-570)) 69 (-2779 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) 66 (-1760 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) 61 (|has| |#2| (-1109))) (((-868) $) 18 (|has| |#2| (-619 (-868))))) (-2862 (((-777)) 103 (|has| |#2| (-1058)) CONST)) (-1319 (((-112) $ $) 23 (|has| |#2| (-1109)))) (-1431 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4448)))) (-2216 (($ $) 121 (|has| |#2| (-854)))) (-1809 (($) 72 (|has| |#2| (-132)) CONST)) (-1817 (($) 83 (|has| |#2| (-732)) CONST)) (-2835 (($ $) 98 (-1760 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) 96 (-1760 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) 91 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) 90 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) 89 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) 88 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) 87 (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1058)))) (-2981 (((-112) $ $) 114 (-2779 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-2959 (((-112) $ $) 113 (-2779 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-2923 (((-112) $ $) 20 (|has| |#2| (-1109)))) (-2969 (((-112) $ $) 115 (-2779 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-2948 (((-112) $ $) 112 (-2779 (|has| |#2| (-854)) (|has| |#2| (-799))))) (-3037 (($ $ |#2|) 123 (|has| |#2| (-368)))) (-3026 (($ $ $) 102 (|has| |#2| (-1058))) (($ $) 101 (|has| |#2| (-1058)))) (-3014 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-777)) 81 (|has| |#2| (-732))) (($ $ (-928)) 78 (|has| |#2| (-732)))) (* (($ (-570) $) 100 (|has| |#2| (-1058))) (($ $ $) 79 (|has| |#2| (-732))) (($ $ |#2|) 77 (|has| |#2| (-732))) (($ |#2| $) 76 (|has| |#2| (-732))) (($ (-777) $) 74 (|has| |#2| (-132))) (($ (-928) $) 71 (|has| |#2| (-25)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-240 |#1| |#2|) (-141) (-777) (-1226)) (T -240)) +((-3850 (*1 *1 *2) (-12 (-5 *2 (-1276 *4)) (-4 *4 (-1226)) (-4 *1 (-240 *3 *4)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-240 *3 *4)) (-4 *4 (-1058)) (-4 *4 (-1226)))) (-2331 (*1 *2 *1 *1) (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1226)) (-4 *2 (-1058)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1226)) (-4 *2 (-732))))) +(-13 (-610 (-570) |t#2|) (-619 (-1276 |t#2|)) (-10 -8 (-6 -4448) (-15 -3850 ($ (-1276 |t#2|))) (IF (|has| |t#2| (-1109)) (-6 (-417 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1058)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-233 |t#2|)) (-6 (-382 |t#2|)) (-15 -3241 ($ (-928))) (-15 -2331 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-732)) (PROGN (-6 (-732)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#2| (-174)) (PROGN (-6 (-38 |t#2|)) (-6 (-174))) |%noBranch|) (IF (|has| |t#2| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |t#2| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |t#2| (-799)) (-6 (-799)) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-1283 |t#2|)) |%noBranch|))) +(((-21) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-23) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-25) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) -2779 (|has| |#2| (-1109)) (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-732)) (|has| |#2| (-373)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2779 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-111 $ $) |has| |#2| (-174)) ((-132) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132))) ((-622 #0=(-413 (-570))) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))) ((-622 (-570)) -2779 (|has| |#2| (-1058)) (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-622 |#2|) -2779 (|has| |#2| (-1109)) (|has| |#2| (-174))) ((-619 (-868)) -2779 (|has| |#2| (-1109)) (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-732)) (|has| |#2| (-373)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-619 (-868))) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-619 (-1276 |#2|)) . T) ((-174) |has| |#2| (-174)) ((-233 |#2|) |has| |#2| (-1058)) ((-235) -12 (|has| |#2| (-235)) (|has| |#2| (-1058))) ((-290 #1=(-570) |#2|) . T) ((-292 #1# |#2|) . T) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-373) |has| |#2| (-373)) ((-382 |#2|) |has| |#2| (-1058)) ((-417 |#2|) |has| |#2| (-1109)) ((-495 |#2|) . T) ((-610 #1# |#2|) . T) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-652 (-570)) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-652 |#2|) -2779 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-652 $) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-654 |#2|) -2779 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-654 $) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-646 |#2|) -2779 (|has| |#2| (-368)) (|has| |#2| (-174))) ((-645 (-570)) -12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058))) ((-645 |#2|) |has| |#2| (-1058)) ((-723 |#2|) -2779 (|has| |#2| (-368)) (|has| |#2| (-174))) ((-732) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-732)) (|has| |#2| (-174))) ((-797) |has| |#2| (-854)) ((-798) -2779 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-799) |has| |#2| (-799)) ((-800) -2779 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-801) -2779 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-854) |has| |#2| (-854)) ((-856) -2779 (|has| |#2| (-854)) (|has| |#2| (-799))) ((-907 (-1186)) -12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058))) ((-1047 #0#) -12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109))) ((-1047 (-570)) -12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) ((-1047 |#2|) |has| |#2| (-1109)) ((-1060 |#2|) -2779 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-1060 $) |has| |#2| (-174)) ((-1065 |#2|) -2779 (|has| |#2| (-1058)) (|has| |#2| (-368)) (|has| |#2| (-174))) ((-1065 $) |has| |#2| (-174)) ((-1058) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-1067) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-174))) ((-1121) -2779 (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-732)) (|has| |#2| (-174))) ((-1109) -2779 (|has| |#2| (-1109)) (|has| |#2| (-1058)) (|has| |#2| (-854)) (|has| |#2| (-799)) (|has| |#2| (-732)) (|has| |#2| (-373)) (|has| |#2| (-368)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25))) ((-1226) . T) ((-1283 |#2|) |has| |#2| (-368))) +((-4292 (((-242 |#1| |#3|) (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|) 21)) (-3600 ((|#3| (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|) 23)) (-1347 (((-242 |#1| |#3|) (-1 |#3| |#2|) (-242 |#1| |#2|)) 18))) +(((-241 |#1| |#2| |#3|) (-10 -7 (-15 -4292 ((-242 |#1| |#3|) (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -3600 (|#3| (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -1347 ((-242 |#1| |#3|) (-1 |#3| |#2|) (-242 |#1| |#2|)))) (-777) (-1226) (-1226)) (T -241)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777)) (-4 *6 (-1226)) (-4 *7 (-1226)) (-5 *2 (-242 *5 *7)) (-5 *1 (-241 *5 *6 *7)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777)) (-4 *6 (-1226)) (-4 *2 (-1226)) (-5 *1 (-241 *5 *6 *2)))) (-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-242 *6 *7)) (-14 *6 (-777)) (-4 *7 (-1226)) (-4 *5 (-1226)) (-5 *2 (-242 *6 *5)) (-5 *1 (-241 *6 *7 *5))))) +(-10 -7 (-15 -4292 ((-242 |#1| |#3|) (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -3600 (|#3| (-1 |#3| |#2| |#3|) (-242 |#1| |#2|) |#3|)) (-15 -1347 ((-242 |#1| |#3|) (-1 |#3| |#2|) (-242 |#1| |#2|)))) +((-2419 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-1359 (((-112) $) NIL (|has| |#2| (-132)))) (-3241 (($ (-928)) 65 (|has| |#2| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-1647 (($ $ $) 70 (|has| |#2| (-799)))) (-2620 (((-3 $ "failed") $ $) 57 (|has| |#2| (-132)))) (-3636 (((-112) $ (-777)) 17)) (-3475 (((-777)) NIL (|has| |#2| (-373)))) (-2579 (((-570) $) NIL (|has| |#2| (-854)))) (-3945 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1109)))) (-3152 (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) 32 (|has| |#2| (-1109)))) (-2004 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) NIL (|has| |#2| (-1058)))) (-2229 (((-3 $ "failed") $) 61 (|has| |#2| (-732)))) (-3408 (($) NIL (|has| |#2| (-373)))) (-3849 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ (-570)) 59)) (-2135 (((-112) $) NIL (|has| |#2| (-854)))) (-2885 (((-650 |#2|) $) 15 (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL (|has| |#2| (-732)))) (-3367 (((-112) $) NIL (|has| |#2| (-854)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 20 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2282 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 (((-570) $) 58 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3837 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2|) $) 47)) (-2484 (((-928) $) NIL (|has| |#2| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#2| (-1109)))) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-2155 (($ (-928)) NIL (|has| |#2| (-373)))) (-3551 (((-1129) $) NIL (|has| |#2| (-1109)))) (-3515 ((|#2| $) NIL (|has| (-570) (-856)))) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) 21)) (-2331 ((|#2| $ $) NIL (|has| |#2| (-1058)))) (-3850 (($ (-1276 |#2|)) 18)) (-3374 (((-135)) NIL (|has| |#2| (-368)))) (-3519 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3562 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1276 |#2|) $) 10) (($ (-570)) NIL (-2779 (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) 13 (|has| |#2| (-1109))) (((-868) $) NIL (|has| |#2| (-619 (-868))))) (-2862 (((-777)) NIL (|has| |#2| (-1058)) CONST)) (-1319 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-1431 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2216 (($ $) NIL (|has| |#2| (-854)))) (-1809 (($) 40 (|has| |#2| (-132)) CONST)) (-1817 (($) 44 (|has| |#2| (-732)) CONST)) (-2835 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-2981 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2923 (((-112) $ $) 31 (|has| |#2| (-1109)))) (-2969 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2948 (((-112) $ $) 68 (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $ $) NIL (|has| |#2| (-1058))) (($ $) NIL (|has| |#2| (-1058)))) (-3014 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-777)) NIL (|has| |#2| (-732))) (($ $ (-928)) NIL (|has| |#2| (-732)))) (* (($ (-570) $) NIL (|has| |#2| (-1058))) (($ $ $) 50 (|has| |#2| (-732))) (($ $ |#2|) 48 (|has| |#2| (-732))) (($ |#2| $) 49 (|has| |#2| (-732))) (($ (-777) $) NIL (|has| |#2| (-132))) (($ (-928) $) NIL (|has| |#2| (-25)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-242 |#1| |#2|) (-240 |#1| |#2|) (-777) (-1226)) (T -242)) +NIL +(-240 |#1| |#2|) +((-2680 (((-570) (-650 (-1168))) 36) (((-570) (-1168)) 29)) (-1665 (((-1281) (-650 (-1168))) 40) (((-1281) (-1168)) 39)) (-2769 (((-1168)) 16)) (-3338 (((-1168) (-570) (-1168)) 23)) (-2172 (((-650 (-1168)) (-650 (-1168)) (-570) (-1168)) 37) (((-1168) (-1168) (-570) (-1168)) 35)) (-4162 (((-650 (-1168)) (-650 (-1168))) 15) (((-650 (-1168)) (-1168)) 11))) +(((-243) (-10 -7 (-15 -4162 ((-650 (-1168)) (-1168))) (-15 -4162 ((-650 (-1168)) (-650 (-1168)))) (-15 -2769 ((-1168))) (-15 -3338 ((-1168) (-570) (-1168))) (-15 -2172 ((-1168) (-1168) (-570) (-1168))) (-15 -2172 ((-650 (-1168)) (-650 (-1168)) (-570) (-1168))) (-15 -1665 ((-1281) (-1168))) (-15 -1665 ((-1281) (-650 (-1168)))) (-15 -2680 ((-570) (-1168))) (-15 -2680 ((-570) (-650 (-1168)))))) (T -243)) +((-2680 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-570)) (-5 *1 (-243)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-243)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1281)) (-5 *1 (-243)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-243)))) (-2172 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-650 (-1168))) (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *1 (-243)))) (-2172 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243)))) (-3338 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243)))) (-2769 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-243)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)) (-5 *3 (-1168))))) +(-10 -7 (-15 -4162 ((-650 (-1168)) (-1168))) (-15 -4162 ((-650 (-1168)) (-650 (-1168)))) (-15 -2769 ((-1168))) (-15 -3338 ((-1168) (-570) (-1168))) (-15 -2172 ((-1168) (-1168) (-570) (-1168))) (-15 -2172 ((-650 (-1168)) (-650 (-1168)) (-570) (-1168))) (-15 -1665 ((-1281) (-1168))) (-15 -1665 ((-1281) (-650 (-1168)))) (-15 -2680 ((-570) (-1168))) (-15 -2680 ((-570) (-650 (-1168))))) +((** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 20)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ (-413 (-570)) $) 27) (($ $ (-413 (-570))) NIL))) +(((-244 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-245)) (T -244)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 47)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 51)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 48)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ (-413 (-570)) $) 50) (($ $ (-413 (-570))) 49))) +(((-245) (-141)) (T -245)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-245)) (-5 *2 (-570)))) (-1820 (*1 *1 *1) (-4 *1 (-245)))) +(-13 (-294) (-38 (-413 (-570))) (-10 -8 (-15 ** ($ $ (-570))) (-15 -1820 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-294) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-723 #0#) . T) ((-732) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-1568 (($ $) 58)) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1634 (($ $ $) 54 (|has| $ (-6 -4449)))) (-2517 (($ $ $) 53 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-3734 (($) 7 T CONST)) (-1361 (($ $) 57)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-2058 (($ $) 56)) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1723 ((|#1| $) 60)) (-4188 (($ $) 59)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48)) (-3536 (((-570) $ $) 45)) (-3680 (((-112) $) 47)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-2832 (($ $ $) 55 (|has| $ (-6 -4449)))) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-246 |#1|) (-141) (-1226)) (T -246)) +((-1723 (*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-4188 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-1361 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-2058 (*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-2832 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-1634 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-246 *2)) (-4 *2 (-1226)))) (-2517 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-246 *2)) (-4 *2 (-1226))))) +(-13 (-1019 |t#1|) (-10 -8 (-15 -1723 (|t#1| $)) (-15 -4188 ($ $)) (-15 -1568 ($ $)) (-15 -1361 ($ $)) (-15 -2058 ($ $)) (IF (|has| $ (-6 -4449)) (PROGN (-15 -2832 ($ $ $)) (-15 -1634 ($ $ $)) (-15 -2517 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) NIL)) (-2566 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) $) NIL (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2632 (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-3360 (($ $) 10 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-1716 (($ $ $) NIL (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "rest" $) NIL (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) |#1|) $) NIL)) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2553 ((|#1| $) NIL)) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3527 (($ $) NIL) (($ $ (-777)) NIL)) (-3786 (($ $) NIL (|has| |#1| (-1109)))) (-3552 (($ $) 7 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-1697 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-2430 (((-112) $) NIL)) (-4039 (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109))) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) NIL)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-3583 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2735 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3384 (($ |#1|) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1723 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2213 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4299 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-2356 (((-112) $) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1243 (-570))) NIL) ((|#1| $ (-570)) NIL) ((|#1| $ (-570) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-777) $ "count") 16)) (-3536 (((-570) $ $) NIL)) (-3886 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-4331 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-3230 (($ (-650 |#1|)) 22)) (-3680 (((-112) $) NIL)) (-3566 (($ $) NIL)) (-2447 (($ $) NIL (|has| $ (-6 -4449)))) (-1497 (((-777) $) NIL)) (-2360 (($ $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) NIL)) (-2832 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2445 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-650 $)) NIL) (($ $ |#1|) NIL)) (-3798 (($ (-650 |#1|)) 17) (((-650 |#1|) $) 18) (((-868) $) 21 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) 14 (|has| $ (-6 -4448))))) +(((-247 |#1|) (-13 (-672 |#1|) (-496 (-650 |#1|)) (-10 -8 (-15 -3230 ($ (-650 |#1|))) (-15 -1872 ($ $ "unique")) (-15 -1872 ($ $ "sort")) (-15 -1872 ((-777) $ "count")))) (-856)) (T -247)) +((-3230 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-247 *3)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-247 *3)) (-4 *3 (-856)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-247 *3)) (-4 *3 (-856)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-777)) (-5 *1 (-247 *4)) (-4 *4 (-856))))) +(-13 (-672 |#1|) (-496 (-650 |#1|)) (-10 -8 (-15 -3230 ($ (-650 |#1|))) (-15 -1872 ($ $ "unique")) (-15 -1872 ($ $ "sort")) (-15 -1872 ((-777) $ "count")))) +((-4419 (((-3 (-777) "failed") |#1| |#1| (-777)) 43))) +(((-248 |#1|) (-10 -7 (-15 -4419 ((-3 (-777) "failed") |#1| |#1| (-777)))) (-13 (-732) (-373) (-10 -7 (-15 ** (|#1| |#1| (-570)))))) (T -248)) +((-4419 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-777)) (-4 *3 (-13 (-732) (-373) (-10 -7 (-15 ** (*3 *3 (-570)))))) (-5 *1 (-248 *3))))) +(-10 -7 (-15 -4419 ((-3 (-777) "failed") |#1| |#1| (-777)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-870 |#1|)) $) NIL)) (-3768 (((-1182 $) $ (-870 |#1|)) NIL) (((-1182 |#2|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2318 (($ $) NIL (|has| |#2| (-562)))) (-2234 (((-112) $) NIL (|has| |#2| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-870 |#1|))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3696 (($ $) NIL (|has| |#2| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#2| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2865 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2808 (($ $ (-650 (-570))) NIL)) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#2| (-916)))) (-3155 (($ $ |#2| (-242 (-2431 |#1|) (-777)) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#2|) (-870 |#1|)) NIL) (($ (-1182 $) (-870 |#1|)) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#2| (-242 (-2431 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-870 |#1|)) NIL)) (-2302 (((-242 (-2431 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-2550 (($ (-1 (-242 (-2431 |#1|) (-777)) (-242 (-2431 |#1|) (-777))) $) NIL)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (((-3 (-870 |#1|) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#2| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -3283 (-777))) "failed") $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#2| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) NIL) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) NIL) (($ $ (-870 |#1|) $) NIL) (($ $ (-650 (-870 |#1|)) (-650 $)) NIL)) (-3511 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3519 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3324 (((-242 (-2431 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-1427 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-870 |#1|)) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-242 (-2431 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-249 |#1| |#2|) (-13 (-956 |#2| (-242 (-2431 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -2808 ($ $ (-650 (-570)))))) (-650 (-1186)) (-1058)) (T -249)) +((-2808 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-249 *3 *4)) (-14 *3 (-650 (-1186))) (-4 *4 (-1058))))) +(-13 (-956 |#2| (-242 (-2431 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -2808 ($ $ (-650 (-570)))))) +((-2419 (((-112) $ $) NIL)) (-1599 (((-1281) $) 17)) (-3555 (((-185 (-251)) $) 11)) (-2304 (($ (-185 (-251))) 12)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1574 (((-251) $) 7)) (-3798 (((-868) $) 9)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 15))) +(((-250) (-13 (-1109) (-10 -8 (-15 -1574 ((-251) $)) (-15 -3555 ((-185 (-251)) $)) (-15 -2304 ($ (-185 (-251)))) (-15 -1599 ((-1281) $))))) (T -250)) +((-1574 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-250)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250)))) (-2304 (*1 *1 *2) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250)))) (-1599 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-250))))) +(-13 (-1109) (-10 -8 (-15 -1574 ((-251) $)) (-15 -3555 ((-185 (-251)) $)) (-15 -2304 ($ (-185 (-251)))) (-15 -1599 ((-1281) $)))) +((-2419 (((-112) $ $) NIL)) (-1769 (((-650 (-871)) $) NIL)) (-3574 (((-512) $) NIL)) (-4122 (((-1168) $) NIL)) (-3898 (((-188) $) NIL)) (-3257 (((-112) $ (-512)) NIL)) (-3551 (((-1129) $) NIL)) (-3062 (((-337) $) 7)) (-3336 (((-650 (-112)) $) NIL)) (-3798 (((-868) $) NIL) (((-189) $) 8)) (-1319 (((-112) $ $) NIL)) (-3385 (((-55) $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-251) (-13 (-187) (-619 (-189)) (-10 -8 (-15 -3062 ((-337) $))))) (T -251)) +((-3062 (*1 *2 *1) (-12 (-5 *2 (-337)) (-5 *1 (-251))))) +(-13 (-187) (-619 (-189)) (-10 -8 (-15 -3062 ((-337) $)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1872 (((-1191) $ (-777)) 13)) (-3798 (((-868) $) 20)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 16)) (-2431 (((-777) $) 9))) +(((-252) (-13 (-1109) (-10 -8 (-15 -2431 ((-777) $)) (-15 -1872 ((-1191) $ (-777)))))) (T -252)) +((-2431 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-252)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1191)) (-5 *1 (-252))))) +(-13 (-1109) (-10 -8 (-15 -2431 ((-777) $)) (-15 -1872 ((-1191) $ (-777))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3241 (($ (-928)) NIL (|has| |#4| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-1647 (($ $ $) NIL (|has| |#4| (-799)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| |#4| (-373)))) (-2579 (((-570) $) NIL (|has| |#4| (-854)))) (-3945 ((|#4| $ (-570) |#4|) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1109))) (((-3 (-570) "failed") $) NIL (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))) (-3152 ((|#4| $) NIL (|has| |#4| (-1109))) (((-570) $) NIL (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))) (-2004 (((-2 (|:| -2568 (-695 |#4|)) (|:| |vec| (-1276 |#4|))) (-695 $) (-1276 $)) NIL (|has| |#4| (-1058))) (((-695 |#4|) (-695 $)) NIL (|has| |#4| (-1058))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))))) (-2229 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (-3408 (($) NIL (|has| |#4| (-373)))) (-3849 ((|#4| $ (-570) |#4|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#4| $ (-570)) NIL)) (-2135 (((-112) $) NIL (|has| |#4| (-854)))) (-2885 (((-650 |#4|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL (-2779 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (-3367 (((-112) $) NIL (|has| |#4| (-854)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (-2779 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-2282 (((-650 |#4|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (-2779 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-3837 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#4| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-2155 (($ (-928)) NIL (|has| |#4| (-373)))) (-3551 (((-1129) $) NIL)) (-3515 ((|#4| $) NIL (|has| (-570) (-856)))) (-2973 (($ $ |#4|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-2880 (((-650 |#4|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#4| $ (-570) |#4|) NIL) ((|#4| $ (-570)) 16)) (-2331 ((|#4| $ $) NIL (|has| |#4| (-1058)))) (-3850 (($ (-1276 |#4|)) NIL)) (-3374 (((-135)) NIL (|has| |#4| (-368)))) (-3519 (($ $ (-1 |#4| |#4|) (-777)) NIL (|has| |#4| (-1058))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058)))) (($ $) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))))) (-3562 (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448))) (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1276 |#4|) $) NIL) (((-868) $) NIL) (($ |#4|) NIL (|has| |#4| (-1109))) (($ (-570)) NIL (-2779 (-12 (|has| |#4| (-1047 (-570))) (|has| |#4| (-1109))) (|has| |#4| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#4| (-1047 (-413 (-570)))) (|has| |#4| (-1109))))) (-2862 (((-777)) NIL (|has| |#4| (-1058)) CONST)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2216 (($ $) NIL (|has| |#4| (-854)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL (-2779 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) CONST)) (-2835 (($ $ (-1 |#4| |#4|) (-777)) NIL (|has| |#4| (-1058))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058)))) (($ $) NIL (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))))) (-2981 (((-112) $ $) NIL (-2779 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (-2779 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-2948 (((-112) $ $) NIL (-2779 (|has| |#4| (-799)) (|has| |#4| (-854))))) (-3037 (($ $ |#4|) NIL (|has| |#4| (-368)))) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL (-2779 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058))))) (($ $ (-928)) NIL (-2779 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (* (($ |#2| $) 18) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-732))) (($ |#4| $) NIL (|has| |#4| (-732))) (($ $ $) NIL (-2779 (-12 (|has| |#4| (-235)) (|has| |#4| (-1058))) (-12 (|has| |#4| (-645 (-570))) (|has| |#4| (-1058))) (|has| |#4| (-732)) (-12 (|has| |#4| (-907 (-1186))) (|has| |#4| (-1058)))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-253 |#1| |#2| |#3| |#4|) (-13 (-240 |#1| |#4|) (-654 |#2|) (-654 |#3|)) (-928) (-1058) (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-654 |#2|)) (T -253)) +NIL +(-13 (-240 |#1| |#4|) (-654 |#2|) (-654 |#3|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3241 (($ (-928)) NIL (|has| |#3| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-1647 (($ $ $) NIL (|has| |#3| (-799)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| |#3| (-373)))) (-2579 (((-570) $) NIL (|has| |#3| (-854)))) (-3945 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1109))) (((-3 (-570) "failed") $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))) (-3152 ((|#3| $) NIL (|has| |#3| (-1109))) (((-570) $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))) (-2004 (((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 $) (-1276 $)) NIL (|has| |#3| (-1058))) (((-695 |#3|) (-695 $)) NIL (|has| |#3| (-1058))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))))) (-2229 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (-3408 (($) NIL (|has| |#3| (-373)))) (-3849 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#3| $ (-570)) NIL)) (-2135 (((-112) $) NIL (|has| |#3| (-854)))) (-2885 (((-650 |#3|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL (-2779 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (-3367 (((-112) $) NIL (|has| |#3| (-854)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2282 (((-650 |#3|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3837 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#3| |#3|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#3| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-2155 (($ (-928)) NIL (|has| |#3| (-373)))) (-3551 (((-1129) $) NIL)) (-3515 ((|#3| $) NIL (|has| (-570) (-856)))) (-2973 (($ $ |#3|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#3|))) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 |#3|) (-650 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-2880 (((-650 |#3|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#3| $ (-570) |#3|) NIL) ((|#3| $ (-570)) 15)) (-2331 ((|#3| $ $) NIL (|has| |#3| (-1058)))) (-3850 (($ (-1276 |#3|)) NIL)) (-3374 (((-135)) NIL (|has| |#3| (-368)))) (-3519 (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))))) (-3562 (((-777) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448))) (((-777) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1276 |#3|) $) NIL) (((-868) $) NIL) (($ |#3|) NIL (|has| |#3| (-1109))) (($ (-570)) NIL (-2779 (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109))))) (-2862 (((-777)) NIL (|has| |#3| (-1058)) CONST)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-2216 (($ $) NIL (|has| |#3| (-854)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL (-2779 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) CONST)) (-2835 (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))))) (-2981 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2948 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3037 (($ $ |#3|) NIL (|has| |#3| (-368)))) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL (-2779 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058))))) (($ $ (-928)) NIL (-2779 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (* (($ |#2| $) 17) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-732))) (($ |#3| $) NIL (|has| |#3| (-732))) (($ $ $) NIL (-2779 (-12 (|has| |#3| (-235)) (|has| |#3| (-1058))) (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058))) (|has| |#3| (-732)) (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-254 |#1| |#2| |#3|) (-13 (-240 |#1| |#3|) (-654 |#2|)) (-777) (-1058) (-654 |#2|)) (T -254)) +NIL +(-13 (-240 |#1| |#3|) (-654 |#2|)) +((-2194 (((-650 (-777)) $) 56) (((-650 (-777)) $ |#3|) 59)) (-2793 (((-777) $) 58) (((-777) $ |#3|) 61)) (-2836 (($ $) 76)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-4202 (((-777) $ |#3|) 43) (((-777) $) 38)) (-2994 (((-1 $ (-777)) |#3|) 15) (((-1 $ (-777)) $) 88)) (-3154 ((|#4| $) 69)) (-2916 (((-112) $) 67)) (-1511 (($ $) 75)) (-1725 (($ $ (-650 (-298 $))) 114) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-650 |#4|) (-650 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-650 |#4|) (-650 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-650 |#3|) (-650 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-650 |#3|) (-650 |#2|)) 100)) (-3519 (($ $ |#4|) NIL) (($ $ (-650 |#4|)) NIL) (($ $ |#4| (-777)) NIL) (($ $ (-650 |#4|) (-650 (-777))) NIL) (($ $) NIL) (($ $ (-777)) NIL) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3803 (((-650 |#3|) $) 86)) (-3324 ((|#5| $) NIL) (((-777) $ |#4|) NIL) (((-650 (-777)) $ (-650 |#4|)) NIL) (((-777) $ |#3|) 49)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-413 (-570))) NIL) (($ $) NIL))) +(((-255 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -1725 (|#1| |#1| (-650 |#3|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#3| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#3|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#3| |#1|)) (-15 -2994 ((-1 |#1| (-777)) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -3154 (|#4| |#1|)) (-15 -2916 ((-112) |#1|)) (-15 -2793 ((-777) |#1| |#3|)) (-15 -2194 ((-650 (-777)) |#1| |#3|)) (-15 -2793 ((-777) |#1|)) (-15 -2194 ((-650 (-777)) |#1|)) (-15 -3324 ((-777) |#1| |#3|)) (-15 -4202 ((-777) |#1|)) (-15 -4202 ((-777) |#1| |#3|)) (-15 -3803 ((-650 |#3|) |#1|)) (-15 -2994 ((-1 |#1| (-777)) |#3|)) (-15 -3798 (|#1| |#3|)) (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -3324 ((-650 (-777)) |#1| (-650 |#4|))) (-15 -3324 ((-777) |#1| |#4|)) (-15 -3798 (|#1| |#4|)) (-15 -4382 ((-3 |#4| "failed") |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3324 (|#5| |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -3519 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3519 (|#1| |#1| |#4| (-777))) (-15 -3519 (|#1| |#1| (-650 |#4|))) (-15 -3519 (|#1| |#1| |#4|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-256 |#2| |#3| |#4| |#5|) (-1058) (-856) (-269 |#3|) (-799)) (T -255)) +NIL +(-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -1725 (|#1| |#1| (-650 |#3|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#3| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#3|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#3| |#1|)) (-15 -2994 ((-1 |#1| (-777)) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -3154 (|#4| |#1|)) (-15 -2916 ((-112) |#1|)) (-15 -2793 ((-777) |#1| |#3|)) (-15 -2194 ((-650 (-777)) |#1| |#3|)) (-15 -2793 ((-777) |#1|)) (-15 -2194 ((-650 (-777)) |#1|)) (-15 -3324 ((-777) |#1| |#3|)) (-15 -4202 ((-777) |#1|)) (-15 -4202 ((-777) |#1| |#3|)) (-15 -3803 ((-650 |#3|) |#1|)) (-15 -2994 ((-1 |#1| (-777)) |#3|)) (-15 -3798 (|#1| |#3|)) (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -3324 ((-650 (-777)) |#1| (-650 |#4|))) (-15 -3324 ((-777) |#1| |#4|)) (-15 -3798 (|#1| |#4|)) (-15 -4382 ((-3 |#4| "failed") |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3324 (|#5| |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -3519 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3519 (|#1| |#1| |#4| (-777))) (-15 -3519 (|#1| |#1| (-650 |#4|))) (-15 -3519 (|#1| |#1| |#4|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2194 (((-650 (-777)) $) 216) (((-650 (-777)) $ |#2|) 214)) (-2793 (((-777) $) 215) (((-777) $ |#2|) 213)) (-1709 (((-650 |#3|) $) 112)) (-3768 (((-1182 $) $ |#3|) 127) (((-1182 |#1|) $) 126)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2318 (($ $) 90 (|has| |#1| (-562)))) (-2234 (((-112) $) 92 (|has| |#1| (-562)))) (-1818 (((-777) $) 114) (((-777) $ (-650 |#3|)) 113)) (-2620 (((-3 $ "failed") $ $) 20)) (-2900 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3696 (($ $) 100 (|has| |#1| (-458)))) (-2555 (((-424 $) $) 99 (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-2836 (($ $) 209)) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3152 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) ((|#3| $) 139) ((|#2| $) 224)) (-2865 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1885 (($ $) 156)) (-2004 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-2229 (((-3 $ "failed") $) 37)) (-1908 (($ $) 178 (|has| |#1| (-458))) (($ $ |#3|) 107 (|has| |#1| (-458)))) (-1867 (((-650 $) $) 111)) (-3701 (((-112) $) 98 (|has| |#1| (-916)))) (-3155 (($ $ |#1| |#4| $) 174)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| |#3| (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| |#3| (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4202 (((-777) $ |#2|) 219) (((-777) $) 218)) (-2481 (((-112) $) 35)) (-1700 (((-777) $) 171)) (-1699 (($ (-1182 |#1|) |#3|) 119) (($ (-1182 $) |#3|) 118)) (-2717 (((-650 $) $) 128)) (-2343 (((-112) $) 154)) (-3925 (($ |#1| |#4|) 155) (($ $ |#3| (-777)) 121) (($ $ (-650 |#3|) (-650 (-777))) 120)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#3|) 122)) (-2302 ((|#4| $) 172) (((-777) $ |#3|) 124) (((-650 (-777)) $ (-650 |#3|)) 123)) (-2550 (($ (-1 |#4| |#4|) $) 173)) (-1347 (($ (-1 |#1| |#1|) $) 153)) (-2994 (((-1 $ (-777)) |#2|) 221) (((-1 $ (-777)) $) 208 (|has| |#1| (-235)))) (-4372 (((-3 |#3| "failed") $) 125)) (-1851 (($ $) 151)) (-1860 ((|#1| $) 150)) (-3154 ((|#3| $) 211)) (-1841 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-4122 (((-1168) $) 10)) (-2916 (((-112) $) 212)) (-4193 (((-3 (-650 $) "failed") $) 116)) (-3607 (((-3 (-650 $) "failed") $) 117)) (-1657 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-777))) "failed") $) 115)) (-1511 (($ $) 210)) (-3551 (((-1129) $) 11)) (-1830 (((-112) $) 168)) (-1838 ((|#1| $) 169)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-1869 (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-3801 (((-424 $) $) 101 (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-650 |#3|) (-650 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-650 |#3|) (-650 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 $)) 206 (|has| |#1| (-235))) (($ $ |#2| |#1|) 205 (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 |#1|)) 204 (|has| |#1| (-235)))) (-3511 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3519 (($ $ |#3|) 46) (($ $ (-650 |#3|)) 45) (($ $ |#3| (-777)) 44) (($ $ (-650 |#3|) (-650 (-777))) 43) (($ $) 240 (|has| |#1| (-235))) (($ $ (-777)) 238 (|has| |#1| (-235))) (($ $ (-1186)) 236 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 235 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 234 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 233 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3803 (((-650 |#2|) $) 220)) (-3324 ((|#4| $) 152) (((-777) $ |#3|) 132) (((-650 (-777)) $ (-650 |#3|)) 131) (((-777) $ |#2|) 217)) (-1411 (((-899 (-384)) $) 84 (-12 (|has| |#3| (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| |#3| (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| |#3| (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ |#3|) 108 (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 106 (-1760 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-413 (-570))) 80 (-2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570)))))) (($ $) 87 (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) 170)) (-3326 ((|#1| $ |#4|) 157) (($ $ |#3| (-777)) 130) (($ $ (-650 |#3|) (-650 (-777))) 129)) (-2917 (((-3 $ "failed") $) 81 (-2779 (-1760 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) 32 T CONST)) (-1484 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ |#3|) 42) (($ $ (-650 |#3|)) 41) (($ $ |#3| (-777)) 40) (($ $ (-650 |#3|) (-650 (-777))) 39) (($ $) 239 (|has| |#1| (-235))) (($ $ (-777)) 237 (|has| |#1| (-235))) (($ $ (-1186)) 232 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 231 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 230 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 229 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-256 |#1| |#2| |#3| |#4|) (-141) (-1058) (-856) (-269 |t#2|) (-799)) (T -256)) +((-2994 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *4 *3 *5 *6)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 *4)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777)))) (-3324 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 (-777))))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777)))) (-2194 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-650 (-777))))) (-2793 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-112)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-256 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-799)) (-4 *2 (-269 *4)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856)) (-4 *4 (-269 *3)) (-4 *5 (-799)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856)) (-4 *4 (-269 *3)) (-4 *5 (-799)))) (-2994 (*1 *2 *1) (-12 (-4 *3 (-235)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *3 *4 *5 *6))))) +(-13 (-956 |t#1| |t#4| |t#3|) (-233 |t#1|) (-1047 |t#2|) (-10 -8 (-15 -2994 ((-1 $ (-777)) |t#2|)) (-15 -3803 ((-650 |t#2|) $)) (-15 -4202 ((-777) $ |t#2|)) (-15 -4202 ((-777) $)) (-15 -3324 ((-777) $ |t#2|)) (-15 -2194 ((-650 (-777)) $)) (-15 -2793 ((-777) $)) (-15 -2194 ((-650 (-777)) $ |t#2|)) (-15 -2793 ((-777) $ |t#2|)) (-15 -2916 ((-112) $)) (-15 -3154 (|t#3| $)) (-15 -1511 ($ $)) (-15 -2836 ($ $)) (IF (|has| |t#1| (-235)) (PROGN (-6 (-520 |t#2| |t#1|)) (-6 (-520 |t#2| $)) (-6 (-313 $)) (-15 -2994 ((-1 $ (-777)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 |#2|) . T) ((-622 |#3|) . T) ((-622 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) ((-233 |#1|) . T) ((-235) |has| |#1| (-235)) ((-294) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-313 $) . T) ((-330 |#1| |#4|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -2779 (|has| |#1| (-916)) (|has| |#1| (-458))) ((-520 |#2| |#1|) |has| |#1| (-235)) ((-520 |#2| $) |has| |#1| (-235)) ((-520 |#3| |#1|) . T) ((-520 |#3| $) . T) ((-520 $ $) . T) ((-562) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-732) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-907 |#3|) . T) ((-893 (-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) ((-956 |#1| |#4| |#3|) . T) ((-916) |has| |#1| (-916)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1047 |#2|) . T) ((-1047 |#3|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) |has| |#1| (-916))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-4040 ((|#1| $) 55)) (-3312 ((|#1| $) 45)) (-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-4159 (($ $) 61)) (-1500 (($ $) 49)) (-2141 ((|#1| |#1| $) 47)) (-1561 ((|#1| $) 46)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-3847 (((-777) $) 62)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-3661 ((|#1| |#1| $) 53)) (-2187 ((|#1| |#1| $) 52)) (-2213 (($ |#1| $) 41)) (-1428 (((-777) $) 56)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2724 ((|#1| $) 63)) (-3289 ((|#1| $) 51)) (-3723 ((|#1| $) 50)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2328 ((|#1| |#1| $) 59)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2864 ((|#1| $) 60)) (-2301 (($) 58) (($ (-650 |#1|)) 57)) (-2806 (((-777) $) 44)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1642 ((|#1| $) 54)) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1756 ((|#1| $) 64)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-257 |#1|) (-141) (-1226)) (T -257)) +((-2301 (*1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-4 *1 (-257 *3)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-1226)) (-5 *2 (-777)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-1642 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-3661 (*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-2187 (*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) (-1500 (*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(-13 (-1130 |t#1|) (-1004 |t#1|) (-10 -8 (-15 -2301 ($)) (-15 -2301 ($ (-650 |t#1|))) (-15 -1428 ((-777) $)) (-15 -4040 (|t#1| $)) (-15 -1642 (|t#1| $)) (-15 -3661 (|t#1| |t#1| $)) (-15 -2187 (|t#1| |t#1| $)) (-15 -3289 (|t#1| $)) (-15 -3723 (|t#1| $)) (-15 -1500 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1004 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1130 |#1|) . T) ((-1226) . T)) +((-4398 (((-1 (-950 (-227)) (-227) (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1421 (((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384))) 173) (((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 171) (((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 176) (((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 172) (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 164) (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 163) (((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384))) 145) (((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266))) 143) (((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384))) 144) (((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266))) 141)) (-1371 (((-1278) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384))) 175) (((-1278) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 174) (((-1278) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 178) (((-1278) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 177) (((-1278) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384))) 166) (((-1278) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266))) 165) (((-1278) (-1 (-950 (-227)) (-227)) (-1103 (-384))) 151) (((-1278) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266))) 150) (((-1278) (-886 (-1 (-227) (-227))) (-1103 (-384))) 149) (((-1278) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266))) 148) (((-1277) (-884 (-1 (-227) (-227))) (-1103 (-384))) 113) (((-1277) (-884 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266))) 112) (((-1277) (-1 (-227) (-227)) (-1103 (-384))) 107) (((-1277) (-1 (-227) (-227)) (-1103 (-384)) (-650 (-266))) 105))) +(((-258) (-10 -7 (-15 -1371 ((-1277) (-1 (-227) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) (-1 (-227) (-227)) (-1103 (-384)))) (-15 -1371 ((-1277) (-884 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) (-884 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1371 ((-1278) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1371 ((-1278) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1371 ((-1278) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -4398 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -258)) +((-4398 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *2 (-1277)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *2 (-1277)) (-5 *1 (-258)))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-258))))) +(-10 -7 (-15 -1371 ((-1277) (-1 (-227) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) (-1 (-227) (-227)) (-1103 (-384)))) (-15 -1371 ((-1277) (-884 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) (-884 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1371 ((-1278) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-886 (-1 (-227) (-227))) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227)) (-1103 (-384)))) (-15 -1371 ((-1278) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-384)) (-1103 (-384)))) (-15 -1371 ((-1278) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -1421 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-889 (-1 (-227) (-227) (-227))) (-1103 (-384)) (-1103 (-384)))) (-15 -4398 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1371 (((-1277) (-298 |#2|) (-1186) (-1186) (-650 (-266))) 101))) +(((-259 |#1| |#2|) (-10 -7 (-15 -1371 ((-1277) (-298 |#2|) (-1186) (-1186) (-650 (-266))))) (-13 (-562) (-856) (-1047 (-570))) (-436 |#1|)) (T -259)) +((-1371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-298 *7)) (-5 *4 (-1186)) (-5 *5 (-650 (-266))) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-856) (-1047 (-570)))) (-5 *2 (-1277)) (-5 *1 (-259 *6 *7))))) +(-10 -7 (-15 -1371 ((-1277) (-298 |#2|) (-1186) (-1186) (-650 (-266))))) +((-2850 (((-570) (-570)) 73)) (-2273 (((-570) (-570)) 74)) (-2022 (((-227) (-227)) 75)) (-4220 (((-1278) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227))) 72)) (-2071 (((-1278) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)) (-112)) 70))) +(((-260) (-10 -7 (-15 -2071 ((-1278) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)) (-112))) (-15 -4220 ((-1278) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -2850 ((-570) (-570))) (-15 -2273 ((-570) (-570))) (-15 -2022 ((-227) (-227))))) (T -260)) +((-2022 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-260)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260)))) (-4220 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227))) (-5 *2 (-1278)) (-5 *1 (-260)))) (-2071 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227))) (-5 *5 (-112)) (-5 *2 (-1278)) (-5 *1 (-260))))) +(-10 -7 (-15 -2071 ((-1278) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)) (-112))) (-15 -4220 ((-1278) (-1 (-171 (-227)) (-171 (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -2850 ((-570) (-570))) (-15 -2273 ((-570) (-570))) (-15 -2022 ((-227) (-227)))) +((-3798 (((-1101 (-384)) (-1101 (-320 |#1|))) 16))) +(((-261 |#1|) (-10 -7 (-15 -3798 ((-1101 (-384)) (-1101 (-320 |#1|))))) (-13 (-856) (-562) (-620 (-384)))) (T -261)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-1101 (-320 *4))) (-4 *4 (-13 (-856) (-562) (-620 (-384)))) (-5 *2 (-1101 (-384))) (-5 *1 (-261 *4))))) +(-10 -7 (-15 -3798 ((-1101 (-384)) (-1101 (-320 |#1|))))) +((-1421 (((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384))) 75) (((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 74) (((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384))) 65) (((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 64) (((-1142 (-227)) (-886 |#1|) (-1101 (-384))) 56) (((-1142 (-227)) (-886 |#1|) (-1101 (-384)) (-650 (-266))) 55)) (-1371 (((-1278) (-889 |#1|) (-1101 (-384)) (-1101 (-384))) 78) (((-1278) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 77) (((-1278) |#1| (-1101 (-384)) (-1101 (-384))) 68) (((-1278) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266))) 67) (((-1278) (-886 |#1|) (-1101 (-384))) 60) (((-1278) (-886 |#1|) (-1101 (-384)) (-650 (-266))) 59) (((-1277) (-884 |#1|) (-1101 (-384))) 47) (((-1277) (-884 |#1|) (-1101 (-384)) (-650 (-266))) 46) (((-1277) |#1| (-1101 (-384))) 38) (((-1277) |#1| (-1101 (-384)) (-650 (-266))) 36))) +(((-262 |#1|) (-10 -7 (-15 -1371 ((-1277) |#1| (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) |#1| (-1101 (-384)))) (-15 -1371 ((-1277) (-884 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) (-884 |#1|) (-1101 (-384)))) (-15 -1371 ((-1278) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-886 |#1|) (-1101 (-384)))) (-15 -1421 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)))) (-15 -1371 ((-1278) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1421 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1371 ((-1278) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-889 |#1|) (-1101 (-384)) (-1101 (-384)))) (-15 -1421 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384))))) (-13 (-620 (-542)) (-1109))) (T -262)) +((-1421 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *5)))) (-1421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *6)))) (-1371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) (-5 *1 (-262 *5)))) (-1371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) (-5 *1 (-262 *6)))) (-1421 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1421 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1371 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1278)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1371 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *5)))) (-1421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *6)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) (-5 *1 (-262 *5)))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) (-5 *1 (-262 *6)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-884 *5)) (-5 *4 (-1101 (-384))) (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1277)) (-5 *1 (-262 *5)))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-884 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1277)) (-5 *1 (-262 *6)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1277)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) (-1371 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109)))))) +(-10 -7 (-15 -1371 ((-1277) |#1| (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) |#1| (-1101 (-384)))) (-15 -1371 ((-1277) (-884 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1277) (-884 |#1|) (-1101 (-384)))) (-15 -1371 ((-1278) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-886 |#1|) (-1101 (-384)))) (-15 -1421 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-886 |#1|) (-1101 (-384)))) (-15 -1371 ((-1278) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1421 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) |#1| (-1101 (-384)) (-1101 (-384)))) (-15 -1371 ((-1278) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1371 ((-1278) (-889 |#1|) (-1101 (-384)) (-1101 (-384)))) (-15 -1421 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384)) (-650 (-266)))) (-15 -1421 ((-1142 (-227)) (-889 |#1|) (-1101 (-384)) (-1101 (-384))))) +((-1371 (((-1278) (-650 (-227)) (-650 (-227)) (-650 (-227)) (-650 (-266))) 23) (((-1278) (-650 (-227)) (-650 (-227)) (-650 (-227))) 24) (((-1277) (-650 (-950 (-227))) (-650 (-266))) 16) (((-1277) (-650 (-950 (-227)))) 17) (((-1277) (-650 (-227)) (-650 (-227)) (-650 (-266))) 20) (((-1277) (-650 (-227)) (-650 (-227))) 21))) +(((-263) (-10 -7 (-15 -1371 ((-1277) (-650 (-227)) (-650 (-227)))) (-15 -1371 ((-1277) (-650 (-227)) (-650 (-227)) (-650 (-266)))) (-15 -1371 ((-1277) (-650 (-950 (-227))))) (-15 -1371 ((-1277) (-650 (-950 (-227))) (-650 (-266)))) (-15 -1371 ((-1278) (-650 (-227)) (-650 (-227)) (-650 (-227)))) (-15 -1371 ((-1278) (-650 (-227)) (-650 (-227)) (-650 (-227)) (-650 (-266)))))) (T -263)) +((-1371 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-263)))) (-1371 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1278)) (-5 *1 (-263)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-263)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *2 (-1277)) (-5 *1 (-263)))) (-1371 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-263)))) (-1371 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1277)) (-5 *1 (-263))))) +(-10 -7 (-15 -1371 ((-1277) (-650 (-227)) (-650 (-227)))) (-15 -1371 ((-1277) (-650 (-227)) (-650 (-227)) (-650 (-266)))) (-15 -1371 ((-1277) (-650 (-950 (-227))))) (-15 -1371 ((-1277) (-650 (-950 (-227))) (-650 (-266)))) (-15 -1371 ((-1278) (-650 (-227)) (-650 (-227)) (-650 (-227)))) (-15 -1371 ((-1278) (-650 (-227)) (-650 (-227)) (-650 (-227)) (-650 (-266))))) +((-1965 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-650 (-266)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2016 (((-928) (-650 (-266)) (-928)) 52)) (-3460 (((-928) (-650 (-266)) (-928)) 51)) (-3159 (((-650 (-384)) (-650 (-266)) (-650 (-384))) 68)) (-1673 (((-384) (-650 (-266)) (-384)) 57)) (-2277 (((-928) (-650 (-266)) (-928)) 53)) (-2496 (((-112) (-650 (-266)) (-112)) 27)) (-3333 (((-1168) (-650 (-266)) (-1168)) 19)) (-1429 (((-1168) (-650 (-266)) (-1168)) 26)) (-3160 (((-1142 (-227)) (-650 (-266))) 46)) (-3900 (((-650 (-1103 (-384))) (-650 (-266)) (-650 (-1103 (-384)))) 40)) (-3710 (((-880) (-650 (-266)) (-880)) 32)) (-2588 (((-880) (-650 (-266)) (-880)) 33)) (-1572 (((-1 (-950 (-227)) (-950 (-227))) (-650 (-266)) (-1 (-950 (-227)) (-950 (-227)))) 63)) (-2606 (((-112) (-650 (-266)) (-112)) 14)) (-4194 (((-112) (-650 (-266)) (-112)) 13))) +(((-264) (-10 -7 (-15 -4194 ((-112) (-650 (-266)) (-112))) (-15 -2606 ((-112) (-650 (-266)) (-112))) (-15 -1965 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-650 (-266)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3333 ((-1168) (-650 (-266)) (-1168))) (-15 -1429 ((-1168) (-650 (-266)) (-1168))) (-15 -2496 ((-112) (-650 (-266)) (-112))) (-15 -3710 ((-880) (-650 (-266)) (-880))) (-15 -2588 ((-880) (-650 (-266)) (-880))) (-15 -3900 ((-650 (-1103 (-384))) (-650 (-266)) (-650 (-1103 (-384))))) (-15 -3460 ((-928) (-650 (-266)) (-928))) (-15 -2016 ((-928) (-650 (-266)) (-928))) (-15 -3160 ((-1142 (-227)) (-650 (-266)))) (-15 -2277 ((-928) (-650 (-266)) (-928))) (-15 -1673 ((-384) (-650 (-266)) (-384))) (-15 -1572 ((-1 (-950 (-227)) (-950 (-227))) (-650 (-266)) (-1 (-950 (-227)) (-950 (-227))))) (-15 -3159 ((-650 (-384)) (-650 (-266)) (-650 (-384)))))) (T -264)) +((-3159 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-384))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-1572 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-1673 (*1 *2 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2277 (*1 *2 *3 *2) (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-264)))) (-2016 (*1 *2 *3 *2) (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3460 (*1 *2 *3 *2) (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3900 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2588 (*1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3710 (*1 *2 *3 *2) (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2496 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-1429 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-3333 (*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-1965 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-2606 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) (-4194 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))) +(-10 -7 (-15 -4194 ((-112) (-650 (-266)) (-112))) (-15 -2606 ((-112) (-650 (-266)) (-112))) (-15 -1965 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-650 (-266)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3333 ((-1168) (-650 (-266)) (-1168))) (-15 -1429 ((-1168) (-650 (-266)) (-1168))) (-15 -2496 ((-112) (-650 (-266)) (-112))) (-15 -3710 ((-880) (-650 (-266)) (-880))) (-15 -2588 ((-880) (-650 (-266)) (-880))) (-15 -3900 ((-650 (-1103 (-384))) (-650 (-266)) (-650 (-1103 (-384))))) (-15 -3460 ((-928) (-650 (-266)) (-928))) (-15 -2016 ((-928) (-650 (-266)) (-928))) (-15 -3160 ((-1142 (-227)) (-650 (-266)))) (-15 -2277 ((-928) (-650 (-266)) (-928))) (-15 -1673 ((-384) (-650 (-266)) (-384))) (-15 -1572 ((-1 (-950 (-227)) (-950 (-227))) (-650 (-266)) (-1 (-950 (-227)) (-950 (-227))))) (-15 -3159 ((-650 (-384)) (-650 (-266)) (-650 (-384))))) +((-1593 (((-3 |#1| "failed") (-650 (-266)) (-1186)) 17))) +(((-265 |#1|) (-10 -7 (-15 -1593 ((-3 |#1| "failed") (-650 (-266)) (-1186)))) (-1226)) (T -265)) +((-1593 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *1 (-265 *2)) (-4 *2 (-1226))))) +(-10 -7 (-15 -1593 ((-3 |#1| "failed") (-650 (-266)) (-1186)))) +((-2419 (((-112) $ $) NIL)) (-1965 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2016 (($ (-928)) 81)) (-3460 (($ (-928)) 80)) (-1738 (($ (-650 (-384))) 87)) (-1673 (($ (-384)) 66)) (-2277 (($ (-928)) 82)) (-2496 (($ (-112)) 33)) (-3333 (($ (-1168)) 28)) (-1429 (($ (-1168)) 29)) (-3160 (($ (-1142 (-227))) 76)) (-3900 (($ (-650 (-1103 (-384)))) 72)) (-2762 (($ (-650 (-1103 (-384)))) 68) (($ (-650 (-1103 (-413 (-570))))) 71)) (-3537 (($ (-384)) 38) (($ (-880)) 42)) (-2646 (((-112) (-650 $) (-1186)) 100)) (-1593 (((-3 (-52) "failed") (-650 $) (-1186)) 102)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1394 (($ (-384)) 43) (($ (-880)) 44)) (-1861 (($ (-1 (-950 (-227)) (-950 (-227)))) 65)) (-1572 (($ (-1 (-950 (-227)) (-950 (-227)))) 83)) (-4182 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3798 (((-868) $) 93)) (-3058 (($ (-112)) 34) (($ (-650 (-1103 (-384)))) 60)) (-1319 (((-112) $ $) NIL)) (-4194 (($ (-112)) 35)) (-2923 (((-112) $ $) 97))) +(((-266) (-13 (-1109) (-10 -8 (-15 -4194 ($ (-112))) (-15 -3058 ($ (-112))) (-15 -1965 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3333 ($ (-1168))) (-15 -1429 ($ (-1168))) (-15 -2496 ($ (-112))) (-15 -3058 ($ (-650 (-1103 (-384))))) (-15 -1861 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -3537 ($ (-384))) (-15 -3537 ($ (-880))) (-15 -1394 ($ (-384))) (-15 -1394 ($ (-880))) (-15 -4182 ($ (-1 (-227) (-227)))) (-15 -4182 ($ (-1 (-227) (-227) (-227)))) (-15 -4182 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1673 ($ (-384))) (-15 -2762 ($ (-650 (-1103 (-384))))) (-15 -2762 ($ (-650 (-1103 (-413 (-570)))))) (-15 -3900 ($ (-650 (-1103 (-384))))) (-15 -3160 ($ (-1142 (-227)))) (-15 -3460 ($ (-928))) (-15 -2016 ($ (-928))) (-15 -2277 ($ (-928))) (-15 -1572 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -1738 ($ (-650 (-384)))) (-15 -1593 ((-3 (-52) "failed") (-650 $) (-1186))) (-15 -2646 ((-112) (-650 $) (-1186)))))) (T -266)) +((-4194 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) (-3058 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) (-1965 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-266)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266)))) (-1429 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) (-3058 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-266)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-266)))) (-4182 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-266)))) (-1673 (*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) (-2762 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-413 (-570))))) (-5 *1 (-266)))) (-3900 (*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-266)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))) (-2016 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-266)))) (-1593 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-52)) (-5 *1 (-266)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-112)) (-5 *1 (-266))))) +(-13 (-1109) (-10 -8 (-15 -4194 ($ (-112))) (-15 -3058 ($ (-112))) (-15 -1965 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3333 ($ (-1168))) (-15 -1429 ($ (-1168))) (-15 -2496 ($ (-112))) (-15 -3058 ($ (-650 (-1103 (-384))))) (-15 -1861 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -3537 ($ (-384))) (-15 -3537 ($ (-880))) (-15 -1394 ($ (-384))) (-15 -1394 ($ (-880))) (-15 -4182 ($ (-1 (-227) (-227)))) (-15 -4182 ($ (-1 (-227) (-227) (-227)))) (-15 -4182 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -1673 ($ (-384))) (-15 -2762 ($ (-650 (-1103 (-384))))) (-15 -2762 ($ (-650 (-1103 (-413 (-570)))))) (-15 -3900 ($ (-650 (-1103 (-384))))) (-15 -3160 ($ (-1142 (-227)))) (-15 -3460 ($ (-928))) (-15 -2016 ($ (-928))) (-15 -2277 ($ (-928))) (-15 -1572 ($ (-1 (-950 (-227)) (-950 (-227))))) (-15 -1738 ($ (-650 (-384)))) (-15 -1593 ((-3 (-52) "failed") (-650 $) (-1186))) (-15 -2646 ((-112) (-650 $) (-1186))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2194 (((-650 (-777)) $) NIL) (((-650 (-777)) $ |#2|) NIL)) (-2793 (((-777) $) NIL) (((-777) $ |#2|) NIL)) (-1709 (((-650 |#3|) $) NIL)) (-3768 (((-1182 $) $ |#3|) NIL) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 |#3|)) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2836 (($ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1134 |#1| |#2|) "failed") $) 23)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1134 |#1| |#2|) $) NIL)) (-2865 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ |#3|) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-537 |#3|) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))))) (-4202 (((-777) $ |#2|) NIL) (((-777) $) 10)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#1|) |#3|) NIL) (($ (-1182 $) |#3|) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-537 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#3|) NIL)) (-2302 (((-537 |#3|) $) NIL) (((-777) $ |#3|) NIL) (((-650 (-777)) $ (-650 |#3|)) NIL)) (-2550 (($ (-1 (-537 |#3|) (-537 |#3|)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2994 (((-1 $ (-777)) |#2|) NIL) (((-1 $ (-777)) $) NIL (|has| |#1| (-235)))) (-4372 (((-3 |#3| "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-3154 ((|#3| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-2916 (((-112) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-777))) "failed") $) NIL)) (-1511 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-650 |#3|) (-650 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-650 |#3|) (-650 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 $)) NIL (|has| |#1| (-235))) (($ $ |#2| |#1|) NIL (|has| |#1| (-235))) (($ $ (-650 |#2|) (-650 |#1|)) NIL (|has| |#1| (-235)))) (-3511 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3519 (($ $ |#3|) NIL) (($ $ (-650 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3803 (((-650 |#2|) $) NIL)) (-3324 (((-537 |#3|) $) NIL) (((-777) $ |#3|) NIL) (((-650 (-777)) $ (-650 |#3|)) NIL) (((-777) $ |#2|) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))))) (-1427 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ |#3|) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1134 |#1| |#2|)) 32) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-537 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ |#3|) NIL) (($ $ (-650 |#3|)) NIL) (($ $ |#3| (-777)) NIL) (($ $ (-650 |#3|) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-267 |#1| |#2| |#3|) (-13 (-256 |#1| |#2| |#3| (-537 |#3|)) (-1047 (-1134 |#1| |#2|))) (-1058) (-856) (-269 |#2|)) (T -267)) +NIL +(-13 (-256 |#1| |#2| |#3| (-537 |#3|)) (-1047 (-1134 |#1| |#2|))) +((-2793 (((-777) $) 37)) (-4382 (((-3 |#2| "failed") $) 22)) (-3152 ((|#2| $) 33)) (-3519 (($ $) 14) (($ $ (-777)) 18)) (-3798 (((-868) $) 32) (($ |#2|) 11)) (-2923 (((-112) $ $) 26)) (-2948 (((-112) $ $) 36))) +(((-268 |#1| |#2|) (-10 -8 (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -2793 ((-777) |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-269 |#2|) (-856)) (T -268)) +NIL +(-10 -8 (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -2793 ((-777) |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-2793 (((-777) $) 23)) (-2676 ((|#1| $) 24)) (-4382 (((-3 |#1| "failed") $) 28)) (-3152 ((|#1| $) 29)) (-4202 (((-777) $) 25)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-2994 (($ |#1| (-777)) 26)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3519 (($ $) 22) (($ $ (-777)) 21)) (-3798 (((-868) $) 12) (($ |#1|) 27)) (-1319 (((-112) $ $) 9)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19))) +(((-269 |#1|) (-141) (-856)) (T -269)) +((-3798 (*1 *1 *2) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-2994 (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777)))) (-3519 (*1 *1 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-269 *3)) (-4 *3 (-856))))) +(-13 (-856) (-1047 |t#1|) (-10 -8 (-15 -2994 ($ |t#1| (-777))) (-15 -4202 ((-777) $)) (-15 -2676 (|t#1| $)) (-15 -2793 ((-777) $)) (-15 -3519 ($ $)) (-15 -3519 ($ $ (-777))) (-15 -3798 ($ |t#1|)))) +(((-102) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-856) . T) ((-1047 |#1|) . T) ((-1109) . T)) +((-1709 (((-650 (-1186)) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 54)) (-3107 (((-650 (-1186)) (-320 (-227)) (-777)) 96)) (-3634 (((-3 (-320 (-227)) "failed") (-320 (-227))) 64)) (-2354 (((-320 (-227)) (-320 (-227))) 82)) (-3702 (((-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 39)) (-3490 (((-112) (-650 (-320 (-227)))) 106)) (-2544 (((-112) (-320 (-227))) 37)) (-2512 (((-650 (-1168)) (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))))) 134)) (-3208 (((-650 (-320 (-227))) (-650 (-320 (-227)))) 110)) (-3249 (((-650 (-320 (-227))) (-650 (-320 (-227)))) 108)) (-2037 (((-695 (-227)) (-650 (-320 (-227))) (-777)) 122)) (-2580 (((-112) (-320 (-227))) 32) (((-112) (-650 (-320 (-227)))) 107)) (-4227 (((-650 (-227)) (-650 (-849 (-227))) (-227)) 15)) (-1705 (((-384) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 128)) (-4149 (((-1044) (-1186) (-1044)) 47))) +(((-270) (-10 -7 (-15 -4227 ((-650 (-227)) (-650 (-849 (-227))) (-227))) (-15 -3702 ((-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -3634 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -2354 ((-320 (-227)) (-320 (-227)))) (-15 -3490 ((-112) (-650 (-320 (-227))))) (-15 -2580 ((-112) (-650 (-320 (-227))))) (-15 -2580 ((-112) (-320 (-227)))) (-15 -2037 ((-695 (-227)) (-650 (-320 (-227))) (-777))) (-15 -3249 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -3208 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -2544 ((-112) (-320 (-227)))) (-15 -1709 ((-650 (-1186)) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -3107 ((-650 (-1186)) (-320 (-227)) (-777))) (-15 -4149 ((-1044) (-1186) (-1044))) (-15 -1705 ((-384) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -2512 ((-650 (-1168)) (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))))))) (T -270)) +((-2512 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))))) (-5 *2 (-650 (-1168))) (-5 *1 (-270)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) (-5 *2 (-384)) (-5 *1 (-270)))) (-4149 (*1 *2 *3 *2) (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-270)))) (-3107 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-777)) (-5 *2 (-650 (-1186))) (-5 *1 (-270)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) (-5 *2 (-650 (-1186))) (-5 *1 (-270)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270)))) (-3208 (*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270)))) (-3249 (*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *4 (-777)) (-5 *2 (-695 (-227))) (-5 *1 (-270)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-270)))) (-3634 (*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-270)))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *1 (-270)))) (-4227 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-849 (-227)))) (-5 *4 (-227)) (-5 *2 (-650 *4)) (-5 *1 (-270))))) +(-10 -7 (-15 -4227 ((-650 (-227)) (-650 (-849 (-227))) (-227))) (-15 -3702 ((-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -3634 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -2354 ((-320 (-227)) (-320 (-227)))) (-15 -3490 ((-112) (-650 (-320 (-227))))) (-15 -2580 ((-112) (-650 (-320 (-227))))) (-15 -2580 ((-112) (-320 (-227)))) (-15 -2037 ((-695 (-227)) (-650 (-320 (-227))) (-777))) (-15 -3249 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -3208 ((-650 (-320 (-227))) (-650 (-320 (-227))))) (-15 -2544 ((-112) (-320 (-227)))) (-15 -1709 ((-650 (-1186)) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -3107 ((-650 (-1186)) (-320 (-227)) (-777))) (-15 -4149 ((-1044) (-1186) (-1044))) (-15 -1705 ((-384) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -2512 ((-650 (-1168)) (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))))))) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 56)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 32) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-271) (-845)) (T -271)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 72) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 63)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 41) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 43)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-272) (-845)) (T -272)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 90) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 85)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 52) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 65)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-273) (-845)) (T -273)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 73)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 45) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-274) (-845)) (T -274)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 65)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 31) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-275) (-845)) (T -275)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 90)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 33) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-276) (-845)) (T -276)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 87)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 32) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-277) (-845)) (T -277)) +NIL +(-845) +((-2419 (((-112) $ $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3023 (((-650 (-570)) $) 29)) (-3324 (((-777) $) 27)) (-3798 (((-868) $) 36) (($ (-650 (-570))) 23)) (-1319 (((-112) $ $) NIL)) (-2394 (($ (-777)) 33)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 17))) +(((-278) (-13 (-856) (-10 -8 (-15 -3798 ($ (-650 (-570)))) (-15 -3324 ((-777) $)) (-15 -3023 ((-650 (-570)) $)) (-15 -2394 ($ (-777)))))) (T -278)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-278)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278)))) (-2394 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-278))))) +(-13 (-856) (-10 -8 (-15 -3798 ($ (-650 (-570)))) (-15 -3324 ((-777) $)) (-15 -3023 ((-650 (-570)) $)) (-15 -2394 ($ (-777))))) +((-2774 ((|#2| |#2|) 77)) (-2629 ((|#2| |#2|) 65)) (-2473 (((-3 |#2| "failed") |#2| (-650 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2749 ((|#2| |#2|) 75)) (-2604 ((|#2| |#2|) 63)) (-4119 ((|#2| |#2|) 79)) (-2648 ((|#2| |#2|) 67)) (-1313 ((|#2|) 46)) (-3748 (((-115) (-115)) 100)) (-2665 ((|#2| |#2|) 61)) (-3848 (((-112) |#2|) 147)) (-2003 ((|#2| |#2|) 195)) (-3353 ((|#2| |#2|) 171)) (-2369 ((|#2|) 59)) (-3355 ((|#2|) 58)) (-1612 ((|#2| |#2|) 191)) (-2076 ((|#2| |#2|) 167)) (-2249 ((|#2| |#2|) 199)) (-3281 ((|#2| |#2|) 175)) (-3017 ((|#2| |#2|) 163)) (-1514 ((|#2| |#2|) 165)) (-2459 ((|#2| |#2|) 201)) (-4252 ((|#2| |#2|) 177)) (-1950 ((|#2| |#2|) 197)) (-1437 ((|#2| |#2|) 173)) (-2705 ((|#2| |#2|) 193)) (-3244 ((|#2| |#2|) 169)) (-1457 ((|#2| |#2|) 207)) (-1356 ((|#2| |#2|) 183)) (-4132 ((|#2| |#2|) 203)) (-1450 ((|#2| |#2|) 179)) (-2218 ((|#2| |#2|) 211)) (-4293 ((|#2| |#2|) 187)) (-4258 ((|#2| |#2|) 213)) (-4402 ((|#2| |#2|) 189)) (-1866 ((|#2| |#2|) 209)) (-1517 ((|#2| |#2|) 185)) (-2110 ((|#2| |#2|) 205)) (-2128 ((|#2| |#2|) 181)) (-4390 ((|#2| |#2|) 62)) (-4129 ((|#2| |#2|) 80)) (-2664 ((|#2| |#2|) 68)) (-2786 ((|#2| |#2|) 78)) (-2636 ((|#2| |#2|) 66)) (-2761 ((|#2| |#2|) 76)) (-2616 ((|#2| |#2|) 64)) (-4217 (((-112) (-115)) 98)) (-4165 ((|#2| |#2|) 83)) (-2704 ((|#2| |#2|) 71)) (-4141 ((|#2| |#2|) 81)) (-2678 ((|#2| |#2|) 69)) (-4186 ((|#2| |#2|) 85)) (-2726 ((|#2| |#2|) 73)) (-1504 ((|#2| |#2|) 86)) (-2737 ((|#2| |#2|) 74)) (-4176 ((|#2| |#2|) 84)) (-2715 ((|#2| |#2|) 72)) (-4153 ((|#2| |#2|) 82)) (-2692 ((|#2| |#2|) 70))) +(((-279 |#1| |#2|) (-10 -7 (-15 -4390 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2629 (|#2| |#2|)) (-15 -2636 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -2678 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -2715 (|#2| |#2|)) (-15 -2726 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -2749 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2786 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -1313 (|#2|)) (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -3355 (|#2|)) (-15 -2369 (|#2|)) (-15 -1514 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -3244 (|#2| |#2|)) (-15 -3353 (|#2| |#2|)) (-15 -1437 (|#2| |#2|)) (-15 -3281 (|#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -2128 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -4293 (|#2| |#2|)) (-15 -4402 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -1950 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -4258 (|#2| |#2|)) (-15 -2473 ((-3 |#2| "failed") |#2| (-650 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3848 ((-112) |#2|))) (-562) (-13 (-436 |#1|) (-1011))) (T -279)) +((-3848 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-279 *4 *3)) (-4 *3 (-13 (-436 *4) (-1011))))) (-2473 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-650 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-436 *4) (-1011))) (-4 *4 (-562)) (-5 *1 (-279 *4 *2)))) (-4258 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1866 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1457 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2110 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1950 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4402 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4293 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1517 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1356 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2128 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1450 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3281 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1437 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-3017 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-1514 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2369 (*1 *2) (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) (-4 *3 (-562)))) (-3355 (*1 *2) (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) (-4 *3 (-562)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-279 *3 *4)) (-4 *4 (-13 (-436 *3) (-1011))))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-279 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011))))) (-1313 (*1 *2) (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) (-4 *3 (-562)))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4176 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2726 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2715 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2636 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2629 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011))))) (-4390 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011)))))) +(-10 -7 (-15 -4390 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -2604 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2629 (|#2| |#2|)) (-15 -2636 (|#2| |#2|)) (-15 -2648 (|#2| |#2|)) (-15 -2664 (|#2| |#2|)) (-15 -2678 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2704 (|#2| |#2|)) (-15 -2715 (|#2| |#2|)) (-15 -2726 (|#2| |#2|)) (-15 -2737 (|#2| |#2|)) (-15 -2749 (|#2| |#2|)) (-15 -2761 (|#2| |#2|)) (-15 -2774 (|#2| |#2|)) (-15 -2786 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -4141 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -4165 (|#2| |#2|)) (-15 -4176 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -1504 (|#2| |#2|)) (-15 -1313 (|#2|)) (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -3355 (|#2|)) (-15 -2369 (|#2|)) (-15 -1514 (|#2| |#2|)) (-15 -3017 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -3244 (|#2| |#2|)) (-15 -3353 (|#2| |#2|)) (-15 -1437 (|#2| |#2|)) (-15 -3281 (|#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -1450 (|#2| |#2|)) (-15 -2128 (|#2| |#2|)) (-15 -1356 (|#2| |#2|)) (-15 -1517 (|#2| |#2|)) (-15 -4293 (|#2| |#2|)) (-15 -4402 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -1950 (|#2| |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -2110 (|#2| |#2|)) (-15 -1457 (|#2| |#2|)) (-15 -1866 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -4258 (|#2| |#2|)) (-15 -2473 ((-3 |#2| "failed") |#2| (-650 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3848 ((-112) |#2|))) +((-4294 (((-3 |#2| "failed") (-650 (-618 |#2|)) |#2| (-1186)) 153)) (-4072 ((|#2| (-413 (-570)) |#2|) 49)) (-3421 ((|#2| |#2| (-618 |#2|)) 146)) (-2572 (((-2 (|:| |func| |#2|) (|:| |kers| (-650 (-618 |#2|))) (|:| |vals| (-650 |#2|))) |#2| (-1186)) 145)) (-2659 ((|#2| |#2| (-1186)) 20) ((|#2| |#2|) 23)) (-2495 ((|#2| |#2| (-1186)) 159) ((|#2| |#2|) 157))) +(((-280 |#1| |#2|) (-10 -7 (-15 -2495 (|#2| |#2|)) (-15 -2495 (|#2| |#2| (-1186))) (-15 -2572 ((-2 (|:| |func| |#2|) (|:| |kers| (-650 (-618 |#2|))) (|:| |vals| (-650 |#2|))) |#2| (-1186))) (-15 -2659 (|#2| |#2|)) (-15 -2659 (|#2| |#2| (-1186))) (-15 -4294 ((-3 |#2| "failed") (-650 (-618 |#2|)) |#2| (-1186))) (-15 -3421 (|#2| |#2| (-618 |#2|))) (-15 -4072 (|#2| (-413 (-570)) |#2|))) (-13 (-562) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -280)) +((-4072 (*1 *2 *3 *2) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) (-3421 (*1 *2 *2 *3) (-12 (-5 *3 (-618 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)))) (-4294 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-1186)) (-4 *2 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *5 *2)))) (-2659 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) (-2659 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) (-2572 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-650 (-618 *3))) (|:| |vals| (-650 *3)))) (-5 *1 (-280 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-2495 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3)))))) +(-10 -7 (-15 -2495 (|#2| |#2|)) (-15 -2495 (|#2| |#2| (-1186))) (-15 -2572 ((-2 (|:| |func| |#2|) (|:| |kers| (-650 (-618 |#2|))) (|:| |vals| (-650 |#2|))) |#2| (-1186))) (-15 -2659 (|#2| |#2|)) (-15 -2659 (|#2| |#2| (-1186))) (-15 -4294 ((-3 |#2| "failed") (-650 (-618 |#2|)) |#2| (-1186))) (-15 -3421 (|#2| |#2| (-618 |#2|))) (-15 -4072 (|#2| (-413 (-570)) |#2|))) +((-3291 (((-3 |#3| "failed") |#3|) 120)) (-2774 ((|#3| |#3|) 142)) (-1856 (((-3 |#3| "failed") |#3|) 89)) (-2629 ((|#3| |#3|) 132)) (-1807 (((-3 |#3| "failed") |#3|) 65)) (-2749 ((|#3| |#3|) 140)) (-3528 (((-3 |#3| "failed") |#3|) 53)) (-2604 ((|#3| |#3|) 130)) (-2979 (((-3 |#3| "failed") |#3|) 122)) (-4119 ((|#3| |#3|) 144)) (-1999 (((-3 |#3| "failed") |#3|) 91)) (-2648 ((|#3| |#3|) 134)) (-1379 (((-3 |#3| "failed") |#3| (-777)) 41)) (-4240 (((-3 |#3| "failed") |#3|) 81)) (-2665 ((|#3| |#3|) 129)) (-4374 (((-3 |#3| "failed") |#3|) 51)) (-4390 ((|#3| |#3|) 128)) (-2201 (((-3 |#3| "failed") |#3|) 123)) (-4129 ((|#3| |#3|) 145)) (-1819 (((-3 |#3| "failed") |#3|) 92)) (-2664 ((|#3| |#3|) 135)) (-3582 (((-3 |#3| "failed") |#3|) 121)) (-2786 ((|#3| |#3|) 143)) (-2344 (((-3 |#3| "failed") |#3|) 90)) (-2636 ((|#3| |#3|) 133)) (-3303 (((-3 |#3| "failed") |#3|) 67)) (-2761 ((|#3| |#3|) 141)) (-1325 (((-3 |#3| "failed") |#3|) 55)) (-2616 ((|#3| |#3|) 131)) (-2687 (((-3 |#3| "failed") |#3|) 73)) (-4165 ((|#3| |#3|) 148)) (-2520 (((-3 |#3| "failed") |#3|) 114)) (-2704 ((|#3| |#3|) 152)) (-3403 (((-3 |#3| "failed") |#3|) 69)) (-4141 ((|#3| |#3|) 146)) (-1868 (((-3 |#3| "failed") |#3|) 57)) (-2678 ((|#3| |#3|) 136)) (-4223 (((-3 |#3| "failed") |#3|) 77)) (-4186 ((|#3| |#3|) 150)) (-1351 (((-3 |#3| "failed") |#3|) 61)) (-2726 ((|#3| |#3|) 138)) (-3370 (((-3 |#3| "failed") |#3|) 79)) (-1504 ((|#3| |#3|) 151)) (-3340 (((-3 |#3| "failed") |#3|) 63)) (-2737 ((|#3| |#3|) 139)) (-1529 (((-3 |#3| "failed") |#3|) 75)) (-4176 ((|#3| |#3|) 149)) (-3796 (((-3 |#3| "failed") |#3|) 117)) (-2715 ((|#3| |#3|) 153)) (-3725 (((-3 |#3| "failed") |#3|) 71)) (-4153 ((|#3| |#3|) 147)) (-2940 (((-3 |#3| "failed") |#3|) 59)) (-2692 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-413 (-570))) 47 (|has| |#1| (-368))))) +(((-281 |#1| |#2| |#3|) (-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -4390 (|#3| |#3|)) (-15 -2665 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2629 (|#3| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2664 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2726 (|#3| |#3|)) (-15 -2737 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2774 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4129 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4176 (|#3| |#3|)) (-15 -4186 (|#3| |#3|)) (-15 -1504 (|#3| |#3|)))) (-38 (-413 (-570))) (-1267 |#1|) (-1238 |#1| |#2|)) (T -281)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3)) (-4 *5 (-1267 *4)) (-5 *1 (-281 *4 *5 *2)) (-4 *2 (-1238 *4 *5)))) (-4390 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2629 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2636 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2715 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2726 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4176 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4))))) +(-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -4390 (|#3| |#3|)) (-15 -2665 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2629 (|#3| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2664 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2726 (|#3| |#3|)) (-15 -2737 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2774 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4129 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4176 (|#3| |#3|)) (-15 -4186 (|#3| |#3|)) (-15 -1504 (|#3| |#3|)))) +((-3291 (((-3 |#3| "failed") |#3|) 70)) (-2774 ((|#3| |#3|) 137)) (-1856 (((-3 |#3| "failed") |#3|) 54)) (-2629 ((|#3| |#3|) 125)) (-1807 (((-3 |#3| "failed") |#3|) 66)) (-2749 ((|#3| |#3|) 135)) (-3528 (((-3 |#3| "failed") |#3|) 50)) (-2604 ((|#3| |#3|) 123)) (-2979 (((-3 |#3| "failed") |#3|) 74)) (-4119 ((|#3| |#3|) 139)) (-1999 (((-3 |#3| "failed") |#3|) 58)) (-2648 ((|#3| |#3|) 127)) (-1379 (((-3 |#3| "failed") |#3| (-777)) 38)) (-4240 (((-3 |#3| "failed") |#3|) 48)) (-2665 ((|#3| |#3|) 111)) (-4374 (((-3 |#3| "failed") |#3|) 46)) (-4390 ((|#3| |#3|) 122)) (-2201 (((-3 |#3| "failed") |#3|) 76)) (-4129 ((|#3| |#3|) 140)) (-1819 (((-3 |#3| "failed") |#3|) 60)) (-2664 ((|#3| |#3|) 128)) (-3582 (((-3 |#3| "failed") |#3|) 72)) (-2786 ((|#3| |#3|) 138)) (-2344 (((-3 |#3| "failed") |#3|) 56)) (-2636 ((|#3| |#3|) 126)) (-3303 (((-3 |#3| "failed") |#3|) 68)) (-2761 ((|#3| |#3|) 136)) (-1325 (((-3 |#3| "failed") |#3|) 52)) (-2616 ((|#3| |#3|) 124)) (-2687 (((-3 |#3| "failed") |#3|) 78)) (-4165 ((|#3| |#3|) 143)) (-2520 (((-3 |#3| "failed") |#3|) 62)) (-2704 ((|#3| |#3|) 131)) (-3403 (((-3 |#3| "failed") |#3|) 112)) (-4141 ((|#3| |#3|) 141)) (-1868 (((-3 |#3| "failed") |#3|) 100)) (-2678 ((|#3| |#3|) 129)) (-4223 (((-3 |#3| "failed") |#3|) 116)) (-4186 ((|#3| |#3|) 145)) (-1351 (((-3 |#3| "failed") |#3|) 107)) (-2726 ((|#3| |#3|) 133)) (-3370 (((-3 |#3| "failed") |#3|) 117)) (-1504 ((|#3| |#3|) 146)) (-3340 (((-3 |#3| "failed") |#3|) 109)) (-2737 ((|#3| |#3|) 134)) (-1529 (((-3 |#3| "failed") |#3|) 80)) (-4176 ((|#3| |#3|) 144)) (-3796 (((-3 |#3| "failed") |#3|) 64)) (-2715 ((|#3| |#3|) 132)) (-3725 (((-3 |#3| "failed") |#3|) 113)) (-4153 ((|#3| |#3|) 142)) (-2940 (((-3 |#3| "failed") |#3|) 103)) (-2692 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-413 (-570))) 44 (|has| |#1| (-368))))) +(((-282 |#1| |#2| |#3| |#4|) (-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -4390 (|#3| |#3|)) (-15 -2665 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2629 (|#3| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2664 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2726 (|#3| |#3|)) (-15 -2737 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2774 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4129 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4176 (|#3| |#3|)) (-15 -4186 (|#3| |#3|)) (-15 -1504 (|#3| |#3|)))) (-38 (-413 (-570))) (-1236 |#1|) (-1259 |#1| |#2|) (-992 |#2|)) (T -282)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3)) (-4 *5 (-1236 *4)) (-5 *1 (-282 *4 *5 *2 *6)) (-4 *2 (-1259 *4 *5)) (-4 *6 (-992 *5)))) (-4390 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2604 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2629 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2636 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2648 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2678 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2704 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2715 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2726 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2761 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-2786 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4141 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4165 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4176 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) (-1504 (*1 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4))))) +(-13 (-992 |#3|) (-10 -7 (IF (|has| |#1| (-368)) (-15 ** (|#3| |#3| (-413 (-570)))) |%noBranch|) (-15 -4390 (|#3| |#3|)) (-15 -2665 (|#3| |#3|)) (-15 -2604 (|#3| |#3|)) (-15 -2616 (|#3| |#3|)) (-15 -2629 (|#3| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -2648 (|#3| |#3|)) (-15 -2664 (|#3| |#3|)) (-15 -2678 (|#3| |#3|)) (-15 -2692 (|#3| |#3|)) (-15 -2704 (|#3| |#3|)) (-15 -2715 (|#3| |#3|)) (-15 -2726 (|#3| |#3|)) (-15 -2737 (|#3| |#3|)) (-15 -2749 (|#3| |#3|)) (-15 -2761 (|#3| |#3|)) (-15 -2774 (|#3| |#3|)) (-15 -2786 (|#3| |#3|)) (-15 -4119 (|#3| |#3|)) (-15 -4129 (|#3| |#3|)) (-15 -4141 (|#3| |#3|)) (-15 -4153 (|#3| |#3|)) (-15 -4165 (|#3| |#3|)) (-15 -4176 (|#3| |#3|)) (-15 -4186 (|#3| |#3|)) (-15 -1504 (|#3| |#3|)))) +((-3215 (((-112) $) 20)) (-2034 (((-1191) $) 7)) (-1848 (((-3 (-512) "failed") $) 14)) (-4229 (((-3 (-650 $) "failed") $) NIL)) (-4281 (((-3 (-512) "failed") $) 21)) (-4330 (((-3 (-1113) "failed") $) 18)) (-1473 (((-112) $) 16)) (-3798 (((-868) $) NIL)) (-1947 (((-112) $) 9))) +(((-283) (-13 (-619 (-868)) (-10 -8 (-15 -2034 ((-1191) $)) (-15 -1473 ((-112) $)) (-15 -4330 ((-3 (-1113) "failed") $)) (-15 -3215 ((-112) $)) (-15 -4281 ((-3 (-512) "failed") $)) (-15 -1947 ((-112) $)) (-15 -1848 ((-3 (-512) "failed") $)) (-15 -4229 ((-3 (-650 $) "failed") $))))) (T -283)) +((-2034 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-283)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) (-4330 (*1 *2 *1) (|partial| -12 (-5 *2 (-1113)) (-5 *1 (-283)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) (-4281 (*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) (-1848 (*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283)))) (-4229 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-283))) (-5 *1 (-283))))) +(-13 (-619 (-868)) (-10 -8 (-15 -2034 ((-1191) $)) (-15 -1473 ((-112) $)) (-15 -4330 ((-3 (-1113) "failed") $)) (-15 -3215 ((-112) $)) (-15 -4281 ((-3 (-512) "failed") $)) (-15 -1947 ((-112) $)) (-15 -1848 ((-3 (-512) "failed") $)) (-15 -4229 ((-3 (-650 $) "failed") $)))) +((-3162 (((-603) $) 10)) (-2153 (((-591) $) 8)) (-1619 (((-295) $) 12)) (-2029 (($ (-591) (-603) (-295)) NIL)) (-3798 (((-868) $) 19))) +(((-284) (-13 (-619 (-868)) (-10 -8 (-15 -2029 ($ (-591) (-603) (-295))) (-15 -2153 ((-591) $)) (-15 -3162 ((-603) $)) (-15 -1619 ((-295) $))))) (T -284)) +((-2029 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-591)) (-5 *3 (-603)) (-5 *4 (-295)) (-5 *1 (-284)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-591)) (-5 *1 (-284)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-603)) (-5 *1 (-284)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-295)) (-5 *1 (-284))))) +(-13 (-619 (-868)) (-10 -8 (-15 -2029 ($ (-591) (-603) (-295))) (-15 -2153 ((-591) $)) (-15 -3162 ((-603) $)) (-15 -1619 ((-295) $)))) +((-1418 (($ (-1 (-112) |#2|) $) 24)) (-3552 (($ $) 38)) (-2571 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1697 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3583 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-4299 (($ |#2| $ (-570)) 20) (($ $ $ (-570)) 22)) (-4331 (($ $ (-570)) 11) (($ $ (-1243 (-570))) 14)) (-2832 (($ $ |#2|) 32) (($ $ $) NIL)) (-2445 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-650 $)) NIL))) +(((-285 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -3583 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2571 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2832 (|#1| |#1| |#1|)) (-15 -2832 (|#1| |#1| |#2|)) (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -4331 (|#1| |#1| (-1243 (-570)))) (-15 -4331 (|#1| |#1| (-570))) (-15 -2445 (|#1| (-650 |#1|))) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -1697 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1418 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1697 (|#1| |#2| |#1|)) (-15 -3552 (|#1| |#1|))) (-286 |#2|) (-1226)) (T -285)) +NIL +(-10 -8 (-15 -3583 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -3583 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2571 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2832 (|#1| |#1| |#1|)) (-15 -2832 (|#1| |#1| |#2|)) (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -4331 (|#1| |#1| (-1243 (-570)))) (-15 -4331 (|#1| |#1| (-570))) (-15 -2445 (|#1| (-650 |#1|))) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -1697 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1418 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1697 (|#1| |#2| |#1|)) (-15 -3552 (|#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 59 (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) |#1|) $) 86)) (-1418 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3786 (($ $) 84 (|has| |#1| (-1109)))) (-3552 (($ $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1109)))) (-1697 (($ |#1| $) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 52)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3583 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-2213 (($ |#1| $ (-570)) 89) (($ $ $ (-570)) 88)) (-4299 (($ |#1| $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 43 (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2973 (($ $ |#1|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1243 (-570))) 64)) (-3886 (($ $ (-570)) 92) (($ $ (-1243 (-570))) 91)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 71)) (-2832 (($ $ |#1|) 94) (($ $ $) 93)) (-2445 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-286 |#1|) (-141) (-1226)) (T -286)) +((-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)))) (-2832 (*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-1243 (-570))) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) (-2571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) (-2213 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-286 *2)) (-4 *2 (-1226)))) (-2213 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) (-3583 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) (-2660 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) (-2571 (*1 *1 *2 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)) (-4 *2 (-1109)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)) (-4 *2 (-1109)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)) (-4 *2 (-856))))) +(-13 (-657 |t#1|) (-10 -8 (-6 -4449) (-15 -2832 ($ $ |t#1|)) (-15 -2832 ($ $ $)) (-15 -3886 ($ $ (-570))) (-15 -3886 ($ $ (-1243 (-570)))) (-15 -2571 ($ (-1 (-112) |t#1|) $)) (-15 -2213 ($ |t#1| $ (-570))) (-15 -2213 ($ $ $ (-570))) (-15 -3583 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2660 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -2571 ($ |t#1| $)) (-15 -3786 ($ $))) |%noBranch|) (IF (|has| |t#1| (-856)) (-15 -3583 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) ((** (($ $ $) 10))) -(((-286 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-287)) (T -286)) +(((-287 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-288)) (T -287)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2662 (($ $) 6)) (-4389 (($ $) 7)) (** (($ $ $) 8))) -(((-287) (-140)) (T -287)) -((** (*1 *1 *1 *1) (-4 *1 (-287))) (-4389 (*1 *1 *1) (-4 *1 (-287))) (-2662 (*1 *1 *1) (-4 *1 (-287)))) -(-13 (-10 -8 (-15 -2662 ($ $)) (-15 -4389 ($ $)) (-15 ** ($ $ $)))) -((-1646 (((-649 (-1165 |#1|)) (-1165 |#1|) |#1|) 35)) (-2249 ((|#2| |#2| |#1|) 39)) (-2824 ((|#2| |#2| |#1|) 41)) (-3026 ((|#2| |#2| |#1|) 40))) -(((-288 |#1| |#2|) (-10 -7 (-15 -2249 (|#2| |#2| |#1|)) (-15 -3026 (|#2| |#2| |#1|)) (-15 -2824 (|#2| |#2| |#1|)) (-15 -1646 ((-649 (-1165 |#1|)) (-1165 |#1|) |#1|))) (-367) (-1266 |#1|)) (T -288)) -((-1646 (*1 *2 *3 *4) (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1165 *4))) (-5 *1 (-288 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-1266 *4)))) (-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))) (-3026 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3)))) (-2249 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3))))) -(-10 -7 (-15 -2249 (|#2| |#2| |#1|)) (-15 -3026 (|#2| |#2| |#1|)) (-15 -2824 (|#2| |#2| |#1|)) (-15 -1646 ((-649 (-1165 |#1|)) (-1165 |#1|) |#1|))) -((-1869 ((|#2| $ |#1|) 6))) -(((-289 |#1| |#2|) (-140) (-1108) (-1225)) (T -289)) -((-1869 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225))))) -(-13 (-10 -8 (-15 -1869 (|t#2| $ |t#1|)))) -((-3846 ((|#3| $ |#2| |#3|) 12)) (-3776 ((|#3| $ |#2|) 10))) -(((-290 |#1| |#2| |#3|) (-10 -8 (-15 -3846 (|#3| |#1| |#2| |#3|)) (-15 -3776 (|#3| |#1| |#2|))) (-291 |#2| |#3|) (-1108) (-1225)) (T -290)) -NIL -(-10 -8 (-15 -3846 (|#3| |#1| |#2| |#3|)) (-15 -3776 (|#3| |#1| |#2|))) -((-3943 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4448)))) (-3846 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 11)) (-1869 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-291 |#1| |#2|) (-140) (-1108) (-1225)) (T -291)) -((-1869 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-3776 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-3846 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225))))) -(-13 (-289 |t#1| |t#2|) (-10 -8 (-15 -1869 (|t#2| $ |t#1| |t#2|)) (-15 -3776 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -3943 (|t#2| $ |t#1| |t#2|)) (-15 -3846 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-289 |#1| |#2|) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 37)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 44)) (-4355 (($ $) 41)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) 35)) (-3598 (($ |#2| |#3|) 18)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 ((|#3| $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 19)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4054 (((-3 $ "failed") $ $) NIL)) (-2431 (((-776) $) 36)) (-1869 ((|#2| $ |#2|) 46)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 23)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 31 T CONST)) (-1815 (($) 39 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40))) -(((-292 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-310) (-10 -8 (-15 -2520 (|#3| $)) (-15 -3796 (|#2| $)) (-15 -3598 ($ |#2| |#3|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)) (-15 -1869 (|#2| $ |#2|)))) (-173) (-1251 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -292)) -((-3086 (*1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2520 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1251 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3598 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1251 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4054 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1817 (*1 *1 *1) (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1869 (*1 *2 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1251 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-310) (-10 -8 (-15 -2520 (|#3| $)) (-15 -3796 (|#2| $)) (-15 -3598 ($ |#2| |#3|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)) (-15 -1869 (|#2| $ |#2|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-293) (-140)) (T -293)) -NIL -(-13 (-1057) (-111 $ $) (-10 -7 (-6 -4440))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3603 (((-649 (-1093)) $) 10)) (-3443 (($ (-511) (-511) (-1112) $) 19)) (-2119 (($ (-511) (-649 (-971)) $) 23)) (-3037 (($) 25)) (-3990 (((-696 (-1112)) (-511) (-511) $) 18)) (-4172 (((-649 (-971)) (-511) $) 22)) (-3635 (($) 7)) (-1387 (($) 24)) (-3796 (((-867) $) 29)) (-3222 (($) 26))) -(((-294) (-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3603 ((-649 (-1093)) $)) (-15 -3990 ((-696 (-1112)) (-511) (-511) $)) (-15 -3443 ($ (-511) (-511) (-1112) $)) (-15 -4172 ((-649 (-971)) (-511) $)) (-15 -2119 ($ (-511) (-649 (-971)) $)) (-15 -1387 ($)) (-15 -3037 ($)) (-15 -3222 ($))))) (T -294)) -((-3635 (*1 *1) (-5 *1 (-294))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-649 (-1093))) (-5 *1 (-294)))) (-3990 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1112))) (-5 *1 (-294)))) (-3443 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-294)))) (-4172 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294)))) (-2119 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294)))) (-1387 (*1 *1) (-5 *1 (-294))) (-3037 (*1 *1) (-5 *1 (-294))) (-3222 (*1 *1) (-5 *1 (-294)))) -(-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3603 ((-649 (-1093)) $)) (-15 -3990 ((-696 (-1112)) (-511) (-511) $)) (-15 -3443 ($ (-511) (-511) (-1112) $)) (-15 -4172 ((-649 (-971)) (-511) $)) (-15 -2119 ($ (-511) (-649 (-971)) $)) (-15 -1387 ($)) (-15 -3037 ($)) (-15 -3222 ($)))) -((-3004 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 104)) (-3404 (((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|)))) 99) (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776)) 41)) (-2523 (((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))) 101)) (-1850 (((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|)))) 77)) (-2075 (((-649 (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (-694 (-412 (-958 |#1|)))) 76)) (-1886 (((-958 |#1|) (-694 (-412 (-958 |#1|)))) 57) (((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1185)) 58))) -(((-295 |#1|) (-10 -7 (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1185))) (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -2075 ((-649 (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -1850 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -3004 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -2523 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))))) (-457)) (T -295)) -((-2523 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-3004 (*1 *2 *3) (-12 (-4 *4 (-457)) (-5 *2 (-649 (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 *4)))))))) (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4)))))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-3404 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1174 (-1185) (-958 *6)))) (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6))))) (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6)))))) (-1850 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5)))))) (-2075 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457)) (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4))))) (-5 *1 (-295 *4)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4)) (-5 *1 (-295 *4)) (-4 *4 (-457)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1185)) (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457))))) -(-10 -7 (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))) (-1185))) (-15 -1886 ((-958 |#1|) (-694 (-412 (-958 |#1|))))) (-15 -2075 ((-649 (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (-694 (-412 (-958 |#1|))))) (-15 -1850 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|))) (-694 (-412 (-958 |#1|))) (-776) (-776))) (-15 -3404 ((-649 (-694 (-412 (-958 |#1|)))) (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|)))))) (-694 (-412 (-958 |#1|))))) (-15 -3004 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |geneigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|))))) (-15 -2523 ((-649 (-2 (|:| |eigval| (-3 (-412 (-958 |#1|)) (-1174 (-1185) (-958 |#1|)))) (|:| |eigmult| (-776)) (|:| |eigvec| (-649 (-694 (-412 (-958 |#1|))))))) (-694 (-412 (-958 |#1|)))))) -((-1346 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 14))) -(((-296 |#1| |#2|) (-10 -7 (-15 -1346 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-1225) (-1225)) (T -296)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6))))) -(-10 -7 (-15 -1346 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4143 (((-112) $) NIL (|has| |#1| (-21)))) (-1314 (($ $) 12)) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4296 (($ $ $) 95 (|has| |#1| (-305)))) (-4427 (($) NIL (-2776 (|has| |#1| (-21)) (|has| |#1| (-731))) CONST)) (-3107 (($ $) 51 (|has| |#1| (-21)))) (-1925 (((-3 $ "failed") $) 62 (|has| |#1| (-731)))) (-2115 ((|#1| $) 11)) (-3086 (((-3 $ "failed") $) 60 (|has| |#1| (-731)))) (-2349 (((-112) $) NIL (|has| |#1| (-731)))) (-1346 (($ (-1 |#1| |#1|) $) 14)) (-2105 ((|#1| $) 10)) (-2755 (($ $) 50 (|has| |#1| (-21)))) (-1562 (((-3 $ "failed") $) 61 (|has| |#1| (-731)))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1817 (($ $) 64 (-2776 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3526 (((-649 $) $) 85 (|has| |#1| (-561)))) (-1725 (($ $ $) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 $)) 28 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-1185) |#1|) 17 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 21 (|has| |#1| (-519 (-1185) |#1|)))) (-3497 (($ |#1| |#1|) 9)) (-2377 (((-134)) 90 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) 87 (|has| |#1| (-906 (-1185))))) (-3476 (($ $ $) NIL (|has| |#1| (-478)))) (-2180 (($ $ $) NIL (|has| |#1| (-478)))) (-3796 (($ (-569)) NIL (|has| |#1| (-1057))) (((-112) $) 37 (|has| |#1| (-1108))) (((-867) $) 36 (|has| |#1| (-1108)))) (-2721 (((-776)) 67 (|has| |#1| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1804 (($) 47 (|has| |#1| (-21)) CONST)) (-1815 (($) 57 (|has| |#1| (-731)) CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185))))) (-2920 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 92 (-2776 (|has| |#1| (-367)) (|has| |#1| (-478))))) (-3024 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3012 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-569)) NIL (|has| |#1| (-478))) (($ $ (-776)) NIL (|has| |#1| (-731))) (($ $ (-927)) NIL (|has| |#1| (-1120)))) (* (($ $ |#1|) 55 (|has| |#1| (-1120))) (($ |#1| $) 54 (|has| |#1| (-1120))) (($ $ $) 53 (|has| |#1| (-1120))) (($ (-569) $) 70 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-25))))) -(((-297 |#1|) (-13 (-1225) (-10 -8 (-15 -2920 ($ |#1| |#1|)) (-15 -3497 ($ |#1| |#1|)) (-15 -1314 ($ $)) (-15 -2105 (|#1| $)) (-15 -2115 (|#1| $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1185) |#1|)) (-6 (-519 (-1185) |#1|)) |%noBranch|) (IF (|has| |#1| (-1108)) (PROGN (-6 (-1108)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1725 ($ $ $)) (-15 -1725 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2755 ($ $)) (-15 -3107 ($ $)) (-15 -3024 ($ |#1| $)) (-15 -3024 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -3526 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1282 |#1|)) (-15 -3035 ($ $ $)) (-15 -1817 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4296 ($ $ $)) |%noBranch|))) (-1225)) (T -297)) -((-2920 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-3497 (*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-2105 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-2115 (*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-297 *3)))) (-1725 (*1 *1 *1 *1) (-12 (-4 *2 (-312 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)) (-5 *1 (-297 *2)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1108)) (-4 *3 (-1225)) (-5 *1 (-297 *3)))) (-3012 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225)))) (-2755 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-3107 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-3024 (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) (-1562 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225)))) (-1925 (*1 *1 *1) (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561)) (-4 *3 (-1225)))) (-4296 (*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1225)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225)))) (-3035 (*1 *1 *1 *1) (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225))))) (-1817 (*1 *1 *1) (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225))) (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225)))))) -(-13 (-1225) (-10 -8 (-15 -2920 ($ |#1| |#1|)) (-15 -3497 ($ |#1| |#1|)) (-15 -1314 ($ $)) (-15 -2105 (|#1| $)) (-15 -2115 (|#1| $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-519 (-1185) |#1|)) (-6 (-519 (-1185) |#1|)) |%noBranch|) (IF (|has| |#1| (-1108)) (PROGN (-6 (-1108)) (-6 (-618 (-112))) (IF (|has| |#1| (-312 |#1|)) (PROGN (-15 -1725 ($ $ $)) (-15 -1725 ($ $ (-649 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3012 ($ |#1| $)) (-15 -3012 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2755 ($ $)) (-15 -3107 ($ $)) (-15 -3024 ($ |#1| $)) (-15 -3024 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1120)) (PROGN (-6 (-1120)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-731)) (PROGN (-6 (-731)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-478)) (PROGN (-6 (-478)) (-15 -1562 ((-3 $ "failed") $)) (-15 -1925 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-6 (-1057)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|) (IF (|has| |#1| (-561)) (-15 -3526 ((-649 $) $)) |%noBranch|) (IF (|has| |#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-1282 |#1|)) (-15 -3035 ($ $ $)) (-15 -1817 ($ $))) |%noBranch|) (IF (|has| |#1| (-305)) (-15 -4296 ($ $ $)) |%noBranch|))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-298 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108)) (T -298)) -NIL -(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) -((-3647 (((-315) (-1167) (-649 (-1167))) 17) (((-315) (-1167) (-1167)) 16) (((-315) (-649 (-1167))) 15) (((-315) (-1167)) 14))) -(((-299) (-10 -7 (-15 -3647 ((-315) (-1167))) (-15 -3647 ((-315) (-649 (-1167)))) (-15 -3647 ((-315) (-1167) (-1167))) (-15 -3647 ((-315) (-1167) (-649 (-1167)))))) (T -299)) -((-3647 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1167))) (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-315)) (-5 *1 (-299)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299))))) -(-10 -7 (-15 -3647 ((-315) (-1167))) (-15 -3647 ((-315) (-649 (-1167)))) (-15 -3647 ((-315) (-1167) (-1167))) (-15 -3647 ((-315) (-1167) (-649 (-1167))))) -((-1346 ((|#2| (-1 |#2| |#1|) (-1167) (-617 |#1|)) 18))) -(((-300 |#1| |#2|) (-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-1167) (-617 |#1|)))) (-305) (-1225)) (T -300)) -((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1167)) (-5 *5 (-617 *6)) (-4 *6 (-305)) (-4 *2 (-1225)) (-5 *1 (-300 *6 *2))))) -(-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-1167) (-617 |#1|)))) -((-1346 ((|#2| (-1 |#2| |#1|) (-617 |#1|)) 17))) -(((-301 |#1| |#2|) (-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-617 |#1|)))) (-305) (-305)) (T -301)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305)) (-4 *2 (-305)) (-5 *1 (-301 *5 *2))))) -(-10 -7 (-15 -1346 (|#2| (-1 |#2| |#1|) (-617 |#1|)))) -((-1926 (((-112) (-226)) 12))) -(((-302 |#1| |#2|) (-10 -7 (-15 -1926 ((-112) (-226)))) (-226) (-226)) (T -302)) -((-1926 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -1926 ((-112) (-226)))) -((-3194 (((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226)))) 118)) (-2879 (((-1165 (-226)) (-1275 (-319 (-226))) (-649 (-1185)) (-1102 (-848 (-226)))) 135) (((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226)))) 72)) (-2718 (((-649 (-1167)) (-1165 (-226))) NIL)) (-1680 (((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226)))) 69)) (-1325 (((-649 (-226)) (-958 (-412 (-569))) (-1185) (-1102 (-848 (-226)))) 59)) (-3161 (((-649 (-1167)) (-649 (-226))) NIL)) (-2278 (((-226) (-1102 (-848 (-226)))) 29)) (-3783 (((-226) (-1102 (-848 (-226)))) 30)) (-3831 (((-112) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 64)) (-2145 (((-1167) (-226)) NIL))) -(((-303) (-10 -7 (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -3831 ((-112) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -3194 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-1275 (-319 (-226))) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -1325 ((-649 (-226)) (-958 (-412 (-569))) (-1185) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))))) (T -303)) -((-2718 (*1 *2 *3) (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-303)))) (-1325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1185)) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185))) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185))) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) (-3194 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185))) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) (-1680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185)) (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-112)) (-5 *1 (-303)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303))))) -(-10 -7 (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -3831 ((-112) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -1680 ((-649 (-226)) (-319 (-226)) (-1185) (-1102 (-848 (-226))))) (-15 -3194 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-319 (-226)) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -2879 ((-1165 (-226)) (-1275 (-319 (-226))) (-649 (-1185)) (-1102 (-848 (-226))))) (-15 -1325 ((-649 (-226)) (-958 (-412 (-569))) (-1185) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226))))) -((-3663 (((-649 (-617 $)) $) 27)) (-4296 (($ $ (-297 $)) 78) (($ $ (-649 (-297 $))) 139) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-4381 (((-3 (-617 $) "failed") $) 127)) (-3150 (((-617 $) $) 126)) (-2687 (($ $) 17) (($ (-649 $)) 54)) (-3810 (((-649 (-114)) $) 35)) (-3746 (((-114) (-114)) 88)) (-2719 (((-112) $) 150)) (-1346 (($ (-1 $ $) (-617 $)) 86)) (-2391 (((-3 (-617 $) "failed") $) 94)) (-1354 (($ (-114) $) 59) (($ (-114) (-649 $)) 110)) (-1825 (((-112) $ (-114)) 132) (((-112) $ (-1185)) 131)) (-1427 (((-776) $) 44)) (-1852 (((-112) $ $) 57) (((-112) $ (-1185)) 49)) (-4024 (((-112) $) 148)) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) 137) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 81) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) 67) (($ $ (-1185) (-1 $ $)) 72) (($ $ (-649 (-114)) (-649 (-1 $ $))) 80) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 82) (($ $ (-114) (-1 $ (-649 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1869 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-649 $)) 123)) (-2190 (($ $) 51) (($ $ $) 135)) (-4213 (($ $) 15) (($ (-649 $)) 53)) (-4052 (((-112) (-114)) 21))) -(((-304 |#1|) (-10 -8 (-15 -2719 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -1852 ((-112) |#1| (-1185))) (-15 -1852 ((-112) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1354 (|#1| (-114) (-649 |#1|))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -1825 ((-112) |#1| (-1185))) (-15 -1825 ((-112) |#1| (-114))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3810 ((-649 (-114)) |#1|)) (-15 -3663 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1427 ((-776) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -2687 (|#1| (-649 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -4213 (|#1| (-649 |#1|))) (-15 -4213 (|#1| |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|))) (-305)) (T -304)) -((-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305))))) -(-10 -8 (-15 -2719 ((-112) |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -1852 ((-112) |#1| (-1185))) (-15 -1852 ((-112) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#1| |#1|) (-617 |#1|))) (-15 -1354 (|#1| (-114) (-649 |#1|))) (-15 -1354 (|#1| (-114) |#1|)) (-15 -1825 ((-112) |#1| (-1185))) (-15 -1825 ((-112) |#1| (-114))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3810 ((-649 (-114)) |#1|)) (-15 -3663 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -1427 ((-776) |#1|)) (-15 -2190 (|#1| |#1| |#1|)) (-15 -2190 (|#1| |#1|)) (-15 -2687 (|#1| (-649 |#1|))) (-15 -2687 (|#1| |#1|)) (-15 -4213 (|#1| (-649 |#1|))) (-15 -4213 (|#1| |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|))) -((-2417 (((-112) $ $) 7)) (-3663 (((-649 (-617 $)) $) 39)) (-4296 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-4381 (((-3 (-617 $) "failed") $) 64)) (-3150 (((-617 $) $) 65)) (-2687 (($ $) 46) (($ (-649 $)) 45)) (-3810 (((-649 (-114)) $) 38)) (-3746 (((-114) (-114)) 37)) (-2719 (((-112) $) 17 (|has| $ (-1046 (-569))))) (-2341 (((-1181 $) (-617 $)) 20 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 31)) (-2391 (((-3 (-617 $) "failed") $) 41)) (-3435 (((-1167) $) 10)) (-3736 (((-649 (-617 $)) $) 40)) (-1354 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-1825 (((-112) $ (-114)) 35) (((-112) $ (-1185)) 34)) (-1427 (((-776) $) 42)) (-3547 (((-1128) $) 11)) (-1852 (((-112) $ $) 30) (((-112) $ (-1185)) 29)) (-4024 (((-112) $) 18 (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1185) (-1 $ (-649 $))) 26) (($ $ (-1185) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1869 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2190 (($ $) 44) (($ $ $) 43)) (-4061 (($ $) 19 (|has| $ (-1057)))) (-3796 (((-867) $) 12) (($ (-617 $)) 63)) (-4213 (($ $) 48) (($ (-649 $)) 47)) (-4052 (((-112) (-114)) 36)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-305) (-140)) (T -305)) -((-1869 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1869 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305)))) (-4296 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-4213 (*1 *1 *1) (-4 *1 (-305))) (-4213 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2687 (*1 *1 *1) (-4 *1 (-305))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) (-2190 (*1 *1 *1) (-4 *1 (-305))) (-2190 (*1 *1 *1 *1) (-4 *1 (-305))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776)))) (-2391 (*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114))))) (-3746 (*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-4052 (*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112)))) (-1354 (*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) (-1354 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) (-1346 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305)))) (-1852 (*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112)))) (-1852 (*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-1057)) (-4 *1 (-305)) (-5 *2 (-1181 *1)))) (-4061 (*1 *1 *1) (-12 (-4 *1 (-1057)) (-4 *1 (-305)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112))))) -(-13 (-1108) (-1046 (-617 $)) (-519 (-617 $) $) (-312 $) (-10 -8 (-15 -1869 ($ (-114) $)) (-15 -1869 ($ (-114) $ $)) (-15 -1869 ($ (-114) $ $ $)) (-15 -1869 ($ (-114) $ $ $ $)) (-15 -1869 ($ (-114) (-649 $))) (-15 -4296 ($ $ (-297 $))) (-15 -4296 ($ $ (-649 (-297 $)))) (-15 -4296 ($ $ (-649 (-617 $)) (-649 $))) (-15 -4213 ($ $)) (-15 -4213 ($ (-649 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-649 $))) (-15 -2190 ($ $)) (-15 -2190 ($ $ $)) (-15 -1427 ((-776) $)) (-15 -2391 ((-3 (-617 $) "failed") $)) (-15 -3736 ((-649 (-617 $)) $)) (-15 -3663 ((-649 (-617 $)) $)) (-15 -3810 ((-649 (-114)) $)) (-15 -3746 ((-114) (-114))) (-15 -4052 ((-112) (-114))) (-15 -1825 ((-112) $ (-114))) (-15 -1825 ((-112) $ (-1185))) (-15 -1354 ($ (-114) $)) (-15 -1354 ($ (-114) (-649 $))) (-15 -1346 ($ (-1 $ $) (-617 $))) (-15 -1852 ((-112) $ $)) (-15 -1852 ((-112) $ (-1185))) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-1 $ $)))) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-1 $ (-649 $))))) (-15 -1725 ($ $ (-1185) (-1 $ (-649 $)))) (-15 -1725 ($ $ (-1185) (-1 $ $))) (-15 -1725 ($ $ (-649 (-114)) (-649 (-1 $ $)))) (-15 -1725 ($ $ (-649 (-114)) (-649 (-1 $ (-649 $))))) (-15 -1725 ($ $ (-114) (-1 $ (-649 $)))) (-15 -1725 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1057)) (PROGN (-15 -2341 ((-1181 $) (-617 $))) (-15 -4061 ($ $))) |%noBranch|) (IF (|has| $ (-1046 (-569))) (PROGN (-15 -4024 ((-112) $)) (-15 -2719 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-621 #0=(-617 $)) . T) ((-618 (-867)) . T) ((-312 $) . T) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-1046 #0#) . T) ((-1108) . T)) -((-3308 (((-649 |#1|) (-649 |#1|)) 10))) -(((-306 |#1|) (-10 -7 (-15 -3308 ((-649 |#1|) (-649 |#1|)))) (-853)) (T -306)) -((-3308 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3))))) -(-10 -7 (-15 -3308 ((-649 |#1|) (-649 |#1|)))) -((-1346 (((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)) 17))) -(((-307 |#1| |#2|) (-10 -7 (-15 -1346 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)))) (-1057) (-1057)) (T -307)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6))))) -(-10 -7 (-15 -1346 ((-694 |#2|) (-1 |#2| |#1|) (-694 |#1|)))) -((-2569 (((-1275 (-319 (-383))) (-1275 (-319 (-226)))) 112)) (-4100 (((-1102 (-848 (-226))) (-1102 (-848 (-383)))) 45)) (-2718 (((-649 (-1167)) (-1165 (-226))) 94)) (-1511 (((-319 (-383)) (-958 (-226))) 55)) (-4297 (((-226) (-958 (-226))) 51)) (-1491 (((-1167) (-383)) 197)) (-4396 (((-848 (-226)) (-848 (-383))) 39)) (-2375 (((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1275 (-319 (-226)))) 165)) (-2558 (((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) 209) (((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) 207)) (-1863 (((-694 (-226)) (-649 (-226)) (-776)) 21)) (-3297 (((-1275 (-704)) (-649 (-226))) 101)) (-3161 (((-649 (-1167)) (-649 (-226))) 81)) (-1361 (((-3 (-319 (-226)) "failed") (-319 (-226))) 130)) (-1926 (((-112) (-226) (-1102 (-848 (-226)))) 119)) (-4005 (((-1043) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) 226)) (-2278 (((-226) (-1102 (-848 (-226)))) 114)) (-3783 (((-226) (-1102 (-848 (-226)))) 115)) (-2352 (((-226) (-412 (-569))) 33)) (-1740 (((-1167) (-383)) 79)) (-4108 (((-226) (-383)) 24)) (-2640 (((-383) (-1275 (-319 (-226)))) 179)) (-3786 (((-319 (-226)) (-319 (-383))) 30)) (-2421 (((-412 (-569)) (-319 (-226))) 58)) (-2560 (((-319 (-412 (-569))) (-319 (-226))) 75)) (-2938 (((-319 (-383)) (-319 (-226))) 105)) (-4127 (((-226) (-319 (-226))) 59)) (-4032 (((-649 (-226)) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) 70)) (-2320 (((-1102 (-848 (-226))) (-1102 (-848 (-226)))) 67)) (-2145 (((-1167) (-226)) 78)) (-3803 (((-704) (-226)) 97)) (-2575 (((-412 (-569)) (-226)) 60)) (-2696 (((-319 (-383)) (-226)) 54)) (-1410 (((-649 (-1102 (-848 (-226)))) (-649 (-1102 (-848 (-383))))) 48)) (-2443 (((-1043) (-649 (-1043))) 193) (((-1043) (-1043) (-1043)) 187)) (-2318 (((-1043) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) -(((-308) (-10 -7 (-15 -4108 ((-226) (-383))) (-15 -3786 ((-319 (-226)) (-319 (-383)))) (-15 -4396 ((-848 (-226)) (-848 (-383)))) (-15 -4100 ((-1102 (-848 (-226))) (-1102 (-848 (-383))))) (-15 -1410 ((-649 (-1102 (-848 (-226)))) (-649 (-1102 (-848 (-383)))))) (-15 -2575 ((-412 (-569)) (-226))) (-15 -2421 ((-412 (-569)) (-319 (-226)))) (-15 -4127 ((-226) (-319 (-226)))) (-15 -1361 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2640 ((-383) (-1275 (-319 (-226))))) (-15 -2375 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1275 (-319 (-226))))) (-15 -2560 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2320 ((-1102 (-848 (-226))) (-1102 (-848 (-226))))) (-15 -4032 ((-649 (-226)) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-15 -3803 ((-704) (-226))) (-15 -3297 ((-1275 (-704)) (-649 (-226)))) (-15 -2938 ((-319 (-383)) (-319 (-226)))) (-15 -2569 ((-1275 (-319 (-383))) (-1275 (-319 (-226))))) (-15 -1926 ((-112) (-226) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -1740 ((-1167) (-383))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -2443 ((-1043) (-1043) (-1043))) (-15 -2443 ((-1043) (-649 (-1043)))) (-15 -1491 ((-1167) (-383))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))) (-15 -2318 ((-1043) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4005 ((-1043) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -1511 ((-319 (-383)) (-958 (-226)))) (-15 -4297 ((-226) (-958 (-226)))) (-15 -2696 ((-319 (-383)) (-226))) (-15 -2352 ((-226) (-412 (-569)))) (-15 -1863 ((-694 (-226)) (-649 (-226)) (-776))))) (T -308)) -((-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) (-5 *1 (-308)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-4297 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-649 (-1043))) (-5 *2 (-1043)) (-5 *1 (-308)))) (-2443 (*1 *2 *2 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-308)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-308)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *4 (-1102 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-308)))) (-2569 (*1 *2 *3) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-1275 (-319 (-383)))) (-5 *1 (-308)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308)))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275 (-704))) (-5 *1 (-308)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *2 (-649 (-226))) (-5 *1 (-308)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1102 (-848 (-226)))) (-5 *1 (-308)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569)))) (-5 *1 (-308)))) (-2375 (*1 *2 *3) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569)))) (-5 *1 (-308)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308)))) (-1361 (*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-649 (-1102 (-848 (-383))))) (-5 *2 (-649 (-1102 (-848 (-226))))) (-5 *1 (-308)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-1102 (-848 (-383)))) (-5 *2 (-1102 (-848 (-226)))) (-5 *1 (-308)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308)))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308))))) -(-10 -7 (-15 -4108 ((-226) (-383))) (-15 -3786 ((-319 (-226)) (-319 (-383)))) (-15 -4396 ((-848 (-226)) (-848 (-383)))) (-15 -4100 ((-1102 (-848 (-226))) (-1102 (-848 (-383))))) (-15 -1410 ((-649 (-1102 (-848 (-226)))) (-649 (-1102 (-848 (-383)))))) (-15 -2575 ((-412 (-569)) (-226))) (-15 -2421 ((-412 (-569)) (-319 (-226)))) (-15 -4127 ((-226) (-319 (-226)))) (-15 -1361 ((-3 (-319 (-226)) "failed") (-319 (-226)))) (-15 -2640 ((-383) (-1275 (-319 (-226))))) (-15 -2375 ((-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569))) (-1275 (-319 (-226))))) (-15 -2560 ((-319 (-412 (-569))) (-319 (-226)))) (-15 -2320 ((-1102 (-848 (-226))) (-1102 (-848 (-226))))) (-15 -4032 ((-649 (-226)) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-15 -3803 ((-704) (-226))) (-15 -3297 ((-1275 (-704)) (-649 (-226)))) (-15 -2938 ((-319 (-383)) (-319 (-226)))) (-15 -2569 ((-1275 (-319 (-383))) (-1275 (-319 (-226))))) (-15 -1926 ((-112) (-226) (-1102 (-848 (-226))))) (-15 -2145 ((-1167) (-226))) (-15 -1740 ((-1167) (-383))) (-15 -3161 ((-649 (-1167)) (-649 (-226)))) (-15 -2718 ((-649 (-1167)) (-1165 (-226)))) (-15 -2278 ((-226) (-1102 (-848 (-226))))) (-15 -3783 ((-226) (-1102 (-848 (-226))))) (-15 -2443 ((-1043) (-1043) (-1043))) (-15 -2443 ((-1043) (-649 (-1043)))) (-15 -1491 ((-1167) (-383))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))))) (-15 -2558 ((-1043) (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))))) (-15 -2318 ((-1043) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4005 ((-1043) (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))) (-15 -1511 ((-319 (-383)) (-958 (-226)))) (-15 -4297 ((-226) (-958 (-226)))) (-15 -2696 ((-319 (-383)) (-226))) (-15 -2352 ((-226) (-412 (-569)))) (-15 -1863 ((-694 (-226)) (-649 (-226)) (-776)))) -((-2227 (((-112) $ $) 14)) (-2368 (($ $ $) 18)) (-2379 (($ $ $) 17)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 50)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 65)) (-1870 (($ $ $) 25) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2407 (((-3 $ "failed") $ $) 21)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 53))) -(((-309 |#1|) (-10 -8 (-15 -3817 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -3964 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3964 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -4020 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1865 ((-2 (|:| -1435 (-649 |#1|)) (|:| -2332 |#1|)) (-649 |#1|))) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|))) (-310)) (T -309)) -NIL -(-10 -8 (-15 -3817 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -3964 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3964 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2368 (|#1| |#1| |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2227 ((-112) |#1| |#1|)) (-15 -4020 ((-3 (-649 |#1|) "failed") (-649 |#1|) |#1|)) (-15 -1865 ((-2 (|:| -1435 (-649 |#1|)) (|:| -2332 |#1|)) (-649 |#1|))) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-310) (-140)) (T -310)) -((-2227 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776)))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-310)))) (-2379 (*1 *1 *1 *1) (-4 *1 (-310))) (-2368 (*1 *1 *1 *1) (-4 *1 (-310))) (-3964 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) (-4 *1 (-310)))) (-3964 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-310)))) (-3817 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310))))) -(-13 (-926) (-10 -8 (-15 -2227 ((-112) $ $)) (-15 -2431 ((-776) $)) (-15 -2084 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2379 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -3964 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $)) (-15 -3964 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3817 ((-3 (-649 $) "failed") (-649 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1725 (($ $ (-649 |#2|) (-649 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-297 |#2|)) 11) (($ $ (-649 (-297 |#2|))) NIL))) -(((-311 |#1| |#2|) (-10 -8 (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|)))) (-312 |#2|) (-1108)) (T -311)) -NIL -(-10 -8 (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|)))) -((-1725 (($ $ (-649 |#1|) (-649 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-297 |#1|)) 11) (($ $ (-649 (-297 |#1|))) 10))) -(((-312 |#1|) (-140) (-1108)) (T -312)) -((-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1108)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1108))))) -(-13 (-519 |t#1| |t#1|) (-10 -8 (-15 -1725 ($ $ (-297 |t#1|))) (-15 -1725 ($ $ (-649 (-297 |t#1|)))))) -(((-519 |#1| |#1|) . T)) -((-1725 ((|#1| (-1 |#1| (-569)) (-1187 (-412 (-569)))) 25))) -(((-313 |#1|) (-10 -7 (-15 -1725 (|#1| (-1 |#1| (-569)) (-1187 (-412 (-569)))))) (-38 (-412 (-569)))) (T -313)) -((-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1187 (-412 (-569)))) (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569))))))) -(-10 -7 (-15 -1725 (|#1| (-1 |#1| (-569)) (-1187 (-412 (-569)))))) -((-2417 (((-112) $ $) NIL)) (-2467 (((-569) $) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 9)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-314) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -2467 ((-569) $))))) (T -314)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-314)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314))))) -(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -2467 ((-569) $)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 7)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9))) -(((-315) (-1108)) (T -315)) -NIL -(-1108) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 60)) (-1938 (((-1261 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1261 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-3 (-1260 |#2| |#3| |#4|) "failed") $) 26)) (-3150 (((-1261 |#1| |#2| |#3| |#4|) $) NIL) (((-1185) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-569) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-569)))) (((-1260 |#2| |#3| |#4|) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-1261 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1275 (-1261 |#1| |#2| |#3| |#4|)))) (-694 $) (-1275 $)) NIL) (((-694 (-1261 |#1| |#2| |#3| |#4|)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-1261 |#1| |#2| |#3| |#4|) $) 22)) (-3885 (((-3 $ "failed") $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1160)))) (-2051 (((-112) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2839 (($ $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-1346 (($ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) $) NIL)) (-3013 (((-3 (-848 |#2|) "failed") $) 80)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-310)))) (-3465 (((-1261 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-1261 |#1| |#2| |#3| |#4|)) (-649 (-1261 |#1| |#2| |#3| |#4|))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-297 (-1261 |#1| |#2| |#3| |#4|))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-297 (-1261 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-312 (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-649 (-1185)) (-649 (-1261 |#1| |#2| |#3| |#4|))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-519 (-1185) (-1261 |#1| |#2| |#3| |#4|)))) (($ $ (-1185) (-1261 |#1| |#2| |#3| |#4|)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-519 (-1185) (-1261 |#1| |#2| |#3| |#4|))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-1261 |#1| |#2| |#3| |#4|)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-289 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1185)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-1261 |#1| |#2| |#3| |#4|) $) 19)) (-1410 (((-898 (-569)) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-619 (-541)))) (((-383) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1030))) (((-226) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3| |#4|) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-1261 |#1| |#2| |#3| |#4|)) 30) (($ (-1185)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-1046 (-1185)))) (($ (-1260 |#2| |#3| |#4|)) 37)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-1261 |#1| |#2| |#3| |#4|) (-915))) (|has| (-1261 |#1| |#2| |#3| |#4|) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-1261 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-234))) (($ $ (-1185)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-906 (-1185)))) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) (-776)) NIL) (($ $ (-1 (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-1261 |#1| |#2| |#3| |#4|) (-855)))) (-3035 (($ $ $) 35) (($ (-1261 |#1| |#2| |#3| |#4|) (-1261 |#1| |#2| |#3| |#4|)) 32)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-1261 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1261 |#1| |#2| |#3| |#4|)) NIL))) -(((-316 |#1| |#2| |#3| |#4|) (-13 (-1000 (-1261 |#1| |#2| |#3| |#4|)) (-1046 (-1260 |#2| |#3| |#4|)) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -3796 ($ (-1260 |#2| |#3| |#4|))))) (-13 (-1046 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1210) (-435 |#1|)) (-1185) |#2|) (T -316)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4) (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *1 (-316 *3 *4 *5 *6)))) (-3013 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4)))) -(-13 (-1000 (-1261 |#1| |#2| |#3| |#4|)) (-1046 (-1260 |#2| |#3| |#4|)) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -3796 ($ (-1260 |#2| |#3| |#4|))))) -((-1346 (((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)) 13))) -(((-317 |#1| |#2|) (-10 -7 (-15 -1346 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)))) (-1108) (-1108)) (T -317)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6))))) -(-10 -7 (-15 -1346 ((-319 |#2|) (-1 |#2| |#1|) (-319 |#1|)))) -((-1773 (((-52) |#2| (-297 |#2|) (-776)) 40) (((-52) |#2| (-297 |#2|)) 32) (((-52) |#2| (-776)) 35) (((-52) |#2|) 33) (((-52) (-1185)) 26)) (-3323 (((-52) |#2| (-297 |#2|) (-412 (-569))) 59) (((-52) |#2| (-297 |#2|)) 56) (((-52) |#2| (-412 (-569))) 58) (((-52) |#2|) 57) (((-52) (-1185)) 55)) (-1797 (((-52) |#2| (-297 |#2|) (-412 (-569))) 54) (((-52) |#2| (-297 |#2|)) 51) (((-52) |#2| (-412 (-569))) 53) (((-52) |#2|) 52) (((-52) (-1185)) 50)) (-1784 (((-52) |#2| (-297 |#2|) (-569)) 47) (((-52) |#2| (-297 |#2|)) 44) (((-52) |#2| (-569)) 46) (((-52) |#2|) 45) (((-52) (-1185)) 43))) -(((-318 |#1| |#2|) (-10 -7 (-15 -1773 ((-52) (-1185))) (-15 -1773 ((-52) |#2|)) (-15 -1773 ((-52) |#2| (-776))) (-15 -1773 ((-52) |#2| (-297 |#2|))) (-15 -1773 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1784 ((-52) (-1185))) (-15 -1784 ((-52) |#2|)) (-15 -1784 ((-52) |#2| (-569))) (-15 -1784 ((-52) |#2| (-297 |#2|))) (-15 -1784 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1797 ((-52) (-1185))) (-15 -1797 ((-52) |#2|)) (-15 -1797 ((-52) |#2| (-412 (-569)))) (-15 -1797 ((-52) |#2| (-297 |#2|))) (-15 -1797 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -3323 ((-52) (-1185))) (-15 -3323 ((-52) |#2|)) (-15 -3323 ((-52) |#2| (-412 (-569)))) (-15 -3323 ((-52) |#2| (-297 |#2|))) (-15 -3323 ((-52) |#2| (-297 |#2|) (-412 (-569))))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -318)) -((-3323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1797 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 *5) (-644 *5))) (-5 *5 (-569)) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1784 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1046 *4) (-644 *4))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1784 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-297 *3)) (-5 *5 (-776)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1773 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4)))))) -(-10 -7 (-15 -1773 ((-52) (-1185))) (-15 -1773 ((-52) |#2|)) (-15 -1773 ((-52) |#2| (-776))) (-15 -1773 ((-52) |#2| (-297 |#2|))) (-15 -1773 ((-52) |#2| (-297 |#2|) (-776))) (-15 -1784 ((-52) (-1185))) (-15 -1784 ((-52) |#2|)) (-15 -1784 ((-52) |#2| (-569))) (-15 -1784 ((-52) |#2| (-297 |#2|))) (-15 -1784 ((-52) |#2| (-297 |#2|) (-569))) (-15 -1797 ((-52) (-1185))) (-15 -1797 ((-52) |#2|)) (-15 -1797 ((-52) |#2| (-412 (-569)))) (-15 -1797 ((-52) |#2| (-297 |#2|))) (-15 -1797 ((-52) |#2| (-297 |#2|) (-412 (-569)))) (-15 -3323 ((-52) (-1185))) (-15 -3323 ((-52) |#2|)) (-15 -3323 ((-52) |#2| (-412 (-569)))) (-15 -3323 ((-52) |#2| (-297 |#2|))) (-15 -3323 ((-52) |#2| (-297 |#2|) (-412 (-569))))) -((-2417 (((-112) $ $) NIL)) (-3194 (((-649 $) $ (-1185)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $) (-1185)) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-2565 (($ $ (-1185)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1181 $) (-1185)) NIL (|has| |#1| (-561))) (($ (-1181 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-4143 (((-112) $) 27 (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-1712 (((-649 (-1185)) $) 368)) (-3767 (((-412 (-1181 $)) $ (-617 $)) NIL (|has| |#1| (-561)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3663 (((-649 (-617 $)) $) NIL)) (-2771 (($ $) 171 (|has| |#1| (-561)))) (-2626 (($ $) 147 (|has| |#1| (-561)))) (-2365 (($ $ (-1100 $)) 232 (|has| |#1| (-561))) (($ $ (-1185)) 228 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) 386) (($ $ (-649 (-617 $)) (-649 $)) 430)) (-3534 (((-423 (-1181 $)) (-1181 $)) 308 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-1830 (($ $) NIL (|has| |#1| (-561)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-561)))) (-3813 (($ $) NIL (|has| |#1| (-561)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2746 (($ $) 167 (|has| |#1| (-561)))) (-2601 (($ $) 143 (|has| |#1| (-561)))) (-2801 (($ $ (-569)) 73 (|has| |#1| (-561)))) (-4118 (($ $) 175 (|has| |#1| (-561)))) (-2647 (($ $) 151 (|has| |#1| (-561)))) (-4427 (($) NIL (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))) CONST)) (-1333 (((-649 $) $ (-1185)) NIL (|has| |#1| (-561))) (((-649 $) $) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $) (-1185)) NIL (|has| |#1| (-561))) (((-649 $) (-1181 $)) NIL (|has| |#1| (-561))) (((-649 $) (-958 $)) NIL (|has| |#1| (-561)))) (-2793 (($ $ (-1185)) NIL (|has| |#1| (-561))) (($ $) NIL (|has| |#1| (-561))) (($ (-1181 $) (-1185)) 134 (|has| |#1| (-561))) (($ (-1181 $)) NIL (|has| |#1| (-561))) (($ (-958 $)) NIL (|has| |#1| (-561)))) (-4381 (((-3 (-617 $) "failed") $) 18) (((-3 (-1185) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-958 |#1|)) "failed") $) NIL (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) NIL (|has| |#1| (-1057))) (((-3 (-412 (-569)) "failed") $) 46 (-2776 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 (((-617 $) $) 12) (((-1185) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-958 |#1|)) $) NIL (|has| |#1| (-561))) (((-958 |#1|) $) NIL (|has| |#1| (-1057))) (((-412 (-569)) $) 319 (-2776 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2368 (($ $ $) NIL (|has| |#1| (-561)))) (-2957 (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 125 (|has| |#1| (-1057))) (((-694 |#1|) (-694 $)) 115 (|has| |#1| (-1057))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (-3598 (($ $) 96 (|has| |#1| (-561)))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))))) (-2379 (($ $ $) NIL (|has| |#1| (-561)))) (-2103 (($ $ (-1100 $)) 236 (|has| |#1| (-561))) (($ $ (-1185)) 234 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-561)))) (-1473 (((-112) $) NIL (|has| |#1| (-561)))) (-2533 (($ $ $) 202 (|has| |#1| (-561)))) (-1312 (($) 137 (|has| |#1| (-561)))) (-3074 (($ $ $) 222 (|has| |#1| (-561)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 392 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 399 (|has| |#1| (-892 (-383))))) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) 276)) (-2349 (((-112) $) 25 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))))) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-2177 (($ $) 72 (|has| |#1| (-1057)))) (-4399 (((-1133 |#1| (-617 $)) $) 91 (|has| |#1| (-1057)))) (-4369 (((-112) $) 62 (|has| |#1| (-561)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-561)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-2341 (((-1181 $) (-617 $)) 277 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 426)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-2662 (($ $) 141 (|has| |#1| (-561)))) (-4171 (($ $) 247 (|has| |#1| (-561)))) (-1839 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) 49)) (-1354 (($ (-114) $) NIL) (($ (-114) (-649 $)) 431)) (-4250 (((-3 (-649 $) "failed") $) NIL (|has| |#1| (-1120)))) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) NIL (|has| |#1| (-1057)))) (-2427 (((-3 (-649 $) "failed") $) 436 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) NIL (|has| |#1| (-1120))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) NIL (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) NIL (|has| |#1| (-1057)))) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) 51)) (-1817 (($ $) NIL (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3898 (($ $ (-1185)) 251 (|has| |#1| (-561))) (($ $ (-1100 $)) 253 (|has| |#1| (-561)))) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 43)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 301 (|has| |#1| (-561)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-2766 (($ $ (-1185)) 226 (|has| |#1| (-561))) (($ $) 224 (|has| |#1| (-561)))) (-1948 (($ $) 218 (|has| |#1| (-561)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 306 (-12 (|has| |#1| (-457)) (|has| |#1| (-561))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-561)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-561)))) (-4389 (($ $) 139 (|has| |#1| (-561)))) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 425) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) 379) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1185)) NIL (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-619 (-541)))) (($ $) NIL (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1185)) 366 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1185)) 365 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) NIL (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ (-649 $))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ $)) NIL (|has| |#1| (-1057)))) (-2431 (((-776) $) NIL (|has| |#1| (-561)))) (-2555 (($ $) 239 (|has| |#1| (-561)))) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2190 (($ $) NIL) (($ $ $) NIL)) (-2589 (($ $) 249 (|has| |#1| (-561)))) (-3977 (($ $) 200 (|has| |#1| (-561)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-1057))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-1057))) (($ $ (-1185)) NIL (|has| |#1| (-1057)))) (-3181 (($ $) 74 (|has| |#1| (-561)))) (-4412 (((-1133 |#1| (-617 $)) $) 93 (|has| |#1| (-561)))) (-4061 (($ $) 317 (|has| $ (-1057)))) (-4128 (($ $) 177 (|has| |#1| (-561)))) (-2661 (($ $) 153 (|has| |#1| (-561)))) (-2783 (($ $) 173 (|has| |#1| (-561)))) (-2635 (($ $) 149 (|has| |#1| (-561)))) (-2758 (($ $) 169 (|has| |#1| (-561)))) (-2614 (($ $) 145 (|has| |#1| (-561)))) (-1410 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) NIL (|has| |#1| (-561))) (((-541) $) 363 (|has| |#1| (-619 (-541))))) (-3476 (($ $ $) NIL (|has| |#1| (-478)))) (-2180 (($ $ $) NIL (|has| |#1| (-478)))) (-3796 (((-867) $) 424) (($ (-617 $)) 415) (($ (-1185)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-561))) (($ (-48)) 312 (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) (($ (-1133 |#1| (-617 $))) 95 (|has| |#1| (-1057))) (($ (-412 |#1|)) NIL (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) NIL (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) NIL (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) NIL (|has| |#1| (-561))) (($ (-958 |#1|)) NIL (|has| |#1| (-1057))) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-561)) (|has| |#1| (-1046 (-412 (-569)))))) (($ (-569)) 34 (-2776 (|has| |#1| (-1046 (-569))) (|has| |#1| (-1057))))) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL (|has| |#1| (-1057)) CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-3613 (($ $ $) 220 (|has| |#1| (-561)))) (-2090 (($ $ $) 206 (|has| |#1| (-561)))) (-2730 (($ $ $) 210 (|has| |#1| (-561)))) (-4164 (($ $ $) 204 (|has| |#1| (-561)))) (-4099 (($ $ $) 208 (|has| |#1| (-561)))) (-4052 (((-112) (-114)) 10)) (-1520 (((-112) $ $) 86)) (-4161 (($ $) 183 (|has| |#1| (-561)))) (-2701 (($ $) 159 (|has| |#1| (-561)))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 179 (|has| |#1| (-561)))) (-2675 (($ $) 155 (|has| |#1| (-561)))) (-4183 (($ $) 187 (|has| |#1| (-561)))) (-2723 (($ $) 163 (|has| |#1| (-561)))) (-4215 (($ (-1185) $) NIL) (($ (-1185) $ $) NIL) (($ (-1185) $ $ $) NIL) (($ (-1185) $ $ $ $) NIL) (($ (-1185) (-649 $)) NIL)) (-4273 (($ $) 214 (|has| |#1| (-561)))) (-1407 (($ $) 212 (|has| |#1| (-561)))) (-1503 (($ $) 189 (|has| |#1| (-561)))) (-2734 (($ $) 165 (|has| |#1| (-561)))) (-4175 (($ $) 185 (|has| |#1| (-561)))) (-2712 (($ $) 161 (|has| |#1| (-561)))) (-4151 (($ $) 181 (|has| |#1| (-561)))) (-2689 (($ $) 157 (|has| |#1| (-561)))) (-2271 (($ $) 192 (|has| |#1| (-561)))) (-1804 (($) 21 (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) CONST)) (-2370 (($ $) 243 (|has| |#1| (-561)))) (-1815 (($) 23 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))) CONST)) (-2392 (($ $) 194 (|has| |#1| (-561))) (($ $ $) 196 (|has| |#1| (-561)))) (-3569 (($ $) 241 (|has| |#1| (-561)))) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-1057))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-1057))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-1057))) (($ $ (-1185)) NIL (|has| |#1| (-1057)))) (-2717 (($ $) 245 (|has| |#1| (-561)))) (-2165 (($ $ $) 198 (|has| |#1| (-561)))) (-2920 (((-112) $ $) 88)) (-3035 (($ (-1133 |#1| (-617 $)) (-1133 |#1| (-617 $))) 106 (|has| |#1| (-561))) (($ $ $) 42 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3024 (($ $ $) 40 (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (($ $) 29 (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (-3012 (($ $ $) 38 (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))))) (** (($ $ $) 64 (|has| |#1| (-561))) (($ $ (-412 (-569))) 314 (|has| |#1| (-561))) (($ $ (-569)) 80 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 75 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120)))) (($ $ (-927)) 84 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120))))) (* (($ (-412 (-569)) $) NIL (|has| |#1| (-561))) (($ $ (-412 (-569))) NIL (|has| |#1| (-561))) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))) (($ $ $) 36 (-2776 (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) (|has| |#1| (-1120)))) (($ (-569) $) 32 (-2776 (|has| |#1| (-21)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (($ (-776) $) NIL (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))) (($ (-927) $) NIL (-2776 (|has| |#1| (-25)) (-12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))))))) -(((-319 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1210)) (-6 (-160)) (-6 (-634)) (-6 (-1147)) (-15 -3598 ($ $)) (-15 -4369 ((-112) $)) (-15 -2801 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -3814 ((-423 (-1181 $)) (-1181 $))) (-15 -3534 ((-423 (-1181 $)) (-1181 $)))) |%noBranch|) (IF (|has| |#1| (-1046 (-569))) (-6 (-1046 (-48))) |%noBranch|)) |%noBranch|))) (-1108)) (T -319)) -((-3598 (*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1108)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))) (-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))) (-3814 (*1 *2 *3) (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108)))) (-3534 (*1 *2 *3) (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108))))) -(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-561)) (PROGN (-6 (-29 |#1|)) (-6 (-1210)) (-6 (-160)) (-6 (-634)) (-6 (-1147)) (-15 -3598 ($ $)) (-15 -4369 ((-112) $)) (-15 -2801 ($ $ (-569))) (IF (|has| |#1| (-457)) (PROGN (-15 -3814 ((-423 (-1181 $)) (-1181 $))) (-15 -3534 ((-423 (-1181 $)) (-1181 $)))) |%noBranch|) (IF (|has| |#1| (-1046 (-569))) (-6 (-1046 (-48))) |%noBranch|)) |%noBranch|))) -((-4058 (((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)) 89) (((-52) |#2| (-114) (-297 |#2|) (-297 |#2|)) 85) (((-52) |#2| (-114) (-297 |#2|) |#2|) 87) (((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|) 88) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 81) (((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 83) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|)) 84) (((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|))) 82) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 90) (((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|)) 86))) -(((-320 |#1| |#2|) (-10 -7 (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-561) (-619 (-541))) (-435 |#1|)) (T -320)) -((-4058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *3)))) (-4058 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *3)))) (-4058 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *5)))) (-4058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8))) (-4 *8 (-435 *7)) (-5 *5 (-297 *8)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-4058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8)) (-5 *6 (-649 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *7 *8)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-4058 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *6 *7)))) (-4058 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) (-5 *1 (-320 *5 *6))))) -(-10 -7 (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-649 (-297 |#2|)) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 |#2|))) (-15 -4058 ((-52) (-649 |#2|) (-649 (-114)) (-297 |#2|) (-649 (-297 |#2|)))) (-15 -4058 ((-52) (-297 |#2|) (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) |#2|)) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-297 |#2|))) (-15 -4058 ((-52) |#2| (-114) (-297 |#2|) (-649 |#2|)))) -((-4212 (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569) (-1167)) 67) (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569)) 68) (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569) (-1167)) 64) (((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569)) 65)) (-3679 (((-1 (-226) (-226)) (-226)) 66))) -(((-321) (-10 -7 (-15 -3679 ((-1 (-226) (-226)) (-226))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569) (-1167))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569) (-1167))))) (T -321)) -((-4212 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1167)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-4212 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-4212 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *7 (-1167)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-4212 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) (-3679 (*1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226))))) -(-10 -7 (-15 -3679 ((-1 (-226) (-226)) (-226))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-1 (-226) (-226)) (-569) (-1167))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569))) (-15 -4212 ((-1220 (-932)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-226) (-569) (-1167)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 26)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 20)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 36)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) 16)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) NIL) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1968 (((-412 (-569)) $) 17)) (-1671 (($ (-1260 |#1| |#2| |#3|)) 11)) (-1993 (((-1260 |#1| |#2| |#3|) $) 12)) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 10)) (-3796 (((-867) $) 42) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 34)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) NIL)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 28)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 37)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-322 |#1| |#2| |#3|) (-13 (-1256 |#1|) (-797) (-10 -8 (-15 -1671 ($ (-1260 |#1| |#2| |#3|))) (-15 -1993 ((-1260 |#1| |#2| |#3|) $)) (-15 -1968 ((-412 (-569)) $)))) (-367) (-1185) |#1|) (T -322)) -((-1671 (*1 *1 *2) (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-322 *3 *4 *5)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1260 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) (-14 *5 *3))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) (-14 *5 *3)))) -(-13 (-1256 |#1|) (-797) (-10 -8 (-15 -1671 ($ (-1260 |#1| |#2| |#3|))) (-15 -1993 ((-1260 |#1| |#2| |#3|) $)) (-15 -1968 ((-412 (-569)) $)))) -((-3742 (((-2 (|:| -1993 (-776)) (|:| -1435 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776)) 35)) (-2662 (((-649 (-2 (|:| -1435 (-776)) (|:| |logand| |#1|))) (-423 |#1|)) 40))) -(((-323 |#1|) (-10 -7 (-15 -3742 ((-2 (|:| -1993 (-776)) (|:| -1435 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2662 ((-649 (-2 (|:| -1435 (-776)) (|:| |logand| |#1|))) (-423 |#1|)))) (-561)) (T -323)) -((-2662 (*1 *2 *3) (-12 (-5 *3 (-423 *4)) (-4 *4 (-561)) (-5 *2 (-649 (-2 (|:| -1435 (-776)) (|:| |logand| *4)))) (-5 *1 (-323 *4)))) (-3742 (*1 *2 *3 *4) (-12 (-5 *3 (-423 *5)) (-4 *5 (-561)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *5) (|:| |radicand| (-649 *5)))) (-5 *1 (-323 *5)) (-5 *4 (-776))))) -(-10 -7 (-15 -3742 ((-2 (|:| -1993 (-776)) (|:| -1435 |#1|) (|:| |radicand| (-649 |#1|))) (-423 |#1|) (-776))) (-15 -2662 ((-649 (-2 (|:| -1435 (-776)) (|:| |logand| |#1|))) (-423 |#1|)))) -((-1712 (((-649 |#2|) (-1181 |#4|)) 44)) (-3313 ((|#3| (-569)) 47)) (-2918 (((-1181 |#4|) (-1181 |#3|)) 30)) (-1434 (((-1181 |#4|) (-1181 |#4|) (-569)) 66)) (-1508 (((-1181 |#3|) (-1181 |#4|)) 21)) (-4339 (((-649 (-776)) (-1181 |#4|) (-649 |#2|)) 41)) (-1513 (((-1181 |#3|) (-1181 |#4|) (-649 |#2|) (-649 |#3|)) 35))) -(((-324 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1513 ((-1181 |#3|) (-1181 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -4339 ((-649 (-776)) (-1181 |#4|) (-649 |#2|))) (-15 -1712 ((-649 |#2|) (-1181 |#4|))) (-15 -1508 ((-1181 |#3|) (-1181 |#4|))) (-15 -2918 ((-1181 |#4|) (-1181 |#3|))) (-15 -1434 ((-1181 |#4|) (-1181 |#4|) (-569))) (-15 -3313 (|#3| (-569)))) (-798) (-855) (-1057) (-955 |#3| |#1| |#2|)) (T -324)) -((-3313 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1057)) (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *1 (-324 *4 *5 *6 *7)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-1181 *6)) (-4 *6 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1181 *7)) (-5 *1 (-324 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1508 (*1 *2 *3) (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-1181 *6)) (-5 *1 (-324 *4 *5 *6 *7)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-649 *5)) (-5 *1 (-324 *4 *5 *6 *7)))) (-4339 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855)) (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1057)) (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8)))) (-1513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8)) (-4 *7 (-855)) (-4 *8 (-1057)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-1181 *8)) (-5 *1 (-324 *6 *7 *8 *9))))) -(-10 -7 (-15 -1513 ((-1181 |#3|) (-1181 |#4|) (-649 |#2|) (-649 |#3|))) (-15 -4339 ((-649 (-776)) (-1181 |#4|) (-649 |#2|))) (-15 -1712 ((-649 |#2|) (-1181 |#4|))) (-15 -1508 ((-1181 |#3|) (-1181 |#4|))) (-15 -2918 ((-1181 |#4|) (-1181 |#3|))) (-15 -1434 ((-1181 |#4|) (-1181 |#4|) (-569))) (-15 -3313 (|#3| (-569)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 19)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $) 21)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3522 ((|#1| $ (-569)) NIL)) (-1670 (((-569) $ (-569)) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3196 (($ (-1 |#1| |#1|) $) NIL)) (-2000 (($ (-1 (-569) (-569)) $) 11)) (-3435 (((-1167) $) NIL)) (-4206 (($ $ $) NIL (|has| (-569) (-797)))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-4383 (((-569) |#1| $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) 29 (|has| |#1| (-855)))) (-3024 (($ $) 12) (($ $ $) 28)) (-3012 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL) (($ (-569) |#1|) 27))) -(((-325 |#1|) (-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|))) (-1108)) (T -325)) -NIL -(-13 (-21) (-722 (-569)) (-326 |#1| (-569)) (-10 -7 (IF (|has| |#1| (-855)) (-6 (-855)) |%noBranch|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $) 28)) (-2208 (((-3 $ "failed") $ $) 20)) (-3473 (((-776) $) 29)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 33)) (-3150 ((|#1| $) 34)) (-3522 ((|#1| $ (-569)) 26)) (-1670 ((|#2| $ (-569)) 27)) (-3196 (($ (-1 |#1| |#1|) $) 23)) (-2000 (($ (-1 |#2| |#2|) $) 24)) (-3435 (((-1167) $) 10)) (-4206 (($ $ $) 22 (|has| |#2| (-797)))) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ |#1|) 32)) (-4383 ((|#2| |#1| $) 25)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ |#2| |#1|) 30))) -(((-326 |#1| |#2|) (-140) (-1108) (-131)) (T -326)) -((-3012 (*1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)) (-5 *2 (-776)))) (-2300 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))))) (-1670 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1108)) (-4 *2 (-131)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1108)))) (-4383 (*1 *2 *3 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131)))) (-2000 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)))) (-4206 (*1 *1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131)) (-4 *3 (-797))))) -(-13 (-131) (-1046 |t#1|) (-10 -8 (-15 -3012 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3473 ((-776) $)) (-15 -2300 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4389 |t#2|))) $)) (-15 -1670 (|t#2| $ (-569))) (-15 -3522 (|t#1| $ (-569))) (-15 -4383 (|t#2| |t#1| $)) (-15 -2000 ($ (-1 |t#2| |t#2|) $)) (-15 -3196 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-797)) (-15 -4206 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-1046 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3522 ((|#1| $ (-569)) NIL)) (-1670 (((-776) $ (-569)) NIL)) (-3196 (($ (-1 |#1| |#1|) $) NIL)) (-2000 (($ (-1 (-776) (-776)) $) NIL)) (-3435 (((-1167) $) NIL)) (-4206 (($ $ $) NIL (|has| (-776) (-797)))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-4383 (((-776) |#1| $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-776) |#1|) NIL))) -(((-327 |#1|) (-326 |#1| (-776)) (-1108)) (T -327)) -NIL -(-326 |#1| (-776)) -((-2642 (($ $) 72)) (-2870 (($ $ |#2| |#3| $) 14)) (-2492 (($ (-1 |#3| |#3|) $) 51)) (-1828 (((-112) $) 42)) (-1835 ((|#2| $) 44)) (-2407 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3833 ((|#2| $) 68)) (-2512 (((-649 |#2|) $) 56)) (-3184 (($ $ $ (-776)) 37)) (-3035 (($ $ |#2|) 60))) -(((-328 |#1| |#2| |#3|) (-10 -8 (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3184 (|#1| |#1| |#1| (-776))) (-15 -2870 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2492 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3035 (|#1| |#1| |#2|))) (-329 |#2| |#3|) (-1057) (-797)) (T -328)) -NIL -(-10 -8 (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3184 (|#1| |#1| |#1| (-776))) (-15 -2870 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2492 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3035 (|#1| |#1| |#2|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 98 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 95)) (-3150 (((-569) $) 99 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 97 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 96)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 84 (|has| |#1| (-457)))) (-2870 (($ $ |#1| |#2| $) 88)) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 91)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73)) (-2272 ((|#2| $) 90)) (-2492 (($ (-1 |#2| |#2|) $) 89)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 94)) (-1835 ((|#1| $) 93)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-561)))) (-4339 ((|#2| $) 76)) (-3833 ((|#1| $) 85 (|has| |#1| (-457)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59) (($ (-412 (-569))) 69 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-2512 (((-649 |#1|) $) 92)) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 87 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-329 |#1| |#2|) (-140) (-1057) (-797)) (T -329)) -((-1828 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-112)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-649 *3)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-776)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-2492 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)))) (-2870 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) (-3184 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-4 *3 (-173)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *2 (-561)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)) (-4 *2 (-457)))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *2 (-457))))) -(-13 (-47 |t#1| |t#2|) (-416 |t#1|) (-10 -8 (-15 -1828 ((-112) $)) (-15 -1835 (|t#1| $)) (-15 -2512 ((-649 |t#1|) $)) (-15 -3366 ((-776) $)) (-15 -2272 (|t#2| $)) (-15 -2492 ($ (-1 |t#2| |t#2|) $)) (-15 -2870 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-173)) (-15 -3184 ($ $ $ (-776))) |%noBranch|) (IF (|has| |t#1| (-561)) (-15 -2407 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3833 (|t#1| $)) (-15 -2642 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-416 |#1|) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-2270 (((-112) (-112)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-2017 (($ $) NIL (|has| |#1| (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-3802 (($ $ (-569)) NIL)) (-3558 (((-776) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-2053 (($ (-649 |#1|)) NIL)) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2866 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-330 |#1|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112))))) (-1225)) (T -330)) -((-2053 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-330 *3)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1225))))) -(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112))))) -((-1476 (((-112) $) 50)) (-3322 (((-776)) 26)) (-3140 ((|#2| $) 54) (($ $ (-927)) 124)) (-3473 (((-776)) 125)) (-2247 (($ (-1275 |#2|)) 23)) (-2483 (((-112) $) 138)) (-3829 ((|#2| $) 56) (($ $ (-927)) 121)) (-3859 (((-1181 |#2|) $) NIL) (((-1181 $) $ (-927)) 112)) (-3775 (((-1181 |#2|) $) 98)) (-4119 (((-1181 |#2|) $) 94) (((-3 (-1181 |#2|) "failed") $ $) 91)) (-4384 (($ $ (-1181 |#2|)) 62)) (-1898 (((-838 (-927))) 33) (((-927)) 51)) (-2377 (((-134)) 30)) (-4339 (((-838 (-927)) $) 35) (((-927) $) 141)) (-4110 (($) 131)) (-2415 (((-1275 |#2|) $) NIL) (((-694 |#2|) (-1275 $)) 45)) (-2239 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4269 (((-112) $) 48))) -(((-331 |#1| |#2|) (-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3473 ((-776))) (-15 -2239 (|#1| |#1|)) (-15 -4119 ((-3 (-1181 |#2|) "failed") |#1| |#1|)) (-15 -4119 ((-1181 |#2|) |#1|)) (-15 -3775 ((-1181 |#2|) |#1|)) (-15 -4384 (|#1| |#1| (-1181 |#2|))) (-15 -2483 ((-112) |#1|)) (-15 -4110 (|#1|)) (-15 -3140 (|#1| |#1| (-927))) (-15 -3829 (|#1| |#1| (-927))) (-15 -3859 ((-1181 |#1|) |#1| (-927))) (-15 -3140 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -4339 ((-927) |#1|)) (-15 -1898 ((-927))) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3322 ((-776))) (-15 -1898 ((-838 (-927)))) (-15 -4339 ((-838 (-927)) |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|)) (-15 -2377 ((-134)))) (-332 |#2|) (-367)) (T -331)) -((-2377 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3322 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-1898 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4)))) (-3473 (*1 *2) (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) (-4 *3 (-332 *4))))) -(-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3473 ((-776))) (-15 -2239 (|#1| |#1|)) (-15 -4119 ((-3 (-1181 |#2|) "failed") |#1| |#1|)) (-15 -4119 ((-1181 |#2|) |#1|)) (-15 -3775 ((-1181 |#2|) |#1|)) (-15 -4384 (|#1| |#1| (-1181 |#2|))) (-15 -2483 ((-112) |#1|)) (-15 -4110 (|#1|)) (-15 -3140 (|#1| |#1| (-927))) (-15 -3829 (|#1| |#1| (-927))) (-15 -3859 ((-1181 |#1|) |#1| (-927))) (-15 -3140 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -4339 ((-927) |#1|)) (-15 -1898 ((-927))) (-15 -3859 ((-1181 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3322 ((-776))) (-15 -1898 ((-838 (-927)))) (-15 -4339 ((-838 (-927)) |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|)) (-15 -2377 ((-134)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-1476 (((-112) $) 104)) (-3322 (((-776)) 100)) (-3140 ((|#1| $) 150) (($ $ (-927)) 147 (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-3473 (((-776)) 122 (|has| |#1| (-372)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 111)) (-3150 ((|#1| $) 112)) (-2247 (($ (-1275 |#1|)) 156)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-372)))) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-3406 (($) 119 (|has| |#1| (-372)))) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1616 (($) 134 (|has| |#1| (-372)))) (-2807 (((-112) $) 135 (|has| |#1| (-372)))) (-3701 (($ $ (-776)) 97 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) 79)) (-1466 (((-927) $) 137 (|has| |#1| (-372))) (((-838 (-927)) $) 94 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) 35)) (-2155 (($) 145 (|has| |#1| (-372)))) (-2483 (((-112) $) 144 (|has| |#1| (-372)))) (-3829 ((|#1| $) 151) (($ $ (-927)) 148 (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) 123 (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3859 (((-1181 |#1|) $) 155) (((-1181 $) $ (-927)) 149 (|has| |#1| (-372)))) (-2731 (((-927) $) 120 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) 141 (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) 140 (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) 139 (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) 142 (|has| |#1| (-372)))) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-2307 (($) 124 (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 121 (|has| |#1| (-372)))) (-3020 (((-112) $) 103)) (-3547 (((-1128) $) 11)) (-2332 (($) 143 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 131 (|has| |#1| (-372)))) (-3800 (((-423 $) $) 82)) (-1898 (((-838 (-927))) 101) (((-927)) 153)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-776) $) 136 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 95 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) 109)) (-3517 (($ $) 128 (|has| |#1| (-372))) (($ $ (-776)) 126 (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) 102) (((-927) $) 152)) (-4061 (((-1181 |#1|)) 154)) (-4234 (($) 133 (|has| |#1| (-372)))) (-4110 (($) 146 (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 158) (((-694 |#1|) (-1275 $)) 157)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 130 (|has| |#1| (-372)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-2239 (($ $) 129 (|has| |#1| (-372))) (((-3 $ "failed") $) 93 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 160) (((-1275 $) (-927)) 159)) (-2664 (((-112) $ $) 45)) (-4269 (((-112) $) 105)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-1679 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2832 (($ $) 127 (|has| |#1| (-372))) (($ $ (-776)) 125 (|has| |#1| (-372)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73) (($ $ |#1|) 108)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-332 |#1|) (-140) (-367)) (T -332)) -((-2403 (*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1275 *1)) (-4 *1 (-332 *3)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1275 *1)) (-4 *1 (-332 *4)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1275 *3)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3)))) (-4061 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3)))) (-1898 (*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) (-3859 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1181 *1)) (-4 *1 (-332 *4)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) (-4110 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2155 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112)))) (-2332 (*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) (-4384 (*1 *1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) (-4 *3 (-367)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1181 *3)))) (-4119 (*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1181 *3)))) (-4119 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-1181 *3))))) -(-13 (-1294 |t#1|) (-1046 |t#1|) (-10 -8 (-15 -2403 ((-1275 $))) (-15 -2403 ((-1275 $) (-927))) (-15 -2415 ((-1275 |t#1|) $)) (-15 -2415 ((-694 |t#1|) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|))) (-15 -3859 ((-1181 |t#1|) $)) (-15 -4061 ((-1181 |t#1|))) (-15 -1898 ((-927))) (-15 -4339 ((-927) $)) (-15 -3829 (|t#1| $)) (-15 -3140 (|t#1| $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-353)) (-15 -3859 ((-1181 $) $ (-927))) (-15 -3829 ($ $ (-927))) (-15 -3140 ($ $ (-927))) (-15 -4110 ($)) (-15 -2155 ($)) (-15 -2483 ((-112) $)) (-15 -2332 ($)) (-15 -4384 ($ $ (-1181 |t#1|))) (-15 -3775 ((-1181 |t#1|) $)) (-15 -4119 ((-1181 |t#1|) $)) (-15 -4119 ((-3 (-1181 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) |has| |#1| (-372)) ((-244) . T) ((-293) . T) ((-310) . T) ((-1294 |#1|) . T) ((-367) . T) ((-407) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-372) |has| |#1| (-372)) ((-353) |has| |#1| (-372)) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-372)) ((-1229) . T) ((-1282 |#1|) . T)) -((-2417 (((-112) $ $) NIL)) (-3657 (($ (-1184) $) 100)) (-4153 (($) 89)) (-2698 (((-1128) (-1128)) 9)) (-1762 (($) 90)) (-2224 (($) 104) (($ (-319 (-704))) 112) (($ (-319 (-706))) 108) (($ (-319 (-699))) 116) (($ (-319 (-383))) 123) (($ (-319 (-569))) 119) (($ (-319 (-170 (-383)))) 127)) (-2599 (($ (-1184) $) 101)) (-1879 (($ (-649 (-867))) 91)) (-3219 (((-1280) $) 87)) (-2939 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4025 (($ (-1128)) 58)) (-1459 (((-1112) $) 30)) (-3576 (($ (-1100 (-958 (-569))) $) 97) (($ (-1100 (-958 (-569))) (-958 (-569)) $) 98)) (-3355 (($ (-1128)) 99)) (-1331 (($ (-1184) $) 129) (($ (-1184) $ $) 130)) (-3388 (($ (-1185) (-649 (-1185))) 88)) (-3774 (($ (-1167)) 94) (($ (-649 (-1167))) 92)) (-3796 (((-867) $) 132)) (-3209 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 $))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 $))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867)))) $) 50)) (-2265 (($ (-1167)) 202)) (-3553 (($ (-649 $)) 128)) (-1520 (((-112) $ $) NIL)) (-3866 (($ (-1185) (-1167)) 135) (($ (-1185) (-319 (-706))) 175) (($ (-1185) (-319 (-704))) 176) (($ (-1185) (-319 (-699))) 177) (($ (-1185) (-694 (-706))) 138) (($ (-1185) (-694 (-704))) 141) (($ (-1185) (-694 (-699))) 144) (($ (-1185) (-1275 (-706))) 147) (($ (-1185) (-1275 (-704))) 150) (($ (-1185) (-1275 (-699))) 153) (($ (-1185) (-694 (-319 (-706)))) 156) (($ (-1185) (-694 (-319 (-704)))) 159) (($ (-1185) (-694 (-319 (-699)))) 162) (($ (-1185) (-1275 (-319 (-706)))) 165) (($ (-1185) (-1275 (-319 (-704)))) 168) (($ (-1185) (-1275 (-319 (-699)))) 171) (($ (-1185) (-649 (-958 (-569))) (-319 (-706))) 172) (($ (-1185) (-649 (-958 (-569))) (-319 (-704))) 173) (($ (-1185) (-649 (-958 (-569))) (-319 (-699))) 174) (($ (-1185) (-319 (-569))) 199) (($ (-1185) (-319 (-383))) 200) (($ (-1185) (-319 (-170 (-383)))) 201) (($ (-1185) (-694 (-319 (-569)))) 180) (($ (-1185) (-694 (-319 (-383)))) 183) (($ (-1185) (-694 (-319 (-170 (-383))))) 186) (($ (-1185) (-1275 (-319 (-569)))) 189) (($ (-1185) (-1275 (-319 (-383)))) 192) (($ (-1185) (-1275 (-319 (-170 (-383))))) 195) (($ (-1185) (-649 (-958 (-569))) (-319 (-569))) 196) (($ (-1185) (-649 (-958 (-569))) (-319 (-383))) 197) (($ (-1185) (-649 (-958 (-569))) (-319 (-170 (-383)))) 198)) (-2920 (((-112) $ $) NIL))) -(((-333) (-13 (-1108) (-10 -8 (-15 -3576 ($ (-1100 (-958 (-569))) $)) (-15 -3576 ($ (-1100 (-958 (-569))) (-958 (-569)) $)) (-15 -3657 ($ (-1184) $)) (-15 -2599 ($ (-1184) $)) (-15 -4025 ($ (-1128))) (-15 -3355 ($ (-1128))) (-15 -3774 ($ (-1167))) (-15 -3774 ($ (-649 (-1167)))) (-15 -2265 ($ (-1167))) (-15 -2224 ($)) (-15 -2224 ($ (-319 (-704)))) (-15 -2224 ($ (-319 (-706)))) (-15 -2224 ($ (-319 (-699)))) (-15 -2224 ($ (-319 (-383)))) (-15 -2224 ($ (-319 (-569)))) (-15 -2224 ($ (-319 (-170 (-383))))) (-15 -1331 ($ (-1184) $)) (-15 -1331 ($ (-1184) $ $)) (-15 -3866 ($ (-1185) (-1167))) (-15 -3866 ($ (-1185) (-319 (-706)))) (-15 -3866 ($ (-1185) (-319 (-704)))) (-15 -3866 ($ (-1185) (-319 (-699)))) (-15 -3866 ($ (-1185) (-694 (-706)))) (-15 -3866 ($ (-1185) (-694 (-704)))) (-15 -3866 ($ (-1185) (-694 (-699)))) (-15 -3866 ($ (-1185) (-1275 (-706)))) (-15 -3866 ($ (-1185) (-1275 (-704)))) (-15 -3866 ($ (-1185) (-1275 (-699)))) (-15 -3866 ($ (-1185) (-694 (-319 (-706))))) (-15 -3866 ($ (-1185) (-694 (-319 (-704))))) (-15 -3866 ($ (-1185) (-694 (-319 (-699))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-706))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-704))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-699))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-706)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-704)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-699)))) (-15 -3866 ($ (-1185) (-319 (-569)))) (-15 -3866 ($ (-1185) (-319 (-383)))) (-15 -3866 ($ (-1185) (-319 (-170 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-569))))) (-15 -3866 ($ (-1185) (-694 (-319 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-569))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-383))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-569)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-383)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -3553 ($ (-649 $))) (-15 -4153 ($)) (-15 -1762 ($)) (-15 -1879 ($ (-649 (-867)))) (-15 -3388 ($ (-1185) (-649 (-1185)))) (-15 -2939 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3209 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 $))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 $))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -3219 ((-1280) $)) (-15 -1459 ((-1112) $)) (-15 -2698 ((-1128) (-1128)))))) (T -333)) -((-3576 (*1 *1 *2 *1) (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *1 (-333)))) (-3576 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *3 (-958 (-569))) (-5 *1 (-333)))) (-3657 (*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-2599 (*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))) (-3355 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333)))) (-3774 (*1 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-333)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333)))) (-2224 (*1 *1) (-5 *1 (-333))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-1331 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-706)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-704)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-699)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-706))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-704))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-699))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-569))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-383))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-569)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-383)))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-170 (-383))))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-569))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-383))) (-5 *1 (-333)))) (-3866 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333)))) (-4153 (*1 *1) (-5 *1 (-333))) (-1762 (*1 *1) (-5 *1 (-333))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333)))) (-3388 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-333)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-333)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| (-333)) (|:| |elseClause| (-333)))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 (-333))) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 (-333)))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 (-333)))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867))))) (-5 *1 (-333)))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-333)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-333)))) (-2698 (*1 *2 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333))))) -(-13 (-1108) (-10 -8 (-15 -3576 ($ (-1100 (-958 (-569))) $)) (-15 -3576 ($ (-1100 (-958 (-569))) (-958 (-569)) $)) (-15 -3657 ($ (-1184) $)) (-15 -2599 ($ (-1184) $)) (-15 -4025 ($ (-1128))) (-15 -3355 ($ (-1128))) (-15 -3774 ($ (-1167))) (-15 -3774 ($ (-649 (-1167)))) (-15 -2265 ($ (-1167))) (-15 -2224 ($)) (-15 -2224 ($ (-319 (-704)))) (-15 -2224 ($ (-319 (-706)))) (-15 -2224 ($ (-319 (-699)))) (-15 -2224 ($ (-319 (-383)))) (-15 -2224 ($ (-319 (-569)))) (-15 -2224 ($ (-319 (-170 (-383))))) (-15 -1331 ($ (-1184) $)) (-15 -1331 ($ (-1184) $ $)) (-15 -3866 ($ (-1185) (-1167))) (-15 -3866 ($ (-1185) (-319 (-706)))) (-15 -3866 ($ (-1185) (-319 (-704)))) (-15 -3866 ($ (-1185) (-319 (-699)))) (-15 -3866 ($ (-1185) (-694 (-706)))) (-15 -3866 ($ (-1185) (-694 (-704)))) (-15 -3866 ($ (-1185) (-694 (-699)))) (-15 -3866 ($ (-1185) (-1275 (-706)))) (-15 -3866 ($ (-1185) (-1275 (-704)))) (-15 -3866 ($ (-1185) (-1275 (-699)))) (-15 -3866 ($ (-1185) (-694 (-319 (-706))))) (-15 -3866 ($ (-1185) (-694 (-319 (-704))))) (-15 -3866 ($ (-1185) (-694 (-319 (-699))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-706))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-704))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-699))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-706)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-704)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-699)))) (-15 -3866 ($ (-1185) (-319 (-569)))) (-15 -3866 ($ (-1185) (-319 (-383)))) (-15 -3866 ($ (-1185) (-319 (-170 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-569))))) (-15 -3866 ($ (-1185) (-694 (-319 (-383))))) (-15 -3866 ($ (-1185) (-694 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-569))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-383))))) (-15 -3866 ($ (-1185) (-1275 (-319 (-170 (-383)))))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-569)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-383)))) (-15 -3866 ($ (-1185) (-649 (-958 (-569))) (-319 (-170 (-383))))) (-15 -3553 ($ (-649 $))) (-15 -4153 ($)) (-15 -1762 ($)) (-15 -1879 ($ (-649 (-867)))) (-15 -3388 ($ (-1185) (-649 (-1185)))) (-15 -2939 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3209 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1185)) (|:| |arrayIndex| (-649 (-958 (-569)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1184)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3162 (-112)) (|:| -2188 (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) (|:| |blockBranch| (-649 $)) (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) (|:| |forBranch| (-2 (|:| -3743 (-1100 (-958 (-569)))) (|:| |span| (-958 (-569))) (|:| -3586 $))) (|:| |labelBranch| (-1128)) (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 $))) (|:| |commonBranch| (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) (|:| |printBranch| (-649 (-867)))) $)) (-15 -3219 ((-1280) $)) (-15 -1459 ((-1112) $)) (-15 -2698 ((-1128) (-1128))))) -((-2417 (((-112) $ $) NIL)) (-2047 (((-112) $) 13)) (-2601 (($ |#1|) 10)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2614 (($ |#1|) 12)) (-3796 (((-867) $) 19)) (-1520 (((-112) $ $) NIL)) (-1899 ((|#1| $) 14)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 21))) -(((-334 |#1|) (-13 (-855) (-10 -8 (-15 -2601 ($ |#1|)) (-15 -2614 ($ |#1|)) (-15 -2047 ((-112) $)) (-15 -1899 (|#1| $)))) (-855)) (T -334)) -((-2601 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-2614 (*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855)))) (-1899 (*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855))))) -(-13 (-855) (-10 -8 (-15 -2601 ($ |#1|)) (-15 -2614 ($ |#1|)) (-15 -2047 ((-112) $)) (-15 -1899 (|#1| $)))) -((-1840 (((-333) (-1185) (-958 (-569))) 23)) (-3493 (((-333) (-1185) (-958 (-569))) 27)) (-2656 (((-333) (-1185) (-1100 (-958 (-569))) (-1100 (-958 (-569)))) 26) (((-333) (-1185) (-958 (-569)) (-958 (-569))) 24)) (-2014 (((-333) (-1185) (-958 (-569))) 31))) -(((-335) (-10 -7 (-15 -1840 ((-333) (-1185) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-958 (-569)) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-1100 (-958 (-569))) (-1100 (-958 (-569))))) (-15 -3493 ((-333) (-1185) (-958 (-569)))) (-15 -2014 ((-333) (-1185) (-958 (-569)))))) (T -335)) -((-2014 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-3493 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-1100 (-958 (-569)))) (-5 *2 (-333)) (-5 *1 (-335)))) (-2656 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) (-5 *1 (-335))))) -(-10 -7 (-15 -1840 ((-333) (-1185) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-958 (-569)) (-958 (-569)))) (-15 -2656 ((-333) (-1185) (-1100 (-958 (-569))) (-1100 (-958 (-569))))) (-15 -3493 ((-333) (-1185) (-958 (-569)))) (-15 -2014 ((-333) (-1185) (-958 (-569))))) -((-2417 (((-112) $ $) NIL)) (-3114 (((-511) $) 20)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1580 (((-964 (-776)) $) 18)) (-3137 (((-251) $) 7)) (-3796 (((-867) $) 26)) (-1934 (((-964 (-184 (-139))) $) 16)) (-1520 (((-112) $ $) NIL)) (-1406 (((-649 (-878 (-1190) (-776))) $) 12)) (-2920 (((-112) $ $) 22))) -(((-336) (-13 (-1108) (-10 -8 (-15 -3137 ((-251) $)) (-15 -1406 ((-649 (-878 (-1190) (-776))) $)) (-15 -1580 ((-964 (-776)) $)) (-15 -1934 ((-964 (-184 (-139))) $)) (-15 -3114 ((-511) $))))) (T -336)) -((-3137 (*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336)))) (-1406 (*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1190) (-776)))) (-5 *1 (-336)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336))))) -(-13 (-1108) (-10 -8 (-15 -3137 ((-251) $)) (-15 -1406 ((-649 (-878 (-1190) (-776))) $)) (-15 -1580 ((-964 (-776)) $)) (-15 -1934 ((-964 (-184 (-139))) $)) (-15 -3114 ((-511) $)))) -((-1346 (((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)) 33))) -(((-337 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-367) (-1251 |#5|) (-1251 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -337)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *9 (-367)) (-4 *10 (-1251 *9)) (-4 *11 (-1251 (-412 *10))) (-5 *2 (-340 *9 *10 *11 *12)) (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-346 *9 *10 *11))))) -(-10 -7 (-15 -1346 ((-340 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-340 |#1| |#2| |#3| |#4|)))) -((-1310 (((-112) $) 14))) -(((-338 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1310 ((-112) |#1|))) (-339 |#2| |#3| |#4| |#5|) (-367) (-1251 |#2|) (-1251 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -338)) -NIL -(-10 -8 (-15 -1310 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3598 (($ $) 29)) (-1310 (((-112) $) 28)) (-3435 (((-1167) $) 10)) (-3198 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 35)) (-3547 (((-1128) $) 11)) (-2332 (((-3 |#4| "failed") $) 27)) (-4102 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-569)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2316 (((-2 (|:| -4267 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24))) -(((-339 |#1| |#2| |#3| |#4|) (-140) (-367) (-1251 |t#1|) (-1251 (-412 |t#2|)) (-346 |t#1| |t#2| |t#3|)) (T -339)) -((-3198 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-418 *4 (-412 *4) *5 *6)))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367)) (-4 *1 (-339 *3 *4 *5 *6)))) (-4102 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5)))) (-4102 (*1 *1 *2 *2) (-12 (-4 *2 (-367)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))) (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4)))) (-4102 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1251 *2)) (-4 *5 (-1251 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6)) (-4 *6 (-346 *2 *4 *5)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-2 (|:| -4267 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6))))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))) (-4 *5 (-346 *2 *3 *4)))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112)))) (-2332 (*1 *2 *1) (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *2 (-346 *3 *4 *5)))) (-4102 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-367)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3198 ((-418 |t#2| (-412 |t#2|) |t#3| |t#4|) $)) (-15 -4102 ($ (-418 |t#2| (-412 |t#2|) |t#3| |t#4|))) (-15 -4102 ($ |t#4|)) (-15 -4102 ($ |t#1| |t#1|)) (-15 -4102 ($ |t#1| |t#1| (-569))) (-15 -2316 ((-2 (|:| -4267 (-418 |t#2| (-412 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3598 ($ $)) (-15 -1310 ((-112) $)) (-15 -2332 ((-3 |t#4| "failed") $)) (-15 -4102 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ $) 33)) (-1310 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-1864 (((-1275 |#4|) $) 134)) (-3198 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 31)) (-3547 (((-1128) $) NIL)) (-2332 (((-3 |#4| "failed") $) 36)) (-1569 (((-1275 |#4|) $) 126)) (-4102 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-569)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2316 (((-2 (|:| -4267 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3796 (((-867) $) 17)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 14 T CONST)) (-2920 (((-112) $ $) 20)) (-3024 (($ $) 27) (($ $ $) NIL)) (-3012 (($ $ $) 25)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 23))) -(((-340 |#1| |#2| |#3| |#4|) (-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1569 ((-1275 |#4|) $)) (-15 -1864 ((-1275 |#4|) $)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -340)) -((-1569 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5)))) (-1864 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6)) (-4 *6 (-346 *3 *4 *5))))) -(-13 (-339 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1569 ((-1275 |#4|) $)) (-15 -1864 ((-1275 |#4|) $)))) -((-1725 (($ $ (-1185) |#2|) NIL) (($ $ (-649 (-1185)) (-649 |#2|)) 20) (($ $ (-649 (-297 |#2|))) 15) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-1869 (($ $ |#2|) 11))) -(((-341 |#1| |#2|) (-10 -8 (-15 -1869 (|#1| |#1| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1185) |#2|))) (-342 |#2|) (-1108)) (T -341)) -NIL -(-10 -8 (-15 -1869 (|#1| |#1| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1185) |#2|))) -((-1346 (($ (-1 |#1| |#1|) $) 6)) (-1725 (($ $ (-1185) |#1|) 17 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 16 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-649 (-297 |#1|))) 15 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 14 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-312 |#1|))) (($ $ (-649 |#1|) (-649 |#1|)) 12 (|has| |#1| (-312 |#1|)))) (-1869 (($ $ |#1|) 11 (|has| |#1| (-289 |#1| |#1|))))) -(((-342 |#1|) (-140) (-1108)) (T -342)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1108))))) -(-13 (-10 -8 (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-289 |t#1| |t#1|)) (-6 (-289 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-519 (-1185) |t#1|)) (-6 (-519 (-1185) |t#1|)) |%noBranch|))) -(((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1185)) $) NIL)) (-2329 (((-112)) 96) (((-112) (-112)) 97)) (-3663 (((-649 (-617 $)) $) NIL)) (-2771 (($ $) NIL)) (-2626 (($ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-3813 (($ $) NIL)) (-2746 (($ $) NIL)) (-2601 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-319 |#3|)) 76) (((-3 $ "failed") (-1185)) 103) (((-3 $ "failed") (-319 (-569))) 64 (|has| |#3| (-1046 (-569)))) (((-3 $ "failed") (-412 (-958 (-569)))) 70 (|has| |#3| (-1046 (-569)))) (((-3 $ "failed") (-958 (-569))) 65 (|has| |#3| (-1046 (-569)))) (((-3 $ "failed") (-319 (-383))) 94 (|has| |#3| (-1046 (-383)))) (((-3 $ "failed") (-412 (-958 (-383)))) 88 (|has| |#3| (-1046 (-383)))) (((-3 $ "failed") (-958 (-383))) 83 (|has| |#3| (-1046 (-383))))) (-3150 (((-617 $) $) NIL) ((|#3| $) NIL) (($ (-319 |#3|)) 77) (($ (-1185)) 104) (($ (-319 (-569))) 66 (|has| |#3| (-1046 (-569)))) (($ (-412 (-958 (-569)))) 71 (|has| |#3| (-1046 (-569)))) (($ (-958 (-569))) 67 (|has| |#3| (-1046 (-569)))) (($ (-319 (-383))) 95 (|has| |#3| (-1046 (-383)))) (($ (-412 (-958 (-383)))) 89 (|has| |#3| (-1046 (-383)))) (($ (-958 (-383))) 85 (|has| |#3| (-1046 (-383))))) (-3086 (((-3 $ "failed") $) NIL)) (-1312 (($) 101)) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) NIL)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-2341 (((-1181 $) (-617 $)) NIL (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) NIL)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-1342 (($ $) 99)) (-2662 (($ $) NIL)) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) NIL)) (-1354 (($ (-114) $) 98) (($ (-114) (-649 $)) NIL)) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) NIL)) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-4389 (($ $) NIL)) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL)) (-4061 (($ $) NIL (|has| $ (-1057)))) (-2758 (($ $) NIL)) (-2614 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-617 $)) NIL) (($ |#3|) NIL) (($ (-569)) NIL) (((-319 |#3|) $) 102)) (-2721 (((-776)) NIL T CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-4052 (((-112) (-114)) NIL)) (-1520 (((-112) $ $) NIL)) (-2701 (($ $) NIL)) (-2675 (($ $) NIL)) (-2689 (($ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) 100 T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL))) -(((-343 |#1| |#2| |#3|) (-13 (-305) (-38 |#3|) (-1046 |#3|) (-906 (-1185)) (-10 -8 (-15 -3150 ($ (-319 |#3|))) (-15 -4381 ((-3 $ "failed") (-319 |#3|))) (-15 -3150 ($ (-1185))) (-15 -4381 ((-3 $ "failed") (-1185))) (-15 -3796 ((-319 |#3|) $)) (IF (|has| |#3| (-1046 (-569))) (PROGN (-15 -3150 ($ (-319 (-569)))) (-15 -4381 ((-3 $ "failed") (-319 (-569)))) (-15 -3150 ($ (-412 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3150 ($ (-958 (-569)))) (-15 -4381 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1046 (-383))) (PROGN (-15 -3150 ($ (-319 (-383)))) (-15 -4381 ((-3 $ "failed") (-319 (-383)))) (-15 -3150 ($ (-412 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3150 ($ (-958 (-383)))) (-15 -4381 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -2271 ($ $)) (-15 -3813 ($ $)) (-15 -4389 ($ $)) (-15 -2662 ($ $)) (-15 -1342 ($ $)) (-15 -2601 ($ $)) (-15 -2614 ($ $)) (-15 -2626 ($ $)) (-15 -2675 ($ $)) (-15 -2689 ($ $)) (-15 -2701 ($ $)) (-15 -2746 ($ $)) (-15 -2758 ($ $)) (-15 -2771 ($ $)) (-15 -1312 ($)) (-15 -1712 ((-649 (-1185)) $)) (-15 -2329 ((-112))) (-15 -2329 ((-112) (-112))))) (-649 (-1185)) (-649 (-1185)) (-392)) (T -343)) -((-3150 (*1 *1 *2) (-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2662 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-1342 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2601 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2614 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2626 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2675 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2689 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2701 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2746 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2758 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-2771 (*1 *1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-1312 (*1 *1) (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-392)))) (-2329 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392))))) -(-13 (-305) (-38 |#3|) (-1046 |#3|) (-906 (-1185)) (-10 -8 (-15 -3150 ($ (-319 |#3|))) (-15 -4381 ((-3 $ "failed") (-319 |#3|))) (-15 -3150 ($ (-1185))) (-15 -4381 ((-3 $ "failed") (-1185))) (-15 -3796 ((-319 |#3|) $)) (IF (|has| |#3| (-1046 (-569))) (PROGN (-15 -3150 ($ (-319 (-569)))) (-15 -4381 ((-3 $ "failed") (-319 (-569)))) (-15 -3150 ($ (-412 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-569))))) (-15 -3150 ($ (-958 (-569)))) (-15 -4381 ((-3 $ "failed") (-958 (-569))))) |%noBranch|) (IF (|has| |#3| (-1046 (-383))) (PROGN (-15 -3150 ($ (-319 (-383)))) (-15 -4381 ((-3 $ "failed") (-319 (-383)))) (-15 -3150 ($ (-412 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3150 ($ (-958 (-383)))) (-15 -4381 ((-3 $ "failed") (-958 (-383))))) |%noBranch|) (-15 -2271 ($ $)) (-15 -3813 ($ $)) (-15 -4389 ($ $)) (-15 -2662 ($ $)) (-15 -1342 ($ $)) (-15 -2601 ($ $)) (-15 -2614 ($ $)) (-15 -2626 ($ $)) (-15 -2675 ($ $)) (-15 -2689 ($ $)) (-15 -2701 ($ $)) (-15 -2746 ($ $)) (-15 -2758 ($ $)) (-15 -2771 ($ $)) (-15 -1312 ($)) (-15 -1712 ((-649 (-1185)) $)) (-15 -2329 ((-112))) (-15 -2329 ((-112) (-112))))) -((-1346 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|))) (-1229) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-1229) (-1251 |#5|) (-1251 (-412 |#6|)) (-346 |#5| |#6| |#7|)) (T -344)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1229)) (-4 *8 (-1229)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *9 (-1251 *8)) (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1251 (-412 *9)))))) -(-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|))) -((-2877 (((-2 (|:| |num| (-1275 |#3|)) (|:| |den| |#3|)) $) 39)) (-2247 (($ (-1275 (-412 |#3|)) (-1275 $)) NIL) (($ (-1275 (-412 |#3|))) NIL) (($ (-1275 |#3|) |#3|) 177)) (-2980 (((-1275 $) (-1275 $)) 160)) (-2603 (((-649 (-649 |#2|))) 129)) (-1523 (((-112) |#2| |#2|) 76)) (-2642 (($ $) 151)) (-3045 (((-776)) 176)) (-3751 (((-1275 $) (-1275 $)) 222)) (-1388 (((-649 (-958 |#2|)) (-1185)) 118)) (-2173 (((-112) $) 173)) (-3557 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3015 (((-3 |#3| "failed")) 52)) (-3926 (((-776)) 188)) (-1869 ((|#2| $ |#2| |#2|) 143)) (-2893 (((-3 |#3| "failed")) 71)) (-3517 (($ $ (-1 (-412 |#3|) (-412 |#3|)) (-776)) NIL) (($ $ (-1 (-412 |#3|) (-412 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-3562 (((-1275 $) (-1275 $)) 166)) (-4279 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1954 (((-112)) 34))) -(((-345 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2603 ((-649 (-649 |#2|)))) (-15 -1388 ((-649 (-958 |#2|)) (-1185))) (-15 -4279 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3015 ((-3 |#3| "failed"))) (-15 -2893 ((-3 |#3| "failed"))) (-15 -1869 (|#2| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3557 ((-112) |#1| |#3|)) (-15 -3557 ((-112) |#1| |#2|)) (-15 -2247 (|#1| (-1275 |#3|) |#3|)) (-15 -2877 ((-2 (|:| |num| (-1275 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2980 ((-1275 |#1|) (-1275 |#1|))) (-15 -3751 ((-1275 |#1|) (-1275 |#1|))) (-15 -3562 ((-1275 |#1|) (-1275 |#1|))) (-15 -3557 ((-112) |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -1523 ((-112) |#2| |#2|)) (-15 -1954 ((-112))) (-15 -3926 ((-776))) (-15 -3045 ((-776))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -2247 (|#1| (-1275 (-412 |#3|)))) (-15 -2247 (|#1| (-1275 (-412 |#3|)) (-1275 |#1|)))) (-346 |#2| |#3| |#4|) (-1229) (-1251 |#2|) (-1251 (-412 |#3|))) (T -345)) -((-3045 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-3926 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1954 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) (-1523 (*1 *2 *3 *3) (-12 (-4 *3 (-1229)) (-4 *5 (-1251 *3)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6)))) (-2893 (*1 *2) (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-3015 (*1 *2) (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5)) (-4 *3 (-346 *4 *2 *5)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *5 (-1229)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-5 *2 (-649 (-958 *5))) (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7)))) (-2603 (*1 *2) (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6))))) -(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -2603 ((-649 (-649 |#2|)))) (-15 -1388 ((-649 (-958 |#2|)) (-1185))) (-15 -4279 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3015 ((-3 |#3| "failed"))) (-15 -2893 ((-3 |#3| "failed"))) (-15 -1869 (|#2| |#1| |#2| |#2|)) (-15 -2642 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3557 ((-112) |#1| |#3|)) (-15 -3557 ((-112) |#1| |#2|)) (-15 -2247 (|#1| (-1275 |#3|) |#3|)) (-15 -2877 ((-2 (|:| |num| (-1275 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2980 ((-1275 |#1|) (-1275 |#1|))) (-15 -3751 ((-1275 |#1|) (-1275 |#1|))) (-15 -3562 ((-1275 |#1|) (-1275 |#1|))) (-15 -3557 ((-112) |#1|)) (-15 -2173 ((-112) |#1|)) (-15 -1523 ((-112) |#2| |#2|)) (-15 -1954 ((-112))) (-15 -3926 ((-776))) (-15 -3045 ((-776))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)))) (-15 -3517 (|#1| |#1| (-1 (-412 |#3|) (-412 |#3|)) (-776))) (-15 -2247 (|#1| (-1275 (-412 |#3|)))) (-15 -2247 (|#1| (-1275 (-412 |#3|)) (-1275 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2877 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 204)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102 (|has| (-412 |#2|) (-367)))) (-4355 (($ $) 103 (|has| (-412 |#2|) (-367)))) (-3039 (((-112) $) 105 (|has| (-412 |#2|) (-367)))) (-1547 (((-694 (-412 |#2|)) (-1275 $)) 53) (((-694 (-412 |#2|))) 68)) (-3140 (((-412 |#2|) $) 59)) (-3715 (((-1198 (-927) (-776)) (-569)) 155 (|has| (-412 |#2|) (-353)))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 122 (|has| (-412 |#2|) (-367)))) (-3764 (((-423 $) $) 123 (|has| (-412 |#2|) (-367)))) (-2227 (((-112) $ $) 113 (|has| (-412 |#2|) (-367)))) (-3473 (((-776)) 96 (|has| (-412 |#2|) (-372)))) (-2123 (((-112)) 221)) (-3317 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 178 (|has| (-412 |#2|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) 173)) (-3150 (((-569) $) 177 (|has| (-412 |#2|) (-1046 (-569)))) (((-412 (-569)) $) 175 (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-412 |#2|) $) 174)) (-2247 (($ (-1275 (-412 |#2|)) (-1275 $)) 55) (($ (-1275 (-412 |#2|))) 71) (($ (-1275 |#2|) |#2|) 203)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-412 |#2|) (-353)))) (-2368 (($ $ $) 117 (|has| (-412 |#2|) (-367)))) (-1833 (((-694 (-412 |#2|)) $ (-1275 $)) 60) (((-694 (-412 |#2|)) $) 66)) (-2957 (((-694 (-569)) (-694 $)) 172 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 171 (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-412 |#2|))) (|:| |vec| (-1275 (-412 |#2|)))) (-694 $) (-1275 $)) 170) (((-694 (-412 |#2|)) (-694 $)) 169)) (-2980 (((-1275 $) (-1275 $)) 209)) (-3598 (($ |#3|) 166) (((-3 $ "failed") (-412 |#3|)) 163 (|has| (-412 |#2|) (-367)))) (-3086 (((-3 $ "failed") $) 37)) (-2603 (((-649 (-649 |#1|))) 190 (|has| |#1| (-372)))) (-1523 (((-112) |#1| |#1|) 225)) (-3978 (((-927)) 61)) (-3406 (($) 99 (|has| (-412 |#2|) (-372)))) (-2303 (((-112)) 218)) (-3811 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2379 (($ $ $) 116 (|has| (-412 |#2|) (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111 (|has| (-412 |#2|) (-367)))) (-2642 (($ $) 196)) (-1616 (($) 157 (|has| (-412 |#2|) (-353)))) (-2807 (((-112) $) 158 (|has| (-412 |#2|) (-353)))) (-3701 (($ $ (-776)) 149 (|has| (-412 |#2|) (-353))) (($ $) 148 (|has| (-412 |#2|) (-353)))) (-1473 (((-112) $) 124 (|has| (-412 |#2|) (-367)))) (-1466 (((-927) $) 160 (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) 146 (|has| (-412 |#2|) (-353)))) (-2349 (((-112) $) 35)) (-3045 (((-776)) 228)) (-3751 (((-1275 $) (-1275 $)) 210)) (-3829 (((-412 |#2|) $) 58)) (-1388 (((-649 (-958 |#1|)) (-1185)) 191 (|has| |#1| (-367)))) (-3885 (((-3 $ "failed") $) 150 (|has| (-412 |#2|) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| (-412 |#2|) (-367)))) (-3859 ((|#3| $) 51 (|has| (-412 |#2|) (-367)))) (-2731 (((-927) $) 98 (|has| (-412 |#2|) (-372)))) (-3585 ((|#3| $) 164)) (-1839 (($ (-649 $)) 109 (|has| (-412 |#2|) (-367))) (($ $ $) 108 (|has| (-412 |#2|) (-367)))) (-3435 (((-1167) $) 10)) (-1334 (((-694 (-412 |#2|))) 205)) (-2979 (((-694 (-412 |#2|))) 207)) (-1817 (($ $) 125 (|has| (-412 |#2|) (-367)))) (-4397 (($ (-1275 |#2|) |#2|) 201)) (-4272 (((-694 (-412 |#2|))) 206)) (-4247 (((-694 (-412 |#2|))) 208)) (-2841 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-4277 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 202)) (-3963 (((-1275 $)) 214)) (-4002 (((-1275 $)) 215)) (-2173 (((-112) $) 213)) (-3557 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2307 (($) 151 (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| (-412 |#2|) (-372)))) (-3015 (((-3 |#2| "failed")) 193)) (-3547 (((-1128) $) 11)) (-3926 (((-776)) 227)) (-2332 (($) 168)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110 (|has| (-412 |#2|) (-367)))) (-1870 (($ (-649 $)) 107 (|has| (-412 |#2|) (-367))) (($ $ $) 106 (|has| (-412 |#2|) (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 154 (|has| (-412 |#2|) (-353)))) (-3800 (((-423 $) $) 121 (|has| (-412 |#2|) (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118 (|has| (-412 |#2|) (-367)))) (-2407 (((-3 $ "failed") $ $) 101 (|has| (-412 |#2|) (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| (-412 |#2|) (-367)))) (-2431 (((-776) $) 114 (|has| (-412 |#2|) (-367)))) (-1869 ((|#1| $ |#1| |#1|) 195)) (-2893 (((-3 |#2| "failed")) 194)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115 (|has| (-412 |#2|) (-367)))) (-3059 (((-412 |#2|) (-1275 $)) 54) (((-412 |#2|)) 67)) (-2166 (((-776) $) 159 (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) 147 (|has| (-412 |#2|) (-353)))) (-3517 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 131 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 130 (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-649 (-1185)) (-649 (-776))) 138 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185) (-776)) 139 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1185))) 140 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185)) 141 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 143 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 145 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2594 (((-694 (-412 |#2|)) (-1275 $) (-1 (-412 |#2|) (-412 |#2|))) 162 (|has| (-412 |#2|) (-367)))) (-4061 ((|#3|) 167)) (-4234 (($) 156 (|has| (-412 |#2|) (-353)))) (-2415 (((-1275 (-412 |#2|)) $ (-1275 $)) 57) (((-694 (-412 |#2|)) (-1275 $) (-1275 $)) 56) (((-1275 (-412 |#2|)) $) 73) (((-694 (-412 |#2|)) (-1275 $)) 72)) (-1410 (((-1275 (-412 |#2|)) $) 70) (($ (-1275 (-412 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 153 (|has| (-412 |#2|) (-353)))) (-3562 (((-1275 $) (-1275 $)) 211)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 |#2|)) 44) (($ (-412 (-569))) 95 (-2776 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-1046 (-412 (-569)))))) (($ $) 100 (|has| (-412 |#2|) (-367)))) (-2239 (($ $) 152 (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) 50 (|has| (-412 |#2|) (-145)))) (-1886 ((|#3| $) 52)) (-2721 (((-776)) 32 T CONST)) (-2784 (((-112)) 224)) (-4050 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-2664 (((-112) $ $) 104 (|has| (-412 |#2|) (-367)))) (-4279 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1954 (((-112)) 226)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) 133 (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) 132 (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1185)) (-649 (-776))) 134 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185) (-776)) 135 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-649 (-1185))) 136 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-1185)) 137 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) (-1759 (|has| (-412 |#2|) (-906 (-1185))) (|has| (-412 |#2|) (-367))))) (($ $ (-776)) 142 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) 144 (-2776 (-1759 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-234))) (-1759 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 129 (|has| (-412 |#2|) (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 |#2|)) 46) (($ (-412 |#2|) $) 45) (($ (-412 (-569)) $) 128 (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) 127 (|has| (-412 |#2|) (-367))))) -(((-346 |#1| |#2| |#3|) (-140) (-1229) (-1251 |t#1|) (-1251 (-412 |t#2|))) (T -346)) -((-3045 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776)))) (-3926 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776)))) (-1954 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-1523 (*1 *2 *3 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-2784 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-4050 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-4050 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-2123 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3317 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3317 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-2303 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-4002 (*1 *2) (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)))) (-3963 (*1 *2) (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3557 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-2980 (*1 *2 *2) (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-4247 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2979 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-4272 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-1334 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4))))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4))))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3))))) (-4277 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4))))) (-4397 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229)) (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3))))) (-2841 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5))))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) (-3557 (*1 *2 *1 *3) (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))))) (-1869 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))))) (-2893 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229)) (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3)))) (-3015 (*1 *2) (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229)) (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3)))) (-4279 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1229)) (-4 *6 (-1251 (-412 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-346 *4 *5 *6)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *4 (-367)) (-5 *2 (-649 (-958 *4))))) (-2603 (*1 *2) (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3)))))) -(-13 (-729 (-412 |t#2|) |t#3|) (-10 -8 (-15 -3045 ((-776))) (-15 -3926 ((-776))) (-15 -1954 ((-112))) (-15 -1523 ((-112) |t#1| |t#1|)) (-15 -2784 ((-112))) (-15 -4050 ((-112) |t#1|)) (-15 -4050 ((-112) |t#2|)) (-15 -2123 ((-112))) (-15 -3317 ((-112) |t#1|)) (-15 -3317 ((-112) |t#2|)) (-15 -2303 ((-112))) (-15 -3811 ((-112) |t#1|)) (-15 -3811 ((-112) |t#2|)) (-15 -4002 ((-1275 $))) (-15 -3963 ((-1275 $))) (-15 -2173 ((-112) $)) (-15 -3557 ((-112) $)) (-15 -3562 ((-1275 $) (-1275 $))) (-15 -3751 ((-1275 $) (-1275 $))) (-15 -2980 ((-1275 $) (-1275 $))) (-15 -4247 ((-694 (-412 |t#2|)))) (-15 -2979 ((-694 (-412 |t#2|)))) (-15 -4272 ((-694 (-412 |t#2|)))) (-15 -1334 ((-694 (-412 |t#2|)))) (-15 -2877 ((-2 (|:| |num| (-1275 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2247 ($ (-1275 |t#2|) |t#2|)) (-15 -4277 ((-2 (|:| |num| (-1275 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4397 ($ (-1275 |t#2|) |t#2|)) (-15 -2841 ((-2 (|:| |num| (-694 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3557 ((-112) $ |t#1|)) (-15 -3557 ((-112) $ |t#2|)) (-15 -3517 ($ $ (-1 |t#2| |t#2|))) (-15 -2642 ($ $)) (-15 -1869 (|t#1| $ |t#1| |t#1|)) (-15 -2893 ((-3 |t#2| "failed"))) (-15 -3015 ((-3 |t#2| "failed"))) (-15 -4279 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-367)) (-15 -1388 ((-649 (-958 |t#1|)) (-1185))) |%noBranch|) (IF (|has| |t#1| (-372)) (-15 -2603 ((-649 (-649 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-38 #1=(-412 |#2|)) . T) ((-38 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-102) . T) ((-111 #0# #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-145))) ((-147) |has| (-412 |#2|) (-147)) ((-621 #0#) -2776 (|has| (-412 |#2|) (-1046 (-412 (-569)))) (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-621 #1#) . T) ((-621 (-569)) . T) ((-621 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#3|) . T) ((-232 #1#) |has| (-412 |#2|) (-367)) ((-234) -2776 (|has| (-412 |#2|) (-353)) (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367)))) ((-244) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-293) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-310) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-367) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-407) |has| (-412 |#2|) (-353)) ((-372) -2776 (|has| (-412 |#2|) (-372)) (|has| (-412 |#2|) (-353))) ((-353) |has| (-412 |#2|) (-353)) ((-374 #1# |#3|) . T) ((-414 #1# |#3|) . T) ((-381 #1#) . T) ((-416 #1#) . T) ((-457) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-561) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-651 #1#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-645 #1#) . T) ((-645 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-644 #1#) . T) ((-644 (-569)) |has| (-412 |#2|) (-644 (-569))) ((-722 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-722 #1#) . T) ((-722 $) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-729 #1# |#3|) . T) ((-731) . T) ((-906 (-1185)) -12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185)))) ((-926) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1046 (-412 (-569))) |has| (-412 |#2|) (-1046 (-412 (-569)))) ((-1046 #1#) . T) ((-1046 (-569)) |has| (-412 |#2|) (-1046 (-569))) ((-1059 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1059 #1#) . T) ((-1059 $) . T) ((-1064 #0#) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367))) ((-1064 #1#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| (-412 |#2|) (-353)) ((-1229) -2776 (|has| (-412 |#2|) (-353)) (|has| (-412 |#2|) (-367)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-916 |#1|) "failed") $) NIL)) (-3150 (((-916 |#1|) $) NIL)) (-2247 (($ (-1275 (-916 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-916 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-916 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-916 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3829 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-916 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-3775 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4119 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1181 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-4384 (($ $ (-1181 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2521 (((-964 (-1128))) NIL)) (-2332 (($) NIL (|has| (-916 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-916 |#1|))) NIL)) (-4234 (($) NIL (|has| (-916 |#1|) (-372)))) (-4110 (($) NIL (|has| (-916 |#1|) (-372)))) (-2415 (((-1275 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL))) -(((-347 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -2521 ((-964 (-1128)))))) (-927) (-927)) (T -347)) -((-2521 (*1 *2) (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927))))) -(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -2521 ((-964 (-1128)))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 58)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 56 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 142)) (-3150 ((|#1| $) 113)) (-2247 (($ (-1275 |#1|)) 130)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) 124 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 160 (|has| |#1| (-372)))) (-2807 (((-112) $) 66 (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) 60 (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) 62)) (-2155 (($) 162 (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) 117) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) 171 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 178)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 96 (|has| |#1| (-372)))) (-3020 (((-112) $) 147)) (-3547 (((-1128) $) NIL)) (-2521 (((-964 (-1128))) 57)) (-2332 (($) 158 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 119 (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) 90) (((-927)) 91)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) 161 (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) 154 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) 122)) (-4234 (($) 159 (|has| |#1| (-372)))) (-4110 (($) 167 (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 77) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) 174) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 155 T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 144) (((-1275 $) (-927)) 98)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 67 T CONST)) (-1815 (($) 103 T CONST)) (-1679 (($ $) 107 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) 65)) (-3035 (($ $ $) 176) (($ $ |#1|) 177)) (-3024 (($ $) 157) (($ $ $) NIL)) (-3012 (($ $ $) 86)) (** (($ $ (-927)) 180) (($ $ (-776)) 181) (($ $ (-569)) 179)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 102) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-348 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128)))))) (-353) (-1181 |#1|)) (T -348)) -((-2521 (*1 *2) (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) (-14 *4 (-1181 *3))))) -(-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128)))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) NIL) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2521 (((-964 (-1128))) NIL)) (-2332 (($) NIL (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) NIL)) (-4234 (($) NIL (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-349 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128)))))) (-353) (-927)) (T -349)) -((-2521 (*1 *2) (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927))))) -(-13 (-332 |#1|) (-10 -7 (-15 -2521 ((-964 (-1128)))))) -((-2846 (((-776) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) 61)) (-3689 (((-964 (-1128)) (-1181 |#1|)) 111)) (-2366 (((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) (-1181 |#1|)) 102)) (-2250 (((-694 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) 113)) (-4063 (((-3 (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) "failed") (-927)) 13)) (-2632 (((-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) (-927)) 18))) -(((-350 |#1|) (-10 -7 (-15 -3689 ((-964 (-1128)) (-1181 |#1|))) (-15 -2366 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) (-1181 |#1|))) (-15 -2250 ((-694 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -2846 ((-776) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -4063 ((-3 (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) "failed") (-927))) (-15 -2632 ((-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) (-927)))) (-353)) (T -350)) -((-2632 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-3 (-1181 *4) (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-4063 (*1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-5 *1 (-350 *4)) (-4 *4 (-353)))) (-2846 (*1 *2 *3) (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-5 *1 (-350 *4)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1128))) (-5 *1 (-350 *4))))) -(-10 -7 (-15 -3689 ((-964 (-1128)) (-1181 |#1|))) (-15 -2366 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) (-1181 |#1|))) (-15 -2250 ((-694 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -2846 ((-776) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -4063 ((-3 (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) "failed") (-927))) (-15 -2632 ((-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) (-927)))) -((-3796 ((|#1| |#3|) 106) ((|#3| |#1|) 89))) -(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3796 (|#3| |#1|)) (-15 -3796 (|#1| |#3|))) (-332 |#2|) (-353) (-332 |#2|)) (T -351)) -((-3796 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *2 *4 *3)) (-4 *3 (-332 *4)))) (-3796 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2)) (-4 *3 (-332 *4))))) -(-10 -7 (-15 -3796 (|#3| |#1|)) (-15 -3796 (|#1| |#3|))) -((-2807 (((-112) $) 60)) (-1466 (((-838 (-927)) $) 23) (((-927) $) 66)) (-3885 (((-3 $ "failed") $) 18)) (-2307 (($) 9)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 116)) (-2166 (((-3 (-776) "failed") $ $) 94) (((-776) $) 81)) (-3517 (($ $ (-776)) NIL) (($ $) 8)) (-4234 (($) 53)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 38)) (-2239 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-352 |#1|) (-10 -8 (-15 -1466 ((-927) |#1|)) (-15 -2166 ((-776) |#1|)) (-15 -2807 ((-112) |#1|)) (-15 -4234 (|#1|)) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2239 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -2166 ((-3 (-776) "failed") |#1| |#1|)) (-15 -1466 ((-838 (-927)) |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)))) (-353)) (T -352)) -NIL -(-10 -8 (-15 -1466 ((-927) |#1|)) (-15 -2166 ((-776) |#1|)) (-15 -2807 ((-112) |#1|)) (-15 -4234 (|#1|)) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2239 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -2166 ((-3 (-776) "failed") |#1| |#1|)) (-15 -1466 ((-838 (-927)) |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-3715 (((-1198 (-927) (-776)) (-569)) 101)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-3473 (((-776)) 111)) (-4427 (($) 18 T CONST)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-3406 (($) 114)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1616 (($) 99)) (-2807 (((-112) $) 98)) (-3701 (($ $) 87) (($ $ (-776)) 86)) (-1473 (((-112) $) 79)) (-1466 (((-838 (-927)) $) 89) (((-927) $) 96)) (-2349 (((-112) $) 35)) (-3885 (((-3 $ "failed") $) 110)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2731 (((-927) $) 113)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-2307 (($) 109 T CONST)) (-2150 (($ (-927)) 112)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 102)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-3 (-776) "failed") $ $) 88) (((-776) $) 97)) (-3517 (($ $ (-776)) 107) (($ $) 105)) (-4234 (($) 100)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 103)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2239 (((-3 $ "failed") $) 90) (($ $) 104)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-776)) 108) (($ $) 106)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75))) -(((-353) (-140)) (T -353)) -((-2239 (*1 *1 *1) (-4 *1 (-353))) (-1924 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1275 *1)))) (-4218 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))))) (-3715 (*1 *2 *3) (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1198 (-927) (-776))))) (-4234 (*1 *1) (-4 *1 (-353))) (-1616 (*1 *1) (-4 *1 (-353))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927)))) (-4424 (*1 *2) (-12 (-4 *1 (-353)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-407) (-372) (-1160) (-234) (-10 -8 (-15 -2239 ($ $)) (-15 -1924 ((-3 (-1275 $) "failed") (-694 $))) (-15 -4218 ((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569)))))) (-15 -3715 ((-1198 (-927) (-776)) (-569))) (-15 -4234 ($)) (-15 -1616 ($)) (-15 -2807 ((-112) $)) (-15 -2166 ((-776) $)) (-15 -1466 ((-927) $)) (-15 -4424 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-234) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) . T) ((-372) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) . T) ((-1229) . T)) -((-3615 (((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|) 55)) (-4002 (((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 53))) -(((-354 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|))) (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))) (-1251 |#1|) (-414 |#1| |#2|)) (T -354)) -((-3615 (*1 *2 *3) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4002 (*1 *2) (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) -(-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2846 (((-776)) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-916 |#1|) "failed") $) NIL)) (-3150 (((-916 |#1|) $) NIL)) (-2247 (($ (-1275 (-916 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-916 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-916 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-916 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3829 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-916 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-3775 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4119 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1181 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-4384 (($ $ (-1181 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-3121 (((-1275 (-649 (-2 (|:| -2188 (-916 |#1|)) (|:| -2150 (-1128)))))) NIL)) (-1516 (((-694 (-916 |#1|))) NIL)) (-2332 (($) NIL (|has| (-916 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-916 |#1|))) NIL)) (-4234 (($) NIL (|has| (-916 |#1|) (-372)))) (-4110 (($) NIL (|has| (-916 |#1|) (-372)))) (-2415 (((-1275 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL))) -(((-355 |#1| |#2|) (-13 (-332 (-916 |#1|)) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 (-916 |#1|)) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 (-916 |#1|)))) (-15 -2846 ((-776))))) (-927) (-927)) (T -355)) -((-3121 (*1 *2) (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 (-916 *3)) (|:| -2150 (-1128)))))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1516 (*1 *2) (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2846 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927))))) -(-13 (-332 (-916 |#1|)) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 (-916 |#1|)) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 (-916 |#1|)))) (-15 -2846 ((-776))))) -((-2417 (((-112) $ $) 73)) (-4143 (((-112) $) 88)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) 106) (($ $ (-927)) 104 (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 171 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2846 (((-776)) 103)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) 188 (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 128)) (-3150 ((|#1| $) 105)) (-2247 (($ (-1275 |#1|)) 71)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) 183 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 172 (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) 114 (|has| |#1| (-372)))) (-2483 (((-112) $) 201 (|has| |#1| (-372)))) (-3829 ((|#1| $) 108) (($ $ (-927)) 107 (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) 215) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) 149 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) 87 (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) 84 (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) 96 (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) 83 (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 219)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 151 (|has| |#1| (-372)))) (-3020 (((-112) $) 124)) (-3547 (((-1128) $) NIL)) (-3121 (((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) 97)) (-1516 (((-694 |#1|)) 101)) (-2332 (($) 110 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 174 (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) 175)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) 75)) (-4061 (((-1181 |#1|)) 176)) (-4234 (($) 148 (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 122) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) 141) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 70)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 181 T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 198) (((-1275 $) (-927)) 117)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 187 T CONST)) (-1815 (($) 162 T CONST)) (-1679 (($ $) 123 (|has| |#1| (-372))) (($ $ (-776)) 115 (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) 209)) (-3035 (($ $ $) 120) (($ $ |#1|) 121)) (-3024 (($ $) 203) (($ $ $) 207)) (-3012 (($ $ $) 205)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 154)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 212) (($ $ $) 165) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119))) -(((-356 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776))))) (-353) (-3 (-1181 |#1|) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (T -356)) -((-3121 (*1 *2) (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) *2)))) (-1516 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))))) (-2846 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))))))) -(-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2846 (((-776)) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) NIL) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-3121 (((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128)))))) NIL)) (-1516 (((-694 |#1|)) NIL)) (-2332 (($) NIL (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) NIL)) (-4234 (($) NIL (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-357 |#1| |#2|) (-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776))))) (-353) (-927)) (T -357)) -((-3121 (*1 *2) (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-1516 (*1 *2) (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927)))) (-2846 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927))))) -(-13 (-332 |#1|) (-10 -7 (-15 -3121 ((-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))))) (-15 -1516 ((-694 |#1|))) (-15 -2846 ((-776))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-916 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-916 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-916 |#1|) "failed") $) NIL)) (-3150 (((-916 |#1|) $) NIL)) (-2247 (($ (-1275 (-916 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-916 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-916 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-916 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-916 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-916 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-916 |#1|) (-372)))) (-3829 (((-916 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-916 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-916 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-916 |#1|) (-372)))) (-3775 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372)))) (-4119 (((-1181 (-916 |#1|)) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-1181 (-916 |#1|)) "failed") $ $) NIL (|has| (-916 |#1|) (-372)))) (-4384 (($ $ (-1181 (-916 |#1|))) NIL (|has| (-916 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-916 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-916 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| (-916 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-916 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-916 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-916 |#1|))) NIL)) (-4234 (($) NIL (|has| (-916 |#1|) (-372)))) (-4110 (($) NIL (|has| (-916 |#1|) (-372)))) (-2415 (((-1275 (-916 |#1|)) $) NIL) (((-694 (-916 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-916 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-916 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-916 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-916 |#1|) (-145)) (|has| (-916 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-916 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-916 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-916 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-916 |#1|)) NIL) (($ (-916 |#1|) $) NIL))) -(((-358 |#1| |#2|) (-332 (-916 |#1|)) (-927) (-927)) (T -358)) -NIL -(-332 (-916 |#1|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) 132 (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) 158 (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 106)) (-3150 ((|#1| $) 103)) (-2247 (($ (-1275 |#1|)) 98)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) 95 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 51 (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) 133 (|has| |#1| (-372)))) (-2483 (((-112) $) 87 (|has| |#1| (-372)))) (-3829 ((|#1| $) 47) (($ $ (-927)) 52 (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) 78) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) 110 (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) 108 (|has| |#1| (-372)))) (-3020 (((-112) $) 160)) (-3547 (((-1128) $) NIL)) (-2332 (($) 44 (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 127 (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) 157)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) 70)) (-4061 (((-1181 |#1|)) 101)) (-4234 (($) 138 (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) 66) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) 156) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 100)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 162 T CONST)) (-1520 (((-112) $ $) 164)) (-2403 (((-1275 $)) 122) (((-1275 $) (-927)) 60)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 124 T CONST)) (-1815 (($) 40 T CONST)) (-1679 (($ $) 81 (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) 120)) (-3035 (($ $ $) 112) (($ $ |#1|) 113)) (-3024 (($ $) 93) (($ $ $) 118)) (-3012 (($ $ $) 116)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55) (($ $ (-569)) 141)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 91) (($ $ $) 68) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89))) -(((-359 |#1| |#2|) (-332 |#1|) (-353) (-1181 |#1|)) (T -359)) -NIL -(-332 |#1|) -((-3188 ((|#1| (-1181 |#2|)) 61))) -(((-360 |#1| |#2|) (-10 -7 (-15 -3188 (|#1| (-1181 |#2|)))) (-13 (-407) (-10 -7 (-15 -3796 (|#1| |#2|)) (-15 -2731 ((-927) |#1|)) (-15 -2403 ((-1275 |#1|) (-927))) (-15 -1679 (|#1| |#1|)))) (-353)) (T -360)) -((-3188 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-4 *2 (-13 (-407) (-10 -7 (-15 -3796 (*2 *4)) (-15 -2731 ((-927) *2)) (-15 -2403 ((-1275 *2) (-927))) (-15 -1679 (*2 *2))))) (-5 *1 (-360 *2 *4))))) -(-10 -7 (-15 -3188 (|#1| (-1181 |#2|)))) -((-2930 (((-964 (-1181 |#1|)) (-1181 |#1|)) 51)) (-3406 (((-1181 |#1|) (-927) (-927)) 158) (((-1181 |#1|) (-927)) 154)) (-2807 (((-112) (-1181 |#1|)) 110)) (-2481 (((-927) (-927)) 88)) (-4195 (((-927) (-927)) 95)) (-2741 (((-927) (-927)) 86)) (-2483 (((-112) (-1181 |#1|)) 114)) (-2348 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 139)) (-3195 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 144)) (-1319 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 143)) (-3957 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 142)) (-3693 (((-3 (-1181 |#1|) "failed") (-1181 |#1|)) 134)) (-3153 (((-1181 |#1|) (-1181 |#1|)) 74)) (-2331 (((-1181 |#1|) (-927)) 149)) (-3793 (((-1181 |#1|) (-927)) 152)) (-2015 (((-1181 |#1|) (-927)) 151)) (-3269 (((-1181 |#1|) (-927)) 150)) (-2668 (((-1181 |#1|) (-927)) 147))) -(((-361 |#1|) (-10 -7 (-15 -2807 ((-112) (-1181 |#1|))) (-15 -2483 ((-112) (-1181 |#1|))) (-15 -2741 ((-927) (-927))) (-15 -2481 ((-927) (-927))) (-15 -4195 ((-927) (-927))) (-15 -2668 ((-1181 |#1|) (-927))) (-15 -2331 ((-1181 |#1|) (-927))) (-15 -3269 ((-1181 |#1|) (-927))) (-15 -2015 ((-1181 |#1|) (-927))) (-15 -3793 ((-1181 |#1|) (-927))) (-15 -3693 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -2348 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3957 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -1319 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3195 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3406 ((-1181 |#1|) (-927))) (-15 -3406 ((-1181 |#1|) (-927) (-927))) (-15 -3153 ((-1181 |#1|) (-1181 |#1|))) (-15 -2930 ((-964 (-1181 |#1|)) (-1181 |#1|)))) (-353)) (T -361)) -((-2930 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1181 *4))) (-5 *1 (-361 *4)) (-5 *3 (-1181 *4)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3406 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3195 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-1319 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3957 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-2348 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) (-4 *4 (-353)))) (-4195 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-361 *4))))) -(-10 -7 (-15 -2807 ((-112) (-1181 |#1|))) (-15 -2483 ((-112) (-1181 |#1|))) (-15 -2741 ((-927) (-927))) (-15 -2481 ((-927) (-927))) (-15 -4195 ((-927) (-927))) (-15 -2668 ((-1181 |#1|) (-927))) (-15 -2331 ((-1181 |#1|) (-927))) (-15 -3269 ((-1181 |#1|) (-927))) (-15 -2015 ((-1181 |#1|) (-927))) (-15 -3793 ((-1181 |#1|) (-927))) (-15 -3693 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -2348 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3957 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -1319 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3195 ((-3 (-1181 |#1|) "failed") (-1181 |#1|))) (-15 -3406 ((-1181 |#1|) (-927))) (-15 -3406 ((-1181 |#1|) (-927) (-927))) (-15 -3153 ((-1181 |#1|) (-1181 |#1|))) (-15 -2930 ((-964 (-1181 |#1|)) (-1181 |#1|)))) -((-3466 (((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|) 38))) -(((-362 |#1| |#2| |#3|) (-10 -7 (-15 -3466 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|))) (-353) (-1251 |#1|) (-1251 |#2|)) (T -362)) -((-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3))))) -(-10 -7 (-15 -3466 ((-3 (-649 |#3|) "failed") (-649 |#3|) |#3|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| |#1| (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| |#1| (-372)))) (-2807 (((-112) $) NIL (|has| |#1| (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| |#1| (-372))) (((-838 (-927)) $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| |#1| (-372)))) (-2483 (((-112) $) NIL (|has| |#1| (-372)))) (-3829 ((|#1| $) NIL) (($ $ (-927)) NIL (|has| |#1| (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 |#1|) $) NIL) (((-1181 $) $ (-927)) NIL (|has| |#1| (-372)))) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3775 (((-1181 |#1|) $) NIL (|has| |#1| (-372)))) (-4119 (((-1181 |#1|) $) NIL (|has| |#1| (-372))) (((-3 (-1181 |#1|) "failed") $ $) NIL (|has| |#1| (-372)))) (-4384 (($ $ (-1181 |#1|)) NIL (|has| |#1| (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| |#1| (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| |#1| (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 |#1|)) NIL)) (-4234 (($) NIL (|has| |#1| (-372)))) (-4110 (($) NIL (|has| |#1| (-372)))) (-2415 (((-1275 |#1|) $) NIL) (((-694 |#1|) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) NIL)) (-2239 (($ $) NIL (|has| |#1| (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2832 (($ $) NIL (|has| |#1| (-372))) (($ $ (-776)) NIL (|has| |#1| (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-363 |#1| |#2|) (-332 |#1|) (-353) (-927)) (T -363)) -NIL -(-332 |#1|) -((-2013 (((-112) (-649 (-958 |#1|))) 41)) (-2454 (((-649 (-958 |#1|)) (-649 (-958 |#1|))) 53)) (-3959 (((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|))) 48))) -(((-364 |#1| |#2|) (-10 -7 (-15 -2013 ((-112) (-649 (-958 |#1|)))) (-15 -3959 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -2454 ((-649 (-958 |#1|)) (-649 (-958 |#1|))))) (-457) (-649 (-1185))) (T -364)) -((-2454 (*1 *2 *2) (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1185))))) (-3959 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1185))))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112)) (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1185)))))) -(-10 -7 (-15 -2013 ((-112) (-649 (-958 |#1|)))) (-15 -3959 ((-3 (-649 (-958 |#1|)) "failed") (-649 (-958 |#1|)))) (-15 -2454 ((-649 (-958 |#1|)) (-649 (-958 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) 17)) (-3522 ((|#1| $ (-569)) NIL)) (-2114 (((-569) $ (-569)) NIL)) (-3196 (($ (-1 |#1| |#1|) $) 34)) (-4308 (($ (-1 (-569) (-569)) $) 26)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 28)) (-3547 (((-1128) $) NIL)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $) 30)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 40) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 11 T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ |#1| (-569)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-365 |#1|) (-13 (-478) (-1046 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3473 ((-776) $)) (-15 -2114 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -4308 ($ (-1 (-569) (-569)) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)) (-15 -4360 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $)))) (-1108)) (T -365)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) (-2114 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108)))) (-4308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-365 *3)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-569))))) (-5 *1 (-365 *3)) (-4 *3 (-1108))))) -(-13 (-478) (-1046 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-569))) (-15 -3473 ((-776) $)) (-15 -2114 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -4308 ($ (-1 (-569) (-569)) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)) (-15 -4360 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-569)))) $)))) -((-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 13)) (-4355 (($ $) 14)) (-3764 (((-423 $) $) 34)) (-1473 (((-112) $) 30)) (-1817 (($ $) 19)) (-1870 (($ $ $) 25) (($ (-649 $)) NIL)) (-3800 (((-423 $) $) 35)) (-2407 (((-3 $ "failed") $ $) 24)) (-2431 (((-776) $) 28)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 39)) (-2664 (((-112) $ $) 16)) (-3035 (($ $ $) 37))) -(((-366 |#1|) (-10 -8 (-15 -3035 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|))) (-367)) (T -366)) -NIL -(-10 -8 (-15 -3035 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75))) -(((-367) (-140)) (T -367)) -((-3035 (*1 *1 *1 *1) (-4 *1 (-367)))) -(-13 (-310) (-1229) (-244) (-10 -8 (-15 -3035 ($ $ $)) (-6 -4445) (-6 -4439))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-2417 (((-112) $ $) 7)) (-2617 ((|#2| $ |#2|) 14)) (-3229 (($ $ (-1167)) 19)) (-2358 ((|#2| $) 15)) (-1721 (($ |#1|) 21) (($ |#1| (-1167)) 20)) (-3573 ((|#1| $) 17)) (-3435 (((-1167) $) 10)) (-4065 (((-1167) $) 16)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-2543 (($ $) 18)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-368 |#1| |#2|) (-140) (-1108) (-1108)) (T -368)) -((-1721 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-1721 (*1 *1 *2 *3) (-12 (-5 *3 (-1167)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1108)) (-4 *4 (-1108)))) (-3229 (*1 *1 *1 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2543 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-4065 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-1167)))) (-2358 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-2617 (*1 *2 *1 *2) (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))) -(-13 (-1108) (-10 -8 (-15 -1721 ($ |t#1|)) (-15 -1721 ($ |t#1| (-1167))) (-15 -3229 ($ $ (-1167))) (-15 -2543 ($ $)) (-15 -3573 (|t#1| $)) (-15 -4065 ((-1167) $)) (-15 -2358 (|t#2| $)) (-15 -2617 (|t#2| $ |t#2|)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-2617 ((|#1| $ |#1|) 31)) (-3229 (($ $ (-1167)) 23)) (-1584 (((-3 |#1| "failed") $) 30)) (-2358 ((|#1| $) 28)) (-1721 (($ (-393)) 22) (($ (-393) (-1167)) 21)) (-3573 (((-393) $) 25)) (-3435 (((-1167) $) NIL)) (-4065 (((-1167) $) 26)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20)) (-2543 (($ $) 24)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 19))) -(((-369 |#1|) (-13 (-368 (-393) |#1|) (-10 -8 (-15 -1584 ((-3 |#1| "failed") $)))) (-1108)) (T -369)) -((-1584 (*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1108))))) -(-13 (-368 (-393) |#1|) (-10 -8 (-15 -1584 ((-3 |#1| "failed") $)))) -((-2901 (((-1275 (-694 |#2|)) (-1275 $)) 70)) (-3400 (((-694 |#2|) (-1275 $)) 141)) (-1564 ((|#2| $) 39)) (-2183 (((-694 |#2|) $ (-1275 $)) 144)) (-4379 (((-3 $ "failed") $) 91)) (-3156 ((|#2| $) 42)) (-4375 (((-1181 |#2|) $) 99)) (-3850 ((|#2| (-1275 $)) 124)) (-4136 (((-1181 |#2|) $) 34)) (-2413 (((-112)) 118)) (-2247 (($ (-1275 |#2|) (-1275 $)) 134)) (-3086 (((-3 $ "failed") $) 95)) (-1756 (((-112)) 112)) (-2411 (((-112)) 107)) (-2399 (((-112)) 61)) (-2999 (((-694 |#2|) (-1275 $)) 139)) (-3339 ((|#2| $) 38)) (-1866 (((-694 |#2|) $ (-1275 $)) 143)) (-4059 (((-3 $ "failed") $) 89)) (-2907 ((|#2| $) 41)) (-4167 (((-1181 |#2|) $) 98)) (-3674 ((|#2| (-1275 $)) 122)) (-2761 (((-1181 |#2|) $) 32)) (-4307 (((-112)) 117)) (-2189 (((-112)) 109)) (-3703 (((-112)) 59)) (-4324 (((-112)) 104)) (-3749 (((-112)) 119)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) 130)) (-2324 (((-112)) 115)) (-2643 (((-649 (-1275 |#2|))) 103)) (-3821 (((-112)) 116)) (-3649 (((-112)) 113)) (-2887 (((-112)) 54)) (-3967 (((-112)) 120))) -(((-370 |#1| |#2|) (-10 -8 (-15 -4375 ((-1181 |#2|) |#1|)) (-15 -4167 ((-1181 |#2|) |#1|)) (-15 -2643 ((-649 (-1275 |#2|)))) (-15 -4379 ((-3 |#1| "failed") |#1|)) (-15 -4059 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 -2411 ((-112))) (-15 -2189 ((-112))) (-15 -1756 ((-112))) (-15 -3703 ((-112))) (-15 -2399 ((-112))) (-15 -4324 ((-112))) (-15 -3967 ((-112))) (-15 -3749 ((-112))) (-15 -2413 ((-112))) (-15 -4307 ((-112))) (-15 -2887 ((-112))) (-15 -3821 ((-112))) (-15 -3649 ((-112))) (-15 -2324 ((-112))) (-15 -4136 ((-1181 |#2|) |#1|)) (-15 -2761 ((-1181 |#2|) |#1|)) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3156 (|#2| |#1|)) (-15 -2907 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|)))) (-371 |#2|) (-173)) (T -370)) -((-2324 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3649 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3821 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2887 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4307 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2413 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3749 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3967 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-4324 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2399 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-3703 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-1756 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2189 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2411 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4)))) (-2643 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1275 *4))) (-5 *1 (-370 *3 *4)) (-4 *3 (-371 *4))))) -(-10 -8 (-15 -4375 ((-1181 |#2|) |#1|)) (-15 -4167 ((-1181 |#2|) |#1|)) (-15 -2643 ((-649 (-1275 |#2|)))) (-15 -4379 ((-3 |#1| "failed") |#1|)) (-15 -4059 ((-3 |#1| "failed") |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 -2411 ((-112))) (-15 -2189 ((-112))) (-15 -1756 ((-112))) (-15 -3703 ((-112))) (-15 -2399 ((-112))) (-15 -4324 ((-112))) (-15 -3967 ((-112))) (-15 -3749 ((-112))) (-15 -2413 ((-112))) (-15 -4307 ((-112))) (-15 -2887 ((-112))) (-15 -3821 ((-112))) (-15 -3649 ((-112))) (-15 -2324 ((-112))) (-15 -4136 ((-1181 |#2|) |#1|)) (-15 -2761 ((-1181 |#2|) |#1|)) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -3156 (|#2| |#1|)) (-15 -2907 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -3339 (|#2| |#1|)) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2736 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-2901 (((-1275 (-694 |#1|)) (-1275 $)) 83)) (-3076 (((-1275 $)) 86)) (-4427 (($) 18 T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-3207 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-3400 (((-694 |#1|) (-1275 $)) 70)) (-1564 ((|#1| $) 79)) (-2183 (((-694 |#1|) $ (-1275 $)) 81)) (-4379 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-2395 (($ $ (-927)) 31)) (-3156 ((|#1| $) 77)) (-4375 (((-1181 |#1|) $) 47 (|has| |#1| (-561)))) (-3850 ((|#1| (-1275 $)) 72)) (-4136 (((-1181 |#1|) $) 68)) (-2413 (((-112)) 62)) (-2247 (($ (-1275 |#1|) (-1275 $)) 74)) (-3086 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3978 (((-927)) 85)) (-4095 (((-112)) 59)) (-4311 (($ $ (-927)) 38)) (-1756 (((-112)) 55)) (-2411 (((-112)) 53)) (-2399 (((-112)) 57)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-2904 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-2999 (((-694 |#1|) (-1275 $)) 71)) (-3339 ((|#1| $) 80)) (-1866 (((-694 |#1|) $ (-1275 $)) 82)) (-4059 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-2667 (($ $ (-927)) 32)) (-2907 ((|#1| $) 78)) (-4167 (((-1181 |#1|) $) 48 (|has| |#1| (-561)))) (-3674 ((|#1| (-1275 $)) 73)) (-2761 (((-1181 |#1|) $) 69)) (-4307 (((-112)) 63)) (-3435 (((-1167) $) 10)) (-2189 (((-112)) 54)) (-3703 (((-112)) 56)) (-4324 (((-112)) 58)) (-3547 (((-1128) $) 11)) (-3749 (((-112)) 61)) (-2415 (((-1275 |#1|) $ (-1275 $)) 76) (((-694 |#1|) (-1275 $) (-1275 $)) 75)) (-1829 (((-649 (-958 |#1|)) (-1275 $)) 84)) (-2180 (($ $ $) 28)) (-2324 (((-112)) 67)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2643 (((-649 (-1275 |#1|))) 49 (|has| |#1| (-561)))) (-1676 (($ $ $ $) 29)) (-3821 (((-112)) 65)) (-2489 (($ $ $) 27)) (-3649 (((-112)) 66)) (-2887 (((-112)) 64)) (-3967 (((-112)) 60)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-371 |#1|) (-140) (-173)) (T -371)) -((-3076 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-371 *3)))) (-3978 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1275 (-694 *4))))) (-1866 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2183 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3156 (*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-1275 *4)))) (-2415 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173)) (-4 *1 (-371 *4)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3)))) (-2324 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3649 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3821 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2887 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4307 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2413 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3749 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3967 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4095 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-4324 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2399 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3703 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-1756 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2189 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-2411 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112)))) (-3086 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-4059 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-4379 (*1 *1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) (-2643 (*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-649 (-1275 *3))))) (-4167 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1181 *3)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) (-5 *2 (-1181 *3)))) (-4391 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1)))) (-4 *1 (-371 *3)))) (-2707 (*1 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1)))) (-4 *1 (-371 *3)))) (-2904 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-3207 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) (-2736 (*1 *1) (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173))))) -(-13 (-749 |t#1|) (-10 -8 (-15 -3076 ((-1275 $))) (-15 -3978 ((-927))) (-15 -1829 ((-649 (-958 |t#1|)) (-1275 $))) (-15 -2901 ((-1275 (-694 |t#1|)) (-1275 $))) (-15 -1866 ((-694 |t#1|) $ (-1275 $))) (-15 -2183 ((-694 |t#1|) $ (-1275 $))) (-15 -3339 (|t#1| $)) (-15 -1564 (|t#1| $)) (-15 -2907 (|t#1| $)) (-15 -3156 (|t#1| $)) (-15 -2415 ((-1275 |t#1|) $ (-1275 $))) (-15 -2415 ((-694 |t#1|) (-1275 $) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|) (-1275 $))) (-15 -3674 (|t#1| (-1275 $))) (-15 -3850 (|t#1| (-1275 $))) (-15 -2999 ((-694 |t#1|) (-1275 $))) (-15 -3400 ((-694 |t#1|) (-1275 $))) (-15 -2761 ((-1181 |t#1|) $)) (-15 -4136 ((-1181 |t#1|) $)) (-15 -2324 ((-112))) (-15 -3649 ((-112))) (-15 -3821 ((-112))) (-15 -2887 ((-112))) (-15 -4307 ((-112))) (-15 -2413 ((-112))) (-15 -3749 ((-112))) (-15 -3967 ((-112))) (-15 -4095 ((-112))) (-15 -4324 ((-112))) (-15 -2399 ((-112))) (-15 -3703 ((-112))) (-15 -1756 ((-112))) (-15 -2189 ((-112))) (-15 -2411 ((-112))) (IF (|has| |t#1| (-561)) (PROGN (-15 -3086 ((-3 $ "failed") $)) (-15 -4059 ((-3 $ "failed") $)) (-15 -4379 ((-3 $ "failed") $)) (-15 -2643 ((-649 (-1275 |t#1|)))) (-15 -4167 ((-1181 |t#1|) $)) (-15 -4375 ((-1181 |t#1|) $)) (-15 -4391 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2904 ((-3 $ "failed"))) (-15 -3207 ((-3 $ "failed"))) (-15 -2736 ((-3 $ "failed"))) (-6 -4444)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-3473 (((-776)) 17)) (-3406 (($) 14)) (-2731 (((-927) $) 15)) (-3435 (((-1167) $) 10)) (-2150 (($ (-927)) 16)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-372) (-140)) (T -372)) -((-3473 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927)))) (-3406 (*1 *1) (-4 *1 (-372)))) -(-13 (-1108) (-10 -8 (-15 -3473 ((-776))) (-15 -2150 ($ (-927))) (-15 -2731 ((-927) $)) (-15 -3406 ($)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-1547 (((-694 |#2|) (-1275 $)) 47)) (-2247 (($ (-1275 |#2|) (-1275 $)) 41)) (-1833 (((-694 |#2|) $ (-1275 $)) 49)) (-3059 ((|#2| (-1275 $)) 13)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) 27))) -(((-373 |#1| |#2| |#3|) (-10 -8 (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|)))) (-374 |#2| |#3|) (-173) (-1251 |#2|)) (T -373)) -NIL -(-10 -8 (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1547 (((-694 |#1|) (-1275 $)) 53)) (-3140 ((|#1| $) 59)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55)) (-1833 (((-694 |#1|) $ (-1275 $)) 60)) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-927)) 61)) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 58)) (-3859 ((|#2| $) 51 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3059 ((|#1| (-1275 $)) 54)) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-2239 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1886 ((|#2| $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-374 |#1| |#2|) (-140) (-173) (-1251 |t#1|)) (T -374)) -((-3978 (*1 *2) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-927)))) (-1833 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *4)))) (-2415 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173)) (-4 *1 (-374 *4 *5)) (-4 *5 (-1251 *4)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1251 *2)) (-4 *2 (-173)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-1886 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) (-3859 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) (-4 *2 (-1251 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3978 ((-927))) (-15 -1833 ((-694 |t#1|) $ (-1275 $))) (-15 -3140 (|t#1| $)) (-15 -3829 (|t#1| $)) (-15 -2415 ((-1275 |t#1|) $ (-1275 $))) (-15 -2415 ((-694 |t#1|) (-1275 $) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|) (-1275 $))) (-15 -3059 (|t#1| (-1275 $))) (-15 -1547 ((-694 |t#1|) (-1275 $))) (-15 -1886 (|t#2| $)) (IF (|has| |t#1| (-367)) (-15 -3859 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1610 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3598 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1346 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-375 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1225) (-377 |#1|) (-1225) (-377 |#3|)) (T -375)) -((-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5))))) -(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1317 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2951 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3358 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2251 (($ $) 25)) (-4036 (((-569) (-1 (-112) |#2|) $) NIL) (((-569) |#2| $) 11) (((-569) |#2| $ (-569)) NIL)) (-4198 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-376 |#1| |#2|) (-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -3358 (|#1| |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3358 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-377 |#2|) (-1225)) (T -376)) -NIL -(-10 -8 (-15 -2951 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -3358 (|#1| |#1|)) (-15 -4198 (|#1| |#1| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3358 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-377 |#1|) (-140) (-1225)) (T -377)) -((-4198 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-2251 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-1317 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-4036 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225)) (-5 *2 (-569)))) (-4036 (*1 *2 *3 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-569)))) (-4036 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) (-3358 (*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-855)) (-5 *2 (-112)))) (-2785 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-2507 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225)))) (-2951 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4448)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) (-2951 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855))))) -(-13 (-656 |t#1|) (-10 -8 (-6 -4447) (-15 -4198 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2251 ($ $)) (-15 -3358 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1317 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4036 ((-569) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -4036 ((-569) |t#1| $)) (-15 -4036 ((-569) |t#1| $ (-569)))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-6 (-855)) (-15 -4198 ($ $ $)) (-15 -3358 ($ $)) (-15 -1317 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2785 ($ $ $ (-569))) (-15 -2507 ($ $)) (-15 -2951 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-15 -2951 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3105 (((-649 |#1|) $) 37)) (-1604 (($ $ (-776)) 38)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1768 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 41)) (-2325 (($ $) 39)) (-3714 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 42)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-1725 (($ $ |#1| $) 36) (($ $ (-649 |#1|) (-649 $)) 35)) (-4339 (((-776) $) 43)) (-3809 (($ $ $) 34)) (-3796 (((-867) $) 12) (($ |#1|) 46) (((-1290 |#1| |#2|) $) 45) (((-1299 |#1| |#2|) $) 44)) (-1435 ((|#2| (-1299 |#1| |#2|) $) 47)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-4229 (($ (-677 |#1|)) 40)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#2|) 33 (|has| |#2| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) -(((-378 |#1| |#2|) (-140) (-855) (-173)) (T -378)) -((-1435 (*1 *2 *3 *1) (-12 (-5 *3 (-1299 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855)) (-4 *2 (-173)))) (-3796 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1290 *3 *4)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-1299 *3 *4)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-776)))) (-3714 (*1 *2 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-1768 (*1 *2 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4229 (*1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) (-4 *4 (-173)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *2 (-649 *3)))) (-1725 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-855)) (-4 *5 (-173))))) -(-13 (-639 |t#2|) (-10 -8 (-15 -1435 (|t#2| (-1299 |t#1| |t#2|) $)) (-15 -3796 ($ |t#1|)) (-15 -3796 ((-1290 |t#1| |t#2|) $)) (-15 -3796 ((-1299 |t#1| |t#2|) $)) (-15 -4339 ((-776) $)) (-15 -3714 ((-1299 |t#1| |t#2|) (-1299 |t#1| |t#2|) $)) (-15 -1768 ((-1299 |t#1| |t#2|) (-1299 |t#1| |t#2|) $)) (-15 -4229 ($ (-677 |t#1|))) (-15 -2325 ($ $)) (-15 -1604 ($ $ (-776))) (-15 -3105 ((-649 |t#1|) $)) (-15 -1725 ($ $ |t#1| $)) (-15 -1725 ($ $ (-649 |t#1|) (-649 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-653 |#2|) . T) ((-639 |#2|) . T) ((-645 |#2|) . T) ((-722 |#2|) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1108) . T)) -((-4139 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2729 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-4402 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-379 |#1| |#2|) (-10 -7 (-15 -2729 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4402 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4139 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1225) (-13 (-377 |#1|) (-10 -7 (-6 -4448)))) (T -379)) -((-4139 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))) (-4402 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))))) (-2729 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448))))))) -(-10 -7 (-15 -2729 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4402 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -4139 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2957 (((-694 |#2|) (-694 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 22) (((-694 (-569)) (-694 $)) 14))) -(((-380 |#1| |#2|) (-10 -8 (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 |#2|) (-694 |#1|)))) (-381 |#2|) (-1057)) (T -380)) -NIL -(-10 -8 (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 |#2|) (-694 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2957 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 39) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 47 (|has| |#1| (-644 (-569)))) (((-694 (-569)) (-694 $)) 46 (|has| |#1| (-644 (-569))))) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-381 |#1|) (-140) (-1057)) (T -381)) -NIL -(-13 (-644 |t#1|) (-10 -7 (IF (|has| |t#1| (-644 (-569))) (-6 (-644 (-569))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-4165 (((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|) 51) (((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|) 50) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|) 47) (((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|) 41)) (-2740 (((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1185)) |#1|) 30) (((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|) 18))) -(((-382 |#1|) (-10 -7 (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -2740 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -2740 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1185)) |#1|))) (-13 (-367) (-853))) (T -382)) -((-2740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 (-170 *5)))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853))))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-170 (-569))))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) (-4165 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853)))))) -(-10 -7 (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -4165 ((-649 (-649 (-297 (-958 (-170 |#1|))))) (-649 (-297 (-412 (-958 (-170 (-569)))))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -4165 ((-649 (-297 (-958 (-170 |#1|)))) (-297 (-412 (-958 (-170 (-569))))) |#1|)) (-15 -2740 ((-649 (-170 |#1|)) (-412 (-958 (-170 (-569)))) |#1|)) (-15 -2740 ((-649 (-649 (-170 |#1|))) (-649 (-412 (-958 (-170 (-569))))) (-649 (-1185)) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 35)) (-1938 (((-569) $) 62)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2917 (($ $) 142)) (-2771 (($ $) 105)) (-2626 (($ $) 93)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) 47)) (-2227 (((-112) $ $) NIL)) (-2746 (($ $) 103)) (-2601 (($ $) 87)) (-2919 (((-569) $) 80)) (-3084 (($ $ (-569)) 75)) (-4118 (($ $) NIL)) (-2647 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-1482 (($ $) 144)) (-4381 (((-3 (-569) "failed") $) 239) (((-3 (-412 (-569)) "failed") $) 235)) (-3150 (((-569) $) 237) (((-412 (-569)) $) 233)) (-2368 (($ $ $) NIL)) (-2374 (((-569) $ $) 131)) (-3086 (((-3 $ "failed") $) 147)) (-2621 (((-412 (-569)) $ (-776)) 240) (((-412 (-569)) $ (-776) (-776)) 232)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3500 (((-927)) 127) (((-927) (-927)) 128 (|has| $ (-6 -4438)))) (-3712 (((-112) $) 136)) (-1312 (($) 41)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1895 (((-1280) (-776)) 199)) (-3879 (((-1280)) 204) (((-1280) (-776)) 205)) (-4400 (((-1280)) 206) (((-1280) (-776)) 207)) (-2460 (((-1280)) 202) (((-1280) (-776)) 203)) (-1466 (((-569) $) 68)) (-2349 (((-112) $) 40)) (-3742 (($ $ (-569)) NIL)) (-3832 (($ $) 51)) (-3829 (($ $) NIL)) (-2051 (((-112) $) 37)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-2839 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-3034 (((-569) $) 17)) (-4112 (($) 113) (($ $) 119)) (-1342 (($) 118) (($ $) 120)) (-2662 (($ $) 108)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 149)) (-3630 (((-927) (-569)) 46 (|has| $ (-6 -4438)))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) 60)) (-3465 (($ $) 141)) (-2557 (($ (-569) (-569)) 137) (($ (-569) (-569) (-927)) 138)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1993 (((-569) $) 19)) (-4252 (($) 121)) (-4389 (($ $) 102)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-927)) 129) (((-927) (-927)) 130 (|has| $ (-6 -4438)))) (-3517 (($ $ (-776)) NIL) (($ $) 148)) (-3884 (((-927) (-569)) 50 (|has| $ (-6 -4438)))) (-4128 (($ $) NIL)) (-2661 (($ $) NIL)) (-2783 (($ $) NIL)) (-2635 (($ $) NIL)) (-2758 (($ $) 104)) (-2614 (($ $) 92)) (-1410 (((-383) $) 224) (((-226) $) 226) (((-898 (-383)) $) NIL) (((-1167) $) 210) (((-541) $) 222) (($ (-226)) 231)) (-3796 (((-867) $) 214) (($ (-569)) 236) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-569)) 236) (($ (-412 (-569))) NIL) (((-226) $) 227)) (-2721 (((-776)) NIL T CONST)) (-2040 (($ $) 143)) (-3251 (((-927)) 61) (((-927) (-927)) 82 (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) NIL)) (-4363 (((-927)) 132)) (-4161 (($ $) 111)) (-2701 (($ $) 49) (($ $ $) 59)) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) 109)) (-2675 (($ $) 39)) (-4183 (($ $) NIL)) (-2723 (($ $) NIL)) (-1503 (($ $) NIL)) (-2734 (($ $) NIL)) (-4175 (($ $) NIL)) (-2712 (($ $) NIL)) (-4151 (($ $) 110)) (-2689 (($ $) 52)) (-2271 (($ $) 58)) (-1804 (($) 36 T CONST)) (-1815 (($) 43 T CONST)) (-3266 (((-1167) $) 27) (((-1167) $ (-112)) 29) (((-1280) (-827) $) 30) (((-1280) (-827) $ (-112)) 31)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) 211)) (-2956 (((-112) $ $) 45)) (-2920 (((-112) $ $) 56)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 57)) (-3035 (($ $ $) 48) (($ $ (-569)) 42)) (-3024 (($ $) 38) (($ $ $) 53)) (-3012 (($ $ $) 74)) (** (($ $ (-927)) 85) (($ $ (-776)) NIL) (($ $ (-569)) 114) (($ $ (-412 (-569))) 160) (($ $ $) 151)) (* (($ (-927) $) 81) (($ (-776) $) NIL) (($ (-569) $) 86) (($ $ $) 73) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-383) (-13 (-409) (-234) (-619 (-1167)) (-833) (-618 (-226)) (-1210) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3832 ($ $)) (-15 -2374 ((-569) $ $)) (-15 -3084 ($ $ (-569))) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776))) (-15 -4112 ($)) (-15 -1342 ($)) (-15 -4252 ($)) (-15 -2701 ($ $ $)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -4400 ((-1280))) (-15 -4400 ((-1280) (-776))) (-15 -2460 ((-1280))) (-15 -2460 ((-1280) (-776))) (-15 -3879 ((-1280))) (-15 -3879 ((-1280) (-776))) (-15 -1895 ((-1280) (-776))) (-6 -4438) (-6 -4430)))) (T -383)) -((** (*1 *1 *1 *1) (-5 *1 (-383))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3832 (*1 *1 *1) (-5 *1 (-383))) (-2374 (*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-2621 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) (-4112 (*1 *1) (-5 *1 (-383))) (-1342 (*1 *1) (-5 *1 (-383))) (-4252 (*1 *1) (-5 *1 (-383))) (-2701 (*1 *1 *1 *1) (-5 *1 (-383))) (-4112 (*1 *1 *1) (-5 *1 (-383))) (-1342 (*1 *1 *1) (-5 *1 (-383))) (-4400 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) (-2460 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) (-3879 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383))))) -(-13 (-409) (-234) (-619 (-1167)) (-833) (-618 (-226)) (-1210) (-619 (-541)) (-623 (-226)) (-10 -8 (-15 -3035 ($ $ (-569))) (-15 ** ($ $ $)) (-15 -3832 ($ $)) (-15 -2374 ((-569) $ $)) (-15 -3084 ($ $ (-569))) (-15 -2621 ((-412 (-569)) $ (-776))) (-15 -2621 ((-412 (-569)) $ (-776) (-776))) (-15 -4112 ($)) (-15 -1342 ($)) (-15 -4252 ($)) (-15 -2701 ($ $ $)) (-15 -4112 ($ $)) (-15 -1342 ($ $)) (-15 -4400 ((-1280))) (-15 -4400 ((-1280) (-776))) (-15 -2460 ((-1280))) (-15 -2460 ((-1280) (-776))) (-15 -3879 ((-1280))) (-15 -3879 ((-1280) (-776))) (-15 -1895 ((-1280) (-776))) (-6 -4438) (-6 -4430))) -((-3218 (((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|) 46) (((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|) 45) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|) 42) (((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|) 36)) (-1787 (((-649 |#1|) (-412 (-958 (-569))) |#1|) 20) (((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1185)) |#1|) 30))) -(((-384 |#1|) (-10 -7 (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -1787 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1185)) |#1|)) (-15 -1787 ((-649 |#1|) (-412 (-958 (-569))) |#1|))) (-13 (-853) (-367))) (T -384)) -((-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-1787 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5)) (-4 *5 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 (-569))))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569)))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367)))))) -(-10 -7 (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-412 (-958 (-569)))) |#1|)) (-15 -3218 ((-649 (-649 (-297 (-958 |#1|)))) (-649 (-297 (-412 (-958 (-569))))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-412 (-958 (-569))) |#1|)) (-15 -3218 ((-649 (-297 (-958 |#1|))) (-297 (-412 (-958 (-569)))) |#1|)) (-15 -1787 ((-649 (-649 |#1|)) (-649 (-412 (-958 (-569)))) (-649 (-1185)) |#1|)) (-15 -1787 ((-649 |#1|) (-412 (-958 (-569))) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 30)) (-3150 ((|#2| $) 32)) (-1883 (($ $) NIL)) (-3366 (((-776) $) 11)) (-2572 (((-649 $) $) 23)) (-2198 (((-112) $) NIL)) (-3348 (($ |#2| |#1|) 21)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3379 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1849 ((|#2| $) 18)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 51) (($ |#2|) 31)) (-2512 (((-649 |#1|) $) 20)) (-4383 ((|#1| $ |#2|) 55)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 33 T CONST)) (-3717 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) -(((-385 |#1| |#2|) (-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1057) (-855)) (T -385)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855))))) -(-13 (-386 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#2| "failed") $) 49)) (-3150 ((|#2| $) 50)) (-1883 (($ $) 35)) (-3366 (((-776) $) 39)) (-2572 (((-649 $) $) 40)) (-2198 (((-112) $) 43)) (-3348 (($ |#2| |#1|) 44)) (-1346 (($ (-1 |#1| |#1|) $) 45)) (-3379 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1849 ((|#2| $) 38)) (-1857 ((|#1| $) 37)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ |#2|) 48)) (-2512 (((-649 |#1|) $) 41)) (-4383 ((|#1| $ |#2|) 46)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-3717 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) -(((-386 |#1| |#2|) (-140) (-1057) (-1108)) (T -386)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)))) (-3348 (*1 *1 *2 *3) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-112)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 *3)))) (-2572 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-386 *3 *4)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-776)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108))))) -(-13 (-111 |t#1| |t#1|) (-1046 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4383 (|t#1| $ |t#2|)) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -3348 ($ |t#2| |t#1|)) (-15 -2198 ((-112) $)) (-15 -3717 ((-649 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2512 ((-649 |t#1|) $)) (-15 -2572 ((-649 $) $)) (-15 -3366 ((-776) $)) (-15 -1849 (|t#2| $)) (-15 -1857 (|t#1| $)) (-15 -3379 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1883 ($ $)) (IF (|has| |t#1| (-173)) (-6 (-722 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-1046 |#2|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-694 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 11))) -(((-387) (-140)) (T -387)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-387))))) -(-13 (-400) (-10 -8 (-15 -3796 ($ (-694 (-704)))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))))) -(((-618 (-867)) . T) ((-400) . T) ((-1225) . T)) -((-4381 (((-3 $ "failed") (-694 (-319 (-383)))) 21) (((-3 $ "failed") (-694 (-319 (-569)))) 19) (((-3 $ "failed") (-694 (-958 (-383)))) 17) (((-3 $ "failed") (-694 (-958 (-569)))) 15) (((-3 $ "failed") (-694 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-694 (-412 (-958 (-569))))) 11)) (-3150 (($ (-694 (-319 (-383)))) 22) (($ (-694 (-319 (-569)))) 20) (($ (-694 (-958 (-383)))) 18) (($ (-694 (-958 (-569)))) 16) (($ (-694 (-412 (-958 (-383))))) 14) (($ (-694 (-412 (-958 (-569))))) 12)) (-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 23))) -(((-388) (-140)) (T -388)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388))))) -(-13 (-400) (-10 -8 (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3150 ($ (-694 (-319 (-383))))) (-15 -4381 ((-3 $ "failed") (-694 (-319 (-383))))) (-15 -3150 ($ (-694 (-319 (-569))))) (-15 -4381 ((-3 $ "failed") (-694 (-319 (-569))))) (-15 -3150 ($ (-694 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-694 (-958 (-383))))) (-15 -3150 ($ (-694 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-694 (-958 (-569))))) (-15 -3150 ($ (-694 (-412 (-958 (-383)))))) (-15 -4381 ((-3 $ "failed") (-694 (-412 (-958 (-383)))))) (-15 -3150 ($ (-694 (-412 (-958 (-569)))))) (-15 -4381 ((-3 $ "failed") (-694 (-412 (-958 (-569)))))))) -(((-618 (-867)) . T) ((-400) . T) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 33)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 12 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-389 |#1| |#2|) (-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|))) (-1057) (-855)) (T -389)) -NIL -(-13 (-111 |#1| |#1|) (-514 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-173)) (-6 (-722 |#1|)) |%noBranch|))) -((-2417 (((-112) $ $) 7)) (-3473 (((-776) $) 34)) (-4427 (($) 19 T CONST)) (-1768 (((-3 $ "failed") $ $) 37)) (-4381 (((-3 |#1| "failed") $) 45)) (-3150 ((|#1| $) 46)) (-3086 (((-3 $ "failed") $) 16)) (-2102 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2349 (((-112) $) 18)) (-3522 ((|#1| $ (-569)) 31)) (-2114 (((-776) $ (-569)) 32)) (-3380 (($ $ $) 28 (|has| |#1| (-855)))) (-2839 (($ $ $) 27 (|has| |#1| (-855)))) (-3196 (($ (-1 |#1| |#1|) $) 29)) (-4308 (($ (-1 (-776) (-776)) $) 30)) (-3714 (((-3 $ "failed") $ $) 38)) (-3435 (((-1167) $) 10)) (-3887 (($ $ $) 39)) (-1684 (($ $ $) 40)) (-3547 (((-1128) $) 11)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) 33)) (-2084 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-3796 (((-867) $) 12) (($ |#1|) 44)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2978 (((-112) $ $) 25 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 24 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 26 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 23 (|has| |#1| (-855)))) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ |#1| (-776)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) -(((-390 |#1|) (-140) (-1108)) (T -390)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-1684 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-3887 (*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-3714 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-1768 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-2084 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1108)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-2102 (*1 *2 *1 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) (-3473 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) (-5 *2 (-776)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-776))))))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1108)) (-5 *2 (-776)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1108)))) (-4308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1108)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1108))))) -(-13 (-731) (-1046 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-776))) (-15 -1684 ($ $ $)) (-15 -3887 ($ $ $)) (-15 -3714 ((-3 $ "failed") $ $)) (-15 -1768 ((-3 $ "failed") $ $)) (-15 -2084 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2102 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3473 ((-776) $)) (-15 -4360 ((-649 (-2 (|:| |gen| |t#1|) (|:| -4389 (-776)))) $)) (-15 -2114 ((-776) $ (-569))) (-15 -3522 (|t#1| $ (-569))) (-15 -4308 ($ (-1 (-776) (-776)) $)) (-15 -3196 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|))) -(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1046 |#1|) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776) $) 74)) (-4427 (($) NIL T CONST)) (-1768 (((-3 $ "failed") $ $) 77)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2102 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2349 (((-112) $) 17)) (-3522 ((|#1| $ (-569)) NIL)) (-2114 (((-776) $ (-569)) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3196 (($ (-1 |#1| |#1|) $) 40)) (-4308 (($ (-1 (-776) (-776)) $) 37)) (-3714 (((-3 $ "failed") $ $) 60)) (-3435 (((-1167) $) NIL)) (-3887 (($ $ $) 28)) (-1684 (($ $ $) 26)) (-3547 (((-1128) $) NIL)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) 34)) (-2084 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3796 (((-867) $) 24) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 11 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) 84 (|has| |#1| (-855)))) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-391 |#1|) (-390 |#1|) (-1108)) (T -391)) -NIL -(-390 |#1|) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 53)) (-3150 (((-569) $) 54)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3380 (($ $ $) 60)) (-2839 (($ $ $) 59)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 57)) (-2956 (((-112) $ $) 56)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 58)) (-2944 (((-112) $ $) 55)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-392) (-140)) (T -392)) -NIL -(-13 (-561) (-855) (-1046 (-569))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1046 (-569)) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3100 (((-112) $) 25)) (-4026 (((-112) $) 22)) (-4300 (($ (-1167) (-1167) (-1167)) 26)) (-3573 (((-1167) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2025 (($ (-1167) (-1167) (-1167)) 14)) (-3141 (((-1167) $) 17)) (-3482 (((-112) $) 18)) (-4361 (((-1167) $) 15)) (-3796 (((-867) $) 12) (($ (-1167)) 13) (((-1167) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 7))) -(((-393) (-394)) (T -393)) -NIL -(-394) -((-2417 (((-112) $ $) 7)) (-3100 (((-112) $) 17)) (-4026 (((-112) $) 18)) (-4300 (($ (-1167) (-1167) (-1167)) 16)) (-3573 (((-1167) $) 21)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2025 (($ (-1167) (-1167) (-1167)) 23)) (-3141 (((-1167) $) 20)) (-3482 (((-112) $) 19)) (-4361 (((-1167) $) 22)) (-3796 (((-867) $) 12) (($ (-1167)) 25) (((-1167) $) 24)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-394) (-140)) (T -394)) -((-2025 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4026 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112)))) (-4300 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394))))) -(-13 (-1108) (-495 (-1167)) (-10 -8 (-15 -2025 ($ (-1167) (-1167) (-1167))) (-15 -4361 ((-1167) $)) (-15 -3573 ((-1167) $)) (-15 -3141 ((-1167) $)) (-15 -3482 ((-112) $)) (-15 -4026 ((-112) $)) (-15 -3100 ((-112) $)) (-15 -4300 ($ (-1167) (-1167) (-1167))))) -(((-102) . T) ((-621 #0=(-1167)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1495 (((-867) $) 63)) (-4427 (($) NIL T CONST)) (-2395 (($ $ (-927)) NIL)) (-4311 (($ $ (-927)) NIL)) (-2667 (($ $ (-927)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($ (-776)) 38)) (-2377 (((-776)) 18)) (-4186 (((-867) $) 65)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1676 (($ $ $ $) NIL)) (-2489 (($ $ $) NIL)) (-1804 (($) 24 T CONST)) (-2920 (((-112) $ $) 41)) (-3024 (($ $) 48) (($ $ $) 50)) (-3012 (($ $ $) 51)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-395 |#1| |#2| |#3|) (-13 (-749 |#3|) (-10 -8 (-15 -2377 ((-776))) (-15 -4186 ((-867) $)) (-15 -1495 ((-867) $)) (-15 -2332 ($ (-776))))) (-776) (-776) (-173)) (T -395)) -((-2377 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776)) (-4 *5 (-173)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-173))))) -(-13 (-749 |#3|) (-10 -8 (-15 -2377 ((-776))) (-15 -4186 ((-867) $)) (-15 -1495 ((-867) $)) (-15 -2332 ($ (-776))))) -((-1799 (((-1167)) 12)) (-3031 (((-1155 (-1167))) 30)) (-3326 (((-1280) (-1167)) 27) (((-1280) (-393)) 26)) (-3340 (((-1280)) 28)) (-3555 (((-1155 (-1167))) 29))) -(((-396) (-10 -7 (-15 -3555 ((-1155 (-1167)))) (-15 -3031 ((-1155 (-1167)))) (-15 -3340 ((-1280))) (-15 -3326 ((-1280) (-393))) (-15 -3326 ((-1280) (-1167))) (-15 -1799 ((-1167))))) (T -396)) -((-1799 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-396)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-396)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-396)))) (-3340 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-396)))) (-3031 (*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396)))) (-3555 (*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396))))) -(-10 -7 (-15 -3555 ((-1155 (-1167)))) (-15 -3031 ((-1155 (-1167)))) (-15 -3340 ((-1280))) (-15 -3326 ((-1280) (-393))) (-15 -3326 ((-1280) (-1167))) (-15 -1799 ((-1167)))) -((-1466 (((-776) (-340 |#1| |#2| |#3| |#4|)) 19))) -(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|)))) (-13 (-372) (-367)) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -397)) -((-1466 (*1 *2 *3) (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367))) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *7 (-346 *4 *5 *6)) (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7))))) -(-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|)))) -((-3796 (((-399) |#1|) 11))) -(((-398 |#1|) (-10 -7 (-15 -3796 ((-399) |#1|))) (-1108)) (T -398)) -((-3796 (*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1108))))) -(-10 -7 (-15 -3796 ((-399) |#1|))) -((-2417 (((-112) $ $) NIL)) (-1644 (((-649 (-1167)) $ (-649 (-1167))) 42)) (-3138 (((-649 (-1167)) $ (-649 (-1167))) 43)) (-2789 (((-649 (-1167)) $ (-649 (-1167))) 44)) (-1612 (((-649 (-1167)) $) 39)) (-4300 (($) 30)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3180 (((-649 (-1167)) $) 40)) (-3193 (((-649 (-1167)) $) 41)) (-4158 (((-1280) $ (-569)) 37) (((-1280) $) 38)) (-1410 (($ (-867) (-569)) 35)) (-3796 (((-867) $) 49) (($ (-867)) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-399) (-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -3180 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -3138 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167))))))) (T -399)) -((-1410 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-399)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-399)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-4300 (*1 *1) (-5 *1 (-399))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-2789 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-3138 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) (-1644 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))) -(-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -3180 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -3138 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167)))))) -((-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8))) -(((-400) (-140)) (T -400)) -((-3362 (*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1280))))) -(-13 (-1225) (-618 (-867)) (-10 -8 (-15 -3362 ((-1280) $)))) -(((-618 (-867)) . T) ((-1225) . T)) -((-4381 (((-3 $ "failed") (-319 (-383))) 21) (((-3 $ "failed") (-319 (-569))) 19) (((-3 $ "failed") (-958 (-383))) 17) (((-3 $ "failed") (-958 (-569))) 15) (((-3 $ "failed") (-412 (-958 (-383)))) 13) (((-3 $ "failed") (-412 (-958 (-569)))) 11)) (-3150 (($ (-319 (-383))) 22) (($ (-319 (-569))) 20) (($ (-958 (-383))) 18) (($ (-958 (-569))) 16) (($ (-412 (-958 (-383)))) 14) (($ (-412 (-958 (-569)))) 12)) (-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 23))) -(((-401) (-140)) (T -401)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401))))) -(-13 (-400) (-10 -8 (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3150 ($ (-319 (-383)))) (-15 -4381 ((-3 $ "failed") (-319 (-383)))) (-15 -3150 ($ (-319 (-569)))) (-15 -4381 ((-3 $ "failed") (-319 (-569)))) (-15 -3150 ($ (-958 (-383)))) (-15 -4381 ((-3 $ "failed") (-958 (-383)))) (-15 -3150 ($ (-958 (-569)))) (-15 -4381 ((-3 $ "failed") (-958 (-569)))) (-15 -3150 ($ (-412 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-383))))) (-15 -3150 ($ (-412 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-412 (-958 (-569))))))) -(((-618 (-867)) . T) ((-400) . T) ((-1225) . T)) -((-4425 (((-649 (-1167)) (-649 (-1167))) 9)) (-3362 (((-1280) (-393)) 26)) (-2802 (((-1112) (-1185) (-649 (-1185)) (-1188) (-649 (-1185))) 59) (((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)) (-1185)) 34) (((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185))) 33))) -(((-402) (-10 -7 (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)))) (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)) (-1185))) (-15 -2802 ((-1112) (-1185) (-649 (-1185)) (-1188) (-649 (-1185)))) (-15 -3362 ((-1280) (-393))) (-15 -4425 ((-649 (-1167)) (-649 (-1167)))))) (T -402)) -((-4425 (*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-402)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-402)))) (-2802 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-649 (-1185))) (-5 *5 (-1188)) (-5 *3 (-1185)) (-5 *2 (-1112)) (-5 *1 (-402)))) (-2802 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185))))) (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112)) (-5 *1 (-402)))) (-2802 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185))))) (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112)) (-5 *1 (-402))))) -(-10 -7 (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)))) (-15 -2802 ((-1112) (-1185) (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185)))) (-649 (-649 (-3 (|:| |array| (-649 (-1185))) (|:| |scalar| (-1185))))) (-649 (-1185)) (-1185))) (-15 -2802 ((-1112) (-1185) (-649 (-1185)) (-1188) (-649 (-1185)))) (-15 -3362 ((-1280) (-393))) (-15 -4425 ((-649 (-1167)) (-649 (-1167))))) -((-3362 (((-1280) $) 35)) (-3796 (((-867) $) 97) (($ (-333)) 99) (($ (-649 (-333))) 98) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 96) (($ (-319 (-706))) 52) (($ (-319 (-704))) 72) (($ (-319 (-699))) 85) (($ (-297 (-319 (-706)))) 67) (($ (-297 (-319 (-704)))) 80) (($ (-297 (-319 (-699)))) 93) (($ (-319 (-569))) 104) (($ (-319 (-383))) 117) (($ (-319 (-170 (-383)))) 130) (($ (-297 (-319 (-569)))) 112) (($ (-297 (-319 (-383)))) 125) (($ (-297 (-319 (-170 (-383))))) 138))) -(((-403 |#1| |#2| |#3| |#4|) (-13 (-400) (-10 -8 (-15 -3796 ($ (-333))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3796 ($ (-319 (-706)))) (-15 -3796 ($ (-319 (-704)))) (-15 -3796 ($ (-319 (-699)))) (-15 -3796 ($ (-297 (-319 (-706))))) (-15 -3796 ($ (-297 (-319 (-704))))) (-15 -3796 ($ (-297 (-319 (-699))))) (-15 -3796 ($ (-319 (-569)))) (-15 -3796 ($ (-319 (-383)))) (-15 -3796 ($ (-319 (-170 (-383))))) (-15 -3796 ($ (-297 (-319 (-569))))) (-15 -3796 ($ (-297 (-319 (-383))))) (-15 -3796 ($ (-297 (-319 (-170 (-383)))))))) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-1189)) (T -403)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-14 *5 (-649 (-1185))) (-14 *6 (-1189))))) -(-13 (-400) (-10 -8 (-15 -3796 ($ (-333))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3796 ($ (-319 (-706)))) (-15 -3796 ($ (-319 (-704)))) (-15 -3796 ($ (-319 (-699)))) (-15 -3796 ($ (-297 (-319 (-706))))) (-15 -3796 ($ (-297 (-319 (-704))))) (-15 -3796 ($ (-297 (-319 (-699))))) (-15 -3796 ($ (-319 (-569)))) (-15 -3796 ($ (-319 (-383)))) (-15 -3796 ($ (-319 (-170 (-383))))) (-15 -3796 ($ (-297 (-319 (-569))))) (-15 -3796 ($ (-297 (-319 (-383))))) (-15 -3796 ($ (-297 (-319 (-170 (-383)))))))) -((-2417 (((-112) $ $) NIL)) (-2482 ((|#2| $) 38)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2233 (($ (-412 |#2|)) 95)) (-4079 (((-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))) $) 39)) (-3517 (($ $) 34) (($ $ (-776)) 36)) (-1410 (((-412 |#2|) $) 51)) (-3809 (($ (-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|)))) 33)) (-3796 (((-867) $) 132)) (-1520 (((-112) $ $) NIL)) (-2832 (($ $) 35) (($ $ (-776)) 37)) (-2920 (((-112) $ $) NIL)) (-3012 (($ |#2| $) 41))) -(((-404 |#1| |#2|) (-13 (-1108) (-619 (-412 |#2|)) (-10 -8 (-15 -3012 ($ |#2| $)) (-15 -2233 ($ (-412 |#2|))) (-15 -2482 (|#2| $)) (-15 -4079 ((-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))))) (-15 -3517 ($ $)) (-15 -2832 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -2832 ($ $ (-776))))) (-13 (-367) (-147)) (-1251 |#1|)) (T -404)) -((-3012 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) (-4 *2 (-1251 *3)))) (-2233 (*1 *1 *2) (-12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-2482 (*1 *2 *1) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-404 *3 *2)) (-4 *3 (-13 (-367) (-147))))) (-4079 (*1 *2 *1) (-12 (-4 *3 (-13 (-367) (-147))) (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4)))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4)))) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) (-3517 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1251 *2)))) (-2832 (*1 *1 *1) (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) (-4 *3 (-1251 *2)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3))))) -(-13 (-1108) (-619 (-412 |#2|)) (-10 -8 (-15 -3012 ($ |#2| $)) (-15 -2233 ($ (-412 |#2|))) (-15 -2482 (|#2| $)) (-15 -4079 ((-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -1993 (-776)) (|:| -2170 |#2|) (|:| |num| |#2|))))) (-15 -3517 ($ $)) (-15 -2832 ($ $)) (-15 -3517 ($ $ (-776))) (-15 -2832 ($ $ (-776))))) -((-2417 (((-112) $ $) 9 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 16 (|has| |#1| (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 15 (|has| |#1| (-892 (-569))))) (-3435 (((-1167) $) 13 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3547 (((-1128) $) 12 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-3796 (((-867) $) 11 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-1520 (((-112) $ $) 14 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))))) (-2920 (((-112) $ $) 10 (-2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383))))))) -(((-405 |#1|) (-140) (-1225)) (T -405)) -NIL -(-13 (-1225) (-10 -7 (IF (|has| |t#1| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|))) -(((-102) -2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-618 (-867)) -2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-1108) -2776 (|has| |#1| (-892 (-569))) (|has| |#1| (-892 (-383)))) ((-1225) . T)) -((-3701 (($ $) 10) (($ $ (-776)) 12))) -(((-406 |#1|) (-10 -8 (-15 -3701 (|#1| |#1| (-776))) (-15 -3701 (|#1| |#1|))) (-407)) (T -406)) -NIL -(-10 -8 (-15 -3701 (|#1| |#1| (-776))) (-15 -3701 (|#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-3701 (($ $) 87) (($ $ (-776)) 86)) (-1473 (((-112) $) 79)) (-1466 (((-838 (-927)) $) 89)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-3 (-776) "failed") $ $) 88)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74)) (-2239 (((-3 $ "failed") $) 90)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75))) -(((-407) (-140)) (T -407)) -((-1466 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927))))) (-2166 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776)))) (-3701 (*1 *1 *1) (-4 *1 (-407))) (-3701 (*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776))))) -(-13 (-367) (-145) (-10 -8 (-15 -1466 ((-838 (-927)) $)) (-15 -2166 ((-3 (-776) "failed") $ $)) (-15 -3701 ($ $)) (-15 -3701 ($ $ (-776))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-2557 (($ (-569) (-569)) 11) (($ (-569) (-569) (-927)) NIL)) (-2171 (((-927)) 19) (((-927) (-927)) NIL))) -(((-408 |#1|) (-10 -8 (-15 -2171 ((-927) (-927))) (-15 -2171 ((-927))) (-15 -2557 (|#1| (-569) (-569) (-927))) (-15 -2557 (|#1| (-569) (-569)))) (-409)) (T -408)) -((-2171 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409))))) -(-10 -8 (-15 -2171 ((-927) (-927))) (-15 -2171 ((-927))) (-15 -2557 (|#1| (-569) (-569) (-927))) (-15 -2557 (|#1| (-569) (-569)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 (((-569) $) 97)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2917 (($ $) 95)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 105)) (-2227 (((-112) $ $) 65)) (-2919 (((-569) $) 122)) (-4427 (($) 18 T CONST)) (-1482 (($ $) 94)) (-4381 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3150 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3500 (((-927)) 138) (((-927) (-927)) 135 (|has| $ (-6 -4438)))) (-3712 (((-112) $) 120)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-1466 (((-569) $) 144)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 104)) (-3829 (($ $) 100)) (-2051 (((-112) $) 121)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3380 (($ $ $) 119) (($) 132 (-12 (-1749 (|has| $ (-6 -4438))) (-1749 (|has| $ (-6 -4430)))))) (-2839 (($ $ $) 118) (($) 131 (-12 (-1749 (|has| $ (-6 -4438))) (-1749 (|has| $ (-6 -4430)))))) (-3034 (((-569) $) 141)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3630 (((-927) (-569)) 134 (|has| $ (-6 -4438)))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3231 (($ $) 96)) (-3465 (($ $) 98)) (-2557 (($ (-569) (-569)) 146) (($ (-569) (-569) (-927)) 145)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1993 (((-569) $) 142)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2171 (((-927)) 139) (((-927) (-927)) 136 (|has| $ (-6 -4438)))) (-3884 (((-927) (-569)) 133 (|has| $ (-6 -4438)))) (-1410 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-2721 (((-776)) 32 T CONST)) (-2040 (($ $) 99)) (-3251 (((-927)) 140) (((-927) (-927)) 137 (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) 9)) (-4363 (((-927)) 143)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 123)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 116)) (-2956 (((-112) $ $) 115)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 117)) (-2944 (((-112) $ $) 114)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75))) -(((-409) (-140)) (T -409)) -((-2557 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409)))) (-2557 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-4363 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-3034 (*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) (-3251 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-2171 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3500 (*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) (-2171 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409)) (-5 *2 (-927)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409)) (-5 *2 (-927)))) (-3380 (*1 *1) (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438))) (-1749 (|has| *1 (-6 -4430))))) (-2839 (*1 *1) (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438))) (-1749 (|has| *1 (-6 -4430)))))) -(-13 (-1068) (-10 -8 (-6 -3091) (-15 -2557 ($ (-569) (-569))) (-15 -2557 ($ (-569) (-569) (-927))) (-15 -1466 ((-569) $)) (-15 -4363 ((-927))) (-15 -1993 ((-569) $)) (-15 -3034 ((-569) $)) (-15 -3251 ((-927))) (-15 -2171 ((-927))) (-15 -3500 ((-927))) (IF (|has| $ (-6 -4438)) (PROGN (-15 -3251 ((-927) (-927))) (-15 -2171 ((-927) (-927))) (-15 -3500 ((-927) (-927))) (-15 -3630 ((-927) (-569))) (-15 -3884 ((-927) (-569)))) |%noBranch|) (IF (|has| $ (-6 -4430)) |%noBranch| (IF (|has| $ (-6 -4438)) |%noBranch| (PROGN (-15 -3380 ($)) (-15 -2839 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1010) . T) ((-1030) . T) ((-1068) . T) ((-1046 (-412 (-569))) . T) ((-1046 (-569)) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-1346 (((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)) 20))) -(((-410 |#1| |#2|) (-10 -7 (-15 -1346 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)))) (-561) (-561)) (T -410)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6))))) -(-10 -7 (-15 -1346 ((-423 |#2|) (-1 |#2| |#1|) (-423 |#1|)))) -((-1346 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 13))) -(((-411 |#1| |#2|) (-10 -7 (-15 -1346 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-561) (-561)) (T -411)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6))))) -(-10 -7 (-15 -1346 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 13)) (-1938 ((|#1| $) 21 (|has| |#1| (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| |#1| (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 17) (((-3 (-1185) "failed") $) NIL (|has| |#1| (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) 72 (|has| |#1| (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569))))) (-3150 ((|#1| $) 15) (((-1185) $) NIL (|has| |#1| (-1046 (-1185)))) (((-412 (-569)) $) 69 (|has| |#1| (-1046 (-569)))) (((-569) $) NIL (|has| |#1| (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 51)) (-3406 (($) NIL (|has| |#1| (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| |#1| (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#1| (-892 (-383))))) (-2349 (((-112) $) 57)) (-2177 (($ $) NIL)) (-4399 ((|#1| $) 73)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-2051 (((-112) $) NIL (|has| |#1| (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 100)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| |#1| (-310)))) (-3465 ((|#1| $) 28 (|has| |#1| (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 148 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 141 (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) NIL)) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3181 (($ $) NIL)) (-4412 ((|#1| $) 75)) (-1410 (((-898 (-569)) $) NIL (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#1| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#1| (-619 (-541)))) (((-383) $) NIL (|has| |#1| (-1030))) (((-226) $) NIL (|has| |#1| (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 10) (($ (-1185)) NIL (|has| |#1| (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) 102 (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 103 T CONST)) (-2040 ((|#1| $) 26 (|has| |#1| (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| |#1| (-825)))) (-1804 (($) 22 T CONST)) (-1815 (($) 8 T CONST)) (-3266 (((-1167) $) 44 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1167) $ (-112)) 45 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1280) (-827) $) 46 (-12 (|has| |#1| (-550)) (|has| |#1| (-833)))) (((-1280) (-827) $ (-112)) 47 (-12 (|has| |#1| (-550)) (|has| |#1| (-833))))) (-2832 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) 66)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) 24 (|has| |#1| (-855)))) (-3035 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3024 (($ $) 25) (($ $ $) 56)) (-3012 (($ $ $) 54)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 135)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 61) (($ $ $) 58) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-412 |#1|) (-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4434)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4445)) (-6 -4434) |%noBranch|) |%noBranch|) |%noBranch|))) (-561)) (T -412)) -NIL -(-13 (-1000 |#1|) (-10 -7 (IF (|has| |#1| (-550)) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4434)) (IF (|has| |#1| (-457)) (IF (|has| |#1| (-6 -4445)) (-6 -4434) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1547 (((-694 |#2|) (-1275 $)) NIL) (((-694 |#2|)) 18)) (-2247 (($ (-1275 |#2|) (-1275 $)) NIL) (($ (-1275 |#2|)) 24)) (-1833 (((-694 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) $) 40)) (-3859 ((|#3| $) 73)) (-3059 ((|#2| (-1275 $)) NIL) ((|#2|) 20)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $) 22) (((-694 |#2|) (-1275 $)) 38)) (-1410 (((-1275 |#2|) $) 11) (($ (-1275 |#2|)) 13)) (-1886 ((|#3| $) 55))) -(((-413 |#1| |#2| |#3|) (-10 -8 (-15 -1833 ((-694 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1547 ((-694 |#2|))) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 (|#3| |#1|)) (-15 -1886 (|#3| |#1|)) (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|)))) (-414 |#2| |#3|) (-173) (-1251 |#2|)) (T -413)) -((-1547 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)) (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) (-3059 (*1 *2) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) (-4 *3 (-414 *2 *4))))) -(-10 -8 (-15 -1833 ((-694 |#2|) |#1|)) (-15 -3059 (|#2|)) (-15 -1547 ((-694 |#2|))) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -3859 (|#3| |#1|)) (-15 -1886 (|#3| |#1|)) (-15 -1547 ((-694 |#2|) (-1275 |#1|))) (-15 -3059 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -1833 ((-694 |#2|) |#1| (-1275 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1547 (((-694 |#1|) (-1275 $)) 53) (((-694 |#1|)) 68)) (-3140 ((|#1| $) 59)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55) (($ (-1275 |#1|)) 71)) (-1833 (((-694 |#1|) $ (-1275 $)) 60) (((-694 |#1|) $) 66)) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-927)) 61)) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 58)) (-3859 ((|#2| $) 51 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3059 ((|#1| (-1275 $)) 54) ((|#1|) 67)) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56) (((-1275 |#1|) $) 73) (((-694 |#1|) (-1275 $)) 72)) (-1410 (((-1275 |#1|) $) 70) (($ (-1275 |#1|)) 69)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44)) (-2239 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1886 ((|#2| $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-414 |#1| |#2|) (-140) (-173) (-1251 |t#1|)) (T -414)) -((-2403 (*1 *2) (-12 (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *1)) (-4 *1 (-414 *3 *4)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *3)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1251 *3)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *3)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) (-4 *4 (-1251 *3)))) (-1547 (*1 *2) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-694 *3)))) (-3059 (*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) (-1833 (*1 *2 *1) (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-694 *3))))) -(-13 (-374 |t#1| |t#2|) (-10 -8 (-15 -2403 ((-1275 $))) (-15 -2415 ((-1275 |t#1|) $)) (-15 -2415 ((-694 |t#1|) (-1275 $))) (-15 -2247 ($ (-1275 |t#1|))) (-15 -1410 ((-1275 |t#1|) $)) (-15 -1410 ($ (-1275 |t#1|))) (-15 -1547 ((-694 |t#1|))) (-15 -3059 (|t#1|)) (-15 -1833 ((-694 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-374 |#1| |#2|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) 27) (((-3 (-569) "failed") $) 19)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) 24) (((-569) $) 14)) (-3796 (($ |#2|) NIL) (($ (-412 (-569))) 22) (($ (-569)) 11))) -(((-415 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| (-569))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|))) (-416 |#2|) (-1225)) (T -415)) -NIL -(-10 -8 (-15 -3796 (|#1| (-569))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|))) -((-4381 (((-3 |#1| "failed") $) 9) (((-3 (-412 (-569)) "failed") $) 16 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 13 (|has| |#1| (-1046 (-569))))) (-3150 ((|#1| $) 8) (((-412 (-569)) $) 17 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 14 (|has| |#1| (-1046 (-569))))) (-3796 (($ |#1|) 6) (($ (-412 (-569))) 15 (|has| |#1| (-1046 (-412 (-569))))) (($ (-569)) 12 (|has| |#1| (-1046 (-569)))))) -(((-416 |#1|) (-140) (-1225)) (T -416)) -NIL -(-13 (-1046 |t#1|) (-10 -7 (IF (|has| |t#1| (-1046 (-569))) (-6 (-1046 (-569))) |%noBranch|) (IF (|has| |t#1| (-1046 (-412 (-569)))) (-6 (-1046 (-412 (-569)))) |%noBranch|))) -(((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 #1=(-569)) |has| |#1| (-1046 (-569))) ((-621 |#1|) . T) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 #1#) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T)) -((-1346 (((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)) 35))) -(((-417 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)))) (-310) (-1000 |#1|) (-1251 |#2|) (-13 (-414 |#2| |#3|) (-1046 |#2|)) (-310) (-1000 |#5|) (-1251 |#6|) (-13 (-414 |#6| |#7|) (-1046 |#6|))) (T -417)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310)) (-4 *6 (-1000 *5)) (-4 *7 (-1251 *6)) (-4 *8 (-13 (-414 *6 *7) (-1046 *6))) (-4 *9 (-310)) (-4 *10 (-1000 *9)) (-4 *11 (-1251 *10)) (-5 *2 (-418 *9 *10 *11 *12)) (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-414 *10 *11) (-1046 *10)))))) -(-10 -7 (-15 -1346 ((-418 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-418 |#1| |#2| |#3| |#4|)))) -((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-3066 ((|#4| (-776) (-1275 |#4|)) 58)) (-2349 (((-112) $) NIL)) (-4399 (((-1275 |#4|) $) 15)) (-3829 ((|#2| $) 53)) (-4093 (($ $) 161)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 106)) (-3198 (($ (-1275 |#4|)) 105)) (-3547 (((-1128) $) NIL)) (-4412 ((|#1| $) 16)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 151)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 |#4|) $) 144)) (-1815 (($) 11 T CONST)) (-2920 (((-112) $ $) 39)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 137)) (* (($ $ $) 133))) -(((-418 |#1| |#2| |#3| |#4|) (-13 (-478) (-10 -8 (-15 -3198 ($ (-1275 |#4|))) (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -4399 ((-1275 |#4|) $)) (-15 -4412 (|#1| $)) (-15 -4093 ($ $)) (-15 -3066 (|#4| (-776) (-1275 |#4|))))) (-310) (-1000 |#1|) (-1251 |#2|) (-13 (-414 |#2| |#3|) (-1046 |#2|))) (T -418)) -((-3198 (*1 *1 *2) (-12 (-5 *2 (-1275 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *3 (-310)) (-5 *1 (-418 *3 *4 *5 *6)))) (-2403 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))))) (-3829 (*1 *2 *1) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1046 *2))))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))))) (-4412 (*1 *2 *1) (-12 (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) (-4 *2 (-310)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3))))) (-4093 (*1 *1 *1) (-12 (-4 *2 (-310)) (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3))))) (-3066 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1275 *2)) (-4 *5 (-310)) (-4 *6 (-1000 *5)) (-4 *2 (-13 (-414 *6 *7) (-1046 *6))) (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1251 *6))))) -(-13 (-478) (-10 -8 (-15 -3198 ($ (-1275 |#4|))) (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -4399 ((-1275 |#4|) $)) (-15 -4412 (|#1| $)) (-15 -4093 ($ $)) (-15 -3066 (|#4| (-776) (-1275 |#4|))))) -((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3829 ((|#2| $) 71)) (-3770 (($ (-1275 |#4|)) 27) (($ (-418 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1046 |#2|)))) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 37)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 |#4|) $) 28)) (-1815 (($) 25 T CONST)) (-2920 (((-112) $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ $ $) 82))) -(((-419 |#1| |#2| |#3| |#4| |#5|) (-13 (-731) (-10 -8 (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -3770 ($ (-1275 |#4|))) (IF (|has| |#4| (-1046 |#2|)) (-15 -3770 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-310) (-1000 |#1|) (-1251 |#2|) (-414 |#2| |#3|) (-1275 |#4|)) (T -419)) -((-2403 (*1 *2 *1) (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-4 *6 (-414 *4 *5)) (-14 *7 *2))) (-3829 (*1 *2 *1) (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4)) (-14 *6 (-1275 *5)))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-1275 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3770 (*1 *1 *2) (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1046 *4)) (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *6 (-414 *4 *5)) (-14 *7 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7))))) -(-13 (-731) (-10 -8 (-15 -2403 ((-1275 |#4|) $)) (-15 -3829 (|#2| $)) (-15 -3770 ($ (-1275 |#4|))) (IF (|has| |#4| (-1046 |#2|)) (-15 -3770 ($ (-418 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1346 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) (-422 |#2|) (-173) (-422 |#4|) (-173)) (T -420)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5))))) -(-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) -((-2736 (((-3 $ "failed")) 99)) (-2901 (((-1275 (-694 |#2|)) (-1275 $)) NIL) (((-1275 (-694 |#2|))) 104)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 97)) (-3207 (((-3 $ "failed")) 96)) (-3400 (((-694 |#2|) (-1275 $)) NIL) (((-694 |#2|)) 115)) (-2183 (((-694 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) $) 123)) (-3319 (((-1181 (-958 |#2|))) 65)) (-3850 ((|#2| (-1275 $)) NIL) ((|#2|) 119)) (-2247 (($ (-1275 |#2|) (-1275 $)) NIL) (($ (-1275 |#2|)) 125)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 95)) (-2904 (((-3 $ "failed")) 87)) (-2999 (((-694 |#2|) (-1275 $)) NIL) (((-694 |#2|)) 113)) (-1866 (((-694 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) $) 121)) (-1308 (((-1181 (-958 |#2|))) 64)) (-3674 ((|#2| (-1275 $)) NIL) ((|#2|) 117)) (-2415 (((-1275 |#2|) $ (-1275 $)) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $) 124) (((-694 |#2|) (-1275 $)) 133)) (-1410 (((-1275 |#2|) $) 109) (($ (-1275 |#2|)) 111)) (-1829 (((-649 (-958 |#2|)) (-1275 $)) NIL) (((-649 (-958 |#2|))) 107)) (-3451 (($ (-694 |#2|) $) 103))) -(((-421 |#1| |#2|) (-10 -8 (-15 -3451 (|#1| (-694 |#2|) |#1|)) (-15 -3319 ((-1181 (-958 |#2|)))) (-15 -1308 ((-1181 (-958 |#2|)))) (-15 -2183 ((-694 |#2|) |#1|)) (-15 -1866 ((-694 |#2|) |#1|)) (-15 -3400 ((-694 |#2|))) (-15 -2999 ((-694 |#2|))) (-15 -3850 (|#2|)) (-15 -3674 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -1829 ((-649 (-958 |#2|)))) (-15 -2901 ((-1275 (-694 |#2|)))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -2736 ((-3 |#1| "failed"))) (-15 -3207 ((-3 |#1| "failed"))) (-15 -2904 ((-3 |#1| "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -4391 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|))) (-15 -1829 ((-649 (-958 |#2|)) (-1275 |#1|)))) (-422 |#2|) (-173)) (T -421)) -((-2901 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3674 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-3850 (*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) (-2999 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3400 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-1308 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4)))) (-3319 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4)) (-4 *3 (-422 *4))))) -(-10 -8 (-15 -3451 (|#1| (-694 |#2|) |#1|)) (-15 -3319 ((-1181 (-958 |#2|)))) (-15 -1308 ((-1181 (-958 |#2|)))) (-15 -2183 ((-694 |#2|) |#1|)) (-15 -1866 ((-694 |#2|) |#1|)) (-15 -3400 ((-694 |#2|))) (-15 -2999 ((-694 |#2|))) (-15 -3850 (|#2|)) (-15 -3674 (|#2|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2247 (|#1| (-1275 |#2|))) (-15 -1829 ((-649 (-958 |#2|)))) (-15 -2901 ((-1275 (-694 |#2|)))) (-15 -2415 ((-694 |#2|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1|)) (-15 -2736 ((-3 |#1| "failed"))) (-15 -3207 ((-3 |#1| "failed"))) (-15 -2904 ((-3 |#1| "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -4391 ((-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed"))) (-15 -3400 ((-694 |#2|) (-1275 |#1|))) (-15 -2999 ((-694 |#2|) (-1275 |#1|))) (-15 -3850 (|#2| (-1275 |#1|))) (-15 -3674 (|#2| (-1275 |#1|))) (-15 -2247 (|#1| (-1275 |#2|) (-1275 |#1|))) (-15 -2415 ((-694 |#2|) (-1275 |#1|) (-1275 |#1|))) (-15 -2415 ((-1275 |#2|) |#1| (-1275 |#1|))) (-15 -2183 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -1866 ((-694 |#2|) |#1| (-1275 |#1|))) (-15 -2901 ((-1275 (-694 |#2|)) (-1275 |#1|))) (-15 -1829 ((-649 (-958 |#2|)) (-1275 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2736 (((-3 $ "failed")) 42 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-2901 (((-1275 (-694 |#1|)) (-1275 $)) 83) (((-1275 (-694 |#1|))) 105)) (-3076 (((-1275 $)) 86)) (-4427 (($) 18 T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 45 (|has| |#1| (-561)))) (-3207 (((-3 $ "failed")) 43 (|has| |#1| (-561)))) (-3400 (((-694 |#1|) (-1275 $)) 70) (((-694 |#1|)) 97)) (-1564 ((|#1| $) 79)) (-2183 (((-694 |#1|) $ (-1275 $)) 81) (((-694 |#1|) $) 95)) (-4379 (((-3 $ "failed") $) 50 (|has| |#1| (-561)))) (-3319 (((-1181 (-958 |#1|))) 93 (|has| |#1| (-367)))) (-2395 (($ $ (-927)) 31)) (-3156 ((|#1| $) 77)) (-4375 (((-1181 |#1|) $) 47 (|has| |#1| (-561)))) (-3850 ((|#1| (-1275 $)) 72) ((|#1|) 99)) (-4136 (((-1181 |#1|) $) 68)) (-2413 (((-112)) 62)) (-2247 (($ (-1275 |#1|) (-1275 $)) 74) (($ (-1275 |#1|)) 103)) (-3086 (((-3 $ "failed") $) 52 (|has| |#1| (-561)))) (-3978 (((-927)) 85)) (-4095 (((-112)) 59)) (-4311 (($ $ (-927)) 38)) (-1756 (((-112)) 55)) (-2411 (((-112)) 53)) (-2399 (((-112)) 57)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) 46 (|has| |#1| (-561)))) (-2904 (((-3 $ "failed")) 44 (|has| |#1| (-561)))) (-2999 (((-694 |#1|) (-1275 $)) 71) (((-694 |#1|)) 98)) (-3339 ((|#1| $) 80)) (-1866 (((-694 |#1|) $ (-1275 $)) 82) (((-694 |#1|) $) 96)) (-4059 (((-3 $ "failed") $) 51 (|has| |#1| (-561)))) (-1308 (((-1181 (-958 |#1|))) 94 (|has| |#1| (-367)))) (-2667 (($ $ (-927)) 32)) (-2907 ((|#1| $) 78)) (-4167 (((-1181 |#1|) $) 48 (|has| |#1| (-561)))) (-3674 ((|#1| (-1275 $)) 73) ((|#1|) 100)) (-2761 (((-1181 |#1|) $) 69)) (-4307 (((-112)) 63)) (-3435 (((-1167) $) 10)) (-2189 (((-112)) 54)) (-3703 (((-112)) 56)) (-4324 (((-112)) 58)) (-3547 (((-1128) $) 11)) (-3749 (((-112)) 61)) (-1869 ((|#1| $ (-569)) 106)) (-2415 (((-1275 |#1|) $ (-1275 $)) 76) (((-694 |#1|) (-1275 $) (-1275 $)) 75) (((-1275 |#1|) $) 108) (((-694 |#1|) (-1275 $)) 107)) (-1410 (((-1275 |#1|) $) 102) (($ (-1275 |#1|)) 101)) (-1829 (((-649 (-958 |#1|)) (-1275 $)) 84) (((-649 (-958 |#1|))) 104)) (-2180 (($ $ $) 28)) (-2324 (((-112)) 67)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 109)) (-2643 (((-649 (-1275 |#1|))) 49 (|has| |#1| (-561)))) (-1676 (($ $ $ $) 29)) (-3821 (((-112)) 65)) (-3451 (($ (-694 |#1|) $) 92)) (-2489 (($ $ $) 27)) (-3649 (((-112)) 66)) (-2887 (((-112)) 64)) (-3967 (((-112)) 60)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-422 |#1|) (-140) (-173)) (T -422)) -((-2403 (*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-422 *3)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) (-5 *2 (-694 *4)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2901 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 (-694 *3))))) (-1829 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3))))) (-2247 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-1410 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) (-3674 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-3850 (*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173)))) (-2999 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-3400 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3)))) (-1308 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1181 (-958 *3))))) (-3319 (*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) (-5 *2 (-1181 (-958 *3))))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173))))) -(-13 (-371 |t#1|) (-10 -8 (-15 -2403 ((-1275 $))) (-15 -2415 ((-1275 |t#1|) $)) (-15 -2415 ((-694 |t#1|) (-1275 $))) (-15 -1869 (|t#1| $ (-569))) (-15 -2901 ((-1275 (-694 |t#1|)))) (-15 -1829 ((-649 (-958 |t#1|)))) (-15 -2247 ($ (-1275 |t#1|))) (-15 -1410 ((-1275 |t#1|) $)) (-15 -1410 ($ (-1275 |t#1|))) (-15 -3674 (|t#1|)) (-15 -3850 (|t#1|)) (-15 -2999 ((-694 |t#1|))) (-15 -3400 ((-694 |t#1|))) (-15 -1866 ((-694 |t#1|) $)) (-15 -2183 ((-694 |t#1|) $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -1308 ((-1181 (-958 |t#1|)))) (-15 -3319 ((-1181 (-958 |t#1|))))) |%noBranch|) (-15 -3451 ($ (-694 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-371 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-749 |#1|) . T) ((-766) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 60)) (-3007 (($ $) 78)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 191)) (-4355 (($ $) NIL)) (-3039 (((-112) $) 48)) (-2736 ((|#1| $) 16)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-1229)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-1229)))) (-4188 (($ |#1| (-569)) 42)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 148)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 74)) (-3086 (((-3 $ "failed") $) 164)) (-3377 (((-3 (-412 (-569)) "failed") $) 84 (|has| |#1| (-550)))) (-1441 (((-112) $) 80 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 91 (|has| |#1| (-550)))) (-2566 (($ |#1| (-569)) 44)) (-1473 (((-112) $) 213 (|has| |#1| (-1229)))) (-2349 (((-112) $) 62)) (-2065 (((-776) $) 51)) (-2257 (((-3 "nil" "sqfr" "irred" "prime") $ (-569)) 175)) (-3522 ((|#1| $ (-569)) 174)) (-3854 (((-569) $ (-569)) 173)) (-3212 (($ |#1| (-569)) 41)) (-1346 (($ (-1 |#1| |#1|) $) 183)) (-4192 (($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569))))) 79)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-1672 (($ |#1| (-569)) 43)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 192 (|has| |#1| (-457)))) (-4405 (($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-4360 (((-649 (-2 (|:| -3800 |#1|) (|:| -1993 (-569)))) $) 73)) (-3521 (((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $) 12)) (-3800 (((-423 $) $) NIL (|has| |#1| (-1229)))) (-2407 (((-3 $ "failed") $ $) 176)) (-1993 (((-569) $) 167)) (-1380 ((|#1| $) 75)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 100 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 106 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) $) NIL (|has| |#1| (-519 (-1185) $))) (($ $ (-649 (-1185)) (-649 $)) 107 (|has| |#1| (-519 (-1185) $))) (($ $ (-649 (-297 $))) 103 (|has| |#1| (-312 $))) (($ $ (-297 $)) NIL (|has| |#1| (-312 $))) (($ $ $ $) NIL (|has| |#1| (-312 $))) (($ $ (-649 $) (-649 $)) NIL (|has| |#1| (-312 $)))) (-1869 (($ $ |#1|) 92 (|has| |#1| (-289 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-289 $ $)))) (-3517 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1410 (((-541) $) 39 (|has| |#1| (-619 (-541)))) (((-383) $) 113 (|has| |#1| (-1030))) (((-226) $) 119 (|has| |#1| (-1030)))) (-3796 (((-867) $) 146) (($ (-569)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569)))))) (-2721 (((-776)) 67 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 53 T CONST)) (-1815 (($) 52 T CONST)) (-2832 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) 159)) (-3024 (($ $) 161) (($ $ $) NIL)) (-3012 (($ $ $) 180)) (** (($ $ (-927)) NIL) (($ $ (-776)) 125)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-423 |#1|) (-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1380 (|#1| $)) (-15 -1993 ((-569) $)) (-15 -4192 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -3521 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -3212 ($ |#1| (-569))) (-15 -4360 ((-649 (-2 (|:| -3800 |#1|) (|:| -1993 (-569)))) $)) (-15 -1672 ($ |#1| (-569))) (-15 -3854 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2257 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -2065 ((-776) $)) (-15 -2566 ($ |#1| (-569))) (-15 -4188 ($ |#1| (-569))) (-15 -4405 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2736 (|#1| $)) (-15 -3007 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-1229)) (-6 (-1229)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1185) $)) (-6 (-519 (-1185) $)) |%noBranch|))) (-561)) (T -423)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3)))) (-1380 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-4192 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-569))))) (-4 *2 (-561)) (-5 *1 (-423 *2)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-3212 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -1993 (-569))))) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-1672 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-3854 (*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2257 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *4)) (-4 *4 (-561)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) (-2566 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4188 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-4405 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-2736 (*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-3007 (*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561))))) -(-13 (-561) (-232 |#1|) (-38 |#1|) (-342 |#1|) (-416 |#1|) (-10 -8 (-15 -1380 (|#1| $)) (-15 -1993 ((-569) $)) (-15 -4192 ($ |#1| (-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))))) (-15 -3521 ((-649 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-569)))) $)) (-15 -3212 ($ |#1| (-569))) (-15 -4360 ((-649 (-2 (|:| -3800 |#1|) (|:| -1993 (-569)))) $)) (-15 -1672 ($ |#1| (-569))) (-15 -3854 ((-569) $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2257 ((-3 "nil" "sqfr" "irred" "prime") $ (-569))) (-15 -2065 ((-776) $)) (-15 -2566 ($ |#1| (-569))) (-15 -4188 ($ |#1| (-569))) (-15 -4405 ($ |#1| (-569) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2736 (|#1| $)) (-15 -3007 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-457)) (-6 (-457)) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-1229)) (-6 (-1229)) |%noBranch|) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-289 $ $)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |#1| (-312 $)) (-6 (-312 $)) |%noBranch|) (IF (|has| |#1| (-519 (-1185) $)) (-6 (-519 (-1185) $)) |%noBranch|))) -((-3442 (((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|)) 28)) (-3918 (((-423 |#1|) (-423 |#1|) (-423 |#1|)) 17))) -(((-424 |#1|) (-10 -7 (-15 -3442 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -3918 ((-423 |#1|) (-423 |#1|) (-423 |#1|)))) (-561)) (T -424)) -((-3918 (*1 *2 *2 *2) (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3)))) (-3442 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4)) (-5 *1 (-424 *4))))) -(-10 -7 (-15 -3442 ((-423 |#1|) (-423 |#1|) (-1 (-423 |#1|) |#1|))) (-15 -3918 ((-423 |#1|) (-423 |#1|) (-423 |#1|)))) -((-3852 ((|#2| |#2|) 183)) (-2215 (((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112)) 60))) -(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2215 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112))) (-15 -3852 (|#2| |#2|))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|)) (-1185) |#2|) (T -425)) -((-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1210) (-435 *3))) (-14 *4 (-1185)) (-14 *5 *2))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (|:| |%expansion| (-316 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-14 *6 (-1185)) (-14 *7 *3)))) -(-10 -7 (-15 -2215 ((-3 (|:| |%expansion| (-316 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112))) (-15 -3852 (|#2| |#2|))) -((-1346 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|))) (-1057) (-435 |#1|) (-1057) (-435 |#3|)) (T -426)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5))))) -(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|))) -((-3852 ((|#2| |#2|) 106)) (-1911 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167)) 52)) (-2128 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167)) 170))) -(((-427 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1911 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -2128 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -3852 (|#2| |#2|))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|) (-10 -8 (-15 -3796 ($ |#3|)))) (-853) (-13 (-1253 |#2| |#3|) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $)))) (-991 |#4|) (-1185)) (T -427)) -((-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *2 (-13 (-27) (-1210) (-435 *3) (-10 -8 (-15 -3796 ($ *4))))) (-4 *4 (-853)) (-4 *5 (-13 (-1253 *2 *4) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-991 *5)) (-14 *7 (-1185)))) (-2128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1253 *3 *7) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8)) (-14 *10 (-1185)))) (-1911 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7))))) (-4 *7 (-853)) (-4 *8 (-13 (-1253 *3 *7) (-367) (-1210) (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8)) (-14 *10 (-1185))))) -(-10 -7 (-15 -1911 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -2128 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167))))) |#2| (-112) (-1167))) (-15 -3852 (|#2| |#2|))) -((-1610 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3598 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1346 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1108) (-430 |#1|) (-1108) (-430 |#3|)) (T -428)) -((-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) -(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3598 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1610 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3610 (($) 52)) (-3969 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2541 (($ $ $) 45)) (-4179 (((-112) $ $) 34)) (-3473 (((-776)) 56)) (-4257 (($ (-649 |#2|)) 23) (($) NIL)) (-3406 (($) 67)) (-1651 (((-112) $ $) 15)) (-3380 ((|#2| $) 78)) (-2839 ((|#2| $) 76)) (-2731 (((-927) $) 71)) (-2101 (($ $ $) 41)) (-2150 (($ (-927)) 61)) (-2237 (($ $ |#2|) NIL) (($ $ $) 44)) (-3560 (((-776) (-1 (-112) |#2|) $) NIL) (((-776) |#2| $) 31)) (-3809 (($ (-649 |#2|)) 27)) (-3327 (($ $) 54)) (-3796 (((-867) $) 39)) (-1970 (((-776) $) 24)) (-3868 (($ (-649 |#2|)) 22) (($) NIL)) (-2920 (((-112) $ $) 19))) -(((-429 |#1| |#2|) (-10 -8 (-15 -3473 ((-776))) (-15 -2150 (|#1| (-927))) (-15 -2731 ((-927) |#1|)) (-15 -3406 (|#1|)) (-15 -3380 (|#2| |#1|)) (-15 -2839 (|#2| |#1|)) (-15 -3610 (|#1|)) (-15 -3327 (|#1| |#1|)) (-15 -1970 ((-776) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1651 ((-112) |#1| |#1|)) (-15 -3868 (|#1|)) (-15 -3868 (|#1| (-649 |#2|))) (-15 -4257 (|#1|)) (-15 -4257 (|#1| (-649 |#2|))) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -4179 ((-112) |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#2| |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|))) (-430 |#2|) (-1108)) (T -429)) -((-3473 (*1 *2) (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -(-10 -8 (-15 -3473 ((-776))) (-15 -2150 (|#1| (-927))) (-15 -2731 ((-927) |#1|)) (-15 -3406 (|#1|)) (-15 -3380 (|#2| |#1|)) (-15 -2839 (|#2| |#1|)) (-15 -3610 (|#1|)) (-15 -3327 (|#1| |#1|)) (-15 -1970 ((-776) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1651 ((-112) |#1| |#1|)) (-15 -3868 (|#1|)) (-15 -3868 (|#1| (-649 |#2|))) (-15 -4257 (|#1|)) (-15 -4257 (|#1| (-649 |#2|))) (-15 -2101 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -4179 ((-112) |#1| |#1|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#2| |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -3560 ((-776) |#2| |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|))) -((-2417 (((-112) $ $) 19)) (-3610 (($) 68 (|has| |#1| (-372)))) (-3969 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-2541 (($ $ $) 79)) (-4179 (((-112) $ $) 80)) (-3914 (((-112) $ (-776)) 8)) (-3473 (((-776)) 62 (|has| |#1| (-372)))) (-4257 (($ (-649 |#1|)) 75) (($) 74)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-3406 (($) 65 (|has| |#1| (-372)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 71)) (-2314 (((-112) $ (-776)) 9)) (-3380 ((|#1| $) 66 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2839 ((|#1| $) 67 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-2731 (((-927) $) 64 (|has| |#1| (-372)))) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22)) (-2101 (($ $ $) 76)) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-2150 (($ (-927)) 63 (|has| |#1| (-372)))) (-3547 (((-1128) $) 21)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2237 (($ $ |#1|) 78) (($ $ $) 77)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3327 (($ $) 69 (|has| |#1| (-372)))) (-3796 (((-867) $) 18)) (-1970 (((-776) $) 70)) (-3868 (($ (-649 |#1|)) 73) (($) 72)) (-1520 (((-112) $ $) 23)) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-430 |#1|) (-140) (-1108)) (T -430)) -((-1970 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1108)) (-5 *2 (-776)))) (-3327 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-372)))) (-3610 (*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1108)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855))))) -(-13 (-230 |t#1|) (-1106 |t#1|) (-10 -8 (-6 -4447) (-15 -1970 ((-776) $)) (IF (|has| |t#1| (-372)) (PROGN (-6 (-372)) (-15 -3327 ($ $)) (-15 -3610 ($))) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -2839 (|t#1| $)) (-15 -3380 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-230 |#1|) . T) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-372) |has| |#1| (-372)) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1106 |#1|) . T) ((-1108) . T) ((-1225) . T)) -((-1741 (((-591 |#2|) |#2| (-1185)) 36)) (-2693 (((-591 |#2|) |#2| (-1185)) 21)) (-1605 ((|#2| |#2| (-1185)) 26))) -(((-431 |#1| |#2|) (-10 -7 (-15 -2693 ((-591 |#2|) |#2| (-1185))) (-15 -1741 ((-591 |#2|) |#2| (-1185))) (-15 -1605 (|#2| |#2| (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-29 |#1|))) (T -431)) -((-1605 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1210) (-29 *4))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1210) (-29 *5))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1210) (-29 *5)))))) -(-10 -7 (-15 -2693 ((-591 |#2|) |#2| (-1185))) (-15 -1741 ((-591 |#2|) |#2| (-1185))) (-15 -1605 (|#2| |#2| (-1185)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3128 (($ |#2| |#1|) 37)) (-1542 (($ |#2| |#1|) 35)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-334 |#2|)) 25)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 10 T CONST)) (-1815 (($) 16 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 36)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-432 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4434)) (IF (|has| |#1| (-6 -4434)) (-6 -4434) |%noBranch|) |%noBranch|) (-15 -3796 ($ |#1|)) (-15 -3796 ($ (-334 |#2|))) (-15 -3128 ($ |#2| |#1|)) (-15 -1542 ($ |#2| |#1|)))) (-13 (-173) (-38 (-412 (-569)))) (-13 (-855) (-21))) (T -432)) -((-3796 (*1 *1 *2) (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569))))) (-4 *3 (-13 (-855) (-21))))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))))) (-3128 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21))))) (-1542 (*1 *1 *2 *3) (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) (-4 *2 (-13 (-855) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4434)) (IF (|has| |#1| (-6 -4434)) (-6 -4434) |%noBranch|) |%noBranch|) (-15 -3796 ($ |#1|)) (-15 -3796 ($ (-334 |#2|))) (-15 -3128 ($ |#2| |#1|)) (-15 -1542 ($ |#2| |#1|)))) -((-3579 (((-3 |#2| (-649 |#2|)) |#2| (-1185)) 115))) -(((-433 |#1| |#2|) (-10 -7 (-15 -3579 ((-3 |#2| (-649 |#2|)) |#2| (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-29 |#1|))) (T -433)) -((-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3)) (-4 *3 (-13 (-1210) (-965) (-29 *5)))))) -(-10 -7 (-15 -3579 ((-3 |#2| (-649 |#2|)) |#2| (-1185)))) -((-1712 (((-649 (-1185)) $) 81)) (-3767 (((-412 (-1181 $)) $ (-617 $)) 314)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) 278)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 (-1185) "failed") $) 84) (((-3 (-569) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-412 (-958 |#2|)) "failed") $) 364) (((-3 (-958 |#2|) "failed") $) 276) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-617 $) $) NIL) (((-1185) $) 28) (((-569) $) NIL) ((|#2| $) 272) (((-412 (-958 |#2|)) $) 346) (((-958 |#2|) $) 273) (((-412 (-569)) $) NIL)) (-3746 (((-114) (-114)) 47)) (-2177 (($ $) 99)) (-2391 (((-3 (-617 $) "failed") $) 269)) (-3736 (((-649 (-617 $)) $) 270)) (-4250 (((-3 (-649 $) "failed") $) 288)) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) 295)) (-2427 (((-3 (-649 $) "failed") $) 286)) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 305)) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) 292) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) 258)) (-1828 (((-112) $) 17)) (-1835 ((|#2| $) 19)) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) 277) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 109) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1185)) 62) (($ $ (-649 (-1185))) 281) (($ $) 282) (($ $ (-114) $ (-1185)) 65) (($ $ (-649 (-114)) (-649 $) (-1185)) 72) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) 120) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 283) (($ $ (-1185) (-776) (-1 $ (-649 $))) 105) (($ $ (-1185) (-776) (-1 $ $)) 104)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) 119)) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) 279)) (-3181 (($ $) 325)) (-1410 (((-898 (-569)) $) 298) (((-898 (-383)) $) 302) (($ (-423 $)) 360) (((-541) $) NIL)) (-3796 (((-867) $) 280) (($ (-617 $)) 93) (($ (-1185)) 24) (($ |#2|) NIL) (($ (-1133 |#2| (-617 $))) NIL) (($ (-412 |#2|)) 330) (($ (-958 (-412 |#2|))) 369) (($ (-412 (-958 (-412 |#2|)))) 342) (($ (-412 (-958 |#2|))) 336) (($ $) NIL) (($ (-958 |#2|)) 218) (($ (-412 (-569))) 374) (($ (-569)) NIL)) (-2721 (((-776)) 88)) (-4052 (((-112) (-114)) 42)) (-4215 (($ (-1185) $) 31) (($ (-1185) $ $) 32) (($ (-1185) $ $ $) 33) (($ (-1185) $ $ $ $) 34) (($ (-1185) (-649 $)) 39)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL))) -(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3796 (|#1| (-569))) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-958 |#2|))) (-15 -4381 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3150 ((-958 |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-958 |#2|)))) (-15 -4381 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3150 ((-412 (-958 |#2|)) |#1|)) (-15 -3767 ((-412 (-1181 |#1|)) |#1| (-617 |#1|))) (-15 -3796 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -3796 (|#1| (-958 (-412 |#2|)))) (-15 -3796 (|#1| (-412 |#2|))) (-15 -3181 (|#1| |#1|)) (-15 -1410 (|#1| (-423 |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -2605 ((-3 (-2 (|:| |val| |#1|) (|:| -1993 (-569))) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-1185))) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-114))) (-15 -2177 (|#1| |#1|)) (-15 -3796 (|#1| (-1133 |#2| (-617 |#1|)))) (-15 -3741 ((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1185))) (-15 -1725 (|#1| |#1| (-114) |#1| (-1185))) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1185)))) (-15 -1725 (|#1| |#1| (-1185))) (-15 -4215 (|#1| (-1185) (-649 |#1|))) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1|)) (-15 -1712 ((-649 (-1185)) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3736 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -3796 (|#1| (-617 |#1|))) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|)) (-15 -3796 ((-867) |#1|))) (-435 |#2|) (-1108)) (T -434)) -((-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1108)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-2721 (*1 *2) (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4))))) -(-10 -8 (-15 * (|#1| (-927) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3796 (|#1| (-569))) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-958 |#2|))) (-15 -4381 ((-3 (-958 |#2|) "failed") |#1|)) (-15 -3150 ((-958 |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3796 (|#1| (-412 (-958 |#2|)))) (-15 -4381 ((-3 (-412 (-958 |#2|)) "failed") |#1|)) (-15 -3150 ((-412 (-958 |#2|)) |#1|)) (-15 -3767 ((-412 (-1181 |#1|)) |#1| (-617 |#1|))) (-15 -3796 (|#1| (-412 (-958 (-412 |#2|))))) (-15 -3796 (|#1| (-958 (-412 |#2|)))) (-15 -3796 (|#1| (-412 |#2|))) (-15 -3181 (|#1| |#1|)) (-15 -1410 (|#1| (-423 |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-776) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-776)) (-649 (-1 |#1| |#1|)))) (-15 -2605 ((-3 (-2 (|:| |val| |#1|) (|:| -1993 (-569))) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-1185))) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1| (-114))) (-15 -2177 (|#1| |#1|)) (-15 -3796 (|#1| (-1133 |#2| (-617 |#1|)))) (-15 -3741 ((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 |#1|))) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 |#1|)) (|:| -1993 (-569))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 |#1|) (-1185))) (-15 -1725 (|#1| |#1| (-114) |#1| (-1185))) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1185)))) (-15 -1725 (|#1| |#1| (-1185))) (-15 -4215 (|#1| (-1185) (-649 |#1|))) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1| |#1|)) (-15 -4215 (|#1| (-1185) |#1|)) (-15 -1712 ((-649 (-1185)) |#1|)) (-15 -1835 (|#2| |#1|)) (-15 -1828 ((-112) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-114) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-114)) (-649 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1185) (-1 |#1| (-649 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| (-649 |#1|))))) (-15 -1725 (|#1| |#1| (-649 (-1185)) (-649 (-1 |#1| |#1|)))) (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3736 ((-649 (-617 |#1|)) |#1|)) (-15 -2391 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -4296 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -4296 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4296 (|#1| |#1| (-297 |#1|))) (-15 -1869 (|#1| (-114) (-649 |#1|))) (-15 -1869 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1| |#1|)) (-15 -1869 (|#1| (-114) |#1|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -1725 (|#1| |#1| (-649 (-617 |#1|)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-617 |#1|) |#1|)) (-15 -3796 (|#1| (-617 |#1|))) (-15 -4381 ((-3 (-617 |#1|) "failed") |#1|)) (-15 -3150 ((-617 |#1|) |#1|)) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 116 (|has| |#1| (-25)))) (-1712 (((-649 (-1185)) $) 203)) (-3767 (((-412 (-1181 $)) $ (-617 $)) 171 (|has| |#1| (-561)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 143 (|has| |#1| (-561)))) (-4355 (($ $) 144 (|has| |#1| (-561)))) (-3039 (((-112) $) 146 (|has| |#1| (-561)))) (-3663 (((-649 (-617 $)) $) 39)) (-2208 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-4296 (($ $ (-297 $)) 51) (($ $ (-649 (-297 $))) 50) (($ $ (-649 (-617 $)) (-649 $)) 49)) (-1830 (($ $) 163 (|has| |#1| (-561)))) (-3764 (((-423 $) $) 164 (|has| |#1| (-561)))) (-2227 (((-112) $ $) 154 (|has| |#1| (-561)))) (-4427 (($) 104 (-2776 (|has| |#1| (-1120)) (|has| |#1| (-25))) CONST)) (-4381 (((-3 (-617 $) "failed") $) 64) (((-3 (-1185) "failed") $) 216) (((-3 (-569) "failed") $) 210 (|has| |#1| (-1046 (-569)))) (((-3 |#1| "failed") $) 207) (((-3 (-412 (-958 |#1|)) "failed") $) 169 (|has| |#1| (-561))) (((-3 (-958 |#1|) "failed") $) 123 (|has| |#1| (-1057))) (((-3 (-412 (-569)) "failed") $) 98 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 (((-617 $) $) 65) (((-1185) $) 217) (((-569) $) 209 (|has| |#1| (-1046 (-569)))) ((|#1| $) 208) (((-412 (-958 |#1|)) $) 170 (|has| |#1| (-561))) (((-958 |#1|) $) 124 (|has| |#1| (-1057))) (((-412 (-569)) $) 99 (-2776 (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569))))))) (-2368 (($ $ $) 158 (|has| |#1| (-561)))) (-2957 (((-694 (-569)) (-694 $)) 137 (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 136 (-1759 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 135 (|has| |#1| (-1057))) (((-694 |#1|) (-694 $)) 134 (|has| |#1| (-1057)))) (-3086 (((-3 $ "failed") $) 106 (|has| |#1| (-1120)))) (-2379 (($ $ $) 157 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 152 (|has| |#1| (-561)))) (-1473 (((-112) $) 165 (|has| |#1| (-561)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 212 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 211 (|has| |#1| (-892 (-383))))) (-2687 (($ $) 46) (($ (-649 $)) 45)) (-3810 (((-649 (-114)) $) 38)) (-3746 (((-114) (-114)) 37)) (-2349 (((-112) $) 105 (|has| |#1| (-1120)))) (-2719 (((-112) $) 17 (|has| $ (-1046 (-569))))) (-2177 (($ $) 186 (|has| |#1| (-1057)))) (-4399 (((-1133 |#1| (-617 $)) $) 187 (|has| |#1| (-1057)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 161 (|has| |#1| (-561)))) (-2341 (((-1181 $) (-617 $)) 20 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) 31)) (-2391 (((-3 (-617 $) "failed") $) 41)) (-1839 (($ (-649 $)) 150 (|has| |#1| (-561))) (($ $ $) 149 (|has| |#1| (-561)))) (-3435 (((-1167) $) 10)) (-3736 (((-649 (-617 $)) $) 40)) (-1354 (($ (-114) $) 33) (($ (-114) (-649 $)) 32)) (-4250 (((-3 (-649 $) "failed") $) 192 (|has| |#1| (-1120)))) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $) 183 (|has| |#1| (-1057)))) (-2427 (((-3 (-649 $) "failed") $) 190 (|has| |#1| (-25)))) (-3741 (((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2850 (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $) 191 (|has| |#1| (-1120))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114)) 185 (|has| |#1| (-1057))) (((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185)) 184 (|has| |#1| (-1057)))) (-1825 (((-112) $ (-114)) 35) (((-112) $ (-1185)) 34)) (-1817 (($ $) 108 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-1427 (((-776) $) 42)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 205)) (-1835 ((|#1| $) 204)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 151 (|has| |#1| (-561)))) (-1870 (($ (-649 $)) 148 (|has| |#1| (-561))) (($ $ $) 147 (|has| |#1| (-561)))) (-1852 (((-112) $ $) 30) (((-112) $ (-1185)) 29)) (-3800 (((-423 $) $) 162 (|has| |#1| (-561)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-561))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 159 (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 153 (|has| |#1| (-561)))) (-4024 (((-112) $) 18 (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) 62) (($ $ (-649 (-617 $)) (-649 $)) 61) (($ $ (-649 (-297 $))) 60) (($ $ (-297 $)) 59) (($ $ $ $) 58) (($ $ (-649 $) (-649 $)) 57) (($ $ (-649 (-1185)) (-649 (-1 $ $))) 28) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) 27) (($ $ (-1185) (-1 $ (-649 $))) 26) (($ $ (-1185) (-1 $ $)) 25) (($ $ (-649 (-114)) (-649 (-1 $ $))) 24) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) 23) (($ $ (-114) (-1 $ (-649 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1185)) 197 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185))) 196 (|has| |#1| (-619 (-541)))) (($ $) 195 (|has| |#1| (-619 (-541)))) (($ $ (-114) $ (-1185)) 194 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-114)) (-649 $) (-1185)) 193 (|has| |#1| (-619 (-541)))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $))) 182 (|has| |#1| (-1057))) (($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $)))) 181 (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ (-649 $))) 180 (|has| |#1| (-1057))) (($ $ (-1185) (-776) (-1 $ $)) 179 (|has| |#1| (-1057)))) (-2431 (((-776) $) 155 (|has| |#1| (-561)))) (-1869 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-649 $)) 52)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 156 (|has| |#1| (-561)))) (-2190 (($ $) 44) (($ $ $) 43)) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 128 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 127 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 126 (|has| |#1| (-1057))) (($ $ (-1185)) 125 (|has| |#1| (-1057)))) (-3181 (($ $) 176 (|has| |#1| (-561)))) (-4412 (((-1133 |#1| (-617 $)) $) 177 (|has| |#1| (-561)))) (-4061 (($ $) 19 (|has| $ (-1057)))) (-1410 (((-898 (-569)) $) 214 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 213 (|has| |#1| (-619 (-898 (-383))))) (($ (-423 $)) 178 (|has| |#1| (-561))) (((-541) $) 100 (|has| |#1| (-619 (-541))))) (-3476 (($ $ $) 111 (|has| |#1| (-478)))) (-2180 (($ $ $) 112 (|has| |#1| (-478)))) (-3796 (((-867) $) 12) (($ (-617 $)) 63) (($ (-1185)) 215) (($ |#1|) 206) (($ (-1133 |#1| (-617 $))) 188 (|has| |#1| (-1057))) (($ (-412 |#1|)) 174 (|has| |#1| (-561))) (($ (-958 (-412 |#1|))) 173 (|has| |#1| (-561))) (($ (-412 (-958 (-412 |#1|)))) 172 (|has| |#1| (-561))) (($ (-412 (-958 |#1|))) 168 (|has| |#1| (-561))) (($ $) 141 (|has| |#1| (-561))) (($ (-958 |#1|)) 122 (|has| |#1| (-1057))) (($ (-412 (-569))) 97 (-2776 (|has| |#1| (-561)) (-12 (|has| |#1| (-1046 (-569))) (|has| |#1| (-561))) (|has| |#1| (-1046 (-412 (-569)))))) (($ (-569)) 96 (-2776 (|has| |#1| (-1057)) (|has| |#1| (-1046 (-569)))))) (-2239 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2721 (((-776)) 133 (|has| |#1| (-1057)) CONST)) (-4213 (($ $) 48) (($ (-649 $)) 47)) (-4052 (((-112) (-114)) 36)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 145 (|has| |#1| (-561)))) (-4215 (($ (-1185) $) 202) (($ (-1185) $ $) 201) (($ (-1185) $ $ $) 200) (($ (-1185) $ $ $ $) 199) (($ (-1185) (-649 $)) 198)) (-1804 (($) 115 (|has| |#1| (-25)) CONST)) (-1815 (($) 103 (|has| |#1| (-1120)) CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 132 (|has| |#1| (-1057))) (($ $ (-1185) (-776)) 131 (|has| |#1| (-1057))) (($ $ (-649 (-1185))) 130 (|has| |#1| (-1057))) (($ $ (-1185)) 129 (|has| |#1| (-1057)))) (-2920 (((-112) $ $) 6)) (-3035 (($ (-1133 |#1| (-617 $)) (-1133 |#1| (-617 $))) 175 (|has| |#1| (-561))) (($ $ $) 109 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561))))) (-3024 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3012 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-569)) 110 (-2776 (|has| |#1| (-478)) (|has| |#1| (-561)))) (($ $ (-776)) 107 (|has| |#1| (-1120))) (($ $ (-927)) 102 (|has| |#1| (-1120)))) (* (($ (-412 (-569)) $) 167 (|has| |#1| (-561))) (($ $ (-412 (-569))) 166 (|has| |#1| (-561))) (($ |#1| $) 140 (|has| |#1| (-173))) (($ $ |#1|) 139 (|has| |#1| (-173))) (($ (-569) $) 119 (|has| |#1| (-21))) (($ (-776) $) 117 (|has| |#1| (-25))) (($ (-927) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1120))))) -(((-435 |#1|) (-140) (-1108)) (T -435)) -((-1828 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-1185))))) (-4215 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) (-4215 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1108)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-4 *3 (-619 (-541))))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1185))) (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-4 *3 (-619 (-541))))) (-1725 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-619 (-541))))) (-1725 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1185)) (-4 *1 (-435 *4)) (-4 *4 (-1108)) (-4 *4 (-619 (-541))))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1185)) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-619 (-541))))) (-4250 (*1 *2 *1) (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-2850 (*1 *2 *1) (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) (-4 *1 (-435 *3)))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-435 *3)))) (-3741 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| -1435 (-569)) (|:| |var| (-617 *1)))) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-1057)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-1057)))) (-2850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1057)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) (-4 *1 (-435 *4)))) (-2850 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-1057)) (-4 *4 (-1108)) (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) (-4 *1 (-435 *4)))) (-2605 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-1108)) (-5 *2 (-2 (|:| |val| *1) (|:| -1993 (-569)))) (-4 *1 (-435 *3)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776))) (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561)) (-4 *3 (-1108)))) (-4412 (*1 *2 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1))) (-4 *1 (-435 *3)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-561)))) (-3035 (*1 *1 *2 *2) (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1108)) (-4 *1 (-435 *3)))) (-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1108)) (-4 *4 (-561)) (-5 *2 (-412 (-1181 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-4 *3 (-1120))))) -(-13 (-305) (-1046 (-1185)) (-890 |t#1|) (-405 |t#1|) (-416 |t#1|) (-10 -8 (-15 -1828 ((-112) $)) (-15 -1835 (|t#1| $)) (-15 -1712 ((-649 (-1185)) $)) (-15 -4215 ($ (-1185) $)) (-15 -4215 ($ (-1185) $ $)) (-15 -4215 ($ (-1185) $ $ $)) (-15 -4215 ($ (-1185) $ $ $ $)) (-15 -4215 ($ (-1185) (-649 $))) (IF (|has| |t#1| (-619 (-541))) (PROGN (-6 (-619 (-541))) (-15 -1725 ($ $ (-1185))) (-15 -1725 ($ $ (-649 (-1185)))) (-15 -1725 ($ $)) (-15 -1725 ($ $ (-114) $ (-1185))) (-15 -1725 ($ $ (-649 (-114)) (-649 $) (-1185)))) |%noBranch|) (IF (|has| |t#1| (-1120)) (PROGN (-6 (-731)) (-15 ** ($ $ (-776))) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-478)) (-6 (-478)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -3741 ((-3 (-2 (|:| -1435 (-569)) (|:| |var| (-617 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1057)) (PROGN (-6 (-1057)) (-6 (-1046 (-958 |t#1|))) (-6 (-906 (-1185))) (-6 (-381 |t#1|)) (-15 -3796 ($ (-1133 |t#1| (-617 $)))) (-15 -4399 ((-1133 |t#1| (-617 $)) $)) (-15 -2177 ($ $)) (-15 -2850 ((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-114))) (-15 -2850 ((-3 (-2 (|:| |var| (-617 $)) (|:| -1993 (-569))) "failed") $ (-1185))) (-15 -2605 ((-3 (-2 (|:| |val| $) (|:| -1993 (-569))) "failed") $)) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ $)))) (-15 -1725 ($ $ (-649 (-1185)) (-649 (-776)) (-649 (-1 $ (-649 $))))) (-15 -1725 ($ $ (-1185) (-776) (-1 $ (-649 $)))) (-15 -1725 ($ $ (-1185) (-776) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-367)) (-6 (-1046 (-412 (-958 |t#1|)))) (-15 -1410 ($ (-423 $))) (-15 -4412 ((-1133 |t#1| (-617 $)) $)) (-15 -3181 ($ $)) (-15 -3035 ($ (-1133 |t#1| (-617 $)) (-1133 |t#1| (-617 $)))) (-15 -3796 ($ (-412 |t#1|))) (-15 -3796 ($ (-958 (-412 |t#1|)))) (-15 -3796 ($ (-412 (-958 (-412 |t#1|))))) (-15 -3767 ((-412 (-1181 $)) $ (-617 $))) (IF (|has| |t#1| (-1046 (-569))) (-6 (-1046 (-412 (-569)))) |%noBranch|)) |%noBranch|))) -(((-21) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-412 (-569))) |has| |#1| (-561)) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-561)) ((-111 |#1| |#1|) |has| |#1| (-173)) ((-111 $ $) |has| |#1| (-561)) ((-131) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-561))) ((-621 #1=(-412 (-958 |#1|))) |has| |#1| (-561)) ((-621 (-569)) -2776 (|has| |#1| (-1057)) (|has| |#1| (-1046 (-569))) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-621 #2=(-617 $)) . T) ((-621 #3=(-958 |#1|)) |has| |#1| (-1057)) ((-621 #4=(-1185)) . T) ((-621 |#1|) . T) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) |has| |#1| (-561)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-244) |has| |#1| (-561)) ((-293) |has| |#1| (-561)) ((-310) |has| |#1| (-561)) ((-312 $) . T) ((-305) . T) ((-367) |has| |#1| (-561)) ((-381 |#1|) |has| |#1| (-1057)) ((-405 |#1|) . T) ((-416 |#1|) . T) ((-457) |has| |#1| (-561)) ((-478) |has| |#1| (-478)) ((-519 (-617 $) $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-561)) ((-651 (-569)) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-651 |#1|) |has| |#1| (-173)) ((-651 $) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-653 #0#) |has| |#1| (-561)) ((-653 |#1|) |has| |#1| (-173)) ((-653 $) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-645 #0#) |has| |#1| (-561)) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-644 (-569)) -12 (|has| |#1| (-644 (-569))) (|has| |#1| (-1057))) ((-644 |#1|) |has| |#1| (-1057)) ((-722 #0#) |has| |#1| (-561)) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) -2776 (|has| |#1| (-1120)) (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-906 (-1185)) |has| |#1| (-1057)) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-926) |has| |#1| (-561)) ((-1046 (-412 (-569))) -2776 (|has| |#1| (-1046 (-412 (-569)))) (-12 (|has| |#1| (-561)) (|has| |#1| (-1046 (-569))))) ((-1046 #1#) |has| |#1| (-561)) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #2#) . T) ((-1046 #3#) |has| |#1| (-1057)) ((-1046 #4#) . T) ((-1046 |#1|) . T) ((-1059 #0#) |has| |#1| (-561)) ((-1059 |#1|) |has| |#1| (-173)) ((-1059 $) |has| |#1| (-561)) ((-1064 #0#) |has| |#1| (-561)) ((-1064 |#1|) |has| |#1| (-173)) ((-1064 $) |has| |#1| (-561)) ((-1057) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1066) -2776 (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1120) -2776 (|has| |#1| (-1120)) (|has| |#1| (-1057)) (|has| |#1| (-561)) (|has| |#1| (-478)) (|has| |#1| (-173)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1108) . T) ((-1225) . T) ((-1229) |has| |#1| (-561))) -((-2533 ((|#2| |#2| |#2|) 31)) (-3746 (((-114) (-114)) 43)) (-2281 ((|#2| |#2|) 63)) (-3061 ((|#2| |#2|) 66)) (-3977 ((|#2| |#2|) 30)) (-2090 ((|#2| |#2| |#2|) 33)) (-2730 ((|#2| |#2| |#2|) 35)) (-4164 ((|#2| |#2| |#2|) 32)) (-4099 ((|#2| |#2| |#2|) 34)) (-4052 (((-112) (-114)) 41)) (-4273 ((|#2| |#2|) 37)) (-1407 ((|#2| |#2|) 36)) (-2271 ((|#2| |#2|) 25)) (-2392 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2165 ((|#2| |#2| |#2|) 29))) -(((-436 |#1| |#2|) (-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2271 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2392 (|#2| |#2| |#2|)) (-15 -2165 (|#2| |#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -2533 (|#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2|)) (-15 -2090 (|#2| |#2| |#2|)) (-15 -4099 (|#2| |#2| |#2|)) (-15 -2730 (|#2| |#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -2281 (|#2| |#2|))) (-561) (-435 |#1|)) (T -436)) -((-2281 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3061 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4273 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2730 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4099 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2090 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-4164 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2533 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3977 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2165 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2392 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-2271 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4)) (-4 *4 (-435 *3)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4))))) -(-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -2271 (|#2| |#2|)) (-15 -2392 (|#2| |#2|)) (-15 -2392 (|#2| |#2| |#2|)) (-15 -2165 (|#2| |#2| |#2|)) (-15 -3977 (|#2| |#2|)) (-15 -2533 (|#2| |#2| |#2|)) (-15 -4164 (|#2| |#2| |#2|)) (-15 -2090 (|#2| |#2| |#2|)) (-15 -4099 (|#2| |#2| |#2|)) (-15 -2730 (|#2| |#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -4273 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -2281 (|#2| |#2|))) -((-1616 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1181 |#2|)) (|:| |pol2| (-1181 |#2|)) (|:| |prim| (-1181 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1181 |#2|))) (|:| |prim| (-1181 |#2|))) (-649 |#2|)) 68))) -(((-437 |#1| |#2|) (-10 -7 (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1181 |#2|))) (|:| |prim| (-1181 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1181 |#2|)) (|:| |pol2| (-1181 |#2|)) (|:| |prim| (-1181 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-561) (-147)) (-435 |#1|)) (T -437)) -((-1616 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1181 *3)) (|:| |pol2| (-1181 *3)) (|:| |prim| (-1181 *3)))) (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1181 *5))) (|:| |prim| (-1181 *5)))) (-5 *1 (-437 *4 *5))))) -(-10 -7 (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-649 (-1181 |#2|))) (|:| |prim| (-1181 |#2|))) (-649 |#2|))) (IF (|has| |#2| (-27)) (-15 -1616 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1181 |#2|)) (|:| |pol2| (-1181 |#2|)) (|:| |prim| (-1181 |#2|))) |#2| |#2|)) |%noBranch|)) -((-3716 (((-1280)) 18)) (-3974 (((-1181 (-412 (-569))) |#2| (-617 |#2|)) 40) (((-412 (-569)) |#2|) 24))) -(((-438 |#1| |#2|) (-10 -7 (-15 -3974 ((-412 (-569)) |#2|)) (-15 -3974 ((-1181 (-412 (-569))) |#2| (-617 |#2|))) (-15 -3716 ((-1280)))) (-13 (-561) (-1046 (-569))) (-435 |#1|)) (T -438)) -((-3716 (*1 *2) (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1280)) (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-438 *5 *3)))) (-3974 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 (-569))) (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4))))) -(-10 -7 (-15 -3974 ((-412 (-569)) |#2|)) (-15 -3974 ((-1181 (-412 (-569))) |#2| (-617 |#2|))) (-15 -3716 ((-1280)))) -((-4060 (((-112) $) 32)) (-2073 (((-112) $) 34)) (-3605 (((-112) $) 35)) (-3398 (((-112) $) 38)) (-4333 (((-112) $) 33)) (-3032 (((-112) $) 37)) (-3796 (((-867) $) 20) (($ (-1167)) 31) (($ (-1185)) 26) (((-1185) $) 24) (((-1112) $) 23)) (-1744 (((-112) $) 36)) (-2920 (((-112) $ $) 17))) -(((-439) (-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1167))) (-15 -3796 ($ (-1185))) (-15 -3796 ((-1185) $)) (-15 -3796 ((-1112) $)) (-15 -4060 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3398 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -2073 ((-112) $)) (-15 -2920 ((-112) $ $))))) (T -439)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-439)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-439)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-439)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3032 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2920 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1167))) (-15 -3796 ($ (-1185))) (-15 -3796 ((-1185) $)) (-15 -3796 ((-1112) $)) (-15 -4060 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3032 ((-112) $)) (-15 -3398 ((-112) $)) (-15 -1744 ((-112) $)) (-15 -2073 ((-112) $)) (-15 -2920 ((-112) $ $)))) -((-2456 (((-3 (-423 (-1181 (-412 (-569)))) "failed") |#3|) 72)) (-2726 (((-423 |#3|) |#3|) 34)) (-2553 (((-3 (-423 (-1181 (-48))) "failed") |#3|) 46 (|has| |#2| (-1046 (-48))))) (-4071 (((-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))) |#3|) 37))) -(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2726 ((-423 |#3|) |#3|)) (-15 -2456 ((-3 (-423 (-1181 (-412 (-569)))) "failed") |#3|)) (-15 -4071 ((-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))) |#3|)) (IF (|has| |#2| (-1046 (-48))) (-15 -2553 ((-3 (-423 (-1181 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-561) (-1046 (-569))) (-435 |#1|) (-1251 |#2|)) (T -440)) -((-2553 (*1 *2 *3) (|partial| -12 (-4 *5 (-1046 (-48))) (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1181 (-48)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-4071 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112)))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-2456 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 (-1181 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5))))) -(-10 -7 (-15 -2726 ((-423 |#3|) |#3|)) (-15 -2456 ((-3 (-423 (-1181 (-412 (-569)))) "failed") |#3|)) (-15 -4071 ((-3 (|:| |overq| (-1181 (-412 (-569)))) (|:| |overan| (-1181 (-48))) (|:| -2495 (-112))) |#3|)) (IF (|has| |#2| (-1046 (-48))) (-15 -2553 ((-3 (-423 (-1181 (-48))) "failed") |#3|)) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-2617 (((-1167) $ (-1167)) NIL)) (-3229 (($ $ (-1167)) NIL)) (-2358 (((-1167) $) NIL)) (-1422 (((-393) (-393) (-393)) 17) (((-393) (-393)) 15)) (-1721 (($ (-393)) NIL) (($ (-393) (-1167)) NIL)) (-3573 (((-393) $) NIL)) (-3435 (((-1167) $) NIL)) (-4065 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2856 (((-1280) (-1167)) 9)) (-3080 (((-1280) (-1167)) 10)) (-3880 (((-1280)) 11)) (-3796 (((-867) $) NIL)) (-2543 (($ $) 39)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-441) (-13 (-368 (-393) (-1167)) (-10 -7 (-15 -1422 ((-393) (-393) (-393))) (-15 -1422 ((-393) (-393))) (-15 -2856 ((-1280) (-1167))) (-15 -3080 ((-1280) (-1167))) (-15 -3880 ((-1280)))))) (T -441)) -((-1422 (*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-1422 (*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441)))) (-3880 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-441))))) -(-13 (-368 (-393) (-1167)) (-10 -7 (-15 -1422 ((-393) (-393) (-393))) (-15 -1422 ((-393) (-393))) (-15 -2856 ((-1280) (-1167))) (-15 -3080 ((-1280) (-1167))) (-15 -3880 ((-1280))))) -((-2417 (((-112) $ $) NIL)) (-1535 (((-3 (|:| |fst| (-439)) (|:| -2579 "void")) $) 11)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1977 (($) 35)) (-2260 (($) 41)) (-3890 (($) 37)) (-2996 (($) 39)) (-3545 (($) 36)) (-2604 (($) 38)) (-3356 (($) 40)) (-1736 (((-112) $) 8)) (-4420 (((-649 (-958 (-569))) $) 19)) (-3809 (($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-112)) 29) (($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-958 (-569))) (-112)) 30)) (-3796 (((-867) $) 24) (($ (-439)) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-442) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-439))) (-15 -1535 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -4420 ((-649 (-958 (-569))) $)) (-15 -1736 ((-112) $)) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-112))) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-958 (-569))) (-112))) (-15 -1977 ($)) (-15 -3545 ($)) (-15 -3890 ($)) (-15 -2260 ($)) (-15 -2604 ($)) (-15 -2996 ($)) (-15 -3356 ($))))) (T -442)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *1 (-442)))) (-4420 (*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442)))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *3 (-649 (-1185))) (-5 *4 (-112)) (-5 *1 (-442)))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442)))) (-1977 (*1 *1) (-5 *1 (-442))) (-3545 (*1 *1) (-5 *1 (-442))) (-3890 (*1 *1) (-5 *1 (-442))) (-2260 (*1 *1) (-5 *1 (-442))) (-2604 (*1 *1) (-5 *1 (-442))) (-2996 (*1 *1) (-5 *1 (-442))) (-3356 (*1 *1) (-5 *1 (-442)))) -(-13 (-1108) (-10 -8 (-15 -3796 ($ (-439))) (-15 -1535 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -4420 ((-649 (-958 (-569))) $)) (-15 -1736 ((-112) $)) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-1185)) (-112))) (-15 -3809 ($ (-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-649 (-958 (-569))) (-112))) (-15 -1977 ($)) (-15 -3545 ($)) (-15 -3890 ($)) (-15 -2260 ($)) (-15 -2604 ($)) (-15 -2996 ($)) (-15 -3356 ($)))) -((-2417 (((-112) $ $) NIL)) (-3573 (((-1185) $) 8)) (-3435 (((-1167) $) 17)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 14))) -(((-443 |#1|) (-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $)))) (-1185)) (T -443)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-443 *3)) (-14 *3 *2)))) -(-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $)))) -((-2417 (((-112) $ $) NIL)) (-4331 (((-1126) $) 7)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 13)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9))) -(((-444) (-13 (-1108) (-10 -8 (-15 -4331 ((-1126) $))))) (T -444)) -((-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-444))))) -(-13 (-1108) (-10 -8 (-15 -4331 ((-1126) $)))) -((-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-1275 (-704))) 14) (($ (-649 (-333))) 13) (($ (-333)) 12) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 11))) -(((-445) (-140)) (T -445)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-704))) (-4 *1 (-445)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-445))))) -(-13 (-400) (-10 -8 (-15 -3796 ($ (-1275 (-704)))) (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))))) -(((-618 (-867)) . T) ((-400) . T) ((-1225) . T)) -((-4381 (((-3 $ "failed") (-1275 (-319 (-383)))) 21) (((-3 $ "failed") (-1275 (-319 (-569)))) 19) (((-3 $ "failed") (-1275 (-958 (-383)))) 17) (((-3 $ "failed") (-1275 (-958 (-569)))) 15) (((-3 $ "failed") (-1275 (-412 (-958 (-383))))) 13) (((-3 $ "failed") (-1275 (-412 (-958 (-569))))) 11)) (-3150 (($ (-1275 (-319 (-383)))) 22) (($ (-1275 (-319 (-569)))) 20) (($ (-1275 (-958 (-383)))) 18) (($ (-1275 (-958 (-569)))) 16) (($ (-1275 (-412 (-958 (-383))))) 14) (($ (-1275 (-412 (-958 (-569))))) 12)) (-3362 (((-1280) $) 7)) (-3796 (((-867) $) 8) (($ (-649 (-333))) 25) (($ (-333)) 24) (($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) 23))) -(((-446) (-140)) (T -446)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446))))) -(-13 (-400) (-10 -8 (-15 -3796 ($ (-649 (-333)))) (-15 -3796 ($ (-333))) (-15 -3796 ($ (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333)))))) (-15 -3150 ($ (-1275 (-319 (-383))))) (-15 -4381 ((-3 $ "failed") (-1275 (-319 (-383))))) (-15 -3150 ($ (-1275 (-319 (-569))))) (-15 -4381 ((-3 $ "failed") (-1275 (-319 (-569))))) (-15 -3150 ($ (-1275 (-958 (-383))))) (-15 -4381 ((-3 $ "failed") (-1275 (-958 (-383))))) (-15 -3150 ($ (-1275 (-958 (-569))))) (-15 -4381 ((-3 $ "failed") (-1275 (-958 (-569))))) (-15 -3150 ($ (-1275 (-412 (-958 (-383)))))) (-15 -4381 ((-3 $ "failed") (-1275 (-412 (-958 (-383)))))) (-15 -3150 ($ (-1275 (-412 (-958 (-569)))))) (-15 -4381 ((-3 $ "failed") (-1275 (-412 (-958 (-569)))))))) -(((-618 (-867)) . T) ((-400) . T) ((-1225) . T)) -((-3255 (((-112)) 18)) (-2897 (((-112) (-112)) 19)) (-1714 (((-112)) 14)) (-3292 (((-112) (-112)) 15)) (-1710 (((-112)) 16)) (-3330 (((-112) (-112)) 17)) (-3651 (((-927) (-927)) 22) (((-927)) 21)) (-2065 (((-776) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569))))) 52)) (-3976 (((-927) (-927)) 24) (((-927)) 23)) (-1761 (((-2 (|:| -3335 (-569)) (|:| -4360 (-649 |#1|))) |#1|) 97)) (-4192 (((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569))))))) 178)) (-2138 (((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)) 211)) (-3386 (((-423 |#1|) |#1| (-776) (-776)) 226) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 223) (((-423 |#1|) |#1| (-649 (-776))) 225) (((-423 |#1|) |#1| (-776)) 224) (((-423 |#1|) |#1|) 222)) (-4034 (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112)) 228) (((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776)) 229) (((-3 |#1| "failed") (-927) |#1| (-649 (-776))) 231) (((-3 |#1| "failed") (-927) |#1| (-776)) 230) (((-3 |#1| "failed") (-927) |#1|) 232)) (-3800 (((-423 |#1|) |#1| (-776) (-776)) 221) (((-423 |#1|) |#1| (-649 (-776)) (-776)) 217) (((-423 |#1|) |#1| (-649 (-776))) 219) (((-423 |#1|) |#1| (-776)) 218) (((-423 |#1|) |#1|) 216)) (-1932 (((-112) |#1|) 44)) (-1327 (((-742 (-776)) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569))))) 102)) (-3102 (((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112) (-1110 (-776)) (-776)) 215))) -(((-447 |#1|) (-10 -7 (-15 -4192 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))))) (-15 -1327 ((-742 (-776)) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -3976 ((-927))) (-15 -3976 ((-927) (-927))) (-15 -3651 ((-927))) (-15 -3651 ((-927) (-927))) (-15 -2065 ((-776) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -1761 ((-2 (|:| -3335 (-569)) (|:| -4360 (-649 |#1|))) |#1|)) (-15 -3255 ((-112))) (-15 -2897 ((-112) (-112))) (-15 -1714 ((-112))) (-15 -3292 ((-112) (-112))) (-15 -1932 ((-112) |#1|)) (-15 -1710 ((-112))) (-15 -3330 ((-112) (-112))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1| (-776))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3800 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1| (-776))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3386 ((-423 |#1|) |#1| (-776) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1|)) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112))) (-15 -3102 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112) (-1110 (-776)) (-776)))) (-1251 (-569))) (T -447)) -((-3102 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1110 (-776))) (-5 *6 (-776)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-4034 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) (-3386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3330 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1710 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1932 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3292 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1714 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-2897 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3255 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1761 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3335 (-569)) (|:| -4360 (-649 *3)))) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569))))) (-4 *4 (-1251 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3651 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3976 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-3976 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569))))) (-4 *4 (-1251 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *4) (|:| -4180 (-569))))))) (-4 *4 (-1251 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4))))) -(-10 -7 (-15 -4192 ((-423 |#1|) (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))))) (-15 -1327 ((-742 (-776)) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -3976 ((-927))) (-15 -3976 ((-927) (-927))) (-15 -3651 ((-927))) (-15 -3651 ((-927) (-927))) (-15 -2065 ((-776) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))))) (-15 -1761 ((-2 (|:| -3335 (-569)) (|:| -4360 (-649 |#1|))) |#1|)) (-15 -3255 ((-112))) (-15 -2897 ((-112) (-112))) (-15 -1714 ((-112))) (-15 -3292 ((-112) (-112))) (-15 -1932 ((-112) |#1|)) (-15 -1710 ((-112))) (-15 -3330 ((-112) (-112))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3800 ((-423 |#1|) |#1| (-776))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3800 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3800 ((-423 |#1|) |#1| (-776) (-776))) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1| (-776))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)))) (-15 -3386 ((-423 |#1|) |#1| (-649 (-776)) (-776))) (-15 -3386 ((-423 |#1|) |#1| (-776) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1|)) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776))) (-15 -4034 ((-3 |#1| "failed") (-927) |#1| (-649 (-776)) (-776) (-112))) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112))) (-15 -3102 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112) (-1110 (-776)) (-776)))) -((-3226 (((-569) |#2|) 52) (((-569) |#2| (-776)) 51)) (-1578 (((-569) |#2|) 67)) (-2961 ((|#3| |#2|) 26)) (-3829 ((|#3| |#2| (-927)) 15)) (-3845 ((|#3| |#2|) 16)) (-2473 ((|#3| |#2|) 9)) (-1427 ((|#3| |#2|) 10)) (-3010 ((|#3| |#2| (-927)) 74) ((|#3| |#2|) 34)) (-3344 (((-569) |#2|) 69))) -(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -3344 ((-569) |#2|)) (-15 -3010 (|#3| |#2|)) (-15 -3010 (|#3| |#2| (-927))) (-15 -1578 ((-569) |#2|)) (-15 -3226 ((-569) |#2| (-776))) (-15 -3226 ((-569) |#2|)) (-15 -3829 (|#3| |#2| (-927))) (-15 -2961 (|#3| |#2|)) (-15 -2473 (|#3| |#2|)) (-15 -1427 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) (-1057) (-1251 |#1|) (-13 (-409) (-1046 |#1|) (-367) (-1210) (-287))) (T -448)) -((-3845 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-1427 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-2473 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-2961 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5)))) (-3226 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1251 *4)) (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))) (-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1251 *5)) (-4 *6 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1251 *4)) (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))))) (-3010 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))) (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5)))) (-3010 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) (-4 *3 (-1251 *4)) (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))))) -(-10 -7 (-15 -3344 ((-569) |#2|)) (-15 -3010 (|#3| |#2|)) (-15 -3010 (|#3| |#2| (-927))) (-15 -1578 ((-569) |#2|)) (-15 -3226 ((-569) |#2| (-776))) (-15 -3226 ((-569) |#2|)) (-15 -3829 (|#3| |#2| (-927))) (-15 -2961 (|#3| |#2|)) (-15 -2473 (|#3| |#2|)) (-15 -1427 (|#3| |#2|)) (-15 -3845 (|#3| |#2|))) -((-4258 ((|#2| (-1275 |#1|)) 45)) (-2973 ((|#2| |#2| |#1|) 61)) (-2164 ((|#2| |#2| |#1|) 53)) (-2251 ((|#2| |#2|) 49)) (-4107 (((-112) |#2|) 36)) (-3619 (((-649 |#2|) (-927) (-423 |#2|)) 24)) (-4034 ((|#2| (-927) (-423 |#2|)) 28)) (-1327 (((-742 (-776)) (-423 |#2|)) 33))) -(((-449 |#1| |#2|) (-10 -7 (-15 -4107 ((-112) |#2|)) (-15 -4258 (|#2| (-1275 |#1|))) (-15 -2251 (|#2| |#2|)) (-15 -2164 (|#2| |#2| |#1|)) (-15 -2973 (|#2| |#2| |#1|)) (-15 -1327 ((-742 (-776)) (-423 |#2|))) (-15 -4034 (|#2| (-927) (-423 |#2|))) (-15 -3619 ((-649 |#2|) (-927) (-423 |#2|)))) (-1057) (-1251 |#1|)) (T -449)) -((-3619 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-1057)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6)))) (-4034 (*1 *2 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1251 *5)) (-5 *1 (-449 *5 *2)) (-4 *5 (-1057)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-423 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1057)) (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5)))) (-2973 (*1 *2 *2 *3) (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) (-2164 (*1 *2 *2 *3) (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-1057)) (-4 *2 (-1251 *4)) (-5 *1 (-449 *4 *2)))) (-4107 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -4107 ((-112) |#2|)) (-15 -4258 (|#2| (-1275 |#1|))) (-15 -2251 (|#2| |#2|)) (-15 -2164 (|#2| |#2| |#1|)) (-15 -2973 (|#2| |#2| |#1|)) (-15 -1327 ((-742 (-776)) (-423 |#2|))) (-15 -4034 (|#2| (-927) (-423 |#2|))) (-15 -3619 ((-649 |#2|) (-927) (-423 |#2|)))) -((-4147 (((-776)) 59)) (-2574 (((-776)) 29 (|has| |#1| (-409))) (((-776) (-776)) 28 (|has| |#1| (-409)))) (-4187 (((-569) |#1|) 25 (|has| |#1| (-409)))) (-1425 (((-569) |#1|) 27 (|has| |#1| (-409)))) (-1493 (((-776)) 58) (((-776) (-776)) 57)) (-1941 ((|#1| (-776) (-569)) 37)) (-1706 (((-1280)) 61))) -(((-450 |#1|) (-10 -7 (-15 -1941 (|#1| (-776) (-569))) (-15 -1493 ((-776) (-776))) (-15 -1493 ((-776))) (-15 -4147 ((-776))) (-15 -1706 ((-1280))) (IF (|has| |#1| (-409)) (PROGN (-15 -1425 ((-569) |#1|)) (-15 -4187 ((-569) |#1|)) (-15 -2574 ((-776) (-776))) (-15 -2574 ((-776)))) |%noBranch|)) (-1057)) (T -450)) -((-2574 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-2574 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-4187 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) (-1706 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-4147 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-1493 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-1493 (*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) (-1941 (*1 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1057))))) -(-10 -7 (-15 -1941 (|#1| (-776) (-569))) (-15 -1493 ((-776) (-776))) (-15 -1493 ((-776))) (-15 -4147 ((-776))) (-15 -1706 ((-1280))) (IF (|has| |#1| (-409)) (PROGN (-15 -1425 ((-569) |#1|)) (-15 -4187 ((-569) |#1|)) (-15 -2574 ((-776) (-776))) (-15 -2574 ((-776)))) |%noBranch|)) -((-3933 (((-649 (-569)) (-569)) 76)) (-1473 (((-112) (-170 (-569))) 82)) (-3800 (((-423 (-170 (-569))) (-170 (-569))) 75))) -(((-451) (-10 -7 (-15 -3800 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -3933 ((-649 (-569)) (-569))) (-15 -1473 ((-112) (-170 (-569)))))) (T -451)) -((-1473 (*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569)))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451)) (-5 *3 (-170 (-569)))))) -(-10 -7 (-15 -3800 ((-423 (-170 (-569))) (-170 (-569)))) (-15 -3933 ((-649 (-569)) (-569))) (-15 -1473 ((-112) (-170 (-569))))) -((-3582 ((|#4| |#4| (-649 |#4|)) 82)) (-2003 (((-649 |#4|) (-649 |#4|) (-1167) (-1167)) 22) (((-649 |#4|) (-649 |#4|) (-1167)) 21) (((-649 |#4|) (-649 |#4|)) 13))) -(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3582 (|#4| |#4| (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167) (-1167)))) (-310) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -452)) -((-2003 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2003 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6)))) (-3582 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2))))) -(-10 -7 (-15 -3582 (|#4| |#4| (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2003 ((-649 |#4|) (-649 |#4|) (-1167) (-1167)))) -((-4216 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 89) (((-649 (-649 |#4|)) (-649 |#4|)) 88) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112)) 82) (((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|)) 83)) (-1471 (((-649 (-649 |#4|)) (-649 |#4|) (-112)) 55) (((-649 (-649 |#4|)) (-649 |#4|)) 77))) -(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-112)))) (-13 (-310) (-147)) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -453)) -((-4216 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4216 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-4216 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-4216 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(-10 -7 (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -1471 ((-649 (-649 |#4|)) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-649 |#4|) (-112))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|))) (-15 -4216 ((-649 (-649 |#4|)) (-649 |#4|) (-112)))) -((-2048 (((-776) |#4|) 12)) (-2991 (((-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)))) 39)) (-2235 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2855 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3745 ((|#4| |#4| (-649 |#4|)) 54)) (-2923 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|)) 96)) (-2371 (((-1280) |#4|) 59)) (-3759 (((-1280) (-649 |#4|)) 69)) (-2457 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569)) 66)) (-2144 (((-1280) (-569)) 112)) (-1834 (((-649 |#4|) (-649 |#4|)) 104)) (-3363 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)) |#4| (-776)) 31)) (-3787 (((-569) |#4|) 109)) (-2570 ((|#4| |#4|) 37)) (-3234 (((-649 |#4|) (-649 |#4|) (-569) (-569)) 74)) (-4056 (((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569)) 125)) (-1838 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1844 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2861 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-3252 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-3617 (((-112) |#2| |#2|) 75)) (-1792 (((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-2043 (((-112) |#2| |#2| |#2| |#2|) 80)) (-2538 ((|#4| |#4| (-649 |#4|)) 97))) -(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2538 (|#4| |#4| (-649 |#4|))) (-15 -3745 (|#4| |#4| (-649 |#4|))) (-15 -3234 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -1844 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3617 ((-112) |#2| |#2|)) (-15 -2043 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1792 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3252 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2861 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2923 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -2570 (|#4| |#4|)) (-15 -2991 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))))) (-15 -2855 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2235 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1834 ((-649 |#4|) (-649 |#4|))) (-15 -3787 ((-569) |#4|)) (-15 -2371 ((-1280) |#4|)) (-15 -2457 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -4056 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -3759 ((-1280) (-649 |#4|))) (-15 -2144 ((-1280) (-569))) (-15 -1838 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)) |#4| (-776))) (-15 -2048 ((-776) |#4|))) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -454)) -((-2048 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-3363 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -1814 *4))) (-5 *5 (-776)) (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-454 *6 *7 *8 *4)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *7)))) (-4056 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-2457 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *4)))) (-2371 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569)) (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2235 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) (-4 *4 (-457)) (-4 *6 (-855)))) (-2991 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 *3)))) (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-454 *5 *6 *7 *3)))) (-2861 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *4 *3 *5 *6)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6)))) (-1792 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *3)))) (-2043 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7)))) (-3234 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *7)))) (-3745 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2)))) (-2538 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2))))) -(-10 -7 (-15 -2538 (|#4| |#4| (-649 |#4|))) (-15 -3745 (|#4| |#4| (-649 |#4|))) (-15 -3234 ((-649 |#4|) (-649 |#4|) (-569) (-569))) (-15 -1844 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3617 ((-112) |#2| |#2|)) (-15 -2043 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1792 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3252 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2861 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2923 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-649 |#4|))) (-15 -2570 (|#4| |#4|)) (-15 -2991 ((-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))) |#4| (-776) (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|))))) (-15 -2855 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2235 ((-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-649 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1834 ((-649 |#4|) (-649 |#4|))) (-15 -3787 ((-569) |#4|)) (-15 -2371 ((-1280) |#4|)) (-15 -2457 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569))) (-15 -4056 ((-569) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-569) (-569) (-569) (-569))) (-15 -3759 ((-1280) (-649 |#4|))) (-15 -2144 ((-1280) (-569))) (-15 -1838 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-776)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-776)) (|:| -1814 |#4|)) |#4| (-776))) (-15 -2048 ((-776) |#4|))) -((-1540 ((|#4| |#4| (-649 |#4|)) 20 (|has| |#1| (-367)))) (-2454 (((-649 |#4|) (-649 |#4|) (-1167) (-1167)) 46) (((-649 |#4|) (-649 |#4|) (-1167)) 45) (((-649 |#4|) (-649 |#4|)) 34))) -(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2454 ((-649 |#4|) (-649 |#4|))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167) (-1167))) (IF (|has| |#1| (-367)) (-15 -1540 (|#4| |#4| (-649 |#4|))) |%noBranch|)) (-457) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -455)) -((-1540 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *2)))) (-2454 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2454 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2454 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6))))) -(-10 -7 (-15 -2454 ((-649 |#4|) (-649 |#4|))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167))) (-15 -2454 ((-649 |#4|) (-649 |#4|) (-1167) (-1167))) (IF (|has| |#1| (-367)) (-15 -1540 (|#4| |#4| (-649 |#4|))) |%noBranch|)) -((-1839 (($ $ $) 14) (($ (-649 $)) 21)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 46)) (-1870 (($ $ $) NIL) (($ (-649 $)) 22))) -(((-456 |#1|) (-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -1839 (|#1| (-649 |#1|))) (-15 -1839 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|))) (-457)) (T -456)) -NIL -(-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -1839 (|#1| (-649 |#1|))) (-15 -1839 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -1870 (|#1| |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-457) (-140)) (T -457)) -((-1870 (*1 *1 *1 *1) (-4 *1 (-457))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-1839 (*1 *1 *1 *1) (-4 *1 (-457))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) (-2219 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-457))))) -(-13 (-561) (-10 -8 (-15 -1870 ($ $ $)) (-15 -1870 ($ (-649 $))) (-15 -1839 ($ $ $)) (-15 -1839 ($ (-649 $))) (-15 -2219 ((-1181 $) (-1181 $) (-1181 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 (-412 (-958 |#1|)))) (-1275 $)) NIL) (((-1275 (-694 (-412 (-958 |#1|))))) NIL)) (-3076 (((-1275 $)) NIL)) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL)) (-3207 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3400 (((-694 (-412 (-958 |#1|))) (-1275 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-1564 (((-412 (-958 |#1|)) $) NIL)) (-2183 (((-694 (-412 (-958 |#1|))) $ (-1275 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-4379 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3319 (((-1181 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1181 (-412 (-958 |#1|)))) 92 (|has| |#1| (-561)))) (-2395 (($ $ (-927)) NIL)) (-3156 (((-412 (-958 |#1|)) $) NIL)) (-4375 (((-1181 (-412 (-958 |#1|))) $) 90 (|has| (-412 (-958 |#1|)) (-561)))) (-3850 (((-412 (-958 |#1|)) (-1275 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-4136 (((-1181 (-412 (-958 |#1|))) $) NIL)) (-2413 (((-112)) NIL)) (-2247 (($ (-1275 (-412 (-958 |#1|))) (-1275 $)) 116) (($ (-1275 (-412 (-958 |#1|)))) NIL)) (-3086 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-3978 (((-927)) NIL)) (-4095 (((-112)) NIL)) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL)) (-2411 (((-112)) NIL)) (-2399 (((-112)) NIL)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL)) (-2904 (((-3 $ "failed")) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-2999 (((-694 (-412 (-958 |#1|))) (-1275 $)) NIL) (((-694 (-412 (-958 |#1|)))) NIL)) (-3339 (((-412 (-958 |#1|)) $) NIL)) (-1866 (((-694 (-412 (-958 |#1|))) $ (-1275 $)) NIL) (((-694 (-412 (-958 |#1|))) $) NIL)) (-4059 (((-3 $ "failed") $) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1308 (((-1181 (-958 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-367))) (((-1181 (-412 (-958 |#1|)))) 91 (|has| |#1| (-561)))) (-2667 (($ $ (-927)) NIL)) (-2907 (((-412 (-958 |#1|)) $) NIL)) (-4167 (((-1181 (-412 (-958 |#1|))) $) 87 (|has| (-412 (-958 |#1|)) (-561)))) (-3674 (((-412 (-958 |#1|)) (-1275 $)) NIL) (((-412 (-958 |#1|))) NIL)) (-2761 (((-1181 (-412 (-958 |#1|))) $) NIL)) (-4307 (((-112)) NIL)) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL)) (-3703 (((-112)) NIL)) (-4324 (((-112)) NIL)) (-3547 (((-1128) $) NIL)) (-2132 (((-412 (-958 |#1|)) $ $) 78 (|has| |#1| (-561)))) (-2772 (((-412 (-958 |#1|)) $) 102 (|has| |#1| (-561)))) (-4225 (((-412 (-958 |#1|)) $) 106 (|has| |#1| (-561)))) (-1591 (((-1181 (-412 (-958 |#1|))) $) 96 (|has| |#1| (-561)))) (-3415 (((-412 (-958 |#1|))) 79 (|has| |#1| (-561)))) (-2515 (((-412 (-958 |#1|)) $ $) 71 (|has| |#1| (-561)))) (-3087 (((-412 (-958 |#1|)) $) 101 (|has| |#1| (-561)))) (-3067 (((-412 (-958 |#1|)) $) 105 (|has| |#1| (-561)))) (-2773 (((-1181 (-412 (-958 |#1|))) $) 95 (|has| |#1| (-561)))) (-3930 (((-412 (-958 |#1|))) 75 (|has| |#1| (-561)))) (-4219 (($) 112) (($ (-1185)) 120) (($ (-1275 (-1185))) 119) (($ (-1275 $)) 107) (($ (-1185) (-1275 $)) 118) (($ (-1275 (-1185)) (-1275 $)) 117)) (-3749 (((-112)) NIL)) (-1869 (((-412 (-958 |#1|)) $ (-569)) NIL)) (-2415 (((-1275 (-412 (-958 |#1|))) $ (-1275 $)) 109) (((-694 (-412 (-958 |#1|))) (-1275 $) (-1275 $)) NIL) (((-1275 (-412 (-958 |#1|))) $) 45) (((-694 (-412 (-958 |#1|))) (-1275 $)) NIL)) (-1410 (((-1275 (-412 (-958 |#1|))) $) NIL) (($ (-1275 (-412 (-958 |#1|)))) 42)) (-1829 (((-649 (-958 (-412 (-958 |#1|)))) (-1275 $)) NIL) (((-649 (-958 (-412 (-958 |#1|))))) NIL) (((-649 (-958 |#1|)) (-1275 $)) 110 (|has| |#1| (-561))) (((-649 (-958 |#1|))) 111 (|has| |#1| (-561)))) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL)) (-3796 (((-867) $) NIL) (($ (-1275 (-412 (-958 |#1|)))) NIL)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 67)) (-2643 (((-649 (-1275 (-412 (-958 |#1|))))) NIL (|has| (-412 (-958 |#1|)) (-561)))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL)) (-3451 (($ (-694 (-412 (-958 |#1|))) $) NIL)) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL)) (-2887 (((-112)) NIL)) (-3967 (((-112)) NIL)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) 108)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 63) (($ $ (-412 (-958 |#1|))) NIL) (($ (-412 (-958 |#1|)) $) NIL) (($ (-1150 |#2| (-412 (-958 |#1|))) $) NIL))) -(((-458 |#1| |#2| |#3| |#4|) (-13 (-422 (-412 (-958 |#1|))) (-653 (-1150 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -3796 ($ (-1275 (-412 (-958 |#1|))))) (-15 -4391 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -4219 ($)) (-15 -4219 ($ (-1185))) (-15 -4219 ($ (-1275 (-1185)))) (-15 -4219 ($ (-1275 $))) (-15 -4219 ($ (-1185) (-1275 $))) (-15 -4219 ($ (-1275 (-1185)) (-1275 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -1308 ((-1181 (-412 (-958 |#1|))))) (-15 -2773 ((-1181 (-412 (-958 |#1|))) $)) (-15 -3087 ((-412 (-958 |#1|)) $)) (-15 -3067 ((-412 (-958 |#1|)) $)) (-15 -3319 ((-1181 (-412 (-958 |#1|))))) (-15 -1591 ((-1181 (-412 (-958 |#1|))) $)) (-15 -2772 ((-412 (-958 |#1|)) $)) (-15 -4225 ((-412 (-958 |#1|)) $)) (-15 -2515 ((-412 (-958 |#1|)) $ $)) (-15 -3930 ((-412 (-958 |#1|)))) (-15 -2132 ((-412 (-958 |#1|)) $ $)) (-15 -3415 ((-412 (-958 |#1|)))) (-15 -1829 ((-649 (-958 |#1|)) (-1275 $))) (-15 -1829 ((-649 (-958 |#1|))))) |%noBranch|))) (-173) (-927) (-649 (-1185)) (-1275 (-694 |#1|))) (T -458)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 *3)))) (-4 *3 (-173)) (-14 *6 (-1275 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))))) (-4391 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -2403 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2707 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-458 *3 *4 *5 *6)) (|:| -2403 (-649 (-458 *3 *4 *5 *6))))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1) (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927)) (-14 *4 (-649 (-1185))) (-14 *5 (-1275 (-694 *2))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-1275 (-1185))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1 *2) (-12 (-5 *2 (-1275 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4219 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 *2)) (-14 *7 (-1275 (-694 *4))))) (-4219 (*1 *1 *2 *3) (-12 (-5 *2 (-1275 (-1185))) (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4))))) (-1308 (*1 *2) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3319 (*1 *2) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2515 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3930 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-2132 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-3415 (*1 *2) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4))) (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) (-14 *5 (-927)) (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4))))) (-1829 (*1 *2) (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(-13 (-422 (-412 (-958 |#1|))) (-653 (-1150 |#2| (-412 (-958 |#1|)))) (-10 -8 (-15 -3796 ($ (-1275 (-412 (-958 |#1|))))) (-15 -4391 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -2707 ((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed"))) (-15 -4219 ($)) (-15 -4219 ($ (-1185))) (-15 -4219 ($ (-1275 (-1185)))) (-15 -4219 ($ (-1275 $))) (-15 -4219 ($ (-1185) (-1275 $))) (-15 -4219 ($ (-1275 (-1185)) (-1275 $))) (IF (|has| |#1| (-561)) (PROGN (-15 -1308 ((-1181 (-412 (-958 |#1|))))) (-15 -2773 ((-1181 (-412 (-958 |#1|))) $)) (-15 -3087 ((-412 (-958 |#1|)) $)) (-15 -3067 ((-412 (-958 |#1|)) $)) (-15 -3319 ((-1181 (-412 (-958 |#1|))))) (-15 -1591 ((-1181 (-412 (-958 |#1|))) $)) (-15 -2772 ((-412 (-958 |#1|)) $)) (-15 -4225 ((-412 (-958 |#1|)) $)) (-15 -2515 ((-412 (-958 |#1|)) $ $)) (-15 -3930 ((-412 (-958 |#1|)))) (-15 -2132 ((-412 (-958 |#1|)) $ $)) (-15 -3415 ((-412 (-958 |#1|)))) (-15 -1829 ((-649 (-958 |#1|)) (-1275 $))) (-15 -1829 ((-649 (-958 |#1|))))) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 18)) (-1712 (((-649 (-869 |#1|)) $) 90)) (-3767 (((-1181 $) $ (-869 |#1|)) 55) (((-1181 |#2|) $) 140)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) 27) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 53) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) 51) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4130 (($ $ (-649 (-569))) 96)) (-1883 (($ $) 83)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| |#3| $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 68)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) 145) (($ (-1181 $) (-869 |#1|)) 61)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) 71)) (-3923 (($ |#2| |#3|) 38) (($ $ (-869 |#1|) (-776)) 40) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 ((|#3| $) NIL) (((-776) $ (-869 |#1|)) 59) (((-649 (-776)) $ (-649 (-869 |#1|))) 66)) (-2492 (($ (-1 |#3| |#3|) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) 48)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) 50)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 49)) (-1835 ((|#2| $) 138)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) 151 (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) 103) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) 109) (($ $ (-869 |#1|) $) 101) (($ $ (-649 (-869 |#1|)) (-649 $)) 127)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) 62) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 ((|#3| $) 82) (((-776) $ (-869 |#1|)) 45) (((-649 (-776)) $ (-649 (-869 |#1|))) 65)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) 147 (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) 175) (($ (-569)) NIL) (($ |#2|) 102) (($ (-869 |#1|)) 42) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ |#3|) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) 22 T CONST)) (-1815 (($) 31 T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) 79 (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 133)) (** (($ $ (-927)) NIL) (($ $ (-776)) 131)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) 78) (($ $ |#2|) NIL))) -(((-459 |#1| |#2| |#3|) (-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) (-649 (-1185)) (-1057) (-239 (-2428 |#1|) (-776))) (T -459)) -((-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1185))) (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-239 (-2428 *3) (-776)))))) -(-13 (-955 |#2| |#3| (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) -((-2450 (((-112) |#1| (-649 |#2|)) 93)) (-1904 (((-3 (-1275 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|)) 102)) (-3867 (((-3 (-649 |#2|) "failed") |#2| |#1| (-1275 (-649 |#2|))) 104)) (-1538 ((|#2| |#2| |#1|) 35)) (-2313 (((-776) |#2| (-649 |#2|)) 26))) -(((-460 |#1| |#2|) (-10 -7 (-15 -1538 (|#2| |#2| |#1|)) (-15 -2313 ((-776) |#2| (-649 |#2|))) (-15 -1904 ((-3 (-1275 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -3867 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1275 (-649 |#2|)))) (-15 -2450 ((-112) |#1| (-649 |#2|)))) (-310) (-1251 |#1|)) (T -460)) -((-2450 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-1251 *3)) (-4 *3 (-310)) (-5 *2 (-112)) (-5 *1 (-460 *3 *5)))) (-3867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1275 (-649 *3))) (-4 *4 (-310)) (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1251 *4)))) (-1904 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1251 *4)) (-5 *2 (-1275 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6)))) (-2313 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-310)) (-5 *2 (-776)) (-5 *1 (-460 *5 *3)))) (-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1251 *3))))) -(-10 -7 (-15 -1538 (|#2| |#2| |#1|)) (-15 -2313 ((-776) |#2| (-649 |#2|))) (-15 -1904 ((-3 (-1275 (-649 |#2|)) "failed") (-776) |#1| (-649 |#2|))) (-15 -3867 ((-3 (-649 |#2|) "failed") |#2| |#1| (-1275 (-649 |#2|)))) (-15 -2450 ((-112) |#1| (-649 |#2|)))) -((-3800 (((-423 |#5|) |#5|) 24))) -(((-461 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-423 |#5|) |#5|))) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185))))) (-798) (-561) (-561) (-955 |#4| |#2| |#1|)) (T -461)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561)) (-4 *3 (-955 *7 *5 *4))))) -(-10 -7 (-15 -3800 ((-423 |#5|) |#5|))) -((-4231 ((|#3|) 38)) (-2219 (((-1181 |#4|) (-1181 |#4|) (-1181 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2219 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -4231 (|#3|))) (-798) (-855) (-915) (-955 |#3| |#1| |#2|)) (T -462)) -((-4231 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2219 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -2219 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -4231 (|#3|))) -((-3800 (((-423 (-1181 |#1|)) (-1181 |#1|)) 43))) -(((-463 |#1|) (-10 -7 (-15 -3800 ((-423 (-1181 |#1|)) (-1181 |#1|)))) (-310)) (T -463)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1181 *4))) (-5 *1 (-463 *4)) (-5 *3 (-1181 *4))))) -(-10 -7 (-15 -3800 ((-423 (-1181 |#1|)) (-1181 |#1|)))) -((-1773 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-776))) 44) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-776))) 43) (((-52) |#2| (-1185) (-297 |#2|)) 36) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 29)) (-3323 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 88) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 87) (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569))) 86) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569))) 85) (((-52) |#2| (-1185) (-297 |#2|)) 80) (((-52) (-1 |#2| (-569)) (-297 |#2|)) 79)) (-1797 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 74) (((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))) 72)) (-1784 (((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569))) 51) (((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569))) 50))) -(((-464 |#1| |#2|) (-10 -7 (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-776)))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-776)))) (-15 -1784 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -1784 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -1797 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -1797 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))))) (-13 (-561) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -464)) -((-3323 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8))) (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-3323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-3323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-3323 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569))) (-4 *7 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-3323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6)))) (-1797 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569)))) (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8))) (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *8 *3)))) (-1797 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569))) (-4 *8 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *8)))) (-1784 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1784 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569))) (-4 *7 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1773 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-776))) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *7 *3)))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-776))) (-4 *7 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *7)))) (-1773 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *6 *3)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) (-4 *6 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) (-5 *1 (-464 *5 *6))))) -(-10 -7 (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -1773 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-776)))) (-15 -1773 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-776)))) (-15 -1784 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -1784 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -1797 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -1797 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|))) (-15 -3323 ((-52) (-1 |#2| (-569)) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-569)))) (-15 -3323 ((-52) (-1 |#2| (-412 (-569))) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569)))) (-15 -3323 ((-52) |#2| (-1185) (-297 |#2|) (-1242 (-412 (-569))) (-412 (-569))))) -((-1538 ((|#2| |#2| |#1|) 15)) (-3875 (((-649 |#2|) |#2| (-649 |#2|) |#1| (-927)) 82)) (-2245 (((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927)) 72))) -(((-465 |#1| |#2|) (-10 -7 (-15 -2245 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -3875 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -1538 (|#2| |#2| |#1|))) (-310) (-1251 |#1|)) (T -465)) -((-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1251 *3)))) (-3875 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1251 *4)) (-4 *4 (-310)) (-5 *1 (-465 *4 *3)))) (-2245 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1251 *5)) (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5))) (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3))))) -(-10 -7 (-15 -2245 ((-2 (|:| |plist| (-649 |#2|)) (|:| |modulo| |#1|)) |#2| (-649 |#2|) |#1| (-927))) (-15 -3875 ((-649 |#2|) |#2| (-649 |#2|) |#1| (-927))) (-15 -1538 (|#2| |#2| |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 28)) (-3636 (($ |#3|) 25)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) 32)) (-1730 (($ |#2| |#4| $) 33)) (-3923 (($ |#2| (-718 |#3| |#4| |#5|)) 24)) (-1849 (((-718 |#3| |#4| |#5|) $) 15)) (-2815 ((|#3| $) 19)) (-2453 ((|#4| $) 17)) (-1857 ((|#2| $) 29)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-3238 (($ |#2| |#3| |#4|) 26)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 36 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-466 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1857 (|#2| $)) (-15 -1849 ((-718 |#3| |#4| |#5|) $)) (-15 -2453 (|#4| $)) (-15 -2815 (|#3| $)) (-15 -1883 ($ $)) (-15 -3923 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -3636 ($ |#3|)) (-15 -3238 ($ |#2| |#3| |#4|)) (-15 -1730 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-649 (-1185)) (-173) (-855) (-239 (-2428 |#1|) (-776)) (-1 (-112) (-2 (|:| -2150 |#3|) (|:| -1993 |#4|)) (-2 (|:| -2150 |#3|) (|:| -1993 |#4|))) (-955 |#2| |#4| (-869 |#1|))) (T -466)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *6 (-239 (-2428 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) (-2 (|:| -2150 *5) (|:| -1993 *6)))) (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855)) (-4 *2 (-955 *4 *6 (-869 *3))))) (-1857 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *5 (-239 (-2428 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5)) (-2 (|:| -2150 *4) (|:| -1993 *5)))) (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *2 *5 (-869 *3))))) (-1849 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *6 (-239 (-2428 *3) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) (-2 (|:| -2150 *5) (|:| -1993 *6)))) (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) (-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3))))) (-2453 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-14 *6 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *2)) (-2 (|:| -2150 *5) (|:| -1993 *2)))) (-4 *2 (-239 (-2428 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3))))) (-2815 (*1 *2 *1) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *5 (-239 (-2428 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5)) (-2 (|:| -2150 *2) (|:| -1993 *5)))) (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-1883 (*1 *1 *1) (-12 (-14 *2 (-649 (-1185))) (-4 *3 (-173)) (-4 *5 (-239 (-2428 *2) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5)) (-2 (|:| -2150 *4) (|:| -1993 *5)))) (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855)) (-4 *7 (-955 *3 *5 (-869 *2))))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) (-4 *6 (-239 (-2428 *4) (-776))) (-14 *7 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) (-2 (|:| -2150 *5) (|:| -1993 *6)))) (-14 *4 (-649 (-1185))) (-4 *2 (-173)) (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4))))) (-3636 (*1 *1 *2) (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) (-4 *5 (-239 (-2428 *3) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5)) (-2 (|:| -2150 *2) (|:| -1993 *5)))) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855)) (-4 *7 (-955 *4 *5 (-869 *3))))) (-3238 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-649 (-1185))) (-4 *2 (-173)) (-4 *4 (-239 (-2428 *5) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *4)) (-2 (|:| -2150 *3) (|:| -1993 *4)))) (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855)) (-4 *7 (-955 *2 *4 (-869 *5))))) (-1730 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-649 (-1185))) (-4 *2 (-173)) (-4 *3 (-239 (-2428 *4) (-776))) (-14 *6 (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *3)) (-2 (|:| -2150 *5) (|:| -1993 *3)))) (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855)) (-4 *7 (-955 *2 *3 (-869 *4)))))) -(-13 (-722 |#6|) (-722 |#2|) (-10 -8 (-15 -1857 (|#2| $)) (-15 -1849 ((-718 |#3| |#4| |#5|) $)) (-15 -2453 (|#4| $)) (-15 -2815 (|#3| $)) (-15 -1883 ($ $)) (-15 -3923 ($ |#2| (-718 |#3| |#4| |#5|))) (-15 -3636 ($ |#3|)) (-15 -3238 ($ |#2| |#3| |#4|)) (-15 -1730 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-4080 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-467 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4080 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-1046 (-412 (-569))) (-367) (-10 -8 (-15 -3796 ($ |#4|)) (-15 -4399 (|#4| $)) (-15 -4412 (|#4| $))))) (T -467)) -((-4080 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3)) (-5 *1 (-467 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1046 (-412 (-569))) (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))))) -(-10 -7 (-15 -4080 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2417 (((-112) $ $) NIL)) (-1712 (((-649 |#3|) $) 41)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) NIL (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 49)) (-3150 (($ (-649 |#4|)) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447)))) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-3372 ((|#3| $) 47)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 14 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 21)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-3547 (((-1128) $) NIL)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 39)) (-3635 (($) 17)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 16)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541)))) (($ (-649 |#4|)) 51)) (-3809 (($ (-649 |#4|)) 13)) (-3381 (($ $ |#3|) NIL)) (-2963 (($ $ |#3|) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 38) (((-649 |#4|) $) 50)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 30)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-468 |#1| |#2| |#3| |#4|) (-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1410 ($ (-649 |#4|))) (-6 -4447) (-6 -4448))) (-1057) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -468)) -((-1410 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6))))) -(-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1410 ($ (-649 |#4|))) (-6 -4447) (-6 -4448))) -((-1804 (($) 11)) (-1815 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1815 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1804 (|#1|))) (-470 |#2| |#3|) (-173) (-23)) (T -469)) -NIL -(-10 -8 (-15 -1815 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1804 (|#1|))) -((-2417 (((-112) $ $) 7)) (-4381 (((-3 |#1| "failed") $) 27)) (-3150 ((|#1| $) 28)) (-2103 (($ $ $) 24)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 ((|#2| $) 20)) (-3796 (((-867) $) 12) (($ |#1|) 26)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 25 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 16) (($ $ $) 14)) (-3012 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-470 |#1| |#2|) (-140) (-173) (-23)) (T -470)) -((-1815 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-2103 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))) -(-13 (-475 |t#1| |t#2|) (-1046 |t#1|) (-10 -8 (-15 (-1815) ($) -3709) (-15 -2103 ($ $ $)))) -(((-102) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-475 |#1| |#2|) . T) ((-1046 |#1|) . T) ((-1108) . T)) -((-2567 (((-1275 (-1275 (-569))) (-1275 (-1275 (-569))) (-927)) 28)) (-2435 (((-1275 (-1275 (-569))) (-927)) 23))) -(((-471) (-10 -7 (-15 -2567 ((-1275 (-1275 (-569))) (-1275 (-1275 (-569))) (-927))) (-15 -2435 ((-1275 (-1275 (-569))) (-927))))) (T -471)) -((-2435 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 (-569)))) (-5 *1 (-471)))) (-2567 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 (-1275 (-569)))) (-5 *3 (-927)) (-5 *1 (-471))))) -(-10 -7 (-15 -2567 ((-1275 (-1275 (-569))) (-1275 (-1275 (-569))) (-927))) (-15 -2435 ((-1275 (-1275 (-569))) (-927)))) -((-4314 (((-569) (-569)) 32) (((-569)) 24)) (-2221 (((-569) (-569)) 28) (((-569)) 20)) (-2514 (((-569) (-569)) 30) (((-569)) 22)) (-2117 (((-112) (-112)) 14) (((-112)) 12)) (-4345 (((-112) (-112)) 13) (((-112)) 11)) (-3788 (((-112) (-112)) 26) (((-112)) 17))) -(((-472) (-10 -7 (-15 -4345 ((-112))) (-15 -2117 ((-112))) (-15 -4345 ((-112) (-112))) (-15 -2117 ((-112) (-112))) (-15 -3788 ((-112))) (-15 -2514 ((-569))) (-15 -2221 ((-569))) (-15 -4314 ((-569))) (-15 -3788 ((-112) (-112))) (-15 -2514 ((-569) (-569))) (-15 -2221 ((-569) (-569))) (-15 -4314 ((-569) (-569))))) (T -472)) -((-4314 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2221 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4314 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2221 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-2514 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) (-3788 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2117 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-2117 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) (-4345 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))) -(-10 -7 (-15 -4345 ((-112))) (-15 -2117 ((-112))) (-15 -4345 ((-112) (-112))) (-15 -2117 ((-112) (-112))) (-15 -3788 ((-112))) (-15 -2514 ((-569))) (-15 -2221 ((-569))) (-15 -4314 ((-569))) (-15 -3788 ((-112) (-112))) (-15 -2514 ((-569) (-569))) (-15 -2221 ((-569) (-569))) (-15 -4314 ((-569) (-569)))) -((-2417 (((-112) $ $) NIL)) (-3157 (((-649 (-383)) $) 34) (((-649 (-383)) $ (-649 (-383))) 146)) (-3725 (((-649 (-1102 (-383))) $) 16) (((-649 (-1102 (-383))) $ (-649 (-1102 (-383)))) 142)) (-2334 (((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879))) 58)) (-2531 (((-649 (-649 (-949 (-226)))) $) 137)) (-3283 (((-1280) $ (-949 (-226)) (-879)) 163)) (-1448 (($ $) 136) (($ (-649 (-649 (-949 (-226))))) 149) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927))) 148) (($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265))) 150)) (-3435 (((-1167) $) NIL)) (-2006 (((-569) $) 110)) (-3547 (((-1128) $) NIL)) (-3132 (($) 147)) (-2470 (((-649 (-226)) (-649 (-649 (-949 (-226))))) 89)) (-1779 (((-1280) $ (-649 (-949 (-226))) (-879) (-879) (-927)) 155) (((-1280) $ (-949 (-226))) 157) (((-1280) $ (-949 (-226)) (-879) (-879) (-927)) 156)) (-3796 (((-867) $) 169) (($ (-649 (-649 (-949 (-226))))) 164)) (-1520 (((-112) $ $) NIL)) (-3919 (((-1280) $ (-949 (-226))) 162)) (-2920 (((-112) $ $) NIL))) -(((-473) (-13 (-1108) (-10 -8 (-15 -3132 ($)) (-15 -1448 ($ $)) (-15 -1448 ($ (-649 (-649 (-949 (-226)))))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -2531 ((-649 (-649 (-949 (-226)))) $)) (-15 -2006 ((-569) $)) (-15 -3725 ((-649 (-1102 (-383))) $)) (-15 -3725 ((-649 (-1102 (-383))) $ (-649 (-1102 (-383))))) (-15 -3157 ((-649 (-383)) $)) (-15 -3157 ((-649 (-383)) $ (-649 (-383)))) (-15 -1779 ((-1280) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -1779 ((-1280) $ (-949 (-226)))) (-15 -1779 ((-1280) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -3919 ((-1280) $ (-949 (-226)))) (-15 -3283 ((-1280) $ (-949 (-226)) (-879))) (-15 -3796 ($ (-649 (-649 (-949 (-226)))))) (-15 -3796 ((-867) $)) (-15 -2334 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -2470 ((-649 (-226)) (-649 (-649 (-949 (-226))))))))) (T -473)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473)))) (-3132 (*1 *1) (-5 *1 (-473))) (-1448 (*1 *1 *1) (-5 *1 (-473))) (-1448 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-1448 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *1 (-473)))) (-1448 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473)))) (-3725 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-3157 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) (-1779 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1280)) (-5 *1 (-473)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473)))) (-1779 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *2 (-1280)) (-5 *1 (-473)))) (-3919 (*1 *2 *1 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473)))) (-3283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-473)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) (-2334 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) (-5 *1 (-473)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226))) (-5 *1 (-473))))) -(-13 (-1108) (-10 -8 (-15 -3132 ($)) (-15 -1448 ($ $)) (-15 -1448 ($ (-649 (-649 (-949 (-226)))))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)))) (-15 -1448 ($ (-649 (-649 (-949 (-226)))) (-649 (-879)) (-649 (-879)) (-649 (-927)) (-649 (-265)))) (-15 -2531 ((-649 (-649 (-949 (-226)))) $)) (-15 -2006 ((-569) $)) (-15 -3725 ((-649 (-1102 (-383))) $)) (-15 -3725 ((-649 (-1102 (-383))) $ (-649 (-1102 (-383))))) (-15 -3157 ((-649 (-383)) $)) (-15 -3157 ((-649 (-383)) $ (-649 (-383)))) (-15 -1779 ((-1280) $ (-649 (-949 (-226))) (-879) (-879) (-927))) (-15 -1779 ((-1280) $ (-949 (-226)))) (-15 -1779 ((-1280) $ (-949 (-226)) (-879) (-879) (-927))) (-15 -3919 ((-1280) $ (-949 (-226)))) (-15 -3283 ((-1280) $ (-949 (-226)) (-879))) (-15 -3796 ($ (-649 (-649 (-949 (-226)))))) (-15 -3796 ((-867) $)) (-15 -2334 ((-649 (-649 (-949 (-226)))) (-649 (-649 (-949 (-226)))) (-649 (-879)))) (-15 -2470 ((-649 (-226)) (-649 (-649 (-949 (-226)))))))) -((-3024 (($ $) NIL) (($ $ $) 11))) -(((-474 |#1| |#2| |#3|) (-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|))) (-475 |#2| |#3|) (-173) (-23)) (T -474)) -NIL -(-10 -8 (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 ((|#2| $) 20)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 16) (($ $ $) 14)) (-3012 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) -(((-475 |#1| |#2|) (-140) (-173) (-23)) (T -475)) -((-4339 (*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) (-1804 (*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23))))) -(-13 (-1108) (-10 -8 (-15 -4339 (|t#2| $)) (-15 (-1804) ($) -3709) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3024 ($ $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-3005 (((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|))) 134)) (-4347 (((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 131)) (-1665 (((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))) 86))) -(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -4347 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3005 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -1665 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))))) (-649 (-1185)) (-457) (-457)) (T -476)) -((-1665 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-2 (|:| |dpolys| (-649 (-248 *5 *6))) (|:| |coords| (-649 (-569))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457)))) (-3005 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6)) (-4 *6 (-457)))) (-4347 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457))))) -(-10 -7 (-15 -4347 ((-649 (-649 (-248 |#1| |#2|))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -3005 ((-3 (-649 (-486 |#1| |#2|)) "failed") (-649 (-486 |#1| |#2|)) (-649 (-869 |#1|)))) (-15 -1665 ((-2 (|:| |dpolys| (-649 (-248 |#1| |#2|))) (|:| |coords| (-649 (-569)))) (-649 (-248 |#1| |#2|)) (-649 (-869 |#1|))))) -((-3086 (((-3 $ "failed") $) 11)) (-3476 (($ $ $) 23)) (-2180 (($ $ $) 24)) (-3035 (($ $ $) 9)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 22))) -(((-477 |#1|) (-10 -8 (-15 -2180 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-478)) (T -477)) -NIL -(-10 -8 (-15 -2180 (|#1| |#1| |#1|)) (-15 -3476 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-4427 (($) 19 T CONST)) (-3086 (((-3 $ "failed") $) 16)) (-2349 (((-112) $) 18)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 25)) (-3547 (((-1128) $) 11)) (-3476 (($ $ $) 22)) (-2180 (($ $ $) 21)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15))) -(((-478) (-140)) (T -478)) -((-1817 (*1 *1 *1) (-4 *1 (-478))) (-3035 (*1 *1 *1 *1) (-4 *1 (-478))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569)))) (-3476 (*1 *1 *1 *1) (-4 *1 (-478))) (-2180 (*1 *1 *1 *1) (-4 *1 (-478)))) -(-13 (-731) (-10 -8 (-15 -1817 ($ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ (-569))) (-6 -4444) (-15 -3476 ($ $ $)) (-15 -2180 ($ $ $)))) -(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 18)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) NIL) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 25)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 29 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 35 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 30 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) 28 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1271 |#2|)) 16)) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1271 |#2|)) NIL) (($ (-1260 |#1| |#2| |#3|)) 9) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 21)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 27)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-479 |#1| |#2| |#3|) (-13 (-1256 |#1|) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3796 ($ (-1260 |#1| |#2| |#3|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -479)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1256 |#1|) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3796 ($ (-1260 |#1| |#2| |#3|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) 18)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 19)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 16)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-480 |#1| |#2| |#3| |#4|) (-1201 |#1| |#2|) (-1108) (-1108) (-1201 |#1| |#2|) |#2|) (T -480)) -NIL -(-1201 |#1| |#2|) -((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) NIL)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) 29 (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 45)) (-2548 ((|#4| |#4| $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 19 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 23)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1724 (((-3 |#4| "failed") $) 42)) (-1586 (((-649 |#4|) $) NIL)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 40)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) 58)) (-3166 (($ $ |#4|) NIL)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 14)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 22)) (-3381 (($ $ |#3|) 52)) (-2963 (($ $ |#3|) 54)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4269 (((-112) |#3| $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-481 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|) (-561) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -481)) -NIL -(-1218 |#1| |#2| |#3| |#4|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-1312 (($) 17)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-1410 (((-383) $) 21) (((-226) $) 24) (((-412 (-1181 (-569))) $) 18) (((-541) $) 53)) (-3796 (((-867) $) 51) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (((-226) $) 23) (((-383) $) 20)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 37 T CONST)) (-1815 (($) 8 T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-482) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))) (-1030) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1181 (-569)))) (-619 (-541)) (-10 -8 (-15 -1312 ($))))) (T -482)) -((-1312 (*1 *1) (-5 *1 (-482)))) -(-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))) (-1030) (-618 (-226)) (-618 (-383)) (-619 (-412 (-1181 (-569)))) (-619 (-541)) (-10 -8 (-15 -1312 ($)))) -((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-483) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -483)) -((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483))))) -(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $)))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) 16)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 20)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 18)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) 13)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 19)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 11 (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) 15 (|has| $ (-6 -4447))))) -(((-484 |#1| |#2| |#3|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108) (-1167)) (T -484)) -NIL -(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) -((-3412 (((-569) (-569) (-569)) 19)) (-3158 (((-112) (-569) (-569) (-569) (-569)) 28)) (-1340 (((-1275 (-649 (-569))) (-776) (-776)) 44))) -(((-485) (-10 -7 (-15 -3412 ((-569) (-569) (-569))) (-15 -3158 ((-112) (-569) (-569) (-569) (-569))) (-15 -1340 ((-1275 (-649 (-569))) (-776) (-776))))) (T -485)) -((-1340 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1275 (-649 (-569)))) (-5 *1 (-485)))) (-3158 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485)))) (-3412 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485))))) -(-10 -7 (-15 -3412 ((-569) (-569) (-569))) (-15 -3158 ((-112) (-569) (-569) (-569) (-569))) (-15 -1340 ((-1275 (-649 (-569))) (-776) (-776)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-869 |#1|)) $) NIL)) (-3767 (((-1181 $) $ (-869 |#1|)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-4130 (($ $ (-649 (-569))) NIL)) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-487 (-2428 |#1|) (-776)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) NIL) (($ (-1181 $) (-869 |#1|)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-487 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 (((-487 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-2492 (($ (-1 (-487 (-2428 |#1|) (-776)) (-487 (-2428 |#1|) (-776))) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 (((-487 (-2428 |#1|) (-776)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-487 (-2428 |#1|) (-776))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-486 |#1| |#2|) (-13 (-955 |#2| (-487 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) (-649 (-1185)) (-1057)) (T -486)) -((-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4)) (-14 *3 (-649 (-1185))) (-4 *4 (-1057))))) -(-13 (-955 |#2| (-487 (-2428 |#1|) (-776)) (-869 |#1|)) (-10 -8 (-15 -4130 ($ $ (-649 (-569)))))) -((-2417 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-4143 (((-112) $) NIL (|has| |#2| (-131)))) (-3636 (($ (-927)) NIL (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#2| (-372)))) (-2919 (((-569) $) NIL (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) NIL (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3406 (($) NIL (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) 15)) (-3712 (((-112) $) NIL (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#2| (-731)))) (-2051 (((-112) $) NIL (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3547 (((-1128) $) NIL (|has| |#2| (-1108)))) (-3513 ((|#2| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3040 ((|#2| $ $) NIL (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) NIL)) (-2377 (((-134)) NIL (|has| |#2| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#2|) $) NIL) (($ (-569)) NIL (-2776 (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) NIL (|has| |#2| (-1108))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#2| (-853)))) (-1804 (($) NIL (|has| |#2| (-131)) CONST)) (-1815 (($) NIL (|has| |#2| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2920 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2944 (((-112) $ $) 21 (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $ $) NIL (|has| |#2| (-1057))) (($ $) NIL (|has| |#2| (-1057)))) (-3012 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1057))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-487 |#1| |#2|) (-239 |#1| |#2|) (-776) (-798)) (T -487)) -NIL -(-239 |#1| |#2|) -((-2417 (((-112) $ $) NIL)) (-3826 (((-649 (-881)) $) 15)) (-3573 (((-511) $) 13)) (-3435 (((-1167) $) NIL)) (-2837 (($ (-511) (-649 (-881))) 11)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 22) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-488) (-13 (-1091) (-10 -8 (-15 -2837 ($ (-511) (-649 (-881)))) (-15 -3573 ((-511) $)) (-15 -3826 ((-649 (-881)) $))))) (T -488)) -((-2837 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488))))) -(-13 (-1091) (-10 -8 (-15 -2837 ($ (-511) (-649 (-881)))) (-15 -3573 ((-511) $)) (-15 -3826 ((-649 (-881)) $)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2292 (($ $ $) 50)) (-4198 (($ $ $) 49)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2839 ((|#1| $) 40)) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 41)) (-3894 (($ |#1| $) 18)) (-1723 (($ (-649 |#1|)) 19)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1781 ((|#1| $) 34)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 11)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 47)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) 29 (|has| $ (-6 -4447))))) -(((-489 |#1|) (-13 (-976 |#1|) (-10 -8 (-15 -1723 ($ (-649 |#1|))))) (-855)) (T -489)) -((-1723 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3))))) -(-13 (-976 |#1|) (-10 -8 (-15 -1723 ($ (-649 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ $) 71)) (-1310 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3198 (((-418 |#2| (-412 |#2|) |#3| |#4|) $) 45)) (-3547 (((-1128) $) NIL)) (-2332 (((-3 |#4| "failed") $) 117)) (-4102 (($ (-418 |#2| (-412 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-569)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2316 (((-2 (|:| -4267 (-418 |#2| (-412 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3796 (((-867) $) 110)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 32 T CONST)) (-2920 (((-112) $ $) 121)) (-3024 (($ $) 77) (($ $ $) NIL)) (-3012 (($ $ $) 72)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 78))) -(((-490 |#1| |#2| |#3| |#4|) (-339 |#1| |#2| |#3| |#4|) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -490)) -NIL -(-339 |#1| |#2| |#3| |#4|) -((-1477 (((-569) (-649 (-569))) 55)) (-3578 ((|#1| (-649 |#1|)) 96)) (-2704 (((-649 |#1|) (-649 |#1|)) 97)) (-2301 (((-649 |#1|) (-649 |#1|)) 99)) (-1870 ((|#1| (-649 |#1|)) 98)) (-3833 (((-649 (-569)) (-649 |#1|)) 58))) -(((-491 |#1|) (-10 -7 (-15 -1870 (|#1| (-649 |#1|))) (-15 -3578 (|#1| (-649 |#1|))) (-15 -2301 ((-649 |#1|) (-649 |#1|))) (-15 -2704 ((-649 |#1|) (-649 |#1|))) (-15 -3833 ((-649 (-569)) (-649 |#1|))) (-15 -1477 ((-569) (-649 (-569))))) (-1251 (-569))) (T -491)) -((-1477 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4)) (-4 *4 (-1251 *2)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1251 (-569))) (-5 *2 (-649 (-569))) (-5 *1 (-491 *4)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3)))) (-2301 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569))))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569)))))) -(-10 -7 (-15 -1870 (|#1| (-649 |#1|))) (-15 -3578 (|#1| (-649 |#1|))) (-15 -2301 ((-649 |#1|) (-649 |#1|))) (-15 -2704 ((-649 |#1|) (-649 |#1|))) (-15 -3833 ((-649 (-569)) (-649 |#1|))) (-15 -1477 ((-569) (-649 (-569))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-569) $) NIL (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3368 (($ (-412 (-569))) 9)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) NIL)) (-3465 (((-569) $) NIL (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 8) (($ (-569)) NIL) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL) (((-1012 16) $) 10)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-569) $) NIL (|has| (-569) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-569) (-855)))) (-3035 (($ $ $) NIL) (($ (-569) (-569)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) NIL) (($ $ (-569)) NIL))) -(((-492) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 16)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3368 ($ (-412 (-569))))))) (T -492)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492))))) -(-13 (-1000 (-569)) (-618 (-412 (-569))) (-618 (-1012 16)) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -3368 ($ (-412 (-569)))))) -((-2009 (((-649 |#2|) $) 29)) (-2004 (((-112) |#2| $) 34)) (-3208 (((-112) (-1 (-112) |#2|) $) 24)) (-1725 (($ $ (-649 (-297 |#2|))) 13) (($ $ (-297 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-649 |#2|) (-649 |#2|)) NIL)) (-3560 (((-776) (-1 (-112) |#2|) $) 28) (((-776) |#2| $) 32)) (-3796 (((-867) $) 43)) (-1980 (((-112) (-1 (-112) |#2|) $) 23)) (-2920 (((-112) $ $) 37)) (-2428 (((-776) $) 18))) -(((-493 |#1| |#2|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2009 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|))) (-494 |#2|) (-1225)) (T -493)) -NIL -(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-297 |#2|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#2|)))) (-15 -2004 ((-112) |#2| |#1|)) (-15 -3560 ((-776) |#2| |#1|)) (-15 -2009 ((-649 |#2|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#2|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-494 |#1|) (-140) (-1225)) (T -494)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1225)))) (-3834 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4448)) (-4 *1 (-494 *3)) (-4 *3 (-1225)))) (-1980 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-3208 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-3560 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) (-4 *4 (-1225)) (-5 *2 (-776)))) (-2882 (*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))) (-2009 (*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))) (-3560 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-776)))) (-2004 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |t#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |t#1| (-1108)) (IF (|has| |t#1| (-312 |t#1|)) (-6 (-312 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4448)) (-15 -3834 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4447)) (PROGN (-15 -1980 ((-112) (-1 (-112) |t#1|) $)) (-15 -3208 ((-112) (-1 (-112) |t#1|) $)) (-15 -3560 ((-776) (-1 (-112) |t#1|) $)) (-15 -2882 ((-649 |t#1|) $)) (-15 -2009 ((-649 |t#1|) $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -3560 ((-776) |t#1| $)) (-15 -2004 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3796 ((|#1| $) 6) (($ |#1|) 9))) -(((-495 |#1|) (-140) (-1225)) (T -495)) -NIL -(-13 (-618 |t#1|) (-621 |t#1|)) -(((-621 |#1|) . T) ((-618 |#1|) . T)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1919 (($ (-1167)) 8)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (((-1167) $) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11))) -(((-496) (-13 (-1108) (-618 (-1167)) (-10 -8 (-15 -1919 ($ (-1167)))))) (T -496)) -((-1919 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-496))))) -(-13 (-1108) (-618 (-1167)) (-10 -8 (-15 -1919 ($ (-1167))))) -((-2771 (($ $) 15)) (-2746 (($ $) 24)) (-4118 (($ $) 12)) (-4128 (($ $) 10)) (-2783 (($ $) 17)) (-2758 (($ $) 22))) -(((-497 |#1|) (-10 -8 (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|))) (-498)) (T -497)) -NIL -(-10 -8 (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|))) -((-2771 (($ $) 11)) (-2746 (($ $) 10)) (-4118 (($ $) 9)) (-4128 (($ $) 8)) (-2783 (($ $) 7)) (-2758 (($ $) 6))) -(((-498) (-140)) (T -498)) -((-2771 (*1 *1 *1) (-4 *1 (-498))) (-2746 (*1 *1 *1) (-4 *1 (-498))) (-4118 (*1 *1 *1) (-4 *1 (-498))) (-4128 (*1 *1 *1) (-4 *1 (-498))) (-2783 (*1 *1 *1) (-4 *1 (-498))) (-2758 (*1 *1 *1) (-4 *1 (-498)))) -(-13 (-10 -8 (-15 -2758 ($ $)) (-15 -2783 ($ $)) (-15 -4128 ($ $)) (-15 -4118 ($ $)) (-15 -2746 ($ $)) (-15 -2771 ($ $)))) -((-3800 (((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)) 54))) -(((-499 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)))) (-367) (-1251 |#1|) (-13 (-367) (-147) (-729 |#1| |#2|)) (-1251 |#3|)) (T -499)) -((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3)) (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1251 *7))))) -(-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 |#2|) |#2|)))) -((-2417 (((-112) $ $) NIL)) (-3194 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2565 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4143 (((-112) $) 39)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1763 (((-112) $ $) 73)) (-3663 (((-649 (-617 $)) $) 50)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4296 (($ $ (-297 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1333 (((-649 $) (-1181 $) (-1185)) NIL) (((-649 $) (-1181 $)) NIL) (((-649 $) (-958 $)) NIL)) (-2793 (($ (-1181 $) (-1185)) NIL) (($ (-1181 $)) NIL) (($ (-958 $)) NIL)) (-4381 (((-3 (-617 $) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL)) (-3150 (((-617 $) $) NIL) (((-569) $) NIL) (((-412 (-569)) $) 55)) (-2368 (($ $ $) NIL)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-412 (-569)))) (|:| |vec| (-1275 (-412 (-569))))) (-694 $) (-1275 $)) NIL) (((-694 (-412 (-569))) (-694 $)) NIL)) (-3598 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2687 (($ $) NIL) (($ (-649 $)) NIL)) (-3810 (((-649 (-114)) $) NIL)) (-3746 (((-114) (-114)) NIL)) (-2349 (((-112) $) 42)) (-2719 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-4399 (((-1133 (-569) (-617 $)) $) 37)) (-3742 (($ $ (-569)) NIL)) (-3829 (((-1181 $) (-1181 $) (-617 $)) 87) (((-1181 $) (-1181 $) (-649 (-617 $))) 62) (($ $ (-617 $)) 76) (($ $ (-649 (-617 $))) 77)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2341 (((-1181 $) (-617 $)) 74 (|has| $ (-1057)))) (-1346 (($ (-1 $ $) (-617 $)) NIL)) (-2391 (((-3 (-617 $) "failed") $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3736 (((-649 (-617 $)) $) NIL)) (-1354 (($ (-114) $) NIL) (($ (-114) (-649 $)) NIL)) (-1825 (((-112) $ (-114)) NIL) (((-112) $ (-1185)) NIL)) (-1817 (($ $) NIL)) (-1427 (((-776) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1852 (((-112) $ $) NIL) (((-112) $ (-1185)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL (|has| $ (-1046 (-569))))) (-1725 (($ $ (-617 $) $) NIL) (($ $ (-649 (-617 $)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-1185)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-1185) (-1 $ (-649 $))) NIL) (($ $ (-1185) (-1 $ $)) NIL) (($ $ (-649 (-114)) (-649 (-1 $ $))) NIL) (($ $ (-649 (-114)) (-649 (-1 $ (-649 $)))) NIL) (($ $ (-114) (-1 $ (-649 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2431 (((-776) $) NIL)) (-1869 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-649 $)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2190 (($ $) NIL) (($ $ $) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) 36)) (-4412 (((-1133 (-569) (-617 $)) $) 20)) (-4061 (($ $) NIL (|has| $ (-1057)))) (-1410 (((-383) $) 101) (((-226) $) 109) (((-170 (-383)) $) 117)) (-3796 (((-867) $) NIL) (($ (-617 $)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-1133 (-569) (-617 $))) 21)) (-2721 (((-776)) NIL T CONST)) (-4213 (($ $) NIL) (($ (-649 $)) NIL)) (-4052 (((-112) (-114)) 93)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 10 T CONST)) (-1815 (($) 22 T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) 24)) (-3035 (($ $ $) 44)) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-412 (-569))) NIL) (($ $ (-569)) 48) (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ $ $) 27) (($ (-569) $) NIL) (($ (-776) $) NIL) (($ (-927) $) NIL))) -(((-500) (-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -1763 ((-112) $ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $))))))) (T -500)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4399 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-4412 (*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) (-3598 (*1 *1 *1) (-5 *1 (-500))) (-1763 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-649 (-617 (-500)))) (-5 *1 (-500)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500))))) -(-13 (-305) (-27) (-1046 (-569)) (-1046 (-412 (-569))) (-644 (-569)) (-1030) (-644 (-412 (-569))) (-147) (-619 (-170 (-383))) (-234) (-10 -8 (-15 -3796 ($ (-1133 (-569) (-617 $)))) (-15 -4399 ((-1133 (-569) (-617 $)) $)) (-15 -4412 ((-1133 (-569) (-617 $)) $)) (-15 -3598 ($ $)) (-15 -1763 ((-112) $ $)) (-15 -3829 ((-1181 $) (-1181 $) (-617 $))) (-15 -3829 ((-1181 $) (-1181 $) (-649 (-617 $)))) (-15 -3829 ($ $ (-617 $))) (-15 -3829 ($ $ (-649 (-617 $)))))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) 47 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 41)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 21)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 17 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) 44 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) 15 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 19)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 46) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 24)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 11 (|has| $ (-6 -4447))))) -(((-501 |#1| |#2|) (-19 |#1|) (-1225) (-569)) (T -501)) +((-2665 (($ $) 6)) (-4390 (($ $) 7)) (** (($ $ $) 8))) +(((-288) (-141)) (T -288)) +((** (*1 *1 *1 *1) (-4 *1 (-288))) (-4390 (*1 *1 *1) (-4 *1 (-288))) (-2665 (*1 *1 *1) (-4 *1 (-288)))) +(-13 (-10 -8 (-15 -2665 ($ $)) (-15 -4390 ($ $)) (-15 ** ($ $ $)))) +((-2727 (((-650 (-1166 |#1|)) (-1166 |#1|) |#1|) 35)) (-2252 ((|#2| |#2| |#1|) 39)) (-2179 ((|#2| |#2| |#1|) 41)) (-3027 ((|#2| |#2| |#1|) 40))) +(((-289 |#1| |#2|) (-10 -7 (-15 -2252 (|#2| |#2| |#1|)) (-15 -3027 (|#2| |#2| |#1|)) (-15 -2179 (|#2| |#2| |#1|)) (-15 -2727 ((-650 (-1166 |#1|)) (-1166 |#1|) |#1|))) (-368) (-1267 |#1|)) (T -289)) +((-2727 (*1 *2 *3 *4) (-12 (-4 *4 (-368)) (-5 *2 (-650 (-1166 *4))) (-5 *1 (-289 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-1267 *4)))) (-2179 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1267 *3)))) (-3027 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1267 *3)))) (-2252 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1267 *3))))) +(-10 -7 (-15 -2252 (|#2| |#2| |#1|)) (-15 -3027 (|#2| |#2| |#1|)) (-15 -2179 (|#2| |#2| |#1|)) (-15 -2727 ((-650 (-1166 |#1|)) (-1166 |#1|) |#1|))) +((-1872 ((|#2| $ |#1|) 6))) +(((-290 |#1| |#2|) (-141) (-1109) (-1226)) (T -290)) +((-1872 (*1 *2 *1 *3) (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226))))) +(-13 (-10 -8 (-15 -1872 (|t#2| $ |t#1|)))) +((-3849 ((|#3| $ |#2| |#3|) 12)) (-3778 ((|#3| $ |#2|) 10))) +(((-291 |#1| |#2| |#3|) (-10 -8 (-15 -3849 (|#3| |#1| |#2| |#3|)) (-15 -3778 (|#3| |#1| |#2|))) (-292 |#2| |#3|) (-1109) (-1226)) (T -291)) +NIL +(-10 -8 (-15 -3849 (|#3| |#1| |#2| |#3|)) (-15 -3778 (|#3| |#1| |#2|))) +((-3945 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4449)))) (-3849 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) 11)) (-1872 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-292 |#1| |#2|) (-141) (-1109) (-1226)) (T -292)) +((-1872 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) (-3945 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) (-3849 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226))))) +(-13 (-290 |t#1| |t#2|) (-10 -8 (-15 -1872 (|t#2| $ |t#1| |t#2|)) (-15 -3778 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4449)) (PROGN (-15 -3945 (|t#2| $ |t#1| |t#2|)) (-15 -3849 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-290 |#1| |#2|) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 37)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 44)) (-2318 (($ $) 41)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) 35)) (-3600 (($ |#2| |#3|) 18)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2132 ((|#3| $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 19)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3137 (((-3 $ "failed") $ $) NIL)) (-3788 (((-777) $) 36)) (-1872 ((|#2| $ |#2|) 46)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 23)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 31 T CONST)) (-1817 (($) 39 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 40))) +(((-293 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-311) (-10 -8 (-15 -2132 (|#3| $)) (-15 -3798 (|#2| $)) (-15 -3600 ($ |#2| |#3|)) (-15 -3137 ((-3 $ "failed") $ $)) (-15 -2229 ((-3 $ "failed") $)) (-15 -1820 ($ $)) (-15 -1872 (|#2| $ |#2|)))) (-174) (-1252 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -293)) +((-2229 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1252 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2132 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-293 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1252 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-1252 *3)) (-5 *1 (-293 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3600 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-293 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1252 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3137 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1252 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1820 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1252 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1872 (*1 *2 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-293 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1252 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-311) (-10 -8 (-15 -2132 (|#3| $)) (-15 -3798 (|#2| $)) (-15 -3600 ($ |#2| |#3|)) (-15 -3137 ((-3 $ "failed") $ $)) (-15 -2229 ((-3 $ "failed") $)) (-15 -1820 ($ $)) (-15 -1872 (|#2| $ |#2|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-294) (-141)) (T -294)) +NIL +(-13 (-1058) (-111 $ $) (-10 -7 (-6 -4441))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2199 (((-650 (-1094)) $) 10)) (-2374 (($ (-512) (-512) (-1113) $) 19)) (-3902 (($ (-512) (-650 (-972)) $) 23)) (-2069 (($) 25)) (-2129 (((-697 (-1113)) (-512) (-512) $) 18)) (-2912 (((-650 (-972)) (-512) $) 22)) (-4359 (($) 7)) (-1388 (($) 24)) (-3798 (((-868) $) 29)) (-4270 (($) 26))) +(((-295) (-13 (-619 (-868)) (-10 -8 (-15 -4359 ($)) (-15 -2199 ((-650 (-1094)) $)) (-15 -2129 ((-697 (-1113)) (-512) (-512) $)) (-15 -2374 ($ (-512) (-512) (-1113) $)) (-15 -2912 ((-650 (-972)) (-512) $)) (-15 -3902 ($ (-512) (-650 (-972)) $)) (-15 -1388 ($)) (-15 -2069 ($)) (-15 -4270 ($))))) (T -295)) +((-4359 (*1 *1) (-5 *1 (-295))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-650 (-1094))) (-5 *1 (-295)))) (-2129 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-1113))) (-5 *1 (-295)))) (-2374 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-295)))) (-2912 (*1 *2 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-650 (-972))) (-5 *1 (-295)))) (-3902 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-295)))) (-1388 (*1 *1) (-5 *1 (-295))) (-2069 (*1 *1) (-5 *1 (-295))) (-4270 (*1 *1) (-5 *1 (-295)))) +(-13 (-619 (-868)) (-10 -8 (-15 -4359 ($)) (-15 -2199 ((-650 (-1094)) $)) (-15 -2129 ((-697 (-1113)) (-512) (-512) $)) (-15 -2374 ($ (-512) (-512) (-1113) $)) (-15 -2912 ((-650 (-972)) (-512) $)) (-15 -3902 ($ (-512) (-650 (-972)) $)) (-15 -1388 ($)) (-15 -2069 ($)) (-15 -4270 ($)))) +((-3065 (((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))) 104)) (-1849 (((-650 (-695 (-413 (-959 |#1|)))) (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|)))))) (-695 (-413 (-959 |#1|)))) 99) (((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))) (-777) (-777)) 41)) (-2429 (((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))) 101)) (-3914 (((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|)))) 77)) (-4079 (((-650 (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (-695 (-413 (-959 |#1|)))) 76)) (-4042 (((-959 |#1|) (-695 (-413 (-959 |#1|)))) 57) (((-959 |#1|) (-695 (-413 (-959 |#1|))) (-1186)) 58))) +(((-296 |#1|) (-10 -7 (-15 -4042 ((-959 |#1|) (-695 (-413 (-959 |#1|))) (-1186))) (-15 -4042 ((-959 |#1|) (-695 (-413 (-959 |#1|))))) (-15 -4079 ((-650 (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (-695 (-413 (-959 |#1|))))) (-15 -3914 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))))) (-15 -1849 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))) (-777) (-777))) (-15 -1849 ((-650 (-695 (-413 (-959 |#1|)))) (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|)))))) (-695 (-413 (-959 |#1|))))) (-15 -3065 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|))))) (-15 -2429 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))))) (-458)) (T -296)) +((-2429 (*1 *2 *3) (-12 (-4 *4 (-458)) (-5 *2 (-650 (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 *4)))))))) (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4)))))) (-3065 (*1 *2 *3) (-12 (-4 *4 (-458)) (-5 *2 (-650 (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 *4)))))))) (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4)))))) (-1849 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 *4)))) (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5))))) (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5)))))) (-1849 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-413 (-959 *6)) (-1175 (-1186) (-959 *6)))) (-5 *5 (-777)) (-4 *6 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *6))))) (-5 *1 (-296 *6)) (-5 *4 (-695 (-413 (-959 *6)))))) (-3914 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5)))) (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5))))) (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5)))))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-4 *4 (-458)) (-5 *2 (-650 (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4))))) (-5 *1 (-296 *4)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-5 *2 (-959 *4)) (-5 *1 (-296 *4)) (-4 *4 (-458)))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-959 *5)))) (-5 *4 (-1186)) (-5 *2 (-959 *5)) (-5 *1 (-296 *5)) (-4 *5 (-458))))) +(-10 -7 (-15 -4042 ((-959 |#1|) (-695 (-413 (-959 |#1|))) (-1186))) (-15 -4042 ((-959 |#1|) (-695 (-413 (-959 |#1|))))) (-15 -4079 ((-650 (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (-695 (-413 (-959 |#1|))))) (-15 -3914 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))))) (-15 -1849 ((-650 (-695 (-413 (-959 |#1|)))) (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|))) (-695 (-413 (-959 |#1|))) (-777) (-777))) (-15 -1849 ((-650 (-695 (-413 (-959 |#1|)))) (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|)))))) (-695 (-413 (-959 |#1|))))) (-15 -3065 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |geneigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|))))) (-15 -2429 ((-650 (-2 (|:| |eigval| (-3 (-413 (-959 |#1|)) (-1175 (-1186) (-959 |#1|)))) (|:| |eigmult| (-777)) (|:| |eigvec| (-650 (-695 (-413 (-959 |#1|))))))) (-695 (-413 (-959 |#1|)))))) +((-1347 (((-298 |#2|) (-1 |#2| |#1|) (-298 |#1|)) 14))) +(((-297 |#1| |#2|) (-10 -7 (-15 -1347 ((-298 |#2|) (-1 |#2| |#1|) (-298 |#1|)))) (-1226) (-1226)) (T -297)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-298 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-298 *6)) (-5 *1 (-297 *5 *6))))) +(-10 -7 (-15 -1347 ((-298 |#2|) (-1 |#2| |#1|) (-298 |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1359 (((-112) $) NIL (|has| |#1| (-21)))) (-1880 (($ $) 12)) (-2620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4297 (($ $ $) 95 (|has| |#1| (-306)))) (-3734 (($) NIL (-2779 (|has| |#1| (-21)) (|has| |#1| (-732))) CONST)) (-1398 (($ $) 51 (|has| |#1| (-21)))) (-1339 (((-3 $ "failed") $) 62 (|has| |#1| (-732)))) (-2118 ((|#1| $) 11)) (-2229 (((-3 $ "failed") $) 60 (|has| |#1| (-732)))) (-2481 (((-112) $) NIL (|has| |#1| (-732)))) (-1347 (($ (-1 |#1| |#1|) $) 14)) (-2108 ((|#1| $) 10)) (-2768 (($ $) 50 (|has| |#1| (-21)))) (-3518 (((-3 $ "failed") $) 61 (|has| |#1| (-732)))) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1820 (($ $) 64 (-2779 (|has| |#1| (-368)) (|has| |#1| (-479))))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3377 (((-650 $) $) 85 (|has| |#1| (-562)))) (-1725 (($ $ $) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 $)) 28 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-1186) |#1|) 17 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 21 (|has| |#1| (-520 (-1186) |#1|)))) (-3499 (($ |#1| |#1|) 9)) (-3374 (((-135)) 90 (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) 87 (|has| |#1| (-907 (-1186))))) (-3897 (($ $ $) NIL (|has| |#1| (-479)))) (-4307 (($ $ $) NIL (|has| |#1| (-479)))) (-3798 (($ (-570)) NIL (|has| |#1| (-1058))) (((-112) $) 37 (|has| |#1| (-1109))) (((-868) $) 36 (|has| |#1| (-1109)))) (-2862 (((-777)) 67 (|has| |#1| (-1058)) CONST)) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1809 (($) 47 (|has| |#1| (-21)) CONST)) (-1817 (($) 57 (|has| |#1| (-732)) CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186))))) (-2923 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1109)))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 92 (-2779 (|has| |#1| (-368)) (|has| |#1| (-479))))) (-3026 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3014 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-570)) NIL (|has| |#1| (-479))) (($ $ (-777)) NIL (|has| |#1| (-732))) (($ $ (-928)) NIL (|has| |#1| (-1121)))) (* (($ $ |#1|) 55 (|has| |#1| (-1121))) (($ |#1| $) 54 (|has| |#1| (-1121))) (($ $ $) 53 (|has| |#1| (-1121))) (($ (-570) $) 70 (|has| |#1| (-21))) (($ (-777) $) NIL (|has| |#1| (-21))) (($ (-928) $) NIL (|has| |#1| (-25))))) +(((-298 |#1|) (-13 (-1226) (-10 -8 (-15 -2923 ($ |#1| |#1|)) (-15 -3499 ($ |#1| |#1|)) (-15 -1880 ($ $)) (-15 -2108 (|#1| $)) (-15 -2118 (|#1| $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-520 (-1186) |#1|)) (-6 (-520 (-1186) |#1|)) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-6 (-619 (-112))) (IF (|has| |#1| (-313 |#1|)) (PROGN (-15 -1725 ($ $ $)) (-15 -1725 ($ $ (-650 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3014 ($ |#1| $)) (-15 -3014 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2768 ($ $)) (-15 -1398 ($ $)) (-15 -3026 ($ |#1| $)) (-15 -3026 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-732)) (PROGN (-6 (-732)) (-15 -3518 ((-3 $ "failed") $)) (-15 -1339 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-6 (-479)) (-15 -3518 ((-3 $ "failed") $)) (-15 -1339 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-6 (-1058)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|) (IF (|has| |#1| (-562)) (-15 -3377 ((-650 $) $)) |%noBranch|) (IF (|has| |#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-1283 |#1|)) (-15 -3037 ($ $ $)) (-15 -1820 ($ $))) |%noBranch|) (IF (|has| |#1| (-306)) (-15 -4297 ($ $ $)) |%noBranch|))) (-1226)) (T -298)) +((-2923 (*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) (-3499 (*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) (-1880 (*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) (-2108 (*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) (-2118 (*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-298 *3)))) (-1725 (*1 *1 *1 *1) (-12 (-4 *2 (-313 *2)) (-4 *2 (-1109)) (-4 *2 (-1226)) (-5 *1 (-298 *2)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *3))) (-4 *3 (-313 *3)) (-4 *3 (-1109)) (-4 *3 (-1226)) (-5 *1 (-298 *3)))) (-3014 (*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1226)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1226)))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226)))) (-1398 (*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226)))) (-3026 (*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226)))) (-3026 (*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226)))) (-3518 (*1 *1 *1) (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1226)))) (-1339 (*1 *1 *1) (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1226)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-650 (-298 *3))) (-5 *1 (-298 *3)) (-4 *3 (-562)) (-4 *3 (-1226)))) (-4297 (*1 *1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-306)) (-4 *2 (-1226)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1226)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1226)))) (-3037 (*1 *1 *1 *1) (-2779 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1226))) (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1226))))) (-1820 (*1 *1 *1) (-2779 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1226))) (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1226)))))) +(-13 (-1226) (-10 -8 (-15 -2923 ($ |#1| |#1|)) (-15 -3499 ($ |#1| |#1|)) (-15 -1880 ($ $)) (-15 -2108 (|#1| $)) (-15 -2118 (|#1| $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-520 (-1186) |#1|)) (-6 (-520 (-1186) |#1|)) |%noBranch|) (IF (|has| |#1| (-1109)) (PROGN (-6 (-1109)) (-6 (-619 (-112))) (IF (|has| |#1| (-313 |#1|)) (PROGN (-15 -1725 ($ $ $)) (-15 -1725 ($ $ (-650 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3014 ($ |#1| $)) (-15 -3014 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2768 ($ $)) (-15 -1398 ($ $)) (-15 -3026 ($ |#1| $)) (-15 -3026 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-732)) (PROGN (-6 (-732)) (-15 -3518 ((-3 $ "failed") $)) (-15 -1339 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-479)) (PROGN (-6 (-479)) (-15 -3518 ((-3 $ "failed") $)) (-15 -1339 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-6 (-1058)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|) (IF (|has| |#1| (-562)) (-15 -3377 ((-650 $) $)) |%noBranch|) (IF (|has| |#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-1283 |#1|)) (-15 -3037 ($ $ $)) (-15 -1820 ($ $))) |%noBranch|) (IF (|has| |#1| (-306)) (-15 -4297 ($ $ $)) |%noBranch|))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#2| $ |#1| |#2|) NIL)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) NIL)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2799 (((-650 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2044 (((-650 |#1|) $) NIL)) (-1480 (((-112) |#1| $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-299 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) (-1109) (-1109)) (T -299)) +NIL +(-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) +((-3650 (((-316) (-1168) (-650 (-1168))) 17) (((-316) (-1168) (-1168)) 16) (((-316) (-650 (-1168))) 15) (((-316) (-1168)) 14))) +(((-300) (-10 -7 (-15 -3650 ((-316) (-1168))) (-15 -3650 ((-316) (-650 (-1168)))) (-15 -3650 ((-316) (-1168) (-1168))) (-15 -3650 ((-316) (-1168) (-650 (-1168)))))) (T -300)) +((-3650 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1168))) (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))) (-3650 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-316)) (-5 *1 (-300)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300))))) +(-10 -7 (-15 -3650 ((-316) (-1168))) (-15 -3650 ((-316) (-650 (-1168)))) (-15 -3650 ((-316) (-1168) (-1168))) (-15 -3650 ((-316) (-1168) (-650 (-1168))))) +((-1347 ((|#2| (-1 |#2| |#1|) (-1168) (-618 |#1|)) 18))) +(((-301 |#1| |#2|) (-10 -7 (-15 -1347 (|#2| (-1 |#2| |#1|) (-1168) (-618 |#1|)))) (-306) (-1226)) (T -301)) +((-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1168)) (-5 *5 (-618 *6)) (-4 *6 (-306)) (-4 *2 (-1226)) (-5 *1 (-301 *6 *2))))) +(-10 -7 (-15 -1347 (|#2| (-1 |#2| |#1|) (-1168) (-618 |#1|)))) +((-1347 ((|#2| (-1 |#2| |#1|) (-618 |#1|)) 17))) +(((-302 |#1| |#2|) (-10 -7 (-15 -1347 (|#2| (-1 |#2| |#1|) (-618 |#1|)))) (-306) (-306)) (T -302)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-618 *5)) (-4 *5 (-306)) (-4 *2 (-306)) (-5 *1 (-302 *5 *2))))) +(-10 -7 (-15 -1347 (|#2| (-1 |#2| |#1|) (-618 |#1|)))) +((-1468 (((-112) (-227)) 12))) +(((-303 |#1| |#2|) (-10 -7 (-15 -1468 ((-112) (-227)))) (-227) (-227)) (T -303)) +((-1468 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1468 ((-112) (-227)))) +((-4266 (((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227)))) 118)) (-2907 (((-1166 (-227)) (-1276 (-320 (-227))) (-650 (-1186)) (-1103 (-849 (-227)))) 135) (((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227)))) 72)) (-3805 (((-650 (-1168)) (-1166 (-227))) NIL)) (-2771 (((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227)))) 69)) (-1734 (((-650 (-227)) (-959 (-413 (-570))) (-1186) (-1103 (-849 (-227)))) 59)) (-4212 (((-650 (-1168)) (-650 (-227))) NIL)) (-1486 (((-227) (-1103 (-849 (-227)))) 29)) (-3820 (((-227) (-1103 (-849 (-227)))) 30)) (-2366 (((-112) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-1764 (((-1168) (-227)) NIL))) +(((-304) (-10 -7 (-15 -1486 ((-227) (-1103 (-849 (-227))))) (-15 -3820 ((-227) (-1103 (-849 (-227))))) (-15 -2366 ((-112) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2771 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -4266 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -2907 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -2907 ((-1166 (-227)) (-1276 (-320 (-227))) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -1734 ((-650 (-227)) (-959 (-413 (-570))) (-1186) (-1103 (-849 (-227))))) (-15 -1764 ((-1168) (-227))) (-15 -4212 ((-650 (-1168)) (-650 (-227)))) (-15 -3805 ((-650 (-1168)) (-1166 (-227)))))) (T -304)) +((-3805 (*1 *2 *3) (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-304)))) (-1734 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *4 (-1186)) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *4 (-650 (-1186))) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) (-2907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186))) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) (-4266 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186))) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) (-2771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186)) (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-304)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304))))) +(-10 -7 (-15 -1486 ((-227) (-1103 (-849 (-227))))) (-15 -3820 ((-227) (-1103 (-849 (-227))))) (-15 -2366 ((-112) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2771 ((-650 (-227)) (-320 (-227)) (-1186) (-1103 (-849 (-227))))) (-15 -4266 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -2907 ((-1166 (-227)) (-320 (-227)) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -2907 ((-1166 (-227)) (-1276 (-320 (-227))) (-650 (-1186)) (-1103 (-849 (-227))))) (-15 -1734 ((-650 (-227)) (-959 (-413 (-570))) (-1186) (-1103 (-849 (-227))))) (-15 -1764 ((-1168) (-227))) (-15 -4212 ((-650 (-1168)) (-650 (-227)))) (-15 -3805 ((-650 (-1168)) (-1166 (-227))))) +((-3665 (((-650 (-618 $)) $) 27)) (-4297 (($ $ (-298 $)) 78) (($ $ (-650 (-298 $))) 139) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-4382 (((-3 (-618 $) "failed") $) 127)) (-3152 (((-618 $) $) 126)) (-1594 (($ $) 17) (($ (-650 $)) 54)) (-3406 (((-650 (-115)) $) 35)) (-3748 (((-115) (-115)) 88)) (-2639 (((-112) $) 150)) (-1347 (($ (-1 $ $) (-618 $)) 86)) (-3451 (((-3 (-618 $) "failed") $) 94)) (-1355 (($ (-115) $) 59) (($ (-115) (-650 $)) 110)) (-3257 (((-112) $ (-115)) 132) (((-112) $ (-1186)) 131)) (-1428 (((-777) $) 44)) (-4124 (((-112) $ $) 57) (((-112) $ (-1186)) 49)) (-3699 (((-112) $) 148)) (-1725 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) 137) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 81) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) 67) (($ $ (-1186) (-1 $ $)) 72) (($ $ (-650 (-115)) (-650 (-1 $ $))) 80) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 82) (($ $ (-115) (-1 $ (-650 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-1872 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-650 $)) 123)) (-2707 (($ $) 51) (($ $ $) 135)) (-4215 (($ $) 15) (($ (-650 $)) 53)) (-4217 (((-112) (-115)) 21))) +(((-305 |#1|) (-10 -8 (-15 -2639 ((-112) |#1|)) (-15 -3699 ((-112) |#1|)) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -4124 ((-112) |#1| (-1186))) (-15 -4124 ((-112) |#1| |#1|)) (-15 -1347 (|#1| (-1 |#1| |#1|) (-618 |#1|))) (-15 -1355 (|#1| (-115) (-650 |#1|))) (-15 -1355 (|#1| (-115) |#1|)) (-15 -3257 ((-112) |#1| (-1186))) (-15 -3257 ((-112) |#1| (-115))) (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -3406 ((-650 (-115)) |#1|)) (-15 -3665 ((-650 (-618 |#1|)) |#1|)) (-15 -3451 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -1428 ((-777) |#1|)) (-15 -2707 (|#1| |#1| |#1|)) (-15 -2707 (|#1| |#1|)) (-15 -1594 (|#1| (-650 |#1|))) (-15 -1594 (|#1| |#1|)) (-15 -4215 (|#1| (-650 |#1|))) (-15 -4215 (|#1| |#1|)) (-15 -4297 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -4297 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -4297 (|#1| |#1| (-298 |#1|))) (-15 -1872 (|#1| (-115) (-650 |#1|))) (-15 -1872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1725 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -4382 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3152 ((-618 |#1|) |#1|))) (-306)) (T -305)) +((-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-305 *3)) (-4 *3 (-306)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-305 *4)) (-4 *4 (-306))))) +(-10 -8 (-15 -2639 ((-112) |#1|)) (-15 -3699 ((-112) |#1|)) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -4124 ((-112) |#1| (-1186))) (-15 -4124 ((-112) |#1| |#1|)) (-15 -1347 (|#1| (-1 |#1| |#1|) (-618 |#1|))) (-15 -1355 (|#1| (-115) (-650 |#1|))) (-15 -1355 (|#1| (-115) |#1|)) (-15 -3257 ((-112) |#1| (-1186))) (-15 -3257 ((-112) |#1| (-115))) (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -3406 ((-650 (-115)) |#1|)) (-15 -3665 ((-650 (-618 |#1|)) |#1|)) (-15 -3451 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -1428 ((-777) |#1|)) (-15 -2707 (|#1| |#1| |#1|)) (-15 -2707 (|#1| |#1|)) (-15 -1594 (|#1| (-650 |#1|))) (-15 -1594 (|#1| |#1|)) (-15 -4215 (|#1| (-650 |#1|))) (-15 -4215 (|#1| |#1|)) (-15 -4297 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -4297 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -4297 (|#1| |#1| (-298 |#1|))) (-15 -1872 (|#1| (-115) (-650 |#1|))) (-15 -1872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1725 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -4382 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3152 ((-618 |#1|) |#1|))) +((-2419 (((-112) $ $) 7)) (-3665 (((-650 (-618 $)) $) 39)) (-4297 (($ $ (-298 $)) 51) (($ $ (-650 (-298 $))) 50) (($ $ (-650 (-618 $)) (-650 $)) 49)) (-4382 (((-3 (-618 $) "failed") $) 64)) (-3152 (((-618 $) $) 65)) (-1594 (($ $) 46) (($ (-650 $)) 45)) (-3406 (((-650 (-115)) $) 38)) (-3748 (((-115) (-115)) 37)) (-2639 (((-112) $) 17 (|has| $ (-1047 (-570))))) (-4111 (((-1182 $) (-618 $)) 20 (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) 31)) (-3451 (((-3 (-618 $) "failed") $) 41)) (-4122 (((-1168) $) 10)) (-3739 (((-650 (-618 $)) $) 40)) (-1355 (($ (-115) $) 33) (($ (-115) (-650 $)) 32)) (-3257 (((-112) $ (-115)) 35) (((-112) $ (-1186)) 34)) (-1428 (((-777) $) 42)) (-3551 (((-1129) $) 11)) (-4124 (((-112) $ $) 30) (((-112) $ (-1186)) 29)) (-3699 (((-112) $) 18 (|has| $ (-1047 (-570))))) (-1725 (($ $ (-618 $) $) 62) (($ $ (-650 (-618 $)) (-650 $)) 61) (($ $ (-650 (-298 $))) 60) (($ $ (-298 $)) 59) (($ $ $ $) 58) (($ $ (-650 $) (-650 $)) 57) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 28) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 27) (($ $ (-1186) (-1 $ (-650 $))) 26) (($ $ (-1186) (-1 $ $)) 25) (($ $ (-650 (-115)) (-650 (-1 $ $))) 24) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 23) (($ $ (-115) (-1 $ (-650 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-1872 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-650 $)) 52)) (-2707 (($ $) 44) (($ $ $) 43)) (-1881 (($ $) 19 (|has| $ (-1058)))) (-3798 (((-868) $) 12) (($ (-618 $)) 63)) (-4215 (($ $) 48) (($ (-650 $)) 47)) (-4217 (((-112) (-115)) 36)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-306) (-141)) (T -306)) +((-1872 (*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1872 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1872 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1872 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1872 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-298 *1)) (-4 *1 (-306)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *1))) (-4 *1 (-306)))) (-4297 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-618 *1))) (-5 *3 (-650 *1)) (-4 *1 (-306)))) (-4215 (*1 *1 *1) (-4 *1 (-306))) (-4215 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306)))) (-1594 (*1 *1 *1) (-4 *1 (-306))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306)))) (-2707 (*1 *1 *1) (-4 *1 (-306))) (-2707 (*1 *1 *1 *1) (-4 *1 (-306))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-777)))) (-3451 (*1 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-306)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-650 (-115))))) (-3748 (*1 *2 *2) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-4217 (*1 *2 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3257 (*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3257 (*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112)))) (-1355 (*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) (-1355 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-618 *1)) (-4 *1 (-306)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112)))) (-4124 (*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-1058)) (-4 *1 (-306)) (-5 *2 (-1182 *1)))) (-1881 (*1 *1 *1) (-12 (-4 *1 (-1058)) (-4 *1 (-306)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112))))) +(-13 (-1109) (-1047 (-618 $)) (-520 (-618 $) $) (-313 $) (-10 -8 (-15 -1872 ($ (-115) $)) (-15 -1872 ($ (-115) $ $)) (-15 -1872 ($ (-115) $ $ $)) (-15 -1872 ($ (-115) $ $ $ $)) (-15 -1872 ($ (-115) (-650 $))) (-15 -4297 ($ $ (-298 $))) (-15 -4297 ($ $ (-650 (-298 $)))) (-15 -4297 ($ $ (-650 (-618 $)) (-650 $))) (-15 -4215 ($ $)) (-15 -4215 ($ (-650 $))) (-15 -1594 ($ $)) (-15 -1594 ($ (-650 $))) (-15 -2707 ($ $)) (-15 -2707 ($ $ $)) (-15 -1428 ((-777) $)) (-15 -3451 ((-3 (-618 $) "failed") $)) (-15 -3739 ((-650 (-618 $)) $)) (-15 -3665 ((-650 (-618 $)) $)) (-15 -3406 ((-650 (-115)) $)) (-15 -3748 ((-115) (-115))) (-15 -4217 ((-112) (-115))) (-15 -3257 ((-112) $ (-115))) (-15 -3257 ((-112) $ (-1186))) (-15 -1355 ($ (-115) $)) (-15 -1355 ($ (-115) (-650 $))) (-15 -1347 ($ (-1 $ $) (-618 $))) (-15 -4124 ((-112) $ $)) (-15 -4124 ((-112) $ (-1186))) (-15 -1725 ($ $ (-650 (-1186)) (-650 (-1 $ $)))) (-15 -1725 ($ $ (-650 (-1186)) (-650 (-1 $ (-650 $))))) (-15 -1725 ($ $ (-1186) (-1 $ (-650 $)))) (-15 -1725 ($ $ (-1186) (-1 $ $))) (-15 -1725 ($ $ (-650 (-115)) (-650 (-1 $ $)))) (-15 -1725 ($ $ (-650 (-115)) (-650 (-1 $ (-650 $))))) (-15 -1725 ($ $ (-115) (-1 $ (-650 $)))) (-15 -1725 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1058)) (PROGN (-15 -4111 ((-1182 $) (-618 $))) (-15 -1881 ($ $))) |%noBranch|) (IF (|has| $ (-1047 (-570))) (PROGN (-15 -3699 ((-112) $)) (-15 -2639 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-622 #0=(-618 $)) . T) ((-619 (-868)) . T) ((-313 $) . T) ((-520 (-618 $) $) . T) ((-520 $ $) . T) ((-1047 #0#) . T) ((-1109) . T)) +((-3407 (((-650 |#1|) (-650 |#1|)) 10))) +(((-307 |#1|) (-10 -7 (-15 -3407 ((-650 |#1|) (-650 |#1|)))) (-854)) (T -307)) +((-3407 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-854)) (-5 *1 (-307 *3))))) +(-10 -7 (-15 -3407 ((-650 |#1|) (-650 |#1|)))) +((-1347 (((-695 |#2|) (-1 |#2| |#1|) (-695 |#1|)) 17))) +(((-308 |#1| |#2|) (-10 -7 (-15 -1347 ((-695 |#2|) (-1 |#2| |#1|) (-695 |#1|)))) (-1058) (-1058)) (T -308)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-695 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-695 *6)) (-5 *1 (-308 *5 *6))))) +(-10 -7 (-15 -1347 ((-695 |#2|) (-1 |#2| |#1|) (-695 |#1|)))) +((-2349 (((-1276 (-320 (-384))) (-1276 (-320 (-227)))) 112)) (-3888 (((-1103 (-849 (-227))) (-1103 (-849 (-384)))) 45)) (-3805 (((-650 (-1168)) (-1166 (-227))) 94)) (-3836 (((-320 (-384)) (-959 (-227))) 55)) (-2976 (((-227) (-959 (-227))) 51)) (-1584 (((-1168) (-384)) 197)) (-4092 (((-849 (-227)) (-849 (-384))) 39)) (-3177 (((-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))) (-1276 (-320 (-227)))) 165)) (-2485 (((-1044) (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) 209) (((-1044) (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) 207)) (-2568 (((-695 (-227)) (-650 (-227)) (-777)) 21)) (-1623 (((-1276 (-705)) (-650 (-227))) 101)) (-4212 (((-650 (-1168)) (-650 (-227))) 81)) (-1362 (((-3 (-320 (-227)) "failed") (-320 (-227))) 130)) (-1468 (((-112) (-227) (-1103 (-849 (-227)))) 119)) (-2312 (((-1044) (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))) 226)) (-1486 (((-227) (-1103 (-849 (-227)))) 114)) (-3820 (((-227) (-1103 (-849 (-227)))) 115)) (-2859 (((-227) (-413 (-570))) 33)) (-3534 (((-1168) (-384)) 79)) (-3242 (((-227) (-384)) 24)) (-1705 (((-384) (-1276 (-320 (-227)))) 179)) (-4011 (((-320 (-227)) (-320 (-384))) 30)) (-4219 (((-413 (-570)) (-320 (-227))) 58)) (-2728 (((-320 (-413 (-570))) (-320 (-227))) 75)) (-4021 (((-320 (-384)) (-320 (-227))) 105)) (-2589 (((-227) (-320 (-227))) 59)) (-1925 (((-650 (-227)) (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) 70)) (-2510 (((-1103 (-849 (-227))) (-1103 (-849 (-227)))) 67)) (-1764 (((-1168) (-227)) 78)) (-4136 (((-705) (-227)) 97)) (-2998 (((-413 (-570)) (-227)) 60)) (-4185 (((-320 (-384)) (-227)) 54)) (-1411 (((-650 (-1103 (-849 (-227)))) (-650 (-1103 (-849 (-384))))) 48)) (-2445 (((-1044) (-650 (-1044))) 193) (((-1044) (-1044) (-1044)) 187)) (-4195 (((-1044) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223))) +(((-309) (-10 -7 (-15 -3242 ((-227) (-384))) (-15 -4011 ((-320 (-227)) (-320 (-384)))) (-15 -4092 ((-849 (-227)) (-849 (-384)))) (-15 -3888 ((-1103 (-849 (-227))) (-1103 (-849 (-384))))) (-15 -1411 ((-650 (-1103 (-849 (-227)))) (-650 (-1103 (-849 (-384)))))) (-15 -2998 ((-413 (-570)) (-227))) (-15 -4219 ((-413 (-570)) (-320 (-227)))) (-15 -2589 ((-227) (-320 (-227)))) (-15 -1362 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -1705 ((-384) (-1276 (-320 (-227))))) (-15 -3177 ((-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))) (-1276 (-320 (-227))))) (-15 -2728 ((-320 (-413 (-570))) (-320 (-227)))) (-15 -2510 ((-1103 (-849 (-227))) (-1103 (-849 (-227))))) (-15 -1925 ((-650 (-227)) (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) (-15 -4136 ((-705) (-227))) (-15 -1623 ((-1276 (-705)) (-650 (-227)))) (-15 -4021 ((-320 (-384)) (-320 (-227)))) (-15 -2349 ((-1276 (-320 (-384))) (-1276 (-320 (-227))))) (-15 -1468 ((-112) (-227) (-1103 (-849 (-227))))) (-15 -1764 ((-1168) (-227))) (-15 -3534 ((-1168) (-384))) (-15 -4212 ((-650 (-1168)) (-650 (-227)))) (-15 -3805 ((-650 (-1168)) (-1166 (-227)))) (-15 -1486 ((-227) (-1103 (-849 (-227))))) (-15 -3820 ((-227) (-1103 (-849 (-227))))) (-15 -2445 ((-1044) (-1044) (-1044))) (-15 -2445 ((-1044) (-650 (-1044)))) (-15 -1584 ((-1168) (-384))) (-15 -2485 ((-1044) (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))))) (-15 -2485 ((-1044) (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))) (-15 -4195 ((-1044) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2312 ((-1044) (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))) (-15 -3836 ((-320 (-384)) (-959 (-227)))) (-15 -2976 ((-227) (-959 (-227)))) (-15 -4185 ((-320 (-384)) (-227))) (-15 -2859 ((-227) (-413 (-570)))) (-15 -2568 ((-695 (-227)) (-650 (-227)) (-777))))) (T -309)) +((-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-227))) (-5 *4 (-777)) (-5 *2 (-695 (-227))) (-5 *1 (-309)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-413 (-570))) (-5 *2 (-227)) (-5 *1 (-309)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-320 (-384))) (-5 *1 (-309)))) (-2976 (*1 *2 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-309)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-650 (-1044))) (-5 *2 (-1044)) (-5 *1 (-309)))) (-2445 (*1 *2 *2 *2) (-12 (-5 *2 (-1044)) (-5 *1 (-309)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309)))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-309)))) (-1468 (*1 *2 *3 *4) (-12 (-5 *4 (-1103 (-849 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309)))) (-2349 (*1 *2 *3) (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *2 (-1276 (-320 (-384)))) (-5 *1 (-309)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1276 (-705))) (-5 *1 (-309)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-705)) (-5 *1 (-309)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *2 (-650 (-227))) (-5 *1 (-309)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-1103 (-849 (-227)))) (-5 *1 (-309)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-413 (-570)))) (-5 *1 (-309)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *2 (-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570)))) (-5 *1 (-309)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-309)))) (-1362 (*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-309)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-227)) (-5 *1 (-309)))) (-4219 (*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-413 (-570))) (-5 *1 (-309)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-413 (-570))) (-5 *1 (-309)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-650 (-1103 (-849 (-384))))) (-5 *2 (-650 (-1103 (-849 (-227))))) (-5 *1 (-309)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1103 (-849 (-384)))) (-5 *2 (-1103 (-849 (-227)))) (-5 *1 (-309)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-849 (-384))) (-5 *2 (-849 (-227))) (-5 *1 (-309)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-320 (-384))) (-5 *2 (-320 (-227))) (-5 *1 (-309)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-309))))) +(-10 -7 (-15 -3242 ((-227) (-384))) (-15 -4011 ((-320 (-227)) (-320 (-384)))) (-15 -4092 ((-849 (-227)) (-849 (-384)))) (-15 -3888 ((-1103 (-849 (-227))) (-1103 (-849 (-384))))) (-15 -1411 ((-650 (-1103 (-849 (-227)))) (-650 (-1103 (-849 (-384)))))) (-15 -2998 ((-413 (-570)) (-227))) (-15 -4219 ((-413 (-570)) (-320 (-227)))) (-15 -2589 ((-227) (-320 (-227)))) (-15 -1362 ((-3 (-320 (-227)) "failed") (-320 (-227)))) (-15 -1705 ((-384) (-1276 (-320 (-227))))) (-15 -3177 ((-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570))) (-1276 (-320 (-227))))) (-15 -2728 ((-320 (-413 (-570))) (-320 (-227)))) (-15 -2510 ((-1103 (-849 (-227))) (-1103 (-849 (-227))))) (-15 -1925 ((-650 (-227)) (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) (-15 -4136 ((-705) (-227))) (-15 -1623 ((-1276 (-705)) (-650 (-227)))) (-15 -4021 ((-320 (-384)) (-320 (-227)))) (-15 -2349 ((-1276 (-320 (-384))) (-1276 (-320 (-227))))) (-15 -1468 ((-112) (-227) (-1103 (-849 (-227))))) (-15 -1764 ((-1168) (-227))) (-15 -3534 ((-1168) (-384))) (-15 -4212 ((-650 (-1168)) (-650 (-227)))) (-15 -3805 ((-650 (-1168)) (-1166 (-227)))) (-15 -1486 ((-227) (-1103 (-849 (-227))))) (-15 -3820 ((-227) (-1103 (-849 (-227))))) (-15 -2445 ((-1044) (-1044) (-1044))) (-15 -2445 ((-1044) (-650 (-1044)))) (-15 -1584 ((-1168) (-384))) (-15 -2485 ((-1044) (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))))) (-15 -2485 ((-1044) (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))))) (-15 -4195 ((-1044) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2312 ((-1044) (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))) (-15 -3836 ((-320 (-384)) (-959 (-227)))) (-15 -2976 ((-227) (-959 (-227)))) (-15 -4185 ((-320 (-384)) (-227))) (-15 -2859 ((-227) (-413 (-570)))) (-15 -2568 ((-695 (-227)) (-650 (-227)) (-777)))) +((-4073 (((-112) $ $) 14)) (-2372 (($ $ $) 18)) (-2380 (($ $ $) 17)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 50)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 65)) (-1869 (($ $ $) 25) (($ (-650 $)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2410 (((-3 $ "failed") $ $) 21)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 53))) +(((-310 |#1|) (-10 -8 (-15 -2546 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -3429 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3429 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -2372 (|#1| |#1| |#1|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -4073 ((-112) |#1| |#1|)) (-15 -3260 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -2851 ((-2 (|:| -1436 (-650 |#1|)) (|:| -2335 |#1|)) (-650 |#1|))) (-15 -1869 (|#1| (-650 |#1|))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|))) (-311)) (T -310)) +NIL +(-10 -8 (-15 -2546 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -3429 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3429 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -2372 (|#1| |#1| |#1|)) (-15 -2380 (|#1| |#1| |#1|)) (-15 -4073 ((-112) |#1| |#1|)) (-15 -3260 ((-3 (-650 |#1|) "failed") (-650 |#1|) |#1|)) (-15 -2851 ((-2 (|:| -1436 (-650 |#1|)) (|:| -2335 |#1|)) (-650 |#1|))) (-15 -1869 (|#1| (-650 |#1|))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-2481 (((-112) $) 35)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-311) (-141)) (T -311)) +((-4073 (*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-777)))) (-1854 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-311)))) (-2380 (*1 *1 *1 *1) (-4 *1 (-311))) (-2372 (*1 *1 *1 *1) (-4 *1 (-311))) (-3429 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) (-4 *1 (-311)))) (-3429 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-311)))) (-2546 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-311))))) +(-13 (-927) (-10 -8 (-15 -4073 ((-112) $ $)) (-15 -3788 ((-777) $)) (-15 -1854 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -2380 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -3429 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $)) (-15 -3429 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2546 ((-3 (-650 $) "failed") (-650 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-1725 (($ $ (-650 |#2|) (-650 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-298 |#2|)) 11) (($ $ (-650 (-298 |#2|))) NIL))) +(((-312 |#1| |#2|) (-10 -8 (-15 -1725 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1725 (|#1| |#1| (-298 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#2|)))) (-313 |#2|) (-1109)) (T -312)) +NIL +(-10 -8 (-15 -1725 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1725 (|#1| |#1| (-298 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#2|)))) +((-1725 (($ $ (-650 |#1|) (-650 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-298 |#1|)) 11) (($ $ (-650 (-298 |#1|))) 10))) +(((-313 |#1|) (-141) (-1109)) (T -313)) +((-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-298 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1109)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *3))) (-4 *1 (-313 *3)) (-4 *3 (-1109))))) +(-13 (-520 |t#1| |t#1|) (-10 -8 (-15 -1725 ($ $ (-298 |t#1|))) (-15 -1725 ($ $ (-650 (-298 |t#1|)))))) +(((-520 |#1| |#1|) . T)) +((-1725 ((|#1| (-1 |#1| (-570)) (-1188 (-413 (-570)))) 25))) +(((-314 |#1|) (-10 -7 (-15 -1725 (|#1| (-1 |#1| (-570)) (-1188 (-413 (-570)))))) (-38 (-413 (-570)))) (T -314)) +((-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-570))) (-5 *4 (-1188 (-413 (-570)))) (-5 *1 (-314 *2)) (-4 *2 (-38 (-413 (-570))))))) +(-10 -7 (-15 -1725 (|#1| (-1 |#1| (-570)) (-1188 (-413 (-570)))))) +((-2419 (((-112) $ $) NIL)) (-2470 (((-570) $) 12)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1419 (((-1144) $) 9)) (-3798 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-315) (-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -2470 ((-570) $))))) (T -315)) +((-1419 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-315)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-315))))) +(-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -2470 ((-570) $)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 7)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-316) (-1109)) (T -316)) +NIL +(-1109) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 60)) (-3356 (((-1262 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-1262 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-3 (-1261 |#2| |#3| |#4|) "failed") $) 26)) (-3152 (((-1262 |#1| |#2| |#3| |#4|) $) NIL) (((-1186) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-570) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-570)))) (((-1261 |#2| |#3| |#4|) $) NIL)) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-1262 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1276 (-1262 |#1| |#2| |#3| |#4|)))) (-695 $) (-1276 $)) NIL) (((-695 (-1262 |#1| |#2| |#3| |#4|)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-1262 |#1| |#2| |#3| |#4|) $) 22)) (-3641 (((-3 $ "failed") $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1161)))) (-3367 (((-112) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-856)))) (-2876 (($ $ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-856)))) (-1347 (($ (-1 (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|)) $) NIL)) (-2477 (((-3 (-849 |#2|) "failed") $) 80)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-311)))) (-4140 (((-1262 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-1262 |#1| |#2| |#3| |#4|)) (-650 (-1262 |#1| |#2| |#3| |#4|))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-313 (-1262 |#1| |#2| |#3| |#4|)))) (($ $ (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-313 (-1262 |#1| |#2| |#3| |#4|)))) (($ $ (-298 (-1262 |#1| |#2| |#3| |#4|))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-313 (-1262 |#1| |#2| |#3| |#4|)))) (($ $ (-650 (-298 (-1262 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-313 (-1262 |#1| |#2| |#3| |#4|)))) (($ $ (-650 (-1186)) (-650 (-1262 |#1| |#2| |#3| |#4|))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-520 (-1186) (-1262 |#1| |#2| |#3| |#4|)))) (($ $ (-1186) (-1262 |#1| |#2| |#3| |#4|)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-520 (-1186) (-1262 |#1| |#2| |#3| |#4|))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-1262 |#1| |#2| |#3| |#4|)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-290 (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-777)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-1186)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1 (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|)) (-777)) NIL) (($ $ (-1 (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-1262 |#1| |#2| |#3| |#4|) $) 19)) (-1411 (((-899 (-570)) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-620 (-542)))) (((-384) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1031))) (((-227) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-1262 |#1| |#2| |#3| |#4|) (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-1262 |#1| |#2| |#3| |#4|)) 30) (($ (-1186)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-1047 (-1186)))) (($ (-1261 |#2| |#3| |#4|)) 37)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-1262 |#1| |#2| |#3| |#4|) (-916))) (|has| (-1262 |#1| |#2| |#3| |#4|) (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 (((-1262 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-826)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-777)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-235))) (($ $ (-1186)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-907 (-1186)))) (($ $ (-1 (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|)) (-777)) NIL) (($ $ (-1 (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-1262 |#1| |#2| |#3| |#4|) (-856)))) (-3037 (($ $ $) 35) (($ (-1262 |#1| |#2| |#3| |#4|) (-1262 |#1| |#2| |#3| |#4|)) 32)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-1262 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1262 |#1| |#2| |#3| |#4|)) NIL))) +(((-317 |#1| |#2| |#3| |#4|) (-13 (-1001 (-1262 |#1| |#2| |#3| |#4|)) (-1047 (-1261 |#2| |#3| |#4|)) (-10 -8 (-15 -2477 ((-3 (-849 |#2|) "failed") $)) (-15 -3798 ($ (-1261 |#2| |#3| |#4|))))) (-13 (-1047 (-570)) (-645 (-570)) (-458)) (-13 (-27) (-1211) (-436 |#1|)) (-1186) |#2|) (T -317)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1261 *4 *5 *6)) (-4 *4 (-13 (-27) (-1211) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4) (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *1 (-317 *3 *4 *5 *6)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *2 (-849 *4)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1211) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4)))) +(-13 (-1001 (-1262 |#1| |#2| |#3| |#4|)) (-1047 (-1261 |#2| |#3| |#4|)) (-10 -8 (-15 -2477 ((-3 (-849 |#2|) "failed") $)) (-15 -3798 ($ (-1261 |#2| |#3| |#4|))))) +((-1347 (((-320 |#2|) (-1 |#2| |#1|) (-320 |#1|)) 13))) +(((-318 |#1| |#2|) (-10 -7 (-15 -1347 ((-320 |#2|) (-1 |#2| |#1|) (-320 |#1|)))) (-1109) (-1109)) (T -318)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-320 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-320 *6)) (-5 *1 (-318 *5 *6))))) +(-10 -7 (-15 -1347 ((-320 |#2|) (-1 |#2| |#1|) (-320 |#1|)))) +((-1776 (((-52) |#2| (-298 |#2|) (-777)) 40) (((-52) |#2| (-298 |#2|)) 32) (((-52) |#2| (-777)) 35) (((-52) |#2|) 33) (((-52) (-1186)) 26)) (-3325 (((-52) |#2| (-298 |#2|) (-413 (-570))) 59) (((-52) |#2| (-298 |#2|)) 56) (((-52) |#2| (-413 (-570))) 58) (((-52) |#2|) 57) (((-52) (-1186)) 55)) (-1800 (((-52) |#2| (-298 |#2|) (-413 (-570))) 54) (((-52) |#2| (-298 |#2|)) 51) (((-52) |#2| (-413 (-570))) 53) (((-52) |#2|) 52) (((-52) (-1186)) 50)) (-1788 (((-52) |#2| (-298 |#2|) (-570)) 47) (((-52) |#2| (-298 |#2|)) 44) (((-52) |#2| (-570)) 46) (((-52) |#2|) 45) (((-52) (-1186)) 43))) +(((-319 |#1| |#2|) (-10 -7 (-15 -1776 ((-52) (-1186))) (-15 -1776 ((-52) |#2|)) (-15 -1776 ((-52) |#2| (-777))) (-15 -1776 ((-52) |#2| (-298 |#2|))) (-15 -1776 ((-52) |#2| (-298 |#2|) (-777))) (-15 -1788 ((-52) (-1186))) (-15 -1788 ((-52) |#2|)) (-15 -1788 ((-52) |#2| (-570))) (-15 -1788 ((-52) |#2| (-298 |#2|))) (-15 -1788 ((-52) |#2| (-298 |#2|) (-570))) (-15 -1800 ((-52) (-1186))) (-15 -1800 ((-52) |#2|)) (-15 -1800 ((-52) |#2| (-413 (-570)))) (-15 -1800 ((-52) |#2| (-298 |#2|))) (-15 -1800 ((-52) |#2| (-298 |#2|) (-413 (-570)))) (-15 -3325 ((-52) (-1186))) (-15 -3325 ((-52) |#2|)) (-15 -3325 ((-52) |#2| (-413 (-570)))) (-15 -3325 ((-52) |#2| (-298 |#2|))) (-15 -3325 ((-52) |#2| (-298 |#2|) (-413 (-570))))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -319)) +((-3325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-413 (-570))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) (-3325 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-413 (-570))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-1800 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-458) (-1047 *5) (-645 *5))) (-5 *5 (-570)) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-4 *5 (-13 (-458) (-1047 *4) (-645 *4))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-298 *3)) (-5 *5 (-777)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4)))))) +(-10 -7 (-15 -1776 ((-52) (-1186))) (-15 -1776 ((-52) |#2|)) (-15 -1776 ((-52) |#2| (-777))) (-15 -1776 ((-52) |#2| (-298 |#2|))) (-15 -1776 ((-52) |#2| (-298 |#2|) (-777))) (-15 -1788 ((-52) (-1186))) (-15 -1788 ((-52) |#2|)) (-15 -1788 ((-52) |#2| (-570))) (-15 -1788 ((-52) |#2| (-298 |#2|))) (-15 -1788 ((-52) |#2| (-298 |#2|) (-570))) (-15 -1800 ((-52) (-1186))) (-15 -1800 ((-52) |#2|)) (-15 -1800 ((-52) |#2| (-413 (-570)))) (-15 -1800 ((-52) |#2| (-298 |#2|))) (-15 -1800 ((-52) |#2| (-298 |#2|) (-413 (-570)))) (-15 -3325 ((-52) (-1186))) (-15 -3325 ((-52) |#2|)) (-15 -3325 ((-52) |#2| (-413 (-570)))) (-15 -3325 ((-52) |#2| (-298 |#2|))) (-15 -3325 ((-52) |#2| (-298 |#2|) (-413 (-570))))) +((-2419 (((-112) $ $) NIL)) (-4266 (((-650 $) $ (-1186)) NIL (|has| |#1| (-562))) (((-650 $) $) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $) (-1186)) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $)) NIL (|has| |#1| (-562))) (((-650 $) (-959 $)) NIL (|has| |#1| (-562)))) (-1964 (($ $ (-1186)) NIL (|has| |#1| (-562))) (($ $) NIL (|has| |#1| (-562))) (($ (-1182 $) (-1186)) NIL (|has| |#1| (-562))) (($ (-1182 $)) NIL (|has| |#1| (-562))) (($ (-959 $)) NIL (|has| |#1| (-562)))) (-1359 (((-112) $) 27 (-2779 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-1709 (((-650 (-1186)) $) 368)) (-3768 (((-413 (-1182 $)) $ (-618 $)) NIL (|has| |#1| (-562)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3665 (((-650 (-618 $)) $) NIL)) (-2774 (($ $) 171 (|has| |#1| (-562)))) (-2629 (($ $) 147 (|has| |#1| (-562)))) (-1616 (($ $ (-1101 $)) 232 (|has| |#1| (-562))) (($ $ (-1186)) 228 (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) NIL (-2779 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-4297 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) 386) (($ $ (-650 (-618 $)) (-650 $)) 430)) (-2900 (((-424 (-1182 $)) (-1182 $)) 308 (-12 (|has| |#1| (-458)) (|has| |#1| (-562))))) (-3696 (($ $) NIL (|has| |#1| (-562)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-562)))) (-3815 (($ $) NIL (|has| |#1| (-562)))) (-4073 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2749 (($ $) 167 (|has| |#1| (-562)))) (-2604 (($ $) 143 (|has| |#1| (-562)))) (-3785 (($ $ (-570)) 73 (|has| |#1| (-562)))) (-4119 (($ $) 175 (|has| |#1| (-562)))) (-2648 (($ $) 151 (|has| |#1| (-562)))) (-3734 (($) NIL (-2779 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))) CONST)) (-3044 (((-650 $) $ (-1186)) NIL (|has| |#1| (-562))) (((-650 $) $) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $) (-1186)) NIL (|has| |#1| (-562))) (((-650 $) (-1182 $)) NIL (|has| |#1| (-562))) (((-650 $) (-959 $)) NIL (|has| |#1| (-562)))) (-2300 (($ $ (-1186)) NIL (|has| |#1| (-562))) (($ $) NIL (|has| |#1| (-562))) (($ (-1182 $) (-1186)) 134 (|has| |#1| (-562))) (($ (-1182 $)) NIL (|has| |#1| (-562))) (($ (-959 $)) NIL (|has| |#1| (-562)))) (-4382 (((-3 (-618 $) "failed") $) 18) (((-3 (-1186) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-959 |#1|)) "failed") $) NIL (|has| |#1| (-562))) (((-3 (-959 |#1|) "failed") $) NIL (|has| |#1| (-1058))) (((-3 (-413 (-570)) "failed") $) 46 (-2779 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-3152 (((-618 $) $) 12) (((-1186) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-959 |#1|)) $) NIL (|has| |#1| (-562))) (((-959 |#1|) $) NIL (|has| |#1| (-1058))) (((-413 (-570)) $) 319 (-2779 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2372 (($ $ $) NIL (|has| |#1| (-562)))) (-2004 (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 125 (|has| |#1| (-1058))) (((-695 |#1|) (-695 $)) 115 (|has| |#1| (-1058))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (-3600 (($ $) 96 (|has| |#1| (-562)))) (-2229 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))))) (-2380 (($ $ $) NIL (|has| |#1| (-562)))) (-3053 (($ $ (-1101 $)) 236 (|has| |#1| (-562))) (($ $ (-1186)) 234 (|has| |#1| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-562)))) (-3701 (((-112) $) NIL (|has| |#1| (-562)))) (-3951 (($ $ $) 202 (|has| |#1| (-562)))) (-1313 (($) 137 (|has| |#1| (-562)))) (-2375 (($ $ $) 222 (|has| |#1| (-562)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 392 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 399 (|has| |#1| (-893 (-384))))) (-1594 (($ $) NIL) (($ (-650 $)) NIL)) (-3406 (((-650 (-115)) $) NIL)) (-3748 (((-115) (-115)) 276)) (-2481 (((-112) $) 25 (-2779 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))))) (-2639 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-4004 (($ $) 72 (|has| |#1| (-1058)))) (-4400 (((-1134 |#1| (-618 $)) $) 91 (|has| |#1| (-1058)))) (-4080 (((-112) $) 62 (|has| |#1| (-562)))) (-3309 (($ $ (-570)) NIL (|has| |#1| (-562)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-562)))) (-4111 (((-1182 $) (-618 $)) 277 (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) 426)) (-3451 (((-3 (-618 $) "failed") $) NIL)) (-2665 (($ $) 141 (|has| |#1| (-562)))) (-4173 (($ $) 247 (|has| |#1| (-562)))) (-1841 (($ (-650 $)) NIL (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-4122 (((-1168) $) NIL)) (-3739 (((-650 (-618 $)) $) 49)) (-1355 (($ (-115) $) NIL) (($ (-115) (-650 $)) 431)) (-4193 (((-3 (-650 $) "failed") $) NIL (|has| |#1| (-1121)))) (-2536 (((-3 (-2 (|:| |val| $) (|:| -3283 (-570))) "failed") $) NIL (|has| |#1| (-1058)))) (-3607 (((-3 (-650 $) "failed") $) 436 (|has| |#1| (-25)))) (-3544 (((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1657 (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $) NIL (|has| |#1| (-1121))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-115)) NIL (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-1186)) NIL (|has| |#1| (-1058)))) (-3257 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) 51)) (-1820 (($ $) NIL (-2779 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-1316 (($ $ (-1186)) 251 (|has| |#1| (-562))) (($ $ (-1101 $)) 253 (|has| |#1| (-562)))) (-1428 (((-777) $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) 43)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 301 (|has| |#1| (-562)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-4124 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-2334 (($ $ (-1186)) 226 (|has| |#1| (-562))) (($ $) 224 (|has| |#1| (-562)))) (-3067 (($ $) 218 (|has| |#1| (-562)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 306 (-12 (|has| |#1| (-458)) (|has| |#1| (-562))))) (-3801 (((-424 $) $) NIL (|has| |#1| (-562)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-562))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-562)))) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-562)))) (-4390 (($ $) 139 (|has| |#1| (-562)))) (-3699 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1725 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) 425) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) 379) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1186)) NIL (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-620 (-542)))) (($ $) NIL (|has| |#1| (-620 (-542)))) (($ $ (-115) $ (-1186)) 366 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-115)) (-650 $) (-1186)) 365 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) NIL (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ (-650 $))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ $)) NIL (|has| |#1| (-1058)))) (-3788 (((-777) $) NIL (|has| |#1| (-562)))) (-2558 (($ $) 239 (|has| |#1| (-562)))) (-1872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2707 (($ $) NIL) (($ $ $) NIL)) (-2592 (($ $) 249 (|has| |#1| (-562)))) (-3399 (($ $) 200 (|has| |#1| (-562)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-1058))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-1058))) (($ $ (-1186)) NIL (|has| |#1| (-1058)))) (-2397 (($ $) 74 (|has| |#1| (-562)))) (-4413 (((-1134 |#1| (-618 $)) $) 93 (|has| |#1| (-562)))) (-1881 (($ $) 317 (|has| $ (-1058)))) (-4129 (($ $) 177 (|has| |#1| (-562)))) (-2664 (($ $) 153 (|has| |#1| (-562)))) (-2786 (($ $) 173 (|has| |#1| (-562)))) (-2636 (($ $) 149 (|has| |#1| (-562)))) (-2761 (($ $) 169 (|has| |#1| (-562)))) (-2616 (($ $) 145 (|has| |#1| (-562)))) (-1411 (((-899 (-570)) $) NIL (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#1| (-620 (-899 (-384))))) (($ (-424 $)) NIL (|has| |#1| (-562))) (((-542) $) 363 (|has| |#1| (-620 (-542))))) (-3897 (($ $ $) NIL (|has| |#1| (-479)))) (-4307 (($ $ $) NIL (|has| |#1| (-479)))) (-3798 (((-868) $) 424) (($ (-618 $)) 415) (($ (-1186)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-562))) (($ (-48)) 312 (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) (($ (-1134 |#1| (-618 $))) 95 (|has| |#1| (-1058))) (($ (-413 |#1|)) NIL (|has| |#1| (-562))) (($ (-959 (-413 |#1|))) NIL (|has| |#1| (-562))) (($ (-413 (-959 (-413 |#1|)))) NIL (|has| |#1| (-562))) (($ (-413 (-959 |#1|))) NIL (|has| |#1| (-562))) (($ (-959 |#1|)) NIL (|has| |#1| (-1058))) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-562)) (|has| |#1| (-1047 (-413 (-570)))))) (($ (-570)) 34 (-2779 (|has| |#1| (-1047 (-570))) (|has| |#1| (-1058))))) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL (|has| |#1| (-1058)) CONST)) (-4215 (($ $) NIL) (($ (-650 $)) NIL)) (-3755 (($ $ $) 220 (|has| |#1| (-562)))) (-4291 (($ $ $) 206 (|has| |#1| (-562)))) (-2405 (($ $ $) 210 (|has| |#1| (-562)))) (-3520 (($ $ $) 204 (|has| |#1| (-562)))) (-3784 (($ $ $) 208 (|has| |#1| (-562)))) (-4217 (((-112) (-115)) 10)) (-1319 (((-112) $ $) 86)) (-4165 (($ $) 183 (|has| |#1| (-562)))) (-2704 (($ $) 159 (|has| |#1| (-562)))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) 179 (|has| |#1| (-562)))) (-2678 (($ $) 155 (|has| |#1| (-562)))) (-4186 (($ $) 187 (|has| |#1| (-562)))) (-2726 (($ $) 163 (|has| |#1| (-562)))) (-4214 (($ (-1186) $) NIL) (($ (-1186) $ $) NIL) (($ (-1186) $ $ $) NIL) (($ (-1186) $ $ $ $) NIL) (($ (-1186) (-650 $)) NIL)) (-3252 (($ $) 214 (|has| |#1| (-562)))) (-3727 (($ $) 212 (|has| |#1| (-562)))) (-1504 (($ $) 189 (|has| |#1| (-562)))) (-2737 (($ $) 165 (|has| |#1| (-562)))) (-4176 (($ $) 185 (|has| |#1| (-562)))) (-2715 (($ $) 161 (|has| |#1| (-562)))) (-4153 (($ $) 181 (|has| |#1| (-562)))) (-2692 (($ $) 157 (|has| |#1| (-562)))) (-2216 (($ $) 192 (|has| |#1| (-562)))) (-1809 (($) 21 (-2779 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) CONST)) (-3943 (($ $) 243 (|has| |#1| (-562)))) (-1817 (($) 23 (-2779 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))) CONST)) (-3563 (($ $) 194 (|has| |#1| (-562))) (($ $ $) 196 (|has| |#1| (-562)))) (-2241 (($ $) 241 (|has| |#1| (-562)))) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-1058))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-1058))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-1058))) (($ $ (-1186)) NIL (|has| |#1| (-1058)))) (-3732 (($ $) 245 (|has| |#1| (-562)))) (-2098 (($ $ $) 198 (|has| |#1| (-562)))) (-2923 (((-112) $ $) 88)) (-3037 (($ (-1134 |#1| (-618 $)) (-1134 |#1| (-618 $))) 106 (|has| |#1| (-562))) (($ $ $) 42 (-2779 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-3026 (($ $ $) 40 (-2779 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (($ $) 29 (-2779 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (-3014 (($ $ $) 38 (-2779 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))))) (** (($ $ $) 64 (|has| |#1| (-562))) (($ $ (-413 (-570))) 314 (|has| |#1| (-562))) (($ $ (-570)) 80 (-2779 (|has| |#1| (-479)) (|has| |#1| (-562)))) (($ $ (-777)) 75 (-2779 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121)))) (($ $ (-928)) 84 (-2779 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121))))) (* (($ (-413 (-570)) $) NIL (|has| |#1| (-562))) (($ $ (-413 (-570))) NIL (|has| |#1| (-562))) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ $ $) 36 (-2779 (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) (|has| |#1| (-1121)))) (($ (-570) $) 32 (-2779 (|has| |#1| (-21)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (($ (-777) $) NIL (-2779 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))) (($ (-928) $) NIL (-2779 (|has| |#1| (-25)) (-12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))))))) +(((-320 |#1|) (-13 (-436 |#1|) (-10 -8 (IF (|has| |#1| (-562)) (PROGN (-6 (-29 |#1|)) (-6 (-1211)) (-6 (-161)) (-6 (-635)) (-6 (-1148)) (-15 -3600 ($ $)) (-15 -4080 ((-112) $)) (-15 -3785 ($ $ (-570))) (IF (|has| |#1| (-458)) (PROGN (-15 -3623 ((-424 (-1182 $)) (-1182 $))) (-15 -2900 ((-424 (-1182 $)) (-1182 $)))) |%noBranch|) (IF (|has| |#1| (-1047 (-570))) (-6 (-1047 (-48))) |%noBranch|)) |%noBranch|))) (-1109)) (T -320)) +((-3600 (*1 *1 *1) (-12 (-5 *1 (-320 *2)) (-4 *2 (-562)) (-4 *2 (-1109)))) (-4080 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))) (-3785 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))) (-3623 (*1 *2 *3) (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1)) (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109)))) (-2900 (*1 *2 *3) (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1)) (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109))))) +(-13 (-436 |#1|) (-10 -8 (IF (|has| |#1| (-562)) (PROGN (-6 (-29 |#1|)) (-6 (-1211)) (-6 (-161)) (-6 (-635)) (-6 (-1148)) (-15 -3600 ($ $)) (-15 -4080 ((-112) $)) (-15 -3785 ($ $ (-570))) (IF (|has| |#1| (-458)) (PROGN (-15 -3623 ((-424 (-1182 $)) (-1182 $))) (-15 -2900 ((-424 (-1182 $)) (-1182 $)))) |%noBranch|) (IF (|has| |#1| (-1047 (-570))) (-6 (-1047 (-48))) |%noBranch|)) |%noBranch|))) +((-3542 (((-52) |#2| (-115) (-298 |#2|) (-650 |#2|)) 89) (((-52) |#2| (-115) (-298 |#2|) (-298 |#2|)) 85) (((-52) |#2| (-115) (-298 |#2|) |#2|) 87) (((-52) (-298 |#2|) (-115) (-298 |#2|) |#2|) 88) (((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|))) 81) (((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 |#2|)) 83) (((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 |#2|)) 84) (((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|))) 82) (((-52) (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|)) 90) (((-52) (-298 |#2|) (-115) (-298 |#2|) (-298 |#2|)) 86))) +(((-321 |#1| |#2|) (-10 -7 (-15 -3542 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-298 |#2|))) (-15 -3542 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -3542 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3542 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3542 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3542 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3542 ((-52) (-298 |#2|) (-115) (-298 |#2|) |#2|)) (-15 -3542 ((-52) |#2| (-115) (-298 |#2|) |#2|)) (-15 -3542 ((-52) |#2| (-115) (-298 |#2|) (-298 |#2|))) (-15 -3542 ((-52) |#2| (-115) (-298 |#2|) (-650 |#2|)))) (-13 (-562) (-620 (-542))) (-436 |#1|)) (T -321)) +((-3542 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-5 *6 (-650 *3)) (-4 *3 (-436 *7)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *7 *3)))) (-3542 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-3542 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *3)))) (-3542 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-298 *5)) (-5 *4 (-115)) (-4 *5 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *5)))) (-3542 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-115))) (-5 *6 (-650 (-298 *8))) (-4 *8 (-436 *7)) (-5 *5 (-298 *8)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *7 *8)))) (-3542 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7)) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *7)))) (-3542 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-650 (-298 *8))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *8)) (-5 *6 (-650 *8)) (-4 *8 (-436 *7)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *7 *8)))) (-3542 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7)) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *7)))) (-3542 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-650 *7)) (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *6 *7)))) (-3542 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-298 *6)) (-5 *4 (-115)) (-4 *6 (-436 *5)) (-4 *5 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) (-5 *1 (-321 *5 *6))))) +(-10 -7 (-15 -3542 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-298 |#2|))) (-15 -3542 ((-52) (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -3542 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3542 ((-52) (-650 (-298 |#2|)) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3542 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 |#2|))) (-15 -3542 ((-52) (-650 |#2|) (-650 (-115)) (-298 |#2|) (-650 (-298 |#2|)))) (-15 -3542 ((-52) (-298 |#2|) (-115) (-298 |#2|) |#2|)) (-15 -3542 ((-52) |#2| (-115) (-298 |#2|) |#2|)) (-15 -3542 ((-52) |#2| (-115) (-298 |#2|) (-298 |#2|))) (-15 -3542 ((-52) |#2| (-115) (-298 |#2|) (-650 |#2|)))) +((-1735 (((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570) (-1168)) 67) (((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570)) 68) (((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570) (-1168)) 64) (((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570)) 65)) (-2090 (((-1 (-227) (-227)) (-227)) 66))) +(((-322) (-10 -7 (-15 -2090 ((-1 (-227) (-227)) (-227))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570) (-1168))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570) (-1168))))) (T -322)) +((-1735 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) (-5 *8 (-1168)) (-5 *2 (-1221 (-933))) (-5 *1 (-322)))) (-1735 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) (-5 *2 (-1221 (-933))) (-5 *1 (-322)))) (-1735 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *7 (-1168)) (-5 *2 (-1221 (-933))) (-5 *1 (-322)))) (-1735 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *2 (-1221 (-933))) (-5 *1 (-322)))) (-2090 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-322)) (-5 *3 (-227))))) +(-10 -7 (-15 -2090 ((-1 (-227) (-227)) (-227))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-1 (-227) (-227)) (-570) (-1168))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570))) (-15 -1735 ((-1221 (-933)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-227) (-570) (-1168)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 26)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 20)) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) 36)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) 16)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-413 (-570))) NIL) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1840 (($ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211)))))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) NIL)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2787 (((-413 (-570)) $) 17)) (-3131 (($ (-1261 |#1| |#2| |#3|)) 11)) (-3283 (((-1261 |#1| |#2| |#3|) $) 12)) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3324 (((-413 (-570)) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 10)) (-3798 (((-868) $) 42) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) 34)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) NIL)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 28)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 37)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-323 |#1| |#2| |#3|) (-13 (-1257 |#1|) (-798) (-10 -8 (-15 -3131 ($ (-1261 |#1| |#2| |#3|))) (-15 -3283 ((-1261 |#1| |#2| |#3|) $)) (-15 -2787 ((-413 (-570)) $)))) (-368) (-1186) |#1|) (T -323)) +((-3131 (*1 *1 *2) (-12 (-5 *2 (-1261 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-323 *3 *4 *5)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-1261 *3 *4 *5)) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) (-14 *5 *3))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) (-14 *5 *3)))) +(-13 (-1257 |#1|) (-798) (-10 -8 (-15 -3131 ($ (-1261 |#1| |#2| |#3|))) (-15 -3283 ((-1261 |#1| |#2| |#3|) $)) (-15 -2787 ((-413 (-570)) $)))) +((-3309 (((-2 (|:| -3283 (-777)) (|:| -1436 |#1|) (|:| |radicand| (-650 |#1|))) (-424 |#1|) (-777)) 35)) (-2665 (((-650 (-2 (|:| -1436 (-777)) (|:| |logand| |#1|))) (-424 |#1|)) 40))) +(((-324 |#1|) (-10 -7 (-15 -3309 ((-2 (|:| -3283 (-777)) (|:| -1436 |#1|) (|:| |radicand| (-650 |#1|))) (-424 |#1|) (-777))) (-15 -2665 ((-650 (-2 (|:| -1436 (-777)) (|:| |logand| |#1|))) (-424 |#1|)))) (-562)) (T -324)) +((-2665 (*1 *2 *3) (-12 (-5 *3 (-424 *4)) (-4 *4 (-562)) (-5 *2 (-650 (-2 (|:| -1436 (-777)) (|:| |logand| *4)))) (-5 *1 (-324 *4)))) (-3309 (*1 *2 *3 *4) (-12 (-5 *3 (-424 *5)) (-4 *5 (-562)) (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *5) (|:| |radicand| (-650 *5)))) (-5 *1 (-324 *5)) (-5 *4 (-777))))) +(-10 -7 (-15 -3309 ((-2 (|:| -3283 (-777)) (|:| -1436 |#1|) (|:| |radicand| (-650 |#1|))) (-424 |#1|) (-777))) (-15 -2665 ((-650 (-2 (|:| -1436 (-777)) (|:| |logand| |#1|))) (-424 |#1|)))) +((-1709 (((-650 |#2|) (-1182 |#4|)) 44)) (-2554 ((|#3| (-570)) 47)) (-2464 (((-1182 |#4|) (-1182 |#3|)) 30)) (-3715 (((-1182 |#4|) (-1182 |#4|) (-570)) 66)) (-3638 (((-1182 |#3|) (-1182 |#4|)) 21)) (-3324 (((-650 (-777)) (-1182 |#4|) (-650 |#2|)) 41)) (-2988 (((-1182 |#3|) (-1182 |#4|) (-650 |#2|) (-650 |#3|)) 35))) +(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2988 ((-1182 |#3|) (-1182 |#4|) (-650 |#2|) (-650 |#3|))) (-15 -3324 ((-650 (-777)) (-1182 |#4|) (-650 |#2|))) (-15 -1709 ((-650 |#2|) (-1182 |#4|))) (-15 -3638 ((-1182 |#3|) (-1182 |#4|))) (-15 -2464 ((-1182 |#4|) (-1182 |#3|))) (-15 -3715 ((-1182 |#4|) (-1182 |#4|) (-570))) (-15 -2554 (|#3| (-570)))) (-799) (-856) (-1058) (-956 |#3| |#1| |#2|)) (T -325)) +((-2554 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1058)) (-5 *1 (-325 *4 *5 *2 *6)) (-4 *6 (-956 *2 *4 *5)))) (-3715 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *7)) (-5 *3 (-570)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *1 (-325 *4 *5 *6 *7)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1182 *6)) (-4 *6 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-1182 *7)) (-5 *1 (-325 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-3638 (*1 *2 *3) (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-1182 *6)) (-5 *1 (-325 *4 *5 *6 *7)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-650 *5)) (-5 *1 (-325 *4 *5 *6 *7)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *8)) (-5 *4 (-650 *6)) (-4 *6 (-856)) (-4 *8 (-956 *7 *5 *6)) (-4 *5 (-799)) (-4 *7 (-1058)) (-5 *2 (-650 (-777))) (-5 *1 (-325 *5 *6 *7 *8)))) (-2988 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 *8)) (-4 *7 (-856)) (-4 *8 (-1058)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-5 *2 (-1182 *8)) (-5 *1 (-325 *6 *7 *8 *9))))) +(-10 -7 (-15 -2988 ((-1182 |#3|) (-1182 |#4|) (-650 |#2|) (-650 |#3|))) (-15 -3324 ((-650 (-777)) (-1182 |#4|) (-650 |#2|))) (-15 -1709 ((-650 |#2|) (-1182 |#4|))) (-15 -3638 ((-1182 |#3|) (-1182 |#4|))) (-15 -2464 ((-1182 |#4|) (-1182 |#3|))) (-15 -3715 ((-1182 |#4|) (-1182 |#4|) (-570))) (-15 -2554 (|#3| (-570)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 19)) (-1919 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-570)))) $) 21)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3475 (((-777) $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-4308 ((|#1| $ (-570)) NIL)) (-4279 (((-570) $ (-570)) NIL)) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3213 (($ (-1 |#1| |#1|) $) NIL)) (-2710 (($ (-1 (-570) (-570)) $) 11)) (-4122 (((-1168) $) NIL)) (-2355 (($ $ $) NIL (|has| (-570) (-798)))) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ |#1|) NIL)) (-3326 (((-570) |#1| $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) 29 (|has| |#1| (-856)))) (-3026 (($ $) 12) (($ $ $) 28)) (-3014 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL) (($ (-570) |#1|) 27))) +(((-326 |#1|) (-13 (-21) (-723 (-570)) (-327 |#1| (-570)) (-10 -7 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|))) (-1109)) (T -326)) +NIL +(-13 (-21) (-723 (-570)) (-327 |#1| (-570)) (-10 -7 (IF (|has| |#1| (-856)) (-6 (-856)) |%noBranch|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1919 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))) $) 28)) (-2620 (((-3 $ "failed") $ $) 20)) (-3475 (((-777) $) 29)) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 33)) (-3152 ((|#1| $) 34)) (-4308 ((|#1| $ (-570)) 26)) (-4279 ((|#2| $ (-570)) 27)) (-3213 (($ (-1 |#1| |#1|) $) 23)) (-2710 (($ (-1 |#2| |#2|) $) 24)) (-4122 (((-1168) $) 10)) (-2355 (($ $ $) 22 (|has| |#2| (-798)))) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ |#1|) 32)) (-3326 ((|#2| |#1| $) 25)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3014 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ |#2| |#1|) 30))) +(((-327 |#1| |#2|) (-141) (-1109) (-132)) (T -327)) +((-3014 (*1 *1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)) (-5 *2 (-777)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)) (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 *4)))))) (-4279 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-327 *4 *2)) (-4 *4 (-1109)) (-4 *2 (-132)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-327 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1109)))) (-3326 (*1 *2 *3 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132)))) (-2710 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)))) (-3213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)))) (-2355 (*1 *1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132)) (-4 *3 (-798))))) +(-13 (-132) (-1047 |t#1|) (-10 -8 (-15 -3014 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3475 ((-777) $)) (-15 -1919 ((-650 (-2 (|:| |gen| |t#1|) (|:| -4390 |t#2|))) $)) (-15 -4279 (|t#2| $ (-570))) (-15 -4308 (|t#1| $ (-570))) (-15 -3326 (|t#2| |t#1| $)) (-15 -2710 ($ (-1 |t#2| |t#2|) $)) (-15 -3213 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-798)) (-15 -2355 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-1047 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1919 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-777)))) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3475 (((-777) $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-4308 ((|#1| $ (-570)) NIL)) (-4279 (((-777) $ (-570)) NIL)) (-3213 (($ (-1 |#1| |#1|) $) NIL)) (-2710 (($ (-1 (-777) (-777)) $) NIL)) (-4122 (((-1168) $) NIL)) (-2355 (($ $ $) NIL (|has| (-777) (-798)))) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ |#1|) NIL)) (-3326 (((-777) |#1| $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3014 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-777) |#1|) NIL))) +(((-328 |#1|) (-327 |#1| (-777)) (-1109)) (T -328)) +NIL +(-327 |#1| (-777)) +((-1908 (($ $) 72)) (-3155 (($ $ |#2| |#3| $) 14)) (-2550 (($ (-1 |#3| |#3|) $) 51)) (-1830 (((-112) $) 42)) (-1838 ((|#2| $) 44)) (-2410 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1427 ((|#2| $) 68)) (-2479 (((-650 |#2|) $) 56)) (-1484 (($ $ $ (-777)) 37)) (-3037 (($ $ |#2|) 60))) +(((-329 |#1| |#2| |#3|) (-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1484 (|#1| |#1| |#1| (-777))) (-15 -3155 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2550 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2479 ((-650 |#2|) |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1830 ((-112) |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3037 (|#1| |#1| |#2|))) (-330 |#2| |#3|) (-1058) (-798)) (T -329)) +NIL +(-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1484 (|#1| |#1| |#1| (-777))) (-15 -3155 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2550 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2479 ((-650 |#2|) |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1830 ((-112) |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3037 (|#1| |#1| |#2|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 100 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 98 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 95)) (-3152 (((-570) $) 99 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 97 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 96)) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-1908 (($ $) 84 (|has| |#1| (-458)))) (-3155 (($ $ |#1| |#2| $) 88)) (-2481 (((-112) $) 35)) (-1700 (((-777) $) 91)) (-2343 (((-112) $) 74)) (-3925 (($ |#1| |#2|) 73)) (-2302 ((|#2| $) 90)) (-2550 (($ (-1 |#2| |#2|) $) 89)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1830 (((-112) $) 94)) (-1838 ((|#1| $) 93)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-562)))) (-3324 ((|#2| $) 76)) (-1427 ((|#1| $) 85 (|has| |#1| (-458)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59) (($ (-413 (-570))) 69 (-2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))))) (-2479 (((-650 |#1|) $) 92)) (-3326 ((|#1| $ |#2|) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1484 (($ $ $ (-777)) 87 (|has| |#1| (-174)))) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-330 |#1| |#2|) (-141) (-1058) (-798)) (T -330)) +((-1830 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-112)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-650 *3)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-777)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-2550 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)))) (-3155 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) (-1484 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-4 *3 (-174)))) (-2410 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *2 (-562)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)) (-4 *2 (-458)))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *2 (-458))))) +(-13 (-47 |t#1| |t#2|) (-417 |t#1|) (-10 -8 (-15 -1830 ((-112) $)) (-15 -1838 (|t#1| $)) (-15 -2479 ((-650 |t#1|) $)) (-15 -1700 ((-777) $)) (-15 -2302 (|t#2| $)) (-15 -2550 ($ (-1 |t#2| |t#2|) $)) (-15 -3155 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -1484 ($ $ $ (-777))) |%noBranch|) (IF (|has| |t#1| (-562)) (-15 -2410 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-15 -1427 (|t#1| $)) (-15 -1908 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-294) |has| |#1| (-562)) ((-417 |#1|) . T) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-2121 (((-112) (-112)) NIL)) (-3945 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) |#1|) $) NIL)) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3786 (($ $) NIL (|has| |#1| (-1109)))) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-4044 (($ $ (-570)) NIL)) (-3687 (((-777) $) NIL)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-3583 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2213 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3609 (($ (-650 |#1|)) NIL)) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3886 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) NIL)) (-2832 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-331 |#1|) (-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3609 ($ (-650 |#1|))) (-15 -3687 ((-777) $)) (-15 -4044 ($ $ (-570))) (-15 -2121 ((-112) (-112))))) (-1226)) (T -331)) +((-3609 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-331 *3)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-331 *3)) (-4 *3 (-1226)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-331 *3)) (-4 *3 (-1226)))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-1226))))) +(-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3609 ($ (-650 |#1|))) (-15 -3687 ((-777) $)) (-15 -4044 ($ $ (-570))) (-15 -2121 ((-112) (-112))))) +((-2714 (((-112) $) 50)) (-3254 (((-777)) 26)) (-3142 ((|#2| $) 54) (($ $ (-928)) 124)) (-3475 (((-777)) 125)) (-2427 (($ (-1276 |#2|)) 23)) (-4246 (((-112) $) 138)) (-2233 ((|#2| $) 56) (($ $ (-928)) 121)) (-2780 (((-1182 |#2|) $) NIL) (((-1182 $) $ (-928)) 112)) (-2326 (((-1182 |#2|) $) 98)) (-2874 (((-1182 |#2|) $) 94) (((-3 (-1182 |#2|) "failed") $ $) 91)) (-3097 (($ $ (-1182 |#2|)) 62)) (-2877 (((-839 (-928))) 33) (((-928)) 51)) (-3374 (((-135)) 30)) (-3324 (((-839 (-928)) $) 35) (((-928) $) 141)) (-3476 (($) 131)) (-1861 (((-1276 |#2|) $) NIL) (((-695 |#2|) (-1276 $)) 45)) (-2917 (($ $) NIL) (((-3 $ "failed") $) 101)) (-4059 (((-112) $) 48))) +(((-332 |#1| |#2|) (-10 -8 (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -3475 ((-777))) (-15 -2917 (|#1| |#1|)) (-15 -2874 ((-3 (-1182 |#2|) "failed") |#1| |#1|)) (-15 -2874 ((-1182 |#2|) |#1|)) (-15 -2326 ((-1182 |#2|) |#1|)) (-15 -3097 (|#1| |#1| (-1182 |#2|))) (-15 -4246 ((-112) |#1|)) (-15 -3476 (|#1|)) (-15 -3142 (|#1| |#1| (-928))) (-15 -2233 (|#1| |#1| (-928))) (-15 -2780 ((-1182 |#1|) |#1| (-928))) (-15 -3142 (|#2| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -3324 ((-928) |#1|)) (-15 -2877 ((-928))) (-15 -2780 ((-1182 |#2|) |#1|)) (-15 -2427 (|#1| (-1276 |#2|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -3254 ((-777))) (-15 -2877 ((-839 (-928)))) (-15 -3324 ((-839 (-928)) |#1|)) (-15 -2714 ((-112) |#1|)) (-15 -4059 ((-112) |#1|)) (-15 -3374 ((-135)))) (-333 |#2|) (-368)) (T -332)) +((-3374 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-135)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-2877 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-839 (-928))) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-3254 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-2877 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-928)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4)))) (-3475 (*1 *2) (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4)) (-4 *3 (-333 *4))))) +(-10 -8 (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -3475 ((-777))) (-15 -2917 (|#1| |#1|)) (-15 -2874 ((-3 (-1182 |#2|) "failed") |#1| |#1|)) (-15 -2874 ((-1182 |#2|) |#1|)) (-15 -2326 ((-1182 |#2|) |#1|)) (-15 -3097 (|#1| |#1| (-1182 |#2|))) (-15 -4246 ((-112) |#1|)) (-15 -3476 (|#1|)) (-15 -3142 (|#1| |#1| (-928))) (-15 -2233 (|#1| |#1| (-928))) (-15 -2780 ((-1182 |#1|) |#1| (-928))) (-15 -3142 (|#2| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -3324 ((-928) |#1|)) (-15 -2877 ((-928))) (-15 -2780 ((-1182 |#2|) |#1|)) (-15 -2427 (|#1| (-1276 |#2|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -3254 ((-777))) (-15 -2877 ((-839 (-928)))) (-15 -3324 ((-839 (-928)) |#1|)) (-15 -2714 ((-112) |#1|)) (-15 -4059 ((-112) |#1|)) (-15 -3374 ((-135)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2714 (((-112) $) 104)) (-3254 (((-777)) 100)) (-3142 ((|#1| $) 150) (($ $ (-928)) 147 (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) 132 (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-4073 (((-112) $ $) 65)) (-3475 (((-777)) 122 (|has| |#1| (-373)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 111)) (-3152 ((|#1| $) 112)) (-2427 (($ (-1276 |#1|)) 156)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-373)))) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-3408 (($) 119 (|has| |#1| (-373)))) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3740 (($) 134 (|has| |#1| (-373)))) (-4316 (((-112) $) 135 (|has| |#1| (-373)))) (-3640 (($ $ (-777)) 97 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) 96 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) 79)) (-4202 (((-928) $) 137 (|has| |#1| (-373))) (((-839 (-928)) $) 94 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) 35)) (-3379 (($) 145 (|has| |#1| (-373)))) (-4246 (((-112) $) 144 (|has| |#1| (-373)))) (-2233 ((|#1| $) 151) (($ $ (-928)) 148 (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) 123 (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-2780 (((-1182 |#1|) $) 155) (((-1182 $) $ (-928)) 149 (|has| |#1| (-373)))) (-2484 (((-928) $) 120 (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) 141 (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) 140 (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) 139 (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) 142 (|has| |#1| (-373)))) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-2310 (($) 124 (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) 121 (|has| |#1| (-373)))) (-3288 (((-112) $) 103)) (-3551 (((-1129) $) 11)) (-2335 (($) 143 (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 131 (|has| |#1| (-373)))) (-3801 (((-424 $) $) 82)) (-2877 (((-839 (-928))) 101) (((-928)) 153)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-2174 (((-777) $) 136 (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) 95 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) 109)) (-3519 (($ $) 128 (|has| |#1| (-373))) (($ $ (-777)) 126 (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) 102) (((-928) $) 152)) (-1881 (((-1182 |#1|)) 154)) (-2042 (($) 133 (|has| |#1| (-373)))) (-3476 (($) 146 (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) 158) (((-695 |#1|) (-1276 $)) 157)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 130 (|has| |#1| (-373)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ |#1|) 110)) (-2917 (($ $) 129 (|has| |#1| (-373))) (((-3 $ "failed") $) 93 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-2077 (((-1276 $)) 160) (((-1276 $) (-928)) 159)) (-3258 (((-112) $ $) 45)) (-4059 (((-112) $) 105)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2663 (($ $) 99 (|has| |#1| (-373))) (($ $ (-777)) 98 (|has| |#1| (-373)))) (-2835 (($ $) 127 (|has| |#1| (-373))) (($ $ (-777)) 125 (|has| |#1| (-373)))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73) (($ $ |#1|) 108)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-333 |#1|) (-141) (-368)) (T -333)) +((-2077 (*1 *2) (-12 (-4 *3 (-368)) (-5 *2 (-1276 *1)) (-4 *1 (-333 *3)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-928)) (-4 *4 (-368)) (-5 *2 (-1276 *1)) (-4 *1 (-333 *4)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1276 *3)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-333 *4)) (-4 *4 (-368)) (-5 *2 (-695 *4)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-368)) (-4 *1 (-333 *3)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3)))) (-1881 (*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3)))) (-2877 (*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-928)) (-4 *4 (-373)) (-4 *4 (-368)) (-5 *2 (-1182 *1)) (-4 *1 (-333 *4)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) (-3142 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) (-3476 (*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) (-3379 (*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-112)))) (-2335 (*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-373)) (-4 *1 (-333 *3)) (-4 *3 (-368)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-1182 *3)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-1182 *3)))) (-2874 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-1182 *3))))) +(-13 (-1295 |t#1|) (-1047 |t#1|) (-10 -8 (-15 -2077 ((-1276 $))) (-15 -2077 ((-1276 $) (-928))) (-15 -1861 ((-1276 |t#1|) $)) (-15 -1861 ((-695 |t#1|) (-1276 $))) (-15 -2427 ($ (-1276 |t#1|))) (-15 -2780 ((-1182 |t#1|) $)) (-15 -1881 ((-1182 |t#1|))) (-15 -2877 ((-928))) (-15 -3324 ((-928) $)) (-15 -2233 (|t#1| $)) (-15 -3142 (|t#1| $)) (IF (|has| |t#1| (-373)) (PROGN (-6 (-354)) (-15 -2780 ((-1182 $) $ (-928))) (-15 -2233 ($ $ (-928))) (-15 -3142 ($ $ (-928))) (-15 -3476 ($)) (-15 -3379 ($)) (-15 -4246 ((-112) $)) (-15 -2335 ($)) (-15 -3097 ($ $ (-1182 |t#1|))) (-15 -2326 ((-1182 |t#1|) $)) (-15 -2874 ((-1182 |t#1|) $)) (-15 -2874 ((-3 (-1182 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2779 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-235) |has| |#1| (-373)) ((-245) . T) ((-294) . T) ((-311) . T) ((-1295 |#1|) . T) ((-368) . T) ((-408) -2779 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-373) |has| |#1| (-373)) ((-354) |has| |#1| (-373)) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 |#1|) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-373)) ((-1230) . T) ((-1283 |#1|) . T)) +((-2419 (((-112) $ $) NIL)) (-2497 (($ (-1185) $) 100)) (-4157 (($) 89)) (-3134 (((-1129) (-1129)) 9)) (-1763 (($) 90)) (-1853 (($) 104) (($ (-320 (-705))) 112) (($ (-320 (-707))) 108) (($ (-320 (-700))) 116) (($ (-320 (-384))) 123) (($ (-320 (-570))) 119) (($ (-320 (-171 (-384)))) 127)) (-3304 (($ (-1185) $) 101)) (-1571 (($ (-650 (-868))) 91)) (-3978 (((-1281) $) 87)) (-2945 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2492 (($ (-1129)) 58)) (-1729 (((-1113) $) 30)) (-1482 (($ (-1101 (-959 (-570))) $) 97) (($ (-1101 (-959 (-570))) (-959 (-570)) $) 98)) (-3358 (($ (-1129)) 99)) (-1332 (($ (-1185) $) 129) (($ (-1185) $ $) 130)) (-3390 (($ (-1186) (-650 (-1186))) 88)) (-3776 (($ (-1168)) 94) (($ (-650 (-1168))) 92)) (-3798 (((-868) $) 132)) (-3211 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4303 (-112)) (|:| -2190 (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |blockBranch| (-650 $)) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2762 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -3587 $))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -3587 $))) (|:| |commonBranch| (-2 (|:| -3574 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868)))) $) 50)) (-2269 (($ (-1168)) 202)) (-3082 (($ (-650 $)) 128)) (-1319 (((-112) $ $) NIL)) (-2162 (($ (-1186) (-1168)) 135) (($ (-1186) (-320 (-707))) 175) (($ (-1186) (-320 (-705))) 176) (($ (-1186) (-320 (-700))) 177) (($ (-1186) (-695 (-707))) 138) (($ (-1186) (-695 (-705))) 141) (($ (-1186) (-695 (-700))) 144) (($ (-1186) (-1276 (-707))) 147) (($ (-1186) (-1276 (-705))) 150) (($ (-1186) (-1276 (-700))) 153) (($ (-1186) (-695 (-320 (-707)))) 156) (($ (-1186) (-695 (-320 (-705)))) 159) (($ (-1186) (-695 (-320 (-700)))) 162) (($ (-1186) (-1276 (-320 (-707)))) 165) (($ (-1186) (-1276 (-320 (-705)))) 168) (($ (-1186) (-1276 (-320 (-700)))) 171) (($ (-1186) (-650 (-959 (-570))) (-320 (-707))) 172) (($ (-1186) (-650 (-959 (-570))) (-320 (-705))) 173) (($ (-1186) (-650 (-959 (-570))) (-320 (-700))) 174) (($ (-1186) (-320 (-570))) 199) (($ (-1186) (-320 (-384))) 200) (($ (-1186) (-320 (-171 (-384)))) 201) (($ (-1186) (-695 (-320 (-570)))) 180) (($ (-1186) (-695 (-320 (-384)))) 183) (($ (-1186) (-695 (-320 (-171 (-384))))) 186) (($ (-1186) (-1276 (-320 (-570)))) 189) (($ (-1186) (-1276 (-320 (-384)))) 192) (($ (-1186) (-1276 (-320 (-171 (-384))))) 195) (($ (-1186) (-650 (-959 (-570))) (-320 (-570))) 196) (($ (-1186) (-650 (-959 (-570))) (-320 (-384))) 197) (($ (-1186) (-650 (-959 (-570))) (-320 (-171 (-384)))) 198)) (-2923 (((-112) $ $) NIL))) +(((-334) (-13 (-1109) (-10 -8 (-15 -1482 ($ (-1101 (-959 (-570))) $)) (-15 -1482 ($ (-1101 (-959 (-570))) (-959 (-570)) $)) (-15 -2497 ($ (-1185) $)) (-15 -3304 ($ (-1185) $)) (-15 -2492 ($ (-1129))) (-15 -3358 ($ (-1129))) (-15 -3776 ($ (-1168))) (-15 -3776 ($ (-650 (-1168)))) (-15 -2269 ($ (-1168))) (-15 -1853 ($)) (-15 -1853 ($ (-320 (-705)))) (-15 -1853 ($ (-320 (-707)))) (-15 -1853 ($ (-320 (-700)))) (-15 -1853 ($ (-320 (-384)))) (-15 -1853 ($ (-320 (-570)))) (-15 -1853 ($ (-320 (-171 (-384))))) (-15 -1332 ($ (-1185) $)) (-15 -1332 ($ (-1185) $ $)) (-15 -2162 ($ (-1186) (-1168))) (-15 -2162 ($ (-1186) (-320 (-707)))) (-15 -2162 ($ (-1186) (-320 (-705)))) (-15 -2162 ($ (-1186) (-320 (-700)))) (-15 -2162 ($ (-1186) (-695 (-707)))) (-15 -2162 ($ (-1186) (-695 (-705)))) (-15 -2162 ($ (-1186) (-695 (-700)))) (-15 -2162 ($ (-1186) (-1276 (-707)))) (-15 -2162 ($ (-1186) (-1276 (-705)))) (-15 -2162 ($ (-1186) (-1276 (-700)))) (-15 -2162 ($ (-1186) (-695 (-320 (-707))))) (-15 -2162 ($ (-1186) (-695 (-320 (-705))))) (-15 -2162 ($ (-1186) (-695 (-320 (-700))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-707))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-705))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-700))))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-707)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-705)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-700)))) (-15 -2162 ($ (-1186) (-320 (-570)))) (-15 -2162 ($ (-1186) (-320 (-384)))) (-15 -2162 ($ (-1186) (-320 (-171 (-384))))) (-15 -2162 ($ (-1186) (-695 (-320 (-570))))) (-15 -2162 ($ (-1186) (-695 (-320 (-384))))) (-15 -2162 ($ (-1186) (-695 (-320 (-171 (-384)))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-570))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-384))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-171 (-384)))))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-570)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-384)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-171 (-384))))) (-15 -3082 ($ (-650 $))) (-15 -4157 ($)) (-15 -1763 ($)) (-15 -1571 ($ (-650 (-868)))) (-15 -3390 ($ (-1186) (-650 (-1186)))) (-15 -2945 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3211 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4303 (-112)) (|:| -2190 (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |blockBranch| (-650 $)) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2762 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -3587 $))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -3587 $))) (|:| |commonBranch| (-2 (|:| -3574 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868)))) $)) (-15 -3978 ((-1281) $)) (-15 -1729 ((-1113) $)) (-15 -3134 ((-1129) (-1129)))))) (T -334)) +((-1482 (*1 *1 *2 *1) (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *1 (-334)))) (-1482 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *3 (-959 (-570))) (-5 *1 (-334)))) (-2497 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-3304 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334)))) (-3776 (*1 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-334)))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334)))) (-1853 (*1 *1) (-5 *1 (-334))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-320 (-705))) (-5 *1 (-334)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-320 (-707))) (-5 *1 (-334)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-320 (-700))) (-5 *1 (-334)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-334)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-334)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-334)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-1332 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-707))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-705))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-700))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-707))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-705))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-700))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-707))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-705))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-700))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-707)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-705)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-700)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-707)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-705)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-700)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-707))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-705))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-700))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-570))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-384))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-171 (-384)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-570)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-384)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-171 (-384))))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-570)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-384)))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-171 (-384))))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-570))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-384))) (-5 *1 (-334)))) (-2162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-320 (-171 (-384)))) (-5 *1 (-334)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-5 *1 (-334)))) (-4157 (*1 *1) (-5 *1 (-334))) (-1763 (*1 *1) (-5 *1 (-334))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-334)))) (-3390 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-334)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-334)))) (-3211 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| (-334)) (|:| |elseClause| (-334)))) (|:| |returnBranch| (-2 (|:| -4303 (-112)) (|:| -2190 (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |blockBranch| (-650 (-334))) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2762 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -3587 (-334)))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -3587 (-334)))) (|:| |commonBranch| (-2 (|:| -3574 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868))))) (-5 *1 (-334)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-334)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-334)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334))))) +(-13 (-1109) (-10 -8 (-15 -1482 ($ (-1101 (-959 (-570))) $)) (-15 -1482 ($ (-1101 (-959 (-570))) (-959 (-570)) $)) (-15 -2497 ($ (-1185) $)) (-15 -3304 ($ (-1185) $)) (-15 -2492 ($ (-1129))) (-15 -3358 ($ (-1129))) (-15 -3776 ($ (-1168))) (-15 -3776 ($ (-650 (-1168)))) (-15 -2269 ($ (-1168))) (-15 -1853 ($)) (-15 -1853 ($ (-320 (-705)))) (-15 -1853 ($ (-320 (-707)))) (-15 -1853 ($ (-320 (-700)))) (-15 -1853 ($ (-320 (-384)))) (-15 -1853 ($ (-320 (-570)))) (-15 -1853 ($ (-320 (-171 (-384))))) (-15 -1332 ($ (-1185) $)) (-15 -1332 ($ (-1185) $ $)) (-15 -2162 ($ (-1186) (-1168))) (-15 -2162 ($ (-1186) (-320 (-707)))) (-15 -2162 ($ (-1186) (-320 (-705)))) (-15 -2162 ($ (-1186) (-320 (-700)))) (-15 -2162 ($ (-1186) (-695 (-707)))) (-15 -2162 ($ (-1186) (-695 (-705)))) (-15 -2162 ($ (-1186) (-695 (-700)))) (-15 -2162 ($ (-1186) (-1276 (-707)))) (-15 -2162 ($ (-1186) (-1276 (-705)))) (-15 -2162 ($ (-1186) (-1276 (-700)))) (-15 -2162 ($ (-1186) (-695 (-320 (-707))))) (-15 -2162 ($ (-1186) (-695 (-320 (-705))))) (-15 -2162 ($ (-1186) (-695 (-320 (-700))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-707))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-705))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-700))))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-707)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-705)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-700)))) (-15 -2162 ($ (-1186) (-320 (-570)))) (-15 -2162 ($ (-1186) (-320 (-384)))) (-15 -2162 ($ (-1186) (-320 (-171 (-384))))) (-15 -2162 ($ (-1186) (-695 (-320 (-570))))) (-15 -2162 ($ (-1186) (-695 (-320 (-384))))) (-15 -2162 ($ (-1186) (-695 (-320 (-171 (-384)))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-570))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-384))))) (-15 -2162 ($ (-1186) (-1276 (-320 (-171 (-384)))))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-570)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-384)))) (-15 -2162 ($ (-1186) (-650 (-959 (-570))) (-320 (-171 (-384))))) (-15 -3082 ($ (-650 $))) (-15 -4157 ($)) (-15 -1763 ($)) (-15 -1571 ($ (-650 (-868)))) (-15 -3390 ($ (-1186) (-650 (-1186)))) (-15 -2945 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3211 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1186)) (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1185)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4303 (-112)) (|:| -2190 (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |blockBranch| (-650 $)) (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| (-2 (|:| -2762 (-1101 (-959 (-570)))) (|:| |span| (-959 (-570))) (|:| -3587 $))) (|:| |labelBranch| (-1129)) (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -3587 $))) (|:| |commonBranch| (-2 (|:| -3574 (-1186)) (|:| |contents| (-650 (-1186))))) (|:| |printBranch| (-650 (-868)))) $)) (-15 -3978 ((-1281) $)) (-15 -1729 ((-1113) $)) (-15 -3134 ((-1129) (-1129))))) +((-2419 (((-112) $ $) NIL)) (-4179 (((-112) $) 13)) (-2604 (($ |#1|) 10)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2616 (($ |#1|) 12)) (-3798 (((-868) $) 19)) (-1319 (((-112) $ $) NIL)) (-2990 ((|#1| $) 14)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 21))) +(((-335 |#1|) (-13 (-856) (-10 -8 (-15 -2604 ($ |#1|)) (-15 -2616 ($ |#1|)) (-15 -4179 ((-112) $)) (-15 -2990 (|#1| $)))) (-856)) (T -335)) +((-2604 (*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) (-2616 (*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) (-4179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-856)))) (-2990 (*1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856))))) +(-13 (-856) (-10 -8 (-15 -2604 ($ |#1|)) (-15 -2616 ($ |#1|)) (-15 -4179 ((-112) $)) (-15 -2990 (|#1| $)))) +((-2253 (((-334) (-1186) (-959 (-570))) 23)) (-2672 (((-334) (-1186) (-959 (-570))) 27)) (-3977 (((-334) (-1186) (-1101 (-959 (-570))) (-1101 (-959 (-570)))) 26) (((-334) (-1186) (-959 (-570)) (-959 (-570))) 24)) (-1582 (((-334) (-1186) (-959 (-570))) 31))) +(((-336) (-10 -7 (-15 -2253 ((-334) (-1186) (-959 (-570)))) (-15 -3977 ((-334) (-1186) (-959 (-570)) (-959 (-570)))) (-15 -3977 ((-334) (-1186) (-1101 (-959 (-570))) (-1101 (-959 (-570))))) (-15 -2672 ((-334) (-1186) (-959 (-570)))) (-15 -1582 ((-334) (-1186) (-959 (-570)))))) (T -336)) +((-1582 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))) (-3977 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-1101 (-959 (-570)))) (-5 *2 (-334)) (-5 *1 (-336)))) (-3977 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) (-5 *1 (-336))))) +(-10 -7 (-15 -2253 ((-334) (-1186) (-959 (-570)))) (-15 -3977 ((-334) (-1186) (-959 (-570)) (-959 (-570)))) (-15 -3977 ((-334) (-1186) (-1101 (-959 (-570))) (-1101 (-959 (-570))))) (-15 -2672 ((-334) (-1186) (-959 (-570)))) (-15 -1582 ((-334) (-1186) (-959 (-570))))) +((-2419 (((-112) $ $) NIL)) (-3003 (((-512) $) 20)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3200 (((-965 (-777)) $) 18)) (-1558 (((-252) $) 7)) (-3798 (((-868) $) 26)) (-1937 (((-965 (-185 (-140))) $) 16)) (-1319 (((-112) $ $) NIL)) (-1474 (((-650 (-879 (-1191) (-777))) $) 12)) (-2923 (((-112) $ $) 22))) +(((-337) (-13 (-1109) (-10 -8 (-15 -1558 ((-252) $)) (-15 -1474 ((-650 (-879 (-1191) (-777))) $)) (-15 -3200 ((-965 (-777)) $)) (-15 -1937 ((-965 (-185 (-140))) $)) (-15 -3003 ((-512) $))))) (T -337)) +((-1558 (*1 *2 *1) (-12 (-5 *2 (-252)) (-5 *1 (-337)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-650 (-879 (-1191) (-777)))) (-5 *1 (-337)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-965 (-777))) (-5 *1 (-337)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-965 (-185 (-140)))) (-5 *1 (-337)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-337))))) +(-13 (-1109) (-10 -8 (-15 -1558 ((-252) $)) (-15 -1474 ((-650 (-879 (-1191) (-777))) $)) (-15 -3200 ((-965 (-777)) $)) (-15 -1937 ((-965 (-185 (-140))) $)) (-15 -3003 ((-512) $)))) +((-1347 (((-341 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-341 |#1| |#2| |#3| |#4|)) 33))) +(((-338 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1347 ((-341 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-341 |#1| |#2| |#3| |#4|)))) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|) (-368) (-1252 |#5|) (-1252 (-413 |#6|)) (-347 |#5| |#6| |#7|)) (T -338)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-341 *5 *6 *7 *8)) (-4 *5 (-368)) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *9 (-368)) (-4 *10 (-1252 *9)) (-4 *11 (-1252 (-413 *10))) (-5 *2 (-341 *9 *10 *11 *12)) (-5 *1 (-338 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-347 *9 *10 *11))))) +(-10 -7 (-15 -1347 ((-341 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-341 |#1| |#2| |#3| |#4|)))) +((-2711 (((-112) $) 14))) +(((-339 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2711 ((-112) |#1|))) (-340 |#2| |#3| |#4| |#5|) (-368) (-1252 |#2|) (-1252 (-413 |#3|)) (-347 |#2| |#3| |#4|)) (T -339)) +NIL +(-10 -8 (-15 -2711 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-3600 (($ $) 29)) (-2711 (((-112) $) 28)) (-4122 (((-1168) $) 10)) (-3425 (((-419 |#2| (-413 |#2|) |#3| |#4|) $) 35)) (-3551 (((-1129) $) 11)) (-2335 (((-3 |#4| "failed") $) 27)) (-4069 (($ (-419 |#2| (-413 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-570)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-4022 (((-2 (|:| -4271 (-419 |#2| (-413 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24))) +(((-340 |#1| |#2| |#3| |#4|) (-141) (-368) (-1252 |t#1|) (-1252 (-413 |t#2|)) (-347 |t#1| |t#2| |t#3|)) (T -340)) +((-3425 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-419 *4 (-413 *4) *5 *6)))) (-4069 (*1 *1 *2) (-12 (-5 *2 (-419 *4 (-413 *4) *5 *6)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-4 *3 (-368)) (-4 *1 (-340 *3 *4 *5 *6)))) (-4069 (*1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *1 (-340 *3 *4 *5 *2)) (-4 *2 (-347 *3 *4 *5)))) (-4069 (*1 *1 *2 *2) (-12 (-4 *2 (-368)) (-4 *3 (-1252 *2)) (-4 *4 (-1252 (-413 *3))) (-4 *1 (-340 *2 *3 *4 *5)) (-4 *5 (-347 *2 *3 *4)))) (-4069 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-570)) (-4 *2 (-368)) (-4 *4 (-1252 *2)) (-4 *5 (-1252 (-413 *4))) (-4 *1 (-340 *2 *4 *5 *6)) (-4 *6 (-347 *2 *4 *5)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-2 (|:| -4271 (-419 *4 (-413 *4) *5 *6)) (|:| |principalPart| *6))))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-340 *2 *3 *4 *5)) (-4 *2 (-368)) (-4 *3 (-1252 *2)) (-4 *4 (-1252 (-413 *3))) (-4 *5 (-347 *2 *3 *4)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-112)))) (-2335 (*1 *2 *1) (|partial| -12 (-4 *1 (-340 *3 *4 *5 *2)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *2 (-347 *3 *4 *5)))) (-4069 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-368)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 (-413 *3))) (-4 *1 (-340 *4 *3 *5 *2)) (-4 *2 (-347 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3425 ((-419 |t#2| (-413 |t#2|) |t#3| |t#4|) $)) (-15 -4069 ($ (-419 |t#2| (-413 |t#2|) |t#3| |t#4|))) (-15 -4069 ($ |t#4|)) (-15 -4069 ($ |t#1| |t#1|)) (-15 -4069 ($ |t#1| |t#1| (-570))) (-15 -4022 ((-2 (|:| -4271 (-419 |t#2| (-413 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3600 ($ $)) (-15 -2711 ((-112) $)) (-15 -2335 ((-3 |t#4| "failed") $)) (-15 -4069 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3600 (($ $) 33)) (-2711 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-2685 (((-1276 |#4|) $) 134)) (-3425 (((-419 |#2| (-413 |#2|) |#3| |#4|) $) 31)) (-3551 (((-1129) $) NIL)) (-2335 (((-3 |#4| "failed") $) 36)) (-2933 (((-1276 |#4|) $) 126)) (-4069 (($ (-419 |#2| (-413 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-570)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4022 (((-2 (|:| -4271 (-419 |#2| (-413 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3798 (((-868) $) 17)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 14 T CONST)) (-2923 (((-112) $ $) 20)) (-3026 (($ $) 27) (($ $ $) NIL)) (-3014 (($ $ $) 25)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 23))) +(((-341 |#1| |#2| |#3| |#4|) (-13 (-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2933 ((-1276 |#4|) $)) (-15 -2685 ((-1276 |#4|) $)))) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -341)) +((-2933 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-1276 *6)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *6 (-347 *3 *4 *5)))) (-2685 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-1276 *6)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *6 (-347 *3 *4 *5))))) +(-13 (-340 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2933 ((-1276 |#4|) $)) (-15 -2685 ((-1276 |#4|) $)))) +((-1725 (($ $ (-1186) |#2|) NIL) (($ $ (-650 (-1186)) (-650 |#2|)) 20) (($ $ (-650 (-298 |#2|))) 15) (($ $ (-298 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-650 |#2|) (-650 |#2|)) NIL)) (-1872 (($ $ |#2|) 11))) +(((-342 |#1| |#2|) (-10 -8 (-15 -1872 (|#1| |#1| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-298 |#2|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 |#2|))) (-15 -1725 (|#1| |#1| (-1186) |#2|))) (-343 |#2|) (-1109)) (T -342)) +NIL +(-10 -8 (-15 -1872 (|#1| |#1| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-298 |#2|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 |#2|))) (-15 -1725 (|#1| |#1| (-1186) |#2|))) +((-1347 (($ (-1 |#1| |#1|) $) 6)) (-1725 (($ $ (-1186) |#1|) 17 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 16 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-650 (-298 |#1|))) 15 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 14 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-313 |#1|))) (($ $ (-650 |#1|) (-650 |#1|)) 12 (|has| |#1| (-313 |#1|)))) (-1872 (($ $ |#1|) 11 (|has| |#1| (-290 |#1| |#1|))))) +(((-343 |#1|) (-141) (-1109)) (T -343)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109))))) +(-13 (-10 -8 (-15 -1347 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-290 |t#1| |t#1|)) (-6 (-290 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-313 |t#1|)) (-6 (-313 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-520 (-1186) |t#1|)) (-6 (-520 (-1186) |t#1|)) |%noBranch|))) +(((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1186)) $) NIL)) (-3311 (((-112)) 96) (((-112) (-112)) 97)) (-3665 (((-650 (-618 $)) $) NIL)) (-2774 (($ $) NIL)) (-2629 (($ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4297 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-3815 (($ $) NIL)) (-2749 (($ $) NIL)) (-2604 (($ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-618 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-320 |#3|)) 76) (((-3 $ "failed") (-1186)) 103) (((-3 $ "failed") (-320 (-570))) 64 (|has| |#3| (-1047 (-570)))) (((-3 $ "failed") (-413 (-959 (-570)))) 70 (|has| |#3| (-1047 (-570)))) (((-3 $ "failed") (-959 (-570))) 65 (|has| |#3| (-1047 (-570)))) (((-3 $ "failed") (-320 (-384))) 94 (|has| |#3| (-1047 (-384)))) (((-3 $ "failed") (-413 (-959 (-384)))) 88 (|has| |#3| (-1047 (-384)))) (((-3 $ "failed") (-959 (-384))) 83 (|has| |#3| (-1047 (-384))))) (-3152 (((-618 $) $) NIL) ((|#3| $) NIL) (($ (-320 |#3|)) 77) (($ (-1186)) 104) (($ (-320 (-570))) 66 (|has| |#3| (-1047 (-570)))) (($ (-413 (-959 (-570)))) 71 (|has| |#3| (-1047 (-570)))) (($ (-959 (-570))) 67 (|has| |#3| (-1047 (-570)))) (($ (-320 (-384))) 95 (|has| |#3| (-1047 (-384)))) (($ (-413 (-959 (-384)))) 89 (|has| |#3| (-1047 (-384)))) (($ (-959 (-384))) 85 (|has| |#3| (-1047 (-384))))) (-2229 (((-3 $ "failed") $) NIL)) (-1313 (($) 101)) (-1594 (($ $) NIL) (($ (-650 $)) NIL)) (-3406 (((-650 (-115)) $) NIL)) (-3748 (((-115) (-115)) NIL)) (-2481 (((-112) $) NIL)) (-2639 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-4111 (((-1182 $) (-618 $)) NIL (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) NIL)) (-3451 (((-3 (-618 $) "failed") $) NIL)) (-1343 (($ $) 99)) (-2665 (($ $) NIL)) (-4122 (((-1168) $) NIL)) (-3739 (((-650 (-618 $)) $) NIL)) (-1355 (($ (-115) $) 98) (($ (-115) (-650 $)) NIL)) (-3257 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) NIL)) (-1428 (((-777) $) NIL)) (-3551 (((-1129) $) NIL)) (-4124 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-4390 (($ $) NIL)) (-3699 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1725 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-2707 (($ $) NIL) (($ $ $) NIL)) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL)) (-1881 (($ $) NIL (|has| $ (-1058)))) (-2761 (($ $) NIL)) (-2616 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-618 $)) NIL) (($ |#3|) NIL) (($ (-570)) NIL) (((-320 |#3|) $) 102)) (-2862 (((-777)) NIL T CONST)) (-4215 (($ $) NIL) (($ (-650 $)) NIL)) (-4217 (((-112) (-115)) NIL)) (-1319 (((-112) $ $) NIL)) (-2704 (($ $) NIL)) (-2678 (($ $) NIL)) (-2692 (($ $) NIL)) (-2216 (($ $) NIL)) (-1809 (($) 100 T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL))) +(((-344 |#1| |#2| |#3|) (-13 (-306) (-38 |#3|) (-1047 |#3|) (-907 (-1186)) (-10 -8 (-15 -3152 ($ (-320 |#3|))) (-15 -4382 ((-3 $ "failed") (-320 |#3|))) (-15 -3152 ($ (-1186))) (-15 -4382 ((-3 $ "failed") (-1186))) (-15 -3798 ((-320 |#3|) $)) (IF (|has| |#3| (-1047 (-570))) (PROGN (-15 -3152 ($ (-320 (-570)))) (-15 -4382 ((-3 $ "failed") (-320 (-570)))) (-15 -3152 ($ (-413 (-959 (-570))))) (-15 -4382 ((-3 $ "failed") (-413 (-959 (-570))))) (-15 -3152 ($ (-959 (-570)))) (-15 -4382 ((-3 $ "failed") (-959 (-570))))) |%noBranch|) (IF (|has| |#3| (-1047 (-384))) (PROGN (-15 -3152 ($ (-320 (-384)))) (-15 -4382 ((-3 $ "failed") (-320 (-384)))) (-15 -3152 ($ (-413 (-959 (-384))))) (-15 -4382 ((-3 $ "failed") (-413 (-959 (-384))))) (-15 -3152 ($ (-959 (-384)))) (-15 -4382 ((-3 $ "failed") (-959 (-384))))) |%noBranch|) (-15 -2216 ($ $)) (-15 -3815 ($ $)) (-15 -4390 ($ $)) (-15 -2665 ($ $)) (-15 -1343 ($ $)) (-15 -2604 ($ $)) (-15 -2616 ($ $)) (-15 -2629 ($ $)) (-15 -2678 ($ $)) (-15 -2692 ($ $)) (-15 -2704 ($ $)) (-15 -2749 ($ $)) (-15 -2761 ($ $)) (-15 -2774 ($ $)) (-15 -1313 ($)) (-15 -1709 ((-650 (-1186)) $)) (-15 -3311 ((-112))) (-15 -3311 ((-112) (-112))))) (-650 (-1186)) (-650 (-1186)) (-393)) (T -344)) +((-3152 (*1 *1 *2) (-12 (-5 *2 (-320 *5)) (-4 *5 (-393)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 *5)) (-4 *5 (-393)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 *2)) (-14 *4 (-650 *2)) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 *2)) (-14 *4 (-650 *2)) (-4 *5 (-393)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-320 *5)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-2216 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-4390 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2665 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-1343 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2604 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2629 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2678 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2692 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2704 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2749 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2761 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-2774 (*1 *1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-1313 (*1 *1) (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-344 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-393)))) (-3311 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) (-3311 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393))))) +(-13 (-306) (-38 |#3|) (-1047 |#3|) (-907 (-1186)) (-10 -8 (-15 -3152 ($ (-320 |#3|))) (-15 -4382 ((-3 $ "failed") (-320 |#3|))) (-15 -3152 ($ (-1186))) (-15 -4382 ((-3 $ "failed") (-1186))) (-15 -3798 ((-320 |#3|) $)) (IF (|has| |#3| (-1047 (-570))) (PROGN (-15 -3152 ($ (-320 (-570)))) (-15 -4382 ((-3 $ "failed") (-320 (-570)))) (-15 -3152 ($ (-413 (-959 (-570))))) (-15 -4382 ((-3 $ "failed") (-413 (-959 (-570))))) (-15 -3152 ($ (-959 (-570)))) (-15 -4382 ((-3 $ "failed") (-959 (-570))))) |%noBranch|) (IF (|has| |#3| (-1047 (-384))) (PROGN (-15 -3152 ($ (-320 (-384)))) (-15 -4382 ((-3 $ "failed") (-320 (-384)))) (-15 -3152 ($ (-413 (-959 (-384))))) (-15 -4382 ((-3 $ "failed") (-413 (-959 (-384))))) (-15 -3152 ($ (-959 (-384)))) (-15 -4382 ((-3 $ "failed") (-959 (-384))))) |%noBranch|) (-15 -2216 ($ $)) (-15 -3815 ($ $)) (-15 -4390 ($ $)) (-15 -2665 ($ $)) (-15 -1343 ($ $)) (-15 -2604 ($ $)) (-15 -2616 ($ $)) (-15 -2629 ($ $)) (-15 -2678 ($ $)) (-15 -2692 ($ $)) (-15 -2704 ($ $)) (-15 -2749 ($ $)) (-15 -2761 ($ $)) (-15 -2774 ($ $)) (-15 -1313 ($)) (-15 -1709 ((-650 (-1186)) $)) (-15 -3311 ((-112))) (-15 -3311 ((-112) (-112))))) +((-1347 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-345 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1347 (|#8| (-1 |#5| |#1|) |#4|))) (-1230) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|) (-1230) (-1252 |#5|) (-1252 (-413 |#6|)) (-347 |#5| |#6| |#7|)) (T -345)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1230)) (-4 *8 (-1230)) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *9 (-1252 *8)) (-4 *2 (-347 *8 *9 *10)) (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-347 *5 *6 *7)) (-4 *10 (-1252 (-413 *9)))))) +(-10 -7 (-15 -1347 (|#8| (-1 |#5| |#1|) |#4|))) +((-2681 (((-2 (|:| |num| (-1276 |#3|)) (|:| |den| |#3|)) $) 39)) (-2427 (($ (-1276 (-413 |#3|)) (-1276 $)) NIL) (($ (-1276 (-413 |#3|))) NIL) (($ (-1276 |#3|) |#3|) 177)) (-2236 (((-1276 $) (-1276 $)) 160)) (-3610 (((-650 (-650 |#2|))) 129)) (-1644 (((-112) |#2| |#2|) 76)) (-1908 (($ $) 151)) (-1646 (((-777)) 176)) (-3757 (((-1276 $) (-1276 $)) 222)) (-1408 (((-650 (-959 |#2|)) (-1186)) 118)) (-1653 (((-112) $) 173)) (-3558 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-2716 (((-3 |#3| "failed")) 52)) (-2254 (((-777)) 188)) (-1872 ((|#2| $ |#2| |#2|) 143)) (-1801 (((-3 |#3| "failed")) 71)) (-3519 (($ $ (-1 (-413 |#3|) (-413 |#3|)) (-777)) NIL) (($ $ (-1 (-413 |#3|) (-413 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-2699 (((-1276 $) (-1276 $)) 166)) (-2537 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-2468 (((-112)) 34))) +(((-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3610 ((-650 (-650 |#2|)))) (-15 -1408 ((-650 (-959 |#2|)) (-1186))) (-15 -2537 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2716 ((-3 |#3| "failed"))) (-15 -1801 ((-3 |#3| "failed"))) (-15 -1872 (|#2| |#1| |#2| |#2|)) (-15 -1908 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3558 ((-112) |#1| |#3|)) (-15 -3558 ((-112) |#1| |#2|)) (-15 -2427 (|#1| (-1276 |#3|) |#3|)) (-15 -2681 ((-2 (|:| |num| (-1276 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2236 ((-1276 |#1|) (-1276 |#1|))) (-15 -3757 ((-1276 |#1|) (-1276 |#1|))) (-15 -2699 ((-1276 |#1|) (-1276 |#1|))) (-15 -3558 ((-112) |#1|)) (-15 -1653 ((-112) |#1|)) (-15 -1644 ((-112) |#2| |#2|)) (-15 -2468 ((-112))) (-15 -2254 ((-777))) (-15 -1646 ((-777))) (-15 -3519 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)))) (-15 -3519 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)) (-777))) (-15 -2427 (|#1| (-1276 (-413 |#3|)))) (-15 -2427 (|#1| (-1276 (-413 |#3|)) (-1276 |#1|)))) (-347 |#2| |#3| |#4|) (-1230) (-1252 |#2|) (-1252 (-413 |#3|))) (T -346)) +((-1646 (*1 *2) (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) (-2254 (*1 *2) (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) (-2468 (*1 *2) (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) (-1644 (*1 *2 *3 *3) (-12 (-4 *3 (-1230)) (-4 *5 (-1252 *3)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-112)) (-5 *1 (-346 *4 *3 *5 *6)) (-4 *4 (-347 *3 *5 *6)))) (-1801 (*1 *2) (|partial| -12 (-4 *4 (-1230)) (-4 *5 (-1252 (-413 *2))) (-4 *2 (-1252 *4)) (-5 *1 (-346 *3 *4 *2 *5)) (-4 *3 (-347 *4 *2 *5)))) (-2716 (*1 *2) (|partial| -12 (-4 *4 (-1230)) (-4 *5 (-1252 (-413 *2))) (-4 *2 (-1252 *4)) (-5 *1 (-346 *3 *4 *2 *5)) (-4 *3 (-347 *4 *2 *5)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *5 (-1230)) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-5 *2 (-650 (-959 *5))) (-5 *1 (-346 *4 *5 *6 *7)) (-4 *4 (-347 *5 *6 *7)))) (-3610 (*1 *2) (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-650 (-650 *4))) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6))))) +(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3610 ((-650 (-650 |#2|)))) (-15 -1408 ((-650 (-959 |#2|)) (-1186))) (-15 -2537 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2716 ((-3 |#3| "failed"))) (-15 -1801 ((-3 |#3| "failed"))) (-15 -1872 (|#2| |#1| |#2| |#2|)) (-15 -1908 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3558 ((-112) |#1| |#3|)) (-15 -3558 ((-112) |#1| |#2|)) (-15 -2427 (|#1| (-1276 |#3|) |#3|)) (-15 -2681 ((-2 (|:| |num| (-1276 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2236 ((-1276 |#1|) (-1276 |#1|))) (-15 -3757 ((-1276 |#1|) (-1276 |#1|))) (-15 -2699 ((-1276 |#1|) (-1276 |#1|))) (-15 -3558 ((-112) |#1|)) (-15 -1653 ((-112) |#1|)) (-15 -1644 ((-112) |#2| |#2|)) (-15 -2468 ((-112))) (-15 -2254 ((-777))) (-15 -1646 ((-777))) (-15 -3519 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)))) (-15 -3519 (|#1| |#1| (-1 (-413 |#3|) (-413 |#3|)) (-777))) (-15 -2427 (|#1| (-1276 (-413 |#3|)))) (-15 -2427 (|#1| (-1276 (-413 |#3|)) (-1276 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2681 (((-2 (|:| |num| (-1276 |#2|)) (|:| |den| |#2|)) $) 204)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 102 (|has| (-413 |#2|) (-368)))) (-2318 (($ $) 103 (|has| (-413 |#2|) (-368)))) (-2234 (((-112) $) 105 (|has| (-413 |#2|) (-368)))) (-2365 (((-695 (-413 |#2|)) (-1276 $)) 53) (((-695 (-413 |#2|))) 68)) (-3142 (((-413 |#2|) $) 59)) (-2299 (((-1199 (-928) (-777)) (-570)) 155 (|has| (-413 |#2|) (-354)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 122 (|has| (-413 |#2|) (-368)))) (-2555 (((-424 $) $) 123 (|has| (-413 |#2|) (-368)))) (-4073 (((-112) $ $) 113 (|has| (-413 |#2|) (-368)))) (-3475 (((-777)) 96 (|has| (-413 |#2|) (-373)))) (-4278 (((-112)) 221)) (-2904 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 178 (|has| (-413 |#2|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 176 (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-3 (-413 |#2|) "failed") $) 173)) (-3152 (((-570) $) 177 (|has| (-413 |#2|) (-1047 (-570)))) (((-413 (-570)) $) 175 (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-413 |#2|) $) 174)) (-2427 (($ (-1276 (-413 |#2|)) (-1276 $)) 55) (($ (-1276 (-413 |#2|))) 71) (($ (-1276 |#2|) |#2|) 203)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-413 |#2|) (-354)))) (-2372 (($ $ $) 117 (|has| (-413 |#2|) (-368)))) (-2684 (((-695 (-413 |#2|)) $ (-1276 $)) 60) (((-695 (-413 |#2|)) $) 66)) (-2004 (((-695 (-570)) (-695 $)) 172 (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 171 (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-413 |#2|))) (|:| |vec| (-1276 (-413 |#2|)))) (-695 $) (-1276 $)) 170) (((-695 (-413 |#2|)) (-695 $)) 169)) (-2236 (((-1276 $) (-1276 $)) 209)) (-3600 (($ |#3|) 166) (((-3 $ "failed") (-413 |#3|)) 163 (|has| (-413 |#2|) (-368)))) (-2229 (((-3 $ "failed") $) 37)) (-3610 (((-650 (-650 |#1|))) 190 (|has| |#1| (-373)))) (-1644 (((-112) |#1| |#1|) 225)) (-3979 (((-928)) 61)) (-3408 (($) 99 (|has| (-413 |#2|) (-373)))) (-2164 (((-112)) 218)) (-3512 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2380 (($ $ $) 116 (|has| (-413 |#2|) (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 111 (|has| (-413 |#2|) (-368)))) (-1908 (($ $) 196)) (-3740 (($) 157 (|has| (-413 |#2|) (-354)))) (-4316 (((-112) $) 158 (|has| (-413 |#2|) (-354)))) (-3640 (($ $ (-777)) 149 (|has| (-413 |#2|) (-354))) (($ $) 148 (|has| (-413 |#2|) (-354)))) (-3701 (((-112) $) 124 (|has| (-413 |#2|) (-368)))) (-4202 (((-928) $) 160 (|has| (-413 |#2|) (-354))) (((-839 (-928)) $) 146 (|has| (-413 |#2|) (-354)))) (-2481 (((-112) $) 35)) (-1646 (((-777)) 228)) (-3757 (((-1276 $) (-1276 $)) 210)) (-2233 (((-413 |#2|) $) 58)) (-1408 (((-650 (-959 |#1|)) (-1186)) 191 (|has| |#1| (-368)))) (-3641 (((-3 $ "failed") $) 150 (|has| (-413 |#2|) (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 120 (|has| (-413 |#2|) (-368)))) (-2780 ((|#3| $) 51 (|has| (-413 |#2|) (-368)))) (-2484 (((-928) $) 98 (|has| (-413 |#2|) (-373)))) (-3586 ((|#3| $) 164)) (-1841 (($ (-650 $)) 109 (|has| (-413 |#2|) (-368))) (($ $ $) 108 (|has| (-413 |#2|) (-368)))) (-4122 (((-1168) $) 10)) (-3145 (((-695 (-413 |#2|))) 205)) (-2122 (((-695 (-413 |#2|))) 207)) (-1820 (($ $) 125 (|has| (-413 |#2|) (-368)))) (-4198 (($ (-1276 |#2|) |#2|) 201)) (-4377 (((-695 (-413 |#2|))) 206)) (-3917 (((-695 (-413 |#2|))) 208)) (-3092 (((-2 (|:| |num| (-695 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-3622 (((-2 (|:| |num| (-1276 |#2|)) (|:| |den| |#2|)) $) 202)) (-3306 (((-1276 $)) 214)) (-2061 (((-1276 $)) 215)) (-1653 (((-112) $) 213)) (-3558 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2310 (($) 151 (|has| (-413 |#2|) (-354)) CONST)) (-2155 (($ (-928)) 97 (|has| (-413 |#2|) (-373)))) (-2716 (((-3 |#2| "failed")) 193)) (-3551 (((-1129) $) 11)) (-2254 (((-777)) 227)) (-2335 (($) 168)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 110 (|has| (-413 |#2|) (-368)))) (-1869 (($ (-650 $)) 107 (|has| (-413 |#2|) (-368))) (($ $ $) 106 (|has| (-413 |#2|) (-368)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 154 (|has| (-413 |#2|) (-354)))) (-3801 (((-424 $) $) 121 (|has| (-413 |#2|) (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-413 |#2|) (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118 (|has| (-413 |#2|) (-368)))) (-2410 (((-3 $ "failed") $ $) 101 (|has| (-413 |#2|) (-368)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 112 (|has| (-413 |#2|) (-368)))) (-3788 (((-777) $) 114 (|has| (-413 |#2|) (-368)))) (-1872 ((|#1| $ |#1| |#1|) 195)) (-1801 (((-3 |#2| "failed")) 194)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 115 (|has| (-413 |#2|) (-368)))) (-3511 (((-413 |#2|) (-1276 $)) 54) (((-413 |#2|)) 67)) (-2174 (((-777) $) 159 (|has| (-413 |#2|) (-354))) (((-3 (-777) "failed") $ $) 147 (|has| (-413 |#2|) (-354)))) (-3519 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) 131 (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) 130 (|has| (-413 |#2|) (-368))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-650 (-1186)) (-650 (-777))) 138 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186) (-777)) 139 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-650 (-1186))) 140 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186)) 141 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-777)) 143 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-1760 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) 145 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-1760 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-4169 (((-695 (-413 |#2|)) (-1276 $) (-1 (-413 |#2|) (-413 |#2|))) 162 (|has| (-413 |#2|) (-368)))) (-1881 ((|#3|) 167)) (-2042 (($) 156 (|has| (-413 |#2|) (-354)))) (-1861 (((-1276 (-413 |#2|)) $ (-1276 $)) 57) (((-695 (-413 |#2|)) (-1276 $) (-1276 $)) 56) (((-1276 (-413 |#2|)) $) 73) (((-695 (-413 |#2|)) (-1276 $)) 72)) (-1411 (((-1276 (-413 |#2|)) $) 70) (($ (-1276 (-413 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 153 (|has| (-413 |#2|) (-354)))) (-2699 (((-1276 $) (-1276 $)) 211)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 |#2|)) 44) (($ (-413 (-570))) 95 (-2779 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-1047 (-413 (-570)))))) (($ $) 100 (|has| (-413 |#2|) (-368)))) (-2917 (($ $) 152 (|has| (-413 |#2|) (-354))) (((-3 $ "failed") $) 50 (|has| (-413 |#2|) (-146)))) (-4042 ((|#3| $) 52)) (-2862 (((-777)) 32 T CONST)) (-2535 (((-112)) 224)) (-4030 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1319 (((-112) $ $) 9)) (-2077 (((-1276 $)) 74)) (-3258 (((-112) $ $) 104 (|has| (-413 |#2|) (-368)))) (-2537 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-2468 (((-112)) 226)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) 133 (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) 132 (|has| (-413 |#2|) (-368))) (($ $ (-650 (-1186)) (-650 (-777))) 134 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186) (-777)) 135 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-650 (-1186))) 136 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-1186)) 137 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) (-1760 (|has| (-413 |#2|) (-907 (-1186))) (|has| (-413 |#2|) (-368))))) (($ $ (-777)) 142 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-1760 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) 144 (-2779 (-1760 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-235))) (-1760 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 129 (|has| (-413 |#2|) (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 126 (|has| (-413 |#2|) (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 |#2|)) 46) (($ (-413 |#2|) $) 45) (($ (-413 (-570)) $) 128 (|has| (-413 |#2|) (-368))) (($ $ (-413 (-570))) 127 (|has| (-413 |#2|) (-368))))) +(((-347 |#1| |#2| |#3|) (-141) (-1230) (-1252 |t#1|) (-1252 (-413 |t#2|))) (T -347)) +((-1646 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-777)))) (-2254 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-777)))) (-2468 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-1644 (*1 *2 *3 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-2535 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-4030 (*1 *2 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-4030 (*1 *2 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) (-4278 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-2904 (*1 *2 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-2904 (*1 *2 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) (-2164 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-3512 (*1 *2 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-3512 (*1 *2 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) (-2061 (*1 *2) (-12 (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)))) (-3306 (*1 *2) (-12 (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-2699 (*1 *2 *2) (-12 (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))))) (-3917 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-2122 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-4377 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-3145 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4))))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-2 (|:| |num| (-1276 *4)) (|:| |den| *4))))) (-2427 (*1 *1 *2 *3) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1252 *4)) (-4 *4 (-1230)) (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1252 (-413 *3))))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-2 (|:| |num| (-1276 *4)) (|:| |den| *4))))) (-4198 (*1 *1 *2 *3) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1252 *4)) (-4 *4 (-1230)) (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1252 (-413 *3))))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-2 (|:| |num| (-695 *5)) (|:| |den| *5))))) (-3558 (*1 *2 *1 *3) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) (-3558 (*1 *2 *1 *3) (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-1252 *2)) (-4 *4 (-1252 (-413 *3))))) (-1872 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-1252 *2)) (-4 *4 (-1252 (-413 *3))))) (-1801 (*1 *2) (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1230)) (-4 *4 (-1252 (-413 *2))) (-4 *2 (-1252 *3)))) (-2716 (*1 *2) (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1230)) (-4 *4 (-1252 (-413 *2))) (-4 *2 (-1252 *3)))) (-2537 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-1230)) (-4 *6 (-1252 (-413 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-347 *4 *5 *6)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-4 *4 (-368)) (-5 *2 (-650 (-959 *4))))) (-3610 (*1 *2) (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) (-4 *3 (-373)) (-5 *2 (-650 (-650 *3)))))) +(-13 (-730 (-413 |t#2|) |t#3|) (-10 -8 (-15 -1646 ((-777))) (-15 -2254 ((-777))) (-15 -2468 ((-112))) (-15 -1644 ((-112) |t#1| |t#1|)) (-15 -2535 ((-112))) (-15 -4030 ((-112) |t#1|)) (-15 -4030 ((-112) |t#2|)) (-15 -4278 ((-112))) (-15 -2904 ((-112) |t#1|)) (-15 -2904 ((-112) |t#2|)) (-15 -2164 ((-112))) (-15 -3512 ((-112) |t#1|)) (-15 -3512 ((-112) |t#2|)) (-15 -2061 ((-1276 $))) (-15 -3306 ((-1276 $))) (-15 -1653 ((-112) $)) (-15 -3558 ((-112) $)) (-15 -2699 ((-1276 $) (-1276 $))) (-15 -3757 ((-1276 $) (-1276 $))) (-15 -2236 ((-1276 $) (-1276 $))) (-15 -3917 ((-695 (-413 |t#2|)))) (-15 -2122 ((-695 (-413 |t#2|)))) (-15 -4377 ((-695 (-413 |t#2|)))) (-15 -3145 ((-695 (-413 |t#2|)))) (-15 -2681 ((-2 (|:| |num| (-1276 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2427 ($ (-1276 |t#2|) |t#2|)) (-15 -3622 ((-2 (|:| |num| (-1276 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4198 ($ (-1276 |t#2|) |t#2|)) (-15 -3092 ((-2 (|:| |num| (-695 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3558 ((-112) $ |t#1|)) (-15 -3558 ((-112) $ |t#2|)) (-15 -3519 ($ $ (-1 |t#2| |t#2|))) (-15 -1908 ($ $)) (-15 -1872 (|t#1| $ |t#1| |t#1|)) (-15 -1801 ((-3 |t#2| "failed"))) (-15 -2716 ((-3 |t#2| "failed"))) (-15 -2537 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-368)) (-15 -1408 ((-650 (-959 |t#1|)) (-1186))) |%noBranch|) (IF (|has| |t#1| (-373)) (-15 -3610 ((-650 (-650 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-38 #1=(-413 |#2|)) . T) ((-38 $) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-102) . T) ((-111 #0# #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-146))) ((-148) |has| (-413 |#2|) (-148)) ((-622 #0#) -2779 (|has| (-413 |#2|) (-1047 (-413 (-570)))) (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-622 #1#) . T) ((-622 (-570)) . T) ((-622 $) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-619 (-868)) . T) ((-174) . T) ((-620 |#3|) . T) ((-233 #1#) |has| (-413 |#2|) (-368)) ((-235) -2779 (|has| (-413 |#2|) (-354)) (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368)))) ((-245) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-294) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-311) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-368) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-408) |has| (-413 |#2|) (-354)) ((-373) -2779 (|has| (-413 |#2|) (-373)) (|has| (-413 |#2|) (-354))) ((-354) |has| (-413 |#2|) (-354)) ((-375 #1# |#3|) . T) ((-415 #1# |#3|) . T) ((-382 #1#) . T) ((-417 #1#) . T) ((-458) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-562) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-652 #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-652 #1#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-654 #1#) . T) ((-654 $) . T) ((-646 #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-646 #1#) . T) ((-646 $) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-645 #1#) . T) ((-645 (-570)) |has| (-413 |#2|) (-645 (-570))) ((-723 #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-723 #1#) . T) ((-723 $) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-730 #1# |#3|) . T) ((-732) . T) ((-907 (-1186)) -12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186)))) ((-927) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-1047 (-413 (-570))) |has| (-413 |#2|) (-1047 (-413 (-570)))) ((-1047 #1#) . T) ((-1047 (-570)) |has| (-413 |#2|) (-1047 (-570))) ((-1060 #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-1060 #1#) . T) ((-1060 $) . T) ((-1065 #0#) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368))) ((-1065 #1#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| (-413 |#2|) (-354)) ((-1230) -2779 (|has| (-413 |#2|) (-354)) (|has| (-413 |#2|) (-368)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-917 |#1|) (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| (-917 |#1|) (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-917 |#1|) "failed") $) NIL)) (-3152 (((-917 |#1|) $) NIL)) (-2427 (($ (-1276 (-917 |#1|))) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-917 |#1|) (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-917 |#1|) (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| (-917 |#1|) (-373)))) (-4316 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373)))) (($ $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| (-917 |#1|) (-373))) (((-839 (-928)) $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| (-917 |#1|) (-373)))) (-4246 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-2233 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-917 |#1|) (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 (-917 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2484 (((-928) $) NIL (|has| (-917 |#1|) (-373)))) (-2326 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373)))) (-2874 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-1182 (-917 |#1|)) "failed") $ $) NIL (|has| (-917 |#1|) (-373)))) (-3097 (($ $ (-1182 (-917 |#1|))) NIL (|has| (-917 |#1|) (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-917 |#1|) (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2245 (((-965 (-1129))) NIL)) (-2335 (($) NIL (|has| (-917 |#1|) (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-917 |#1|) (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 (-917 |#1|))) NIL)) (-2042 (($) NIL (|has| (-917 |#1|) (-373)))) (-3476 (($) NIL (|has| (-917 |#1|) (-373)))) (-1861 (((-1276 (-917 |#1|)) $) NIL) (((-695 (-917 |#1|)) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| (-917 |#1|) (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-917 |#1|)) NIL)) (-2917 (($ $) NIL (|has| (-917 |#1|) (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2835 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ (-917 |#1|)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-917 |#1|)) NIL) (($ (-917 |#1|) $) NIL))) +(((-348 |#1| |#2|) (-13 (-333 (-917 |#1|)) (-10 -7 (-15 -2245 ((-965 (-1129)))))) (-928) (-928)) (T -348)) +((-2245 (*1 *2) (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-348 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928))))) +(-13 (-333 (-917 |#1|)) (-10 -7 (-15 -2245 ((-965 (-1129)))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 58)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) 56 (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 142)) (-3152 ((|#1| $) 113)) (-2427 (($ (-1276 |#1|)) 130)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) 124 (|has| |#1| (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) 160 (|has| |#1| (-373)))) (-4316 (((-112) $) 66 (|has| |#1| (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) 60 (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) 62)) (-3379 (($) 162 (|has| |#1| (-373)))) (-4246 (((-112) $) NIL (|has| |#1| (-373)))) (-2233 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 |#1|) $) 117) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-2484 (((-928) $) 171 (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 178)) (-2310 (($) NIL (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) 96 (|has| |#1| (-373)))) (-3288 (((-112) $) 147)) (-3551 (((-1129) $) NIL)) (-2245 (((-965 (-1129))) 57)) (-2335 (($) 158 (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 119 (|has| |#1| (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) 90) (((-928)) 91)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) 161 (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) 154 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 |#1|)) 122)) (-2042 (($) 159 (|has| |#1| (-373)))) (-3476 (($) 167 (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) 77) (((-695 |#1|) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) 174) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 100)) (-2917 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) 155 T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) 144) (((-1276 $) (-928)) 98)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) 67 T CONST)) (-1817 (($) 103 T CONST)) (-2663 (($ $) 107 (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2835 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2923 (((-112) $ $) 65)) (-3037 (($ $ $) 176) (($ $ |#1|) 177)) (-3026 (($ $) 157) (($ $ $) NIL)) (-3014 (($ $ $) 86)) (** (($ $ (-928)) 180) (($ $ (-777)) 181) (($ $ (-570)) 179)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 102) (($ $ $) 101) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-349 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -2245 ((-965 (-1129)))))) (-354) (-1182 |#1|)) (T -349)) +((-2245 (*1 *2) (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-349 *3 *4)) (-4 *3 (-354)) (-14 *4 (-1182 *3))))) +(-13 (-333 |#1|) (-10 -7 (-15 -2245 ((-965 (-1129)))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-2427 (($ (-1276 |#1|)) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| |#1| (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| |#1| (-373)))) (-4316 (((-112) $) NIL (|has| |#1| (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| |#1| (-373)))) (-4246 (((-112) $) NIL (|has| |#1| (-373)))) (-2233 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 |#1|) $) NIL) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2245 (((-965 (-1129))) NIL)) (-2335 (($) NIL (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| |#1| (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 |#1|)) NIL)) (-2042 (($) NIL (|has| |#1| (-373)))) (-3476 (($) NIL (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) NIL) (((-695 |#1|) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) NIL)) (-2917 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2835 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-350 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -2245 ((-965 (-1129)))))) (-354) (-928)) (T -350)) +((-2245 (*1 *2) (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-350 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928))))) +(-13 (-333 |#1|) (-10 -7 (-15 -2245 ((-965 (-1129)))))) +((-2358 (((-777) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) 61)) (-3745 (((-965 (-1129)) (-1182 |#1|)) 111)) (-1744 (((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) (-1182 |#1|)) 102)) (-2653 (((-695 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) 113)) (-3328 (((-3 (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) "failed") (-928)) 13)) (-4244 (((-3 (-1182 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) (-928)) 18))) +(((-351 |#1|) (-10 -7 (-15 -3745 ((-965 (-1129)) (-1182 |#1|))) (-15 -1744 ((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) (-1182 |#1|))) (-15 -2653 ((-695 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -2358 ((-777) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -3328 ((-3 (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) "failed") (-928))) (-15 -4244 ((-3 (-1182 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) (-928)))) (-354)) (T -351)) +((-4244 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-3 (-1182 *4) (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129))))))) (-5 *1 (-351 *4)) (-4 *4 (-354)))) (-3328 (*1 *2 *3) (|partial| -12 (-5 *3 (-928)) (-5 *2 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) (-5 *1 (-351 *4)) (-4 *4 (-354)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) (-4 *4 (-354)) (-5 *2 (-777)) (-5 *1 (-351 *4)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) (-4 *4 (-354)) (-5 *2 (-695 *4)) (-5 *1 (-351 *4)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) (-5 *1 (-351 *4)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-965 (-1129))) (-5 *1 (-351 *4))))) +(-10 -7 (-15 -3745 ((-965 (-1129)) (-1182 |#1|))) (-15 -1744 ((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) (-1182 |#1|))) (-15 -2653 ((-695 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -2358 ((-777) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -3328 ((-3 (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) "failed") (-928))) (-15 -4244 ((-3 (-1182 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) (-928)))) +((-3798 ((|#1| |#3|) 106) ((|#3| |#1|) 89))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -3798 (|#3| |#1|)) (-15 -3798 (|#1| |#3|))) (-333 |#2|) (-354) (-333 |#2|)) (T -352)) +((-3798 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *2 *4 *3)) (-4 *3 (-333 *4)))) (-3798 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *3 *4 *2)) (-4 *3 (-333 *4))))) +(-10 -7 (-15 -3798 (|#3| |#1|)) (-15 -3798 (|#1| |#3|))) +((-4316 (((-112) $) 60)) (-4202 (((-839 (-928)) $) 23) (((-928) $) 66)) (-3641 (((-3 $ "failed") $) 18)) (-2310 (($) 9)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 116)) (-2174 (((-3 (-777) "failed") $ $) 94) (((-777) $) 81)) (-3519 (($ $ (-777)) NIL) (($ $) 8)) (-2042 (($) 53)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 38)) (-2917 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-353 |#1|) (-10 -8 (-15 -4202 ((-928) |#1|)) (-15 -2174 ((-777) |#1|)) (-15 -4316 ((-112) |#1|)) (-15 -2042 (|#1|)) (-15 -2409 ((-3 (-1276 |#1|) "failed") (-695 |#1|))) (-15 -2917 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-3 (-777) "failed") |#1| |#1|)) (-15 -4202 ((-839 (-928)) |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)))) (-354)) (T -353)) +NIL +(-10 -8 (-15 -4202 ((-928) |#1|)) (-15 -2174 ((-777) |#1|)) (-15 -4316 ((-112) |#1|)) (-15 -2042 (|#1|)) (-15 -2409 ((-3 (-1276 |#1|) "failed") (-695 |#1|))) (-15 -2917 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-3 (-777) "failed") |#1| |#1|)) (-15 -4202 ((-839 (-928)) |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2299 (((-1199 (-928) (-777)) (-570)) 101)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-4073 (((-112) $ $) 65)) (-3475 (((-777)) 111)) (-3734 (($) 18 T CONST)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-3408 (($) 114)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3740 (($) 99)) (-4316 (((-112) $) 98)) (-3640 (($ $) 87) (($ $ (-777)) 86)) (-3701 (((-112) $) 79)) (-4202 (((-839 (-928)) $) 89) (((-928) $) 96)) (-2481 (((-112) $) 35)) (-3641 (((-3 $ "failed") $) 110)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-2484 (((-928) $) 113)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-2310 (($) 109 T CONST)) (-2155 (($ (-928)) 112)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 102)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-2174 (((-3 (-777) "failed") $ $) 88) (((-777) $) 97)) (-3519 (($ $ (-777)) 107) (($ $) 105)) (-2042 (($) 100)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 103)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-2917 (((-3 $ "failed") $) 90) (($ $) 104)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-777)) 108) (($ $) 106)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75))) +(((-354) (-141)) (T -354)) +((-2917 (*1 *1 *1) (-4 *1 (-354))) (-2409 (*1 *2 *3) (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-354)) (-5 *2 (-1276 *1)))) (-4061 (*1 *2) (-12 (-4 *1 (-354)) (-5 *2 (-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))))) (-2299 (*1 *2 *3) (-12 (-4 *1 (-354)) (-5 *3 (-570)) (-5 *2 (-1199 (-928) (-777))))) (-2042 (*1 *1) (-4 *1 (-354))) (-3740 (*1 *1) (-4 *1 (-354))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-112)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-777)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-928)))) (-1493 (*1 *2) (-12 (-4 *1 (-354)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-408) (-373) (-1161) (-235) (-10 -8 (-15 -2917 ($ $)) (-15 -2409 ((-3 (-1276 $) "failed") (-695 $))) (-15 -4061 ((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570)))))) (-15 -2299 ((-1199 (-928) (-777)) (-570))) (-15 -2042 ($)) (-15 -3740 ($)) (-15 -4316 ((-112) $)) (-15 -2174 ((-777) $)) (-15 -4202 ((-928) $)) (-15 -1493 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-235) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-408) . T) ((-373) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) . T) ((-1230) . T)) +((-2708 (((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) |#1|) 55)) (-2061 (((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))) 53))) +(((-355 |#1| |#2| |#3|) (-10 -7 (-15 -2061 ((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))))) (-15 -2708 ((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) |#1|))) (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $)))) (-1252 |#1|) (-415 |#1| |#2|)) (T -355)) +((-2708 (*1 *2 *3) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *2 (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2061 (*1 *2) (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *2 (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4))))) +(-10 -7 (-15 -2061 ((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))))) (-15 -2708 ((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-917 |#1|) (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-2358 (((-777)) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| (-917 |#1|) (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-917 |#1|) "failed") $) NIL)) (-3152 (((-917 |#1|) $) NIL)) (-2427 (($ (-1276 (-917 |#1|))) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-917 |#1|) (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-917 |#1|) (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| (-917 |#1|) (-373)))) (-4316 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373)))) (($ $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| (-917 |#1|) (-373))) (((-839 (-928)) $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| (-917 |#1|) (-373)))) (-4246 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-2233 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-917 |#1|) (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 (-917 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2484 (((-928) $) NIL (|has| (-917 |#1|) (-373)))) (-2326 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373)))) (-2874 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-1182 (-917 |#1|)) "failed") $ $) NIL (|has| (-917 |#1|) (-373)))) (-3097 (($ $ (-1182 (-917 |#1|))) NIL (|has| (-917 |#1|) (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-917 |#1|) (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-3596 (((-1276 (-650 (-2 (|:| -2190 (-917 |#1|)) (|:| -2155 (-1129)))))) NIL)) (-2100 (((-695 (-917 |#1|))) NIL)) (-2335 (($) NIL (|has| (-917 |#1|) (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-917 |#1|) (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 (-917 |#1|))) NIL)) (-2042 (($) NIL (|has| (-917 |#1|) (-373)))) (-3476 (($) NIL (|has| (-917 |#1|) (-373)))) (-1861 (((-1276 (-917 |#1|)) $) NIL) (((-695 (-917 |#1|)) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| (-917 |#1|) (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-917 |#1|)) NIL)) (-2917 (($ $) NIL (|has| (-917 |#1|) (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2835 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ (-917 |#1|)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-917 |#1|)) NIL) (($ (-917 |#1|) $) NIL))) +(((-356 |#1| |#2|) (-13 (-333 (-917 |#1|)) (-10 -7 (-15 -3596 ((-1276 (-650 (-2 (|:| -2190 (-917 |#1|)) (|:| -2155 (-1129))))))) (-15 -2100 ((-695 (-917 |#1|)))) (-15 -2358 ((-777))))) (-928) (-928)) (T -356)) +((-3596 (*1 *2) (-12 (-5 *2 (-1276 (-650 (-2 (|:| -2190 (-917 *3)) (|:| -2155 (-1129)))))) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-2100 (*1 *2) (-12 (-5 *2 (-695 (-917 *3))) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-2358 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928))))) +(-13 (-333 (-917 |#1|)) (-10 -7 (-15 -3596 ((-1276 (-650 (-2 (|:| -2190 (-917 |#1|)) (|:| -2155 (-1129))))))) (-15 -2100 ((-695 (-917 |#1|)))) (-15 -2358 ((-777))))) +((-2419 (((-112) $ $) 73)) (-1359 (((-112) $) 88)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 ((|#1| $) 106) (($ $ (-928)) 104 (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) 171 (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-2358 (((-777)) 103)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) 188 (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 128)) (-3152 ((|#1| $) 105)) (-2427 (($ (-1276 |#1|)) 71)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 214 (|has| |#1| (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) 183 (|has| |#1| (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) 172 (|has| |#1| (-373)))) (-4316 (((-112) $) NIL (|has| |#1| (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) 114 (|has| |#1| (-373)))) (-4246 (((-112) $) 201 (|has| |#1| (-373)))) (-2233 ((|#1| $) 108) (($ $ (-928)) 107 (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 |#1|) $) 215) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-2484 (((-928) $) 149 (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) 87 (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) 84 (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) 96 (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) 83 (|has| |#1| (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 219)) (-2310 (($) NIL (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) 151 (|has| |#1| (-373)))) (-3288 (((-112) $) 124)) (-3551 (((-1129) $) NIL)) (-3596 (((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) 97)) (-2100 (((-695 |#1|)) 101)) (-2335 (($) 110 (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 174 (|has| |#1| (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) 175)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) 75)) (-1881 (((-1182 |#1|)) 176)) (-2042 (($) 148 (|has| |#1| (-373)))) (-3476 (($) NIL (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) 122) (((-695 |#1|) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) 141) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 70)) (-2917 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) 181 T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) 198) (((-1276 $) (-928)) 117)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) 187 T CONST)) (-1817 (($) 162 T CONST)) (-2663 (($ $) 123 (|has| |#1| (-373))) (($ $ (-777)) 115 (|has| |#1| (-373)))) (-2835 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2923 (((-112) $ $) 209)) (-3037 (($ $ $) 120) (($ $ |#1|) 121)) (-3026 (($ $) 203) (($ $ $) 207)) (-3014 (($ $ $) 205)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 154)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 212) (($ $ $) 165) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 119))) +(((-357 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -3596 ((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -2100 ((-695 |#1|))) (-15 -2358 ((-777))))) (-354) (-3 (-1182 |#1|) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (T -357)) +((-3596 (*1 *2) (-12 (-5 *2 (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129)))))) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) *2)))) (-2100 (*1 *2) (-12 (-5 *2 (-695 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129))))))))) (-2358 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129)))))))))) +(-13 (-333 |#1|) (-10 -7 (-15 -3596 ((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -2100 ((-695 |#1|))) (-15 -2358 ((-777))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-2358 (((-777)) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-2427 (($ (-1276 |#1|)) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| |#1| (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| |#1| (-373)))) (-4316 (((-112) $) NIL (|has| |#1| (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| |#1| (-373)))) (-4246 (((-112) $) NIL (|has| |#1| (-373)))) (-2233 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 |#1|) $) NIL) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-3596 (((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129)))))) NIL)) (-2100 (((-695 |#1|)) NIL)) (-2335 (($) NIL (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| |#1| (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 |#1|)) NIL)) (-2042 (($) NIL (|has| |#1| (-373)))) (-3476 (($) NIL (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) NIL) (((-695 |#1|) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) NIL)) (-2917 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2835 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-358 |#1| |#2|) (-13 (-333 |#1|) (-10 -7 (-15 -3596 ((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -2100 ((-695 |#1|))) (-15 -2358 ((-777))))) (-354) (-928)) (T -358)) +((-3596 (*1 *2) (-12 (-5 *2 (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129)))))) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))) (-2100 (*1 *2) (-12 (-5 *2 (-695 *3)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928)))) (-2358 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928))))) +(-13 (-333 |#1|) (-10 -7 (-15 -3596 ((-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))))) (-15 -2100 ((-695 |#1|))) (-15 -2358 ((-777))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-917 |#1|) (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| (-917 |#1|) (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-917 |#1|) "failed") $) NIL)) (-3152 (((-917 |#1|) $) NIL)) (-2427 (($ (-1276 (-917 |#1|))) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-917 |#1|) (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-917 |#1|) (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| (-917 |#1|) (-373)))) (-4316 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373)))) (($ $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| (-917 |#1|) (-373))) (((-839 (-928)) $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| (-917 |#1|) (-373)))) (-4246 (((-112) $) NIL (|has| (-917 |#1|) (-373)))) (-2233 (((-917 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-917 |#1|) (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 (-917 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-2484 (((-928) $) NIL (|has| (-917 |#1|) (-373)))) (-2326 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373)))) (-2874 (((-1182 (-917 |#1|)) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-1182 (-917 |#1|)) "failed") $ $) NIL (|has| (-917 |#1|) (-373)))) (-3097 (($ $ (-1182 (-917 |#1|))) NIL (|has| (-917 |#1|) (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-917 |#1|) (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| (-917 |#1|) (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2335 (($) NIL (|has| (-917 |#1|) (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-917 |#1|) (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| (-917 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 (-917 |#1|))) NIL)) (-2042 (($) NIL (|has| (-917 |#1|) (-373)))) (-3476 (($) NIL (|has| (-917 |#1|) (-373)))) (-1861 (((-1276 (-917 |#1|)) $) NIL) (((-695 (-917 |#1|)) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| (-917 |#1|) (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-917 |#1|)) NIL)) (-2917 (($ $) NIL (|has| (-917 |#1|) (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| (-917 |#1|) (-146)) (|has| (-917 |#1|) (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2835 (($ $) NIL (|has| (-917 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-917 |#1|) (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ (-917 |#1|)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-917 |#1|)) NIL) (($ (-917 |#1|) $) NIL))) +(((-359 |#1| |#2|) (-333 (-917 |#1|)) (-928) (-928)) (T -359)) +NIL +(-333 (-917 |#1|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) 132 (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) 158 (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 106)) (-3152 ((|#1| $) 103)) (-2427 (($ (-1276 |#1|)) 98)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) 95 (|has| |#1| (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) 51 (|has| |#1| (-373)))) (-4316 (((-112) $) NIL (|has| |#1| (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) 133 (|has| |#1| (-373)))) (-4246 (((-112) $) 87 (|has| |#1| (-373)))) (-2233 ((|#1| $) 47) (($ $ (-928)) 52 (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 |#1|) $) 78) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-2484 (((-928) $) 110 (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) 108 (|has| |#1| (-373)))) (-3288 (((-112) $) 160)) (-3551 (((-1129) $) NIL)) (-2335 (($) 44 (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 127 (|has| |#1| (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) 157)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) 70)) (-1881 (((-1182 |#1|)) 101)) (-2042 (($) 138 (|has| |#1| (-373)))) (-3476 (($) NIL (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) 66) (((-695 |#1|) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) 156) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 100)) (-2917 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) 162 T CONST)) (-1319 (((-112) $ $) 164)) (-2077 (((-1276 $)) 122) (((-1276 $) (-928)) 60)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) 124 T CONST)) (-1817 (($) 40 T CONST)) (-2663 (($ $) 81 (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2835 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2923 (((-112) $ $) 120)) (-3037 (($ $ $) 112) (($ $ |#1|) 113)) (-3026 (($ $) 93) (($ $ $) 118)) (-3014 (($ $ $) 116)) (** (($ $ (-928)) NIL) (($ $ (-777)) 55) (($ $ (-570)) 141)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 91) (($ $ $) 68) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 89))) +(((-360 |#1| |#2|) (-333 |#1|) (-354) (-1182 |#1|)) (T -360)) +NIL +(-333 |#1|) +((-1902 ((|#1| (-1182 |#2|)) 61))) +(((-361 |#1| |#2|) (-10 -7 (-15 -1902 (|#1| (-1182 |#2|)))) (-13 (-408) (-10 -7 (-15 -3798 (|#1| |#2|)) (-15 -2484 ((-928) |#1|)) (-15 -2077 ((-1276 |#1|) (-928))) (-15 -2663 (|#1| |#1|)))) (-354)) (T -361)) +((-1902 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-4 *2 (-13 (-408) (-10 -7 (-15 -3798 (*2 *4)) (-15 -2484 ((-928) *2)) (-15 -2077 ((-1276 *2) (-928))) (-15 -2663 (*2 *2))))) (-5 *1 (-361 *2 *4))))) +(-10 -7 (-15 -1902 (|#1| (-1182 |#2|)))) +((-2414 (((-965 (-1182 |#1|)) (-1182 |#1|)) 51)) (-3408 (((-1182 |#1|) (-928) (-928)) 158) (((-1182 |#1|) (-928)) 154)) (-4316 (((-112) (-1182 |#1|)) 110)) (-4031 (((-928) (-928)) 88)) (-3698 (((-928) (-928)) 95)) (-4023 (((-928) (-928)) 86)) (-4246 (((-112) (-1182 |#1|)) 114)) (-2384 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 139)) (-4354 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 144)) (-4304 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 143)) (-4009 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 142)) (-4066 (((-3 (-1182 |#1|) "failed") (-1182 |#1|)) 134)) (-1742 (((-1182 |#1|) (-1182 |#1|)) 74)) (-3597 (((-1182 |#1|) (-928)) 149)) (-3298 (((-1182 |#1|) (-928)) 152)) (-1684 (((-1182 |#1|) (-928)) 151)) (-2237 (((-1182 |#1|) (-928)) 150)) (-2443 (((-1182 |#1|) (-928)) 147))) +(((-362 |#1|) (-10 -7 (-15 -4316 ((-112) (-1182 |#1|))) (-15 -4246 ((-112) (-1182 |#1|))) (-15 -4023 ((-928) (-928))) (-15 -4031 ((-928) (-928))) (-15 -3698 ((-928) (-928))) (-15 -2443 ((-1182 |#1|) (-928))) (-15 -3597 ((-1182 |#1|) (-928))) (-15 -2237 ((-1182 |#1|) (-928))) (-15 -1684 ((-1182 |#1|) (-928))) (-15 -3298 ((-1182 |#1|) (-928))) (-15 -4066 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -2384 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -4009 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -4304 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -4354 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3408 ((-1182 |#1|) (-928))) (-15 -3408 ((-1182 |#1|) (-928) (-928))) (-15 -1742 ((-1182 |#1|) (-1182 |#1|))) (-15 -2414 ((-965 (-1182 |#1|)) (-1182 |#1|)))) (-354)) (T -362)) +((-2414 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-965 (-1182 *4))) (-5 *1 (-362 *4)) (-5 *3 (-1182 *4)))) (-1742 (*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-3408 (*1 *2 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-4354 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-4304 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-4009 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-2384 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-4066 (*1 *2 *2) (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) (-4 *4 (-354)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))) (-4031 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-362 *4)))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-362 *4))))) +(-10 -7 (-15 -4316 ((-112) (-1182 |#1|))) (-15 -4246 ((-112) (-1182 |#1|))) (-15 -4023 ((-928) (-928))) (-15 -4031 ((-928) (-928))) (-15 -3698 ((-928) (-928))) (-15 -2443 ((-1182 |#1|) (-928))) (-15 -3597 ((-1182 |#1|) (-928))) (-15 -2237 ((-1182 |#1|) (-928))) (-15 -1684 ((-1182 |#1|) (-928))) (-15 -3298 ((-1182 |#1|) (-928))) (-15 -4066 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -2384 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -4009 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -4304 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -4354 ((-3 (-1182 |#1|) "failed") (-1182 |#1|))) (-15 -3408 ((-1182 |#1|) (-928))) (-15 -3408 ((-1182 |#1|) (-928) (-928))) (-15 -1742 ((-1182 |#1|) (-1182 |#1|))) (-15 -2414 ((-965 (-1182 |#1|)) (-1182 |#1|)))) +((-4226 (((-3 (-650 |#3|) "failed") (-650 |#3|) |#3|) 38))) +(((-363 |#1| |#2| |#3|) (-10 -7 (-15 -4226 ((-3 (-650 |#3|) "failed") (-650 |#3|) |#3|))) (-354) (-1252 |#1|) (-1252 |#2|)) (T -363)) +((-4226 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-354)) (-5 *1 (-363 *4 *5 *3))))) +(-10 -7 (-15 -4226 ((-3 (-650 |#3|) "failed") (-650 |#3|) |#3|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-2427 (($ (-1276 |#1|)) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| |#1| (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| |#1| (-373)))) (-4316 (((-112) $) NIL (|has| |#1| (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| |#1| (-373))) (((-839 (-928)) $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| |#1| (-373)))) (-4246 (((-112) $) NIL (|has| |#1| (-373)))) (-2233 ((|#1| $) NIL) (($ $ (-928)) NIL (|has| |#1| (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 |#1|) $) NIL) (((-1182 $) $ (-928)) NIL (|has| |#1| (-373)))) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-2326 (((-1182 |#1|) $) NIL (|has| |#1| (-373)))) (-2874 (((-1182 |#1|) $) NIL (|has| |#1| (-373))) (((-3 (-1182 |#1|) "failed") $ $) NIL (|has| |#1| (-373)))) (-3097 (($ $ (-1182 |#1|)) NIL (|has| |#1| (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| |#1| (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2335 (($) NIL (|has| |#1| (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| |#1| (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| |#1| (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 |#1|)) NIL)) (-2042 (($) NIL (|has| |#1| (-373)))) (-3476 (($) NIL (|has| |#1| (-373)))) (-1861 (((-1276 |#1|) $) NIL) (((-695 |#1|) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) NIL)) (-2917 (($ $) NIL (|has| |#1| (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2835 (($ $) NIL (|has| |#1| (-373))) (($ $ (-777)) NIL (|has| |#1| (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-364 |#1| |#2|) (-333 |#1|) (-354) (-928)) (T -364)) +NIL +(-333 |#1|) +((-1494 (((-112) (-650 (-959 |#1|))) 41)) (-3098 (((-650 (-959 |#1|)) (-650 (-959 |#1|))) 53)) (-4213 (((-3 (-650 (-959 |#1|)) "failed") (-650 (-959 |#1|))) 48))) +(((-365 |#1| |#2|) (-10 -7 (-15 -1494 ((-112) (-650 (-959 |#1|)))) (-15 -4213 ((-3 (-650 (-959 |#1|)) "failed") (-650 (-959 |#1|)))) (-15 -3098 ((-650 (-959 |#1|)) (-650 (-959 |#1|))))) (-458) (-650 (-1186))) (T -365)) +((-3098 (*1 *2 *2) (-12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) (-5 *1 (-365 *3 *4)) (-14 *4 (-650 (-1186))))) (-4213 (*1 *2 *2) (|partial| -12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) (-5 *1 (-365 *3 *4)) (-14 *4 (-650 (-1186))))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-112)) (-5 *1 (-365 *4 *5)) (-14 *5 (-650 (-1186)))))) +(-10 -7 (-15 -1494 ((-112) (-650 (-959 |#1|)))) (-15 -4213 ((-3 (-650 (-959 |#1|)) "failed") (-650 (-959 |#1|)))) (-15 -3098 ((-650 (-959 |#1|)) (-650 (-959 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777) $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) 17)) (-4308 ((|#1| $ (-570)) NIL)) (-1598 (((-570) $ (-570)) NIL)) (-3213 (($ (-1 |#1| |#1|) $) 34)) (-1432 (($ (-1 (-570) (-570)) $) 26)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 28)) (-3551 (((-1129) $) NIL)) (-1629 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-570)))) $) 30)) (-3897 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-3798 (((-868) $) 40) (($ |#1|) NIL)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 11 T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ |#1| (-570)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-366 |#1|) (-13 (-479) (-1047 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-570))) (-15 -3475 ((-777) $)) (-15 -1598 ((-570) $ (-570))) (-15 -4308 (|#1| $ (-570))) (-15 -1432 ($ (-1 (-570) (-570)) $)) (-15 -3213 ($ (-1 |#1| |#1|) $)) (-15 -1629 ((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-570)))) $)))) (-1109)) (T -366)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) (-1598 (*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109)))) (-1432 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-570) (-570))) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) (-3213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-366 *3)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 (-570))))) (-5 *1 (-366 *3)) (-4 *3 (-1109))))) +(-13 (-479) (-1047 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-570))) (-15 -3475 ((-777) $)) (-15 -1598 ((-570) $ (-570))) (-15 -4308 (|#1| $ (-570))) (-15 -1432 ($ (-1 (-570) (-570)) $)) (-15 -3213 ($ (-1 |#1| |#1|) $)) (-15 -1629 ((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-570)))) $)))) +((-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 13)) (-2318 (($ $) 14)) (-2555 (((-424 $) $) 34)) (-3701 (((-112) $) 30)) (-1820 (($ $) 19)) (-1869 (($ $ $) 25) (($ (-650 $)) NIL)) (-3801 (((-424 $) $) 35)) (-2410 (((-3 $ "failed") $ $) 24)) (-3788 (((-777) $) 28)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 39)) (-3258 (((-112) $ $) 16)) (-3037 (($ $ $) 37))) +(((-367 |#1|) (-10 -8 (-15 -3037 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -3701 ((-112) |#1|)) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -1854 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3788 ((-777) |#1|)) (-15 -1869 (|#1| (-650 |#1|))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -3258 ((-112) |#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -1966 ((-2 (|:| -1738 |#1|) (|:| -4435 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|))) (-368)) (T -367)) +NIL +(-10 -8 (-15 -3037 (|#1| |#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -3701 ((-112) |#1|)) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -1854 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3788 ((-777) |#1|)) (-15 -1869 (|#1| (-650 |#1|))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -3258 ((-112) |#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -1966 ((-2 (|:| -1738 |#1|) (|:| -4435 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3701 (((-112) $) 79)) (-2481 (((-112) $) 35)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75))) +(((-368) (-141)) (T -368)) +((-3037 (*1 *1 *1 *1) (-4 *1 (-368)))) +(-13 (-311) (-1230) (-245) (-10 -8 (-15 -3037 ($ $ $)) (-6 -4446) (-6 -4440))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-2419 (((-112) $ $) 7)) (-2307 ((|#2| $ |#2|) 14)) (-3611 (($ $ (-1168)) 19)) (-2289 ((|#2| $) 15)) (-1718 (($ |#1|) 21) (($ |#1| (-1168)) 20)) (-3574 ((|#1| $) 17)) (-4122 (((-1168) $) 10)) (-3608 (((-1168) $) 16)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-2514 (($ $) 18)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-369 |#1| |#2|) (-141) (-1109) (-1109)) (T -369)) +((-1718 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-1718 (*1 *1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *1 (-369 *2 *4)) (-4 *2 (-1109)) (-4 *4 (-1109)))) (-3611 (*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2514 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-1168)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-2307 (*1 *2 *1 *2) (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))) +(-13 (-1109) (-10 -8 (-15 -1718 ($ |t#1|)) (-15 -1718 ($ |t#1| (-1168))) (-15 -3611 ($ $ (-1168))) (-15 -2514 ($ $)) (-15 -3574 (|t#1| $)) (-15 -3608 ((-1168) $)) (-15 -2289 (|t#2| $)) (-15 -2307 (|t#2| $ |t#2|)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-2307 ((|#1| $ |#1|) 31)) (-3611 (($ $ (-1168)) 23)) (-3617 (((-3 |#1| "failed") $) 30)) (-2289 ((|#1| $) 28)) (-1718 (($ (-394)) 22) (($ (-394) (-1168)) 21)) (-3574 (((-394) $) 25)) (-4122 (((-1168) $) NIL)) (-3608 (((-1168) $) 26)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 20)) (-2514 (($ $) 24)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 19))) +(((-370 |#1|) (-13 (-369 (-394) |#1|) (-10 -8 (-15 -3617 ((-3 |#1| "failed") $)))) (-1109)) (T -370)) +((-3617 (*1 *2 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1109))))) +(-13 (-369 (-394) |#1|) (-10 -8 (-15 -3617 ((-3 |#1| "failed") $)))) +((-1601 (((-1276 (-695 |#2|)) (-1276 $)) 70)) (-1460 (((-695 |#2|) (-1276 $)) 141)) (-3754 ((|#2| $) 39)) (-3277 (((-695 |#2|) $ (-1276 $)) 144)) (-2487 (((-3 $ "failed") $) 91)) (-3928 ((|#2| $) 42)) (-3387 (((-1182 |#2|) $) 99)) (-3235 ((|#2| (-1276 $)) 124)) (-2099 (((-1182 |#2|) $) 34)) (-1654 (((-112)) 118)) (-2427 (($ (-1276 |#2|) (-1276 $)) 134)) (-2229 (((-3 $ "failed") $) 95)) (-4414 (((-112)) 112)) (-1451 (((-112)) 107)) (-2882 (((-112)) 61)) (-3792 (((-695 |#2|) (-1276 $)) 139)) (-2215 ((|#2| $) 38)) (-2961 (((-695 |#2|) $ (-1276 $)) 143)) (-3645 (((-3 $ "failed") $) 89)) (-3926 ((|#2| $) 41)) (-3823 (((-1182 |#2|) $) 98)) (-2908 ((|#2| (-1276 $)) 122)) (-2005 (((-1182 |#2|) $) 32)) (-4420 (((-112)) 117)) (-2585 (((-112)) 109)) (-2522 (((-112)) 59)) (-1363 (((-112)) 104)) (-1422 (((-112)) 119)) (-1861 (((-1276 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) (-1276 $) (-1276 $)) 130)) (-1743 (((-112)) 115)) (-3532 (((-650 (-1276 |#2|))) 103)) (-2939 (((-112)) 116)) (-3089 (((-112)) 113)) (-2313 (((-112)) 54)) (-3772 (((-112)) 120))) +(((-371 |#1| |#2|) (-10 -8 (-15 -3387 ((-1182 |#2|) |#1|)) (-15 -3823 ((-1182 |#2|) |#1|)) (-15 -3532 ((-650 (-1276 |#2|)))) (-15 -2487 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-3 |#1| "failed") |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 -1451 ((-112))) (-15 -2585 ((-112))) (-15 -4414 ((-112))) (-15 -2522 ((-112))) (-15 -2882 ((-112))) (-15 -1363 ((-112))) (-15 -3772 ((-112))) (-15 -1422 ((-112))) (-15 -1654 ((-112))) (-15 -4420 ((-112))) (-15 -2313 ((-112))) (-15 -2939 ((-112))) (-15 -3089 ((-112))) (-15 -1743 ((-112))) (-15 -2099 ((-1182 |#2|) |#1|)) (-15 -2005 ((-1182 |#2|) |#1|)) (-15 -1460 ((-695 |#2|) (-1276 |#1|))) (-15 -3792 ((-695 |#2|) (-1276 |#1|))) (-15 -3235 (|#2| (-1276 |#1|))) (-15 -2908 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -3928 (|#2| |#1|)) (-15 -3926 (|#2| |#1|)) (-15 -3754 (|#2| |#1|)) (-15 -2215 (|#2| |#1|)) (-15 -3277 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -2961 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -1601 ((-1276 (-695 |#2|)) (-1276 |#1|)))) (-372 |#2|) (-174)) (T -371)) +((-1743 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-3089 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2939 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2313 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-4420 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1654 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1422 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-3772 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1363 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2882 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2522 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-4414 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-2585 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-1451 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4)))) (-3532 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-650 (-1276 *4))) (-5 *1 (-371 *3 *4)) (-4 *3 (-372 *4))))) +(-10 -8 (-15 -3387 ((-1182 |#2|) |#1|)) (-15 -3823 ((-1182 |#2|) |#1|)) (-15 -3532 ((-650 (-1276 |#2|)))) (-15 -2487 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-3 |#1| "failed") |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 -1451 ((-112))) (-15 -2585 ((-112))) (-15 -4414 ((-112))) (-15 -2522 ((-112))) (-15 -2882 ((-112))) (-15 -1363 ((-112))) (-15 -3772 ((-112))) (-15 -1422 ((-112))) (-15 -1654 ((-112))) (-15 -4420 ((-112))) (-15 -2313 ((-112))) (-15 -2939 ((-112))) (-15 -3089 ((-112))) (-15 -1743 ((-112))) (-15 -2099 ((-1182 |#2|) |#1|)) (-15 -2005 ((-1182 |#2|) |#1|)) (-15 -1460 ((-695 |#2|) (-1276 |#1|))) (-15 -3792 ((-695 |#2|) (-1276 |#1|))) (-15 -3235 (|#2| (-1276 |#1|))) (-15 -2908 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -3928 (|#2| |#1|)) (-15 -3926 (|#2| |#1|)) (-15 -3754 (|#2| |#1|)) (-15 -2215 (|#2| |#1|)) (-15 -3277 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -2961 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -1601 ((-1276 (-695 |#2|)) (-1276 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1738 (((-3 $ "failed")) 42 (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) 20)) (-1601 (((-1276 (-695 |#1|)) (-1276 $)) 83)) (-4392 (((-1276 $)) 86)) (-3734 (($) 18 T CONST)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) 45 (|has| |#1| (-562)))) (-3025 (((-3 $ "failed")) 43 (|has| |#1| (-562)))) (-1460 (((-695 |#1|) (-1276 $)) 70)) (-3754 ((|#1| $) 79)) (-3277 (((-695 |#1|) $ (-1276 $)) 81)) (-2487 (((-3 $ "failed") $) 50 (|has| |#1| (-562)))) (-2559 (($ $ (-928)) 31)) (-3928 ((|#1| $) 77)) (-3387 (((-1182 |#1|) $) 47 (|has| |#1| (-562)))) (-3235 ((|#1| (-1276 $)) 72)) (-2099 (((-1182 |#1|) $) 68)) (-1654 (((-112)) 62)) (-2427 (($ (-1276 |#1|) (-1276 $)) 74)) (-2229 (((-3 $ "failed") $) 52 (|has| |#1| (-562)))) (-3979 (((-928)) 85)) (-1438 (((-112)) 59)) (-1752 (($ $ (-928)) 38)) (-4414 (((-112)) 55)) (-1451 (((-112)) 53)) (-2882 (((-112)) 57)) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) 46 (|has| |#1| (-562)))) (-1822 (((-3 $ "failed")) 44 (|has| |#1| (-562)))) (-3792 (((-695 |#1|) (-1276 $)) 71)) (-2215 ((|#1| $) 80)) (-2961 (((-695 |#1|) $ (-1276 $)) 82)) (-3645 (((-3 $ "failed") $) 51 (|has| |#1| (-562)))) (-3619 (($ $ (-928)) 32)) (-3926 ((|#1| $) 78)) (-3823 (((-1182 |#1|) $) 48 (|has| |#1| (-562)))) (-2908 ((|#1| (-1276 $)) 73)) (-2005 (((-1182 |#1|) $) 69)) (-4420 (((-112)) 63)) (-4122 (((-1168) $) 10)) (-2585 (((-112)) 54)) (-2522 (((-112)) 56)) (-1363 (((-112)) 58)) (-3551 (((-1129) $) 11)) (-1422 (((-112)) 61)) (-1861 (((-1276 |#1|) $ (-1276 $)) 76) (((-695 |#1|) (-1276 $) (-1276 $)) 75)) (-3594 (((-650 (-959 |#1|)) (-1276 $)) 84)) (-4307 (($ $ $) 28)) (-1743 (((-112)) 67)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3532 (((-650 (-1276 |#1|))) 49 (|has| |#1| (-562)))) (-3666 (($ $ $ $) 29)) (-2939 (((-112)) 65)) (-3616 (($ $ $) 27)) (-3089 (((-112)) 66)) (-2313 (((-112)) 64)) (-3772 (((-112)) 60)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-372 |#1|) (-141) (-174)) (T -372)) +((-4392 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1276 *1)) (-4 *1 (-372 *3)))) (-3979 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-928)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-650 (-959 *4))))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-1276 (-695 *4))))) (-2961 (*1 *2 *1 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-3277 (*1 *2 *1 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-2215 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-3926 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-3928 (*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-1861 (*1 *2 *1 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-1276 *4)))) (-1861 (*1 *2 *3 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-1276 *1)) (-4 *4 (-174)) (-4 *1 (-372 *4)))) (-2908 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-3235 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3)))) (-2099 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3)))) (-1743 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3089 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2939 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2313 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4420 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1654 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1422 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3772 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1438 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1363 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2882 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2522 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4414 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2585 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1451 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2229 (*1 *1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-3645 (*1 *1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-2487 (*1 *1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) (-3532 (*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) (-5 *2 (-650 (-1276 *3))))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) (-5 *2 (-1182 *3)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) (-5 *2 (-1182 *3)))) (-1597 (*1 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2077 (-650 *1)))) (-4 *1 (-372 *3)))) (-4034 (*1 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2077 (-650 *1)))) (-4 *1 (-372 *3)))) (-1822 (*1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))) (-3025 (*1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))) (-1738 (*1 *1) (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174))))) +(-13 (-750 |t#1|) (-10 -8 (-15 -4392 ((-1276 $))) (-15 -3979 ((-928))) (-15 -3594 ((-650 (-959 |t#1|)) (-1276 $))) (-15 -1601 ((-1276 (-695 |t#1|)) (-1276 $))) (-15 -2961 ((-695 |t#1|) $ (-1276 $))) (-15 -3277 ((-695 |t#1|) $ (-1276 $))) (-15 -2215 (|t#1| $)) (-15 -3754 (|t#1| $)) (-15 -3926 (|t#1| $)) (-15 -3928 (|t#1| $)) (-15 -1861 ((-1276 |t#1|) $ (-1276 $))) (-15 -1861 ((-695 |t#1|) (-1276 $) (-1276 $))) (-15 -2427 ($ (-1276 |t#1|) (-1276 $))) (-15 -2908 (|t#1| (-1276 $))) (-15 -3235 (|t#1| (-1276 $))) (-15 -3792 ((-695 |t#1|) (-1276 $))) (-15 -1460 ((-695 |t#1|) (-1276 $))) (-15 -2005 ((-1182 |t#1|) $)) (-15 -2099 ((-1182 |t#1|) $)) (-15 -1743 ((-112))) (-15 -3089 ((-112))) (-15 -2939 ((-112))) (-15 -2313 ((-112))) (-15 -4420 ((-112))) (-15 -1654 ((-112))) (-15 -1422 ((-112))) (-15 -3772 ((-112))) (-15 -1438 ((-112))) (-15 -1363 ((-112))) (-15 -2882 ((-112))) (-15 -2522 ((-112))) (-15 -4414 ((-112))) (-15 -2585 ((-112))) (-15 -1451 ((-112))) (IF (|has| |t#1| (-562)) (PROGN (-15 -2229 ((-3 $ "failed") $)) (-15 -3645 ((-3 $ "failed") $)) (-15 -2487 ((-3 $ "failed") $)) (-15 -3532 ((-650 (-1276 |t#1|)))) (-15 -3823 ((-1182 |t#1|) $)) (-15 -3387 ((-1182 |t#1|) $)) (-15 -1597 ((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed"))) (-15 -1822 ((-3 $ "failed"))) (-15 -3025 ((-3 $ "failed"))) (-15 -1738 ((-3 $ "failed"))) (-6 -4445)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-726) . T) ((-750 |#1|) . T) ((-767) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-3475 (((-777)) 17)) (-3408 (($) 14)) (-2484 (((-928) $) 15)) (-4122 (((-1168) $) 10)) (-2155 (($ (-928)) 16)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-373) (-141)) (T -373)) +((-3475 (*1 *2) (-12 (-4 *1 (-373)) (-5 *2 (-777)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-373)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-928)))) (-3408 (*1 *1) (-4 *1 (-373)))) +(-13 (-1109) (-10 -8 (-15 -3475 ((-777))) (-15 -2155 ($ (-928))) (-15 -2484 ((-928) $)) (-15 -3408 ($)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2365 (((-695 |#2|) (-1276 $)) 47)) (-2427 (($ (-1276 |#2|) (-1276 $)) 41)) (-2684 (((-695 |#2|) $ (-1276 $)) 49)) (-3511 ((|#2| (-1276 $)) 13)) (-1861 (((-1276 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) (-1276 $) (-1276 $)) 27))) +(((-374 |#1| |#2| |#3|) (-10 -8 (-15 -2365 ((-695 |#2|) (-1276 |#1|))) (-15 -3511 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -2684 ((-695 |#2|) |#1| (-1276 |#1|)))) (-375 |#2| |#3|) (-174) (-1252 |#2|)) (T -374)) +NIL +(-10 -8 (-15 -2365 ((-695 |#2|) (-1276 |#1|))) (-15 -3511 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -2684 ((-695 |#2|) |#1| (-1276 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2365 (((-695 |#1|) (-1276 $)) 53)) (-3142 ((|#1| $) 59)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2427 (($ (-1276 |#1|) (-1276 $)) 55)) (-2684 (((-695 |#1|) $ (-1276 $)) 60)) (-2229 (((-3 $ "failed") $) 37)) (-3979 (((-928)) 61)) (-2481 (((-112) $) 35)) (-2233 ((|#1| $) 58)) (-2780 ((|#2| $) 51 (|has| |#1| (-368)))) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3511 ((|#1| (-1276 $)) 54)) (-1861 (((-1276 |#1|) $ (-1276 $)) 57) (((-695 |#1|) (-1276 $) (-1276 $)) 56)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44)) (-2917 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4042 ((|#2| $) 52)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-375 |#1| |#2|) (-141) (-174) (-1252 |t#1|)) (T -375)) +((-3979 (*1 *2) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-928)))) (-2684 (*1 *2 *1 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1252 *2)) (-4 *2 (-174)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1252 *2)) (-4 *2 (-174)))) (-1861 (*1 *2 *1 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-1276 *4)))) (-1861 (*1 *2 *3 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-1276 *1)) (-4 *4 (-174)) (-4 *1 (-375 *4 *5)) (-4 *5 (-1252 *4)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *2 *4)) (-4 *4 (-1252 *2)) (-4 *2 (-174)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1252 *3)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *3 (-368)) (-4 *2 (-1252 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3979 ((-928))) (-15 -2684 ((-695 |t#1|) $ (-1276 $))) (-15 -3142 (|t#1| $)) (-15 -2233 (|t#1| $)) (-15 -1861 ((-1276 |t#1|) $ (-1276 $))) (-15 -1861 ((-695 |t#1|) (-1276 $) (-1276 $))) (-15 -2427 ($ (-1276 |t#1|) (-1276 $))) (-15 -3511 (|t#1| (-1276 $))) (-15 -2365 ((-695 |t#1|) (-1276 $))) (-15 -4042 (|t#2| $)) (IF (|has| |t#1| (-368)) (-15 -2780 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-4292 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3600 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1347 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-376 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3600 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4292 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1226) (-378 |#1|) (-1226) (-378 |#3|)) (T -376)) +((-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1226)) (-4 *5 (-1226)) (-4 *2 (-378 *5)) (-5 *1 (-376 *6 *4 *5 *2)) (-4 *4 (-378 *6)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1226)) (-4 *2 (-1226)) (-5 *1 (-376 *5 *4 *2 *6)) (-4 *4 (-378 *5)) (-4 *6 (-378 *2)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-4 *2 (-378 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-378 *5))))) +(-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3600 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4292 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2163 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2632 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3360 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2256 (($ $) 25)) (-4039 (((-570) (-1 (-112) |#2|) $) NIL) (((-570) |#2| $) 11) (((-570) |#2| $ (-570)) NIL)) (-2735 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-377 |#1| |#2|) (-10 -8 (-15 -2632 (|#1| |#1|)) (-15 -2632 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2163 ((-112) |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -4039 ((-570) |#2| |#1| (-570))) (-15 -4039 ((-570) |#2| |#1|)) (-15 -4039 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -2163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3360 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -2735 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-378 |#2|) (-1226)) (T -377)) +NIL +(-10 -8 (-15 -2632 (|#1| |#1|)) (-15 -2632 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2163 ((-112) |#1|)) (-15 -3360 (|#1| |#1|)) (-15 -2735 (|#1| |#1| |#1|)) (-15 -4039 ((-570) |#2| |#1| (-570))) (-15 -4039 ((-570) |#2| |#1|)) (-15 -4039 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -2163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3360 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2256 (|#1| |#1|)) (-15 -2735 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4449))) (($ $) 89 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-1500 (($ $) 91 (|has| $ (-6 -4449)))) (-2256 (($ $) 101)) (-3552 (($ $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 52)) (-4039 (((-570) (-1 (-112) |#1|) $) 98) (((-570) |#1| $) 97 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 96 (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 88 (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 87 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 43 (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2973 (($ $ |#1|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1243 (-570))) 64)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 92 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 71)) (-2445 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 85 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 84 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2969 (((-112) $ $) 86 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 83 (|has| |#1| (-856)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-378 |#1|) (-141) (-1226)) (T -378)) +((-2735 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1226)))) (-2256 (*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1226)))) (-3360 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1226)))) (-2163 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-378 *4)) (-4 *4 (-1226)) (-5 *2 (-112)))) (-4039 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-378 *4)) (-4 *4 (-1226)) (-5 *2 (-570)))) (-4039 (*1 *2 *3 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-570)))) (-4039 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-378 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)))) (-2735 (*1 *1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1226)) (-4 *2 (-856)))) (-3360 (*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1226)) (-4 *2 (-856)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-1226)) (-4 *3 (-856)) (-5 *2 (-112)))) (-2662 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-570)) (|has| *1 (-6 -4449)) (-4 *1 (-378 *3)) (-4 *3 (-1226)))) (-1500 (*1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-378 *2)) (-4 *2 (-1226)))) (-2632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4449)) (-4 *1 (-378 *3)) (-4 *3 (-1226)))) (-2632 (*1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-378 *2)) (-4 *2 (-1226)) (-4 *2 (-856))))) +(-13 (-657 |t#1|) (-10 -8 (-6 -4448) (-15 -2735 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2256 ($ $)) (-15 -3360 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2163 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -4039 ((-570) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -4039 ((-570) |t#1| $)) (-15 -4039 ((-570) |t#1| $ (-570)))) |%noBranch|) (IF (|has| |t#1| (-856)) (PROGN (-6 (-856)) (-15 -2735 ($ $ $)) (-15 -3360 ($ $)) (-15 -2163 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4449)) (PROGN (-15 -2662 ($ $ $ (-570))) (-15 -1500 ($ $)) (-15 -2632 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-856)) (-15 -2632 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1226) . T)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3107 (((-650 |#1|) $) 37)) (-1755 (($ $ (-777)) 38)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2276 (((-1300 |#1| |#2|) (-1300 |#1| |#2|) $) 41)) (-1660 (($ $) 39)) (-2223 (((-1300 |#1| |#2|) (-1300 |#1| |#2|) $) 42)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1725 (($ $ |#1| $) 36) (($ $ (-650 |#1|) (-650 $)) 35)) (-3324 (((-777) $) 43)) (-3811 (($ $ $) 34)) (-3798 (((-868) $) 12) (($ |#1|) 46) (((-1291 |#1| |#2|) $) 45) (((-1300 |#1| |#2|) $) 44)) (-1436 ((|#2| (-1300 |#1| |#2|) $) 47)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2682 (($ (-678 |#1|)) 40)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#2|) 33 (|has| |#2| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +(((-379 |#1| |#2|) (-141) (-856) (-174)) (T -379)) +((-1436 (*1 *2 *3 *1) (-12 (-5 *3 (-1300 *4 *2)) (-4 *1 (-379 *4 *2)) (-4 *4 (-856)) (-4 *2 (-174)))) (-3798 (*1 *1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-1291 *3 *4)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-1300 *3 *4)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-777)))) (-2223 (*1 *2 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-2276 (*1 *2 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-4 *1 (-379 *3 *4)) (-4 *4 (-174)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *2 (-650 *3)))) (-1725 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-856)) (-4 *5 (-174))))) +(-13 (-640 |t#2|) (-10 -8 (-15 -1436 (|t#2| (-1300 |t#1| |t#2|) $)) (-15 -3798 ($ |t#1|)) (-15 -3798 ((-1291 |t#1| |t#2|) $)) (-15 -3798 ((-1300 |t#1| |t#2|) $)) (-15 -3324 ((-777) $)) (-15 -2223 ((-1300 |t#1| |t#2|) (-1300 |t#1| |t#2|) $)) (-15 -2276 ((-1300 |t#1| |t#2|) (-1300 |t#1| |t#2|) $)) (-15 -2682 ($ (-678 |t#1|))) (-15 -1660 ($ $)) (-15 -1755 ($ $ (-777))) (-15 -3107 ((-650 |t#1|) $)) (-15 -1725 ($ $ |t#1| $)) (-15 -1725 ($ $ (-650 |t#1|) (-650 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-654 |#2|) . T) ((-640 |#2|) . T) ((-646 |#2|) . T) ((-723 |#2|) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1109) . T)) +((-2272 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2320 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3270 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-380 |#1| |#2|) (-10 -7 (-15 -2320 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3270 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2272 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1226) (-13 (-378 |#1|) (-10 -7 (-6 -4449)))) (T -380)) +((-2272 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-380 *4 *2)) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449)))))) (-3270 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-380 *4 *2)) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449)))))) (-2320 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-380 *4 *2)) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449))))))) +(-10 -7 (-15 -2320 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3270 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2272 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2004 (((-695 |#2|) (-695 $)) NIL) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 22) (((-695 (-570)) (-695 $)) 14))) +(((-381 |#1| |#2|) (-10 -8 (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 |#2|) (-695 |#1|)))) (-382 |#2|) (-1058)) (T -381)) +NIL +(-10 -8 (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 |#2|) (-695 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2004 (((-695 |#1|) (-695 $)) 40) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 39) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 47 (|has| |#1| (-645 (-570)))) (((-695 (-570)) (-695 $)) 46 (|has| |#1| (-645 (-570))))) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-382 |#1|) (-141) (-1058)) (T -382)) +NIL +(-13 (-645 |t#1|) (-10 -7 (IF (|has| |t#1| (-645 (-570))) (-6 (-645 (-570))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3628 (((-650 (-298 (-959 (-171 |#1|)))) (-298 (-413 (-959 (-171 (-570))))) |#1|) 51) (((-650 (-298 (-959 (-171 |#1|)))) (-413 (-959 (-171 (-570)))) |#1|) 50) (((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-298 (-413 (-959 (-171 (-570)))))) |#1|) 47) (((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-413 (-959 (-171 (-570))))) |#1|) 41)) (-3922 (((-650 (-650 (-171 |#1|))) (-650 (-413 (-959 (-171 (-570))))) (-650 (-1186)) |#1|) 30) (((-650 (-171 |#1|)) (-413 (-959 (-171 (-570)))) |#1|) 18))) +(((-383 |#1|) (-10 -7 (-15 -3628 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -3628 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-298 (-413 (-959 (-171 (-570)))))) |#1|)) (-15 -3628 ((-650 (-298 (-959 (-171 |#1|)))) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -3628 ((-650 (-298 (-959 (-171 |#1|)))) (-298 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -3922 ((-650 (-171 |#1|)) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -3922 ((-650 (-650 (-171 |#1|))) (-650 (-413 (-959 (-171 (-570))))) (-650 (-1186)) |#1|))) (-13 (-368) (-854))) (T -383)) +((-3922 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570)))))) (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 (-171 *5)))) (-5 *1 (-383 *5)) (-4 *5 (-13 (-368) (-854))))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-171 (-570))))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 (-171 (-570)))))) (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-171 (-570))))) (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-298 (-413 (-959 (-171 (-570))))))) (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570)))))) (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854)))))) +(-10 -7 (-15 -3628 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -3628 ((-650 (-650 (-298 (-959 (-171 |#1|))))) (-650 (-298 (-413 (-959 (-171 (-570)))))) |#1|)) (-15 -3628 ((-650 (-298 (-959 (-171 |#1|)))) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -3628 ((-650 (-298 (-959 (-171 |#1|)))) (-298 (-413 (-959 (-171 (-570))))) |#1|)) (-15 -3922 ((-650 (-171 |#1|)) (-413 (-959 (-171 (-570)))) |#1|)) (-15 -3922 ((-650 (-650 (-171 |#1|))) (-650 (-413 (-959 (-171 (-570))))) (-650 (-1186)) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 35)) (-3356 (((-570) $) 62)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-3667 (($ $) 142)) (-2774 (($ $) 105)) (-2629 (($ $) 93)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-3815 (($ $) 47)) (-4073 (((-112) $ $) NIL)) (-2749 (($ $) 103)) (-2604 (($ $) 87)) (-2579 (((-570) $) 80)) (-3086 (($ $ (-570)) 75)) (-4119 (($ $) NIL)) (-2648 (($ $) NIL)) (-3734 (($) NIL T CONST)) (-2109 (($ $) 144)) (-4382 (((-3 (-570) "failed") $) 239) (((-3 (-413 (-570)) "failed") $) 235)) (-3152 (((-570) $) 237) (((-413 (-570)) $) 233)) (-2372 (($ $ $) NIL)) (-3069 (((-570) $ $) 131)) (-2229 (((-3 $ "failed") $) 147)) (-1507 (((-413 (-570)) $ (-777)) 240) (((-413 (-570)) $ (-777) (-777)) 232)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-3503 (((-928)) 127) (((-928) (-928)) 128 (|has| $ (-6 -4439)))) (-2135 (((-112) $) 136)) (-1313 (($) 41)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL)) (-2518 (((-1281) (-777)) 199)) (-4288 (((-1281)) 204) (((-1281) (-777)) 205)) (-3049 (((-1281)) 206) (((-1281) (-777)) 207)) (-3676 (((-1281)) 202) (((-1281) (-777)) 203)) (-4202 (((-570) $) 68)) (-2481 (((-112) $) 40)) (-3309 (($ $ (-570)) NIL)) (-2495 (($ $) 51)) (-2233 (($ $) NIL)) (-3367 (((-112) $) 37)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL) (($) NIL (-12 (-1748 (|has| $ (-6 -4431))) (-1748 (|has| $ (-6 -4439)))))) (-2876 (($ $ $) NIL) (($) NIL (-12 (-1748 (|has| $ (-6 -4431))) (-1748 (|has| $ (-6 -4439)))))) (-3033 (((-570) $) 17)) (-3691 (($) 113) (($ $) 119)) (-1343 (($) 118) (($ $) 120)) (-2665 (($ $) 108)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 149)) (-3830 (((-928) (-570)) 46 (|has| $ (-6 -4439)))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) 60)) (-4140 (($ $) 141)) (-2560 (($ (-570) (-570)) 137) (($ (-570) (-570) (-928)) 138)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3283 (((-570) $) 19)) (-3046 (($) 121)) (-4390 (($ $) 102)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-1410 (((-928)) 129) (((-928) (-928)) 130 (|has| $ (-6 -4439)))) (-3519 (($ $ (-777)) NIL) (($ $) 148)) (-3510 (((-928) (-570)) 50 (|has| $ (-6 -4439)))) (-4129 (($ $) NIL)) (-2664 (($ $) NIL)) (-2786 (($ $) NIL)) (-2636 (($ $) NIL)) (-2761 (($ $) 104)) (-2616 (($ $) 92)) (-1411 (((-384) $) 224) (((-227) $) 226) (((-899 (-384)) $) NIL) (((-1168) $) 210) (((-542) $) 222) (($ (-227)) 231)) (-3798 (((-868) $) 214) (($ (-570)) 236) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-570)) 236) (($ (-413 (-570))) NIL) (((-227) $) 227)) (-2862 (((-777)) NIL T CONST)) (-1442 (($ $) 143)) (-4081 (((-928)) 61) (((-928) (-928)) 82 (|has| $ (-6 -4439)))) (-1319 (((-112) $ $) NIL)) (-4364 (((-928)) 132)) (-4165 (($ $) 111)) (-2704 (($ $) 49) (($ $ $) 59)) (-3258 (((-112) $ $) NIL)) (-4141 (($ $) 109)) (-2678 (($ $) 39)) (-4186 (($ $) NIL)) (-2726 (($ $) NIL)) (-1504 (($ $) NIL)) (-2737 (($ $) NIL)) (-4176 (($ $) NIL)) (-2715 (($ $) NIL)) (-4153 (($ $) 110)) (-2692 (($ $) 52)) (-2216 (($ $) 58)) (-1809 (($) 36 T CONST)) (-1817 (($) 43 T CONST)) (-1985 (((-1168) $) 27) (((-1168) $ (-112)) 29) (((-1281) (-828) $) 30) (((-1281) (-828) $ (-112)) 31)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) 211)) (-2959 (((-112) $ $) 45)) (-2923 (((-112) $ $) 56)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 57)) (-3037 (($ $ $) 48) (($ $ (-570)) 42)) (-3026 (($ $) 38) (($ $ $) 53)) (-3014 (($ $ $) 74)) (** (($ $ (-928)) 85) (($ $ (-777)) NIL) (($ $ (-570)) 114) (($ $ (-413 (-570))) 160) (($ $ $) 151)) (* (($ (-928) $) 81) (($ (-777) $) NIL) (($ (-570) $) 86) (($ $ $) 73) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-384) (-13 (-410) (-235) (-620 (-1168)) (-834) (-619 (-227)) (-1211) (-620 (-542)) (-624 (-227)) (-10 -8 (-15 -3037 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -2495 ($ $)) (-15 -3069 ((-570) $ $)) (-15 -3086 ($ $ (-570))) (-15 -1507 ((-413 (-570)) $ (-777))) (-15 -1507 ((-413 (-570)) $ (-777) (-777))) (-15 -3691 ($)) (-15 -1343 ($)) (-15 -3046 ($)) (-15 -2704 ($ $ $)) (-15 -3691 ($ $)) (-15 -1343 ($ $)) (-15 -3049 ((-1281))) (-15 -3049 ((-1281) (-777))) (-15 -3676 ((-1281))) (-15 -3676 ((-1281) (-777))) (-15 -4288 ((-1281))) (-15 -4288 ((-1281) (-777))) (-15 -2518 ((-1281) (-777))) (-6 -4439) (-6 -4431)))) (T -384)) +((** (*1 *1 *1 *1) (-5 *1 (-384))) (-3037 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) (-2495 (*1 *1 *1) (-5 *1 (-384))) (-3069 (*1 *2 *1 *1) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) (-3086 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384)))) (-1507 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384)))) (-3691 (*1 *1) (-5 *1 (-384))) (-1343 (*1 *1) (-5 *1 (-384))) (-3046 (*1 *1) (-5 *1 (-384))) (-2704 (*1 *1 *1 *1) (-5 *1 (-384))) (-3691 (*1 *1 *1) (-5 *1 (-384))) (-1343 (*1 *1 *1) (-5 *1 (-384))) (-3049 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-384)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384)))) (-3676 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-384)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384)))) (-4288 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-384)))) (-4288 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384))))) +(-13 (-410) (-235) (-620 (-1168)) (-834) (-619 (-227)) (-1211) (-620 (-542)) (-624 (-227)) (-10 -8 (-15 -3037 ($ $ (-570))) (-15 ** ($ $ $)) (-15 -2495 ($ $)) (-15 -3069 ((-570) $ $)) (-15 -3086 ($ $ (-570))) (-15 -1507 ((-413 (-570)) $ (-777))) (-15 -1507 ((-413 (-570)) $ (-777) (-777))) (-15 -3691 ($)) (-15 -1343 ($)) (-15 -3046 ($)) (-15 -2704 ($ $ $)) (-15 -3691 ($ $)) (-15 -1343 ($ $)) (-15 -3049 ((-1281))) (-15 -3049 ((-1281) (-777))) (-15 -3676 ((-1281))) (-15 -3676 ((-1281) (-777))) (-15 -4288 ((-1281))) (-15 -4288 ((-1281) (-777))) (-15 -2518 ((-1281) (-777))) (-6 -4439) (-6 -4431))) +((-3884 (((-650 (-298 (-959 |#1|))) (-298 (-413 (-959 (-570)))) |#1|) 46) (((-650 (-298 (-959 |#1|))) (-413 (-959 (-570))) |#1|) 45) (((-650 (-650 (-298 (-959 |#1|)))) (-650 (-298 (-413 (-959 (-570))))) |#1|) 42) (((-650 (-650 (-298 (-959 |#1|)))) (-650 (-413 (-959 (-570)))) |#1|) 36)) (-3186 (((-650 |#1|) (-413 (-959 (-570))) |#1|) 20) (((-650 (-650 |#1|)) (-650 (-413 (-959 (-570)))) (-650 (-1186)) |#1|) 30))) +(((-385 |#1|) (-10 -7 (-15 -3884 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-413 (-959 (-570)))) |#1|)) (-15 -3884 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-298 (-413 (-959 (-570))))) |#1|)) (-15 -3884 ((-650 (-298 (-959 |#1|))) (-413 (-959 (-570))) |#1|)) (-15 -3884 ((-650 (-298 (-959 |#1|))) (-298 (-413 (-959 (-570)))) |#1|)) (-15 -3186 ((-650 (-650 |#1|)) (-650 (-413 (-959 (-570)))) (-650 (-1186)) |#1|)) (-15 -3186 ((-650 |#1|) (-413 (-959 (-570))) |#1|))) (-13 (-854) (-368))) (T -385)) +((-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-3186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-413 (-959 (-570))))) (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 *5))) (-5 *1 (-385 *5)) (-4 *5 (-13 (-854) (-368))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 (-570))))) (-5 *2 (-650 (-298 (-959 *4)))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 (-298 (-959 *4)))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-298 (-413 (-959 (-570)))))) (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 (-570))))) (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368)))))) +(-10 -7 (-15 -3884 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-413 (-959 (-570)))) |#1|)) (-15 -3884 ((-650 (-650 (-298 (-959 |#1|)))) (-650 (-298 (-413 (-959 (-570))))) |#1|)) (-15 -3884 ((-650 (-298 (-959 |#1|))) (-413 (-959 (-570))) |#1|)) (-15 -3884 ((-650 (-298 (-959 |#1|))) (-298 (-413 (-959 (-570)))) |#1|)) (-15 -3186 ((-650 (-650 |#1|)) (-650 (-413 (-959 (-570)))) (-650 (-1186)) |#1|)) (-15 -3186 ((-650 |#1|) (-413 (-959 (-570))) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) 30)) (-3152 ((|#2| $) 32)) (-1885 (($ $) NIL)) (-1700 (((-777) $) 11)) (-2717 (((-650 $) $) 23)) (-2343 (((-112) $) NIL)) (-3350 (($ |#2| |#1|) 21)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-3560 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1851 ((|#2| $) 18)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 51) (($ |#2|) 31)) (-2479 (((-650 |#1|) $) 20)) (-3326 ((|#1| $ |#2|) 55)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 33 T CONST)) (-4425 (((-650 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +(((-386 |#1| |#2|) (-13 (-387 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1058) (-856)) (T -386)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-386 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856))))) +(-13 (-387 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#2| "failed") $) 49)) (-3152 ((|#2| $) 50)) (-1885 (($ $) 35)) (-1700 (((-777) $) 39)) (-2717 (((-650 $) $) 40)) (-2343 (((-112) $) 43)) (-3350 (($ |#2| |#1|) 44)) (-1347 (($ (-1 |#1| |#1|) $) 45)) (-3560 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1851 ((|#2| $) 38)) (-1860 ((|#1| $) 37)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ |#2|) 48)) (-2479 (((-650 |#1|) $) 41)) (-3326 ((|#1| $ |#2|) 46)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-4425 (((-650 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +(((-387 |#1| |#2|) (-141) (-1058) (-1109)) (T -387)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109)))) (-3326 (*1 *2 *1 *3) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)))) (-3350 (*1 *1 *2 *3) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-112)))) (-4425 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 *3)))) (-2717 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-387 *3 *4)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-777)))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1885 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109))))) +(-13 (-111 |t#1| |t#1|) (-1047 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3326 (|t#1| $ |t#2|)) (-15 -1347 ($ (-1 |t#1| |t#1|) $)) (-15 -3350 ($ |t#2| |t#1|)) (-15 -2343 ((-112) $)) (-15 -4425 ((-650 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2479 ((-650 |t#1|) $)) (-15 -2717 ((-650 $) $)) (-15 -1700 ((-777) $)) (-15 -1851 (|t#2| $)) (-15 -1860 (|t#1| $)) (-15 -3560 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1885 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-723 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-1047 |#2|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-3363 (((-1281) $) 7)) (-3798 (((-868) $) 8) (($ (-695 (-705))) 14) (($ (-650 (-334))) 13) (($ (-334)) 12) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 11))) +(((-388) (-141)) (T -388)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-695 (-705))) (-4 *1 (-388)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-388)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-388)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) (-4 *1 (-388))))) +(-13 (-401) (-10 -8 (-15 -3798 ($ (-695 (-705)))) (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-334))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))))) +(((-619 (-868)) . T) ((-401) . T) ((-1226) . T)) +((-4382 (((-3 $ "failed") (-695 (-320 (-384)))) 21) (((-3 $ "failed") (-695 (-320 (-570)))) 19) (((-3 $ "failed") (-695 (-959 (-384)))) 17) (((-3 $ "failed") (-695 (-959 (-570)))) 15) (((-3 $ "failed") (-695 (-413 (-959 (-384))))) 13) (((-3 $ "failed") (-695 (-413 (-959 (-570))))) 11)) (-3152 (($ (-695 (-320 (-384)))) 22) (($ (-695 (-320 (-570)))) 20) (($ (-695 (-959 (-384)))) 18) (($ (-695 (-959 (-570)))) 16) (($ (-695 (-413 (-959 (-384))))) 14) (($ (-695 (-413 (-959 (-570))))) 12)) (-3363 (((-1281) $) 7)) (-3798 (((-868) $) 8) (($ (-650 (-334))) 25) (($ (-334)) 24) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 23))) +(((-389) (-141)) (T -389)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-389)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-389)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) (-4 *1 (-389)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389))))) +(-13 (-401) (-10 -8 (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-334))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))) (-15 -3152 ($ (-695 (-320 (-384))))) (-15 -4382 ((-3 $ "failed") (-695 (-320 (-384))))) (-15 -3152 ($ (-695 (-320 (-570))))) (-15 -4382 ((-3 $ "failed") (-695 (-320 (-570))))) (-15 -3152 ($ (-695 (-959 (-384))))) (-15 -4382 ((-3 $ "failed") (-695 (-959 (-384))))) (-15 -3152 ($ (-695 (-959 (-570))))) (-15 -4382 ((-3 $ "failed") (-695 (-959 (-570))))) (-15 -3152 ($ (-695 (-413 (-959 (-384)))))) (-15 -4382 ((-3 $ "failed") (-695 (-413 (-959 (-384)))))) (-15 -3152 ($ (-695 (-413 (-959 (-570)))))) (-15 -4382 ((-3 $ "failed") (-695 (-413 (-959 (-570)))))))) +(((-619 (-868)) . T) ((-401) . T) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-3925 (($ |#1| |#2|) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1352 ((|#2| $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 33)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 12 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-390 |#1| |#2|) (-13 (-111 |#1| |#1|) (-515 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|))) (-1058) (-856)) (T -390)) +NIL +(-13 (-111 |#1| |#1|) (-515 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-723 |#1|)) |%noBranch|))) +((-2419 (((-112) $ $) 7)) (-3475 (((-777) $) 34)) (-3734 (($) 19 T CONST)) (-2276 (((-3 $ "failed") $ $) 37)) (-4382 (((-3 |#1| "failed") $) 45)) (-3152 ((|#1| $) 46)) (-2229 (((-3 $ "failed") $) 16)) (-2952 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-2481 (((-112) $) 18)) (-4308 ((|#1| $ (-570)) 31)) (-1598 (((-777) $ (-570)) 32)) (-3382 (($ $ $) 28 (|has| |#1| (-856)))) (-2876 (($ $ $) 27 (|has| |#1| (-856)))) (-3213 (($ (-1 |#1| |#1|) $) 29)) (-1432 (($ (-1 (-777) (-777)) $) 30)) (-2223 (((-3 $ "failed") $ $) 38)) (-4122 (((-1168) $) 10)) (-2556 (($ $ $) 39)) (-1980 (($ $ $) 40)) (-3551 (((-1129) $) 11)) (-1629 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-777)))) $) 33)) (-1854 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-3798 (((-868) $) 12) (($ |#1|) 44)) (-1319 (((-112) $ $) 9)) (-1817 (($) 20 T CONST)) (-2981 (((-112) $ $) 25 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 24 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 26 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 23 (|has| |#1| (-856)))) (** (($ $ (-928)) 14) (($ $ (-777)) 17) (($ |#1| (-777)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +(((-391 |#1|) (-141) (-1109)) (T -391)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-1980 (*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-2556 (*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-2223 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-2276 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-1854 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1109)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-391 *3)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *3 (-1109)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-391 *3)))) (-3475 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) (-5 *2 (-777)))) (-1629 (*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 (-777))))))) (-1598 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-391 *4)) (-4 *4 (-1109)) (-5 *2 (-777)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-391 *2)) (-4 *2 (-1109)))) (-1432 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-777) (-777))) (-4 *1 (-391 *3)) (-4 *3 (-1109)))) (-3213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3)) (-4 *3 (-1109))))) +(-13 (-732) (-1047 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-777))) (-15 -1980 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2223 ((-3 $ "failed") $ $)) (-15 -2276 ((-3 $ "failed") $ $)) (-15 -1854 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2952 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3475 ((-777) $)) (-15 -1629 ((-650 (-2 (|:| |gen| |t#1|) (|:| -4390 (-777)))) $)) (-15 -1598 ((-777) $ (-570))) (-15 -4308 (|t#1| $ (-570))) (-15 -1432 ($ (-1 (-777) (-777)) $)) (-15 -3213 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|))) +(((-102) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-732) . T) ((-856) |has| |#1| (-856)) ((-1047 |#1|) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777) $) 74)) (-3734 (($) NIL T CONST)) (-2276 (((-3 $ "failed") $ $) 77)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2952 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-2481 (((-112) $) 17)) (-4308 ((|#1| $ (-570)) NIL)) (-1598 (((-777) $ (-570)) NIL)) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3213 (($ (-1 |#1| |#1|) $) 40)) (-1432 (($ (-1 (-777) (-777)) $) 37)) (-2223 (((-3 $ "failed") $ $) 60)) (-4122 (((-1168) $) NIL)) (-2556 (($ $ $) 28)) (-1980 (($ $ $) 26)) (-3551 (((-1129) $) NIL)) (-1629 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-777)))) $) 34)) (-1854 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3798 (((-868) $) 24) (($ |#1|) NIL)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 11 T CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) 84 (|has| |#1| (-856)))) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ |#1| (-777)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-392 |#1|) (-391 |#1|) (-1109)) (T -392)) +NIL +(-391 |#1|) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 53)) (-3152 (((-570) $) 54)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-3382 (($ $ $) 60)) (-2876 (($ $ $) 59)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ $) 48)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-570)) 52)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 57)) (-2959 (((-112) $ $) 56)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 58)) (-2948 (((-112) $ $) 55)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-393) (-141)) (T -393)) +NIL +(-13 (-562) (-856) (-1047 (-570))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-856) . T) ((-1047 (-570)) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-3055 (((-112) $) 25)) (-2590 (((-112) $) 22)) (-4300 (($ (-1168) (-1168) (-1168)) 26)) (-3574 (((-1168) $) 16)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2025 (($ (-1168) (-1168) (-1168)) 14)) (-3808 (((-1168) $) 17)) (-4339 (((-112) $) 18)) (-4362 (((-1168) $) 15)) (-3798 (((-868) $) 12) (($ (-1168)) 13) (((-1168) $) 9)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 7))) +(((-394) (-395)) (T -394)) +NIL +(-395) +((-2419 (((-112) $ $) 7)) (-3055 (((-112) $) 17)) (-2590 (((-112) $) 18)) (-4300 (($ (-1168) (-1168) (-1168)) 16)) (-3574 (((-1168) $) 21)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2025 (($ (-1168) (-1168) (-1168)) 23)) (-3808 (((-1168) $) 20)) (-4339 (((-112) $) 19)) (-4362 (((-1168) $) 22)) (-3798 (((-868) $) 12) (($ (-1168)) 25) (((-1168) $) 24)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-395) (-141)) (T -395)) +((-2025 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))) (-2590 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))) (-3055 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112)))) (-4300 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395))))) +(-13 (-1109) (-496 (-1168)) (-10 -8 (-15 -2025 ($ (-1168) (-1168) (-1168))) (-15 -4362 ((-1168) $)) (-15 -3574 ((-1168) $)) (-15 -3808 ((-1168) $)) (-15 -4339 ((-112) $)) (-15 -2590 ((-112) $)) (-15 -3055 ((-112) $)) (-15 -4300 ($ (-1168) (-1168) (-1168))))) +(((-102) . T) ((-622 #0=(-1168)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3891 (((-868) $) 63)) (-3734 (($) NIL T CONST)) (-2559 (($ $ (-928)) NIL)) (-1752 (($ $ (-928)) NIL)) (-3619 (($ $ (-928)) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2335 (($ (-777)) 38)) (-3374 (((-777)) 18)) (-1567 (((-868) $) 65)) (-4307 (($ $ $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-3666 (($ $ $ $) NIL)) (-3616 (($ $ $) NIL)) (-1809 (($) 24 T CONST)) (-2923 (((-112) $ $) 41)) (-3026 (($ $) 48) (($ $ $) 50)) (-3014 (($ $ $) 51)) (** (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-396 |#1| |#2| |#3|) (-13 (-750 |#3|) (-10 -8 (-15 -3374 ((-777))) (-15 -1567 ((-868) $)) (-15 -3891 ((-868) $)) (-15 -2335 ($ (-777))))) (-777) (-777) (-174)) (T -396)) +((-3374 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777)) (-14 *4 (-777)) (-4 *5 (-174)))) (-3891 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777)) (-14 *4 (-777)) (-4 *5 (-174)))) (-2335 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-750 |#3|) (-10 -8 (-15 -3374 ((-777))) (-15 -1567 ((-868) $)) (-15 -3891 ((-868) $)) (-15 -2335 ($ (-777))))) +((-2872 (((-1168)) 12)) (-2884 (((-1156 (-1168))) 30)) (-3329 (((-1281) (-1168)) 27) (((-1281) (-394)) 26)) (-3342 (((-1281)) 28)) (-3307 (((-1156 (-1168))) 29))) +(((-397) (-10 -7 (-15 -3307 ((-1156 (-1168)))) (-15 -2884 ((-1156 (-1168)))) (-15 -3342 ((-1281))) (-15 -3329 ((-1281) (-394))) (-15 -3329 ((-1281) (-1168))) (-15 -2872 ((-1168))))) (T -397)) +((-2872 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-397)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-397)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1281)) (-5 *1 (-397)))) (-3342 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-397)))) (-2884 (*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397)))) (-3307 (*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397))))) +(-10 -7 (-15 -3307 ((-1156 (-1168)))) (-15 -2884 ((-1156 (-1168)))) (-15 -3342 ((-1281))) (-15 -3329 ((-1281) (-394))) (-15 -3329 ((-1281) (-1168))) (-15 -2872 ((-1168)))) +((-4202 (((-777) (-341 |#1| |#2| |#3| |#4|)) 19))) +(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-777) (-341 |#1| |#2| |#3| |#4|)))) (-13 (-373) (-368)) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -398)) +((-4202 (*1 *2 *3) (-12 (-5 *3 (-341 *4 *5 *6 *7)) (-4 *4 (-13 (-373) (-368))) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-4 *7 (-347 *4 *5 *6)) (-5 *2 (-777)) (-5 *1 (-398 *4 *5 *6 *7))))) +(-10 -7 (-15 -4202 ((-777) (-341 |#1| |#2| |#3| |#4|)))) +((-3798 (((-400) |#1|) 11))) +(((-399 |#1|) (-10 -7 (-15 -3798 ((-400) |#1|))) (-1109)) (T -399)) +((-3798 (*1 *2 *3) (-12 (-5 *2 (-400)) (-5 *1 (-399 *3)) (-4 *3 (-1109))))) +(-10 -7 (-15 -3798 ((-400) |#1|))) +((-2419 (((-112) $ $) NIL)) (-2549 (((-650 (-1168)) $ (-650 (-1168))) 42)) (-1683 (((-650 (-1168)) $ (-650 (-1168))) 43)) (-1910 (((-650 (-1168)) $ (-650 (-1168))) 44)) (-3273 (((-650 (-1168)) $) 39)) (-4300 (($) 30)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3182 (((-650 (-1168)) $) 40)) (-4197 (((-650 (-1168)) $) 41)) (-4160 (((-1281) $ (-570)) 37) (((-1281) $) 38)) (-1411 (($ (-868) (-570)) 35)) (-3798 (((-868) $) 49) (($ (-868)) 32)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-400) (-13 (-1109) (-622 (-868)) (-10 -8 (-15 -1411 ($ (-868) (-570))) (-15 -4160 ((-1281) $ (-570))) (-15 -4160 ((-1281) $)) (-15 -4197 ((-650 (-1168)) $)) (-15 -3182 ((-650 (-1168)) $)) (-15 -4300 ($)) (-15 -3273 ((-650 (-1168)) $)) (-15 -1910 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -1683 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -2549 ((-650 (-1168)) $ (-650 (-1168))))))) (T -400)) +((-1411 (*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-400)))) (-4160 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-400)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-400)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-4300 (*1 *1) (-5 *1 (-400))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-1910 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-1683 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) (-2549 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))) +(-13 (-1109) (-622 (-868)) (-10 -8 (-15 -1411 ($ (-868) (-570))) (-15 -4160 ((-1281) $ (-570))) (-15 -4160 ((-1281) $)) (-15 -4197 ((-650 (-1168)) $)) (-15 -3182 ((-650 (-1168)) $)) (-15 -4300 ($)) (-15 -3273 ((-650 (-1168)) $)) (-15 -1910 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -1683 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -2549 ((-650 (-1168)) $ (-650 (-1168)))))) +((-3363 (((-1281) $) 7)) (-3798 (((-868) $) 8))) +(((-401) (-141)) (T -401)) +((-3363 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1281))))) +(-13 (-1226) (-619 (-868)) (-10 -8 (-15 -3363 ((-1281) $)))) +(((-619 (-868)) . T) ((-1226) . T)) +((-4382 (((-3 $ "failed") (-320 (-384))) 21) (((-3 $ "failed") (-320 (-570))) 19) (((-3 $ "failed") (-959 (-384))) 17) (((-3 $ "failed") (-959 (-570))) 15) (((-3 $ "failed") (-413 (-959 (-384)))) 13) (((-3 $ "failed") (-413 (-959 (-570)))) 11)) (-3152 (($ (-320 (-384))) 22) (($ (-320 (-570))) 20) (($ (-959 (-384))) 18) (($ (-959 (-570))) 16) (($ (-413 (-959 (-384)))) 14) (($ (-413 (-959 (-570)))) 12)) (-3363 (((-1281) $) 7)) (-3798 (((-868) $) 8) (($ (-650 (-334))) 25) (($ (-334)) 24) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 23))) +(((-402) (-141)) (T -402)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-402)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-402)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) (-4 *1 (-402)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-4 *1 (-402)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-384))) (-4 *1 (-402)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-4 *1 (-402)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-570))) (-4 *1 (-402)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-959 (-384))) (-4 *1 (-402)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-384))) (-4 *1 (-402)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-402)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-570))) (-4 *1 (-402)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402))))) +(-13 (-401) (-10 -8 (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-334))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))) (-15 -3152 ($ (-320 (-384)))) (-15 -4382 ((-3 $ "failed") (-320 (-384)))) (-15 -3152 ($ (-320 (-570)))) (-15 -4382 ((-3 $ "failed") (-320 (-570)))) (-15 -3152 ($ (-959 (-384)))) (-15 -4382 ((-3 $ "failed") (-959 (-384)))) (-15 -3152 ($ (-959 (-570)))) (-15 -4382 ((-3 $ "failed") (-959 (-570)))) (-15 -3152 ($ (-413 (-959 (-384))))) (-15 -4382 ((-3 $ "failed") (-413 (-959 (-384))))) (-15 -3152 ($ (-413 (-959 (-570))))) (-15 -4382 ((-3 $ "failed") (-413 (-959 (-570))))))) +(((-619 (-868)) . T) ((-401) . T) ((-1226) . T)) +((-1606 (((-650 (-1168)) (-650 (-1168))) 9)) (-3363 (((-1281) (-394)) 26)) (-3910 (((-1113) (-1186) (-650 (-1186)) (-1189) (-650 (-1186))) 59) (((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)) (-1186)) 34) (((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186))) 33))) +(((-403) (-10 -7 (-15 -3910 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)))) (-15 -3910 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)) (-1186))) (-15 -3910 ((-1113) (-1186) (-650 (-1186)) (-1189) (-650 (-1186)))) (-15 -3363 ((-1281) (-394))) (-15 -1606 ((-650 (-1168)) (-650 (-1168)))))) (T -403)) +((-1606 (*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-403)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1281)) (-5 *1 (-403)))) (-3910 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-650 (-1186))) (-5 *5 (-1189)) (-5 *3 (-1186)) (-5 *2 (-1113)) (-5 *1 (-403)))) (-3910 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186))))) (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113)) (-5 *1 (-403)))) (-3910 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186))))) (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113)) (-5 *1 (-403))))) +(-10 -7 (-15 -3910 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)))) (-15 -3910 ((-1113) (-1186) (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186)))) (-650 (-650 (-3 (|:| |array| (-650 (-1186))) (|:| |scalar| (-1186))))) (-650 (-1186)) (-1186))) (-15 -3910 ((-1113) (-1186) (-650 (-1186)) (-1189) (-650 (-1186)))) (-15 -3363 ((-1281) (-394))) (-15 -1606 ((-650 (-1168)) (-650 (-1168))))) +((-3363 (((-1281) $) 35)) (-3798 (((-868) $) 97) (($ (-334)) 99) (($ (-650 (-334))) 98) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 96) (($ (-320 (-707))) 52) (($ (-320 (-705))) 72) (($ (-320 (-700))) 85) (($ (-298 (-320 (-707)))) 67) (($ (-298 (-320 (-705)))) 80) (($ (-298 (-320 (-700)))) 93) (($ (-320 (-570))) 104) (($ (-320 (-384))) 117) (($ (-320 (-171 (-384)))) 130) (($ (-298 (-320 (-570)))) 112) (($ (-298 (-320 (-384)))) 125) (($ (-298 (-320 (-171 (-384))))) 138))) +(((-404 |#1| |#2| |#3| |#4|) (-13 (-401) (-10 -8 (-15 -3798 ($ (-334))) (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))) (-15 -3798 ($ (-320 (-707)))) (-15 -3798 ($ (-320 (-705)))) (-15 -3798 ($ (-320 (-700)))) (-15 -3798 ($ (-298 (-320 (-707))))) (-15 -3798 ($ (-298 (-320 (-705))))) (-15 -3798 ($ (-298 (-320 (-700))))) (-15 -3798 ($ (-320 (-570)))) (-15 -3798 ($ (-320 (-384)))) (-15 -3798 ($ (-320 (-171 (-384))))) (-15 -3798 ($ (-298 (-320 (-570))))) (-15 -3798 ($ (-298 (-320 (-384))))) (-15 -3798 ($ (-298 (-320 (-171 (-384)))))))) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-1186)) (-1190)) (T -404)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-334)) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-320 (-707))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-320 (-705))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-320 (-700))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-707)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-705)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-700)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-570)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-384)))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-298 (-320 (-171 (-384))))) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-14 *5 (-650 (-1186))) (-14 *6 (-1190))))) +(-13 (-401) (-10 -8 (-15 -3798 ($ (-334))) (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))) (-15 -3798 ($ (-320 (-707)))) (-15 -3798 ($ (-320 (-705)))) (-15 -3798 ($ (-320 (-700)))) (-15 -3798 ($ (-298 (-320 (-707))))) (-15 -3798 ($ (-298 (-320 (-705))))) (-15 -3798 ($ (-298 (-320 (-700))))) (-15 -3798 ($ (-320 (-570)))) (-15 -3798 ($ (-320 (-384)))) (-15 -3798 ($ (-320 (-171 (-384))))) (-15 -3798 ($ (-298 (-320 (-570))))) (-15 -3798 ($ (-298 (-320 (-384))))) (-15 -3798 ($ (-298 (-320 (-171 (-384)))))))) +((-2419 (((-112) $ $) NIL)) (-4116 ((|#2| $) 38)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3513 (($ (-413 |#2|)) 95)) (-3282 (((-650 (-2 (|:| -3283 (-777)) (|:| -2172 |#2|) (|:| |num| |#2|))) $) 39)) (-3519 (($ $) 34) (($ $ (-777)) 36)) (-1411 (((-413 |#2|) $) 51)) (-3811 (($ (-650 (-2 (|:| -3283 (-777)) (|:| -2172 |#2|) (|:| |num| |#2|)))) 33)) (-3798 (((-868) $) 132)) (-1319 (((-112) $ $) NIL)) (-2835 (($ $) 35) (($ $ (-777)) 37)) (-2923 (((-112) $ $) NIL)) (-3014 (($ |#2| $) 41))) +(((-405 |#1| |#2|) (-13 (-1109) (-620 (-413 |#2|)) (-10 -8 (-15 -3014 ($ |#2| $)) (-15 -3513 ($ (-413 |#2|))) (-15 -4116 (|#2| $)) (-15 -3282 ((-650 (-2 (|:| -3283 (-777)) (|:| -2172 |#2|) (|:| |num| |#2|))) $)) (-15 -3811 ($ (-650 (-2 (|:| -3283 (-777)) (|:| -2172 |#2|) (|:| |num| |#2|))))) (-15 -3519 ($ $)) (-15 -2835 ($ $)) (-15 -3519 ($ $ (-777))) (-15 -2835 ($ $ (-777))))) (-13 (-368) (-148)) (-1252 |#1|)) (T -405)) +((-3014 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *2)) (-4 *2 (-1252 *3)))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-413 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)))) (-4116 (*1 *2 *1) (-12 (-4 *2 (-1252 *3)) (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-368) (-148))))) (-3282 (*1 *2 *1) (-12 (-4 *3 (-13 (-368) (-148))) (-5 *2 (-650 (-2 (|:| -3283 (-777)) (|:| -2172 *4) (|:| |num| *4)))) (-5 *1 (-405 *3 *4)) (-4 *4 (-1252 *3)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -3283 (-777)) (|:| -2172 *4) (|:| |num| *4)))) (-4 *4 (-1252 *3)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)))) (-3519 (*1 *1 *1) (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3)) (-4 *3 (-1252 *2)))) (-2835 (*1 *1 *1) (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3)) (-4 *3 (-1252 *2)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)) (-4 *4 (-1252 *3)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)) (-4 *4 (-1252 *3))))) +(-13 (-1109) (-620 (-413 |#2|)) (-10 -8 (-15 -3014 ($ |#2| $)) (-15 -3513 ($ (-413 |#2|))) (-15 -4116 (|#2| $)) (-15 -3282 ((-650 (-2 (|:| -3283 (-777)) (|:| -2172 |#2|) (|:| |num| |#2|))) $)) (-15 -3811 ($ (-650 (-2 (|:| -3283 (-777)) (|:| -2172 |#2|) (|:| |num| |#2|))))) (-15 -3519 ($ $)) (-15 -2835 ($ $)) (-15 -3519 ($ $ (-777))) (-15 -2835 ($ $ (-777))))) +((-2419 (((-112) $ $) 9 (-2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 16 (|has| |#1| (-893 (-384)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 15 (|has| |#1| (-893 (-570))))) (-4122 (((-1168) $) 13 (-2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-3551 (((-1129) $) 12 (-2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-3798 (((-868) $) 11 (-2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-1319 (((-112) $ $) 14 (-2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))))) (-2923 (((-112) $ $) 10 (-2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384))))))) +(((-406 |#1|) (-141) (-1226)) (T -406)) +NIL +(-13 (-1226) (-10 -7 (IF (|has| |t#1| (-893 (-570))) (-6 (-893 (-570))) |%noBranch|) (IF (|has| |t#1| (-893 (-384))) (-6 (-893 (-384))) |%noBranch|))) +(((-102) -2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))) ((-619 (-868)) -2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-1109) -2779 (|has| |#1| (-893 (-570))) (|has| |#1| (-893 (-384)))) ((-1226) . T)) +((-3640 (($ $) 10) (($ $ (-777)) 12))) +(((-407 |#1|) (-10 -8 (-15 -3640 (|#1| |#1| (-777))) (-15 -3640 (|#1| |#1|))) (-408)) (T -407)) +NIL +(-10 -8 (-15 -3640 (|#1| |#1| (-777))) (-15 -3640 (|#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3640 (($ $) 87) (($ $ (-777)) 86)) (-3701 (((-112) $) 79)) (-4202 (((-839 (-928)) $) 89)) (-2481 (((-112) $) 35)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-2174 (((-3 (-777) "failed") $ $) 88)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74)) (-2917 (((-3 $ "failed") $) 90)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75))) +(((-408) (-141)) (T -408)) +((-4202 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-839 (-928))))) (-2174 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-408)) (-5 *2 (-777)))) (-3640 (*1 *1 *1) (-4 *1 (-408))) (-3640 (*1 *1 *1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-777))))) +(-13 (-368) (-146) (-10 -8 (-15 -4202 ((-839 (-928)) $)) (-15 -2174 ((-3 (-777) "failed") $ $)) (-15 -3640 ($ $)) (-15 -3640 ($ $ (-777))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-2560 (($ (-570) (-570)) 11) (($ (-570) (-570) (-928)) NIL)) (-1410 (((-928)) 19) (((-928) (-928)) NIL))) +(((-409 |#1|) (-10 -8 (-15 -1410 ((-928) (-928))) (-15 -1410 ((-928))) (-15 -2560 (|#1| (-570) (-570) (-928))) (-15 -2560 (|#1| (-570) (-570)))) (-410)) (T -409)) +((-1410 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410))))) +(-10 -8 (-15 -1410 ((-928) (-928))) (-15 -1410 ((-928))) (-15 -2560 (|#1| (-570) (-570) (-928))) (-15 -2560 (|#1| (-570) (-570)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3356 (((-570) $) 97)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-3667 (($ $) 95)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-3815 (($ $) 105)) (-4073 (((-112) $ $) 65)) (-2579 (((-570) $) 122)) (-3734 (($) 18 T CONST)) (-2109 (($ $) 94)) (-4382 (((-3 (-570) "failed") $) 110) (((-3 (-413 (-570)) "failed") $) 107)) (-3152 (((-570) $) 111) (((-413 (-570)) $) 108)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3701 (((-112) $) 79)) (-3503 (((-928)) 138) (((-928) (-928)) 135 (|has| $ (-6 -4439)))) (-2135 (((-112) $) 120)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 101)) (-4202 (((-570) $) 144)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 104)) (-2233 (($ $) 100)) (-3367 (((-112) $) 121)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3382 (($ $ $) 119) (($) 132 (-12 (-1748 (|has| $ (-6 -4439))) (-1748 (|has| $ (-6 -4431)))))) (-2876 (($ $ $) 118) (($) 131 (-12 (-1748 (|has| $ (-6 -4439))) (-1748 (|has| $ (-6 -4431)))))) (-3033 (((-570) $) 141)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-3830 (((-928) (-570)) 134 (|has| $ (-6 -4439)))) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-2545 (($ $) 96)) (-4140 (($ $) 98)) (-2560 (($ (-570) (-570)) 146) (($ (-570) (-570) (-928)) 145)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3283 (((-570) $) 142)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-1410 (((-928)) 139) (((-928) (-928)) 136 (|has| $ (-6 -4439)))) (-3510 (((-928) (-570)) 133 (|has| $ (-6 -4439)))) (-1411 (((-384) $) 113) (((-227) $) 112) (((-899 (-384)) $) 102)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ (-570)) 109) (($ (-413 (-570))) 106)) (-2862 (((-777)) 32 T CONST)) (-1442 (($ $) 99)) (-4081 (((-928)) 140) (((-928) (-928)) 137 (|has| $ (-6 -4439)))) (-1319 (((-112) $ $) 9)) (-4364 (((-928)) 143)) (-3258 (((-112) $ $) 45)) (-2216 (($ $) 123)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 116)) (-2959 (((-112) $ $) 115)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 117)) (-2948 (((-112) $ $) 114)) (-3037 (($ $ $) 73)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 103)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75))) +(((-410) (-141)) (T -410)) +((-2560 (*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-410)))) (-2560 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-4 *1 (-410)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) (-4364 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) (-3033 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) (-4081 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-1410 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-3503 (*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4439)) (-4 *1 (-410)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4439)) (-4 *1 (-410)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4439)) (-4 *1 (-410)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-570)) (|has| *1 (-6 -4439)) (-4 *1 (-410)) (-5 *2 (-928)))) (-3510 (*1 *2 *3) (-12 (-5 *3 (-570)) (|has| *1 (-6 -4439)) (-4 *1 (-410)) (-5 *2 (-928)))) (-3382 (*1 *1) (-12 (-4 *1 (-410)) (-1748 (|has| *1 (-6 -4439))) (-1748 (|has| *1 (-6 -4431))))) (-2876 (*1 *1) (-12 (-4 *1 (-410)) (-1748 (|has| *1 (-6 -4439))) (-1748 (|has| *1 (-6 -4431)))))) +(-13 (-1069) (-10 -8 (-6 -3093) (-15 -2560 ($ (-570) (-570))) (-15 -2560 ($ (-570) (-570) (-928))) (-15 -4202 ((-570) $)) (-15 -4364 ((-928))) (-15 -3283 ((-570) $)) (-15 -3033 ((-570) $)) (-15 -4081 ((-928))) (-15 -1410 ((-928))) (-15 -3503 ((-928))) (IF (|has| $ (-6 -4439)) (PROGN (-15 -4081 ((-928) (-928))) (-15 -1410 ((-928) (-928))) (-15 -3503 ((-928) (-928))) (-15 -3830 ((-928) (-570))) (-15 -3510 ((-928) (-570)))) |%noBranch|) (IF (|has| $ (-6 -4431)) |%noBranch| (IF (|has| $ (-6 -4439)) |%noBranch| (PROGN (-15 -3382 ($)) (-15 -2876 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-227)) . T) ((-620 (-384)) . T) ((-620 (-899 (-384))) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-893 (-384)) . T) ((-927) . T) ((-1011) . T) ((-1031) . T) ((-1069) . T) ((-1047 (-413 (-570))) . T) ((-1047 (-570)) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-1347 (((-424 |#2|) (-1 |#2| |#1|) (-424 |#1|)) 20))) +(((-411 |#1| |#2|) (-10 -7 (-15 -1347 ((-424 |#2|) (-1 |#2| |#1|) (-424 |#1|)))) (-562) (-562)) (T -411)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-424 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-5 *2 (-424 *6)) (-5 *1 (-411 *5 *6))))) +(-10 -7 (-15 -1347 ((-424 |#2|) (-1 |#2| |#1|) (-424 |#1|)))) +((-1347 (((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)) 13))) +(((-412 |#1| |#2|) (-10 -7 (-15 -1347 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) (-562) (-562)) (T -412)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-5 *2 (-413 *6)) (-5 *1 (-412 *5 *6))))) +(-10 -7 (-15 -1347 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 13)) (-3356 ((|#1| $) 21 (|has| |#1| (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| |#1| (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 17) (((-3 (-1186) "failed") $) NIL (|has| |#1| (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) 72 (|has| |#1| (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570))))) (-3152 ((|#1| $) 15) (((-1186) $) NIL (|has| |#1| (-1047 (-1186)))) (((-413 (-570)) $) 69 (|has| |#1| (-1047 (-570)))) (((-570) $) NIL (|has| |#1| (-1047 (-570))))) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) 51)) (-3408 (($) NIL (|has| |#1| (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| |#1| (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| |#1| (-893 (-384))))) (-2481 (((-112) $) 57)) (-4004 (($ $) NIL)) (-4400 ((|#1| $) 73)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-3367 (((-112) $) NIL (|has| |#1| (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| |#1| (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 100)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| |#1| (-311)))) (-4140 ((|#1| $) 28 (|has| |#1| (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 148 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 141 (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-3788 (((-777) $) NIL)) (-1872 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2397 (($ $) NIL)) (-4413 ((|#1| $) 75)) (-1411 (((-899 (-570)) $) NIL (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#1| (-620 (-899 (-384))))) (((-542) $) NIL (|has| |#1| (-620 (-542)))) (((-384) $) NIL (|has| |#1| (-1031))) (((-227) $) NIL (|has| |#1| (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 125 (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 10) (($ (-1186)) NIL (|has| |#1| (-1047 (-1186))))) (-2917 (((-3 $ "failed") $) 102 (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) 103 T CONST)) (-1442 ((|#1| $) 26 (|has| |#1| (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| |#1| (-826)))) (-1809 (($) 22 T CONST)) (-1817 (($) 8 T CONST)) (-1985 (((-1168) $) 44 (-12 (|has| |#1| (-551)) (|has| |#1| (-834)))) (((-1168) $ (-112)) 45 (-12 (|has| |#1| (-551)) (|has| |#1| (-834)))) (((-1281) (-828) $) 46 (-12 (|has| |#1| (-551)) (|has| |#1| (-834)))) (((-1281) (-828) $ (-112)) 47 (-12 (|has| |#1| (-551)) (|has| |#1| (-834))))) (-2835 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) 66)) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) 24 (|has| |#1| (-856)))) (-3037 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3026 (($ $) 25) (($ $ $) 56)) (-3014 (($ $ $) 54)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 135)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 61) (($ $ $) 58) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-413 |#1|) (-13 (-1001 |#1|) (-10 -7 (IF (|has| |#1| (-551)) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4435)) (IF (|has| |#1| (-458)) (IF (|has| |#1| (-6 -4446)) (-6 -4435) |%noBranch|) |%noBranch|) |%noBranch|))) (-562)) (T -413)) +NIL +(-13 (-1001 |#1|) (-10 -7 (IF (|has| |#1| (-551)) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4435)) (IF (|has| |#1| (-458)) (IF (|has| |#1| (-6 -4446)) (-6 -4435) |%noBranch|) |%noBranch|) |%noBranch|))) +((-2365 (((-695 |#2|) (-1276 $)) NIL) (((-695 |#2|)) 18)) (-2427 (($ (-1276 |#2|) (-1276 $)) NIL) (($ (-1276 |#2|)) 24)) (-2684 (((-695 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) $) 40)) (-2780 ((|#3| $) 73)) (-3511 ((|#2| (-1276 $)) NIL) ((|#2|) 20)) (-1861 (((-1276 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) (-1276 $) (-1276 $)) NIL) (((-1276 |#2|) $) 22) (((-695 |#2|) (-1276 $)) 38)) (-1411 (((-1276 |#2|) $) 11) (($ (-1276 |#2|)) 13)) (-4042 ((|#3| $) 55))) +(((-414 |#1| |#2| |#3|) (-10 -8 (-15 -2684 ((-695 |#2|) |#1|)) (-15 -3511 (|#2|)) (-15 -2365 ((-695 |#2|))) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -2427 (|#1| (-1276 |#2|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -2780 (|#3| |#1|)) (-15 -4042 (|#3| |#1|)) (-15 -2365 ((-695 |#2|) (-1276 |#1|))) (-15 -3511 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -2684 ((-695 |#2|) |#1| (-1276 |#1|)))) (-415 |#2| |#3|) (-174) (-1252 |#2|)) (T -414)) +((-2365 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-415 *4 *5)))) (-3511 (*1 *2) (-12 (-4 *4 (-1252 *2)) (-4 *2 (-174)) (-5 *1 (-414 *3 *2 *4)) (-4 *3 (-415 *2 *4))))) +(-10 -8 (-15 -2684 ((-695 |#2|) |#1|)) (-15 -3511 (|#2|)) (-15 -2365 ((-695 |#2|))) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -2427 (|#1| (-1276 |#2|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -2780 (|#3| |#1|)) (-15 -4042 (|#3| |#1|)) (-15 -2365 ((-695 |#2|) (-1276 |#1|))) (-15 -3511 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -2684 ((-695 |#2|) |#1| (-1276 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2365 (((-695 |#1|) (-1276 $)) 53) (((-695 |#1|)) 68)) (-3142 ((|#1| $) 59)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2427 (($ (-1276 |#1|) (-1276 $)) 55) (($ (-1276 |#1|)) 71)) (-2684 (((-695 |#1|) $ (-1276 $)) 60) (((-695 |#1|) $) 66)) (-2229 (((-3 $ "failed") $) 37)) (-3979 (((-928)) 61)) (-2481 (((-112) $) 35)) (-2233 ((|#1| $) 58)) (-2780 ((|#2| $) 51 (|has| |#1| (-368)))) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3511 ((|#1| (-1276 $)) 54) ((|#1|) 67)) (-1861 (((-1276 |#1|) $ (-1276 $)) 57) (((-695 |#1|) (-1276 $) (-1276 $)) 56) (((-1276 |#1|) $) 73) (((-695 |#1|) (-1276 $)) 72)) (-1411 (((-1276 |#1|) $) 70) (($ (-1276 |#1|)) 69)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44)) (-2917 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4042 ((|#2| $) 52)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-2077 (((-1276 $)) 74)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-415 |#1| |#2|) (-141) (-174) (-1252 |t#1|)) (T -415)) +((-2077 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-1276 *1)) (-4 *1 (-415 *3 *4)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-1276 *3)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-415 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4)) (-4 *4 (-1252 *3)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-1276 *3)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4)) (-4 *4 (-1252 *3)))) (-2365 (*1 *2) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-695 *3)))) (-3511 (*1 *2) (-12 (-4 *1 (-415 *2 *3)) (-4 *3 (-1252 *2)) (-4 *2 (-174)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-695 *3))))) +(-13 (-375 |t#1| |t#2|) (-10 -8 (-15 -2077 ((-1276 $))) (-15 -1861 ((-1276 |t#1|) $)) (-15 -1861 ((-695 |t#1|) (-1276 $))) (-15 -2427 ($ (-1276 |t#1|))) (-15 -1411 ((-1276 |t#1|) $)) (-15 -1411 ($ (-1276 |t#1|))) (-15 -2365 ((-695 |t#1|))) (-15 -3511 (|t#1|)) (-15 -2684 ((-695 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-375 |#1| |#2|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) 27) (((-3 (-570) "failed") $) 19)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) 24) (((-570) $) 14)) (-3798 (($ |#2|) NIL) (($ (-413 (-570))) 22) (($ (-570)) 11))) +(((-416 |#1| |#2|) (-10 -8 (-15 -3798 (|#1| (-570))) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|))) (-417 |#2|) (-1226)) (T -416)) +NIL +(-10 -8 (-15 -3798 (|#1| (-570))) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|))) +((-4382 (((-3 |#1| "failed") $) 9) (((-3 (-413 (-570)) "failed") $) 16 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 13 (|has| |#1| (-1047 (-570))))) (-3152 ((|#1| $) 8) (((-413 (-570)) $) 17 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 14 (|has| |#1| (-1047 (-570))))) (-3798 (($ |#1|) 6) (($ (-413 (-570))) 15 (|has| |#1| (-1047 (-413 (-570))))) (($ (-570)) 12 (|has| |#1| (-1047 (-570)))))) +(((-417 |#1|) (-141) (-1226)) (T -417)) +NIL +(-13 (-1047 |t#1|) (-10 -7 (IF (|has| |t#1| (-1047 (-570))) (-6 (-1047 (-570))) |%noBranch|) (IF (|has| |t#1| (-1047 (-413 (-570)))) (-6 (-1047 (-413 (-570)))) |%noBranch|))) +(((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 #1=(-570)) |has| |#1| (-1047 (-570))) ((-622 |#1|) . T) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 #1#) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T)) +((-1347 (((-419 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-419 |#1| |#2| |#3| |#4|)) 35))) +(((-418 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1347 ((-419 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-419 |#1| |#2| |#3| |#4|)))) (-311) (-1001 |#1|) (-1252 |#2|) (-13 (-415 |#2| |#3|) (-1047 |#2|)) (-311) (-1001 |#5|) (-1252 |#6|) (-13 (-415 |#6| |#7|) (-1047 |#6|))) (T -418)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-419 *5 *6 *7 *8)) (-4 *5 (-311)) (-4 *6 (-1001 *5)) (-4 *7 (-1252 *6)) (-4 *8 (-13 (-415 *6 *7) (-1047 *6))) (-4 *9 (-311)) (-4 *10 (-1001 *9)) (-4 *11 (-1252 *10)) (-5 *2 (-419 *9 *10 *11 *12)) (-5 *1 (-418 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-415 *10 *11) (-1047 *10)))))) +(-10 -7 (-15 -1347 ((-419 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-419 |#1| |#2| |#3| |#4|)))) +((-2419 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2817 ((|#4| (-777) (-1276 |#4|)) 58)) (-2481 (((-112) $) NIL)) (-4400 (((-1276 |#4|) $) 15)) (-2233 ((|#2| $) 53)) (-4314 (($ $) 161)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 106)) (-3425 (($ (-1276 |#4|)) 105)) (-3551 (((-1129) $) NIL)) (-4413 ((|#1| $) 16)) (-3897 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-3798 (((-868) $) 151)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 |#4|) $) 144)) (-1817 (($) 11 T CONST)) (-2923 (((-112) $ $) 39)) (-3037 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 137)) (* (($ $ $) 133))) +(((-419 |#1| |#2| |#3| |#4|) (-13 (-479) (-10 -8 (-15 -3425 ($ (-1276 |#4|))) (-15 -2077 ((-1276 |#4|) $)) (-15 -2233 (|#2| $)) (-15 -4400 ((-1276 |#4|) $)) (-15 -4413 (|#1| $)) (-15 -4314 ($ $)) (-15 -2817 (|#4| (-777) (-1276 |#4|))))) (-311) (-1001 |#1|) (-1252 |#2|) (-13 (-415 |#2| |#3|) (-1047 |#2|))) (T -419)) +((-3425 (*1 *1 *2) (-12 (-5 *2 (-1276 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-4 *3 (-311)) (-5 *1 (-419 *3 *4 *5 *6)))) (-2077 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-5 *2 (-1276 *6)) (-5 *1 (-419 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))))) (-2233 (*1 *2 *1) (-12 (-4 *4 (-1252 *2)) (-4 *2 (-1001 *3)) (-5 *1 (-419 *3 *2 *4 *5)) (-4 *3 (-311)) (-4 *5 (-13 (-415 *2 *4) (-1047 *2))))) (-4400 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-5 *2 (-1276 *6)) (-5 *1 (-419 *3 *4 *5 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))))) (-4413 (*1 *2 *1) (-12 (-4 *3 (-1001 *2)) (-4 *4 (-1252 *3)) (-4 *2 (-311)) (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3))))) (-4314 (*1 *1 *1) (-12 (-4 *2 (-311)) (-4 *3 (-1001 *2)) (-4 *4 (-1252 *3)) (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3))))) (-2817 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-1276 *2)) (-4 *5 (-311)) (-4 *6 (-1001 *5)) (-4 *2 (-13 (-415 *6 *7) (-1047 *6))) (-5 *1 (-419 *5 *6 *7 *2)) (-4 *7 (-1252 *6))))) +(-13 (-479) (-10 -8 (-15 -3425 ($ (-1276 |#4|))) (-15 -2077 ((-1276 |#4|) $)) (-15 -2233 (|#2| $)) (-15 -4400 ((-1276 |#4|) $)) (-15 -4413 (|#1| $)) (-15 -4314 ($ $)) (-15 -2817 (|#4| (-777) (-1276 |#4|))))) +((-2419 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-2233 ((|#2| $) 71)) (-1923 (($ (-1276 |#4|)) 27) (($ (-419 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1047 |#2|)))) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 37)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 |#4|) $) 28)) (-1817 (($) 25 T CONST)) (-2923 (((-112) $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ $ $) 82))) +(((-420 |#1| |#2| |#3| |#4| |#5|) (-13 (-732) (-10 -8 (-15 -2077 ((-1276 |#4|) $)) (-15 -2233 (|#2| $)) (-15 -1923 ($ (-1276 |#4|))) (IF (|has| |#4| (-1047 |#2|)) (-15 -1923 ($ (-419 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-311) (-1001 |#1|) (-1252 |#2|) (-415 |#2| |#3|) (-1276 |#4|)) (T -420)) +((-2077 (*1 *2 *1) (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-5 *2 (-1276 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)) (-4 *6 (-415 *4 *5)) (-14 *7 *2))) (-2233 (*1 *2 *1) (-12 (-4 *4 (-1252 *2)) (-4 *2 (-1001 *3)) (-5 *1 (-420 *3 *2 *4 *5 *6)) (-4 *3 (-311)) (-4 *5 (-415 *2 *4)) (-14 *6 (-1276 *5)))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-1276 *6)) (-4 *6 (-415 *4 *5)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-4 *3 (-311)) (-5 *1 (-420 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1923 (*1 *1 *2) (-12 (-5 *2 (-419 *3 *4 *5 *6)) (-4 *6 (-1047 *4)) (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-4 *6 (-415 *4 *5)) (-14 *7 (-1276 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7))))) +(-13 (-732) (-10 -8 (-15 -2077 ((-1276 |#4|) $)) (-15 -2233 (|#2| $)) (-15 -1923 ($ (-1276 |#4|))) (IF (|has| |#4| (-1047 |#2|)) (-15 -1923 ($ (-419 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1347 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#3| (-1 |#4| |#2|) |#1|))) (-423 |#2|) (-174) (-423 |#4|) (-174)) (T -421)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-423 *6)) (-5 *1 (-421 *4 *5 *2 *6)) (-4 *4 (-423 *5))))) +(-10 -7 (-15 -1347 (|#3| (-1 |#4| |#2|) |#1|))) +((-1738 (((-3 $ "failed")) 99)) (-1601 (((-1276 (-695 |#2|)) (-1276 $)) NIL) (((-1276 (-695 |#2|))) 104)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) 97)) (-3025 (((-3 $ "failed")) 96)) (-1460 (((-695 |#2|) (-1276 $)) NIL) (((-695 |#2|)) 115)) (-3277 (((-695 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) $) 123)) (-3019 (((-1182 (-959 |#2|))) 65)) (-3235 ((|#2| (-1276 $)) NIL) ((|#2|) 119)) (-2427 (($ (-1276 |#2|) (-1276 $)) NIL) (($ (-1276 |#2|)) 125)) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) 95)) (-1822 (((-3 $ "failed")) 87)) (-3792 (((-695 |#2|) (-1276 $)) NIL) (((-695 |#2|)) 113)) (-2961 (((-695 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) $) 121)) (-2463 (((-1182 (-959 |#2|))) 64)) (-2908 ((|#2| (-1276 $)) NIL) ((|#2|) 117)) (-1861 (((-1276 |#2|) $ (-1276 $)) NIL) (((-695 |#2|) (-1276 $) (-1276 $)) NIL) (((-1276 |#2|) $) 124) (((-695 |#2|) (-1276 $)) 133)) (-1411 (((-1276 |#2|) $) 109) (($ (-1276 |#2|)) 111)) (-3594 (((-650 (-959 |#2|)) (-1276 $)) NIL) (((-650 (-959 |#2|))) 107)) (-3453 (($ (-695 |#2|) $) 103))) +(((-422 |#1| |#2|) (-10 -8 (-15 -3453 (|#1| (-695 |#2|) |#1|)) (-15 -3019 ((-1182 (-959 |#2|)))) (-15 -2463 ((-1182 (-959 |#2|)))) (-15 -3277 ((-695 |#2|) |#1|)) (-15 -2961 ((-695 |#2|) |#1|)) (-15 -1460 ((-695 |#2|))) (-15 -3792 ((-695 |#2|))) (-15 -3235 (|#2|)) (-15 -2908 (|#2|)) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -2427 (|#1| (-1276 |#2|))) (-15 -3594 ((-650 (-959 |#2|)))) (-15 -1601 ((-1276 (-695 |#2|)))) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -1738 ((-3 |#1| "failed"))) (-15 -3025 ((-3 |#1| "failed"))) (-15 -1822 ((-3 |#1| "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed"))) (-15 -1597 ((-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed"))) (-15 -1460 ((-695 |#2|) (-1276 |#1|))) (-15 -3792 ((-695 |#2|) (-1276 |#1|))) (-15 -3235 (|#2| (-1276 |#1|))) (-15 -2908 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -3277 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -2961 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -1601 ((-1276 (-695 |#2|)) (-1276 |#1|))) (-15 -3594 ((-650 (-959 |#2|)) (-1276 |#1|)))) (-423 |#2|) (-174)) (T -422)) +((-1601 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1276 (-695 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-3594 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-650 (-959 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-2908 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) (-3235 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) (-3792 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-1460 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-2463 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4)))) (-3019 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4)) (-4 *3 (-423 *4))))) +(-10 -8 (-15 -3453 (|#1| (-695 |#2|) |#1|)) (-15 -3019 ((-1182 (-959 |#2|)))) (-15 -2463 ((-1182 (-959 |#2|)))) (-15 -3277 ((-695 |#2|) |#1|)) (-15 -2961 ((-695 |#2|) |#1|)) (-15 -1460 ((-695 |#2|))) (-15 -3792 ((-695 |#2|))) (-15 -3235 (|#2|)) (-15 -2908 (|#2|)) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -2427 (|#1| (-1276 |#2|))) (-15 -3594 ((-650 (-959 |#2|)))) (-15 -1601 ((-1276 (-695 |#2|)))) (-15 -1861 ((-695 |#2|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1|)) (-15 -1738 ((-3 |#1| "failed"))) (-15 -3025 ((-3 |#1| "failed"))) (-15 -1822 ((-3 |#1| "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed"))) (-15 -1597 ((-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed"))) (-15 -1460 ((-695 |#2|) (-1276 |#1|))) (-15 -3792 ((-695 |#2|) (-1276 |#1|))) (-15 -3235 (|#2| (-1276 |#1|))) (-15 -2908 (|#2| (-1276 |#1|))) (-15 -2427 (|#1| (-1276 |#2|) (-1276 |#1|))) (-15 -1861 ((-695 |#2|) (-1276 |#1|) (-1276 |#1|))) (-15 -1861 ((-1276 |#2|) |#1| (-1276 |#1|))) (-15 -3277 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -2961 ((-695 |#2|) |#1| (-1276 |#1|))) (-15 -1601 ((-1276 (-695 |#2|)) (-1276 |#1|))) (-15 -3594 ((-650 (-959 |#2|)) (-1276 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1738 (((-3 $ "failed")) 42 (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) 20)) (-1601 (((-1276 (-695 |#1|)) (-1276 $)) 83) (((-1276 (-695 |#1|))) 105)) (-4392 (((-1276 $)) 86)) (-3734 (($) 18 T CONST)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) 45 (|has| |#1| (-562)))) (-3025 (((-3 $ "failed")) 43 (|has| |#1| (-562)))) (-1460 (((-695 |#1|) (-1276 $)) 70) (((-695 |#1|)) 97)) (-3754 ((|#1| $) 79)) (-3277 (((-695 |#1|) $ (-1276 $)) 81) (((-695 |#1|) $) 95)) (-2487 (((-3 $ "failed") $) 50 (|has| |#1| (-562)))) (-3019 (((-1182 (-959 |#1|))) 93 (|has| |#1| (-368)))) (-2559 (($ $ (-928)) 31)) (-3928 ((|#1| $) 77)) (-3387 (((-1182 |#1|) $) 47 (|has| |#1| (-562)))) (-3235 ((|#1| (-1276 $)) 72) ((|#1|) 99)) (-2099 (((-1182 |#1|) $) 68)) (-1654 (((-112)) 62)) (-2427 (($ (-1276 |#1|) (-1276 $)) 74) (($ (-1276 |#1|)) 103)) (-2229 (((-3 $ "failed") $) 52 (|has| |#1| (-562)))) (-3979 (((-928)) 85)) (-1438 (((-112)) 59)) (-1752 (($ $ (-928)) 38)) (-4414 (((-112)) 55)) (-1451 (((-112)) 53)) (-2882 (((-112)) 57)) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) 46 (|has| |#1| (-562)))) (-1822 (((-3 $ "failed")) 44 (|has| |#1| (-562)))) (-3792 (((-695 |#1|) (-1276 $)) 71) (((-695 |#1|)) 98)) (-2215 ((|#1| $) 80)) (-2961 (((-695 |#1|) $ (-1276 $)) 82) (((-695 |#1|) $) 96)) (-3645 (((-3 $ "failed") $) 51 (|has| |#1| (-562)))) (-2463 (((-1182 (-959 |#1|))) 94 (|has| |#1| (-368)))) (-3619 (($ $ (-928)) 32)) (-3926 ((|#1| $) 78)) (-3823 (((-1182 |#1|) $) 48 (|has| |#1| (-562)))) (-2908 ((|#1| (-1276 $)) 73) ((|#1|) 100)) (-2005 (((-1182 |#1|) $) 69)) (-4420 (((-112)) 63)) (-4122 (((-1168) $) 10)) (-2585 (((-112)) 54)) (-2522 (((-112)) 56)) (-1363 (((-112)) 58)) (-3551 (((-1129) $) 11)) (-1422 (((-112)) 61)) (-1872 ((|#1| $ (-570)) 106)) (-1861 (((-1276 |#1|) $ (-1276 $)) 76) (((-695 |#1|) (-1276 $) (-1276 $)) 75) (((-1276 |#1|) $) 108) (((-695 |#1|) (-1276 $)) 107)) (-1411 (((-1276 |#1|) $) 102) (($ (-1276 |#1|)) 101)) (-3594 (((-650 (-959 |#1|)) (-1276 $)) 84) (((-650 (-959 |#1|))) 104)) (-4307 (($ $ $) 28)) (-1743 (((-112)) 67)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2077 (((-1276 $)) 109)) (-3532 (((-650 (-1276 |#1|))) 49 (|has| |#1| (-562)))) (-3666 (($ $ $ $) 29)) (-2939 (((-112)) 65)) (-3453 (($ (-695 |#1|) $) 92)) (-3616 (($ $ $) 27)) (-3089 (((-112)) 66)) (-2313 (((-112)) 64)) (-3772 (((-112)) 60)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-423 |#1|) (-141) (-174)) (T -423)) +((-2077 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1276 *1)) (-4 *1 (-423 *3)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1276 *3)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-423 *4)) (-4 *4 (-174)) (-5 *2 (-695 *4)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-423 *2)) (-4 *2 (-174)))) (-1601 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1276 (-695 *3))))) (-3594 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-650 (-959 *3))))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1276 *3)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3)))) (-2908 (*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174)))) (-3235 (*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174)))) (-3792 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-1460 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3)))) (-2463 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368)) (-5 *2 (-1182 (-959 *3))))) (-3019 (*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368)) (-5 *2 (-1182 (-959 *3))))) (-3453 (*1 *1 *2 *1) (-12 (-5 *2 (-695 *3)) (-4 *1 (-423 *3)) (-4 *3 (-174))))) +(-13 (-372 |t#1|) (-10 -8 (-15 -2077 ((-1276 $))) (-15 -1861 ((-1276 |t#1|) $)) (-15 -1861 ((-695 |t#1|) (-1276 $))) (-15 -1872 (|t#1| $ (-570))) (-15 -1601 ((-1276 (-695 |t#1|)))) (-15 -3594 ((-650 (-959 |t#1|)))) (-15 -2427 ($ (-1276 |t#1|))) (-15 -1411 ((-1276 |t#1|) $)) (-15 -1411 ($ (-1276 |t#1|))) (-15 -2908 (|t#1|)) (-15 -3235 (|t#1|)) (-15 -3792 ((-695 |t#1|))) (-15 -1460 ((-695 |t#1|))) (-15 -2961 ((-695 |t#1|) $)) (-15 -3277 ((-695 |t#1|) $)) (IF (|has| |t#1| (-368)) (PROGN (-15 -2463 ((-1182 (-959 |t#1|)))) (-15 -3019 ((-1182 (-959 |t#1|))))) |%noBranch|) (-15 -3453 ($ (-695 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-372 |#1|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-726) . T) ((-750 |#1|) . T) ((-767) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 60)) (-3178 (($ $) 78)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 191)) (-2318 (($ $) NIL)) (-2234 (((-112) $) 48)) (-1738 ((|#1| $) 16)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-1230)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-1230)))) (-1781 (($ |#1| (-570)) 42)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 148)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 74)) (-2229 (((-3 $ "failed") $) 164)) (-3369 (((-3 (-413 (-570)) "failed") $) 84 (|has| |#1| (-551)))) (-3108 (((-112) $) 80 (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) 91 (|has| |#1| (-551)))) (-2070 (($ |#1| (-570)) 44)) (-3701 (((-112) $) 213 (|has| |#1| (-1230)))) (-2481 (((-112) $) 62)) (-2308 (((-777) $) 51)) (-2120 (((-3 "nil" "sqfr" "irred" "prime") $ (-570)) 175)) (-4308 ((|#1| $ (-570)) 174)) (-3674 (((-570) $ (-570)) 173)) (-1309 (($ |#1| (-570)) 41)) (-1347 (($ (-1 |#1| |#1|) $) 183)) (-3339 (($ |#1| (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570))))) 79)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-3236 (($ |#1| (-570)) 43)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) 192 (|has| |#1| (-458)))) (-3639 (($ |#1| (-570) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1629 (((-650 (-2 (|:| -3801 |#1|) (|:| -3283 (-570)))) $) 73)) (-4238 (((-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))) $) 12)) (-3801 (((-424 $) $) NIL (|has| |#1| (-1230)))) (-2410 (((-3 $ "failed") $ $) 176)) (-3283 (((-570) $) 167)) (-1381 ((|#1| $) 75)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 100 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 106 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) $) NIL (|has| |#1| (-520 (-1186) $))) (($ $ (-650 (-1186)) (-650 $)) 107 (|has| |#1| (-520 (-1186) $))) (($ $ (-650 (-298 $))) 103 (|has| |#1| (-313 $))) (($ $ (-298 $)) NIL (|has| |#1| (-313 $))) (($ $ $ $) NIL (|has| |#1| (-313 $))) (($ $ (-650 $) (-650 $)) NIL (|has| |#1| (-313 $)))) (-1872 (($ $ |#1|) 92 (|has| |#1| (-290 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-290 $ $)))) (-3519 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-1411 (((-542) $) 39 (|has| |#1| (-620 (-542)))) (((-384) $) 113 (|has| |#1| (-1031))) (((-227) $) 119 (|has| |#1| (-1031)))) (-3798 (((-868) $) 146) (($ (-570)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570)))))) (-2862 (((-777)) 67 T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 53 T CONST)) (-1817 (($) 52 T CONST)) (-2835 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-112) $ $) 159)) (-3026 (($ $) 161) (($ $ $) NIL)) (-3014 (($ $ $) 180)) (** (($ $ (-928)) NIL) (($ $ (-777)) 125)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-424 |#1|) (-13 (-562) (-233 |#1|) (-38 |#1|) (-343 |#1|) (-417 |#1|) (-10 -8 (-15 -1381 (|#1| $)) (-15 -3283 ((-570) $)) (-15 -3339 ($ |#1| (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))))) (-15 -4238 ((-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))) $)) (-15 -1309 ($ |#1| (-570))) (-15 -1629 ((-650 (-2 (|:| -3801 |#1|) (|:| -3283 (-570)))) $)) (-15 -3236 ($ |#1| (-570))) (-15 -3674 ((-570) $ (-570))) (-15 -4308 (|#1| $ (-570))) (-15 -2120 ((-3 "nil" "sqfr" "irred" "prime") $ (-570))) (-15 -2308 ((-777) $)) (-15 -2070 ($ |#1| (-570))) (-15 -1781 ($ |#1| (-570))) (-15 -3639 ($ |#1| (-570) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1738 (|#1| $)) (-15 -3178 ($ $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-458)) (-6 (-458)) |%noBranch|) (IF (|has| |#1| (-1031)) (-6 (-1031)) |%noBranch|) (IF (|has| |#1| (-1230)) (-6 (-1230)) |%noBranch|) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-290 $ $)) (-6 (-290 $ $)) |%noBranch|) (IF (|has| |#1| (-313 $)) (-6 (-313 $)) |%noBranch|) (IF (|has| |#1| (-520 (-1186) $)) (-6 (-520 (-1186) $)) |%noBranch|))) (-562)) (T -424)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-562)) (-5 *1 (-424 *3)))) (-1381 (*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-3339 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-570))))) (-4 *2 (-562)) (-5 *1 (-424 *2)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-570))))) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -3801 *3) (|:| -3283 (-570))))) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-3236 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3674 (*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-2120 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-424 *4)) (-4 *4 (-562)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) (-2070 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3639 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-570)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562)))) (-3369 (*1 *2 *1) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562))))) +(-13 (-562) (-233 |#1|) (-38 |#1|) (-343 |#1|) (-417 |#1|) (-10 -8 (-15 -1381 (|#1| $)) (-15 -3283 ((-570) $)) (-15 -3339 ($ |#1| (-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))))) (-15 -4238 ((-650 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-570)))) $)) (-15 -1309 ($ |#1| (-570))) (-15 -1629 ((-650 (-2 (|:| -3801 |#1|) (|:| -3283 (-570)))) $)) (-15 -3236 ($ |#1| (-570))) (-15 -3674 ((-570) $ (-570))) (-15 -4308 (|#1| $ (-570))) (-15 -2120 ((-3 "nil" "sqfr" "irred" "prime") $ (-570))) (-15 -2308 ((-777) $)) (-15 -2070 ($ |#1| (-570))) (-15 -1781 ($ |#1| (-570))) (-15 -3639 ($ |#1| (-570) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1738 (|#1| $)) (-15 -3178 ($ $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-458)) (-6 (-458)) |%noBranch|) (IF (|has| |#1| (-1031)) (-6 (-1031)) |%noBranch|) (IF (|has| |#1| (-1230)) (-6 (-1230)) |%noBranch|) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-290 $ $)) (-6 (-290 $ $)) |%noBranch|) (IF (|has| |#1| (-313 $)) (-6 (-313 $)) |%noBranch|) (IF (|has| |#1| (-520 (-1186) $)) (-6 (-520 (-1186) $)) |%noBranch|))) +((-3547 (((-424 |#1|) (-424 |#1|) (-1 (-424 |#1|) |#1|)) 28)) (-2846 (((-424 |#1|) (-424 |#1|) (-424 |#1|)) 17))) +(((-425 |#1|) (-10 -7 (-15 -3547 ((-424 |#1|) (-424 |#1|) (-1 (-424 |#1|) |#1|))) (-15 -2846 ((-424 |#1|) (-424 |#1|) (-424 |#1|)))) (-562)) (T -425)) +((-2846 (*1 *2 *2 *2) (-12 (-5 *2 (-424 *3)) (-4 *3 (-562)) (-5 *1 (-425 *3)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-424 *4) *4)) (-4 *4 (-562)) (-5 *2 (-424 *4)) (-5 *1 (-425 *4))))) +(-10 -7 (-15 -3547 ((-424 |#1|) (-424 |#1|) (-1 (-424 |#1|) |#1|))) (-15 -2846 ((-424 |#1|) (-424 |#1|) (-424 |#1|)))) +((-3458 ((|#2| |#2|) 183)) (-2169 (((-3 (|:| |%expansion| (-317 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112)) 60))) +(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2169 ((-3 (|:| |%expansion| (-317 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112))) (-15 -3458 (|#2| |#2|))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|)) (-1186) |#2|) (T -426)) +((-3458 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1211) (-436 *3))) (-14 *4 (-1186)) (-14 *5 *2))) (-2169 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (|:| |%expansion| (-317 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) (-14 *6 (-1186)) (-14 *7 *3)))) +(-10 -7 (-15 -2169 ((-3 (|:| |%expansion| (-317 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112))) (-15 -3458 (|#2| |#2|))) +((-1347 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|))) (-1058) (-436 |#1|) (-1058) (-436 |#3|)) (T -427)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *2 (-436 *6)) (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-436 *5))))) +(-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|))) +((-3458 ((|#2| |#2|) 106)) (-3564 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168)) 52)) (-3533 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168)) 170))) +(((-428 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3564 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -3533 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -3458 (|#2| |#2|))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|) (-10 -8 (-15 -3798 ($ |#3|)))) (-854) (-13 (-1254 |#2| |#3|) (-368) (-1211) (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $)))) (-992 |#4|) (-1186)) (T -428)) +((-3458 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *2 (-13 (-27) (-1211) (-436 *3) (-10 -8 (-15 -3798 ($ *4))))) (-4 *4 (-854)) (-4 *5 (-13 (-1254 *2 *4) (-368) (-1211) (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $))))) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *6 (-992 *5)) (-14 *7 (-1186)))) (-3533 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *3 (-13 (-27) (-1211) (-436 *6) (-10 -8 (-15 -3798 ($ *7))))) (-4 *7 (-854)) (-4 *8 (-13 (-1254 *3 *7) (-368) (-1211) (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8)) (-14 *10 (-1186)))) (-3564 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-4 *3 (-13 (-27) (-1211) (-436 *6) (-10 -8 (-15 -3798 ($ *7))))) (-4 *7 (-854)) (-4 *8 (-13 (-1254 *3 *7) (-368) (-1211) (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8)) (-14 *10 (-1186))))) +(-10 -7 (-15 -3564 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -3533 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168))))) |#2| (-112) (-1168))) (-15 -3458 (|#2| |#2|))) +((-4292 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3600 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1347 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3600 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4292 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1109) (-431 |#1|) (-1109) (-431 |#3|)) (T -429)) +((-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) (-4 *2 (-431 *5)) (-5 *1 (-429 *6 *4 *5 *2)) (-4 *4 (-431 *6)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) (-5 *1 (-429 *5 *4 *2 *6)) (-4 *4 (-431 *5)) (-4 *6 (-431 *2)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-431 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-431 *5))))) +(-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3600 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4292 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3466 (($) 52)) (-3971 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3612 (($ $ $) 45)) (-2220 (((-112) $ $) 34)) (-3475 (((-777)) 56)) (-4259 (($ (-650 |#2|)) 23) (($) NIL)) (-3408 (($) 67)) (-1939 (((-112) $ $) 15)) (-3382 ((|#2| $) 78)) (-2876 ((|#2| $) 76)) (-2484 (((-928) $) 71)) (-2842 (($ $ $) 41)) (-2155 (($ (-928)) 61)) (-2688 (($ $ |#2|) NIL) (($ $ $) 44)) (-3562 (((-777) (-1 (-112) |#2|) $) NIL) (((-777) |#2| $) 31)) (-3811 (($ (-650 |#2|)) 27)) (-3624 (($ $) 54)) (-3798 (((-868) $) 39)) (-2977 (((-777) $) 24)) (-3871 (($ (-650 |#2|)) 22) (($) NIL)) (-2923 (((-112) $ $) 19))) +(((-430 |#1| |#2|) (-10 -8 (-15 -3475 ((-777))) (-15 -2155 (|#1| (-928))) (-15 -2484 ((-928) |#1|)) (-15 -3408 (|#1|)) (-15 -3382 (|#2| |#1|)) (-15 -2876 (|#2| |#1|)) (-15 -3466 (|#1|)) (-15 -3624 (|#1| |#1|)) (-15 -2977 ((-777) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -1939 ((-112) |#1| |#1|)) (-15 -3871 (|#1|)) (-15 -3871 (|#1| (-650 |#2|))) (-15 -4259 (|#1|)) (-15 -4259 (|#1| (-650 |#2|))) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#2|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2220 ((-112) |#1| |#1|)) (-15 -3971 (|#1| |#1| |#1|)) (-15 -3971 (|#1| |#1| |#2|)) (-15 -3971 (|#1| |#2| |#1|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -3562 ((-777) |#2| |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|))) (-431 |#2|) (-1109)) (T -430)) +((-3475 (*1 *2) (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-430 *3 *4)) (-4 *3 (-431 *4))))) +(-10 -8 (-15 -3475 ((-777))) (-15 -2155 (|#1| (-928))) (-15 -2484 ((-928) |#1|)) (-15 -3408 (|#1|)) (-15 -3382 (|#2| |#1|)) (-15 -2876 (|#2| |#1|)) (-15 -3466 (|#1|)) (-15 -3624 (|#1| |#1|)) (-15 -2977 ((-777) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -1939 ((-112) |#1| |#1|)) (-15 -3871 (|#1|)) (-15 -3871 (|#1| (-650 |#2|))) (-15 -4259 (|#1|)) (-15 -4259 (|#1| (-650 |#2|))) (-15 -2842 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#2|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2220 ((-112) |#1| |#1|)) (-15 -3971 (|#1| |#1| |#1|)) (-15 -3971 (|#1| |#1| |#2|)) (-15 -3971 (|#1| |#2| |#1|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -3562 ((-777) |#2| |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|))) +((-2419 (((-112) $ $) 19)) (-3466 (($) 68 (|has| |#1| (-373)))) (-3971 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3612 (($ $ $) 79)) (-2220 (((-112) $ $) 80)) (-3636 (((-112) $ (-777)) 8)) (-3475 (((-777)) 62 (|has| |#1| (-373)))) (-4259 (($ (-650 |#1|)) 75) (($) 74)) (-2660 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3552 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4448)))) (-3408 (($) 65 (|has| |#1| (-373)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) 71)) (-3846 (((-112) $ (-777)) 9)) (-3382 ((|#1| $) 66 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2876 ((|#1| $) 67 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2484 (((-928) $) 64 (|has| |#1| (-373)))) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22)) (-2842 (($ $ $) 76)) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-2155 (($ (-928)) 63 (|has| |#1| (-373)))) (-3551 (((-1129) $) 21)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2688 (($ $ |#1|) 78) (($ $ $) 77)) (-2709 (($) 50) (($ (-650 |#1|)) 49)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 51)) (-3624 (($ $) 69 (|has| |#1| (-373)))) (-3798 (((-868) $) 18)) (-2977 (((-777) $) 70)) (-3871 (($ (-650 |#1|)) 73) (($) 72)) (-1319 (((-112) $ $) 23)) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20)) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-431 |#1|) (-141) (-1109)) (T -431)) +((-2977 (*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-1109)) (-5 *2 (-777)))) (-3624 (*1 *1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-373)))) (-3466 (*1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-373)) (-4 *2 (-1109)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856)))) (-3382 (*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856))))) +(-13 (-231 |t#1|) (-1107 |t#1|) (-10 -8 (-6 -4448) (-15 -2977 ((-777) $)) (IF (|has| |t#1| (-373)) (PROGN (-6 (-373)) (-15 -3624 ($ $)) (-15 -3466 ($))) |%noBranch|) (IF (|has| |t#1| (-856)) (PROGN (-15 -2876 (|t#1| $)) (-15 -3382 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-231 |#1|) . T) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-373) |has| |#1| (-373)) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1107 |#1|) . T) ((-1109) . T) ((-1226) . T)) +((-3651 (((-592 |#2|) |#2| (-1186)) 36)) (-3919 (((-592 |#2|) |#2| (-1186)) 21)) (-1864 ((|#2| |#2| (-1186)) 26))) +(((-432 |#1| |#2|) (-10 -7 (-15 -3919 ((-592 |#2|) |#2| (-1186))) (-15 -3651 ((-592 |#2|) |#2| (-1186))) (-15 -1864 (|#2| |#2| (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-29 |#1|))) (T -432)) +((-1864 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-432 *4 *2)) (-4 *2 (-13 (-1211) (-29 *4))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1211) (-29 *5))))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3)) (-4 *3 (-13 (-1211) (-29 *5)))))) +(-10 -7 (-15 -3919 ((-592 |#2|) |#2| (-1186))) (-15 -3651 ((-592 |#2|) |#2| (-1186))) (-15 -1864 (|#2| |#2| (-1186)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-1826 (($ |#2| |#1|) 37)) (-3029 (($ |#2| |#1|) 35)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-335 |#2|)) 25)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 10 T CONST)) (-1817 (($) 16 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 36)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-433 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4435)) (IF (|has| |#1| (-6 -4435)) (-6 -4435) |%noBranch|) |%noBranch|) (-15 -3798 ($ |#1|)) (-15 -3798 ($ (-335 |#2|))) (-15 -1826 ($ |#2| |#1|)) (-15 -3029 ($ |#2| |#1|)))) (-13 (-174) (-38 (-413 (-570)))) (-13 (-856) (-21))) (T -433)) +((-3798 (*1 *1 *2) (-12 (-5 *1 (-433 *2 *3)) (-4 *2 (-13 (-174) (-38 (-413 (-570))))) (-4 *3 (-13 (-856) (-21))))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-335 *4)) (-4 *4 (-13 (-856) (-21))) (-5 *1 (-433 *3 *4)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))))) (-1826 (*1 *1 *2 *3) (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))) (-4 *2 (-13 (-856) (-21))))) (-3029 (*1 *1 *2 *3) (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))) (-4 *2 (-13 (-856) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4435)) (IF (|has| |#1| (-6 -4435)) (-6 -4435) |%noBranch|) |%noBranch|) (-15 -3798 ($ |#1|)) (-15 -3798 ($ (-335 |#2|))) (-15 -1826 ($ |#2| |#1|)) (-15 -3029 ($ |#2| |#1|)))) +((-1840 (((-3 |#2| (-650 |#2|)) |#2| (-1186)) 115))) +(((-434 |#1| |#2|) (-10 -7 (-15 -1840 ((-3 |#2| (-650 |#2|)) |#2| (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-966) (-29 |#1|))) (T -434)) +((-1840 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 *3 (-650 *3))) (-5 *1 (-434 *5 *3)) (-4 *3 (-13 (-1211) (-966) (-29 *5)))))) +(-10 -7 (-15 -1840 ((-3 |#2| (-650 |#2|)) |#2| (-1186)))) +((-1709 (((-650 (-1186)) $) 81)) (-3768 (((-413 (-1182 $)) $ (-618 $)) 314)) (-4297 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) 278)) (-4382 (((-3 (-618 $) "failed") $) NIL) (((-3 (-1186) "failed") $) 84) (((-3 (-570) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-413 (-959 |#2|)) "failed") $) 364) (((-3 (-959 |#2|) "failed") $) 276) (((-3 (-413 (-570)) "failed") $) NIL)) (-3152 (((-618 $) $) NIL) (((-1186) $) 28) (((-570) $) NIL) ((|#2| $) 272) (((-413 (-959 |#2|)) $) 346) (((-959 |#2|) $) 273) (((-413 (-570)) $) NIL)) (-3748 (((-115) (-115)) 47)) (-4004 (($ $) 99)) (-3451 (((-3 (-618 $) "failed") $) 269)) (-3739 (((-650 (-618 $)) $) 270)) (-4193 (((-3 (-650 $) "failed") $) 288)) (-2536 (((-3 (-2 (|:| |val| $) (|:| -3283 (-570))) "failed") $) 295)) (-3607 (((-3 (-650 $) "failed") $) 286)) (-3544 (((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 $))) "failed") $) 305)) (-1657 (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $) 292) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-115)) 256) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-1186)) 258)) (-1830 (((-112) $) 17)) (-1838 ((|#2| $) 19)) (-1725 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) 277) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 109) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1186)) 62) (($ $ (-650 (-1186))) 281) (($ $) 282) (($ $ (-115) $ (-1186)) 65) (($ $ (-650 (-115)) (-650 $) (-1186)) 72) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) 120) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) 283) (($ $ (-1186) (-777) (-1 $ (-650 $))) 105) (($ $ (-1186) (-777) (-1 $ $)) 104)) (-1872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) 119)) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) 279)) (-2397 (($ $) 325)) (-1411 (((-899 (-570)) $) 298) (((-899 (-384)) $) 302) (($ (-424 $)) 360) (((-542) $) NIL)) (-3798 (((-868) $) 280) (($ (-618 $)) 93) (($ (-1186)) 24) (($ |#2|) NIL) (($ (-1134 |#2| (-618 $))) NIL) (($ (-413 |#2|)) 330) (($ (-959 (-413 |#2|))) 369) (($ (-413 (-959 (-413 |#2|)))) 342) (($ (-413 (-959 |#2|))) 336) (($ $) NIL) (($ (-959 |#2|)) 218) (($ (-413 (-570))) 374) (($ (-570)) NIL)) (-2862 (((-777)) 88)) (-4217 (((-112) (-115)) 42)) (-4214 (($ (-1186) $) 31) (($ (-1186) $ $) 32) (($ (-1186) $ $ $) 33) (($ (-1186) $ $ $ $) 34) (($ (-1186) (-650 $)) 39)) (* (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL))) +(((-435 |#1| |#2|) (-10 -8 (-15 * (|#1| (-928) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3798 (|#1| (-570))) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-413 (-570)))) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -3798 (|#1| (-959 |#2|))) (-15 -4382 ((-3 (-959 |#2|) "failed") |#1|)) (-15 -3152 ((-959 |#2|) |#1|)) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -3798 (|#1| (-413 (-959 |#2|)))) (-15 -4382 ((-3 (-413 (-959 |#2|)) "failed") |#1|)) (-15 -3152 ((-413 (-959 |#2|)) |#1|)) (-15 -3768 ((-413 (-1182 |#1|)) |#1| (-618 |#1|))) (-15 -3798 (|#1| (-413 (-959 (-413 |#2|))))) (-15 -3798 (|#1| (-959 (-413 |#2|)))) (-15 -3798 (|#1| (-413 |#2|))) (-15 -2397 (|#1| |#1|)) (-15 -1411 (|#1| (-424 |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-777) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-777) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| |#1|)))) (-15 -2536 ((-3 (-2 (|:| |val| |#1|) (|:| -3283 (-570))) "failed") |#1|)) (-15 -1657 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -3283 (-570))) "failed") |#1| (-1186))) (-15 -1657 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -3283 (-570))) "failed") |#1| (-115))) (-15 -4004 (|#1| |#1|)) (-15 -3798 (|#1| (-1134 |#2| (-618 |#1|)))) (-15 -3544 ((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 |#1|))) "failed") |#1|)) (-15 -3607 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -1657 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -3283 (-570))) "failed") |#1|)) (-15 -4193 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 |#1|) (-1186))) (-15 -1725 (|#1| |#1| (-115) |#1| (-1186))) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-650 (-1186)))) (-15 -1725 (|#1| |#1| (-1186))) (-15 -4214 (|#1| (-1186) (-650 |#1|))) (-15 -4214 (|#1| (-1186) |#1| |#1| |#1| |#1|)) (-15 -4214 (|#1| (-1186) |#1| |#1| |#1|)) (-15 -4214 (|#1| (-1186) |#1| |#1|)) (-15 -4214 (|#1| (-1186) |#1|)) (-15 -1709 ((-650 (-1186)) |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1830 ((-112) |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -3798 (|#1| (-1186))) (-15 -4382 ((-3 (-1186) "failed") |#1|)) (-15 -3152 ((-1186) |#1|)) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -3739 ((-650 (-618 |#1|)) |#1|)) (-15 -3451 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4297 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -4297 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -4297 (|#1| |#1| (-298 |#1|))) (-15 -1872 (|#1| (-115) (-650 |#1|))) (-15 -1872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1725 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -3798 (|#1| (-618 |#1|))) (-15 -4382 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3152 ((-618 |#1|) |#1|)) (-15 -3798 ((-868) |#1|))) (-436 |#2|) (-1109)) (T -435)) +((-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1109)) (-5 *1 (-435 *3 *4)) (-4 *3 (-436 *4)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-435 *4 *5)) (-4 *4 (-436 *5)))) (-2862 (*1 *2) (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-435 *3 *4)) (-4 *3 (-436 *4))))) +(-10 -8 (-15 * (|#1| (-928) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3798 (|#1| (-570))) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-413 (-570)))) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -3798 (|#1| (-959 |#2|))) (-15 -4382 ((-3 (-959 |#2|) "failed") |#1|)) (-15 -3152 ((-959 |#2|) |#1|)) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -3798 (|#1| (-413 (-959 |#2|)))) (-15 -4382 ((-3 (-413 (-959 |#2|)) "failed") |#1|)) (-15 -3152 ((-413 (-959 |#2|)) |#1|)) (-15 -3768 ((-413 (-1182 |#1|)) |#1| (-618 |#1|))) (-15 -3798 (|#1| (-413 (-959 (-413 |#2|))))) (-15 -3798 (|#1| (-959 (-413 |#2|)))) (-15 -3798 (|#1| (-413 |#2|))) (-15 -2397 (|#1| |#1|)) (-15 -1411 (|#1| (-424 |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-777) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-777) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-777)) (-650 (-1 |#1| |#1|)))) (-15 -2536 ((-3 (-2 (|:| |val| |#1|) (|:| -3283 (-570))) "failed") |#1|)) (-15 -1657 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -3283 (-570))) "failed") |#1| (-1186))) (-15 -1657 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -3283 (-570))) "failed") |#1| (-115))) (-15 -4004 (|#1| |#1|)) (-15 -3798 (|#1| (-1134 |#2| (-618 |#1|)))) (-15 -3544 ((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 |#1|))) "failed") |#1|)) (-15 -3607 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -1657 ((-3 (-2 (|:| |var| (-618 |#1|)) (|:| -3283 (-570))) "failed") |#1|)) (-15 -4193 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 |#1|) (-1186))) (-15 -1725 (|#1| |#1| (-115) |#1| (-1186))) (-15 -1725 (|#1| |#1|)) (-15 -1725 (|#1| |#1| (-650 (-1186)))) (-15 -1725 (|#1| |#1| (-1186))) (-15 -4214 (|#1| (-1186) (-650 |#1|))) (-15 -4214 (|#1| (-1186) |#1| |#1| |#1| |#1|)) (-15 -4214 (|#1| (-1186) |#1| |#1| |#1|)) (-15 -4214 (|#1| (-1186) |#1| |#1|)) (-15 -4214 (|#1| (-1186) |#1|)) (-15 -1709 ((-650 (-1186)) |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1830 ((-112) |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -3798 (|#1| (-1186))) (-15 -4382 ((-3 (-1186) "failed") |#1|)) (-15 -3152 ((-1186) |#1|)) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-115) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-115)) (-650 (-1 |#1| |#1|)))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| |#1|))) (-15 -1725 (|#1| |#1| (-1186) (-1 |#1| (-650 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| (-650 |#1|))))) (-15 -1725 (|#1| |#1| (-650 (-1186)) (-650 (-1 |#1| |#1|)))) (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -3739 ((-650 (-618 |#1|)) |#1|)) (-15 -3451 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -4297 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -4297 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -4297 (|#1| |#1| (-298 |#1|))) (-15 -1872 (|#1| (-115) (-650 |#1|))) (-15 -1872 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1| |#1|)) (-15 -1872 (|#1| (-115) |#1|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -1725 (|#1| |#1| (-650 (-618 |#1|)) (-650 |#1|))) (-15 -1725 (|#1| |#1| (-618 |#1|) |#1|)) (-15 -3798 (|#1| (-618 |#1|))) (-15 -4382 ((-3 (-618 |#1|) "failed") |#1|)) (-15 -3152 ((-618 |#1|) |#1|)) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 116 (|has| |#1| (-25)))) (-1709 (((-650 (-1186)) $) 203)) (-3768 (((-413 (-1182 $)) $ (-618 $)) 171 (|has| |#1| (-562)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 143 (|has| |#1| (-562)))) (-2318 (($ $) 144 (|has| |#1| (-562)))) (-2234 (((-112) $) 146 (|has| |#1| (-562)))) (-3665 (((-650 (-618 $)) $) 39)) (-2620 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-4297 (($ $ (-298 $)) 51) (($ $ (-650 (-298 $))) 50) (($ $ (-650 (-618 $)) (-650 $)) 49)) (-3696 (($ $) 163 (|has| |#1| (-562)))) (-2555 (((-424 $) $) 164 (|has| |#1| (-562)))) (-4073 (((-112) $ $) 154 (|has| |#1| (-562)))) (-3734 (($) 104 (-2779 (|has| |#1| (-1121)) (|has| |#1| (-25))) CONST)) (-4382 (((-3 (-618 $) "failed") $) 64) (((-3 (-1186) "failed") $) 216) (((-3 (-570) "failed") $) 210 (|has| |#1| (-1047 (-570)))) (((-3 |#1| "failed") $) 207) (((-3 (-413 (-959 |#1|)) "failed") $) 169 (|has| |#1| (-562))) (((-3 (-959 |#1|) "failed") $) 123 (|has| |#1| (-1058))) (((-3 (-413 (-570)) "failed") $) 98 (-2779 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-3152 (((-618 $) $) 65) (((-1186) $) 217) (((-570) $) 209 (|has| |#1| (-1047 (-570)))) ((|#1| $) 208) (((-413 (-959 |#1|)) $) 170 (|has| |#1| (-562))) (((-959 |#1|) $) 124 (|has| |#1| (-1058))) (((-413 (-570)) $) 99 (-2779 (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570))))))) (-2372 (($ $ $) 158 (|has| |#1| (-562)))) (-2004 (((-695 (-570)) (-695 $)) 137 (-1760 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 136 (-1760 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 135 (|has| |#1| (-1058))) (((-695 |#1|) (-695 $)) 134 (|has| |#1| (-1058)))) (-2229 (((-3 $ "failed") $) 106 (|has| |#1| (-1121)))) (-2380 (($ $ $) 157 (|has| |#1| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 152 (|has| |#1| (-562)))) (-3701 (((-112) $) 165 (|has| |#1| (-562)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 212 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 211 (|has| |#1| (-893 (-384))))) (-1594 (($ $) 46) (($ (-650 $)) 45)) (-3406 (((-650 (-115)) $) 38)) (-3748 (((-115) (-115)) 37)) (-2481 (((-112) $) 105 (|has| |#1| (-1121)))) (-2639 (((-112) $) 17 (|has| $ (-1047 (-570))))) (-4004 (($ $) 186 (|has| |#1| (-1058)))) (-4400 (((-1134 |#1| (-618 $)) $) 187 (|has| |#1| (-1058)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 161 (|has| |#1| (-562)))) (-4111 (((-1182 $) (-618 $)) 20 (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) 31)) (-3451 (((-3 (-618 $) "failed") $) 41)) (-1841 (($ (-650 $)) 150 (|has| |#1| (-562))) (($ $ $) 149 (|has| |#1| (-562)))) (-4122 (((-1168) $) 10)) (-3739 (((-650 (-618 $)) $) 40)) (-1355 (($ (-115) $) 33) (($ (-115) (-650 $)) 32)) (-4193 (((-3 (-650 $) "failed") $) 192 (|has| |#1| (-1121)))) (-2536 (((-3 (-2 (|:| |val| $) (|:| -3283 (-570))) "failed") $) 183 (|has| |#1| (-1058)))) (-3607 (((-3 (-650 $) "failed") $) 190 (|has| |#1| (-25)))) (-3544 (((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 $))) "failed") $) 189 (|has| |#1| (-25)))) (-1657 (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $) 191 (|has| |#1| (-1121))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-115)) 185 (|has| |#1| (-1058))) (((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-1186)) 184 (|has| |#1| (-1058)))) (-3257 (((-112) $ (-115)) 35) (((-112) $ (-1186)) 34)) (-1820 (($ $) 108 (-2779 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-1428 (((-777) $) 42)) (-3551 (((-1129) $) 11)) (-1830 (((-112) $) 205)) (-1838 ((|#1| $) 204)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 151 (|has| |#1| (-562)))) (-1869 (($ (-650 $)) 148 (|has| |#1| (-562))) (($ $ $) 147 (|has| |#1| (-562)))) (-4124 (((-112) $ $) 30) (((-112) $ (-1186)) 29)) (-3801 (((-424 $) $) 162 (|has| |#1| (-562)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-562))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 159 (|has| |#1| (-562)))) (-2410 (((-3 $ "failed") $ $) 142 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 153 (|has| |#1| (-562)))) (-3699 (((-112) $) 18 (|has| $ (-1047 (-570))))) (-1725 (($ $ (-618 $) $) 62) (($ $ (-650 (-618 $)) (-650 $)) 61) (($ $ (-650 (-298 $))) 60) (($ $ (-298 $)) 59) (($ $ $ $) 58) (($ $ (-650 $) (-650 $)) 57) (($ $ (-650 (-1186)) (-650 (-1 $ $))) 28) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) 27) (($ $ (-1186) (-1 $ (-650 $))) 26) (($ $ (-1186) (-1 $ $)) 25) (($ $ (-650 (-115)) (-650 (-1 $ $))) 24) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) 23) (($ $ (-115) (-1 $ (-650 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1186)) 197 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186))) 196 (|has| |#1| (-620 (-542)))) (($ $) 195 (|has| |#1| (-620 (-542)))) (($ $ (-115) $ (-1186)) 194 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-115)) (-650 $) (-1186)) 193 (|has| |#1| (-620 (-542)))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $))) 182 (|has| |#1| (-1058))) (($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $)))) 181 (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ (-650 $))) 180 (|has| |#1| (-1058))) (($ $ (-1186) (-777) (-1 $ $)) 179 (|has| |#1| (-1058)))) (-3788 (((-777) $) 155 (|has| |#1| (-562)))) (-1872 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-650 $)) 52)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 156 (|has| |#1| (-562)))) (-2707 (($ $) 44) (($ $ $) 43)) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) 128 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 127 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 126 (|has| |#1| (-1058))) (($ $ (-1186)) 125 (|has| |#1| (-1058)))) (-2397 (($ $) 176 (|has| |#1| (-562)))) (-4413 (((-1134 |#1| (-618 $)) $) 177 (|has| |#1| (-562)))) (-1881 (($ $) 19 (|has| $ (-1058)))) (-1411 (((-899 (-570)) $) 214 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 213 (|has| |#1| (-620 (-899 (-384))))) (($ (-424 $)) 178 (|has| |#1| (-562))) (((-542) $) 100 (|has| |#1| (-620 (-542))))) (-3897 (($ $ $) 111 (|has| |#1| (-479)))) (-4307 (($ $ $) 112 (|has| |#1| (-479)))) (-3798 (((-868) $) 12) (($ (-618 $)) 63) (($ (-1186)) 215) (($ |#1|) 206) (($ (-1134 |#1| (-618 $))) 188 (|has| |#1| (-1058))) (($ (-413 |#1|)) 174 (|has| |#1| (-562))) (($ (-959 (-413 |#1|))) 173 (|has| |#1| (-562))) (($ (-413 (-959 (-413 |#1|)))) 172 (|has| |#1| (-562))) (($ (-413 (-959 |#1|))) 168 (|has| |#1| (-562))) (($ $) 141 (|has| |#1| (-562))) (($ (-959 |#1|)) 122 (|has| |#1| (-1058))) (($ (-413 (-570))) 97 (-2779 (|has| |#1| (-562)) (-12 (|has| |#1| (-1047 (-570))) (|has| |#1| (-562))) (|has| |#1| (-1047 (-413 (-570)))))) (($ (-570)) 96 (-2779 (|has| |#1| (-1058)) (|has| |#1| (-1047 (-570)))))) (-2917 (((-3 $ "failed") $) 138 (|has| |#1| (-146)))) (-2862 (((-777)) 133 (|has| |#1| (-1058)) CONST)) (-4215 (($ $) 48) (($ (-650 $)) 47)) (-4217 (((-112) (-115)) 36)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 145 (|has| |#1| (-562)))) (-4214 (($ (-1186) $) 202) (($ (-1186) $ $) 201) (($ (-1186) $ $ $) 200) (($ (-1186) $ $ $ $) 199) (($ (-1186) (-650 $)) 198)) (-1809 (($) 115 (|has| |#1| (-25)) CONST)) (-1817 (($) 103 (|has| |#1| (-1121)) CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) 132 (|has| |#1| (-1058))) (($ $ (-1186) (-777)) 131 (|has| |#1| (-1058))) (($ $ (-650 (-1186))) 130 (|has| |#1| (-1058))) (($ $ (-1186)) 129 (|has| |#1| (-1058)))) (-2923 (((-112) $ $) 6)) (-3037 (($ (-1134 |#1| (-618 $)) (-1134 |#1| (-618 $))) 175 (|has| |#1| (-562))) (($ $ $) 109 (-2779 (|has| |#1| (-479)) (|has| |#1| (-562))))) (-3026 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3014 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-570)) 110 (-2779 (|has| |#1| (-479)) (|has| |#1| (-562)))) (($ $ (-777)) 107 (|has| |#1| (-1121))) (($ $ (-928)) 102 (|has| |#1| (-1121)))) (* (($ (-413 (-570)) $) 167 (|has| |#1| (-562))) (($ $ (-413 (-570))) 166 (|has| |#1| (-562))) (($ |#1| $) 140 (|has| |#1| (-174))) (($ $ |#1|) 139 (|has| |#1| (-174))) (($ (-570) $) 119 (|has| |#1| (-21))) (($ (-777) $) 117 (|has| |#1| (-25))) (($ (-928) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1121))))) +(((-436 |#1|) (-141) (-1109)) (T -436)) +((-1830 (*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-1186))))) (-4214 (*1 *1 *2 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-4214 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-4214 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-4214 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) (-4214 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-650 *1)) (-4 *1 (-436 *4)) (-4 *4 (-1109)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-4 *3 (-620 (-542))))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1186))) (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-4 *3 (-620 (-542))))) (-1725 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-620 (-542))))) (-1725 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1186)) (-4 *1 (-436 *4)) (-4 *4 (-1109)) (-4 *4 (-620 (-542))))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 *1)) (-5 *4 (-1186)) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-620 (-542))))) (-4193 (*1 *2 *1) (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-436 *3)))) (-1657 (*1 *2 *1) (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -3283 (-570)))) (-4 *1 (-436 *3)))) (-3607 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-436 *3)))) (-3544 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| -1436 (-570)) (|:| |var| (-618 *1)))) (-4 *1 (-436 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-1058)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-4400 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1))) (-4 *1 (-436 *3)))) (-4004 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-1058)))) (-1657 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1058)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -3283 (-570)))) (-4 *1 (-436 *4)))) (-1657 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-1058)) (-4 *4 (-1109)) (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -3283 (-570)))) (-4 *1 (-436 *4)))) (-2536 (*1 *2 *1) (|partial| -12 (-4 *3 (-1058)) (-4 *3 (-1109)) (-5 *2 (-2 (|:| |val| *1) (|:| -3283 (-570)))) (-4 *1 (-436 *3)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777))) (-5 *4 (-650 (-1 *1 *1))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777))) (-5 *4 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 (-650 *1))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-1725 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 *1)) (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-424 *1)) (-4 *1 (-436 *3)) (-4 *3 (-562)) (-4 *3 (-1109)))) (-4413 (*1 *2 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1))) (-4 *1 (-436 *3)))) (-2397 (*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-562)))) (-3037 (*1 *1 *2 *2) (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-959 (-413 *3))) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-413 *3)))) (-4 *3 (-562)) (-4 *3 (-1109)) (-4 *1 (-436 *3)))) (-3768 (*1 *2 *1 *3) (-12 (-5 *3 (-618 *1)) (-4 *1 (-436 *4)) (-4 *4 (-1109)) (-4 *4 (-562)) (-5 *2 (-413 (-1182 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-4 *3 (-1121))))) +(-13 (-306) (-1047 (-1186)) (-891 |t#1|) (-406 |t#1|) (-417 |t#1|) (-10 -8 (-15 -1830 ((-112) $)) (-15 -1838 (|t#1| $)) (-15 -1709 ((-650 (-1186)) $)) (-15 -4214 ($ (-1186) $)) (-15 -4214 ($ (-1186) $ $)) (-15 -4214 ($ (-1186) $ $ $)) (-15 -4214 ($ (-1186) $ $ $ $)) (-15 -4214 ($ (-1186) (-650 $))) (IF (|has| |t#1| (-620 (-542))) (PROGN (-6 (-620 (-542))) (-15 -1725 ($ $ (-1186))) (-15 -1725 ($ $ (-650 (-1186)))) (-15 -1725 ($ $)) (-15 -1725 ($ $ (-115) $ (-1186))) (-15 -1725 ($ $ (-650 (-115)) (-650 $) (-1186)))) |%noBranch|) (IF (|has| |t#1| (-1121)) (PROGN (-6 (-732)) (-15 ** ($ $ (-777))) (-15 -4193 ((-3 (-650 $) "failed") $)) (-15 -1657 ((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-479)) (-6 (-479)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3607 ((-3 (-650 $) "failed") $)) (-15 -3544 ((-3 (-2 (|:| -1436 (-570)) (|:| |var| (-618 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1058)) (PROGN (-6 (-1058)) (-6 (-1047 (-959 |t#1|))) (-6 (-907 (-1186))) (-6 (-382 |t#1|)) (-15 -3798 ($ (-1134 |t#1| (-618 $)))) (-15 -4400 ((-1134 |t#1| (-618 $)) $)) (-15 -4004 ($ $)) (-15 -1657 ((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-115))) (-15 -1657 ((-3 (-2 (|:| |var| (-618 $)) (|:| -3283 (-570))) "failed") $ (-1186))) (-15 -2536 ((-3 (-2 (|:| |val| $) (|:| -3283 (-570))) "failed") $)) (-15 -1725 ($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ $)))) (-15 -1725 ($ $ (-650 (-1186)) (-650 (-777)) (-650 (-1 $ (-650 $))))) (-15 -1725 ($ $ (-1186) (-777) (-1 $ (-650 $)))) (-15 -1725 ($ $ (-1186) (-777) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-6 (-368)) (-6 (-1047 (-413 (-959 |t#1|)))) (-15 -1411 ($ (-424 $))) (-15 -4413 ((-1134 |t#1| (-618 $)) $)) (-15 -2397 ($ $)) (-15 -3037 ($ (-1134 |t#1| (-618 $)) (-1134 |t#1| (-618 $)))) (-15 -3798 ($ (-413 |t#1|))) (-15 -3798 ($ (-959 (-413 |t#1|)))) (-15 -3798 ($ (-413 (-959 (-413 |t#1|))))) (-15 -3768 ((-413 (-1182 $)) $ (-618 $))) (IF (|has| |t#1| (-1047 (-570))) (-6 (-1047 (-413 (-570)))) |%noBranch|)) |%noBranch|))) +(((-21) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-413 (-570))) |has| |#1| (-562)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-562)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-562)) ((-132) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-562))) ((-622 #1=(-413 (-959 |#1|))) |has| |#1| (-562)) ((-622 (-570)) -2779 (|has| |#1| (-1058)) (|has| |#1| (-1047 (-570))) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-622 #2=(-618 $)) . T) ((-622 #3=(-959 |#1|)) |has| |#1| (-1058)) ((-622 #4=(-1186)) . T) ((-622 |#1|) . T) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) |has| |#1| (-562)) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-245) |has| |#1| (-562)) ((-294) |has| |#1| (-562)) ((-311) |has| |#1| (-562)) ((-313 $) . T) ((-306) . T) ((-368) |has| |#1| (-562)) ((-382 |#1|) |has| |#1| (-1058)) ((-406 |#1|) . T) ((-417 |#1|) . T) ((-458) |has| |#1| (-562)) ((-479) |has| |#1| (-479)) ((-520 (-618 $) $) . T) ((-520 $ $) . T) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-562)) ((-652 (-570)) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-654 #0#) |has| |#1| (-562)) ((-654 |#1|) |has| |#1| (-174)) ((-654 $) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-646 #0#) |has| |#1| (-562)) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-645 (-570)) -12 (|has| |#1| (-645 (-570))) (|has| |#1| (-1058))) ((-645 |#1|) |has| |#1| (-1058)) ((-723 #0#) |has| |#1| (-562)) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) -2779 (|has| |#1| (-1121)) (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-479)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-907 (-1186)) |has| |#1| (-1058)) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-927) |has| |#1| (-562)) ((-1047 (-413 (-570))) -2779 (|has| |#1| (-1047 (-413 (-570)))) (-12 (|has| |#1| (-562)) (|has| |#1| (-1047 (-570))))) ((-1047 #1#) |has| |#1| (-562)) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #2#) . T) ((-1047 #3#) |has| |#1| (-1058)) ((-1047 #4#) . T) ((-1047 |#1|) . T) ((-1060 #0#) |has| |#1| (-562)) ((-1060 |#1|) |has| |#1| (-174)) ((-1060 $) |has| |#1| (-562)) ((-1065 #0#) |has| |#1| (-562)) ((-1065 |#1|) |has| |#1| (-174)) ((-1065 $) |has| |#1| (-562)) ((-1058) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1067) -2779 (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1121) -2779 (|has| |#1| (-1121)) (|has| |#1| (-1058)) (|has| |#1| (-562)) (|has| |#1| (-479)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1109) . T) ((-1226) . T) ((-1230) |has| |#1| (-562))) +((-3951 ((|#2| |#2| |#2|) 31)) (-3748 (((-115) (-115)) 43)) (-1811 ((|#2| |#2|) 63)) (-3707 ((|#2| |#2|) 66)) (-3399 ((|#2| |#2|) 30)) (-4291 ((|#2| |#2| |#2|) 33)) (-2405 ((|#2| |#2| |#2|) 35)) (-3520 ((|#2| |#2| |#2|) 32)) (-3784 ((|#2| |#2| |#2|) 34)) (-4217 (((-112) (-115)) 41)) (-3252 ((|#2| |#2|) 37)) (-3727 ((|#2| |#2|) 36)) (-2216 ((|#2| |#2|) 25)) (-3563 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2098 ((|#2| |#2| |#2|) 29))) +(((-437 |#1| |#2|) (-10 -7 (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -2216 (|#2| |#2|)) (-15 -3563 (|#2| |#2|)) (-15 -3563 (|#2| |#2| |#2|)) (-15 -2098 (|#2| |#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -3951 (|#2| |#2| |#2|)) (-15 -3520 (|#2| |#2| |#2|)) (-15 -4291 (|#2| |#2| |#2|)) (-15 -3784 (|#2| |#2| |#2|)) (-15 -2405 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1811 (|#2| |#2|))) (-562) (-436 |#1|)) (T -437)) +((-1811 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2405 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3784 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-4291 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3520 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3951 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3399 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2098 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3563 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3563 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-437 *3 *4)) (-4 *4 (-436 *3)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-437 *4 *5)) (-4 *5 (-436 *4))))) +(-10 -7 (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -2216 (|#2| |#2|)) (-15 -3563 (|#2| |#2|)) (-15 -3563 (|#2| |#2| |#2|)) (-15 -2098 (|#2| |#2| |#2|)) (-15 -3399 (|#2| |#2|)) (-15 -3951 (|#2| |#2| |#2|)) (-15 -3520 (|#2| |#2| |#2|)) (-15 -4291 (|#2| |#2| |#2|)) (-15 -3784 (|#2| |#2| |#2|)) (-15 -2405 (|#2| |#2| |#2|)) (-15 -3727 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1811 (|#2| |#2|))) +((-3740 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1182 |#2|)) (|:| |pol2| (-1182 |#2|)) (|:| |prim| (-1182 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-650 (-1182 |#2|))) (|:| |prim| (-1182 |#2|))) (-650 |#2|)) 68))) +(((-438 |#1| |#2|) (-10 -7 (-15 -3740 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-650 (-1182 |#2|))) (|:| |prim| (-1182 |#2|))) (-650 |#2|))) (IF (|has| |#2| (-27)) (-15 -3740 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1182 |#2|)) (|:| |pol2| (-1182 |#2|)) (|:| |prim| (-1182 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-562) (-148)) (-436 |#1|)) (T -438)) +((-3740 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1182 *3)) (|:| |pol2| (-1182 *3)) (|:| |prim| (-1182 *3)))) (-5 *1 (-438 *4 *3)) (-4 *3 (-27)) (-4 *3 (-436 *4)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-13 (-562) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-650 (-1182 *5))) (|:| |prim| (-1182 *5)))) (-5 *1 (-438 *4 *5))))) +(-10 -7 (-15 -3740 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-650 (-1182 |#2|))) (|:| |prim| (-1182 |#2|))) (-650 |#2|))) (IF (|has| |#2| (-27)) (-15 -3740 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1182 |#2|)) (|:| |pol2| (-1182 |#2|)) (|:| |prim| (-1182 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2385 (((-1281)) 18)) (-3056 (((-1182 (-413 (-570))) |#2| (-618 |#2|)) 40) (((-413 (-570)) |#2|) 24))) +(((-439 |#1| |#2|) (-10 -7 (-15 -3056 ((-413 (-570)) |#2|)) (-15 -3056 ((-1182 (-413 (-570))) |#2| (-618 |#2|))) (-15 -2385 ((-1281)))) (-13 (-562) (-1047 (-570))) (-436 |#1|)) (T -439)) +((-2385 (*1 *2) (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1281)) (-5 *1 (-439 *3 *4)) (-4 *4 (-436 *3)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-436 *5)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-439 *5 *3)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 (-570))) (-5 *1 (-439 *4 *3)) (-4 *3 (-436 *4))))) +(-10 -7 (-15 -3056 ((-413 (-570)) |#2|)) (-15 -3056 ((-1182 (-413 (-570))) |#2| (-618 |#2|))) (-15 -2385 ((-1281)))) +((-1782 (((-112) $) 32)) (-3899 (((-112) $) 34)) (-2381 (((-112) $) 35)) (-2424 (((-112) $) 38)) (-3998 (((-112) $) 33)) (-2989 (((-112) $) 37)) (-3798 (((-868) $) 20) (($ (-1168)) 31) (($ (-1186)) 26) (((-1186) $) 24) (((-1113) $) 23)) (-2722 (((-112) $) 36)) (-2923 (((-112) $ $) 17))) +(((-440) (-13 (-619 (-868)) (-10 -8 (-15 -3798 ($ (-1168))) (-15 -3798 ($ (-1186))) (-15 -3798 ((-1186) $)) (-15 -3798 ((-1113) $)) (-15 -1782 ((-112) $)) (-15 -3998 ((-112) $)) (-15 -2381 ((-112) $)) (-15 -2989 ((-112) $)) (-15 -2424 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -3899 ((-112) $)) (-15 -2923 ((-112) $ $))))) (T -440)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-440)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-440)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-2989 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-2424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-2923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3798 ($ (-1168))) (-15 -3798 ($ (-1186))) (-15 -3798 ((-1186) $)) (-15 -3798 ((-1113) $)) (-15 -1782 ((-112) $)) (-15 -3998 ((-112) $)) (-15 -2381 ((-112) $)) (-15 -2989 ((-112) $)) (-15 -2424 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -3899 ((-112) $)) (-15 -2923 ((-112) $ $)))) +((-3321 (((-3 (-424 (-1182 (-413 (-570)))) "failed") |#3|) 72)) (-2049 (((-424 |#3|) |#3|) 34)) (-3443 (((-3 (-424 (-1182 (-48))) "failed") |#3|) 46 (|has| |#2| (-1047 (-48))))) (-3824 (((-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -2498 (-112))) |#3|) 37))) +(((-441 |#1| |#2| |#3|) (-10 -7 (-15 -2049 ((-424 |#3|) |#3|)) (-15 -3321 ((-3 (-424 (-1182 (-413 (-570)))) "failed") |#3|)) (-15 -3824 ((-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -2498 (-112))) |#3|)) (IF (|has| |#2| (-1047 (-48))) (-15 -3443 ((-3 (-424 (-1182 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-562) (-1047 (-570))) (-436 |#1|) (-1252 |#2|)) (T -441)) +((-3443 (*1 *2 *3) (|partial| -12 (-4 *5 (-1047 (-48))) (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-424 (-1182 (-48)))) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1252 *5)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -2498 (-112)))) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1252 *5)))) (-3321 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-424 (-1182 (-413 (-570))))) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1252 *5)))) (-2049 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) (-5 *2 (-424 *3)) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1252 *5))))) +(-10 -7 (-15 -2049 ((-424 |#3|) |#3|)) (-15 -3321 ((-3 (-424 (-1182 (-413 (-570)))) "failed") |#3|)) (-15 -3824 ((-3 (|:| |overq| (-1182 (-413 (-570)))) (|:| |overan| (-1182 (-48))) (|:| -2498 (-112))) |#3|)) (IF (|has| |#2| (-1047 (-48))) (-15 -3443 ((-3 (-424 (-1182 (-48))) "failed") |#3|)) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-2307 (((-1168) $ (-1168)) NIL)) (-3611 (($ $ (-1168)) NIL)) (-2289 (((-1168) $) NIL)) (-1770 (((-394) (-394) (-394)) 17) (((-394) (-394)) 15)) (-1718 (($ (-394)) NIL) (($ (-394) (-1168)) NIL)) (-3574 (((-394) $) NIL)) (-4122 (((-1168) $) NIL)) (-3608 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-4171 (((-1281) (-1168)) 9)) (-1692 (((-1281) (-1168)) 10)) (-3163 (((-1281)) 11)) (-3798 (((-868) $) NIL)) (-2514 (($ $) 39)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-442) (-13 (-369 (-394) (-1168)) (-10 -7 (-15 -1770 ((-394) (-394) (-394))) (-15 -1770 ((-394) (-394))) (-15 -4171 ((-1281) (-1168))) (-15 -1692 ((-1281) (-1168))) (-15 -3163 ((-1281)))))) (T -442)) +((-1770 (*1 *2 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442)))) (-4171 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-442)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-442)))) (-3163 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-442))))) +(-13 (-369 (-394) (-1168)) (-10 -7 (-15 -1770 ((-394) (-394) (-394))) (-15 -1770 ((-394) (-394))) (-15 -4171 ((-1281) (-1168))) (-15 -1692 ((-1281) (-1168))) (-15 -3163 ((-1281))))) +((-2419 (((-112) $ $) NIL)) (-3598 (((-3 (|:| |fst| (-440)) (|:| -2582 "void")) $) 11)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2321 (($) 35)) (-2469 (($) 41)) (-2841 (($) 37)) (-3452 (($) 39)) (-1844 (($) 36)) (-3728 (($) 38)) (-2206 (($) 40)) (-3172 (((-112) $) 8)) (-2248 (((-650 (-959 (-570))) $) 19)) (-3811 (($ (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-1186)) (-112)) 29) (($ (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-959 (-570))) (-112)) 30)) (-3798 (((-868) $) 24) (($ (-440)) 32)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-443) (-13 (-1109) (-10 -8 (-15 -3798 ($ (-440))) (-15 -3598 ((-3 (|:| |fst| (-440)) (|:| -2582 "void")) $)) (-15 -2248 ((-650 (-959 (-570))) $)) (-15 -3172 ((-112) $)) (-15 -3811 ($ (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-1186)) (-112))) (-15 -3811 ($ (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-959 (-570))) (-112))) (-15 -2321 ($)) (-15 -1844 ($)) (-15 -2841 ($)) (-15 -2469 ($)) (-15 -3728 ($)) (-15 -3452 ($)) (-15 -2206 ($))))) (T -443)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-443)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *1 (-443)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-650 (-959 (-570)))) (-5 *1 (-443)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443)))) (-3811 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *3 (-650 (-1186))) (-5 *4 (-112)) (-5 *1 (-443)))) (-3811 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-112)) (-5 *1 (-443)))) (-2321 (*1 *1) (-5 *1 (-443))) (-1844 (*1 *1) (-5 *1 (-443))) (-2841 (*1 *1) (-5 *1 (-443))) (-2469 (*1 *1) (-5 *1 (-443))) (-3728 (*1 *1) (-5 *1 (-443))) (-3452 (*1 *1) (-5 *1 (-443))) (-2206 (*1 *1) (-5 *1 (-443)))) +(-13 (-1109) (-10 -8 (-15 -3798 ($ (-440))) (-15 -3598 ((-3 (|:| |fst| (-440)) (|:| -2582 "void")) $)) (-15 -2248 ((-650 (-959 (-570))) $)) (-15 -3172 ((-112) $)) (-15 -3811 ($ (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-1186)) (-112))) (-15 -3811 ($ (-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-650 (-959 (-570))) (-112))) (-15 -2321 ($)) (-15 -1844 ($)) (-15 -2841 ($)) (-15 -2469 ($)) (-15 -3728 ($)) (-15 -3452 ($)) (-15 -2206 ($)))) +((-2419 (((-112) $ $) NIL)) (-3574 (((-1186) $) 8)) (-4122 (((-1168) $) 17)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 11)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 14))) +(((-444 |#1|) (-13 (-1109) (-10 -8 (-15 -3574 ((-1186) $)))) (-1186)) (T -444)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-444 *3)) (-14 *3 *2)))) +(-13 (-1109) (-10 -8 (-15 -3574 ((-1186) $)))) +((-2419 (((-112) $ $) NIL)) (-4332 (((-1127) $) 7)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 13)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-445) (-13 (-1109) (-10 -8 (-15 -4332 ((-1127) $))))) (T -445)) +((-4332 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-445))))) +(-13 (-1109) (-10 -8 (-15 -4332 ((-1127) $)))) +((-3363 (((-1281) $) 7)) (-3798 (((-868) $) 8) (($ (-1276 (-705))) 14) (($ (-650 (-334))) 13) (($ (-334)) 12) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 11))) +(((-446) (-141)) (T -446)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-705))) (-4 *1 (-446)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-446)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-446)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) (-4 *1 (-446))))) +(-13 (-401) (-10 -8 (-15 -3798 ($ (-1276 (-705)))) (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-334))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))))) +(((-619 (-868)) . T) ((-401) . T) ((-1226) . T)) +((-4382 (((-3 $ "failed") (-1276 (-320 (-384)))) 21) (((-3 $ "failed") (-1276 (-320 (-570)))) 19) (((-3 $ "failed") (-1276 (-959 (-384)))) 17) (((-3 $ "failed") (-1276 (-959 (-570)))) 15) (((-3 $ "failed") (-1276 (-413 (-959 (-384))))) 13) (((-3 $ "failed") (-1276 (-413 (-959 (-570))))) 11)) (-3152 (($ (-1276 (-320 (-384)))) 22) (($ (-1276 (-320 (-570)))) 20) (($ (-1276 (-959 (-384)))) 18) (($ (-1276 (-959 (-570)))) 16) (($ (-1276 (-413 (-959 (-384))))) 14) (($ (-1276 (-413 (-959 (-570))))) 12)) (-3363 (((-1281) $) 7)) (-3798 (((-868) $) 8) (($ (-650 (-334))) 25) (($ (-334)) 24) (($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) 23))) +(((-447) (-141)) (T -447)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-447)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-447)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) (-4 *1 (-447)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1276 (-320 (-384)))) (-4 *1 (-447)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1276 (-320 (-384)))) (-4 *1 (-447)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1276 (-320 (-570)))) (-4 *1 (-447)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1276 (-320 (-570)))) (-4 *1 (-447)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1276 (-959 (-384)))) (-4 *1 (-447)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1276 (-959 (-384)))) (-4 *1 (-447)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1276 (-959 (-570)))) (-4 *1 (-447)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1276 (-959 (-570)))) (-4 *1 (-447)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1276 (-413 (-959 (-384))))) (-4 *1 (-447)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1276 (-413 (-959 (-384))))) (-4 *1 (-447)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1276 (-413 (-959 (-570))))) (-4 *1 (-447)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-1276 (-413 (-959 (-570))))) (-4 *1 (-447))))) +(-13 (-401) (-10 -8 (-15 -3798 ($ (-650 (-334)))) (-15 -3798 ($ (-334))) (-15 -3798 ($ (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334)))))) (-15 -3152 ($ (-1276 (-320 (-384))))) (-15 -4382 ((-3 $ "failed") (-1276 (-320 (-384))))) (-15 -3152 ($ (-1276 (-320 (-570))))) (-15 -4382 ((-3 $ "failed") (-1276 (-320 (-570))))) (-15 -3152 ($ (-1276 (-959 (-384))))) (-15 -4382 ((-3 $ "failed") (-1276 (-959 (-384))))) (-15 -3152 ($ (-1276 (-959 (-570))))) (-15 -4382 ((-3 $ "failed") (-1276 (-959 (-570))))) (-15 -3152 ($ (-1276 (-413 (-959 (-384)))))) (-15 -4382 ((-3 $ "failed") (-1276 (-413 (-959 (-384)))))) (-15 -3152 ($ (-1276 (-413 (-959 (-570)))))) (-15 -4382 ((-3 $ "failed") (-1276 (-413 (-959 (-570)))))))) +(((-619 (-868)) . T) ((-401) . T) ((-1226) . T)) +((-3290 (((-112)) 18)) (-2330 (((-112) (-112)) 19)) (-1733 (((-112)) 14)) (-2286 (((-112) (-112)) 15)) (-1731 (((-112)) 16)) (-2668 (((-112) (-112)) 17)) (-3313 (((-928) (-928)) 22) (((-928)) 21)) (-2308 (((-777) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570))))) 52)) (-3264 (((-928) (-928)) 24) (((-928)) 23)) (-1759 (((-2 (|:| -3009 (-570)) (|:| -1629 (-650 |#1|))) |#1|) 97)) (-3339 (((-424 |#1|) (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570))))))) 178)) (-2024 (((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112)) 211)) (-2795 (((-424 |#1|) |#1| (-777) (-777)) 226) (((-424 |#1|) |#1| (-650 (-777)) (-777)) 223) (((-424 |#1|) |#1| (-650 (-777))) 225) (((-424 |#1|) |#1| (-777)) 224) (((-424 |#1|) |#1|) 222)) (-2097 (((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777) (-112)) 228) (((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777)) 229) (((-3 |#1| "failed") (-928) |#1| (-650 (-777))) 231) (((-3 |#1| "failed") (-928) |#1| (-777)) 230) (((-3 |#1| "failed") (-928) |#1|) 232)) (-3801 (((-424 |#1|) |#1| (-777) (-777)) 221) (((-424 |#1|) |#1| (-650 (-777)) (-777)) 217) (((-424 |#1|) |#1| (-650 (-777))) 219) (((-424 |#1|) |#1| (-777)) 218) (((-424 |#1|) |#1|) 216)) (-4018 (((-112) |#1|) 44)) (-3844 (((-743 (-777)) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570))))) 102)) (-3760 (((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112) (-1111 (-777)) (-777)) 215))) +(((-448 |#1|) (-10 -7 (-15 -3339 ((-424 |#1|) (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))))) (-15 -3844 ((-743 (-777)) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))))) (-15 -3264 ((-928))) (-15 -3264 ((-928) (-928))) (-15 -3313 ((-928))) (-15 -3313 ((-928) (-928))) (-15 -2308 ((-777) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))))) (-15 -1759 ((-2 (|:| -3009 (-570)) (|:| -1629 (-650 |#1|))) |#1|)) (-15 -3290 ((-112))) (-15 -2330 ((-112) (-112))) (-15 -1733 ((-112))) (-15 -2286 ((-112) (-112))) (-15 -4018 ((-112) |#1|)) (-15 -1731 ((-112))) (-15 -2668 ((-112) (-112))) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -3801 ((-424 |#1|) |#1| (-777))) (-15 -3801 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -3801 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -3801 ((-424 |#1|) |#1| (-777) (-777))) (-15 -2795 ((-424 |#1|) |#1|)) (-15 -2795 ((-424 |#1|) |#1| (-777))) (-15 -2795 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -2795 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -2795 ((-424 |#1|) |#1| (-777) (-777))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1|)) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-777))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777) (-112))) (-15 -2024 ((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112))) (-15 -3760 ((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112) (-1111 (-777)) (-777)))) (-1252 (-570))) (T -448)) +((-3760 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1111 (-777))) (-5 *6 (-777)) (-5 *2 (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2024 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2097 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *6 (-112)) (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) (-2097 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) (-2097 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) (-2097 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-928)) (-5 *4 (-777)) (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) (-2097 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-928)) (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) (-2795 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2795 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2795 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3801 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3801 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2668 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-1731 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-1733 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3290 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3009 (-570)) (|:| -1629 (-650 *3)))) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -3801 *4) (|:| -3324 (-570))))) (-4 *4 (-1252 (-570))) (-5 *2 (-777)) (-5 *1 (-448 *4)))) (-3313 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3313 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3264 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -3801 *4) (|:| -3324 (-570))))) (-4 *4 (-1252 (-570))) (-5 *2 (-743 (-777))) (-5 *1 (-448 *4)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| *4) (|:| -2306 (-570))))))) (-4 *4 (-1252 (-570))) (-5 *2 (-424 *4)) (-5 *1 (-448 *4))))) +(-10 -7 (-15 -3339 ((-424 |#1|) (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))))) (-15 -3844 ((-743 (-777)) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))))) (-15 -3264 ((-928))) (-15 -3264 ((-928) (-928))) (-15 -3313 ((-928))) (-15 -3313 ((-928) (-928))) (-15 -2308 ((-777) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))))) (-15 -1759 ((-2 (|:| -3009 (-570)) (|:| -1629 (-650 |#1|))) |#1|)) (-15 -3290 ((-112))) (-15 -2330 ((-112) (-112))) (-15 -1733 ((-112))) (-15 -2286 ((-112) (-112))) (-15 -4018 ((-112) |#1|)) (-15 -1731 ((-112))) (-15 -2668 ((-112) (-112))) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -3801 ((-424 |#1|) |#1| (-777))) (-15 -3801 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -3801 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -3801 ((-424 |#1|) |#1| (-777) (-777))) (-15 -2795 ((-424 |#1|) |#1|)) (-15 -2795 ((-424 |#1|) |#1| (-777))) (-15 -2795 ((-424 |#1|) |#1| (-650 (-777)))) (-15 -2795 ((-424 |#1|) |#1| (-650 (-777)) (-777))) (-15 -2795 ((-424 |#1|) |#1| (-777) (-777))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1|)) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-777))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777))) (-15 -2097 ((-3 |#1| "failed") (-928) |#1| (-650 (-777)) (-777) (-112))) (-15 -2024 ((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112))) (-15 -3760 ((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112) (-1111 (-777)) (-777)))) +((-3368 (((-570) |#2|) 52) (((-570) |#2| (-777)) 51)) (-4274 (((-570) |#2|) 67)) (-4228 ((|#3| |#2|) 26)) (-2233 ((|#3| |#2| (-928)) 15)) (-3847 ((|#3| |#2|) 16)) (-4371 ((|#3| |#2|) 9)) (-1428 ((|#3| |#2|) 10)) (-3540 ((|#3| |#2| (-928)) 74) ((|#3| |#2|) 34)) (-2641 (((-570) |#2|) 69))) +(((-449 |#1| |#2| |#3|) (-10 -7 (-15 -2641 ((-570) |#2|)) (-15 -3540 (|#3| |#2|)) (-15 -3540 (|#3| |#2| (-928))) (-15 -4274 ((-570) |#2|)) (-15 -3368 ((-570) |#2| (-777))) (-15 -3368 ((-570) |#2|)) (-15 -2233 (|#3| |#2| (-928))) (-15 -4228 (|#3| |#2|)) (-15 -4371 (|#3| |#2|)) (-15 -1428 (|#3| |#2|)) (-15 -3847 (|#3| |#2|))) (-1058) (-1252 |#1|) (-13 (-410) (-1047 |#1|) (-368) (-1211) (-288))) (T -449)) +((-3847 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) (-4371 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) (-4228 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1211) (-288))) (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1252 *5)))) (-3368 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) (-4 *3 (-1252 *4)) (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))))) (-3368 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *5 *3 *6)) (-4 *3 (-1252 *5)) (-4 *6 (-13 (-410) (-1047 *5) (-368) (-1211) (-288))))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) (-4 *3 (-1252 *4)) (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))))) (-3540 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1211) (-288))) (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1252 *5)))) (-3540 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) (-2641 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) (-4 *3 (-1252 *4)) (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1211) (-288)))))) +(-10 -7 (-15 -2641 ((-570) |#2|)) (-15 -3540 (|#3| |#2|)) (-15 -3540 (|#3| |#2| (-928))) (-15 -4274 ((-570) |#2|)) (-15 -3368 ((-570) |#2| (-777))) (-15 -3368 ((-570) |#2|)) (-15 -2233 (|#3| |#2| (-928))) (-15 -4228 (|#3| |#2|)) (-15 -4371 (|#3| |#2|)) (-15 -1428 (|#3| |#2|)) (-15 -3847 (|#3| |#2|))) +((-2352 ((|#2| (-1276 |#1|)) 45)) (-2788 ((|#2| |#2| |#1|) 61)) (-1981 ((|#2| |#2| |#1|) 53)) (-2256 ((|#2| |#2|) 49)) (-3189 (((-112) |#2|) 36)) (-1957 (((-650 |#2|) (-928) (-424 |#2|)) 24)) (-2097 ((|#2| (-928) (-424 |#2|)) 28)) (-3844 (((-743 (-777)) (-424 |#2|)) 33))) +(((-450 |#1| |#2|) (-10 -7 (-15 -3189 ((-112) |#2|)) (-15 -2352 (|#2| (-1276 |#1|))) (-15 -2256 (|#2| |#2|)) (-15 -1981 (|#2| |#2| |#1|)) (-15 -2788 (|#2| |#2| |#1|)) (-15 -3844 ((-743 (-777)) (-424 |#2|))) (-15 -2097 (|#2| (-928) (-424 |#2|))) (-15 -1957 ((-650 |#2|) (-928) (-424 |#2|)))) (-1058) (-1252 |#1|)) (T -450)) +((-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-424 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-1058)) (-5 *2 (-650 *6)) (-5 *1 (-450 *5 *6)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-424 *2)) (-4 *2 (-1252 *5)) (-5 *1 (-450 *5 *2)) (-4 *5 (-1058)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-424 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-1058)) (-5 *2 (-743 (-777))) (-5 *1 (-450 *4 *5)))) (-2788 (*1 *2 *2 *3) (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1252 *3)))) (-1981 (*1 *2 *2 *3) (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1252 *3)))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1252 *3)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-1276 *4)) (-4 *4 (-1058)) (-4 *2 (-1252 *4)) (-5 *1 (-450 *4 *2)))) (-3189 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-5 *2 (-112)) (-5 *1 (-450 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -3189 ((-112) |#2|)) (-15 -2352 (|#2| (-1276 |#1|))) (-15 -2256 (|#2| |#2|)) (-15 -1981 (|#2| |#2| |#1|)) (-15 -2788 (|#2| |#2| |#1|)) (-15 -3844 ((-743 (-777)) (-424 |#2|))) (-15 -2097 (|#2| (-928) (-424 |#2|))) (-15 -1957 ((-650 |#2|) (-928) (-424 |#2|)))) +((-1787 (((-777)) 59)) (-2919 (((-777)) 29 (|has| |#1| (-410))) (((-777) (-777)) 28 (|has| |#1| (-410)))) (-1671 (((-570) |#1|) 25 (|has| |#1| (-410)))) (-3043 (((-570) |#1|) 27 (|has| |#1| (-410)))) (-1799 (((-777)) 58) (((-777) (-777)) 57)) (-3700 ((|#1| (-777) (-570)) 37)) (-1448 (((-1281)) 61))) +(((-451 |#1|) (-10 -7 (-15 -3700 (|#1| (-777) (-570))) (-15 -1799 ((-777) (-777))) (-15 -1799 ((-777))) (-15 -1787 ((-777))) (-15 -1448 ((-1281))) (IF (|has| |#1| (-410)) (PROGN (-15 -3043 ((-570) |#1|)) (-15 -1671 ((-570) |#1|)) (-15 -2919 ((-777) (-777))) (-15 -2919 ((-777)))) |%noBranch|)) (-1058)) (T -451)) +((-2919 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-1671 (*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-3043 (*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) (-1448 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-1787 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-1799 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-570)) (-5 *1 (-451 *2)) (-4 *2 (-1058))))) +(-10 -7 (-15 -3700 (|#1| (-777) (-570))) (-15 -1799 ((-777) (-777))) (-15 -1799 ((-777))) (-15 -1787 ((-777))) (-15 -1448 ((-1281))) (IF (|has| |#1| (-410)) (PROGN (-15 -3043 ((-570) |#1|)) (-15 -1671 ((-570) |#1|)) (-15 -2919 ((-777) (-777))) (-15 -2919 ((-777)))) |%noBranch|)) +((-1766 (((-650 (-570)) (-570)) 76)) (-3701 (((-112) (-171 (-570))) 82)) (-3801 (((-424 (-171 (-570))) (-171 (-570))) 75))) +(((-452) (-10 -7 (-15 -3801 ((-424 (-171 (-570))) (-171 (-570)))) (-15 -1766 ((-650 (-570)) (-570))) (-15 -3701 ((-112) (-171 (-570)))))) (T -452)) +((-3701 (*1 *2 *3) (-12 (-5 *3 (-171 (-570))) (-5 *2 (-112)) (-5 *1 (-452)))) (-1766 (*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-452)) (-5 *3 (-570)))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-424 (-171 (-570)))) (-5 *1 (-452)) (-5 *3 (-171 (-570)))))) +(-10 -7 (-15 -3801 ((-424 (-171 (-570))) (-171 (-570)))) (-15 -1766 ((-650 (-570)) (-570))) (-15 -3701 ((-112) (-171 (-570))))) +((-4052 ((|#4| |#4| (-650 |#4|)) 82)) (-3030 (((-650 |#4|) (-650 |#4|) (-1168) (-1168)) 22) (((-650 |#4|) (-650 |#4|) (-1168)) 21) (((-650 |#4|) (-650 |#4|)) 13))) +(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4052 (|#4| |#4| (-650 |#4|))) (-15 -3030 ((-650 |#4|) (-650 |#4|))) (-15 -3030 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -3030 ((-650 |#4|) (-650 |#4|) (-1168) (-1168)))) (-311) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -453)) +((-3030 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3030 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *7)))) (-3030 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-453 *3 *4 *5 *6)))) (-4052 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *2))))) +(-10 -7 (-15 -4052 (|#4| |#4| (-650 |#4|))) (-15 -3030 ((-650 |#4|) (-650 |#4|))) (-15 -3030 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -3030 ((-650 |#4|) (-650 |#4|) (-1168) (-1168)))) +((-3856 (((-650 (-650 |#4|)) (-650 |#4|) (-112)) 89) (((-650 (-650 |#4|)) (-650 |#4|)) 88) (((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|) (-112)) 82) (((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|)) 83)) (-3473 (((-650 (-650 |#4|)) (-650 |#4|) (-112)) 55) (((-650 (-650 |#4|)) (-650 |#4|)) 77))) +(((-454 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3473 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -3473 ((-650 (-650 |#4|)) (-650 |#4|) (-112))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|) (-112))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|) (-112)))) (-13 (-311) (-148)) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -454)) +((-3856 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) (-3856 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-3856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) (-3473 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) +(-10 -7 (-15 -3473 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -3473 ((-650 (-650 |#4|)) (-650 |#4|) (-112))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|) (-650 |#4|) (-112))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|))) (-15 -3856 ((-650 (-650 |#4|)) (-650 |#4|) (-112)))) +((-3015 (((-777) |#4|) 12)) (-4114 (((-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|))) |#4| (-777) (-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|)))) 39)) (-3751 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4086 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3657 ((|#4| |#4| (-650 |#4|)) 54)) (-2972 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-650 |#4|)) 96)) (-4060 (((-1281) |#4|) 59)) (-3378 (((-1281) (-650 |#4|)) 69)) (-3450 (((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570)) 66)) (-1666 (((-1281) (-570)) 112)) (-2803 (((-650 |#4|) (-650 |#4|)) 104)) (-1512 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|)) |#4| (-777)) 31)) (-4088 (((-570) |#4|) 109)) (-4406 ((|#4| |#4|) 37)) (-2892 (((-650 |#4|) (-650 |#4|) (-570) (-570)) 74)) (-3346 (((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570) (-570)) 125)) (-2158 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1498 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3561 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4196 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-2910 (((-112) |#2| |#2|) 75)) (-3761 (((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-3851 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3206 ((|#4| |#4| (-650 |#4|)) 97))) +(((-455 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3206 (|#4| |#4| (-650 |#4|))) (-15 -3657 (|#4| |#4| (-650 |#4|))) (-15 -2892 ((-650 |#4|) (-650 |#4|) (-570) (-570))) (-15 -1498 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2910 ((-112) |#2| |#2|)) (-15 -3851 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3761 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4196 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3561 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2972 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-650 |#4|))) (-15 -4406 (|#4| |#4|)) (-15 -4114 ((-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|))) |#4| (-777) (-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|))))) (-15 -4086 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3751 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2803 ((-650 |#4|) (-650 |#4|))) (-15 -4088 ((-570) |#4|)) (-15 -4060 ((-1281) |#4|)) (-15 -3450 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570))) (-15 -3346 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570) (-570))) (-15 -3378 ((-1281) (-650 |#4|))) (-15 -1666 ((-1281) (-570))) (-15 -2158 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1512 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|)) |#4| (-777))) (-15 -3015 ((-777) |#4|))) (-458) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -455)) +((-3015 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-1512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-777)) (|:| -1750 *4))) (-5 *5 (-777)) (-4 *4 (-956 *6 *7 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-455 *6 *7 *8 *4)))) (-2158 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1281)) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1281)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3346 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *4)))) (-3450 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *4)))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1281)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-570)) (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))) (-3751 (*1 *2 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-799)) (-4 *2 (-956 *4 *5 *6)) (-5 *1 (-455 *4 *5 *6 *2)) (-4 *4 (-458)) (-4 *6 (-856)))) (-4114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 *3)))) (-5 *4 (-777)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *3)))) (-4406 (*1 *2 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-455 *5 *6 *7 *3)))) (-3561 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-777)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-799)) (-4 *6 (-956 *4 *3 *5)) (-4 *4 (-458)) (-4 *5 (-856)) (-5 *1 (-455 *4 *3 *5 *6)))) (-4196 (*1 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6)))) (-3761 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-799)) (-4 *3 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *3)))) (-3851 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))) (-2910 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5)))) (-1498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7)))) (-2892 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *7)))) (-3657 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2)))) (-3206 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2))))) +(-10 -7 (-15 -3206 (|#4| |#4| (-650 |#4|))) (-15 -3657 (|#4| |#4| (-650 |#4|))) (-15 -2892 ((-650 |#4|) (-650 |#4|) (-570) (-570))) (-15 -1498 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2910 ((-112) |#2| |#2|)) (-15 -3851 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3761 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4196 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3561 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2972 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-650 |#4|))) (-15 -4406 (|#4| |#4|)) (-15 -4114 ((-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|))) |#4| (-777) (-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|))))) (-15 -4086 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3751 ((-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-650 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2803 ((-650 |#4|) (-650 |#4|))) (-15 -4088 ((-570) |#4|)) (-15 -4060 ((-1281) |#4|)) (-15 -3450 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570))) (-15 -3346 ((-570) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-570) (-570) (-570) (-570))) (-15 -3378 ((-1281) (-650 |#4|))) (-15 -1666 ((-1281) (-570))) (-15 -2158 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1512 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-777)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-777)) (|:| -1750 |#4|)) |#4| (-777))) (-15 -3015 ((-777) |#4|))) +((-2915 ((|#4| |#4| (-650 |#4|)) 20 (|has| |#1| (-368)))) (-3098 (((-650 |#4|) (-650 |#4|) (-1168) (-1168)) 46) (((-650 |#4|) (-650 |#4|) (-1168)) 45) (((-650 |#4|) (-650 |#4|)) 34))) +(((-456 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 ((-650 |#4|) (-650 |#4|))) (-15 -3098 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -3098 ((-650 |#4|) (-650 |#4|) (-1168) (-1168))) (IF (|has| |#1| (-368)) (-15 -2915 (|#4| |#4| (-650 |#4|))) |%noBranch|)) (-458) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -456)) +((-2915 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-368)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-456 *4 *5 *6 *2)))) (-3098 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-456 *4 *5 *6 *7)))) (-3098 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-456 *4 *5 *6 *7)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-456 *3 *4 *5 *6))))) +(-10 -7 (-15 -3098 ((-650 |#4|) (-650 |#4|))) (-15 -3098 ((-650 |#4|) (-650 |#4|) (-1168))) (-15 -3098 ((-650 |#4|) (-650 |#4|) (-1168) (-1168))) (IF (|has| |#1| (-368)) (-15 -2915 (|#4| |#4| (-650 |#4|))) |%noBranch|)) +((-1841 (($ $ $) 14) (($ (-650 $)) 21)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 46)) (-1869 (($ $ $) NIL) (($ (-650 $)) 22))) +(((-457 |#1|) (-10 -8 (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -1841 (|#1| (-650 |#1|))) (-15 -1841 (|#1| |#1| |#1|)) (-15 -1869 (|#1| (-650 |#1|))) (-15 -1869 (|#1| |#1| |#1|))) (-458)) (T -457)) +NIL +(-10 -8 (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -1841 (|#1| (-650 |#1|))) (-15 -1841 (|#1| |#1| |#1|)) (-15 -1869 (|#1| (-650 |#1|))) (-15 -1869 (|#1| |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-2410 (((-3 $ "failed") $ $) 48)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-458) (-141)) (T -458)) +((-1869 (*1 *1 *1 *1) (-4 *1 (-458))) (-1869 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458)))) (-1841 (*1 *1 *1 *1) (-4 *1 (-458))) (-1841 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458)))) (-1311 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-458))))) +(-13 (-562) (-10 -8 (-15 -1869 ($ $ $)) (-15 -1869 ($ (-650 $))) (-15 -1841 ($ $ $)) (-15 -1841 ($ (-650 $))) (-15 -1311 ((-1182 $) (-1182 $) (-1182 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-1601 (((-1276 (-695 (-413 (-959 |#1|)))) (-1276 $)) NIL) (((-1276 (-695 (-413 (-959 |#1|))))) NIL)) (-4392 (((-1276 $)) NIL)) (-3734 (($) NIL T CONST)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL)) (-3025 (((-3 $ "failed")) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-1460 (((-695 (-413 (-959 |#1|))) (-1276 $)) NIL) (((-695 (-413 (-959 |#1|)))) NIL)) (-3754 (((-413 (-959 |#1|)) $) NIL)) (-3277 (((-695 (-413 (-959 |#1|))) $ (-1276 $)) NIL) (((-695 (-413 (-959 |#1|))) $) NIL)) (-2487 (((-3 $ "failed") $) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3019 (((-1182 (-959 (-413 (-959 |#1|))))) NIL (|has| (-413 (-959 |#1|)) (-368))) (((-1182 (-413 (-959 |#1|)))) 92 (|has| |#1| (-562)))) (-2559 (($ $ (-928)) NIL)) (-3928 (((-413 (-959 |#1|)) $) NIL)) (-3387 (((-1182 (-413 (-959 |#1|))) $) 90 (|has| (-413 (-959 |#1|)) (-562)))) (-3235 (((-413 (-959 |#1|)) (-1276 $)) NIL) (((-413 (-959 |#1|))) NIL)) (-2099 (((-1182 (-413 (-959 |#1|))) $) NIL)) (-1654 (((-112)) NIL)) (-2427 (($ (-1276 (-413 (-959 |#1|))) (-1276 $)) 116) (($ (-1276 (-413 (-959 |#1|)))) NIL)) (-2229 (((-3 $ "failed") $) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3979 (((-928)) NIL)) (-1438 (((-112)) NIL)) (-1752 (($ $ (-928)) NIL)) (-4414 (((-112)) NIL)) (-1451 (((-112)) NIL)) (-2882 (((-112)) NIL)) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL)) (-1822 (((-3 $ "failed")) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3792 (((-695 (-413 (-959 |#1|))) (-1276 $)) NIL) (((-695 (-413 (-959 |#1|)))) NIL)) (-2215 (((-413 (-959 |#1|)) $) NIL)) (-2961 (((-695 (-413 (-959 |#1|))) $ (-1276 $)) NIL) (((-695 (-413 (-959 |#1|))) $) NIL)) (-3645 (((-3 $ "failed") $) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-2463 (((-1182 (-959 (-413 (-959 |#1|))))) NIL (|has| (-413 (-959 |#1|)) (-368))) (((-1182 (-413 (-959 |#1|)))) 91 (|has| |#1| (-562)))) (-3619 (($ $ (-928)) NIL)) (-3926 (((-413 (-959 |#1|)) $) NIL)) (-3823 (((-1182 (-413 (-959 |#1|))) $) 87 (|has| (-413 (-959 |#1|)) (-562)))) (-2908 (((-413 (-959 |#1|)) (-1276 $)) NIL) (((-413 (-959 |#1|))) NIL)) (-2005 (((-1182 (-413 (-959 |#1|))) $) NIL)) (-4420 (((-112)) NIL)) (-4122 (((-1168) $) NIL)) (-2585 (((-112)) NIL)) (-2522 (((-112)) NIL)) (-1363 (((-112)) NIL)) (-3551 (((-1129) $) NIL)) (-2634 (((-413 (-959 |#1|)) $ $) 78 (|has| |#1| (-562)))) (-3999 (((-413 (-959 |#1|)) $) 102 (|has| |#1| (-562)))) (-3501 (((-413 (-959 |#1|)) $) 106 (|has| |#1| (-562)))) (-2946 (((-1182 (-413 (-959 |#1|))) $) 96 (|has| |#1| (-562)))) (-1536 (((-413 (-959 |#1|))) 79 (|has| |#1| (-562)))) (-2812 (((-413 (-959 |#1|)) $ $) 71 (|has| |#1| (-562)))) (-2316 (((-413 (-959 |#1|)) $) 101 (|has| |#1| (-562)))) (-2914 (((-413 (-959 |#1|)) $) 105 (|has| |#1| (-562)))) (-4093 (((-1182 (-413 (-959 |#1|))) $) 95 (|has| |#1| (-562)))) (-1458 (((-413 (-959 |#1|))) 75 (|has| |#1| (-562)))) (-4163 (($) 112) (($ (-1186)) 120) (($ (-1276 (-1186))) 119) (($ (-1276 $)) 107) (($ (-1186) (-1276 $)) 118) (($ (-1276 (-1186)) (-1276 $)) 117)) (-1422 (((-112)) NIL)) (-1872 (((-413 (-959 |#1|)) $ (-570)) NIL)) (-1861 (((-1276 (-413 (-959 |#1|))) $ (-1276 $)) 109) (((-695 (-413 (-959 |#1|))) (-1276 $) (-1276 $)) NIL) (((-1276 (-413 (-959 |#1|))) $) 45) (((-695 (-413 (-959 |#1|))) (-1276 $)) NIL)) (-1411 (((-1276 (-413 (-959 |#1|))) $) NIL) (($ (-1276 (-413 (-959 |#1|)))) 42)) (-3594 (((-650 (-959 (-413 (-959 |#1|)))) (-1276 $)) NIL) (((-650 (-959 (-413 (-959 |#1|))))) NIL) (((-650 (-959 |#1|)) (-1276 $)) 110 (|has| |#1| (-562))) (((-650 (-959 |#1|))) 111 (|has| |#1| (-562)))) (-4307 (($ $ $) NIL)) (-1743 (((-112)) NIL)) (-3798 (((-868) $) NIL) (($ (-1276 (-413 (-959 |#1|)))) NIL)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) 67)) (-3532 (((-650 (-1276 (-413 (-959 |#1|))))) NIL (|has| (-413 (-959 |#1|)) (-562)))) (-3666 (($ $ $ $) NIL)) (-2939 (((-112)) NIL)) (-3453 (($ (-695 (-413 (-959 |#1|))) $) NIL)) (-3616 (($ $ $) NIL)) (-3089 (((-112)) NIL)) (-2313 (((-112)) NIL)) (-3772 (((-112)) NIL)) (-1809 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) 108)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 63) (($ $ (-413 (-959 |#1|))) NIL) (($ (-413 (-959 |#1|)) $) NIL) (($ (-1151 |#2| (-413 (-959 |#1|))) $) NIL))) +(((-459 |#1| |#2| |#3| |#4|) (-13 (-423 (-413 (-959 |#1|))) (-654 (-1151 |#2| (-413 (-959 |#1|)))) (-10 -8 (-15 -3798 ($ (-1276 (-413 (-959 |#1|))))) (-15 -1597 ((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed"))) (-15 -4163 ($)) (-15 -4163 ($ (-1186))) (-15 -4163 ($ (-1276 (-1186)))) (-15 -4163 ($ (-1276 $))) (-15 -4163 ($ (-1186) (-1276 $))) (-15 -4163 ($ (-1276 (-1186)) (-1276 $))) (IF (|has| |#1| (-562)) (PROGN (-15 -2463 ((-1182 (-413 (-959 |#1|))))) (-15 -4093 ((-1182 (-413 (-959 |#1|))) $)) (-15 -2316 ((-413 (-959 |#1|)) $)) (-15 -2914 ((-413 (-959 |#1|)) $)) (-15 -3019 ((-1182 (-413 (-959 |#1|))))) (-15 -2946 ((-1182 (-413 (-959 |#1|))) $)) (-15 -3999 ((-413 (-959 |#1|)) $)) (-15 -3501 ((-413 (-959 |#1|)) $)) (-15 -2812 ((-413 (-959 |#1|)) $ $)) (-15 -1458 ((-413 (-959 |#1|)))) (-15 -2634 ((-413 (-959 |#1|)) $ $)) (-15 -1536 ((-413 (-959 |#1|)))) (-15 -3594 ((-650 (-959 |#1|)) (-1276 $))) (-15 -3594 ((-650 (-959 |#1|))))) |%noBranch|))) (-174) (-928) (-650 (-1186)) (-1276 (-695 |#1|))) (T -459)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1276 (-413 (-959 *3)))) (-4 *3 (-174)) (-14 *6 (-1276 (-695 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))))) (-1597 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-459 *3 *4 *5 *6)) (|:| -2077 (-650 (-459 *3 *4 *5 *6))))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-4034 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-459 *3 *4 *5 *6)) (|:| -2077 (-650 (-459 *3 *4 *5 *6))))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-4163 (*1 *1) (-12 (-5 *1 (-459 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-928)) (-14 *4 (-650 (-1186))) (-14 *5 (-1276 (-695 *2))))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 *2)) (-14 *6 (-1276 (-695 *3))))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-1276 (-1186))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-1276 (-459 *3 *4 *5 *6))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-4163 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-459 *4 *5 *6 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928)) (-14 *6 (-650 *2)) (-14 *7 (-1276 (-695 *4))))) (-4163 (*1 *1 *2 *3) (-12 (-5 *2 (-1276 (-1186))) (-5 *3 (-1276 (-459 *4 *5 *6 *7))) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928)) (-14 *6 (-650 (-1186))) (-14 *7 (-1276 (-695 *4))))) (-2463 (*1 *2) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-4093 (*1 *2 *1) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-3019 (*1 *2) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-2812 (*1 *2 *1 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-1458 (*1 *2) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-2634 (*1 *2 *1 *1) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-1536 (*1 *2) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1276 (-459 *4 *5 *6 *7))) (-5 *2 (-650 (-959 *4))) (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *4 (-174)) (-14 *5 (-928)) (-14 *6 (-650 (-1186))) (-14 *7 (-1276 (-695 *4))))) (-3594 (*1 *2) (-12 (-5 *2 (-650 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(-13 (-423 (-413 (-959 |#1|))) (-654 (-1151 |#2| (-413 (-959 |#1|)))) (-10 -8 (-15 -3798 ($ (-1276 (-413 (-959 |#1|))))) (-15 -1597 ((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed"))) (-15 -4163 ($)) (-15 -4163 ($ (-1186))) (-15 -4163 ($ (-1276 (-1186)))) (-15 -4163 ($ (-1276 $))) (-15 -4163 ($ (-1186) (-1276 $))) (-15 -4163 ($ (-1276 (-1186)) (-1276 $))) (IF (|has| |#1| (-562)) (PROGN (-15 -2463 ((-1182 (-413 (-959 |#1|))))) (-15 -4093 ((-1182 (-413 (-959 |#1|))) $)) (-15 -2316 ((-413 (-959 |#1|)) $)) (-15 -2914 ((-413 (-959 |#1|)) $)) (-15 -3019 ((-1182 (-413 (-959 |#1|))))) (-15 -2946 ((-1182 (-413 (-959 |#1|))) $)) (-15 -3999 ((-413 (-959 |#1|)) $)) (-15 -3501 ((-413 (-959 |#1|)) $)) (-15 -2812 ((-413 (-959 |#1|)) $ $)) (-15 -1458 ((-413 (-959 |#1|)))) (-15 -2634 ((-413 (-959 |#1|)) $ $)) (-15 -1536 ((-413 (-959 |#1|)))) (-15 -3594 ((-650 (-959 |#1|)) (-1276 $))) (-15 -3594 ((-650 (-959 |#1|))))) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 18)) (-1709 (((-650 (-870 |#1|)) $) 90)) (-3768 (((-1182 $) $ (-870 |#1|)) 55) (((-1182 |#2|) $) 140)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2318 (($ $) NIL (|has| |#2| (-562)))) (-2234 (((-112) $) NIL (|has| |#2| (-562)))) (-1818 (((-777) $) 27) (((-777) $ (-650 (-870 |#1|))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3696 (($ $) NIL (|has| |#2| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#2| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) 53) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-3152 ((|#2| $) 51) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2865 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2808 (($ $ (-650 (-570))) 96)) (-1885 (($ $) 83)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#2| (-916)))) (-3155 (($ $ |#2| |#3| $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) 68)) (-1699 (($ (-1182 |#2|) (-870 |#1|)) 145) (($ (-1182 $) (-870 |#1|)) 61)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) 71)) (-3925 (($ |#2| |#3|) 38) (($ $ (-870 |#1|) (-777)) 40) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-870 |#1|)) NIL)) (-2302 ((|#3| $) NIL) (((-777) $ (-870 |#1|)) 59) (((-650 (-777)) $ (-650 (-870 |#1|))) 66)) (-2550 (($ (-1 |#3| |#3|) $) NIL)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (((-3 (-870 |#1|) "failed") $) 48)) (-1851 (($ $) NIL)) (-1860 ((|#2| $) 50)) (-1841 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -3283 (-777))) "failed") $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) 49)) (-1838 ((|#2| $) 138)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) 151 (|has| |#2| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) 103) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) 109) (($ $ (-870 |#1|) $) 101) (($ $ (-650 (-870 |#1|)) (-650 $)) 127)) (-3511 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3519 (($ $ (-870 |#1|)) 62) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3324 ((|#3| $) 82) (((-777) $ (-870 |#1|)) 45) (((-650 (-777)) $ (-650 (-870 |#1|))) 65)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-1427 ((|#2| $) 147 (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3798 (((-868) $) 175) (($ (-570)) NIL) (($ |#2|) 102) (($ (-870 |#1|)) 42) (($ (-413 (-570))) NIL (-2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ |#3|) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1809 (($) 22 T CONST)) (-1817 (($) 31 T CONST)) (-2835 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) 79 (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 133)) (** (($ $ (-928)) NIL) (($ $ (-777)) 131)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 39) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) 78) (($ $ |#2|) NIL))) +(((-460 |#1| |#2| |#3|) (-13 (-956 |#2| |#3| (-870 |#1|)) (-10 -8 (-15 -2808 ($ $ (-650 (-570)))))) (-650 (-1186)) (-1058) (-240 (-2431 |#1|) (-777))) (T -460)) +((-2808 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-14 *3 (-650 (-1186))) (-5 *1 (-460 *3 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-240 (-2431 *3) (-777)))))) +(-13 (-956 |#2| |#3| (-870 |#1|)) (-10 -8 (-15 -2808 ($ $ (-650 (-570)))))) +((-3935 (((-112) |#1| (-650 |#2|)) 93)) (-4138 (((-3 (-1276 (-650 |#2|)) "failed") (-777) |#1| (-650 |#2|)) 102)) (-2247 (((-3 (-650 |#2|) "failed") |#2| |#1| (-1276 (-650 |#2|))) 104)) (-2625 ((|#2| |#2| |#1|) 35)) (-1857 (((-777) |#2| (-650 |#2|)) 26))) +(((-461 |#1| |#2|) (-10 -7 (-15 -2625 (|#2| |#2| |#1|)) (-15 -1857 ((-777) |#2| (-650 |#2|))) (-15 -4138 ((-3 (-1276 (-650 |#2|)) "failed") (-777) |#1| (-650 |#2|))) (-15 -2247 ((-3 (-650 |#2|) "failed") |#2| |#1| (-1276 (-650 |#2|)))) (-15 -3935 ((-112) |#1| (-650 |#2|)))) (-311) (-1252 |#1|)) (T -461)) +((-3935 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *5)) (-4 *5 (-1252 *3)) (-4 *3 (-311)) (-5 *2 (-112)) (-5 *1 (-461 *3 *5)))) (-2247 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1276 (-650 *3))) (-4 *4 (-311)) (-5 *2 (-650 *3)) (-5 *1 (-461 *4 *3)) (-4 *3 (-1252 *4)))) (-4138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-777)) (-4 *4 (-311)) (-4 *6 (-1252 *4)) (-5 *2 (-1276 (-650 *6))) (-5 *1 (-461 *4 *6)) (-5 *5 (-650 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-311)) (-5 *2 (-777)) (-5 *1 (-461 *5 *3)))) (-2625 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-461 *3 *2)) (-4 *2 (-1252 *3))))) +(-10 -7 (-15 -2625 (|#2| |#2| |#1|)) (-15 -1857 ((-777) |#2| (-650 |#2|))) (-15 -4138 ((-3 (-1276 (-650 |#2|)) "failed") (-777) |#1| (-650 |#2|))) (-15 -2247 ((-3 (-650 |#2|) "failed") |#2| |#1| (-1276 (-650 |#2|)))) (-15 -3935 ((-112) |#1| (-650 |#2|)))) +((-3801 (((-424 |#5|) |#5|) 24))) +(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3801 ((-424 |#5|) |#5|))) (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186))))) (-799) (-562) (-562) (-956 |#4| |#2| |#1|)) (T -462)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-4 *5 (-799)) (-4 *7 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-462 *4 *5 *6 *7 *3)) (-4 *6 (-562)) (-4 *3 (-956 *7 *5 *4))))) +(-10 -7 (-15 -3801 ((-424 |#5|) |#5|))) +((-2911 ((|#3|) 38)) (-1311 (((-1182 |#4|) (-1182 |#4|) (-1182 |#4|)) 34))) +(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1311 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -2911 (|#3|))) (-799) (-856) (-916) (-956 |#3| |#1| |#2|)) (T -463)) +((-2911 (*1 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916)) (-5 *1 (-463 *3 *4 *2 *5)) (-4 *5 (-956 *2 *3 *4)))) (-1311 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-916)) (-5 *1 (-463 *3 *4 *5 *6))))) +(-10 -7 (-15 -1311 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -2911 (|#3|))) +((-3801 (((-424 (-1182 |#1|)) (-1182 |#1|)) 43))) +(((-464 |#1|) (-10 -7 (-15 -3801 ((-424 (-1182 |#1|)) (-1182 |#1|)))) (-311)) (T -464)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-311)) (-5 *2 (-424 (-1182 *4))) (-5 *1 (-464 *4)) (-5 *3 (-1182 *4))))) +(-10 -7 (-15 -3801 ((-424 (-1182 |#1|)) (-1182 |#1|)))) +((-1776 (((-52) |#2| (-1186) (-298 |#2|) (-1243 (-777))) 44) (((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-777))) 43) (((-52) |#2| (-1186) (-298 |#2|)) 36) (((-52) (-1 |#2| (-570)) (-298 |#2|)) 29)) (-3325 (((-52) |#2| (-1186) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570))) 88) (((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570))) 87) (((-52) |#2| (-1186) (-298 |#2|) (-1243 (-570))) 86) (((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-570))) 85) (((-52) |#2| (-1186) (-298 |#2|)) 80) (((-52) (-1 |#2| (-570)) (-298 |#2|)) 79)) (-1800 (((-52) |#2| (-1186) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570))) 74) (((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570))) 72)) (-1788 (((-52) |#2| (-1186) (-298 |#2|) (-1243 (-570))) 51) (((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-570))) 50))) +(((-465 |#1| |#2|) (-10 -7 (-15 -1776 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -1776 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -1776 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-777)))) (-15 -1776 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-777)))) (-15 -1788 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-570)))) (-15 -1788 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-570)))) (-15 -1800 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570)))) (-15 -1800 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570)))) (-15 -3325 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -3325 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -3325 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-570)))) (-15 -3325 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-570)))) (-15 -3325 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570)))) (-15 -3325 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570))))) (-13 (-562) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -465)) +((-3325 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-413 (-570)))) (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *8))) (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *8 *3)))) (-3325 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8)) (-5 *5 (-1243 (-413 (-570)))) (-5 *6 (-413 (-570))) (-4 *8 (-13 (-27) (-1211) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *8)))) (-3325 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *3)))) (-3325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1243 (-570))) (-4 *7 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *7)))) (-3325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *3)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6)) (-4 *6 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *5 *6)))) (-1800 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-413 (-570)))) (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *8))) (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *8 *3)))) (-1800 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8)) (-5 *5 (-1243 (-413 (-570)))) (-5 *6 (-413 (-570))) (-4 *8 (-13 (-27) (-1211) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *8)))) (-1788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *3)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1243 (-570))) (-4 *7 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *7)))) (-1776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-777))) (-4 *3 (-13 (-27) (-1211) (-436 *7))) (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *7 *3)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1243 (-777))) (-4 *7 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *7)))) (-1776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *6 *3)))) (-1776 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6)) (-4 *6 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) (-5 *1 (-465 *5 *6))))) +(-10 -7 (-15 -1776 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -1776 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -1776 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-777)))) (-15 -1776 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-777)))) (-15 -1788 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-570)))) (-15 -1788 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-570)))) (-15 -1800 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570)))) (-15 -1800 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570)))) (-15 -3325 ((-52) (-1 |#2| (-570)) (-298 |#2|))) (-15 -3325 ((-52) |#2| (-1186) (-298 |#2|))) (-15 -3325 ((-52) (-1 |#2| (-570)) (-298 |#2|) (-1243 (-570)))) (-15 -3325 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-570)))) (-15 -3325 ((-52) (-1 |#2| (-413 (-570))) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570)))) (-15 -3325 ((-52) |#2| (-1186) (-298 |#2|) (-1243 (-413 (-570))) (-413 (-570))))) +((-2625 ((|#2| |#2| |#1|) 15)) (-3892 (((-650 |#2|) |#2| (-650 |#2|) |#1| (-928)) 82)) (-3502 (((-2 (|:| |plist| (-650 |#2|)) (|:| |modulo| |#1|)) |#2| (-650 |#2|) |#1| (-928)) 72))) +(((-466 |#1| |#2|) (-10 -7 (-15 -3502 ((-2 (|:| |plist| (-650 |#2|)) (|:| |modulo| |#1|)) |#2| (-650 |#2|) |#1| (-928))) (-15 -3892 ((-650 |#2|) |#2| (-650 |#2|) |#1| (-928))) (-15 -2625 (|#2| |#2| |#1|))) (-311) (-1252 |#1|)) (T -466)) +((-2625 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1252 *3)))) (-3892 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-650 *3)) (-5 *5 (-928)) (-4 *3 (-1252 *4)) (-4 *4 (-311)) (-5 *1 (-466 *4 *3)))) (-3502 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-928)) (-4 *5 (-311)) (-4 *3 (-1252 *5)) (-5 *2 (-2 (|:| |plist| (-650 *3)) (|:| |modulo| *5))) (-5 *1 (-466 *5 *3)) (-5 *4 (-650 *3))))) +(-10 -7 (-15 -3502 ((-2 (|:| |plist| (-650 |#2|)) (|:| |modulo| |#1|)) |#2| (-650 |#2|) |#1| (-928))) (-15 -3892 ((-650 |#2|) |#2| (-650 |#2|) |#1| (-928))) (-15 -2625 (|#2| |#2| |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 28)) (-3241 (($ |#3|) 25)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-1885 (($ $) 32)) (-3903 (($ |#2| |#4| $) 33)) (-3925 (($ |#2| (-719 |#3| |#4| |#5|)) 24)) (-1851 (((-719 |#3| |#4| |#5|) $) 15)) (-2738 ((|#3| $) 19)) (-4231 ((|#4| $) 17)) (-1860 ((|#2| $) 29)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-2086 (($ |#2| |#3| |#4|) 26)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 36 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 34)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-467 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-723 |#6|) (-723 |#2|) (-10 -8 (-15 -1860 (|#2| $)) (-15 -1851 ((-719 |#3| |#4| |#5|) $)) (-15 -4231 (|#4| $)) (-15 -2738 (|#3| $)) (-15 -1885 ($ $)) (-15 -3925 ($ |#2| (-719 |#3| |#4| |#5|))) (-15 -3241 ($ |#3|)) (-15 -2086 ($ |#2| |#3| |#4|)) (-15 -3903 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-650 (-1186)) (-174) (-856) (-240 (-2431 |#1|) (-777)) (-1 (-112) (-2 (|:| -2155 |#3|) (|:| -3283 |#4|)) (-2 (|:| -2155 |#3|) (|:| -3283 |#4|))) (-956 |#2| |#4| (-870 |#1|))) (T -467)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *6 (-240 (-2431 *3) (-777))) (-14 *7 (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *6)) (-2 (|:| -2155 *5) (|:| -3283 *6)))) (-5 *1 (-467 *3 *4 *5 *6 *7 *2)) (-4 *5 (-856)) (-4 *2 (-956 *4 *6 (-870 *3))))) (-1860 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *5 (-240 (-2431 *3) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -2155 *4) (|:| -3283 *5)) (-2 (|:| -2155 *4) (|:| -3283 *5)))) (-4 *2 (-174)) (-5 *1 (-467 *3 *2 *4 *5 *6 *7)) (-4 *4 (-856)) (-4 *7 (-956 *2 *5 (-870 *3))))) (-1851 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *6 (-240 (-2431 *3) (-777))) (-14 *7 (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *6)) (-2 (|:| -2155 *5) (|:| -3283 *6)))) (-5 *2 (-719 *5 *6 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8)) (-4 *5 (-856)) (-4 *8 (-956 *4 *6 (-870 *3))))) (-4231 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *2)) (-2 (|:| -2155 *5) (|:| -3283 *2)))) (-4 *2 (-240 (-2431 *3) (-777))) (-5 *1 (-467 *3 *4 *5 *2 *6 *7)) (-4 *5 (-856)) (-4 *7 (-956 *4 *2 (-870 *3))))) (-2738 (*1 *2 *1) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *5 (-240 (-2431 *3) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *5)) (-2 (|:| -2155 *2) (|:| -3283 *5)))) (-4 *2 (-856)) (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) (-4 *7 (-956 *4 *5 (-870 *3))))) (-1885 (*1 *1 *1) (-12 (-14 *2 (-650 (-1186))) (-4 *3 (-174)) (-4 *5 (-240 (-2431 *2) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -2155 *4) (|:| -3283 *5)) (-2 (|:| -2155 *4) (|:| -3283 *5)))) (-5 *1 (-467 *2 *3 *4 *5 *6 *7)) (-4 *4 (-856)) (-4 *7 (-956 *3 *5 (-870 *2))))) (-3925 (*1 *1 *2 *3) (-12 (-5 *3 (-719 *5 *6 *7)) (-4 *5 (-856)) (-4 *6 (-240 (-2431 *4) (-777))) (-14 *7 (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *6)) (-2 (|:| -2155 *5) (|:| -3283 *6)))) (-14 *4 (-650 (-1186))) (-4 *2 (-174)) (-5 *1 (-467 *4 *2 *5 *6 *7 *8)) (-4 *8 (-956 *2 *6 (-870 *4))))) (-3241 (*1 *1 *2) (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) (-4 *5 (-240 (-2431 *3) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *5)) (-2 (|:| -2155 *2) (|:| -3283 *5)))) (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) (-4 *2 (-856)) (-4 *7 (-956 *4 *5 (-870 *3))))) (-2086 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-650 (-1186))) (-4 *2 (-174)) (-4 *4 (-240 (-2431 *5) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -2155 *3) (|:| -3283 *4)) (-2 (|:| -2155 *3) (|:| -3283 *4)))) (-5 *1 (-467 *5 *2 *3 *4 *6 *7)) (-4 *3 (-856)) (-4 *7 (-956 *2 *4 (-870 *5))))) (-3903 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-650 (-1186))) (-4 *2 (-174)) (-4 *3 (-240 (-2431 *4) (-777))) (-14 *6 (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *3)) (-2 (|:| -2155 *5) (|:| -3283 *3)))) (-5 *1 (-467 *4 *2 *5 *3 *6 *7)) (-4 *5 (-856)) (-4 *7 (-956 *2 *3 (-870 *4)))))) +(-13 (-723 |#6|) (-723 |#2|) (-10 -8 (-15 -1860 (|#2| $)) (-15 -1851 ((-719 |#3| |#4| |#5|) $)) (-15 -4231 (|#4| $)) (-15 -2738 (|#3| $)) (-15 -1885 ($ $)) (-15 -3925 ($ |#2| (-719 |#3| |#4| |#5|))) (-15 -3241 ($ |#3|)) (-15 -2086 ($ |#2| |#3| |#4|)) (-15 -3903 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3448 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3448 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-799) (-856) (-562) (-956 |#3| |#1| |#2|) (-13 (-1047 (-413 (-570))) (-368) (-10 -8 (-15 -3798 ($ |#4|)) (-15 -4400 (|#4| $)) (-15 -4413 (|#4| $))))) (T -468)) +((-3448 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-856)) (-4 *5 (-799)) (-4 *6 (-562)) (-4 *7 (-956 *6 *5 *3)) (-5 *1 (-468 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1047 (-413 (-570))) (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $)))))))) +(-10 -7 (-15 -3448 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1709 (((-650 |#3|) $) 41)) (-4006 (((-112) $) NIL)) (-1797 (((-112) $) NIL (|has| |#1| (-562)))) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1418 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-2262 (((-112) $) NIL (|has| |#1| (-562)))) (-2082 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4427 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2418 (((-112) $) NIL (|has| |#1| (-562)))) (-3572 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 49)) (-3152 (($ (-650 |#4|)) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-1697 (($ |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4448)))) (-2885 (((-650 |#4|) $) 18 (|has| $ (-6 -4448)))) (-4211 ((|#3| $) 47)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#4|) $) 14 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-3837 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 21)) (-3952 (((-650 |#3|) $) NIL)) (-2875 (((-112) |#3| $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-3551 (((-1129) $) NIL)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3116 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 39)) (-4359 (($) 17)) (-3562 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) 16)) (-1411 (((-542) $) NIL (|has| |#4| (-620 (-542)))) (($ (-650 |#4|)) 51)) (-3811 (($ (-650 |#4|)) 13)) (-3677 (($ $ |#3|) NIL)) (-3158 (($ $ |#3|) NIL)) (-4074 (($ $ |#3|) NIL)) (-3798 (((-868) $) 38) (((-650 |#4|) $) 50)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 30)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-469 |#1| |#2| |#3| |#4|) (-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1411 ($ (-650 |#4|))) (-6 -4448) (-6 -4449))) (-1058) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -469)) +((-1411 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-469 *3 *4 *5 *6))))) +(-13 (-985 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1411 ($ (-650 |#4|))) (-6 -4448) (-6 -4449))) +((-1809 (($) 11)) (-1817 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-470 |#1| |#2| |#3|) (-10 -8 (-15 -1817 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1809 (|#1|))) (-471 |#2| |#3|) (-174) (-23)) (T -470)) +NIL +(-10 -8 (-15 -1817 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1809 (|#1|))) +((-2419 (((-112) $ $) 7)) (-4382 (((-3 |#1| "failed") $) 27)) (-3152 ((|#1| $) 28)) (-3053 (($ $ $) 24)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3324 ((|#2| $) 20)) (-3798 (((-868) $) 12) (($ |#1|) 26)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 25 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 16) (($ $ $) 14)) (-3014 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-471 |#1| |#2|) (-141) (-174) (-23)) (T -471)) +((-1817 (*1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3053 (*1 *1 *1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-476 |t#1| |t#2|) (-1047 |t#1|) (-10 -8 (-15 (-1817) ($) -3711) (-15 -3053 ($ $ $)))) +(((-102) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-476 |#1| |#2|) . T) ((-1047 |#1|) . T) ((-1109) . T)) +((-2177 (((-1276 (-1276 (-570))) (-1276 (-1276 (-570))) (-928)) 28)) (-2814 (((-1276 (-1276 (-570))) (-928)) 23))) +(((-472) (-10 -7 (-15 -2177 ((-1276 (-1276 (-570))) (-1276 (-1276 (-570))) (-928))) (-15 -2814 ((-1276 (-1276 (-570))) (-928))))) (T -472)) +((-2814 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1276 (-1276 (-570)))) (-5 *1 (-472)))) (-2177 (*1 *2 *2 *3) (-12 (-5 *2 (-1276 (-1276 (-570)))) (-5 *3 (-928)) (-5 *1 (-472))))) +(-10 -7 (-15 -2177 ((-1276 (-1276 (-570))) (-1276 (-1276 (-570))) (-928))) (-15 -2814 ((-1276 (-1276 (-570))) (-928)))) +((-3758 (((-570) (-570)) 32) (((-570)) 24)) (-1556 (((-570) (-570)) 28) (((-570)) 20)) (-2696 (((-570) (-570)) 30) (((-570)) 22)) (-1810 (((-112) (-112)) 14) (((-112)) 12)) (-2647 (((-112) (-112)) 13) (((-112)) 11)) (-4194 (((-112) (-112)) 26) (((-112)) 17))) +(((-473) (-10 -7 (-15 -2647 ((-112))) (-15 -1810 ((-112))) (-15 -2647 ((-112) (-112))) (-15 -1810 ((-112) (-112))) (-15 -4194 ((-112))) (-15 -2696 ((-570))) (-15 -1556 ((-570))) (-15 -3758 ((-570))) (-15 -4194 ((-112) (-112))) (-15 -2696 ((-570) (-570))) (-15 -1556 ((-570) (-570))) (-15 -3758 ((-570) (-570))))) (T -473)) +((-3758 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-2696 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-3758 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-1556 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-2696 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) (-4194 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-1810 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) (-2647 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))) +(-10 -7 (-15 -2647 ((-112))) (-15 -1810 ((-112))) (-15 -2647 ((-112) (-112))) (-15 -1810 ((-112) (-112))) (-15 -4194 ((-112))) (-15 -2696 ((-570))) (-15 -1556 ((-570))) (-15 -3758 ((-570))) (-15 -4194 ((-112) (-112))) (-15 -2696 ((-570) (-570))) (-15 -1556 ((-570) (-570))) (-15 -3758 ((-570) (-570)))) +((-2419 (((-112) $ $) NIL)) (-3159 (((-650 (-384)) $) 34) (((-650 (-384)) $ (-650 (-384))) 146)) (-3900 (((-650 (-1103 (-384))) $) 16) (((-650 (-1103 (-384))) $ (-650 (-1103 (-384)))) 142)) (-1453 (((-650 (-650 (-950 (-227)))) (-650 (-650 (-950 (-227)))) (-650 (-880))) 58)) (-1824 (((-650 (-650 (-950 (-227)))) $) 137)) (-3286 (((-1281) $ (-950 (-227)) (-880)) 163)) (-2635 (($ $) 136) (($ (-650 (-650 (-950 (-227))))) 149) (($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928))) 148) (($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)) (-650 (-266))) 150)) (-4122 (((-1168) $) NIL)) (-2009 (((-570) $) 110)) (-3551 (((-1129) $) NIL)) (-2211 (($) 147)) (-2145 (((-650 (-227)) (-650 (-650 (-950 (-227))))) 89)) (-3887 (((-1281) $ (-650 (-950 (-227))) (-880) (-880) (-928)) 155) (((-1281) $ (-950 (-227))) 157) (((-1281) $ (-950 (-227)) (-880) (-880) (-928)) 156)) (-3798 (((-868) $) 169) (($ (-650 (-650 (-950 (-227))))) 164)) (-1319 (((-112) $ $) NIL)) (-2967 (((-1281) $ (-950 (-227))) 162)) (-2923 (((-112) $ $) NIL))) +(((-474) (-13 (-1109) (-10 -8 (-15 -2211 ($)) (-15 -2635 ($ $)) (-15 -2635 ($ (-650 (-650 (-950 (-227)))))) (-15 -2635 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)))) (-15 -2635 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)) (-650 (-266)))) (-15 -1824 ((-650 (-650 (-950 (-227)))) $)) (-15 -2009 ((-570) $)) (-15 -3900 ((-650 (-1103 (-384))) $)) (-15 -3900 ((-650 (-1103 (-384))) $ (-650 (-1103 (-384))))) (-15 -3159 ((-650 (-384)) $)) (-15 -3159 ((-650 (-384)) $ (-650 (-384)))) (-15 -3887 ((-1281) $ (-650 (-950 (-227))) (-880) (-880) (-928))) (-15 -3887 ((-1281) $ (-950 (-227)))) (-15 -3887 ((-1281) $ (-950 (-227)) (-880) (-880) (-928))) (-15 -2967 ((-1281) $ (-950 (-227)))) (-15 -3286 ((-1281) $ (-950 (-227)) (-880))) (-15 -3798 ($ (-650 (-650 (-950 (-227)))))) (-15 -3798 ((-868) $)) (-15 -1453 ((-650 (-650 (-950 (-227)))) (-650 (-650 (-950 (-227)))) (-650 (-880)))) (-15 -2145 ((-650 (-227)) (-650 (-650 (-950 (-227))))))))) (T -474)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-474)))) (-2211 (*1 *1) (-5 *1 (-474))) (-2635 (*1 *1 *1) (-5 *1 (-474))) (-2635 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) (-2635 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) (-5 *4 (-650 (-928))) (-5 *1 (-474)))) (-2635 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) (-5 *4 (-650 (-928))) (-5 *5 (-650 (-266))) (-5 *1 (-474)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-474)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474)))) (-3900 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474)))) (-3159 (*1 *2 *1) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474)))) (-3159 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474)))) (-3887 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *2 (-1281)) (-5 *1 (-474)))) (-3887 (*1 *2 *1 *3) (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1281)) (-5 *1 (-474)))) (-3887 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *2 (-1281)) (-5 *1 (-474)))) (-2967 (*1 *2 *1 *3) (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1281)) (-5 *1 (-474)))) (-3286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *2 (-1281)) (-5 *1 (-474)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) (-1453 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) (-5 *1 (-474)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-650 (-227))) (-5 *1 (-474))))) +(-13 (-1109) (-10 -8 (-15 -2211 ($)) (-15 -2635 ($ $)) (-15 -2635 ($ (-650 (-650 (-950 (-227)))))) (-15 -2635 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)))) (-15 -2635 ($ (-650 (-650 (-950 (-227)))) (-650 (-880)) (-650 (-880)) (-650 (-928)) (-650 (-266)))) (-15 -1824 ((-650 (-650 (-950 (-227)))) $)) (-15 -2009 ((-570) $)) (-15 -3900 ((-650 (-1103 (-384))) $)) (-15 -3900 ((-650 (-1103 (-384))) $ (-650 (-1103 (-384))))) (-15 -3159 ((-650 (-384)) $)) (-15 -3159 ((-650 (-384)) $ (-650 (-384)))) (-15 -3887 ((-1281) $ (-650 (-950 (-227))) (-880) (-880) (-928))) (-15 -3887 ((-1281) $ (-950 (-227)))) (-15 -3887 ((-1281) $ (-950 (-227)) (-880) (-880) (-928))) (-15 -2967 ((-1281) $ (-950 (-227)))) (-15 -3286 ((-1281) $ (-950 (-227)) (-880))) (-15 -3798 ($ (-650 (-650 (-950 (-227)))))) (-15 -3798 ((-868) $)) (-15 -1453 ((-650 (-650 (-950 (-227)))) (-650 (-650 (-950 (-227)))) (-650 (-880)))) (-15 -2145 ((-650 (-227)) (-650 (-650 (-950 (-227)))))))) +((-3026 (($ $) NIL) (($ $ $) 11))) +(((-475 |#1| |#2| |#3|) (-10 -8 (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|))) (-476 |#2| |#3|) (-174) (-23)) (T -475)) +NIL +(-10 -8 (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3324 ((|#2| $) 20)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 16) (($ $ $) 14)) (-3014 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +(((-476 |#1| |#2|) (-141) (-174) (-23)) (T -476)) +((-3324 (*1 *2 *1) (-12 (-4 *1 (-476 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-1809 (*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3014 (*1 *1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3026 (*1 *1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1109) (-10 -8 (-15 -3324 (|t#2| $)) (-15 (-1809) ($) -3711) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3026 ($ $)) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-3077 (((-3 (-650 (-487 |#1| |#2|)) "failed") (-650 (-487 |#1| |#2|)) (-650 (-870 |#1|))) 134)) (-2860 (((-650 (-650 (-249 |#1| |#2|))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))) 131)) (-4016 (((-2 (|:| |dpolys| (-650 (-249 |#1| |#2|))) (|:| |coords| (-650 (-570)))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))) 86))) +(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2860 ((-650 (-650 (-249 |#1| |#2|))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -3077 ((-3 (-650 (-487 |#1| |#2|)) "failed") (-650 (-487 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -4016 ((-2 (|:| |dpolys| (-650 (-249 |#1| |#2|))) (|:| |coords| (-650 (-570)))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))))) (-650 (-1186)) (-458) (-458)) (T -477)) +((-4016 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-2 (|:| |dpolys| (-650 (-249 *5 *6))) (|:| |coords| (-650 (-570))))) (-5 *1 (-477 *5 *6 *7)) (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458)))) (-3077 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-650 (-870 *4))) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-477 *4 *5 *6)) (-4 *6 (-458)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-650 (-650 (-249 *5 *6)))) (-5 *1 (-477 *5 *6 *7)) (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458))))) +(-10 -7 (-15 -2860 ((-650 (-650 (-249 |#1| |#2|))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -3077 ((-3 (-650 (-487 |#1| |#2|)) "failed") (-650 (-487 |#1| |#2|)) (-650 (-870 |#1|)))) (-15 -4016 ((-2 (|:| |dpolys| (-650 (-249 |#1| |#2|))) (|:| |coords| (-650 (-570)))) (-650 (-249 |#1| |#2|)) (-650 (-870 |#1|))))) +((-2229 (((-3 $ "failed") $) 11)) (-3897 (($ $ $) 23)) (-4307 (($ $ $) 24)) (-3037 (($ $ $) 9)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 22))) +(((-478 |#1|) (-10 -8 (-15 -4307 (|#1| |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -3037 (|#1| |#1| |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928)))) (-479)) (T -478)) +NIL +(-10 -8 (-15 -4307 (|#1| |#1| |#1|)) (-15 -3897 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -3037 (|#1| |#1| |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-3734 (($) 19 T CONST)) (-2229 (((-3 $ "failed") $) 16)) (-2481 (((-112) $) 18)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 25)) (-3551 (((-1129) $) 11)) (-3897 (($ $ $) 22)) (-4307 (($ $ $) 21)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1817 (($) 20 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 24)) (** (($ $ (-928)) 14) (($ $ (-777)) 17) (($ $ (-570)) 23)) (* (($ $ $) 15))) +(((-479) (-141)) (T -479)) +((-1820 (*1 *1 *1) (-4 *1 (-479))) (-3037 (*1 *1 *1 *1) (-4 *1 (-479))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-479)) (-5 *2 (-570)))) (-3897 (*1 *1 *1 *1) (-4 *1 (-479))) (-4307 (*1 *1 *1 *1) (-4 *1 (-479)))) +(-13 (-732) (-10 -8 (-15 -1820 ($ $)) (-15 -3037 ($ $ $)) (-15 ** ($ $ (-570))) (-6 -4445) (-15 -3897 ($ $ $)) (-15 -4307 ($ $ $)))) +(((-102) . T) ((-619 (-868)) . T) ((-732) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 18)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) NIL)) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) NIL)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-413 (-570))) NIL) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) 25)) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1840 (($ $) 29 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 35 (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 30 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) NIL)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) 28 (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $ (-1272 |#2|)) 16)) (-3324 (((-413 (-570)) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1272 |#2|)) NIL) (($ (-1261 |#1| |#2| |#3|)) 9) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 21)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) 27)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-480 |#1| |#2| |#3|) (-13 (-1257 |#1|) (-10 -8 (-15 -3798 ($ (-1272 |#2|))) (-15 -3798 ($ (-1261 |#1| |#2| |#3|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -480)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1261 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-480 *3 *4 *5)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1257 |#1|) (-10 -8 (-15 -3798 ($ (-1272 |#2|))) (-15 -3798 ($ (-1261 |#1| |#2| |#3|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#2| $ |#1| |#2|) 18)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) 19)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) 16)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2799 (((-650 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2044 (((-650 |#1|) $) NIL)) (-1480 (((-112) |#1| $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-481 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2|) (-1109) (-1109) (-1202 |#1| |#2|) |#2|) (T -481)) +NIL +(-1202 |#1| |#2|) +((-2419 (((-112) $ $) NIL)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) NIL)) (-2242 (((-650 $) (-650 |#4|)) NIL)) (-1709 (((-650 |#3|) $) NIL)) (-4006 (((-112) $) NIL)) (-1797 (((-112) $) NIL (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2530 ((|#4| |#4| $) NIL)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1418 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3734 (($) NIL T CONST)) (-2262 (((-112) $) 29 (|has| |#1| (-562)))) (-2082 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4427 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2418 (((-112) $) NIL (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3572 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) NIL)) (-3152 (($ (-650 |#4|)) NIL)) (-3527 (((-3 $ "failed") $) 45)) (-3099 ((|#4| |#4| $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-1697 (($ |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) NIL)) (-2885 (((-650 |#4|) $) 18 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4211 ((|#3| $) 38)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#4|) $) 19 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-3837 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 23)) (-3952 (((-650 |#3|) $) NIL)) (-2875 (((-112) |#3| $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-1723 (((-3 |#4| "failed") $) 42)) (-2500 (((-650 |#4|) $) NIL)) (-1560 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2458 ((|#4| |#4| $) NIL)) (-4181 (((-112) $ $) NIL)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2962 ((|#4| |#4| $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-3 |#4| "failed") $) 40)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2730 (((-3 $ "failed") $ |#4|) 58)) (-3500 (($ $ |#4|) NIL)) (-3116 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 17)) (-4359 (($) 14)) (-3324 (((-777) $) NIL)) (-3562 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) 13)) (-1411 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 22)) (-3677 (($ $ |#3|) 52)) (-3158 (($ $ |#3|) 54)) (-4381 (($ $) NIL)) (-4074 (($ $ |#3|) NIL)) (-3798 (((-868) $) 35) (((-650 |#4|) $) 46)) (-2136 (((-777) $) NIL (|has| |#3| (-373)))) (-1319 (((-112) $ $) NIL)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-1431 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) NIL)) (-4059 (((-112) |#3| $) NIL)) (-2923 (((-112) $ $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-482 |#1| |#2| |#3| |#4|) (-1219 |#1| |#2| |#3| |#4|) (-562) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -482)) +NIL +(-1219 |#1| |#2| |#3| |#4|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL)) (-3152 (((-570) $) NIL) (((-413 (-570)) $) NIL)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1313 (($) 17)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-1411 (((-384) $) 21) (((-227) $) 24) (((-413 (-1182 (-570))) $) 18) (((-542) $) 53)) (-3798 (((-868) $) 51) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (((-227) $) 23) (((-384) $) 20)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 37 T CONST)) (-1817 (($) 8 T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-483) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))) (-1031) (-619 (-227)) (-619 (-384)) (-620 (-413 (-1182 (-570)))) (-620 (-542)) (-10 -8 (-15 -1313 ($))))) (T -483)) +((-1313 (*1 *1) (-5 *1 (-483)))) +(-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))) (-1031) (-619 (-227)) (-619 (-384)) (-620 (-413 (-1182 (-570)))) (-620 (-542)) (-10 -8 (-15 -1313 ($)))) +((-2419 (((-112) $ $) NIL)) (-2118 (((-1144) $) 11)) (-2108 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-484) (-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $))))) (T -484)) +((-2108 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484))))) +(-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $)))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#2| $ |#1| |#2|) 16)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) 20)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) 18)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2799 (((-650 |#1|) $) 13)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2044 (((-650 |#1|) $) NIL)) (-1480 (((-112) |#1| $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 19)) (-1872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 11 (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2431 (((-777) $) 15 (|has| $ (-6 -4448))))) +(((-485 |#1| |#2| |#3|) (-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) (-1109) (-1109) (-1168)) (T -485)) +NIL +(-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) +((-2432 (((-570) (-570) (-570)) 19)) (-4000 (((-112) (-570) (-570) (-570) (-570)) 28)) (-1342 (((-1276 (-650 (-570))) (-777) (-777)) 44))) +(((-486) (-10 -7 (-15 -2432 ((-570) (-570) (-570))) (-15 -4000 ((-112) (-570) (-570) (-570) (-570))) (-15 -1342 ((-1276 (-650 (-570))) (-777) (-777))))) (T -486)) +((-1342 (*1 *2 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1276 (-650 (-570)))) (-5 *1 (-486)))) (-4000 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-486)))) (-2432 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-486))))) +(-10 -7 (-15 -2432 ((-570) (-570) (-570))) (-15 -4000 ((-112) (-570) (-570) (-570) (-570))) (-15 -1342 ((-1276 (-650 (-570))) (-777) (-777)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-870 |#1|)) $) NIL)) (-3768 (((-1182 $) $ (-870 |#1|)) NIL) (((-1182 |#2|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2318 (($ $) NIL (|has| |#2| (-562)))) (-2234 (((-112) $) NIL (|has| |#2| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-870 |#1|))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3696 (($ $) NIL (|has| |#2| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#2| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2865 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-2808 (($ $ (-650 (-570))) NIL)) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#2| (-916)))) (-3155 (($ $ |#2| (-488 (-2431 |#1|) (-777)) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#2|) (-870 |#1|)) NIL) (($ (-1182 $) (-870 |#1|)) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#2| (-488 (-2431 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-870 |#1|)) NIL)) (-2302 (((-488 (-2431 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-2550 (($ (-1 (-488 (-2431 |#1|) (-777)) (-488 (-2431 |#1|) (-777))) $) NIL)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (((-3 (-870 |#1|) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#2| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -3283 (-777))) "failed") $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#2| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) NIL) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) NIL) (($ $ (-870 |#1|) $) NIL) (($ $ (-650 (-870 |#1|)) (-650 $)) NIL)) (-3511 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3519 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3324 (((-488 (-2431 |#1|) (-777)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-1427 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-870 |#1|)) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-488 (-2431 |#1|) (-777))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-487 |#1| |#2|) (-13 (-956 |#2| (-488 (-2431 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -2808 ($ $ (-650 (-570)))))) (-650 (-1186)) (-1058)) (T -487)) +((-2808 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-487 *3 *4)) (-14 *3 (-650 (-1186))) (-4 *4 (-1058))))) +(-13 (-956 |#2| (-488 (-2431 |#1|) (-777)) (-870 |#1|)) (-10 -8 (-15 -2808 ($ $ (-650 (-570)))))) +((-2419 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-1359 (((-112) $) NIL (|has| |#2| (-132)))) (-3241 (($ (-928)) NIL (|has| |#2| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-1647 (($ $ $) NIL (|has| |#2| (-799)))) (-2620 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| |#2| (-373)))) (-2579 (((-570) $) NIL (|has| |#2| (-854)))) (-3945 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1109)))) (-3152 (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) NIL (|has| |#2| (-1109)))) (-2004 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) NIL (|has| |#2| (-1058)))) (-2229 (((-3 $ "failed") $) NIL (|has| |#2| (-732)))) (-3408 (($) NIL (|has| |#2| (-373)))) (-3849 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ (-570)) 15)) (-2135 (((-112) $) NIL (|has| |#2| (-854)))) (-2885 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL (|has| |#2| (-732)))) (-3367 (((-112) $) NIL (|has| |#2| (-854)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2282 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3837 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#2| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#2| (-1109)))) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-2155 (($ (-928)) NIL (|has| |#2| (-373)))) (-3551 (((-1129) $) NIL (|has| |#2| (-1109)))) (-3515 ((|#2| $) NIL (|has| (-570) (-856)))) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) NIL)) (-2331 ((|#2| $ $) NIL (|has| |#2| (-1058)))) (-3850 (($ (-1276 |#2|)) NIL)) (-3374 (((-135)) NIL (|has| |#2| (-368)))) (-3519 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3562 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1276 |#2|) $) NIL) (($ (-570)) NIL (-2779 (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) NIL (|has| |#2| (-1109))) (((-868) $) NIL (|has| |#2| (-619 (-868))))) (-2862 (((-777)) NIL (|has| |#2| (-1058)) CONST)) (-1319 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-1431 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2216 (($ $) NIL (|has| |#2| (-854)))) (-1809 (($) NIL (|has| |#2| (-132)) CONST)) (-1817 (($) NIL (|has| |#2| (-732)) CONST)) (-2835 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-2981 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2923 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2969 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2948 (((-112) $ $) 21 (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $ $) NIL (|has| |#2| (-1058))) (($ $) NIL (|has| |#2| (-1058)))) (-3014 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-777)) NIL (|has| |#2| (-732))) (($ $ (-928)) NIL (|has| |#2| (-732)))) (* (($ (-570) $) NIL (|has| |#2| (-1058))) (($ $ $) NIL (|has| |#2| (-732))) (($ $ |#2|) NIL (|has| |#2| (-732))) (($ |#2| $) NIL (|has| |#2| (-732))) (($ (-777) $) NIL (|has| |#2| (-132))) (($ (-928) $) NIL (|has| |#2| (-25)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-488 |#1| |#2|) (-240 |#1| |#2|) (-777) (-799)) (T -488)) +NIL +(-240 |#1| |#2|) +((-2419 (((-112) $ $) NIL)) (-3826 (((-650 (-882)) $) 15)) (-3574 (((-512) $) 13)) (-4122 (((-1168) $) NIL)) (-2643 (($ (-512) (-650 (-882))) 11)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 22) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-489) (-13 (-1092) (-10 -8 (-15 -2643 ($ (-512) (-650 (-882)))) (-15 -3574 ((-512) $)) (-15 -3826 ((-650 (-882)) $))))) (T -489)) +((-2643 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-882))) (-5 *1 (-489)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-489)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-650 (-882))) (-5 *1 (-489))))) +(-13 (-1092) (-10 -8 (-15 -2643 ($ (-512) (-650 (-882)))) (-15 -3574 ((-512) $)) (-15 -3826 ((-650 (-882)) $)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) NIL)) (-3734 (($) NIL T CONST)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-3583 (($ $ $) 50)) (-2735 (($ $ $) 49)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2876 ((|#1| $) 40)) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1334 ((|#1| $) 41)) (-2213 (($ |#1| $) 18)) (-1337 (($ (-650 |#1|)) 19)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4067 ((|#1| $) 34)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 11)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 47)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) 29 (|has| $ (-6 -4448))))) +(((-490 |#1|) (-13 (-977 |#1|) (-10 -8 (-15 -1337 ($ (-650 |#1|))))) (-856)) (T -490)) +((-1337 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-490 *3))))) +(-13 (-977 |#1|) (-10 -8 (-15 -1337 ($ (-650 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3600 (($ $) 71)) (-2711 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-3425 (((-419 |#2| (-413 |#2|) |#3| |#4|) $) 45)) (-3551 (((-1129) $) NIL)) (-2335 (((-3 |#4| "failed") $) 117)) (-4069 (($ (-419 |#2| (-413 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-570)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-4022 (((-2 (|:| -4271 (-419 |#2| (-413 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3798 (((-868) $) 110)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 32 T CONST)) (-2923 (((-112) $ $) 121)) (-3026 (($ $) 77) (($ $ $) NIL)) (-3014 (($ $ $) 72)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 78))) +(((-491 |#1| |#2| |#3| |#4|) (-340 |#1| |#2| |#3| |#4|) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -491)) +NIL +(-340 |#1| |#2| |#3| |#4|) +((-2819 (((-570) (-650 (-570))) 55)) (-1707 ((|#1| (-650 |#1|)) 96)) (-3625 (((-650 |#1|) (-650 |#1|)) 97)) (-1989 (((-650 |#1|) (-650 |#1|)) 99)) (-1869 ((|#1| (-650 |#1|)) 98)) (-1427 (((-650 (-570)) (-650 |#1|)) 58))) +(((-492 |#1|) (-10 -7 (-15 -1869 (|#1| (-650 |#1|))) (-15 -1707 (|#1| (-650 |#1|))) (-15 -1989 ((-650 |#1|) (-650 |#1|))) (-15 -3625 ((-650 |#1|) (-650 |#1|))) (-15 -1427 ((-650 (-570)) (-650 |#1|))) (-15 -2819 ((-570) (-650 (-570))))) (-1252 (-570))) (T -492)) +((-2819 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-570)) (-5 *1 (-492 *4)) (-4 *4 (-1252 *2)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1252 (-570))) (-5 *2 (-650 (-570))) (-5 *1 (-492 *4)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1252 (-570))) (-5 *1 (-492 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1252 (-570))) (-5 *1 (-492 *3)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1252 (-570))))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1252 (-570)))))) +(-10 -7 (-15 -1869 (|#1| (-650 |#1|))) (-15 -1707 (|#1| (-650 |#1|))) (-15 -1989 ((-650 |#1|) (-650 |#1|))) (-15 -3625 ((-650 |#1|) (-650 |#1|))) (-15 -1427 ((-650 (-570)) (-650 |#1|))) (-15 -2819 ((-570) (-650 (-570))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-570) $) NIL (|has| (-570) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-570) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-570) (-1047 (-570))))) (-3152 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-570) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| (-570) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-570) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-3367 (((-112) $) NIL (|has| (-570) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-570) (-856)))) (-1347 (($ (-1 (-570) (-570)) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-570) (-1161)) CONST)) (-3812 (($ (-413 (-570))) 9)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) NIL)) (-4140 (((-570) $) NIL (|has| (-570) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-570) $) NIL)) (-1411 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 8) (($ (-570)) NIL) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL) (((-1013 16) $) 10)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 (((-570) $) NIL (|has| (-570) (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| (-570) (-826)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-570) (-856)))) (-3037 (($ $ $) NIL) (($ (-570) (-570)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) NIL) (($ $ (-570)) NIL))) +(((-493) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 16)) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -3812 ($ (-413 (-570))))))) (T -493)) +((-2545 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493)))) (-3812 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493))))) +(-13 (-1001 (-570)) (-619 (-413 (-570))) (-619 (-1013 16)) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -3812 ($ (-413 (-570)))))) +((-2282 (((-650 |#2|) $) 29)) (-1935 (((-112) |#2| $) 34)) (-3116 (((-112) (-1 (-112) |#2|) $) 24)) (-1725 (($ $ (-650 (-298 |#2|))) 13) (($ $ (-298 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-650 |#2|) (-650 |#2|)) NIL)) (-3562 (((-777) (-1 (-112) |#2|) $) 28) (((-777) |#2| $) 32)) (-3798 (((-868) $) 43)) (-1431 (((-112) (-1 (-112) |#2|) $) 23)) (-2923 (((-112) $ $) 37)) (-2431 (((-777) $) 18))) +(((-494 |#1| |#2|) (-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-298 |#2|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1935 ((-112) |#2| |#1|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -2282 ((-650 |#2|) |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2431 ((-777) |#1|))) (-495 |#2|) (-1226)) (T -494)) +NIL +(-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#2| |#2|)) (-15 -1725 (|#1| |#1| (-298 |#2|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#2|)))) (-15 -1935 ((-112) |#2| |#1|)) (-15 -3562 ((-777) |#2| |#1|)) (-15 -2282 ((-650 |#2|) |#1|)) (-15 -3562 ((-777) (-1 (-112) |#2|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2431 ((-777) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-495 |#1|) (-141) (-1226)) (T -495)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-495 *3)) (-4 *3 (-1226)))) (-3837 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4449)) (-4 *1 (-495 *3)) (-4 *3 (-1226)))) (-1431 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4448)) (-4 *1 (-495 *4)) (-4 *4 (-1226)) (-5 *2 (-112)))) (-3116 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4448)) (-4 *1 (-495 *4)) (-4 *4 (-1226)) (-5 *2 (-112)))) (-3562 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4448)) (-4 *1 (-495 *4)) (-4 *4 (-1226)) (-5 *2 (-777)))) (-2885 (*1 *2 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) (-5 *2 (-650 *3)))) (-2282 (*1 *2 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) (-5 *2 (-650 *3)))) (-3562 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-777)))) (-1935 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) (IF (|has| |t#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |t#1| (-1109)) (IF (|has| |t#1| (-313 |t#1|)) (-6 (-313 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1347 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4449)) (-15 -3837 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -1431 ((-112) (-1 (-112) |t#1|) $)) (-15 -3116 ((-112) (-1 (-112) |t#1|) $)) (-15 -3562 ((-777) (-1 (-112) |t#1|) $)) (-15 -2885 ((-650 |t#1|) $)) (-15 -2282 ((-650 |t#1|) $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -3562 ((-777) |t#1| $)) (-15 -1935 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3798 ((|#1| $) 6) (($ |#1|) 9))) +(((-496 |#1|) (-141) (-1226)) (T -496)) +NIL +(-13 (-619 |t#1|) (-622 |t#1|)) +(((-622 |#1|) . T) ((-619 |#1|) . T)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1930 (($ (-1168)) 8)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 15) (((-1168) $) 12)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11))) +(((-497) (-13 (-1109) (-619 (-1168)) (-10 -8 (-15 -1930 ($ (-1168)))))) (T -497)) +((-1930 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-497))))) +(-13 (-1109) (-619 (-1168)) (-10 -8 (-15 -1930 ($ (-1168))))) +((-2774 (($ $) 15)) (-2749 (($ $) 24)) (-4119 (($ $) 12)) (-4129 (($ $) 10)) (-2786 (($ $) 17)) (-2761 (($ $) 22))) +(((-498 |#1|) (-10 -8 (-15 -2761 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2774 (|#1| |#1|))) (-499)) (T -498)) +NIL +(-10 -8 (-15 -2761 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2774 (|#1| |#1|))) +((-2774 (($ $) 11)) (-2749 (($ $) 10)) (-4119 (($ $) 9)) (-4129 (($ $) 8)) (-2786 (($ $) 7)) (-2761 (($ $) 6))) +(((-499) (-141)) (T -499)) +((-2774 (*1 *1 *1) (-4 *1 (-499))) (-2749 (*1 *1 *1) (-4 *1 (-499))) (-4119 (*1 *1 *1) (-4 *1 (-499))) (-4129 (*1 *1 *1) (-4 *1 (-499))) (-2786 (*1 *1 *1) (-4 *1 (-499))) (-2761 (*1 *1 *1) (-4 *1 (-499)))) +(-13 (-10 -8 (-15 -2761 ($ $)) (-15 -2786 ($ $)) (-15 -4129 ($ $)) (-15 -4119 ($ $)) (-15 -2749 ($ $)) (-15 -2774 ($ $)))) +((-3801 (((-424 |#4|) |#4| (-1 (-424 |#2|) |#2|)) 54))) +(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 |#4|) |#4| (-1 (-424 |#2|) |#2|)))) (-368) (-1252 |#1|) (-13 (-368) (-148) (-730 |#1| |#2|)) (-1252 |#3|)) (T -500)) +((-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-4 *7 (-13 (-368) (-148) (-730 *5 *6))) (-5 *2 (-424 *3)) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-1252 *7))))) +(-10 -7 (-15 -3801 ((-424 |#4|) |#4| (-1 (-424 |#2|) |#2|)))) +((-2419 (((-112) $ $) NIL)) (-4266 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-1964 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-1359 (((-112) $) 39)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-3753 (((-112) $ $) 73)) (-3665 (((-650 (-618 $)) $) 50)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4297 (($ $ (-298 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-3815 (($ $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-3044 (((-650 $) (-1182 $) (-1186)) NIL) (((-650 $) (-1182 $)) NIL) (((-650 $) (-959 $)) NIL)) (-2300 (($ (-1182 $) (-1186)) NIL) (($ (-1182 $)) NIL) (($ (-959 $)) NIL)) (-4382 (((-3 (-618 $) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL)) (-3152 (((-618 $) $) NIL) (((-570) $) NIL) (((-413 (-570)) $) 55)) (-2372 (($ $ $) NIL)) (-2004 (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-413 (-570)))) (|:| |vec| (-1276 (-413 (-570))))) (-695 $) (-1276 $)) NIL) (((-695 (-413 (-570))) (-695 $)) NIL)) (-3600 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1594 (($ $) NIL) (($ (-650 $)) NIL)) (-3406 (((-650 (-115)) $) NIL)) (-3748 (((-115) (-115)) NIL)) (-2481 (((-112) $) 42)) (-2639 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-4400 (((-1134 (-570) (-618 $)) $) 37)) (-3309 (($ $ (-570)) NIL)) (-2233 (((-1182 $) (-1182 $) (-618 $)) 87) (((-1182 $) (-1182 $) (-650 (-618 $))) 62) (($ $ (-618 $)) 76) (($ $ (-650 (-618 $))) 77)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-4111 (((-1182 $) (-618 $)) 74 (|has| $ (-1058)))) (-1347 (($ (-1 $ $) (-618 $)) NIL)) (-3451 (((-3 (-618 $) "failed") $) NIL)) (-1841 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3739 (((-650 (-618 $)) $) NIL)) (-1355 (($ (-115) $) NIL) (($ (-115) (-650 $)) NIL)) (-3257 (((-112) $ (-115)) NIL) (((-112) $ (-1186)) NIL)) (-1820 (($ $) NIL)) (-1428 (((-777) $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4124 (((-112) $ $) NIL) (((-112) $ (-1186)) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3699 (((-112) $) NIL (|has| $ (-1047 (-570))))) (-1725 (($ $ (-618 $) $) NIL) (($ $ (-650 (-618 $)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-1186)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-1186) (-1 $ (-650 $))) NIL) (($ $ (-1186) (-1 $ $)) NIL) (($ $ (-650 (-115)) (-650 (-1 $ $))) NIL) (($ $ (-650 (-115)) (-650 (-1 $ (-650 $)))) NIL) (($ $ (-115) (-1 $ (-650 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3788 (((-777) $) NIL)) (-1872 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-650 $)) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2707 (($ $) NIL) (($ $ $) NIL)) (-3519 (($ $ (-777)) NIL) (($ $) 36)) (-4413 (((-1134 (-570) (-618 $)) $) 20)) (-1881 (($ $) NIL (|has| $ (-1058)))) (-1411 (((-384) $) 101) (((-227) $) 109) (((-171 (-384)) $) 117)) (-3798 (((-868) $) NIL) (($ (-618 $)) NIL) (($ (-413 (-570))) NIL) (($ $) NIL) (($ (-570)) NIL) (($ (-1134 (-570) (-618 $))) 21)) (-2862 (((-777)) NIL T CONST)) (-4215 (($ $) NIL) (($ (-650 $)) NIL)) (-4217 (((-112) (-115)) 93)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 10 T CONST)) (-1817 (($) 22 T CONST)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2923 (((-112) $ $) 24)) (-3037 (($ $ $) 44)) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-413 (-570))) NIL) (($ $ (-570)) 48) (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ $ $) 27) (($ (-570) $) NIL) (($ (-777) $) NIL) (($ (-928) $) NIL))) +(((-501) (-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -3798 ($ (-1134 (-570) (-618 $)))) (-15 -4400 ((-1134 (-570) (-618 $)) $)) (-15 -4413 ((-1134 (-570) (-618 $)) $)) (-15 -3600 ($ $)) (-15 -3753 ((-112) $ $)) (-15 -2233 ((-1182 $) (-1182 $) (-618 $))) (-15 -2233 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -2233 ($ $ (-618 $))) (-15 -2233 ($ $ (-650 (-618 $))))))) (T -501)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) (-4413 (*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) (-3600 (*1 *1 *1) (-5 *1 (-501))) (-3753 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-501)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-618 (-501))) (-5 *1 (-501)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-650 (-618 (-501)))) (-5 *1 (-501)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-618 (-501))) (-5 *1 (-501)))) (-2233 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-501)))) (-5 *1 (-501))))) +(-13 (-306) (-27) (-1047 (-570)) (-1047 (-413 (-570))) (-645 (-570)) (-1031) (-645 (-413 (-570))) (-148) (-620 (-171 (-384))) (-235) (-10 -8 (-15 -3798 ($ (-1134 (-570) (-618 $)))) (-15 -4400 ((-1134 (-570) (-618 $)) $)) (-15 -4413 ((-1134 (-570) (-618 $)) $)) (-15 -3600 ($ $)) (-15 -3753 ((-112) $ $)) (-15 -2233 ((-1182 $) (-1182 $) (-618 $))) (-15 -2233 ((-1182 $) (-1182 $) (-650 (-618 $)))) (-15 -2233 ($ $ (-618 $))) (-15 -2233 ($ $ (-650 (-618 $)))))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) |#1|) 47 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 42 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 41)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 21)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 17 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) 44 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) 15 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 19)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 46) (($ $ (-1243 (-570))) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 24)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) 11 (|has| $ (-6 -4448))))) +(((-502 |#1| |#2|) (-19 |#1|) (-1226) (-570)) (T -502)) NIL (-19 |#1|) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL)) (-2400 (($ $ (-569) (-501 |#1| |#3|)) NIL)) (-3259 (($ $ (-569) (-501 |#1| |#2|)) NIL)) (-4427 (($) NIL T CONST)) (-4044 (((-501 |#1| |#3|) $ (-569)) NIL)) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-501 |#1| |#2|) $ (-569)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-502 |#1| |#2| |#3|) (-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) (-1225) (-569) (-569)) (T -502)) -NIL -(-57 |#1| (-501 |#1| |#3|) (-501 |#1| |#2|)) -((-2133 (((-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776)) 33)) (-3521 (((-649 (-1181 |#1|)) |#1| (-776) (-776) (-776)) 43)) (-2706 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)) 110))) -(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -3521 ((-649 (-1181 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2133 ((-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2706 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)))) (-353) (-1251 |#1|) (-1251 |#2|)) (T -503)) -((-2706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7))))) (-5 *5 (-776)) (-4 *8 (-1251 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-353)) (-5 *2 (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-694 *7)))) (-5 *1 (-503 *6 *7 *8)))) (-2133 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6))))) (-5 *1 (-503 *5 *6 *7)) (-5 *3 (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-694 *6)))) (-4 *7 (-1251 *6)))) (-3521 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1251 *3)) (-5 *2 (-649 (-1181 *3))) (-5 *1 (-503 *3 *5 *6)) (-4 *6 (-1251 *5))))) -(-10 -7 (-15 -3521 ((-649 (-1181 |#1|)) |#1| (-776) (-776) (-776))) (-15 -2133 ((-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-776) (-776))) (-15 -2706 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) (-649 |#3|) (-649 (-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) (-776)))) -((-4009 (((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))) 74)) (-3908 ((|#1| (-694 |#1|) |#1| (-776)) 27)) (-3799 (((-776) (-776) (-776)) 36)) (-2276 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 54)) (-2381 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 62) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 59)) (-1745 ((|#1| (-694 |#1|) (-694 |#1|) |#1| (-569)) 31)) (-1928 ((|#1| (-694 |#1|)) 18))) -(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -1928 (|#1| (-694 |#1|))) (-15 -3908 (|#1| (-694 |#1|) |#1| (-776))) (-15 -1745 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -3799 ((-776) (-776) (-776))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2276 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4009 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))))) (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $)))) (-1251 |#1|) (-414 |#1| |#2|)) (T -504)) -((-4009 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2276 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2381 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-2381 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) (-1745 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-569)) (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-3908 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-694 *2)) (-5 *4 (-776)) (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-694 *2)) (-4 *4 (-1251 *2)) (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4))))) -(-10 -7 (-15 -1928 (|#1| (-694 |#1|))) (-15 -3908 (|#1| (-694 |#1|) |#1| (-776))) (-15 -1745 (|#1| (-694 |#1|) (-694 |#1|) |#1| (-569))) (-15 -3799 ((-776) (-776) (-776))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2381 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2276 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4009 ((-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|))) (-2 (|:| -2403 (-694 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-694 |#1|)))))) -((-2417 (((-112) $ $) NIL)) (-2436 (($ $) NIL)) (-1783 (($ $ $) 40)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| (-112) (-855))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-855)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-112) $ (-1242 (-569)) (-112)) NIL (|has| $ (-6 -4448))) (((-112) $ (-569) (-112)) 42 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-1698 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3598 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3846 (((-112) $ (-569) (-112)) NIL (|has| $ (-6 -4448)))) (-3776 (((-112) $ (-569)) NIL)) (-4036 (((-569) (-112) $ (-569)) NIL (|has| (-112) (-1108))) (((-569) (-112) $) NIL (|has| (-112) (-1108))) (((-569) (-1 (-112) (-112)) $) NIL)) (-2882 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-1771 (($ $ $) 38)) (-1749 (($ $) NIL)) (-3143 (($ $ $) NIL)) (-4300 (($ (-776) (-112)) 27)) (-1918 (($ $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 8 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL)) (-4198 (($ $ $) NIL (|has| (-112) (-855))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2009 (((-649 (-112)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL)) (-3834 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ (-112) $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-112) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-1682 (($ $ (-112)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-112)) (-649 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-297 (-112))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108)))) (($ $ (-649 (-297 (-112)))) NIL (-12 (|has| (-112) (-312 (-112))) (|has| (-112) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108))))) (-4199 (((-649 (-112)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 28)) (-1869 (($ $ (-1242 (-569))) NIL) (((-112) $ (-569)) 22) (((-112) $ (-569) (-112)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3560 (((-776) (-112) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-112) (-1108)))) (((-776) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 29)) (-1410 (((-541) $) NIL (|has| (-112) (-619 (-541))))) (-3809 (($ (-649 (-112))) NIL)) (-2443 (($ (-649 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3796 (((-867) $) 26)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4447)))) (-1759 (($ $ $) 36)) (-4419 (($ $ $) NIL)) (-3506 (($ $ $) 45)) (-3519 (($ $) 43)) (-3492 (($ $ $) 44)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 30)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 31)) (-4406 (($ $ $) NIL)) (-2428 (((-776) $) 13 (|has| $ (-6 -4447))))) -(((-505 |#1|) (-13 (-123) (-10 -8 (-15 -3519 ($ $)) (-15 -3506 ($ $ $)) (-15 -3492 ($ $ $)))) (-569)) (T -505)) -((-3519 (*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3506 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569))))) -(-13 (-123) (-10 -8 (-15 -3519 ($ $)) (-15 -3506 ($ $ $)) (-15 -3492 ($ $ $)))) -((-3631 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1181 |#4|)) 35)) (-2424 (((-1181 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1181 |#4|)) 22)) (-2134 (((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1181 |#4|))) 49)) (-1917 (((-1181 (-1181 |#4|)) (-1 |#4| |#1|) |#3|) 58))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 (|#2| (-1 |#1| |#4|) (-1181 |#4|))) (-15 -2424 ((-1181 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3631 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1181 |#4|))) (-15 -2134 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1181 |#4|)))) (-15 -1917 ((-1181 (-1181 |#4|)) (-1 |#4| |#1|) |#3|))) (-1057) (-1251 |#1|) (-1251 |#2|) (-1057)) (T -506)) -((-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *6 (-1251 *5)) (-5 *2 (-1181 (-1181 *7))) (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1251 *6)))) (-2134 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-694 (-1181 *8))) (-4 *5 (-1057)) (-4 *8 (-1057)) (-4 *6 (-1251 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8)) (-4 *7 (-1251 *6)))) (-3631 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1181 *7)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1251 *2)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *4 (-1251 *5)) (-5 *2 (-1181 *7)) (-5 *1 (-506 *5 *4 *6 *7)) (-4 *6 (-1251 *4)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1181 *7)) (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1251 *2))))) -(-10 -7 (-15 -2424 (|#2| (-1 |#1| |#4|) (-1181 |#4|))) (-15 -2424 ((-1181 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3631 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1181 |#4|))) (-15 -2134 ((-3 (-694 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-694 (-1181 |#4|)))) (-15 -1917 ((-1181 (-1181 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3567 (((-1280) $) 25)) (-1869 (((-1167) $ (-1185)) 30)) (-4158 (((-1280) $) 17)) (-3796 (((-867) $) 27) (($ (-1167)) 26)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 9))) -(((-507) (-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3796 ($ (-1167)))))) (T -507)) -((-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1167)) (-5 *1 (-507)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-507))))) -(-13 (-855) (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) (-15 -3567 ((-1280) $)) (-15 -3796 ($ (-1167))))) -((-2974 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4377 ((|#1| |#4|) 10)) (-3110 ((|#3| |#4|) 17))) -(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4377 (|#1| |#4|)) (-15 -3110 (|#3| |#4|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-561) (-1000 |#1|) (-377 |#1|) (-377 |#2|)) (T -508)) -((-2974 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-4 *2 (-377 *4)) (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5)))) (-4377 (*1 *2 *3) (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-377 *4))))) -(-10 -7 (-15 -4377 (|#1| |#4|)) (-15 -3110 (|#3| |#4|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2417 (((-112) $ $) NIL)) (-2585 (((-112) $ (-649 |#3|)) 124) (((-112) $) 125)) (-4143 (((-112) $) 176)) (-1732 (($ $ |#4|) 115) (($ $ |#4| (-649 |#3|)) 119)) (-2032 (((-1174 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|)) 169 (|has| |#3| (-619 (-1185))))) (-4007 (($ $ $) 105) (($ $ |#4|) 103)) (-2349 (((-112) $) 175)) (-1991 (($ $) 129)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 97) (($ (-649 $)) 99)) (-3408 (((-112) |#4| $) 127)) (-1926 (((-112) $ $) 82)) (-3198 (($ (-649 |#4|)) 104)) (-3547 (((-1128) $) NIL)) (-1449 (($ (-649 |#4|)) 173)) (-2669 (((-112) $) 174)) (-2454 (($ $) 85)) (-2322 (((-649 |#4|) $) 73)) (-2110 (((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|)) NIL)) (-1689 (((-112) |#4| $) 89)) (-2377 (((-569) $ (-649 |#3|)) 131) (((-569) $) 132)) (-3796 (((-867) $) 172) (($ (-649 |#4|)) 100)) (-1520 (((-112) $ $) NIL)) (-1658 (($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $))) NIL)) (-2920 (((-112) $ $) 84)) (-3012 (($ $ $) 107)) (** (($ $ (-776)) 113)) (* (($ $ $) 111))) -(((-509 |#1| |#2| |#3| |#4|) (-13 (-1108) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -3012 ($ $ $)) (-15 -2349 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -1689 ((-112) |#4| $)) (-15 -1926 ((-112) $ $)) (-15 -3408 ((-112) |#4| $)) (-15 -2585 ((-112) $ (-649 |#3|))) (-15 -2585 ((-112) $)) (-15 -2101 ($ $ $)) (-15 -2101 ($ (-649 $))) (-15 -4007 ($ $ $)) (-15 -4007 ($ $ |#4|)) (-15 -2454 ($ $)) (-15 -2110 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -2377 ((-569) $ (-649 |#3|))) (-15 -2377 ((-569) $)) (-15 -1991 ($ $)) (-15 -3198 ($ (-649 |#4|))) (-15 -1449 ($ (-649 |#4|))) (-15 -2669 ((-112) $)) (-15 -2322 ((-649 |#4|) $)) (-15 -3796 ($ (-649 |#4|))) (-15 -1732 ($ $ |#4|)) (-15 -1732 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1185))) (-15 -2032 ((-1174 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -509)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2349 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4143 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-1689 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-1926 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3408 (*1 *2 *3 *1) (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6)))) (-2585 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-2585 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2101 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2101 (*1 *1 *2) (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-4007 (*1 *1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-4007 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-2454 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-2110 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4)) (|:| |genIdeal| (-509 *4 *5 *6 *7)))) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-1658 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3)) (|:| |genIdeal| (-509 *3 *4 *5 *6)))) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) (-2377 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-1991 (*1 *1 *1) (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-1449 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-2669 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-2322 (*1 *2 *1) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) (-1732 (*1 *1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) (-1732 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1185))) (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1174 (-649 (-958 *4)) (-649 (-297 (-958 *4))))) (-5 *1 (-509 *4 *5 *6 *7))))) -(-13 (-1108) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 -3012 ($ $ $)) (-15 -2349 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -1689 ((-112) |#4| $)) (-15 -1926 ((-112) $ $)) (-15 -3408 ((-112) |#4| $)) (-15 -2585 ((-112) $ (-649 |#3|))) (-15 -2585 ((-112) $)) (-15 -2101 ($ $ $)) (-15 -2101 ($ (-649 $))) (-15 -4007 ($ $ $)) (-15 -4007 ($ $ |#4|)) (-15 -2454 ($ $)) (-15 -2110 ((-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)) $ (-649 |#3|))) (-15 -1658 ($ (-2 (|:| |mval| (-694 |#1|)) (|:| |invmval| (-694 |#1|)) (|:| |genIdeal| $)))) (-15 -2377 ((-569) $ (-649 |#3|))) (-15 -2377 ((-569) $)) (-15 -1991 ($ $)) (-15 -3198 ($ (-649 |#4|))) (-15 -1449 ($ (-649 |#4|))) (-15 -2669 ((-112) $)) (-15 -2322 ((-649 |#4|) $)) (-15 -3796 ($ (-649 |#4|))) (-15 -1732 ($ $ |#4|)) (-15 -1732 ($ $ |#4| (-649 |#3|))) (IF (|has| |#3| (-619 (-1185))) (-15 -2032 ((-1174 (-649 (-958 |#1|)) (-649 (-297 (-958 |#1|)))) (-649 |#4|))) |%noBranch|))) -((-2086 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 176)) (-1861 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 177)) (-3491 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 129)) (-1473 (((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) NIL)) (-3511 (((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) 179)) (-3029 (((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))) 195))) -(((-510 |#1| |#2|) (-10 -7 (-15 -2086 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1861 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1473 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3491 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3511 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3029 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))))) (-649 (-1185)) (-776)) (T -510)) -((-3029 (*1 *2 *2 *3) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *1 (-510 *4 *5)))) (-3511 (*1 *2 *3) (-12 (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-649 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569)))))) (-5 *1 (-510 *4 *5)) (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) (-248 *4 (-412 (-569))))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5))))) -(-10 -7 (-15 -2086 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1861 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -1473 ((-112) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3491 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3511 ((-649 (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569))))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))))) (-15 -3029 ((-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-509 (-412 (-569)) (-241 |#2| (-776)) (-869 |#1|) (-248 |#1| (-412 (-569)))) (-649 (-869 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2638 (($) 6)) (-3796 (((-867) $) 12) (((-1185) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 8))) -(((-511) (-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -2638 ($))))) (T -511)) -((-2638 (*1 *1) (-5 *1 (-511)))) -(-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -2638 ($)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 12 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) 11) (($ $ $) 35)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21))) -(((-512 |#1| |#2|) (-13 (-21) (-514 |#1| |#2|)) (-21) (-855)) (T -512)) -NIL -(-13 (-21) (-514 |#1| |#2|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 13)) (-4427 (($) NIL T CONST)) (-1883 (($ $) 41)) (-3923 (($ |#1| |#2|) 38)) (-1346 (($ (-1 |#1| |#1|) $) 40)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) 42)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 10 T CONST)) (-2920 (((-112) $ $) NIL)) (-3012 (($ $ $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 36))) -(((-513 |#1| |#2|) (-13 (-23) (-514 |#1| |#2|)) (-23) (-855)) (T -513)) -NIL -(-13 (-23) (-514 |#1| |#2|)) -((-2417 (((-112) $ $) 7)) (-1883 (($ $) 14)) (-3923 (($ |#1| |#2|) 17)) (-1346 (($ (-1 |#1| |#1|) $) 18)) (-2525 ((|#2| $) 15)) (-1857 ((|#1| $) 16)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-514 |#1| |#2|) (-140) (-1108) (-855)) (T -514)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-855)))) (-3923 (*1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1108)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-855)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855))))) -(-13 (-1108) (-10 -8 (-15 -1346 ($ (-1 |t#1| |t#1|) $)) (-15 -3923 ($ |t#1| |t#2|)) (-15 -1857 (|t#1| $)) (-15 -2525 (|t#2| $)) (-15 -1883 ($ $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 22)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL))) -(((-515 |#1| |#2|) (-13 (-797) (-514 |#1| |#2|)) (-797) (-855)) (T -515)) -NIL -(-13 (-797) (-514 |#1| |#2|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3151 (($ $ $) 23)) (-2208 (((-3 $ "failed") $ $) 19)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2525 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL))) -(((-516 |#1| |#2|) (-13 (-798) (-514 |#1| |#2|)) (-798) (-855)) (T -516)) -NIL -(-13 (-798) (-514 |#1| |#2|)) -((-2417 (((-112) $ $) NIL)) (-1883 (($ $) 32)) (-3923 (($ |#1| |#2|) 28)) (-1346 (($ (-1 |#1| |#1|) $) 30)) (-2525 ((|#2| $) 34)) (-1857 ((|#1| $) 33)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 20))) -(((-517 |#1| |#2|) (-514 |#1| |#2|) (-1108) (-855)) (T -517)) -NIL -(-514 |#1| |#2|) -((-1725 (($ $ (-649 |#2|) (-649 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-518 |#1| |#2| |#3|) (-10 -8 (-15 -1725 (|#1| |#1| |#2| |#3|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#3|)))) (-519 |#2| |#3|) (-1108) (-1225)) (T -518)) -NIL -(-10 -8 (-15 -1725 (|#1| |#1| |#2| |#3|)) (-15 -1725 (|#1| |#1| (-649 |#2|) (-649 |#3|)))) -((-1725 (($ $ (-649 |#1|) (-649 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-519 |#1| |#2|) (-140) (-1108) (-1225)) (T -519)) -((-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1225)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1225))))) -(-13 (-10 -8 (-15 -1725 ($ $ |t#1| |t#2|)) (-15 -1725 ($ $ (-649 |t#1|) (-649 |t#2|))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 17)) (-2300 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $) 19)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3522 ((|#1| $ (-569)) 24)) (-1670 ((|#2| $ (-569)) 22)) (-3196 (($ (-1 |#1| |#1|) $) 48)) (-2000 (($ (-1 |#2| |#2|) $) 45)) (-3435 (((-1167) $) NIL)) (-4206 (($ $ $) 55 (|has| |#2| (-797)))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 44) (($ |#1|) NIL)) (-4383 ((|#2| |#1| $) 51)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 11 T CONST)) (-2920 (((-112) $ $) 30)) (-3012 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-927) $) NIL) (($ (-776) $) 37) (($ |#2| |#1|) 32))) -(((-520 |#1| |#2| |#3|) (-326 |#1| |#2|) (-1108) (-131) |#2|) (T -520)) -NIL -(-326 |#1| |#2|) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-2270 (((-112) (-112)) 32)) (-3943 ((|#1| $ (-569) |#1|) 42 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) 80)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-2017 (($ $) 84 (|has| |#1| (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) 67)) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-3802 (($ $ (-569)) 19)) (-3558 (((-776) $) 13)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 31)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 29 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) 28 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3894 (($ $ $ (-569)) 76) (($ |#1| $ (-569)) 60)) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-2053 (($ (-649 |#1|)) 43)) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) 24 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 63)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 21)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 56) (($ $ (-1242 (-569))) NIL)) (-3301 (($ $ (-1242 (-569))) 74) (($ $ (-569)) 68)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) 64 (|has| $ (-6 -4448)))) (-3962 (($ $) 54)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2866 (($ $ $) 65) (($ $ |#1|) 62)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 22 (|has| $ (-6 -4447))))) -(((-521 |#1| |#2|) (-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112))))) (-1225) (-569)) (T -521)) -((-2053 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-521 *3 *4)) (-14 *4 (-569)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 (-569)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 *2))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 (-569))))) -(-13 (-19 |#1|) (-285 |#1|) (-10 -8 (-15 -2053 ($ (-649 |#1|))) (-15 -3558 ((-776) $)) (-15 -3802 ($ $ (-569))) (-15 -2270 ((-112) (-112))))) -((-2417 (((-112) $ $) NIL)) (-1546 (((-1143) $) 11)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1748 (((-1143) $) 13)) (-2385 (((-1143) $) 9)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-522) (-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $)) (-15 -1546 ((-1143) $)) (-15 -1748 ((-1143) $))))) (T -522)) -((-2385 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))) (-1748 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522))))) -(-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $)) (-15 -1546 ((-1143) $)) (-15 -1748 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-586 |#1|) (-372)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL (|has| (-586 |#1|) (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-586 |#1|) "failed") $) NIL)) (-3150 (((-586 |#1|) $) NIL)) (-2247 (($ (-1275 (-586 |#1|))) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-586 |#1|) (-372)))) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-586 |#1|) (-372)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL (|has| (-586 |#1|) (-372)))) (-2807 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-3701 (($ $ (-776)) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372)))) (($ $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-1473 (((-112) $) NIL)) (-1466 (((-927) $) NIL (|has| (-586 |#1|) (-372))) (((-838 (-927)) $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| (-586 |#1|) (-372)))) (-2483 (((-112) $) NIL (|has| (-586 |#1|) (-372)))) (-3829 (((-586 |#1|) $) NIL) (($ $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-586 |#1|) (-372)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 (-586 |#1|)) $) NIL) (((-1181 $) $ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-2731 (((-927) $) NIL (|has| (-586 |#1|) (-372)))) (-3775 (((-1181 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372)))) (-4119 (((-1181 (-586 |#1|)) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-1181 (-586 |#1|)) "failed") $ $) NIL (|has| (-586 |#1|) (-372)))) (-4384 (($ $ (-1181 (-586 |#1|))) NIL (|has| (-586 |#1|) (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-586 |#1|) (-372)) CONST)) (-2150 (($ (-927)) NIL (|has| (-586 |#1|) (-372)))) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| (-586 |#1|) (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-586 |#1|) (-372)))) (-3800 (((-423 $) $) NIL)) (-1898 (((-838 (-927))) NIL) (((-927)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-776) $) NIL (|has| (-586 |#1|) (-372))) (((-3 (-776) "failed") $ $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2377 (((-134)) NIL)) (-3517 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-4339 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-4061 (((-1181 (-586 |#1|))) NIL)) (-4234 (($) NIL (|has| (-586 |#1|) (-372)))) (-4110 (($) NIL (|has| (-586 |#1|) (-372)))) (-2415 (((-1275 (-586 |#1|)) $) NIL) (((-694 (-586 |#1|)) (-1275 $)) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-586 |#1|) (-372)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-586 |#1|)) NIL)) (-2239 (($ $) NIL (|has| (-586 |#1|) (-372))) (((-3 $ "failed") $) NIL (-2776 (|has| (-586 |#1|) (-145)) (|has| (-586 |#1|) (-372))))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL) (((-1275 $) (-927)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2832 (($ $) NIL (|has| (-586 |#1|) (-372))) (($ $ (-776)) NIL (|has| (-586 |#1|) (-372)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL) (($ $ (-586 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-586 |#1|)) NIL) (($ (-586 |#1|) $) NIL))) -(((-523 |#1| |#2|) (-332 (-586 |#1|)) (-927) (-927)) (T -523)) -NIL -(-332 (-586 |#1|)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) 51)) (-2400 (($ $ (-569) |#4|) NIL)) (-3259 (($ $ (-569) |#5|) NIL)) (-4427 (($) NIL T CONST)) (-4044 ((|#4| $ (-569)) NIL)) (-3846 ((|#1| $ (-569) (-569) |#1|) 50)) (-3776 ((|#1| $ (-569) (-569)) 45)) (-2882 (((-649 |#1|) $) NIL)) (-3225 (((-776) $) 33)) (-4300 (($ (-776) (-776) |#1|) 30)) (-3236 (((-776) $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) 31)) (-1537 (((-569) $) 32)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) 37)) (-2742 (((-569) $) 39)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) 55 (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 14)) (-3635 (($) 16)) (-1869 ((|#1| $ (-569) (-569)) 48) ((|#1| $ (-569) (-569) |#1|) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 ((|#5| $ (-569)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-524 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1225) (-569) (-569) (-377 |#1|) (-377 |#1|)) (T -524)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) (-570) |#1|) NIL)) (-2986 (($ $ (-570) (-502 |#1| |#3|)) NIL)) (-2478 (($ $ (-570) (-502 |#1| |#2|)) NIL)) (-3734 (($) NIL T CONST)) (-1774 (((-502 |#1| |#3|) $ (-570)) NIL)) (-3849 ((|#1| $ (-570) (-570) |#1|) NIL)) (-3778 ((|#1| $ (-570) (-570)) NIL)) (-2885 (((-650 |#1|) $) NIL)) (-3227 (((-777) $) NIL)) (-4300 (($ (-777) (-777) |#1|) NIL)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1515 (((-570) $) NIL)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1579 (((-570) $) NIL)) (-4110 (((-570) $) NIL)) (-3837 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-4357 (((-502 |#1| |#2|) $ (-570)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-503 |#1| |#2| |#3|) (-57 |#1| (-502 |#1| |#3|) (-502 |#1| |#2|)) (-1226) (-570) (-570)) (T -503)) +NIL +(-57 |#1| (-502 |#1| |#3|) (-502 |#1| |#2|)) +((-2755 (((-650 (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-777) (-777)) 33)) (-4238 (((-650 (-1182 |#1|)) |#1| (-777) (-777) (-777)) 43)) (-2527 (((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-650 |#3|) (-650 (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-777)) 110))) +(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -4238 ((-650 (-1182 |#1|)) |#1| (-777) (-777) (-777))) (-15 -2755 ((-650 (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-777) (-777))) (-15 -2527 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-650 |#3|) (-650 (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-777)))) (-354) (-1252 |#1|) (-1252 |#2|)) (T -504)) +((-2527 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-2 (|:| -2077 (-695 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-695 *7))))) (-5 *5 (-777)) (-4 *8 (-1252 *7)) (-4 *7 (-1252 *6)) (-4 *6 (-354)) (-5 *2 (-2 (|:| -2077 (-695 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-695 *7)))) (-5 *1 (-504 *6 *7 *8)))) (-2755 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-777)) (-4 *5 (-354)) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-2 (|:| -2077 (-695 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-695 *6))))) (-5 *1 (-504 *5 *6 *7)) (-5 *3 (-2 (|:| -2077 (-695 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-695 *6)))) (-4 *7 (-1252 *6)))) (-4238 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-777)) (-4 *3 (-354)) (-4 *5 (-1252 *3)) (-5 *2 (-650 (-1182 *3))) (-5 *1 (-504 *3 *5 *6)) (-4 *6 (-1252 *5))))) +(-10 -7 (-15 -4238 ((-650 (-1182 |#1|)) |#1| (-777) (-777) (-777))) (-15 -2755 ((-650 (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-777) (-777))) (-15 -2527 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) (-650 |#3|) (-650 (-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) (-777)))) +((-1522 (((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))) 74)) (-4203 ((|#1| (-695 |#1|) |#1| (-777)) 27)) (-2428 (((-777) (-777) (-777)) 36)) (-1389 (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 54)) (-1889 (((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|) 62) (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 59)) (-2839 ((|#1| (-695 |#1|) (-695 |#1|) |#1| (-570)) 31)) (-1689 ((|#1| (-695 |#1|)) 18))) +(((-505 |#1| |#2| |#3|) (-10 -7 (-15 -1689 (|#1| (-695 |#1|))) (-15 -4203 (|#1| (-695 |#1|) |#1| (-777))) (-15 -2839 (|#1| (-695 |#1|) (-695 |#1|) |#1| (-570))) (-15 -2428 ((-777) (-777) (-777))) (-15 -1889 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1889 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -1389 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1522 ((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))))) (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $)))) (-1252 |#1|) (-415 |#1| |#2|)) (T -505)) +((-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1389 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1889 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-1889 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2428 (*1 *2 *2 *2) (-12 (-5 *2 (-777)) (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2839 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-695 *2)) (-5 *4 (-570)) (-4 *2 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *5 (-1252 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5)))) (-4203 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-695 *2)) (-5 *4 (-777)) (-4 *2 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-4 *5 (-1252 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-695 *2)) (-4 *4 (-1252 *2)) (-4 *2 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) (-5 *1 (-505 *2 *4 *5)) (-4 *5 (-415 *2 *4))))) +(-10 -7 (-15 -1689 (|#1| (-695 |#1|))) (-15 -4203 (|#1| (-695 |#1|) |#1| (-777))) (-15 -2839 (|#1| (-695 |#1|) (-695 |#1|) |#1| (-570))) (-15 -2428 ((-777) (-777) (-777))) (-15 -1889 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1889 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -1389 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1522 ((-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|))) (-2 (|:| -2077 (-695 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-695 |#1|)))))) +((-2419 (((-112) $ $) NIL)) (-2439 (($ $) NIL)) (-1786 (($ $ $) 40)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) $) NIL (|has| (-112) (-856))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2632 (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| (-112) (-856)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4449)))) (-3360 (($ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3945 (((-112) $ (-1243 (-570)) (-112)) NIL (|has| $ (-6 -4449))) (((-112) $ (-570) (-112)) 42 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-1697 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-3600 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-3849 (((-112) $ (-570) (-112)) NIL (|has| $ (-6 -4449)))) (-3778 (((-112) $ (-570)) NIL)) (-4039 (((-570) (-112) $ (-570)) NIL (|has| (-112) (-1109))) (((-570) (-112) $) NIL (|has| (-112) (-1109))) (((-570) (-1 (-112) (-112)) $) NIL)) (-2885 (((-650 (-112)) $) NIL (|has| $ (-6 -4448)))) (-1773 (($ $ $) 38)) (-1748 (($ $) NIL)) (-3992 (($ $ $) NIL)) (-4300 (($ (-777) (-112)) 27)) (-3000 (($ $ $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 8 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL)) (-2735 (($ $ $) NIL (|has| (-112) (-856))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2282 (((-650 (-112)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL)) (-3837 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-4299 (($ $ $ (-570)) NIL) (($ (-112) $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-112) $) NIL (|has| (-570) (-856)))) (-4089 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2973 (($ $ (-112)) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-112)) (-650 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-298 (-112))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109)))) (($ $ (-650 (-298 (-112)))) NIL (-12 (|has| (-112) (-313 (-112))) (|has| (-112) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109))))) (-2880 (((-650 (-112)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 28)) (-1872 (($ $ (-1243 (-570))) NIL) (((-112) $ (-570)) 22) (((-112) $ (-570) (-112)) NIL)) (-4331 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-3562 (((-777) (-112) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-112) (-1109)))) (((-777) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) 29)) (-1411 (((-542) $) NIL (|has| (-112) (-620 (-542))))) (-3811 (($ (-650 (-112))) NIL)) (-2445 (($ (-650 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3798 (((-868) $) 26)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4448)))) (-1760 (($ $ $) 36)) (-4423 (($ $ $) NIL)) (-3508 (($ $ $) 45)) (-3521 (($ $) 43)) (-3494 (($ $ $) 44)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 30)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 31)) (-4407 (($ $ $) NIL)) (-2431 (((-777) $) 13 (|has| $ (-6 -4448))))) +(((-506 |#1|) (-13 (-124) (-10 -8 (-15 -3521 ($ $)) (-15 -3508 ($ $ $)) (-15 -3494 ($ $ $)))) (-570)) (T -506)) +((-3521 (*1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) (-3508 (*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) (-3494 (*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570))))) +(-13 (-124) (-10 -8 (-15 -3521 ($ $)) (-15 -3508 ($ $ $)) (-15 -3494 ($ $ $)))) +((-3937 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1182 |#4|)) 35)) (-3268 (((-1182 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1182 |#4|)) 22)) (-2838 (((-3 (-695 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-695 (-1182 |#4|))) 49)) (-2886 (((-1182 (-1182 |#4|)) (-1 |#4| |#1|) |#3|) 58))) +(((-507 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3268 (|#2| (-1 |#1| |#4|) (-1182 |#4|))) (-15 -3268 ((-1182 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3937 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1182 |#4|))) (-15 -2838 ((-3 (-695 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-695 (-1182 |#4|)))) (-15 -2886 ((-1182 (-1182 |#4|)) (-1 |#4| |#1|) |#3|))) (-1058) (-1252 |#1|) (-1252 |#2|) (-1058)) (T -507)) +((-2886 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *6 (-1252 *5)) (-5 *2 (-1182 (-1182 *7))) (-5 *1 (-507 *5 *6 *4 *7)) (-4 *4 (-1252 *6)))) (-2838 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-695 (-1182 *8))) (-4 *5 (-1058)) (-4 *8 (-1058)) (-4 *6 (-1252 *5)) (-5 *2 (-695 *6)) (-5 *1 (-507 *5 *6 *7 *8)) (-4 *7 (-1252 *6)))) (-3937 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1182 *7)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *2 (-1252 *5)) (-5 *1 (-507 *5 *2 *6 *7)) (-4 *6 (-1252 *2)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *4 (-1252 *5)) (-5 *2 (-1182 *7)) (-5 *1 (-507 *5 *4 *6 *7)) (-4 *6 (-1252 *4)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1182 *7)) (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *2 (-1252 *5)) (-5 *1 (-507 *5 *2 *6 *7)) (-4 *6 (-1252 *2))))) +(-10 -7 (-15 -3268 (|#2| (-1 |#1| |#4|) (-1182 |#4|))) (-15 -3268 ((-1182 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3937 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1182 |#4|))) (-15 -2838 ((-3 (-695 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-695 (-1182 |#4|)))) (-15 -2886 ((-1182 (-1182 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2419 (((-112) $ $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2038 (((-1281) $) 25)) (-1872 (((-1168) $ (-1186)) 30)) (-4160 (((-1281) $) 17)) (-3798 (((-868) $) 27) (($ (-1168)) 26)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 9))) +(((-508) (-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $)) (-15 -3798 ($ (-1168)))))) (T -508)) +((-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1168)) (-5 *1 (-508)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-508)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-508)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-508))))) +(-13 (-856) (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) (-15 -2038 ((-1281) $)) (-15 -3798 ($ (-1168))))) +((-2899 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3606 ((|#1| |#4|) 10)) (-3860 ((|#3| |#4|) 17))) +(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3606 (|#1| |#4|)) (-15 -3860 (|#3| |#4|)) (-15 -2899 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-562) (-1001 |#1|) (-378 |#1|) (-378 |#2|)) (T -509)) +((-2899 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-509 *4 *5 *6 *3)) (-4 *6 (-378 *4)) (-4 *3 (-378 *5)))) (-3860 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-4 *2 (-378 *4)) (-5 *1 (-509 *4 *5 *2 *3)) (-4 *3 (-378 *5)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-509 *2 *4 *5 *3)) (-4 *5 (-378 *2)) (-4 *3 (-378 *4))))) +(-10 -7 (-15 -3606 (|#1| |#4|)) (-15 -3860 (|#3| |#4|)) (-15 -2899 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2419 (((-112) $ $) NIL)) (-1455 (((-112) $ (-650 |#3|)) 124) (((-112) $) 125)) (-1359 (((-112) $) 176)) (-4101 (($ $ |#4|) 115) (($ $ |#4| (-650 |#3|)) 119)) (-1793 (((-1175 (-650 (-959 |#1|)) (-650 (-298 (-959 |#1|)))) (-650 |#4|)) 169 (|has| |#3| (-620 (-1186))))) (-1310 (($ $ $) 105) (($ $ |#4|) 103)) (-2481 (((-112) $) 175)) (-3084 (($ $) 129)) (-4122 (((-1168) $) NIL)) (-2842 (($ $ $) 97) (($ (-650 $)) 99)) (-3944 (((-112) |#4| $) 127)) (-1468 (((-112) $ $) 82)) (-3425 (($ (-650 |#4|)) 104)) (-3551 (((-1129) $) NIL)) (-1958 (($ (-650 |#4|)) 173)) (-2543 (((-112) $) 174)) (-3098 (($ $) 85)) (-1547 (((-650 |#4|) $) 73)) (-2377 (((-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)) $ (-650 |#3|)) NIL)) (-2415 (((-112) |#4| $) 89)) (-3374 (((-570) $ (-650 |#3|)) 131) (((-570) $) 132)) (-3798 (((-868) $) 172) (($ (-650 |#4|)) 100)) (-1319 (((-112) $ $) NIL)) (-1378 (($ (-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $))) NIL)) (-2923 (((-112) $ $) 84)) (-3014 (($ $ $) 107)) (** (($ $ (-777)) 113)) (* (($ $ $) 111))) +(((-510 |#1| |#2| |#3| |#4|) (-13 (-1109) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 -3014 ($ $ $)) (-15 -2481 ((-112) $)) (-15 -1359 ((-112) $)) (-15 -2415 ((-112) |#4| $)) (-15 -1468 ((-112) $ $)) (-15 -3944 ((-112) |#4| $)) (-15 -1455 ((-112) $ (-650 |#3|))) (-15 -1455 ((-112) $)) (-15 -2842 ($ $ $)) (-15 -2842 ($ (-650 $))) (-15 -1310 ($ $ $)) (-15 -1310 ($ $ |#4|)) (-15 -3098 ($ $)) (-15 -2377 ((-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)) $ (-650 |#3|))) (-15 -1378 ($ (-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)))) (-15 -3374 ((-570) $ (-650 |#3|))) (-15 -3374 ((-570) $)) (-15 -3084 ($ $)) (-15 -3425 ($ (-650 |#4|))) (-15 -1958 ($ (-650 |#4|))) (-15 -2543 ((-112) $)) (-15 -1547 ((-650 |#4|) $)) (-15 -3798 ($ (-650 |#4|))) (-15 -4101 ($ $ |#4|)) (-15 -4101 ($ $ |#4| (-650 |#3|))) (IF (|has| |#3| (-620 (-1186))) (-15 -1793 ((-1175 (-650 (-959 |#1|)) (-650 (-298 (-959 |#1|)))) (-650 |#4|))) |%noBranch|))) (-368) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -510)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3014 (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2481 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-1359 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2415 (*1 *2 *3 *1) (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-1468 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3944 (*1 *2 *3 *1) (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6)))) (-1455 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-1455 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-2842 (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-650 (-510 *3 *4 *5 *6))) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-1310 (*1 *1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-1310 (*1 *1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-3098 (*1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-2377 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *2 (-2 (|:| |mval| (-695 *4)) (|:| |invmval| (-695 *4)) (|:| |genIdeal| (-510 *4 *5 *6 *7)))) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-695 *3)) (|:| |invmval| (-695 *3)) (|:| |genIdeal| (-510 *3 *4 *5 *6)))) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *2 (-570)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) (-3374 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3084 (*1 *1 *1) (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-3425 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) (-1958 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) (-2543 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-1547 (*1 *2 *1) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *6)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) (-4101 (*1 *1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) (-4101 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) (-5 *1 (-510 *4 *5 *6 *2)) (-4 *2 (-956 *4 *5 *6)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *6 (-620 (-1186))) (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1175 (-650 (-959 *4)) (-650 (-298 (-959 *4))))) (-5 *1 (-510 *4 *5 *6 *7))))) +(-13 (-1109) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 -3014 ($ $ $)) (-15 -2481 ((-112) $)) (-15 -1359 ((-112) $)) (-15 -2415 ((-112) |#4| $)) (-15 -1468 ((-112) $ $)) (-15 -3944 ((-112) |#4| $)) (-15 -1455 ((-112) $ (-650 |#3|))) (-15 -1455 ((-112) $)) (-15 -2842 ($ $ $)) (-15 -2842 ($ (-650 $))) (-15 -1310 ($ $ $)) (-15 -1310 ($ $ |#4|)) (-15 -3098 ($ $)) (-15 -2377 ((-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)) $ (-650 |#3|))) (-15 -1378 ($ (-2 (|:| |mval| (-695 |#1|)) (|:| |invmval| (-695 |#1|)) (|:| |genIdeal| $)))) (-15 -3374 ((-570) $ (-650 |#3|))) (-15 -3374 ((-570) $)) (-15 -3084 ($ $)) (-15 -3425 ($ (-650 |#4|))) (-15 -1958 ($ (-650 |#4|))) (-15 -2543 ((-112) $)) (-15 -1547 ((-650 |#4|) $)) (-15 -3798 ($ (-650 |#4|))) (-15 -4101 ($ $ |#4|)) (-15 -4101 ($ $ |#4| (-650 |#3|))) (IF (|has| |#3| (-620 (-1186))) (-15 -1793 ((-1175 (-650 (-959 |#1|)) (-650 (-298 (-959 |#1|)))) (-650 |#4|))) |%noBranch|))) +((-3950 (((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 176)) (-3652 (((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 177)) (-3493 (((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 129)) (-3701 (((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) NIL)) (-1664 (((-650 (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) 179)) (-2694 (((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-650 (-870 |#1|))) 195))) +(((-511 |#1| |#2|) (-10 -7 (-15 -3950 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3652 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3701 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3493 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -1664 ((-650 (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -2694 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-650 (-870 |#1|))))) (-650 (-1186)) (-777)) (T -511)) +((-2694 (*1 *2 *2 *3) (-12 (-5 *2 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-5 *3 (-650 (-870 *4))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *1 (-511 *4 *5)))) (-1664 (*1 *2 *3) (-12 (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-650 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570)))))) (-5 *1 (-511 *4 *5)) (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-510 (-413 (-570)) (-242 *4 (-777)) (-870 *3) (-249 *3 (-413 (-570))))) (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-511 *3 *4)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) (-5 *1 (-511 *4 *5)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) (-5 *1 (-511 *4 *5)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) (-249 *4 (-413 (-570))))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) (-5 *1 (-511 *4 *5))))) +(-10 -7 (-15 -3950 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3652 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3701 ((-112) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -3493 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -1664 ((-650 (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570))))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))))) (-15 -2694 ((-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-510 (-413 (-570)) (-242 |#2| (-777)) (-870 |#1|) (-249 |#1| (-413 (-570)))) (-650 (-870 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1717 (($) 6)) (-3798 (((-868) $) 12) (((-1186) $) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 8))) +(((-512) (-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -1717 ($))))) (T -512)) +((-1717 (*1 *1) (-5 *1 (-512)))) +(-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -1717 ($)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-3925 (($ |#1| |#2|) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1352 ((|#2| $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 12 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) 11) (($ $ $) 35)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 21))) +(((-513 |#1| |#2|) (-13 (-21) (-515 |#1| |#2|)) (-21) (-856)) (T -513)) +NIL +(-13 (-21) (-515 |#1| |#2|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 13)) (-3734 (($) NIL T CONST)) (-1885 (($ $) 41)) (-3925 (($ |#1| |#2|) 38)) (-1347 (($ (-1 |#1| |#1|) $) 40)) (-1352 ((|#2| $) NIL)) (-1860 ((|#1| $) 42)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 10 T CONST)) (-2923 (((-112) $ $) NIL)) (-3014 (($ $ $) 26)) (* (($ (-928) $) NIL) (($ (-777) $) 36))) +(((-514 |#1| |#2|) (-13 (-23) (-515 |#1| |#2|)) (-23) (-856)) (T -514)) +NIL +(-13 (-23) (-515 |#1| |#2|)) +((-2419 (((-112) $ $) 7)) (-1885 (($ $) 14)) (-3925 (($ |#1| |#2|) 17)) (-1347 (($ (-1 |#1| |#1|) $) 18)) (-1352 ((|#2| $) 15)) (-1860 ((|#1| $) 16)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-515 |#1| |#2|) (-141) (-1109) (-856)) (T -515)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-515 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-856)))) (-3925 (*1 *1 *2 *3) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1109)))) (-1352 (*1 *2 *1) (-12 (-4 *1 (-515 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-856)))) (-1885 (*1 *1 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856))))) +(-13 (-1109) (-10 -8 (-15 -1347 ($ (-1 |t#1| |t#1|) $)) (-15 -3925 ($ |t#1| |t#2|)) (-15 -1860 (|t#1| $)) (-15 -1352 (|t#2| $)) (-15 -1885 ($ $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-3925 (($ |#1| |#2|) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1352 ((|#2| $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 22)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL))) +(((-516 |#1| |#2|) (-13 (-798) (-515 |#1| |#2|)) (-798) (-856)) (T -516)) +NIL +(-13 (-798) (-515 |#1| |#2|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1647 (($ $ $) 23)) (-2620 (((-3 $ "failed") $ $) 19)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-3925 (($ |#1| |#2|) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1352 ((|#2| $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL))) +(((-517 |#1| |#2|) (-13 (-799) (-515 |#1| |#2|)) (-799) (-856)) (T -517)) +NIL +(-13 (-799) (-515 |#1| |#2|)) +((-2419 (((-112) $ $) NIL)) (-1885 (($ $) 32)) (-3925 (($ |#1| |#2|) 28)) (-1347 (($ (-1 |#1| |#1|) $) 30)) (-1352 ((|#2| $) 34)) (-1860 ((|#1| $) 33)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 27)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 20))) +(((-518 |#1| |#2|) (-515 |#1| |#2|) (-1109) (-856)) (T -518)) +NIL +(-515 |#1| |#2|) +((-1725 (($ $ (-650 |#2|) (-650 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-519 |#1| |#2| |#3|) (-10 -8 (-15 -1725 (|#1| |#1| |#2| |#3|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#3|)))) (-520 |#2| |#3|) (-1109) (-1226)) (T -519)) +NIL +(-10 -8 (-15 -1725 (|#1| |#1| |#2| |#3|)) (-15 -1725 (|#1| |#1| (-650 |#2|) (-650 |#3|)))) +((-1725 (($ $ (-650 |#1|) (-650 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-520 |#1| |#2|) (-141) (-1109) (-1226)) (T -520)) +((-1725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *5)) (-4 *1 (-520 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1226)))) (-1725 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1226))))) +(-13 (-10 -8 (-15 -1725 ($ $ |t#1| |t#2|)) (-15 -1725 ($ $ (-650 |t#1|) (-650 |t#2|))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 17)) (-1919 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))) $) 19)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3475 (((-777) $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-4308 ((|#1| $ (-570)) 24)) (-4279 ((|#2| $ (-570)) 22)) (-3213 (($ (-1 |#1| |#1|) $) 48)) (-2710 (($ (-1 |#2| |#2|) $) 45)) (-4122 (((-1168) $) NIL)) (-2355 (($ $ $) 55 (|has| |#2| (-798)))) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 44) (($ |#1|) NIL)) (-3326 ((|#2| |#1| $) 51)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 11 T CONST)) (-2923 (((-112) $ $) 30)) (-3014 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-928) $) NIL) (($ (-777) $) 37) (($ |#2| |#1|) 32))) +(((-521 |#1| |#2| |#3|) (-327 |#1| |#2|) (-1109) (-132) |#2|) (T -521)) +NIL +(-327 |#1| |#2|) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-2121 (((-112) (-112)) 32)) (-3945 ((|#1| $ (-570) |#1|) 42 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) |#1|) $) 80)) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3786 (($ $) 84 (|has| |#1| (-1109)))) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) 67)) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-4044 (($ $ (-570)) 19)) (-3687 (((-777) $) 13)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 31)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 29 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-3583 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) 28 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-2213 (($ $ $ (-570)) 76) (($ |#1| $ (-570)) 60)) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3609 (($ (-650 |#1|)) 43)) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) 24 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 63)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 21)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 56) (($ $ (-1243 (-570))) NIL)) (-3886 (($ $ (-1243 (-570))) 74) (($ $ (-570)) 68)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) 64 (|has| $ (-6 -4449)))) (-3964 (($ $) 54)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) NIL)) (-2832 (($ $ $) 65) (($ $ |#1|) 62)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) 22 (|has| $ (-6 -4448))))) +(((-522 |#1| |#2|) (-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3609 ($ (-650 |#1|))) (-15 -3687 ((-777) $)) (-15 -4044 ($ $ (-570))) (-15 -2121 ((-112) (-112))))) (-1226) (-570)) (T -522)) +((-3609 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-522 *3 *4)) (-14 *4 (-570)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1226)) (-14 *4 (-570)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1226)) (-14 *4 *2))) (-2121 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1226)) (-14 *4 (-570))))) +(-13 (-19 |#1|) (-286 |#1|) (-10 -8 (-15 -3609 ($ (-650 |#1|))) (-15 -3687 ((-777) $)) (-15 -4044 ($ $ (-570))) (-15 -2121 ((-112) (-112))))) +((-2419 (((-112) $ $) NIL)) (-2270 (((-1144) $) 11)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1891 (((-1144) $) 13)) (-2388 (((-1144) $) 9)) (-3798 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-523) (-13 (-1092) (-10 -8 (-15 -2388 ((-1144) $)) (-15 -2270 ((-1144) $)) (-15 -1891 ((-1144) $))))) (T -523)) +((-2388 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523))))) +(-13 (-1092) (-10 -8 (-15 -2388 ((-1144) $)) (-15 -2270 ((-1144) $)) (-15 -1891 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 (((-587 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-587 |#1|) (-373)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL (|has| (-587 |#1|) (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-587 |#1|) "failed") $) NIL)) (-3152 (((-587 |#1|) $) NIL)) (-2427 (($ (-1276 (-587 |#1|))) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-587 |#1|) (-373)))) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-587 |#1|) (-373)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL (|has| (-587 |#1|) (-373)))) (-4316 (((-112) $) NIL (|has| (-587 |#1|) (-373)))) (-3640 (($ $ (-777)) NIL (-2779 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373)))) (($ $) NIL (-2779 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-3701 (((-112) $) NIL)) (-4202 (((-928) $) NIL (|has| (-587 |#1|) (-373))) (((-839 (-928)) $) NIL (-2779 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| (-587 |#1|) (-373)))) (-4246 (((-112) $) NIL (|has| (-587 |#1|) (-373)))) (-2233 (((-587 |#1|) $) NIL) (($ $ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-587 |#1|) (-373)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 (-587 |#1|)) $) NIL) (((-1182 $) $ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-2484 (((-928) $) NIL (|has| (-587 |#1|) (-373)))) (-2326 (((-1182 (-587 |#1|)) $) NIL (|has| (-587 |#1|) (-373)))) (-2874 (((-1182 (-587 |#1|)) $) NIL (|has| (-587 |#1|) (-373))) (((-3 (-1182 (-587 |#1|)) "failed") $ $) NIL (|has| (-587 |#1|) (-373)))) (-3097 (($ $ (-1182 (-587 |#1|))) NIL (|has| (-587 |#1|) (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-587 |#1|) (-373)) CONST)) (-2155 (($ (-928)) NIL (|has| (-587 |#1|) (-373)))) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2335 (($) NIL (|has| (-587 |#1|) (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-587 |#1|) (-373)))) (-3801 (((-424 $) $) NIL)) (-2877 (((-839 (-928))) NIL) (((-928)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-777) $) NIL (|has| (-587 |#1|) (-373))) (((-3 (-777) "failed") $ $) NIL (-2779 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-3374 (((-135)) NIL)) (-3519 (($ $) NIL (|has| (-587 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-587 |#1|) (-373)))) (-3324 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-1881 (((-1182 (-587 |#1|))) NIL)) (-2042 (($) NIL (|has| (-587 |#1|) (-373)))) (-3476 (($) NIL (|has| (-587 |#1|) (-373)))) (-1861 (((-1276 (-587 |#1|)) $) NIL) (((-695 (-587 |#1|)) (-1276 $)) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| (-587 |#1|) (-373)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-587 |#1|)) NIL)) (-2917 (($ $) NIL (|has| (-587 |#1|) (-373))) (((-3 $ "failed") $) NIL (-2779 (|has| (-587 |#1|) (-146)) (|has| (-587 |#1|) (-373))))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL) (((-1276 $) (-928)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $) NIL (|has| (-587 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-587 |#1|) (-373)))) (-2835 (($ $) NIL (|has| (-587 |#1|) (-373))) (($ $ (-777)) NIL (|has| (-587 |#1|) (-373)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL) (($ $ (-587 |#1|)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-587 |#1|)) NIL) (($ (-587 |#1|) $) NIL))) +(((-524 |#1| |#2|) (-333 (-587 |#1|)) (-928) (-928)) (T -524)) +NIL +(-333 (-587 |#1|)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) (-570) |#1|) 51)) (-2986 (($ $ (-570) |#4|) NIL)) (-2478 (($ $ (-570) |#5|) NIL)) (-3734 (($) NIL T CONST)) (-1774 ((|#4| $ (-570)) NIL)) (-3849 ((|#1| $ (-570) (-570) |#1|) 50)) (-3778 ((|#1| $ (-570) (-570)) 45)) (-2885 (((-650 |#1|) $) NIL)) (-3227 (((-777) $) 33)) (-4300 (($ (-777) (-777) |#1|) 30)) (-3239 (((-777) $) 38)) (-3846 (((-112) $ (-777)) NIL)) (-1515 (((-570) $) 31)) (-2523 (((-570) $) 32)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1579 (((-570) $) 37)) (-4110 (((-570) $) 39)) (-3837 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) 55 (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 14)) (-4359 (($) 16)) (-1872 ((|#1| $ (-570) (-570)) 48) ((|#1| $ (-570) (-570) |#1|) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-4357 ((|#5| $ (-570)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-525 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1226) (-570) (-570) (-378 |#1|) (-378 |#1|)) (T -525)) NIL (-57 |#1| |#4| |#5|) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 73 (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) 23 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 21 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4448))) (($ $ "rest" $) 24 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-2507 (($ $) 28 (|has| $ (-6 -4448)))) (-2251 (($ $) 29)) (-3525 (($ $) 18) (($ $ (-776)) 35)) (-2017 (($ $) 66 (|has| |#1| (-1108)))) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108))) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2882 (((-649 |#1|) $) 27 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 31 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-4198 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3382 (($ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) 62 (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) 13) (($ $ (-776)) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 12)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 16)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) NIL) ((|#1| $ (-569) |#1|) NIL)) (-2602 (((-569) $ $) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3966 (((-112) $) 39)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) 44)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 40)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 26)) (-2866 (($ $ $) 65) (($ $ |#1|) NIL)) (-2443 (($ $ $) NIL) (($ |#1| $) 10) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3796 (((-867) $) 54 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) 58 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 9 (|has| $ (-6 -4447))))) -(((-525 |#1| |#2|) (-671 |#1|) (-1225) (-569)) (T -525)) -NIL -(-671 |#1|) -((-2439 ((|#4| |#4|) 37)) (-3978 (((-776) |#4|) 45)) (-1539 (((-776) |#4|) 46)) (-2970 (((-649 |#3|) |#4|) 56 (|has| |#3| (-6 -4448)))) (-2725 (((-3 |#4| "failed") |#4|) 70)) (-3892 ((|#4| |#4|) 62)) (-3242 ((|#1| |#4|) 61))) -(((-526 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2439 (|#4| |#4|)) (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (IF (|has| |#3| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -3242 (|#1| |#4|)) (-15 -3892 (|#4| |#4|)) (-15 -2725 ((-3 |#4| "failed") |#4|))) (-367) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -526)) -((-2725 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367)) (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-2970 (*1 *2 *3) (-12 (|has| *6 (-6 -4448)) (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1539 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3978 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(-10 -7 (-15 -2439 (|#4| |#4|)) (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (IF (|has| |#3| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|) (-15 -3242 (|#1| |#4|)) (-15 -3892 (|#4| |#4|)) (-15 -2725 ((-3 |#4| "failed") |#4|))) -((-2439 ((|#8| |#4|) 20)) (-2970 (((-649 |#3|) |#4|) 29 (|has| |#7| (-6 -4448)))) (-2725 (((-3 |#8| "failed") |#4|) 23))) -(((-527 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2439 (|#8| |#4|)) (-15 -2725 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|)) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-1000 |#1|) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -527)) -((-2970 (*1 *2 *3) (-12 (|has| *9 (-6 -4448)) (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)) (-5 *2 (-649 *6)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6)) (-4 *10 (-692 *7 *8 *9)))) (-2725 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))) (-2439 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9)) (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) (-4 *8 (-377 *7)) (-4 *9 (-377 *7))))) -(-10 -7 (-15 -2439 (|#8| |#4|)) (-15 -2725 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4448)) (-15 -2970 ((-649 |#3|) |#4|)) |%noBranch|)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) NIL)) (-3182 (($ $ $) NIL)) (-2937 (($ (-607 |#1| |#3|)) NIL) (($ $) NIL)) (-1551 (((-112) $) NIL)) (-1532 (($ $ (-569) (-569)) 21)) (-2986 (($ $ (-569) (-569)) NIL)) (-1952 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-1383 (($ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3312 (($ $ (-569) (-569) $) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2400 (($ $ (-569) (-607 |#1| |#3|)) NIL)) (-3259 (($ $ (-569) (-607 |#1| |#2|)) NIL)) (-3419 (($ (-776) |#1|) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 30 (|has| |#1| (-310)))) (-4044 (((-607 |#1| |#3|) $ (-569)) NIL)) (-3978 (((-776) $) 33 (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) NIL)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-1539 (((-776) $) 35 (|has| |#1| (-561)))) (-2970 (((-649 (-607 |#1| |#2|)) $) 38 (|has| |#1| (-561)))) (-3225 (((-776) $) NIL)) (-4300 (($ (-776) (-776) |#1|) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#1| $) 28 (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) 10)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) 13)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#1|))) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2884 (((-649 (-649 |#1|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) 42 (|has| |#1| (-367)))) (-2838 (($ $ $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-3687 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL)) (-3387 (((-112) $) NIL)) (-3242 ((|#1| $) 26 (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3041 (((-607 |#1| |#2|) $ (-569)) NIL)) (-3796 (($ (-607 |#1| |#2|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-607 |#1| |#2|) $ (-607 |#1| |#2|)) NIL) (((-607 |#1| |#3|) (-607 |#1| |#3|) $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-528 |#1| |#2| |#3|) (-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) (-1057) (-569) (-569)) (T -528)) -NIL -(-692 |#1| (-607 |#1| |#3|) (-607 |#1| |#2|)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3093 (((-649 (-1224)) $) 13)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL) (($ (-649 (-1224))) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-529) (-13 (-1091) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -3093 ((-649 (-1224)) $))))) (T -529)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529))))) -(-13 (-1091) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -3093 ((-649 (-1224)) $)))) -((-2417 (((-112) $ $) NIL)) (-1905 (((-1143) $) 14)) (-3435 (((-1167) $) NIL)) (-4141 (((-511) $) 11)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 21) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-530) (-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -1905 ((-1143) $))))) (T -530)) -((-4141 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-530))))) -(-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -1905 ((-1143) $)))) -((-3694 (((-696 (-1233)) $) 15)) (-1690 (((-696 (-1231)) $) 38)) (-1979 (((-696 (-1230)) $) 29)) (-1389 (((-696 (-554)) $) 12)) (-3281 (((-696 (-552)) $) 42)) (-1933 (((-696 (-551)) $) 33)) (-3732 (((-776) $ (-128)) 54))) -(((-531 |#1|) (-10 -8 (-15 -3732 ((-776) |#1| (-128))) (-15 -1690 ((-696 (-1231)) |#1|)) (-15 -3281 ((-696 (-552)) |#1|)) (-15 -1979 ((-696 (-1230)) |#1|)) (-15 -1933 ((-696 (-551)) |#1|)) (-15 -3694 ((-696 (-1233)) |#1|)) (-15 -1389 ((-696 (-554)) |#1|))) (-532)) (T -531)) -NIL -(-10 -8 (-15 -3732 ((-776) |#1| (-128))) (-15 -1690 ((-696 (-1231)) |#1|)) (-15 -3281 ((-696 (-552)) |#1|)) (-15 -1979 ((-696 (-1230)) |#1|)) (-15 -1933 ((-696 (-551)) |#1|)) (-15 -3694 ((-696 (-1233)) |#1|)) (-15 -1389 ((-696 (-554)) |#1|))) -((-3694 (((-696 (-1233)) $) 12)) (-1690 (((-696 (-1231)) $) 8)) (-1979 (((-696 (-1230)) $) 10)) (-1389 (((-696 (-554)) $) 13)) (-3281 (((-696 (-552)) $) 9)) (-1933 (((-696 (-551)) $) 11)) (-3732 (((-776) $ (-128)) 7)) (-3171 (((-696 (-129)) $) 14)) (-2543 (($ $) 6))) -(((-532) (-140)) (T -532)) -((-3171 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129))))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554))))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1233))))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551))))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1230))))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552))))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231))))) (-3732 (*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776))))) -(-13 (-174) (-10 -8 (-15 -3171 ((-696 (-129)) $)) (-15 -1389 ((-696 (-554)) $)) (-15 -3694 ((-696 (-1233)) $)) (-15 -1933 ((-696 (-551)) $)) (-15 -1979 ((-696 (-1230)) $)) (-15 -3281 ((-696 (-552)) $)) (-15 -1690 ((-696 (-1231)) $)) (-15 -3732 ((-776) $ (-128))))) -(((-174) . T)) -((-3614 (((-1181 |#1|) (-776)) 114)) (-3140 (((-1275 |#1|) (-1275 |#1|) (-927)) 107)) (-1942 (((-1280) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) |#1|) 122)) (-3752 (((-1275 |#1|) (-1275 |#1|) (-776)) 53)) (-3406 (((-1275 |#1|) (-927)) 109)) (-4113 (((-1275 |#1|) (-1275 |#1|) (-569)) 30)) (-1814 (((-1181 |#1|) (-1275 |#1|)) 115)) (-2155 (((-1275 |#1|) (-927)) 135)) (-2483 (((-112) (-1275 |#1|)) 119)) (-3829 (((-1275 |#1|) (-1275 |#1|) (-927)) 99)) (-3859 (((-1181 |#1|) (-1275 |#1|)) 129)) (-2731 (((-927) (-1275 |#1|)) 95)) (-1817 (((-1275 |#1|) (-1275 |#1|)) 38)) (-2150 (((-1275 |#1|) (-927) (-927)) 138)) (-2339 (((-1275 |#1|) (-1275 |#1|) (-1128) (-1128)) 29)) (-2184 (((-1275 |#1|) (-1275 |#1|) (-776) (-1128)) 54)) (-2403 (((-1275 (-1275 |#1|)) (-927)) 134)) (-3035 (((-1275 |#1|) (-1275 |#1|) (-1275 |#1|)) 120)) (** (((-1275 |#1|) (-1275 |#1|) (-569)) 67)) (* (((-1275 |#1|) (-1275 |#1|) (-1275 |#1|)) 31))) -(((-533 |#1|) (-10 -7 (-15 -1942 ((-1280) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) |#1|)) (-15 -3406 ((-1275 |#1|) (-927))) (-15 -2150 ((-1275 |#1|) (-927) (-927))) (-15 -1814 ((-1181 |#1|) (-1275 |#1|))) (-15 -3614 ((-1181 |#1|) (-776))) (-15 -2184 ((-1275 |#1|) (-1275 |#1|) (-776) (-1128))) (-15 -3752 ((-1275 |#1|) (-1275 |#1|) (-776))) (-15 -2339 ((-1275 |#1|) (-1275 |#1|) (-1128) (-1128))) (-15 -4113 ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 ** ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 * ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3035 ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3829 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -3140 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -1817 ((-1275 |#1|) (-1275 |#1|))) (-15 -2731 ((-927) (-1275 |#1|))) (-15 -2483 ((-112) (-1275 |#1|))) (-15 -2403 ((-1275 (-1275 |#1|)) (-927))) (-15 -2155 ((-1275 |#1|) (-927))) (-15 -3859 ((-1181 |#1|) (-1275 |#1|)))) (-353)) (T -533)) -((-3859 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 *4))) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-533 *4)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-927)) (-5 *1 (-533 *4)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (-3140 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3829 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-4113 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2339 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1128)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-3752 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-533 *4)))) (-2184 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1275 *5)) (-5 *3 (-776)) (-5 *4 (-1128)) (-4 *5 (-353)) (-5 *1 (-533 *5)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)))) (-2150 (*1 *2 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) (-4 *4 (-353)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) (-4 *4 (-353)) (-5 *2 (-1280)) (-5 *1 (-533 *4))))) -(-10 -7 (-15 -1942 ((-1280) (-1275 (-649 (-2 (|:| -2188 |#1|) (|:| -2150 (-1128))))) |#1|)) (-15 -3406 ((-1275 |#1|) (-927))) (-15 -2150 ((-1275 |#1|) (-927) (-927))) (-15 -1814 ((-1181 |#1|) (-1275 |#1|))) (-15 -3614 ((-1181 |#1|) (-776))) (-15 -2184 ((-1275 |#1|) (-1275 |#1|) (-776) (-1128))) (-15 -3752 ((-1275 |#1|) (-1275 |#1|) (-776))) (-15 -2339 ((-1275 |#1|) (-1275 |#1|) (-1128) (-1128))) (-15 -4113 ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 ** ((-1275 |#1|) (-1275 |#1|) (-569))) (-15 * ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3035 ((-1275 |#1|) (-1275 |#1|) (-1275 |#1|))) (-15 -3829 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -3140 ((-1275 |#1|) (-1275 |#1|) (-927))) (-15 -1817 ((-1275 |#1|) (-1275 |#1|))) (-15 -2731 ((-927) (-1275 |#1|))) (-15 -2483 ((-112) (-1275 |#1|))) (-15 -2403 ((-1275 (-1275 |#1|)) (-927))) (-15 -2155 ((-1275 |#1|) (-927))) (-15 -3859 ((-1181 |#1|) (-1275 |#1|)))) -((-3694 (((-696 (-1233)) $) NIL)) (-1690 (((-696 (-1231)) $) NIL)) (-1979 (((-696 (-1230)) $) NIL)) (-1389 (((-696 (-554)) $) NIL)) (-3281 (((-696 (-552)) $) NIL)) (-1933 (((-696 (-551)) $) NIL)) (-3732 (((-776) $ (-128)) NIL)) (-3171 (((-696 (-129)) $) 26)) (-3628 (((-1128) $ (-1128)) 31)) (-4036 (((-1128) $) 30)) (-3771 (((-112) $) 20)) (-3795 (($ (-393)) 14) (($ (-1167)) 16)) (-2112 (((-112) $) 27)) (-3796 (((-867) $) 34)) (-2543 (($ $) 28))) -(((-534) (-13 (-532) (-618 (-867)) (-10 -8 (-15 -3795 ($ (-393))) (-15 -3795 ($ (-1167))) (-15 -2112 ((-112) $)) (-15 -3771 ((-112) $)) (-15 -4036 ((-1128) $)) (-15 -3628 ((-1128) $ (-1128)))))) (T -534)) -((-3795 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534)))) (-3795 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-534)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-534)))) (-3628 (*1 *2 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-534))))) -(-13 (-532) (-618 (-867)) (-10 -8 (-15 -3795 ($ (-393))) (-15 -3795 ($ (-1167))) (-15 -2112 ((-112) $)) (-15 -3771 ((-112) $)) (-15 -4036 ((-1128) $)) (-15 -3628 ((-1128) $ (-1128))))) -((-1362 (((-1 |#1| |#1|) |#1|) 11)) (-1692 (((-1 |#1| |#1|)) 10))) -(((-535 |#1|) (-10 -7 (-15 -1692 ((-1 |#1| |#1|))) (-15 -1362 ((-1 |#1| |#1|) |#1|))) (-13 (-731) (-25))) (T -535)) -((-1362 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25))))) (-1692 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25)))))) -(-10 -7 (-15 -1692 ((-1 |#1| |#1|))) (-15 -1362 ((-1 |#1| |#1|) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3151 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3923 (($ (-776) |#1|) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 (-776) (-776)) $) NIL)) (-2525 ((|#1| $) NIL)) (-1857 (((-776) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL))) -(((-536 |#1|) (-13 (-798) (-514 (-776) |#1|)) (-855)) (T -536)) -NIL -(-13 (-798) (-514 (-776) |#1|)) -((-3268 (((-649 |#2|) (-1181 |#1|) |#3|) 98)) (-2062 (((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1181 |#1|)) (-1181 |#1|))) 114)) (-1316 (((-1181 |#1|) (-694 |#1|)) 110))) -(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -1316 ((-1181 |#1|) (-694 |#1|))) (-15 -3268 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -2062 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1181 |#1|)) (-1181 |#1|))))) (-367) (-367) (-13 (-367) (-853))) (T -537)) -((-2062 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1181 *6)) (-1181 *6))) (-4 *6 (-367)) (-5 *2 (-649 (-2 (|:| |outval| *7) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *7)))))) (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853))))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6)) (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1181 *4)) (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853)))))) -(-10 -7 (-15 -1316 ((-1181 |#1|) (-694 |#1|))) (-15 -3268 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -2062 ((-649 (-2 (|:| |outval| |#2|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#2|))))) (-694 |#1|) |#3| (-1 (-423 (-1181 |#1|)) (-1181 |#1|))))) -((-2641 (((-696 (-1233)) $ (-1233)) NIL)) (-2283 (((-696 (-554)) $ (-554)) NIL)) (-2340 (((-776) $ (-128)) 39)) (-3998 (((-696 (-129)) $ (-129)) 40)) (-3694 (((-696 (-1233)) $) NIL)) (-1690 (((-696 (-1231)) $) NIL)) (-1979 (((-696 (-1230)) $) NIL)) (-1389 (((-696 (-554)) $) NIL)) (-3281 (((-696 (-552)) $) NIL)) (-1933 (((-696 (-551)) $) NIL)) (-3732 (((-776) $ (-128)) 35)) (-3171 (((-696 (-129)) $) 37)) (-3986 (((-112) $) 27)) (-2462 (((-696 $) (-584) (-960)) 18) (((-696 $) (-496) (-960)) 24)) (-3796 (((-867) $) 48)) (-2543 (($ $) 42))) -(((-538) (-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -2462 ((-696 $) (-496) (-960)))))) (T -538)) -((-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) (-5 *1 (-538))))) -(-13 (-772 (-584)) (-618 (-867)) (-10 -8 (-15 -2462 ((-696 $) (-496) (-960))))) -((-1974 (((-848 (-569))) 12)) (-1984 (((-848 (-569))) 14)) (-1321 (((-838 (-569))) 9))) -(((-539) (-10 -7 (-15 -1321 ((-838 (-569)))) (-15 -1974 ((-848 (-569)))) (-15 -1984 ((-848 (-569)))))) (T -539)) -((-1984 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1974 (*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) (-1321 (*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539))))) -(-10 -7 (-15 -1321 ((-838 (-569)))) (-15 -1974 ((-848 (-569)))) (-15 -1984 ((-848 (-569))))) -((-2026 (((-541) (-1185)) 15)) (-3006 ((|#1| (-541)) 20))) -(((-540 |#1|) (-10 -7 (-15 -2026 ((-541) (-1185))) (-15 -3006 (|#1| (-541)))) (-1225)) (T -540)) -((-3006 (*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1225)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-541)) (-5 *1 (-540 *4)) (-4 *4 (-1225))))) -(-10 -7 (-15 -2026 ((-541) (-1185))) (-15 -3006 (|#1| (-541)))) -((-2417 (((-112) $ $) NIL)) (-1831 (((-1167) $) 55)) (-3179 (((-112) $) 51)) (-1404 (((-1185) $) 52)) (-3936 (((-112) $) 49)) (-3390 (((-1167) $) 50)) (-3897 (($ (-1167)) 56)) (-2229 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3685 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3192 (($ $ (-649 (-1185))) 21)) (-3006 (((-52) $) 23)) (-3605 (((-112) $) NIL)) (-1433 (((-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-1699 (($ $ (-649 (-1185)) (-1185)) 73)) (-3953 (((-112) $) NIL)) (-2557 (((-226) $) NIL)) (-4387 (($ $) 44)) (-2624 (((-867) $) NIL)) (-4312 (((-112) $ $) NIL)) (-1869 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3881 (((-649 $) $) 30)) (-4075 (((-1185) (-649 $)) 57)) (-1410 (($ (-1167)) NIL) (($ (-1185)) 19) (($ (-569)) 8) (($ (-226)) 28) (($ (-867)) NIL) (($ (-649 $)) 65) (((-1112) $) 12) (($ (-1112)) 13)) (-2524 (((-1185) (-1185) (-649 $)) 60)) (-3796 (((-867) $) 54)) (-3407 (($ $) 59)) (-3395 (($ $) 58)) (-3495 (($ $ (-649 $)) 66)) (-1520 (((-112) $ $) NIL)) (-3952 (((-112) $) 29)) (-1804 (($) 9 T CONST)) (-1815 (($) 11 T CONST)) (-2920 (((-112) $ $) 74)) (-3035 (($ $ $) 82)) (-3012 (($ $ $) 75)) (** (($ $ (-776)) 81) (($ $ (-569)) 80)) (* (($ $ $) 76)) (-2428 (((-569) $) NIL))) -(((-541) (-13 (-1111 (-1167) (-1185) (-569) (-226) (-867)) (-619 (-1112)) (-10 -8 (-15 -3006 ((-52) $)) (-15 -1410 ($ (-1112))) (-15 -3495 ($ $ (-649 $))) (-15 -1699 ($ $ (-649 (-1185)) (-1185))) (-15 -3192 ($ $ (-649 (-1185)))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 0 ($) -3709) (-15 1 ($) -3709) (-15 -4387 ($ $)) (-15 -1831 ((-1167) $)) (-15 -3897 ($ (-1167))) (-15 -4075 ((-1185) (-649 $))) (-15 -2524 ((-1185) (-1185) (-649 $)))))) (T -541)) -((-3006 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-541)))) (-3495 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541)))) (-1699 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1185)) (-5 *1 (-541)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-541)))) (-3012 (*1 *1 *1 *1) (-5 *1 (-541))) (* (*1 *1 *1 *1) (-5 *1 (-541))) (-3035 (*1 *1 *1 *1) (-5 *1 (-541))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541)))) (-1804 (*1 *1) (-5 *1 (-541))) (-1815 (*1 *1) (-5 *1 (-541))) (-4387 (*1 *1 *1) (-5 *1 (-541))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-541)))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-541)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1185)) (-5 *1 (-541)))) (-2524 (*1 *2 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-541))) (-5 *1 (-541))))) -(-13 (-1111 (-1167) (-1185) (-569) (-226) (-867)) (-619 (-1112)) (-10 -8 (-15 -3006 ((-52) $)) (-15 -1410 ($ (-1112))) (-15 -3495 ($ $ (-649 $))) (-15 -1699 ($ $ (-649 (-1185)) (-1185))) (-15 -3192 ($ $ (-649 (-1185)))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ (-569))) (-15 (-1804) ($) -3709) (-15 (-1815) ($) -3709) (-15 -4387 ($ $)) (-15 -1831 ((-1167) $)) (-15 -3897 ($ (-1167))) (-15 -4075 ((-1185) (-649 $))) (-15 -2524 ((-1185) (-1185) (-649 $))))) -((-3559 ((|#2| |#2|) 17)) (-2695 ((|#2| |#2|) 13)) (-2238 ((|#2| |#2| (-569) (-569)) 20)) (-1729 ((|#2| |#2|) 15))) -(((-542 |#1| |#2|) (-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569)))) (-13 (-561) (-147)) (-1266 |#1|)) (T -542)) -((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1266 *4)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1266 *3)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1266 *3)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1266 *3))))) -(-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569)))) -((-2168 (((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1185))) 32)) (-1807 (((-649 |#2|) (-958 |#1|) |#3|) 54) (((-649 |#2|) (-1181 |#1|) |#3|) 53)) (-3648 (((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)) |#3|) 106))) -(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -1807 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -1807 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -3648 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)) |#3|)) (-15 -2168 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1185))))) (-457) (-367) (-13 (-367) (-853))) (T -543)) -((-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1185))) (-4 *6 (-367)) (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853))))) (-3648 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367)) (-4 *5 (-13 (-367) (-853))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))) -(-10 -7 (-15 -1807 ((-649 |#2|) (-1181 |#1|) |#3|)) (-15 -1807 ((-649 |#2|) (-958 |#1|) |#3|)) (-15 -3648 ((-649 (-649 |#2|)) (-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)) |#3|)) (-15 -2168 ((-649 (-297 (-958 |#2|))) (-649 |#2|) (-649 (-1185))))) -((-1538 ((|#2| |#2| |#1|) 17)) (-4178 ((|#2| (-649 |#2|)) 31)) (-2813 ((|#2| (-649 |#2|)) 52))) -(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4178 (|#2| (-649 |#2|))) (-15 -2813 (|#2| (-649 |#2|))) (-15 -1538 (|#2| |#2| |#1|))) (-310) (-1251 |#1|) |#1| (-1 |#1| |#1| (-776))) (T -544)) -((-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776))) (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1251 *3)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776))))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6)) (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776)))))) -(-10 -7 (-15 -4178 (|#2| (-649 |#2|))) (-15 -2813 (|#2| (-649 |#2|))) (-15 -1538 (|#2| |#2| |#1|))) -((-3800 (((-423 (-1181 |#4|)) (-1181 |#4|) (-1 (-423 (-1181 |#3|)) (-1181 |#3|))) 89) (((-423 |#4|) |#4| (-1 (-423 (-1181 |#3|)) (-1181 |#3|))) 214))) -(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 (-1181 |#3|)) (-1181 |#3|)))) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|) (-1 (-423 (-1181 |#3|)) (-1181 |#3|))))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -545)) -((-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1181 *8))) (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1181 *8)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7))) (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3)) (-4 *3 (-955 *7 *6 *5))))) -(-10 -7 (-15 -3800 ((-423 |#4|) |#4| (-1 (-423 (-1181 |#3|)) (-1181 |#3|)))) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|) (-1 (-423 (-1181 |#3|)) (-1181 |#3|))))) -((-3559 ((|#4| |#4|) 74)) (-2695 ((|#4| |#4|) 70)) (-2238 ((|#4| |#4| (-569) (-569)) 76)) (-1729 ((|#4| |#4|) 72))) -(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2695 (|#4| |#4|)) (-15 -1729 (|#4| |#4|)) (-15 -3559 (|#4| |#4|)) (-15 -2238 (|#4| |#4| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1251 |#1|) (-729 |#1| |#2|) (-1266 |#3|)) (T -546)) -((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-4 *5 (-1251 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) (-4 *2 (-1266 *6)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5))))) -(-10 -7 (-15 -2695 (|#4| |#4|)) (-15 -1729 (|#4| |#4|)) (-15 -3559 (|#4| |#4|)) (-15 -2238 (|#4| |#4| (-569) (-569)))) -((-3559 ((|#2| |#2|) 27)) (-2695 ((|#2| |#2|) 23)) (-2238 ((|#2| |#2| (-569) (-569)) 29)) (-1729 ((|#2| |#2|) 25))) -(((-547 |#1| |#2|) (-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569)))) (-13 (-367) (-372) (-619 (-569))) (-1266 |#1|)) (T -547)) -((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) (-5 *1 (-547 *4 *2)) (-4 *2 (-1266 *4)))) (-3559 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1266 *3)))) (-1729 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1266 *3)))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) (-4 *2 (-1266 *3))))) -(-10 -7 (-15 -2695 (|#2| |#2|)) (-15 -1729 (|#2| |#2|)) (-15 -3559 (|#2| |#2|)) (-15 -2238 (|#2| |#2| (-569) (-569)))) -((-3421 (((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)) 18) (((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|)) 14) (((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|)) 32))) -(((-548 |#1| |#2|) (-10 -7 (-15 -3421 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)))) (-1057) (-1251 |#1|)) (T -548)) -((-3421 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4)))) (-3421 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4)))) (-3421 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1057)) (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1251 *5))))) -(-10 -7 (-15 -3421 ((-3 (-569) "failed") |#2| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-569) (-1 (-3 (-569) "failed") |#1|))) (-15 -3421 ((-3 (-569) "failed") |#2| |#1| (-1 (-3 (-569) "failed") |#1|)))) -((-3889 (($ $ $) 84)) (-3764 (((-423 $) $) 52)) (-4381 (((-3 (-569) "failed") $) 64)) (-3150 (((-569) $) 42)) (-3377 (((-3 (-412 (-569)) "failed") $) 79)) (-1441 (((-112) $) 26)) (-1606 (((-412 (-569)) $) 77)) (-1473 (((-112) $) 55)) (-3499 (($ $ $ $) 92)) (-3712 (((-112) $) 17)) (-3074 (($ $ $) 62)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 74)) (-3885 (((-3 $ "failed") $) 69)) (-2606 (($ $) 24)) (-1973 (($ $ $) 90)) (-2307 (($) 65)) (-1948 (($ $) 58)) (-3800 (((-423 $) $) 50)) (-4024 (((-112) $) 15)) (-2431 (((-776) $) 32)) (-3517 (($ $ (-776)) NIL) (($ $) 11)) (-3962 (($ $) 18)) (-1410 (((-569) $) NIL) (((-541) $) 41) (((-898 (-569)) $) 45) (((-383) $) 35) (((-226) $) 38)) (-2721 (((-776)) 9)) (-2752 (((-112) $ $) 21)) (-3613 (($ $ $) 60))) -(((-549 |#1|) (-10 -8 (-15 -1973 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3613 (|#1| |#1| |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -1410 ((-569) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3712 ((-112) |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2721 ((-776)))) (-550)) (T -549)) -((-2721 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550))))) -(-10 -8 (-15 -1973 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1| |#1|)) (-15 -2606 (|#1| |#1|)) (-15 -3962 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3889 (|#1| |#1| |#1|)) (-15 -2752 ((-112) |#1| |#1|)) (-15 -4024 ((-112) |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3613 (|#1| |#1| |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -1410 ((-569) |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3712 ((-112) |#1|)) (-15 -2431 ((-776) |#1|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1473 ((-112) |#1|)) (-15 -2721 ((-776)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-3889 (($ $ $) 90)) (-2208 (((-3 $ "failed") $ $) 20)) (-2709 (($ $ $ $) 79)) (-1830 (($ $) 57)) (-3764 (((-423 $) $) 58)) (-2227 (((-112) $ $) 130)) (-2919 (((-569) $) 119)) (-3084 (($ $ $) 93)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 111)) (-3150 (((-569) $) 112)) (-2368 (($ $ $) 134)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 109) (((-694 (-569)) (-694 $)) 108)) (-3086 (((-3 $ "failed") $) 37)) (-3377 (((-3 (-412 (-569)) "failed") $) 87)) (-1441 (((-112) $) 89)) (-1606 (((-412 (-569)) $) 88)) (-3406 (($) 86) (($ $) 85)) (-2379 (($ $ $) 133)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 128)) (-1473 (((-112) $) 59)) (-3499 (($ $ $ $) 77)) (-3211 (($ $ $) 91)) (-3712 (((-112) $) 121)) (-3074 (($ $ $) 102)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 105)) (-2349 (((-112) $) 35)) (-2719 (((-112) $) 97)) (-3885 (((-3 $ "failed") $) 99)) (-2051 (((-112) $) 120)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 137)) (-2196 (($ $ $ $) 78)) (-3380 (($ $ $) 122)) (-2839 (($ $ $) 123)) (-2606 (($ $) 81)) (-3845 (($ $) 94)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1973 (($ $ $) 76)) (-2307 (($) 98 T CONST)) (-3593 (($ $) 83)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-1948 (($ $) 103)) (-3800 (((-423 $) $) 56)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 135)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 129)) (-4024 (((-112) $) 96)) (-2431 (((-776) $) 131)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 132)) (-3517 (($ $ (-776)) 116) (($ $) 114)) (-2432 (($ $) 82)) (-3962 (($ $) 84)) (-1410 (((-569) $) 113) (((-541) $) 107) (((-898 (-569)) $) 106) (((-383) $) 101) (((-226) $) 100)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 110)) (-2721 (((-776)) 32 T CONST)) (-2752 (((-112) $ $) 92)) (-3613 (($ $ $) 104)) (-1520 (((-112) $ $) 9)) (-4363 (($) 95)) (-2664 (((-112) $ $) 45)) (-2384 (($ $ $ $) 80)) (-2271 (($ $) 118)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-776)) 117) (($ $) 115)) (-2978 (((-112) $ $) 125)) (-2956 (((-112) $ $) 126)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 124)) (-2944 (((-112) $ $) 127)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-550) (-140)) (T -550)) -((-2719 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-4363 (*1 *1) (-4 *1 (-550))) (-3845 (*1 *1 *1) (-4 *1 (-550))) (-3084 (*1 *1 *1 *1) (-4 *1 (-550))) (-2752 (*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-3211 (*1 *1 *1 *1) (-4 *1 (-550))) (-3889 (*1 *1 *1 *1) (-4 *1 (-550))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) (-3406 (*1 *1) (-4 *1 (-550))) (-3406 (*1 *1 *1) (-4 *1 (-550))) (-3962 (*1 *1 *1) (-4 *1 (-550))) (-3593 (*1 *1 *1) (-4 *1 (-550))) (-2432 (*1 *1 *1) (-4 *1 (-550))) (-2606 (*1 *1 *1) (-4 *1 (-550))) (-2384 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2709 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-2196 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-3499 (*1 *1 *1 *1 *1) (-4 *1 (-550))) (-1973 (*1 *1 *1 *1) (-4 *1 (-550)))) -(-13 (-1229) (-310) (-825) (-234) (-619 (-569)) (-1046 (-569)) (-644 (-569)) (-619 (-541)) (-619 (-898 (-569))) (-892 (-569)) (-143) (-1030) (-147) (-1160) (-10 -8 (-15 -2719 ((-112) $)) (-15 -4024 ((-112) $)) (-6 -4446) (-15 -4363 ($)) (-15 -3845 ($ $)) (-15 -3084 ($ $ $)) (-15 -2752 ((-112) $ $)) (-15 -3211 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $)) (-15 -3406 ($)) (-15 -3406 ($ $)) (-15 -3962 ($ $)) (-15 -3593 ($ $)) (-15 -2432 ($ $)) (-15 -2606 ($ $)) (-15 -2384 ($ $ $ $)) (-15 -2709 ($ $ $ $)) (-15 -2196 ($ $ $ $)) (-15 -3499 ($ $ $ $)) (-15 -1973 ($ $ $)) (-6 -4445))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-143) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-541)) . T) ((-619 (-569)) . T) ((-619 (-898 (-569))) . T) ((-234) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-644 (-569)) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-825) . T) ((-853) . T) ((-855) . T) ((-892 (-569)) . T) ((-926) . T) ((-1030) . T) ((-1046 (-569)) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) . T) ((-1229) . T)) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-551) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -551)) -((-4427 (*1 *1) (-5 *1 (-551)))) -(-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) NIL)) (-2566 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) 73 (|has| $ (-6 -4449)))) (-2163 (((-112) $) NIL (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2632 (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4449)))) (-3360 (($ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-1716 (($ $ $) 23 (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) 21 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4449))) (($ $ "rest" $) 24 (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) |#1|) $) NIL)) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2553 ((|#1| $) NIL)) (-3734 (($) NIL T CONST)) (-1500 (($ $) 28 (|has| $ (-6 -4449)))) (-2256 (($ $) 29)) (-3527 (($ $) 18) (($ $ (-777)) 35)) (-3786 (($ $) 66 (|has| |#1| (-1109)))) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-1697 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-2430 (((-112) $) NIL)) (-4039 (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109))) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) NIL)) (-2885 (((-650 |#1|) $) 27 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 31 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-3583 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2735 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3384 (($ |#1|) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) NIL)) (-4122 (((-1168) $) 62 (|has| |#1| (-1109)))) (-1723 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2213 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4299 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) 13) (($ $ (-777)) NIL)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-2356 (((-112) $) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 12)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) 17)) (-4359 (($) 16)) (-1872 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1243 (-570))) NIL) ((|#1| $ (-570)) NIL) ((|#1| $ (-570) |#1|) NIL)) (-3536 (((-570) $ $) NIL)) (-3886 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-4331 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-3680 (((-112) $) 39)) (-3566 (($ $) NIL)) (-2447 (($ $) NIL (|has| $ (-6 -4449)))) (-1497 (((-777) $) NIL)) (-2360 (($ $) 44)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) 40)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 26)) (-2832 (($ $ $) 65) (($ $ |#1|) NIL)) (-2445 (($ $ $) NIL) (($ |#1| $) 10) (($ (-650 $)) NIL) (($ $ |#1|) NIL)) (-3798 (((-868) $) 54 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) 58 (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) 9 (|has| $ (-6 -4448))))) +(((-526 |#1| |#2|) (-672 |#1|) (-1226) (-570)) (T -526)) +NIL +(-672 |#1|) +((-3081 ((|#4| |#4|) 37)) (-3979 (((-777) |#4|) 45)) (-2758 (((-777) |#4|) 46)) (-3766 (((-650 |#3|) |#4|) 56 (|has| |#3| (-6 -4449)))) (-1972 (((-3 |#4| "failed") |#4|) 70)) (-1998 ((|#4| |#4|) 62)) (-4415 ((|#1| |#4|) 61))) +(((-527 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3081 (|#4| |#4|)) (-15 -3979 ((-777) |#4|)) (-15 -2758 ((-777) |#4|)) (IF (|has| |#3| (-6 -4449)) (-15 -3766 ((-650 |#3|) |#4|)) |%noBranch|) (-15 -4415 (|#1| |#4|)) (-15 -1998 (|#4| |#4|)) (-15 -1972 ((-3 |#4| "failed") |#4|))) (-368) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -527)) +((-1972 (*1 *2 *2) (|partial| -12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-1998 (*1 *2 *2) (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-4415 (*1 *2 *3) (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-368)) (-5 *1 (-527 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) (-3766 (*1 *2 *3) (-12 (|has| *6 (-6 -4449)) (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-2758 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) +(-10 -7 (-15 -3081 (|#4| |#4|)) (-15 -3979 ((-777) |#4|)) (-15 -2758 ((-777) |#4|)) (IF (|has| |#3| (-6 -4449)) (-15 -3766 ((-650 |#3|) |#4|)) |%noBranch|) (-15 -4415 (|#1| |#4|)) (-15 -1998 (|#4| |#4|)) (-15 -1972 ((-3 |#4| "failed") |#4|))) +((-3081 ((|#8| |#4|) 20)) (-3766 (((-650 |#3|) |#4|) 29 (|has| |#7| (-6 -4449)))) (-1972 (((-3 |#8| "failed") |#4|) 23))) +(((-528 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3081 (|#8| |#4|)) (-15 -1972 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4449)) (-15 -3766 ((-650 |#3|) |#4|)) |%noBranch|)) (-562) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|) (-1001 |#1|) (-378 |#5|) (-378 |#5|) (-693 |#5| |#6| |#7|)) (T -528)) +((-3766 (*1 *2 *3) (-12 (|has| *9 (-6 -4449)) (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *8 (-378 *7)) (-4 *9 (-378 *7)) (-5 *2 (-650 *6)) (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-693 *4 *5 *6)) (-4 *10 (-693 *7 *8 *9)))) (-1972 (*1 *2 *3) (|partial| -12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9)) (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6)) (-4 *8 (-378 *7)) (-4 *9 (-378 *7)))) (-3081 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9)) (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6)) (-4 *8 (-378 *7)) (-4 *9 (-378 *7))))) +(-10 -7 (-15 -3081 (|#8| |#4|)) (-15 -1972 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4449)) (-15 -3766 ((-650 |#3|) |#4|)) |%noBranch|)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3469 (($ (-777) (-777)) NIL)) (-2466 (($ $ $) NIL)) (-3933 (($ (-608 |#1| |#3|)) NIL) (($ $) NIL)) (-1630 (((-112) $) NIL)) (-3238 (($ $ (-570) (-570)) 21)) (-1679 (($ $ (-570) (-570)) NIL)) (-3553 (($ $ (-570) (-570) (-570) (-570)) NIL)) (-2927 (($ $) NIL)) (-2525 (((-112) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3762 (($ $ (-570) (-570) $) NIL)) (-3945 ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) NIL)) (-2986 (($ $ (-570) (-608 |#1| |#3|)) NIL)) (-2478 (($ $ (-570) (-608 |#1| |#2|)) NIL)) (-1650 (($ (-777) |#1|) NIL)) (-3734 (($) NIL T CONST)) (-3081 (($ $) 30 (|has| |#1| (-311)))) (-1774 (((-608 |#1| |#3|) $ (-570)) NIL)) (-3979 (((-777) $) 33 (|has| |#1| (-562)))) (-3849 ((|#1| $ (-570) (-570) |#1|) NIL)) (-3778 ((|#1| $ (-570) (-570)) NIL)) (-2885 (((-650 |#1|) $) NIL)) (-2758 (((-777) $) 35 (|has| |#1| (-562)))) (-3766 (((-650 (-608 |#1| |#2|)) $) 38 (|has| |#1| (-562)))) (-3227 (((-777) $) NIL)) (-4300 (($ (-777) (-777) |#1|) NIL)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-3646 ((|#1| $) 28 (|has| |#1| (-6 (-4450 "*"))))) (-1515 (((-570) $) 10)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1579 (((-570) $) 13)) (-4110 (((-570) $) NIL)) (-2433 (($ (-650 (-650 |#1|))) NIL)) (-3837 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2139 (((-650 (-650 |#1|)) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1972 (((-3 $ "failed") $) 42 (|has| |#1| (-368)))) (-2763 (($ $ $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570))) NIL)) (-1668 (($ (-650 |#1|)) NIL) (($ (-650 $)) NIL)) (-2881 (((-112) $) NIL)) (-4415 ((|#1| $) 26 (|has| |#1| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-4357 (((-608 |#1| |#2|) $ (-570)) NIL)) (-3798 (($ (-608 |#1| |#2|)) NIL) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2501 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-570) $) NIL) (((-608 |#1| |#2|) $ (-608 |#1| |#2|)) NIL) (((-608 |#1| |#3|) (-608 |#1| |#3|) $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-529 |#1| |#2| |#3|) (-693 |#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) (-1058) (-570) (-570)) (T -529)) +NIL +(-693 |#1| (-608 |#1| |#3|) (-608 |#1| |#2|)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1591 (((-650 (-1225)) $) 13)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL) (($ (-650 (-1225))) 11)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-530) (-13 (-1092) (-10 -8 (-15 -3798 ($ (-650 (-1225)))) (-15 -1591 ((-650 (-1225)) $))))) (T -530)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-530)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-530))))) +(-13 (-1092) (-10 -8 (-15 -3798 ($ (-650 (-1225)))) (-15 -1591 ((-650 (-1225)) $)))) +((-2419 (((-112) $ $) NIL)) (-4236 (((-1144) $) 14)) (-4122 (((-1168) $) NIL)) (-2357 (((-512) $) 11)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 21) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-531) (-13 (-1092) (-10 -8 (-15 -2357 ((-512) $)) (-15 -4236 ((-1144) $))))) (T -531)) +((-2357 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-531)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-531))))) +(-13 (-1092) (-10 -8 (-15 -2357 ((-512) $)) (-15 -4236 ((-1144) $)))) +((-4158 (((-697 (-1234)) $) 15)) (-1324 (((-697 (-1232)) $) 38)) (-1318 (((-697 (-1231)) $) 29)) (-1537 (((-697 (-555)) $) 12)) (-2505 (((-697 (-553)) $) 42)) (-4125 (((-697 (-552)) $) 33)) (-3169 (((-777) $ (-129)) 54))) +(((-532 |#1|) (-10 -8 (-15 -3169 ((-777) |#1| (-129))) (-15 -1324 ((-697 (-1232)) |#1|)) (-15 -2505 ((-697 (-553)) |#1|)) (-15 -1318 ((-697 (-1231)) |#1|)) (-15 -4125 ((-697 (-552)) |#1|)) (-15 -4158 ((-697 (-1234)) |#1|)) (-15 -1537 ((-697 (-555)) |#1|))) (-533)) (T -532)) +NIL +(-10 -8 (-15 -3169 ((-777) |#1| (-129))) (-15 -1324 ((-697 (-1232)) |#1|)) (-15 -2505 ((-697 (-553)) |#1|)) (-15 -1318 ((-697 (-1231)) |#1|)) (-15 -4125 ((-697 (-552)) |#1|)) (-15 -4158 ((-697 (-1234)) |#1|)) (-15 -1537 ((-697 (-555)) |#1|))) +((-4158 (((-697 (-1234)) $) 12)) (-1324 (((-697 (-1232)) $) 8)) (-1318 (((-697 (-1231)) $) 10)) (-1537 (((-697 (-555)) $) 13)) (-2505 (((-697 (-553)) $) 9)) (-4125 (((-697 (-552)) $) 11)) (-3169 (((-777) $ (-129)) 7)) (-2725 (((-697 (-130)) $) 14)) (-2514 (($ $) 6))) +(((-533) (-141)) (T -533)) +((-2725 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-130))))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-555))))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1234))))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-552))))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1231))))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-553))))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1232))))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-533)) (-5 *3 (-129)) (-5 *2 (-777))))) +(-13 (-175) (-10 -8 (-15 -2725 ((-697 (-130)) $)) (-15 -1537 ((-697 (-555)) $)) (-15 -4158 ((-697 (-1234)) $)) (-15 -4125 ((-697 (-552)) $)) (-15 -1318 ((-697 (-1231)) $)) (-15 -2505 ((-697 (-553)) $)) (-15 -1324 ((-697 (-1232)) $)) (-15 -3169 ((-777) $ (-129))))) +(((-175) . T)) +((-2586 (((-1182 |#1|) (-777)) 114)) (-3142 (((-1276 |#1|) (-1276 |#1|) (-928)) 107)) (-3806 (((-1281) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) |#1|) 122)) (-3881 (((-1276 |#1|) (-1276 |#1|) (-777)) 53)) (-3408 (((-1276 |#1|) (-928)) 109)) (-2486 (((-1276 |#1|) (-1276 |#1|) (-570)) 30)) (-1750 (((-1182 |#1|) (-1276 |#1|)) 115)) (-3379 (((-1276 |#1|) (-928)) 135)) (-4246 (((-112) (-1276 |#1|)) 119)) (-2233 (((-1276 |#1|) (-1276 |#1|) (-928)) 99)) (-2780 (((-1182 |#1|) (-1276 |#1|)) 129)) (-2484 (((-928) (-1276 |#1|)) 95)) (-1820 (((-1276 |#1|) (-1276 |#1|)) 38)) (-2155 (((-1276 |#1|) (-928) (-928)) 138)) (-3913 (((-1276 |#1|) (-1276 |#1|) (-1129) (-1129)) 29)) (-3412 (((-1276 |#1|) (-1276 |#1|) (-777) (-1129)) 54)) (-2077 (((-1276 (-1276 |#1|)) (-928)) 134)) (-3037 (((-1276 |#1|) (-1276 |#1|) (-1276 |#1|)) 120)) (** (((-1276 |#1|) (-1276 |#1|) (-570)) 67)) (* (((-1276 |#1|) (-1276 |#1|) (-1276 |#1|)) 31))) +(((-534 |#1|) (-10 -7 (-15 -3806 ((-1281) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) |#1|)) (-15 -3408 ((-1276 |#1|) (-928))) (-15 -2155 ((-1276 |#1|) (-928) (-928))) (-15 -1750 ((-1182 |#1|) (-1276 |#1|))) (-15 -2586 ((-1182 |#1|) (-777))) (-15 -3412 ((-1276 |#1|) (-1276 |#1|) (-777) (-1129))) (-15 -3881 ((-1276 |#1|) (-1276 |#1|) (-777))) (-15 -3913 ((-1276 |#1|) (-1276 |#1|) (-1129) (-1129))) (-15 -2486 ((-1276 |#1|) (-1276 |#1|) (-570))) (-15 ** ((-1276 |#1|) (-1276 |#1|) (-570))) (-15 * ((-1276 |#1|) (-1276 |#1|) (-1276 |#1|))) (-15 -3037 ((-1276 |#1|) (-1276 |#1|) (-1276 |#1|))) (-15 -2233 ((-1276 |#1|) (-1276 |#1|) (-928))) (-15 -3142 ((-1276 |#1|) (-1276 |#1|) (-928))) (-15 -1820 ((-1276 |#1|) (-1276 |#1|))) (-15 -2484 ((-928) (-1276 |#1|))) (-15 -4246 ((-112) (-1276 |#1|))) (-15 -2077 ((-1276 (-1276 |#1|)) (-928))) (-15 -3379 ((-1276 |#1|) (-928))) (-15 -2780 ((-1182 |#1|) (-1276 |#1|)))) (-354)) (T -534)) +((-2780 (*1 *2 *3) (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1276 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1276 (-1276 *4))) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-534 *4)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-928)) (-5 *1 (-534 *4)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) (-3142 (*1 *2 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-928)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-928)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3037 (*1 *2 *2 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-570)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-2486 (*1 *2 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-570)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3913 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-1129)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3881 (*1 *2 *2 *3) (-12 (-5 *2 (-1276 *4)) (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-534 *4)))) (-3412 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1276 *5)) (-5 *3 (-777)) (-5 *4 (-1129)) (-4 *5 (-354)) (-5 *1 (-534 *5)))) (-2586 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)))) (-2155 (*1 *2 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1276 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1276 *4)) (-5 *1 (-534 *4)) (-4 *4 (-354)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) (-4 *4 (-354)) (-5 *2 (-1281)) (-5 *1 (-534 *4))))) +(-10 -7 (-15 -3806 ((-1281) (-1276 (-650 (-2 (|:| -2190 |#1|) (|:| -2155 (-1129))))) |#1|)) (-15 -3408 ((-1276 |#1|) (-928))) (-15 -2155 ((-1276 |#1|) (-928) (-928))) (-15 -1750 ((-1182 |#1|) (-1276 |#1|))) (-15 -2586 ((-1182 |#1|) (-777))) (-15 -3412 ((-1276 |#1|) (-1276 |#1|) (-777) (-1129))) (-15 -3881 ((-1276 |#1|) (-1276 |#1|) (-777))) (-15 -3913 ((-1276 |#1|) (-1276 |#1|) (-1129) (-1129))) (-15 -2486 ((-1276 |#1|) (-1276 |#1|) (-570))) (-15 ** ((-1276 |#1|) (-1276 |#1|) (-570))) (-15 * ((-1276 |#1|) (-1276 |#1|) (-1276 |#1|))) (-15 -3037 ((-1276 |#1|) (-1276 |#1|) (-1276 |#1|))) (-15 -2233 ((-1276 |#1|) (-1276 |#1|) (-928))) (-15 -3142 ((-1276 |#1|) (-1276 |#1|) (-928))) (-15 -1820 ((-1276 |#1|) (-1276 |#1|))) (-15 -2484 ((-928) (-1276 |#1|))) (-15 -4246 ((-112) (-1276 |#1|))) (-15 -2077 ((-1276 (-1276 |#1|)) (-928))) (-15 -3379 ((-1276 |#1|) (-928))) (-15 -2780 ((-1182 |#1|) (-1276 |#1|)))) +((-4158 (((-697 (-1234)) $) NIL)) (-1324 (((-697 (-1232)) $) NIL)) (-1318 (((-697 (-1231)) $) NIL)) (-1537 (((-697 (-555)) $) NIL)) (-2505 (((-697 (-553)) $) NIL)) (-4125 (((-697 (-552)) $) NIL)) (-3169 (((-777) $ (-129)) NIL)) (-2725 (((-697 (-130)) $) 26)) (-1702 (((-1129) $ (-1129)) 31)) (-4039 (((-1129) $) 30)) (-2046 (((-112) $) 20)) (-3541 (($ (-394)) 14) (($ (-1168)) 16)) (-1386 (((-112) $) 27)) (-3798 (((-868) $) 34)) (-2514 (($ $) 28))) +(((-535) (-13 (-533) (-619 (-868)) (-10 -8 (-15 -3541 ($ (-394))) (-15 -3541 ($ (-1168))) (-15 -1386 ((-112) $)) (-15 -2046 ((-112) $)) (-15 -4039 ((-1129) $)) (-15 -1702 ((-1129) $ (-1129)))))) (T -535)) +((-3541 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-535)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-535)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-535)))) (-1702 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-535))))) +(-13 (-533) (-619 (-868)) (-10 -8 (-15 -3541 ($ (-394))) (-15 -3541 ($ (-1168))) (-15 -1386 ((-112) $)) (-15 -2046 ((-112) $)) (-15 -4039 ((-1129) $)) (-15 -1702 ((-1129) $ (-1129))))) +((-1364 (((-1 |#1| |#1|) |#1|) 11)) (-1539 (((-1 |#1| |#1|)) 10))) +(((-536 |#1|) (-10 -7 (-15 -1539 ((-1 |#1| |#1|))) (-15 -1364 ((-1 |#1| |#1|) |#1|))) (-13 (-732) (-25))) (T -536)) +((-1364 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25))))) (-1539 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25)))))) +(-10 -7 (-15 -1539 ((-1 |#1| |#1|))) (-15 -1364 ((-1 |#1| |#1|) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1647 (($ $ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-3925 (($ (-777) |#1|) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-1347 (($ (-1 (-777) (-777)) $) NIL)) (-1352 ((|#1| $) NIL)) (-1860 (((-777) $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 27)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL))) +(((-537 |#1|) (-13 (-799) (-515 (-777) |#1|)) (-856)) (T -537)) +NIL +(-13 (-799) (-515 (-777) |#1|)) +((-2160 (((-650 |#2|) (-1182 |#1|) |#3|) 98)) (-2026 (((-650 (-2 (|:| |outval| |#2|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#2|))))) (-695 |#1|) |#3| (-1 (-424 (-1182 |#1|)) (-1182 |#1|))) 114)) (-2065 (((-1182 |#1|) (-695 |#1|)) 110))) +(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2065 ((-1182 |#1|) (-695 |#1|))) (-15 -2160 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -2026 ((-650 (-2 (|:| |outval| |#2|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#2|))))) (-695 |#1|) |#3| (-1 (-424 (-1182 |#1|)) (-1182 |#1|))))) (-368) (-368) (-13 (-368) (-854))) (T -538)) +((-2026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *6)) (-5 *5 (-1 (-424 (-1182 *6)) (-1182 *6))) (-4 *6 (-368)) (-5 *2 (-650 (-2 (|:| |outval| *7) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 *7)))))) (-5 *1 (-538 *6 *7 *4)) (-4 *7 (-368)) (-4 *4 (-13 (-368) (-854))))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *5)) (-4 *5 (-368)) (-5 *2 (-650 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-695 *4)) (-4 *4 (-368)) (-5 *2 (-1182 *4)) (-5 *1 (-538 *4 *5 *6)) (-4 *5 (-368)) (-4 *6 (-13 (-368) (-854)))))) +(-10 -7 (-15 -2065 ((-1182 |#1|) (-695 |#1|))) (-15 -2160 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -2026 ((-650 (-2 (|:| |outval| |#2|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#2|))))) (-695 |#1|) |#3| (-1 (-424 (-1182 |#1|)) (-1182 |#1|))))) +((-1816 (((-697 (-1234)) $ (-1234)) NIL)) (-3927 (((-697 (-555)) $ (-555)) NIL)) (-4024 (((-777) $ (-129)) 39)) (-1678 (((-697 (-130)) $ (-130)) 40)) (-4158 (((-697 (-1234)) $) NIL)) (-1324 (((-697 (-1232)) $) NIL)) (-1318 (((-697 (-1231)) $) NIL)) (-1537 (((-697 (-555)) $) NIL)) (-2505 (((-697 (-553)) $) NIL)) (-4125 (((-697 (-552)) $) NIL)) (-3169 (((-777) $ (-129)) 35)) (-2725 (((-697 (-130)) $) 37)) (-2999 (((-112) $) 27)) (-2591 (((-697 $) (-585) (-961)) 18) (((-697 $) (-497) (-961)) 24)) (-3798 (((-868) $) 48)) (-2514 (($ $) 42))) +(((-539) (-13 (-773 (-585)) (-619 (-868)) (-10 -8 (-15 -2591 ((-697 $) (-497) (-961)))))) (T -539)) +((-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-497)) (-5 *4 (-961)) (-5 *2 (-697 (-539))) (-5 *1 (-539))))) +(-13 (-773 (-585)) (-619 (-868)) (-10 -8 (-15 -2591 ((-697 $) (-497) (-961))))) +((-1977 (((-849 (-570))) 12)) (-1987 (((-849 (-570))) 14)) (-1322 (((-839 (-570))) 9))) +(((-540) (-10 -7 (-15 -1322 ((-839 (-570)))) (-15 -1977 ((-849 (-570)))) (-15 -1987 ((-849 (-570)))))) (T -540)) +((-1987 (*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540)))) (-1977 (*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540)))) (-1322 (*1 *2) (-12 (-5 *2 (-839 (-570))) (-5 *1 (-540))))) +(-10 -7 (-15 -1322 ((-839 (-570)))) (-15 -1977 ((-849 (-570)))) (-15 -1987 ((-849 (-570))))) +((-1503 (((-542) (-1186)) 15)) (-3008 ((|#1| (-542)) 20))) +(((-541 |#1|) (-10 -7 (-15 -1503 ((-542) (-1186))) (-15 -3008 (|#1| (-542)))) (-1226)) (T -541)) +((-3008 (*1 *2 *3) (-12 (-5 *3 (-542)) (-5 *1 (-541 *2)) (-4 *2 (-1226)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-542)) (-5 *1 (-541 *4)) (-4 *4 (-1226))))) +(-10 -7 (-15 -1503 ((-542) (-1186))) (-15 -3008 (|#1| (-542)))) +((-2419 (((-112) $ $) NIL)) (-3799 (((-1168) $) 55)) (-2311 (((-112) $) 51)) (-1405 (((-1186) $) 52)) (-3876 (((-112) $) 49)) (-3391 (((-1168) $) 50)) (-2395 (($ (-1168)) 56)) (-4312 (((-112) $) NIL)) (-1604 (((-112) $) NIL)) (-1467 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-3192 (($ $ (-650 (-1186))) 21)) (-3008 (((-52) $) 23)) (-2381 (((-112) $) NIL)) (-1434 (((-570) $) NIL)) (-3551 (((-1129) $) NIL)) (-1694 (($ $ (-650 (-1186)) (-1186)) 73)) (-1670 (((-112) $) NIL)) (-2560 (((-227) $) NIL)) (-4387 (($ $) 44)) (-2627 (((-868) $) NIL)) (-4313 (((-112) $ $) NIL)) (-1872 (($ $ (-570)) NIL) (($ $ (-650 (-570))) NIL)) (-3883 (((-650 $) $) 30)) (-4077 (((-1186) (-650 $)) 57)) (-1411 (($ (-1168)) NIL) (($ (-1186)) 19) (($ (-570)) 8) (($ (-227)) 28) (($ (-868)) NIL) (($ (-650 $)) 65) (((-1113) $) 12) (($ (-1113)) 13)) (-2526 (((-1186) (-1186) (-650 $)) 60)) (-3798 (((-868) $) 54)) (-3409 (($ $) 59)) (-3397 (($ $) 58)) (-2894 (($ $ (-650 $)) 66)) (-1319 (((-112) $ $) NIL)) (-1546 (((-112) $) 29)) (-1809 (($) 9 T CONST)) (-1817 (($) 11 T CONST)) (-2923 (((-112) $ $) 74)) (-3037 (($ $ $) 82)) (-3014 (($ $ $) 75)) (** (($ $ (-777)) 81) (($ $ (-570)) 80)) (* (($ $ $) 76)) (-2431 (((-570) $) NIL))) +(((-542) (-13 (-1112 (-1168) (-1186) (-570) (-227) (-868)) (-620 (-1113)) (-10 -8 (-15 -3008 ((-52) $)) (-15 -1411 ($ (-1113))) (-15 -2894 ($ $ (-650 $))) (-15 -1694 ($ $ (-650 (-1186)) (-1186))) (-15 -3192 ($ $ (-650 (-1186)))) (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 -3037 ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ (-570))) (-15 0 ($) -3711) (-15 1 ($) -3711) (-15 -4387 ($ $)) (-15 -3799 ((-1168) $)) (-15 -2395 ($ (-1168))) (-15 -4077 ((-1186) (-650 $))) (-15 -2526 ((-1186) (-1186) (-650 $)))))) (T -542)) +((-3008 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-542)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-542)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-542))) (-5 *1 (-542)))) (-1694 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1186)) (-5 *1 (-542)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-542)))) (-3014 (*1 *1 *1 *1) (-5 *1 (-542))) (* (*1 *1 *1 *1) (-5 *1 (-542))) (-3037 (*1 *1 *1 *1) (-5 *1 (-542))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-542)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-542)))) (-1809 (*1 *1) (-5 *1 (-542))) (-1817 (*1 *1) (-5 *1 (-542))) (-4387 (*1 *1 *1) (-5 *1 (-542))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-542)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-542)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-650 (-542))) (-5 *2 (-1186)) (-5 *1 (-542)))) (-2526 (*1 *2 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-542))) (-5 *1 (-542))))) +(-13 (-1112 (-1168) (-1186) (-570) (-227) (-868)) (-620 (-1113)) (-10 -8 (-15 -3008 ((-52) $)) (-15 -1411 ($ (-1113))) (-15 -2894 ($ $ (-650 $))) (-15 -1694 ($ $ (-650 (-1186)) (-1186))) (-15 -3192 ($ $ (-650 (-1186)))) (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 -3037 ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ (-570))) (-15 (-1809) ($) -3711) (-15 (-1817) ($) -3711) (-15 -4387 ($ $)) (-15 -3799 ((-1168) $)) (-15 -2395 ($ (-1168))) (-15 -4077 ((-1186) (-650 $))) (-15 -2526 ((-1186) (-1186) (-650 $))))) +((-2493 ((|#2| |#2|) 17)) (-4107 ((|#2| |#2|) 13)) (-2809 ((|#2| |#2| (-570) (-570)) 20)) (-3802 ((|#2| |#2|) 15))) +(((-543 |#1| |#2|) (-10 -7 (-15 -4107 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -2809 (|#2| |#2| (-570) (-570)))) (-13 (-562) (-148)) (-1267 |#1|)) (T -543)) +((-2809 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-543 *4 *2)) (-4 *2 (-1267 *4)))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) (-4 *2 (-1267 *3)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) (-4 *2 (-1267 *3)))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) (-4 *2 (-1267 *3))))) +(-10 -7 (-15 -4107 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -2809 (|#2| |#2| (-570) (-570)))) +((-2376 (((-650 (-298 (-959 |#2|))) (-650 |#2|) (-650 (-1186))) 32)) (-2329 (((-650 |#2|) (-959 |#1|) |#3|) 54) (((-650 |#2|) (-1182 |#1|) |#3|) 53)) (-3074 (((-650 (-650 |#2|)) (-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)) |#3|) 106))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2329 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -2329 ((-650 |#2|) (-959 |#1|) |#3|)) (-15 -3074 ((-650 (-650 |#2|)) (-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)) |#3|)) (-15 -2376 ((-650 (-298 (-959 |#2|))) (-650 |#2|) (-650 (-1186))))) (-458) (-368) (-13 (-368) (-854))) (T -544)) +((-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1186))) (-4 *6 (-368)) (-5 *2 (-650 (-298 (-959 *6)))) (-5 *1 (-544 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-13 (-368) (-854))))) (-3074 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-650 (-650 *7))) (-5 *1 (-544 *6 *7 *5)) (-4 *7 (-368)) (-4 *5 (-13 (-368) (-854))))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-959 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854)))))) +(-10 -7 (-15 -2329 ((-650 |#2|) (-1182 |#1|) |#3|)) (-15 -2329 ((-650 |#2|) (-959 |#1|) |#3|)) (-15 -3074 ((-650 (-650 |#2|)) (-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)) |#3|)) (-15 -2376 ((-650 (-298 (-959 |#2|))) (-650 |#2|) (-650 (-1186))))) +((-2625 ((|#2| |#2| |#1|) 17)) (-2133 ((|#2| (-650 |#2|)) 31)) (-2499 ((|#2| (-650 |#2|)) 52))) +(((-545 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2133 (|#2| (-650 |#2|))) (-15 -2499 (|#2| (-650 |#2|))) (-15 -2625 (|#2| |#2| |#1|))) (-311) (-1252 |#1|) |#1| (-1 |#1| |#1| (-777))) (T -545)) +((-2625 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-777))) (-5 *1 (-545 *3 *2 *4 *5)) (-4 *2 (-1252 *3)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-545 *4 *2 *5 *6)) (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777))))) (-2133 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-545 *4 *2 *5 *6)) (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777)))))) +(-10 -7 (-15 -2133 (|#2| (-650 |#2|))) (-15 -2499 (|#2| (-650 |#2|))) (-15 -2625 (|#2| |#2| |#1|))) +((-3801 (((-424 (-1182 |#4|)) (-1182 |#4|) (-1 (-424 (-1182 |#3|)) (-1182 |#3|))) 89) (((-424 |#4|) |#4| (-1 (-424 (-1182 |#3|)) (-1182 |#3|))) 214))) +(((-546 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 |#4|) |#4| (-1 (-424 (-1182 |#3|)) (-1182 |#3|)))) (-15 -3801 ((-424 (-1182 |#4|)) (-1182 |#4|) (-1 (-424 (-1182 |#3|)) (-1182 |#3|))))) (-856) (-799) (-13 (-311) (-148)) (-956 |#3| |#2| |#1|)) (T -546)) +((-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7))) (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *8 (-956 *7 *6 *5)) (-5 *2 (-424 (-1182 *8))) (-5 *1 (-546 *5 *6 *7 *8)) (-5 *3 (-1182 *8)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7))) (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799)) (-5 *2 (-424 *3)) (-5 *1 (-546 *5 *6 *7 *3)) (-4 *3 (-956 *7 *6 *5))))) +(-10 -7 (-15 -3801 ((-424 |#4|) |#4| (-1 (-424 (-1182 |#3|)) (-1182 |#3|)))) (-15 -3801 ((-424 (-1182 |#4|)) (-1182 |#4|) (-1 (-424 (-1182 |#3|)) (-1182 |#3|))))) +((-2493 ((|#4| |#4|) 74)) (-4107 ((|#4| |#4|) 70)) (-2809 ((|#4| |#4| (-570) (-570)) 76)) (-3802 ((|#4| |#4|) 72))) +(((-547 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4107 (|#4| |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -2493 (|#4| |#4|)) (-15 -2809 (|#4| |#4| (-570) (-570)))) (-13 (-368) (-373) (-620 (-570))) (-1252 |#1|) (-730 |#1| |#2|) (-1267 |#3|)) (T -547)) +((-2809 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3))) (-4 *5 (-1252 *4)) (-4 *6 (-730 *4 *5)) (-5 *1 (-547 *4 *5 *6 *2)) (-4 *2 (-1267 *6)))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1252 *3)) (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1267 *5)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1252 *3)) (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1267 *5)))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1252 *3)) (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1267 *5))))) +(-10 -7 (-15 -4107 (|#4| |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -2493 (|#4| |#4|)) (-15 -2809 (|#4| |#4| (-570) (-570)))) +((-2493 ((|#2| |#2|) 27)) (-4107 ((|#2| |#2|) 23)) (-2809 ((|#2| |#2| (-570) (-570)) 29)) (-3802 ((|#2| |#2|) 25))) +(((-548 |#1| |#2|) (-10 -7 (-15 -4107 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -2809 (|#2| |#2| (-570) (-570)))) (-13 (-368) (-373) (-620 (-570))) (-1267 |#1|)) (T -548)) +((-2809 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3))) (-5 *1 (-548 *4 *2)) (-4 *2 (-1267 *4)))) (-2493 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1267 *3)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1267 *3)))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) (-4 *2 (-1267 *3))))) +(-10 -7 (-15 -4107 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -2493 (|#2| |#2|)) (-15 -2809 (|#2| |#2| (-570) (-570)))) +((-1847 (((-3 (-570) "failed") |#2| |#1| (-1 (-3 (-570) "failed") |#1|)) 18) (((-3 (-570) "failed") |#2| |#1| (-570) (-1 (-3 (-570) "failed") |#1|)) 14) (((-3 (-570) "failed") |#2| (-570) (-1 (-3 (-570) "failed") |#1|)) 32))) +(((-549 |#1| |#2|) (-10 -7 (-15 -1847 ((-3 (-570) "failed") |#2| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -1847 ((-3 (-570) "failed") |#2| |#1| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -1847 ((-3 (-570) "failed") |#2| |#1| (-1 (-3 (-570) "failed") |#1|)))) (-1058) (-1252 |#1|)) (T -549)) +((-1847 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1252 *4)))) (-1847 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1252 *4)))) (-1847 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-570) "failed") *5)) (-4 *5 (-1058)) (-5 *2 (-570)) (-5 *1 (-549 *5 *3)) (-4 *3 (-1252 *5))))) +(-10 -7 (-15 -1847 ((-3 (-570) "failed") |#2| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -1847 ((-3 (-570) "failed") |#2| |#1| (-570) (-1 (-3 (-570) "failed") |#1|))) (-15 -1847 ((-3 (-570) "failed") |#2| |#1| (-1 (-3 (-570) "failed") |#1|)))) +((-2744 (($ $ $) 84)) (-2555 (((-424 $) $) 52)) (-4382 (((-3 (-570) "failed") $) 64)) (-3152 (((-570) $) 42)) (-3369 (((-3 (-413 (-570)) "failed") $) 79)) (-3108 (((-112) $) 26)) (-3875 (((-413 (-570)) $) 77)) (-3701 (((-112) $) 55)) (-1991 (($ $ $ $) 92)) (-2135 (((-112) $) 17)) (-2375 (($ $ $) 62)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 74)) (-3641 (((-3 $ "failed") $) 69)) (-2609 (($ $) 24)) (-2078 (($ $ $) 90)) (-2310 (($) 65)) (-3067 (($ $) 58)) (-3801 (((-424 $) $) 50)) (-3699 (((-112) $) 15)) (-3788 (((-777) $) 32)) (-3519 (($ $ (-777)) NIL) (($ $) 11)) (-3964 (($ $) 18)) (-1411 (((-570) $) NIL) (((-542) $) 41) (((-899 (-570)) $) 45) (((-384) $) 35) (((-227) $) 38)) (-2862 (((-777)) 9)) (-3767 (((-112) $ $) 21)) (-3755 (($ $ $) 60))) +(((-550 |#1|) (-10 -8 (-15 -2078 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#1| |#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -2744 (|#1| |#1| |#1|)) (-15 -3767 ((-112) |#1| |#1|)) (-15 -3699 ((-112) |#1|)) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -1411 ((-227) |#1|)) (-15 -1411 ((-384) |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -1411 ((-570) |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -2135 ((-112) |#1|)) (-15 -3788 ((-777) |#1|)) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3701 ((-112) |#1|)) (-15 -2862 ((-777)))) (-551)) (T -550)) +((-2862 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-550 *3)) (-4 *3 (-551))))) +(-10 -8 (-15 -2078 (|#1| |#1| |#1|)) (-15 -1991 (|#1| |#1| |#1| |#1|)) (-15 -2609 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -2744 (|#1| |#1| |#1|)) (-15 -3767 ((-112) |#1| |#1|)) (-15 -3699 ((-112) |#1|)) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -1411 ((-227) |#1|)) (-15 -1411 ((-384) |#1|)) (-15 -2375 (|#1| |#1| |#1|)) (-15 -3067 (|#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -1411 ((-570) |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -2135 ((-112) |#1|)) (-15 -3788 ((-777) |#1|)) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3701 ((-112) |#1|)) (-15 -2862 ((-777)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2744 (($ $ $) 90)) (-2620 (((-3 $ "failed") $ $) 20)) (-4233 (($ $ $ $) 79)) (-3696 (($ $) 57)) (-2555 (((-424 $) $) 58)) (-4073 (((-112) $ $) 130)) (-2579 (((-570) $) 119)) (-3086 (($ $ $) 93)) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 111)) (-3152 (((-570) $) 112)) (-2372 (($ $ $) 134)) (-2004 (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 109) (((-695 (-570)) (-695 $)) 108)) (-2229 (((-3 $ "failed") $) 37)) (-3369 (((-3 (-413 (-570)) "failed") $) 87)) (-3108 (((-112) $) 89)) (-3875 (((-413 (-570)) $) 88)) (-3408 (($) 86) (($ $) 85)) (-2380 (($ $ $) 133)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 128)) (-3701 (((-112) $) 59)) (-1991 (($ $ $ $) 77)) (-2378 (($ $ $) 91)) (-2135 (((-112) $) 121)) (-2375 (($ $ $) 102)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 105)) (-2481 (((-112) $) 35)) (-2639 (((-112) $) 97)) (-3641 (((-3 $ "failed") $) 99)) (-3367 (((-112) $) 120)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 137)) (-2170 (($ $ $ $) 78)) (-3382 (($ $ $) 122)) (-2876 (($ $ $) 123)) (-2609 (($ $) 81)) (-3847 (($ $) 94)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-2078 (($ $ $) 76)) (-2310 (($) 98 T CONST)) (-3595 (($ $) 83)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3067 (($ $) 103)) (-3801 (((-424 $) $) 56)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 135)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 129)) (-3699 (((-112) $) 96)) (-3788 (((-777) $) 131)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 132)) (-3519 (($ $ (-777)) 116) (($ $) 114)) (-2435 (($ $) 82)) (-3964 (($ $) 84)) (-1411 (((-570) $) 113) (((-542) $) 107) (((-899 (-570)) $) 106) (((-384) $) 101) (((-227) $) 100)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-570)) 110)) (-2862 (((-777)) 32 T CONST)) (-3767 (((-112) $ $) 92)) (-3755 (($ $ $) 104)) (-1319 (((-112) $ $) 9)) (-4364 (($) 95)) (-3258 (((-112) $ $) 45)) (-4078 (($ $ $ $) 80)) (-2216 (($ $) 118)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-777)) 117) (($ $) 115)) (-2981 (((-112) $ $) 125)) (-2959 (((-112) $ $) 126)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 124)) (-2948 (((-112) $ $) 127)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-551) (-141)) (T -551)) +((-2639 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-4364 (*1 *1) (-4 *1 (-551))) (-3847 (*1 *1 *1) (-4 *1 (-551))) (-3086 (*1 *1 *1 *1) (-4 *1 (-551))) (-3767 (*1 *2 *1 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-2378 (*1 *1 *1 *1) (-4 *1 (-551))) (-2744 (*1 *1 *1 *1) (-4 *1 (-551))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-413 (-570))))) (-3369 (*1 *2 *1) (|partial| -12 (-4 *1 (-551)) (-5 *2 (-413 (-570))))) (-3408 (*1 *1) (-4 *1 (-551))) (-3408 (*1 *1 *1) (-4 *1 (-551))) (-3964 (*1 *1 *1) (-4 *1 (-551))) (-3595 (*1 *1 *1) (-4 *1 (-551))) (-2435 (*1 *1 *1) (-4 *1 (-551))) (-2609 (*1 *1 *1) (-4 *1 (-551))) (-4078 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-4233 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-2170 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-1991 (*1 *1 *1 *1 *1) (-4 *1 (-551))) (-2078 (*1 *1 *1 *1) (-4 *1 (-551)))) +(-13 (-1230) (-311) (-826) (-235) (-620 (-570)) (-1047 (-570)) (-645 (-570)) (-620 (-542)) (-620 (-899 (-570))) (-893 (-570)) (-144) (-1031) (-148) (-1161) (-10 -8 (-15 -2639 ((-112) $)) (-15 -3699 ((-112) $)) (-6 -4447) (-15 -4364 ($)) (-15 -3847 ($ $)) (-15 -3086 ($ $ $)) (-15 -3767 ((-112) $ $)) (-15 -2378 ($ $ $)) (-15 -2744 ($ $ $)) (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $)) (-15 -3408 ($)) (-15 -3408 ($ $)) (-15 -3964 ($ $)) (-15 -3595 ($ $)) (-15 -2435 ($ $)) (-15 -2609 ($ $)) (-15 -4078 ($ $ $ $)) (-15 -4233 ($ $ $ $)) (-15 -2170 ($ $ $ $)) (-15 -1991 ($ $ $ $)) (-15 -2078 ($ $ $)) (-6 -4446))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-144) . T) ((-174) . T) ((-620 (-227)) . T) ((-620 (-384)) . T) ((-620 (-542)) . T) ((-620 (-570)) . T) ((-620 (-899 (-570))) . T) ((-235) . T) ((-294) . T) ((-311) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-645 (-570)) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-826) . T) ((-854) . T) ((-856) . T) ((-893 (-570)) . T) ((-927) . T) ((-1031) . T) ((-1047 (-570)) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) . T) ((-1230) . T)) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-552) (-13 (-850) (-10 -8 (-15 -3734 ($) -3711)))) (T -552)) +((-3734 (*1 *1) (-5 *1 (-552)))) +(-13 (-850) (-10 -8 (-15 -3734 ($) -3711))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-552) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -552)) -((-4427 (*1 *1) (-5 *1 (-552)))) -(-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-553) (-13 (-850) (-10 -8 (-15 -3734 ($) -3711)))) (T -553)) +((-3734 (*1 *1) (-5 *1 (-553)))) +(-13 (-850) (-10 -8 (-15 -3734 ($) -3711))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-553) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -553)) -((-4427 (*1 *1) (-5 *1 (-553)))) -(-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-554) (-13 (-850) (-10 -8 (-15 -3734 ($) -3711)))) (T -554)) +((-3734 (*1 *1) (-5 *1 (-554)))) +(-13 (-850) (-10 -8 (-15 -3734 ($) -3711))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-554) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709)))) (T -554)) -((-4427 (*1 *1) (-5 *1 (-554)))) -(-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-555) (-13 (-850) (-10 -8 (-15 -3734 ($) -3711)))) (T -555)) +((-3734 (*1 *1) (-5 *1 (-555)))) +(-13 (-850) (-10 -8 (-15 -3734 ($) -3711))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-555 |#1| |#2| |#3|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447)))) (T -555)) -NIL -(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) -((-2244 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1181 |#2|) (-1181 |#2|))) 50))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2244 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1181 |#2|) (-1181 |#2|))))) (-561) (-13 (-27) (-435 |#1|))) (T -556)) -((-2244 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1181 *3) (-1181 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3)) (-5 *1 (-556 *6 *3))))) -(-10 -7 (-15 -2244 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-1 (-1181 |#2|) (-1181 |#2|))))) -((-3726 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2191 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-4189 (((-591 |#5|) |#5| (-1 |#3| |#3|)) 222))) -(((-557 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4189 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3726 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2191 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-561) (-1046 (-569))) (-13 (-27) (-435 |#1|)) (-1251 |#2|) (-1251 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -557)) -((-2191 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *7 (-1251 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) (-4 *2 (-346 *5 *6 *7)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8)))) (-4189 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3)) (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8))))) -(-10 -7 (-15 -4189 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3726 ((-591 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2191 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-1983 (((-112) (-569) (-569)) 12)) (-1880 (((-569) (-569)) 7)) (-3432 (((-569) (-569) (-569)) 10))) -(((-558) (-10 -7 (-15 -1880 ((-569) (-569))) (-15 -3432 ((-569) (-569) (-569))) (-15 -1983 ((-112) (-569) (-569))))) (T -558)) -((-1983 (*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558)))) (-3432 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558)))) (-1880 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558))))) -(-10 -7 (-15 -1880 ((-569) (-569))) (-15 -3432 ((-569) (-569) (-569))) (-15 -1983 ((-112) (-569) (-569)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3485 ((|#1| $) 67)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2771 (($ $) 97)) (-2626 (($ $) 80)) (-3151 ((|#1| $) 68)) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $) 79)) (-2746 (($ $) 96)) (-2601 (($ $) 81)) (-4118 (($ $) 95)) (-2647 (($ $) 82)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 75)) (-3150 (((-569) $) 76)) (-3086 (((-3 $ "failed") $) 37)) (-1659 (($ |#1| |#1|) 72)) (-3712 (((-112) $) 66)) (-1312 (($) 107)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 78)) (-2051 (((-112) $) 65)) (-3380 (($ $ $) 113)) (-2839 (($ $ $) 112)) (-2662 (($ $) 104)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3294 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-412 (-569))) 70)) (-3078 ((|#1| $) 69)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2407 (((-3 $ "failed") $ $) 48)) (-4389 (($ $) 105)) (-4128 (($ $) 94)) (-2661 (($ $) 83)) (-2783 (($ $) 93)) (-2635 (($ $) 84)) (-2758 (($ $) 92)) (-2614 (($ $) 85)) (-3422 (((-112) $ |#1|) 64)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-569)) 74)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 103)) (-2701 (($ $) 91)) (-2664 (((-112) $ $) 45)) (-4140 (($ $) 102)) (-2675 (($ $) 90)) (-4183 (($ $) 101)) (-2723 (($ $) 89)) (-1503 (($ $) 100)) (-2734 (($ $) 88)) (-4175 (($ $) 99)) (-2712 (($ $) 87)) (-4151 (($ $) 98)) (-2689 (($ $) 86)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 110)) (-2956 (((-112) $ $) 109)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 111)) (-2944 (((-112) $ $) 108)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106) (($ $ (-412 (-569))) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-559 |#1|) (-140) (-13 (-409) (-1210))) (T -559)) -((-3294 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-1659 (*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3294 (*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))))) (-3078 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3151 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))) (-3422 (*1 *2 *1 *3) (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112))))) -(-13 (-457) (-855) (-1210) (-1010) (-1046 (-569)) (-10 -8 (-6 -3091) (-15 -3294 ($ |t#1| |t#1|)) (-15 -1659 ($ |t#1| |t#1|)) (-15 -3294 ($ |t#1|)) (-15 -3294 ($ (-412 (-569)))) (-15 -3078 (|t#1| $)) (-15 -3151 (|t#1| $)) (-15 -3485 (|t#1| $)) (-15 -3712 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3422 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-287) . T) ((-293) . T) ((-457) . T) ((-498) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-855) . T) ((-1010) . T) ((-1046 (-569)) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) . T) ((-1213) . T)) -((-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 9)) (-4355 (($ $) 11)) (-3039 (((-112) $) 20)) (-3086 (((-3 $ "failed") $) 16)) (-2664 (((-112) $ $) 22))) -(((-560 |#1|) (-10 -8 (-15 -3039 ((-112) |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|))) (-561)) (T -560)) -NIL -(-10 -8 (-15 -3039 ((-112) |#1|)) (-15 -2664 ((-112) |#1| |#1|)) (-15 -4355 (|#1| |#1|)) (-15 -2194 ((-2 (|:| -2736 |#1|) (|:| -4434 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-561) (-140)) (T -561)) -((-2407 (*1 *1 *1 *1) (|partial| -4 *1 (-561))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2736 *1) (|:| -4434 *1) (|:| |associate| *1))) (-4 *1 (-561)))) (-4355 (*1 *1 *1) (-4 *1 (-561))) (-2664 (*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112))))) -(-13 (-173) (-38 $) (-293) (-10 -8 (-15 -2407 ((-3 $ "failed") $ $)) (-15 -2194 ((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $)) (-15 -4355 ($ $)) (-15 -2664 ((-112) $ $)) (-15 -3039 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3568 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1185) (-649 |#2|)) 38)) (-1642 (((-591 |#2|) |#2| (-1185)) 63)) (-1986 (((-3 |#2| "failed") |#2| (-1185)) 156)) (-4350 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) (-617 |#2|) (-649 (-617 |#2|))) 159)) (-3912 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) |#2|) 41))) -(((-562 |#1| |#2|) (-10 -7 (-15 -3912 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) |#2|)) (-15 -3568 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1185) (-649 |#2|))) (-15 -1986 ((-3 |#2| "failed") |#2| (-1185))) (-15 -1642 ((-591 |#2|) |#2| (-1185))) (-15 -4350 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) (-617 |#2|) (-649 (-617 |#2|))))) (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -562)) -((-4350 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1185)) (-5 *6 (-649 (-617 *3))) (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *7))) (-4 *7 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-562 *7 *3)))) (-1642 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1986 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3568 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *3)))) (-3912 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(-10 -7 (-15 -3912 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) |#2|)) (-15 -3568 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1185) (-649 |#2|))) (-15 -1986 ((-3 |#2| "failed") |#2| (-1185))) (-15 -1642 ((-591 |#2|) |#2| (-1185))) (-15 -4350 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1185) (-617 |#2|) (-649 (-617 |#2|))))) -((-3764 (((-423 |#1|) |#1|) 19)) (-3800 (((-423 |#1|) |#1|) 34)) (-4022 (((-3 |#1| "failed") |#1|) 51)) (-3309 (((-423 |#1|) |#1|) 64))) -(((-563 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3309 ((-423 |#1|) |#1|)) (-15 -4022 ((-3 |#1| "failed") |#1|))) (-550)) (T -563)) -((-4022 (*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550)))) (-3309 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-3764 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))) -(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -3309 ((-423 |#1|) |#1|)) (-15 -4022 ((-3 |#1| "failed") |#1|))) -((-2644 (($) 9)) (-1621 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 34)) (-2795 (((-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 31)) (-3894 (($ (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-4018 (($ (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2216 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 38)) (-4199 (((-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-4349 (((-1280)) 11))) -(((-564) (-10 -8 (-15 -2644 ($)) (-15 -4349 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -4018 ($ (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1621 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4199 ((-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2216 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -564)) -((-2216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-1621 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-564)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-564)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-564)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-564)))) (-4349 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-564)))) (-2644 (*1 *1) (-5 *1 (-564)))) -(-10 -8 (-15 -2644 ($)) (-15 -4349 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -4018 ($ (-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1621 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -4199 ((-649 (-2 (|:| -2006 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2216 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1165 (-226))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3743 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) -((-3767 (((-1181 (-412 (-1181 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1181 |#2|)) 35)) (-3097 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1181 |#2|)) 115)) (-3658 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 85) (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|)) 55)) (-3449 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1181 |#2|))) 92) (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1181 |#2|)) 114)) (-1573 (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) |#2| (-1181 |#2|)) 116)) (-4335 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))) 135 (|has| |#3| (-661 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|)) 134 (|has| |#3| (-661 |#2|)))) (-1700 ((|#2| (-1181 (-412 (-1181 |#2|))) (-617 |#2|) |#2|) 53)) (-3585 (((-1181 (-412 (-1181 |#2|))) (-1181 |#2|) (-617 |#2|)) 34))) -(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1181 |#2|))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1181 |#2|))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) |#2| (-1181 |#2|))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3767 ((-1181 (-412 (-1181 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1181 |#2|))) (-15 -1700 (|#2| (-1181 (-412 (-1181 |#2|))) (-617 |#2|) |#2|)) (-15 -3585 ((-1181 (-412 (-1181 |#2|))) (-1181 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))))) |%noBranch|)) (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1210)) (-1108)) (T -565)) -((-4335 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1181 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) (-4335 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1181 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) (-3585 (*1 *2 *3 *4) (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1181 (-412 (-1181 *6)))) (-5 *1 (-565 *5 *6 *7)) (-5 *3 (-1181 *6)) (-4 *7 (-1108)))) (-1700 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1181 (-412 (-1181 *2)))) (-5 *4 (-617 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1108)))) (-3767 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-1181 (-412 (-1181 *3)))) (-5 *1 (-565 *6 *3 *7)) (-5 *5 (-1181 *3)) (-4 *7 (-1108)))) (-1573 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-5 *5 (-412 (-1181 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108)))) (-1573 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-5 *5 (-1181 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108)))) (-3097 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108)))) (-3097 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1181 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108)))) (-3449 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) (-3449 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) (-3658 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) (-3658 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108))))) -(-10 -7 (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -3658 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| |#2| (-1181 |#2|))) (-15 -3449 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2| (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) |#2| (-1181 |#2|))) (-15 -3097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) |#2| (-1181 |#2|))) (-15 -1573 ((-3 |#2| "failed") |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)) (-617 |#2|) |#2| (-412 (-1181 |#2|)))) (-15 -3767 ((-1181 (-412 (-1181 |#2|))) |#2| (-617 |#2|) (-617 |#2|) (-1181 |#2|))) (-15 -1700 (|#2| (-1181 (-412 (-1181 |#2|))) (-617 |#2|) |#2|)) (-15 -3585 ((-1181 (-412 (-1181 |#2|))) (-1181 |#2|) (-617 |#2|))) (IF (|has| |#3| (-661 |#2|)) (PROGN (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) |#2| (-1181 |#2|))) (-15 -4335 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-617 |#2|) |#2| (-412 (-1181 |#2|))))) |%noBranch|)) -((-1603 (((-569) (-569) (-776)) 90)) (-3033 (((-569) (-569)) 88)) (-1613 (((-569) (-569)) 86)) (-1927 (((-569) (-569)) 92)) (-4393 (((-569) (-569) (-569)) 70)) (-3345 (((-569) (-569) (-569)) 67)) (-1737 (((-412 (-569)) (-569)) 30)) (-1950 (((-569) (-569)) 36)) (-3334 (((-569) (-569)) 79)) (-2153 (((-569) (-569)) 51)) (-2360 (((-649 (-569)) (-569)) 85)) (-2706 (((-569) (-569) (-569) (-569) (-569)) 63)) (-2616 (((-412 (-569)) (-569)) 60))) -(((-566) (-10 -7 (-15 -2616 ((-412 (-569)) (-569))) (-15 -2706 ((-569) (-569) (-569) (-569) (-569))) (-15 -2360 ((-649 (-569)) (-569))) (-15 -2153 ((-569) (-569))) (-15 -3334 ((-569) (-569))) (-15 -1950 ((-569) (-569))) (-15 -1737 ((-412 (-569)) (-569))) (-15 -3345 ((-569) (-569) (-569))) (-15 -4393 ((-569) (-569) (-569))) (-15 -1927 ((-569) (-569))) (-15 -1613 ((-569) (-569))) (-15 -3033 ((-569) (-569))) (-15 -1603 ((-569) (-569) (-776))))) (T -566)) -((-1603 (*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566)))) (-3033 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1613 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-4393 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3345 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-1737 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2360 (*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) (-2706 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569))))) -(-10 -7 (-15 -2616 ((-412 (-569)) (-569))) (-15 -2706 ((-569) (-569) (-569) (-569) (-569))) (-15 -2360 ((-649 (-569)) (-569))) (-15 -2153 ((-569) (-569))) (-15 -3334 ((-569) (-569))) (-15 -1950 ((-569) (-569))) (-15 -1737 ((-412 (-569)) (-569))) (-15 -3345 ((-569) (-569) (-569))) (-15 -4393 ((-569) (-569) (-569))) (-15 -1927 ((-569) (-569))) (-15 -1613 ((-569) (-569))) (-15 -3033 ((-569) (-569))) (-15 -1603 ((-569) (-569) (-776)))) -((-3250 (((-2 (|:| |answer| |#4|) (|:| -4292 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-567 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3250 ((-2 (|:| |answer| |#4|) (|:| -4292 |#4|)) |#4| (-1 |#2| |#2|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -567)) -((-3250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-4 *7 (-1251 (-412 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4292 *3))) (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7))))) -(-10 -7 (-15 -3250 ((-2 (|:| |answer| |#4|) (|:| -4292 |#4|)) |#4| (-1 |#2| |#2|)))) -((-3250 (((-2 (|:| |answer| (-412 |#2|)) (|:| -4292 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 18))) -(((-568 |#1| |#2|) (-10 -7 (-15 -3250 ((-2 (|:| |answer| (-412 |#2|)) (|:| -4292 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1251 |#1|)) (T -568)) -((-3250 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| (-412 *6)) (|:| -4292 (-412 *6)) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6))))) -(-10 -7 (-15 -3250 ((-2 (|:| |answer| (-412 |#2|)) (|:| -4292 (-412 |#2|)) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 30)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 97)) (-4355 (($ $) 98)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) 52)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) 92)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL)) (-3150 (((-569) $) NIL)) (-2368 (($ $ $) 54)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 77) (((-694 (-569)) (-694 $)) 73)) (-3086 (((-3 $ "failed") $) 94)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($) 79) (($ $) 80)) (-2379 (($ $ $) 91)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) 70)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) 34)) (-2719 (((-112) $) 86)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) 43)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) 55)) (-3380 (($ $ $) 88)) (-2839 (($ $ $) 87)) (-2606 (($ $) NIL)) (-3845 (($ $) 49)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) 69)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-3593 (($ $) 38)) (-3547 (((-1128) $) 42)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 129)) (-1870 (($ $ $) 95) (($ (-649 $)) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) 115)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) 113)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 90)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-2432 (($ $) 40)) (-3962 (($ $) 36)) (-1410 (((-569) $) 48) (((-541) $) 64) (((-898 (-569)) $) NIL) (((-383) $) 58) (((-226) $) 61) (((-1167) $) 66)) (-3796 (((-867) $) 46) (($ (-569)) 47) (($ $) NIL) (($ (-569)) 47)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) 35)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) 51)) (-2271 (($ $) 78)) (-1804 (($) 6 T CONST)) (-1815 (($) 31 T CONST)) (-3266 (((-1167) $) 26) (((-1167) $ (-112)) 27) (((-1280) (-827) $) 28) (((-1280) (-827) $ (-112)) 29)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) 50)) (-2956 (((-112) $ $) 81)) (-2920 (((-112) $ $) 33)) (-2966 (((-112) $ $) 83)) (-2944 (((-112) $ $) 10)) (-3024 (($ $) 16) (($ $ $) 39)) (-3012 (($ $ $) 37)) (** (($ $ (-927)) NIL) (($ $ (-776)) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 84) (($ $ $) 53))) -(((-569) (-13 (-550) (-619 (-1167)) (-833) (-10 -7 (-6 -4434) (-6 -4439) (-6 -4435) (-6 -4429)))) (T -569)) -NIL -(-13 (-550) (-619 (-1167)) (-833) (-10 -7 (-6 -4434) (-6 -4439) (-6 -4435) (-6 -4429))) -((-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774) (-1071)) 119) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774)) 121)) (-3579 (((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1185)) 197) (((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1167)) 196) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383) (-1071)) 201) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383)) 202) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383)) 203) (((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383))))) 204) (((-1043) (-319 (-383)) (-1102 (-848 (-383)))) 192) (((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383)) 191) (((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383)) 187) (((-1043) (-774)) 179) (((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383) (-1071)) 186))) -(((-570) (-10 -7 (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383) (-1071))) (-15 -3579 ((-1043) (-774))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383) (-1071))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774) (-1071))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1167))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1185))))) (T -570)) -((-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-1185)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) (-5 *5 (-1167)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-774)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) (-5 *1 (-570)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1043)) (-5 *1 (-570)))) (-3579 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570))))) -(-10 -7 (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383) (-1071))) (-15 -3579 ((-1043) (-774))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-1102 (-848 (-383))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383))) (-15 -3579 ((-1043) (-319 (-383)) (-649 (-1102 (-848 (-383)))) (-383) (-383) (-1071))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043))) (-774) (-1071))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1167))) (-15 -3579 ((-3 (-1043) "failed") (-319 (-383)) (-1100 (-848 (-383))) (-1185)))) -((-1413 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|)) 198)) (-3098 (((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|)) 99)) (-2862 (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|) 194)) (-2387 (((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185))) 203)) (-4064 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1185)) 212 (|has| |#3| (-661 |#2|))))) -(((-571 |#1| |#2| |#3|) (-10 -7 (-15 -3098 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -2862 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -1413 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -2387 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)))) (IF (|has| |#3| (-661 |#2|)) (-15 -4064 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1185))) |%noBranch|)) (-13 (-457) (-1046 (-569)) (-147) (-644 (-569))) (-13 (-435 |#1|) (-27) (-1210)) (-1108)) (T -571)) -((-4064 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-617 *4)) (-5 *6 (-1185)) (-4 *4 (-13 (-435 *7) (-27) (-1210))) (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) (-2387 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-617 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-4 *2 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1108)))) (-1413 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1108)))) (-2862 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108)))) (-3098 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1210))) (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108))))) -(-10 -7 (-15 -3098 ((-591 |#2|) |#2| (-617 |#2|) (-617 |#2|))) (-15 -2862 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-617 |#2|) (-617 |#2|) |#2|)) (-15 -1413 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-617 |#2|) (-617 |#2|) (-649 |#2|))) (-15 -2387 ((-3 |#2| "failed") |#2| |#2| |#2| (-617 |#2|) (-617 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1185)))) (IF (|has| |#3| (-661 |#2|)) (-15 -4064 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2403 (-649 |#2|))) |#3| |#2| (-617 |#2|) (-617 |#2|) (-1185))) |%noBranch|)) -((-2509 (((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1185)) 64)) (-4087 (((-3 |#2| "failed") |#2| (-1185) (-848 |#2|) (-848 |#2|)) 175 (-12 (|has| |#2| (-1147)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)) 154 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569)))))) (-4414 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)) 156 (-12 (|has| |#2| (-634)) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-892 (-569))))))) -(((-572 |#1| |#2|) (-10 -7 (-15 -2509 ((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -4414 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185))) (-15 -4087 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) (IF (|has| |#2| (-1147)) (-15 -4087 ((-3 |#2| "failed") |#2| (-1185) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1046 (-569)) (-457) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -572)) -((-4087 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1185)) (-5 *4 (-848 *2)) (-4 *2 (-1147)) (-4 *2 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *1 (-572 *5 *2)))) (-4087 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-4414 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-2509 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) (-5 *2 (-2 (|:| -2587 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(-10 -7 (-15 -2509 ((-2 (|:| -2587 |#2|) (|:| |nconst| |#2|)) |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (PROGN (IF (|has| |#2| (-634)) (PROGN (-15 -4414 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185))) (-15 -4087 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) (IF (|has| |#2| (-1147)) (-15 -4087 ((-3 |#2| "failed") |#2| (-1185) (-848 |#2|) (-848 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1395 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))) 41)) (-3579 (((-591 (-412 |#2|)) (-412 |#2|)) 28)) (-2583 (((-3 (-412 |#2|) "failed") (-412 |#2|)) 17)) (-4174 (((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|)) 48))) -(((-573 |#1| |#2|) (-10 -7 (-15 -3579 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -2583 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -1395 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1046 (-569))) (-1251 |#1|)) (T -573)) -((-1395 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *5 *6)))) (-4174 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2679 (-412 *5)) (|:| |coeff| (-412 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))) (-2583 (*1 *2 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147) (-1046 (-569)))) (-5 *1 (-573 *3 *4)))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5))))) -(-10 -7 (-15 -3579 ((-591 (-412 |#2|)) (-412 |#2|))) (-15 -2583 ((-3 (-412 |#2|) "failed") (-412 |#2|))) (-15 -4174 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-412 |#2|))) (-15 -1395 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-649 (-412 |#2|))))) -((-4282 (((-3 (-569) "failed") |#1|) 14)) (-3605 (((-112) |#1|) 13)) (-1433 (((-569) |#1|) 9))) -(((-574 |#1|) (-10 -7 (-15 -1433 ((-569) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -4282 ((-3 (-569) "failed") |#1|))) (-1046 (-569))) (T -574)) -((-4282 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1046 (-569))))) (-1433 (*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2))))) -(-10 -7 (-15 -1433 ((-569) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -4282 ((-3 (-569) "failed") |#1|))) -((-3710 (((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1185) (-649 (-412 (-958 |#1|)))) 48)) (-2693 (((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1185)) 28)) (-4088 (((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1185)) 23)) (-2176 (((-3 (-2 (|:| -2679 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))) 35))) -(((-575 |#1|) (-10 -7 (-15 -2693 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -4088 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1185))) (-15 -3710 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1185) (-649 (-412 (-958 |#1|))))) (-15 -2176 ((-3 (-2 (|:| -2679 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))))) (-13 (-561) (-1046 (-569)) (-147))) (T -575)) -((-2176 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-147))) (-5 *2 (-2 (|:| -2679 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5))))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5))))) (-3710 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-13 (-561) (-1046 (-569)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *6)))) (-4088 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-147))) (-5 *1 (-575 *4)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-147))) (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5)))))) -(-10 -7 (-15 -2693 ((-591 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -4088 ((-3 (-412 (-958 |#1|)) "failed") (-412 (-958 |#1|)) (-1185))) (-15 -3710 ((-3 (-2 (|:| |mainpart| (-412 (-958 |#1|))) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 (-958 |#1|))) (|:| |logand| (-412 (-958 |#1|))))))) "failed") (-412 (-958 |#1|)) (-1185) (-649 (-412 (-958 |#1|))))) (-15 -2176 ((-3 (-2 (|:| -2679 (-412 (-958 |#1|))) (|:| |coeff| (-412 (-958 |#1|)))) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))))) -((-2417 (((-112) $ $) 75)) (-4143 (((-112) $) 48)) (-3485 ((|#1| $) 39)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) 79)) (-2771 (($ $) 139)) (-2626 (($ $) 118)) (-3151 ((|#1| $) 37)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL)) (-2746 (($ $) 141)) (-2601 (($ $) 114)) (-4118 (($ $) 143)) (-2647 (($ $) 122)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) 93)) (-3150 (((-569) $) 95)) (-3086 (((-3 $ "failed") $) 78)) (-1659 (($ |#1| |#1|) 35)) (-3712 (((-112) $) 44)) (-1312 (($) 104)) (-2349 (((-112) $) 55)) (-3742 (($ $ (-569)) NIL)) (-2051 (((-112) $) 45)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2662 (($ $) 106)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3294 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-412 (-569))) 92)) (-3078 ((|#1| $) 36)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) 81) (($ (-649 $)) NIL)) (-2407 (((-3 $ "failed") $ $) 80)) (-4389 (($ $) 108)) (-4128 (($ $) 147)) (-2661 (($ $) 120)) (-2783 (($ $) 149)) (-2635 (($ $) 124)) (-2758 (($ $) 145)) (-2614 (($ $) 116)) (-3422 (((-112) $ |#1|) 42)) (-3796 (((-867) $) 100) (($ (-569)) 83) (($ $) NIL) (($ (-569)) 83)) (-2721 (((-776)) 102 T CONST)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 161)) (-2701 (($ $) 130)) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) 159)) (-2675 (($ $) 126)) (-4183 (($ $) 157)) (-2723 (($ $) 137)) (-1503 (($ $) 155)) (-2734 (($ $) 135)) (-4175 (($ $) 153)) (-2712 (($ $) 132)) (-4151 (($ $) 151)) (-2689 (($ $) 128)) (-1804 (($) 30 T CONST)) (-1815 (($) 10 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 49)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 47)) (-3024 (($ $) 53) (($ $ $) 54)) (-3012 (($ $ $) 52)) (** (($ $ (-927)) 71) (($ $ (-776)) NIL) (($ $ $) 110) (($ $ (-412 (-569))) 163)) (* (($ (-927) $) 66) (($ (-776) $) NIL) (($ (-569) $) 65) (($ $ $) 61))) -(((-576 |#1|) (-559 |#1|) (-13 (-409) (-1210))) (T -576)) -NIL -(-559 |#1|) -((-3466 (((-3 (-649 (-1181 (-569))) "failed") (-649 (-1181 (-569))) (-1181 (-569))) 27))) -(((-577) (-10 -7 (-15 -3466 ((-3 (-649 (-1181 (-569))) "failed") (-649 (-1181 (-569))) (-1181 (-569)))))) (T -577)) -((-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 (-569)))) (-5 *3 (-1181 (-569))) (-5 *1 (-577))))) -(-10 -7 (-15 -3466 ((-3 (-649 (-1181 (-569))) "failed") (-649 (-1181 (-569))) (-1181 (-569))))) -((-3861 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1185)) 19)) (-2651 (((-649 (-617 |#2|)) (-649 |#2|) (-1185)) 23)) (-3969 (((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|))) 11)) (-3632 ((|#2| |#2| (-1185)) 59 (|has| |#1| (-561)))) (-2008 ((|#2| |#2| (-1185)) 87 (-12 (|has| |#2| (-287)) (|has| |#1| (-457))))) (-3119 (((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1185)) 25)) (-3523 (((-617 |#2|) (-649 (-617 |#2|))) 24)) (-1667 (((-591 |#2|) |#2| (-1185) (-1 (-591 |#2|) |#2| (-1185)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185))) 115 (-12 (|has| |#2| (-287)) (|has| |#2| (-634)) (|has| |#2| (-1046 (-1185))) (|has| |#1| (-619 (-898 (-569)))) (|has| |#1| (-457)) (|has| |#1| (-892 (-569))))))) -(((-578 |#1| |#2|) (-10 -7 (-15 -3861 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1185))) (-15 -3523 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -3119 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1185))) (-15 -3969 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -2651 ((-649 (-617 |#2|)) (-649 |#2|) (-1185))) (IF (|has| |#1| (-561)) (-15 -3632 (|#2| |#2| (-1185))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -2008 (|#2| |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1667 ((-591 |#2|) |#2| (-1185) (-1 (-591 |#2|) |#2| (-1185)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1108) (-435 |#1|)) (T -578)) -((-1667 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-591 *3) *3 (-1185))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1185))) (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1046 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1185)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457)) (-4 *7 (-892 (-569))) (-4 *7 (-1108)) (-5 *2 (-591 *3)) (-5 *1 (-578 *7 *3)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-457)) (-4 *4 (-1108)) (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4)))) (-3632 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-4 *4 (-1108)) (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-1185)) (-4 *6 (-435 *5)) (-4 *5 (-1108)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6)))) (-3969 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1108)) (-5 *1 (-578 *3 *4)))) (-3119 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1185)) (-5 *2 (-617 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1108)) (-5 *1 (-578 *5 *6)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1108)) (-5 *2 (-617 *5)) (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4)))) (-3861 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1185)) (-4 *5 (-435 *4)) (-4 *4 (-1108)) (-5 *1 (-578 *4 *5))))) -(-10 -7 (-15 -3861 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-1185))) (-15 -3523 ((-617 |#2|) (-649 (-617 |#2|)))) (-15 -3119 ((-617 |#2|) (-617 |#2|) (-649 (-617 |#2|)) (-1185))) (-15 -3969 ((-649 (-617 |#2|)) (-649 (-617 |#2|)) (-649 (-617 |#2|)))) (-15 -2651 ((-649 (-617 |#2|)) (-649 |#2|) (-1185))) (IF (|has| |#1| (-561)) (-15 -3632 (|#2| |#2| (-1185))) |%noBranch|) (IF (|has| |#1| (-457)) (IF (|has| |#2| (-287)) (PROGN (-15 -2008 (|#2| |#2| (-1185))) (IF (|has| |#1| (-619 (-898 (-569)))) (IF (|has| |#1| (-892 (-569))) (IF (|has| |#2| (-634)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1667 ((-591 |#2|) |#2| (-1185) (-1 (-591 |#2|) |#2| (-1185)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1185)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1424 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|)) 201)) (-3922 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|))) 176)) (-3929 (((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|))) 173)) (-1789 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 164)) (-3203 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-2295 (((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|)) 204)) (-2429 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|)) 207)) (-2994 (((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|)) 88)) (-1450 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2499 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|))) 180)) (-3302 (((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 168)) (-2857 (((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|)) 191)) (-1939 (((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|)) 212))) -(((-579 |#1| |#2|) (-10 -7 (-15 -3203 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2857 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -1424 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -2429 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -1939 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -3922 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -2499 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -2295 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -3929 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -1789 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3302 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2994 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1450 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-367) (-1251 |#1|)) (T -579)) -((-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-579 *5 *3)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-3302 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-628 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112))) (-569) *4)) (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *1 (-579 *4 *5)))) (-1789 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1251 *4)))) (-3929 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7))) (-4 *7 (-1251 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-579 *6 *7)))) (-2295 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -2679 (-412 *6)) (|:| |coeff| (-412 *6)))) (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6)))) (-2499 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4410 *7) (|:| |sol?| (-112))) (-569) *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-3922 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2679 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7)) (-5 *3 (-412 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-579 *7 *8)))) (-1939 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2429 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-1424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-2857 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569) *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7))))) -(-10 -7 (-15 -3203 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2857 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -1424 ((-2 (|:| |answer| (-591 (-412 |#2|))) (|:| |a0| |#1|)) (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-649 |#1|) "failed") (-569) |#1| |#1|))) (-15 -2429 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-412 |#2|))) (-15 -1939 ((-3 (-2 (|:| |answer| (-412 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-412 |#2|))) (-15 -3922 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-649 (-412 |#2|)))) (-15 -2499 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|))))))) (|:| |a0| |#1|)) "failed") (-412 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|) (-649 (-412 |#2|)))) (-15 -2295 ((-3 (-2 (|:| -2679 (-412 |#2|)) (|:| |coeff| (-412 |#2|))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-412 |#2|))) (-15 -3929 ((-3 (-2 (|:| |mainpart| (-412 |#2|)) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| (-412 |#2|)) (|:| |logand| (-412 |#2|)))))) "failed") (-412 |#2|) (-1 |#2| |#2|) (-649 (-412 |#2|)))) (-15 -1789 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3302 ((-3 (-628 |#1| |#2|) "failed") (-628 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4410 |#1|) (|:| |sol?| (-112))) (-569) |#1|))) (-15 -2994 ((-2 (|:| |ir| (-591 (-412 |#2|))) (|:| |specpart| (-412 |#2|)) (|:| |polypart| |#2|)) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1450 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-4227 (((-3 |#2| "failed") |#2| (-1185) (-1185)) 10))) -(((-580 |#1| |#2|) (-10 -7 (-15 -4227 ((-3 |#2| "failed") |#2| (-1185) (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-1147) (-29 |#1|))) (T -580)) -((-4227 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-580 *4 *2)) (-4 *2 (-13 (-1210) (-965) (-1147) (-29 *4)))))) -(-10 -7 (-15 -4227 ((-3 |#2| "failed") |#2| (-1185) (-1185)))) -((-2641 (((-696 (-1233)) $ (-1233)) 26)) (-2283 (((-696 (-554)) $ (-554)) 25)) (-2340 (((-776) $ (-128)) 27)) (-3998 (((-696 (-129)) $ (-129)) 24)) (-3694 (((-696 (-1233)) $) 12)) (-1690 (((-696 (-1231)) $) 8)) (-1979 (((-696 (-1230)) $) 10)) (-1389 (((-696 (-554)) $) 13)) (-3281 (((-696 (-552)) $) 9)) (-1933 (((-696 (-551)) $) 11)) (-3732 (((-776) $ (-128)) 7)) (-3171 (((-696 (-129)) $) 14)) (-2543 (($ $) 6))) -(((-581) (-140)) (T -581)) -NIL -(-13 (-532) (-865)) -(((-174) . T) ((-532) . T) ((-865) . T)) -((-2641 (((-696 (-1233)) $ (-1233)) NIL)) (-2283 (((-696 (-554)) $ (-554)) NIL)) (-2340 (((-776) $ (-128)) NIL)) (-3998 (((-696 (-129)) $ (-129)) NIL)) (-3694 (((-696 (-1233)) $) NIL)) (-1690 (((-696 (-1231)) $) NIL)) (-1979 (((-696 (-1230)) $) NIL)) (-1389 (((-696 (-554)) $) NIL)) (-3281 (((-696 (-552)) $) NIL)) (-1933 (((-696 (-551)) $) NIL)) (-3732 (((-776) $ (-128)) NIL)) (-3171 (((-696 (-129)) $) NIL)) (-3771 (((-112) $) NIL)) (-2573 (($ (-393)) 14) (($ (-1167)) 16)) (-3796 (((-867) $) NIL)) (-2543 (($ $) NIL))) -(((-582) (-13 (-581) (-618 (-867)) (-10 -8 (-15 -2573 ($ (-393))) (-15 -2573 ($ (-1167))) (-15 -3771 ((-112) $))))) (T -582)) -((-2573 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-582)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582))))) -(-13 (-581) (-618 (-867)) (-10 -8 (-15 -2573 ($ (-393))) (-15 -2573 ($ (-1167))) (-15 -3771 ((-112) $)))) -((-2417 (((-112) $ $) NIL)) (-1871 (($) 7 T CONST)) (-3435 (((-1167) $) NIL)) (-4207 (($) 6 T CONST)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15)) (-3595 (($) 9 T CONST)) (-1399 (($) 8 T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11))) -(((-583) (-13 (-1108) (-10 -8 (-15 -4207 ($) -3709) (-15 -1871 ($) -3709) (-15 -1399 ($) -3709) (-15 -3595 ($) -3709)))) (T -583)) -((-4207 (*1 *1) (-5 *1 (-583))) (-1871 (*1 *1) (-5 *1 (-583))) (-1399 (*1 *1) (-5 *1 (-583))) (-3595 (*1 *1) (-5 *1 (-583)))) -(-13 (-1108) (-10 -8 (-15 -4207 ($) -3709) (-15 -1871 ($) -3709) (-15 -1399 ($) -3709) (-15 -3595 ($) -3709))) -((-2417 (((-112) $ $) NIL)) (-2940 (((-696 $) (-496)) 21)) (-3435 (((-1167) $) NIL)) (-2710 (($ (-1167)) 14)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 34)) (-4220 (((-214 4 (-129)) $) 24)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 26))) -(((-584) (-13 (-1108) (-10 -8 (-15 -2710 ($ (-1167))) (-15 -4220 ((-214 4 (-129)) $)) (-15 -2940 ((-696 $) (-496)))))) (T -584)) -((-2710 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-584)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584))))) -(-13 (-1108) (-10 -8 (-15 -2710 ($ (-1167))) (-15 -4220 ((-214 4 (-129)) $)) (-15 -2940 ((-696 $) (-496))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-569)) 77)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1978 (($ (-1181 (-569)) (-569)) 83)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 68)) (-4337 (($ $) 43)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1466 (((-776) $) 16)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 (((-569)) 37)) (-4074 (((-569) $) 41)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3166 (($ $ (-569)) 24)) (-2407 (((-3 $ "failed") $ $) 73)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) 17)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 74)) (-2171 (((-1165 (-569)) $) 19)) (-2007 (($ $) 26)) (-3796 (((-867) $) 104) (($ (-569)) 63) (($ $) NIL)) (-2721 (((-776)) 15 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-569) $ (-569)) 46)) (-1804 (($) 44 T CONST)) (-1815 (($) 21 T CONST)) (-2920 (((-112) $ $) 54)) (-3024 (($ $) 62) (($ $ $) 48)) (-3012 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 64) (($ $ $) 65))) -(((-585 |#1| |#2|) (-874 |#1|) (-569) (-112)) (T -585)) -NIL -(-874 |#1|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 30)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) 59)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 $ "failed") $) 95)) (-3150 (($ $) 94)) (-2247 (($ (-1275 $)) 93)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 44)) (-3406 (($) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) 61)) (-2807 (((-112) $) NIL)) (-3701 (($ $) NIL) (($ $ (-776)) NIL)) (-1473 (((-112) $) NIL)) (-1466 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2349 (((-112) $) NIL)) (-2155 (($) 49 (|has| $ (-372)))) (-2483 (((-112) $) NIL (|has| $ (-372)))) (-3829 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 $) $ (-927)) NIL (|has| $ (-372))) (((-1181 $) $) 104)) (-2731 (((-927) $) 67)) (-3775 (((-1181 $) $) NIL (|has| $ (-372)))) (-4119 (((-3 (-1181 $) "failed") $ $) NIL (|has| $ (-372))) (((-1181 $) $) NIL (|has| $ (-372)))) (-4384 (($ $ (-1181 $)) NIL (|has| $ (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL T CONST)) (-2150 (($ (-927)) 60)) (-3020 (((-112) $) 87)) (-3547 (((-1128) $) NIL)) (-2332 (($) 28 (|has| $ (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 54)) (-3800 (((-423 $) $) NIL)) (-1898 (((-927)) 86) (((-838 (-927))) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-2377 (((-134)) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-4339 (((-927) $) 85) (((-838 (-927)) $) NIL)) (-4061 (((-1181 $)) 102)) (-4234 (($) 66)) (-4110 (($) 50 (|has| $ (-372)))) (-2415 (((-694 $) (-1275 $)) NIL) (((-1275 $) $) 91)) (-1410 (((-569) $) 40)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) 42) (($ $) NIL) (($ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2721 (((-776)) 51 T CONST)) (-1520 (((-112) $ $) 107)) (-2403 (((-1275 $) (-927)) 97) (((-1275 $)) 96)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) 31 T CONST)) (-1815 (($) 27 T CONST)) (-1679 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 34)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 81) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-586 |#1|) (-13 (-353) (-332 $) (-619 (-569))) (-927)) (T -586)) -NIL -(-13 (-353) (-332 $) (-619 (-569))) -((-1343 (((-1280) (-1167)) 10))) -(((-587) (-10 -7 (-15 -1343 ((-1280) (-1167))))) (T -587)) -((-1343 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-587))))) -(-10 -7 (-15 -1343 ((-1280) (-1167)))) -((-2241 (((-591 |#2|) (-591 |#2|)) 42)) (-1380 (((-649 |#2|) (-591 |#2|)) 44)) (-3888 ((|#2| (-591 |#2|)) 50))) -(((-588 |#1| |#2|) (-10 -7 (-15 -2241 ((-591 |#2|) (-591 |#2|))) (-15 -1380 ((-649 |#2|) (-591 |#2|))) (-15 -3888 (|#2| (-591 |#2|)))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-29 |#1|) (-1210))) (T -588)) -((-3888 (*1 *2 *3) (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1210))) (-5 *1 (-588 *4 *2)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1210))) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-649 *5)) (-5 *1 (-588 *4 *5)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1210))) (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-588 *3 *4))))) -(-10 -7 (-15 -2241 ((-591 |#2|) (-591 |#2|))) (-15 -1380 ((-649 |#2|) (-591 |#2|))) (-15 -3888 (|#2| (-591 |#2|)))) -((-1346 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|)) 30))) -(((-589 |#1| |#2|) (-10 -7 (-15 -1346 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1346 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1346 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1346 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-367) (-367)) (T -589)) -((-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-589 *5 *6)))) (-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2)))) (-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2679 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-2 (|:| -2679 *6) (|:| |coeff| *6))) (-5 *1 (-589 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367)) (-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6))))) -(-10 -7 (-15 -1346 ((-591 |#2|) (-1 |#2| |#1|) (-591 |#1|))) (-15 -1346 ((-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2679 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1346 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1346 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3430 (($ (-511) (-602)) 14)) (-4134 (($ (-511) (-602) $) 16)) (-2625 (($ (-511) (-602)) 15)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) 7) (((-1190) $) 6)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-590) (-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -3430 ($ (-511) (-602))) (-15 -2625 ($ (-511) (-602))) (-15 -4134 ($ (-511) (-602) $))))) (T -590)) -((-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-2625 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590)))) (-4134 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590))))) -(-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -3430 ($ (-511) (-602))) (-15 -2625 ($ (-511) (-602))) (-15 -4134 ($ (-511) (-602) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 76)) (-3150 ((|#1| $) NIL)) (-2679 ((|#1| $) 30)) (-2775 (((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2405 (($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4292 (((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) $) 31)) (-3435 (((-1167) $) NIL)) (-3898 (($ |#1| |#1|) 38) (($ |#1| (-1185)) 49 (|has| |#1| (-1046 (-1185))))) (-3547 (((-1128) $) NIL)) (-4242 (((-112) $) 35)) (-3517 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1185)) 89 (|has| |#1| (-906 (-1185))))) (-3796 (((-867) $) 112) (($ |#1|) 29)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 18 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) 17) (($ $ $) NIL)) (-3012 (($ $ $) 85)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 16) (($ (-412 (-569)) $) 41) (($ $ (-412 (-569))) NIL))) -(((-591 |#1|) (-13 (-722 (-412 (-569))) (-1046 |#1|) (-10 -8 (-15 -2405 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2679 (|#1| $)) (-15 -4292 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) $)) (-15 -2775 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4242 ((-112) $)) (-15 -3898 ($ |#1| |#1|)) (-15 -3517 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1185))) (-15 -3517 (|#1| $ (-1185))) |%noBranch|) (IF (|has| |#1| (-1046 (-1185))) (-15 -3898 ($ |#1| (-1185))) |%noBranch|))) (-367)) (T -591)) -((-2405 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *2)) (|:| |logand| (-1181 *2))))) (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-367)) (-5 *1 (-591 *2)))) (-2679 (*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *3)) (|:| |logand| (-1181 *3))))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367)))) (-3898 (*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3517 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367)))) (-3517 (*1 *2 *1 *3) (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2)) (-5 *3 (-1185)))) (-3898 (*1 *1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *1 (-591 *2)) (-4 *2 (-1046 *3)) (-4 *2 (-367))))) -(-13 (-722 (-412 (-569))) (-1046 |#1|) (-10 -8 (-15 -2405 ($ |#1| (-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) (-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2679 (|#1| $)) (-15 -4292 ((-649 (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 |#1|)) (|:| |logand| (-1181 |#1|)))) $)) (-15 -2775 ((-649 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4242 ((-112) $)) (-15 -3898 ($ |#1| |#1|)) (-15 -3517 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-906 (-1185))) (-15 -3517 (|#1| $ (-1185))) |%noBranch|) (IF (|has| |#1| (-1046 (-1185))) (-15 -3898 ($ |#1| (-1185))) |%noBranch|))) -((-3756 (((-112) |#1|) 16)) (-3270 (((-3 |#1| "failed") |#1|) 14)) (-2677 (((-2 (|:| -4363 |#1|) (|:| -1993 (-776))) |#1|) 39) (((-3 |#1| "failed") |#1| (-776)) 18)) (-1884 (((-112) |#1| (-776)) 19)) (-2826 ((|#1| |#1|) 43)) (-2222 ((|#1| |#1| (-776)) 46))) -(((-592 |#1|) (-10 -7 (-15 -1884 ((-112) |#1| (-776))) (-15 -2677 ((-3 |#1| "failed") |#1| (-776))) (-15 -2677 ((-2 (|:| -4363 |#1|) (|:| -1993 (-776))) |#1|)) (-15 -2222 (|#1| |#1| (-776))) (-15 -3756 ((-112) |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -2826 (|#1| |#1|))) (-550)) (T -592)) -((-2826 (*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-3270 (*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-3756 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2222 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-2677 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4363 *3) (|:| -1993 (-776)))) (-5 *1 (-592 *3)) (-4 *3 (-550)))) (-2677 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550))))) -(-10 -7 (-15 -1884 ((-112) |#1| (-776))) (-15 -2677 ((-3 |#1| "failed") |#1| (-776))) (-15 -2677 ((-2 (|:| -4363 |#1|) (|:| -1993 (-776))) |#1|)) (-15 -2222 (|#1| |#1| (-776))) (-15 -3756 ((-112) |#1|)) (-15 -3270 ((-3 |#1| "failed") |#1|)) (-15 -2826 (|#1| |#1|))) -((-2372 (((-1181 |#1|) (-927)) 44))) -(((-593 |#1|) (-10 -7 (-15 -2372 ((-1181 |#1|) (-927)))) (-353)) (T -593)) -((-2372 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-593 *4)) (-4 *4 (-353))))) -(-10 -7 (-15 -2372 ((-1181 |#1|) (-927)))) -((-2241 (((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|)))) 27)) (-3579 (((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1185)) 34 (|has| |#1| (-147)))) (-1380 (((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|)))) 19)) (-1605 (((-319 |#1|) (-412 (-958 |#1|)) (-1185)) 32 (|has| |#1| (-147)))) (-3888 (((-319 |#1|) (-591 (-412 (-958 |#1|)))) 21))) -(((-594 |#1|) (-10 -7 (-15 -2241 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1380 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -3888 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3579 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1605 ((-319 |#1|) (-412 (-958 |#1|)) (-1185)))) |%noBranch|)) (-13 (-457) (-1046 (-569)) (-644 (-569)))) (T -594)) -((-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *5)) (-5 *1 (-594 *5)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *4)) (-5 *1 (-594 *4)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-591 (-412 (-958 *4)))) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-591 (-412 (-958 *3)))) (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-594 *3))))) -(-10 -7 (-15 -2241 ((-591 (-412 (-958 |#1|))) (-591 (-412 (-958 |#1|))))) (-15 -1380 ((-649 (-319 |#1|)) (-591 (-412 (-958 |#1|))))) (-15 -3888 ((-319 |#1|) (-591 (-412 (-958 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3579 ((-3 (-319 |#1|) (-649 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1605 ((-319 |#1|) (-412 (-958 |#1|)) (-1185)))) |%noBranch|)) -((-3891 (((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569)))) 78) (((-649 (-694 (-569))) (-649 (-569))) 79) (((-694 (-569)) (-649 (-569)) (-911 (-569))) 72)) (-3306 (((-776) (-649 (-569))) 69))) -(((-595) (-10 -7 (-15 -3306 ((-776) (-649 (-569)))) (-15 -3891 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569))))))) (T -595)) -((-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595)))) (-3891 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-595)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595))))) -(-10 -7 (-15 -3306 ((-776) (-649 (-569)))) (-15 -3891 ((-694 (-569)) (-649 (-569)) (-911 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -3891 ((-649 (-694 (-569))) (-649 (-569)) (-649 (-911 (-569)))))) -((-3516 (((-649 |#5|) |#5| (-112)) 100)) (-3507 (((-112) |#5| (-649 |#5|)) 34))) -(((-596 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3516 ((-649 |#5|) |#5| (-112))) (-15 -3507 ((-112) |#5| (-649 |#5|)))) (-13 (-310) (-147)) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1117 |#1| |#2| |#3| |#4|)) (T -596)) -((-3507 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1117 *5 *6 *7 *8)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-596 *5 *6 *7 *8 *3)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-649 *3)) (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1117 *5 *6 *7 *8))))) -(-10 -7 (-15 -3516 ((-649 |#5|) |#5| (-112))) (-15 -3507 ((-112) |#5| (-649 |#5|)))) -((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-597) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -597)) -((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597))))) -(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $)))) -((-2417 (((-112) $ $) NIL (|has| (-144) (-1108)))) (-1402 (($ $) 38)) (-4209 (($ $) NIL)) (-2455 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) 68)) (-2486 (((-112) $ $ (-569)) 62)) (-2241 (((-649 $) $ (-144)) 76) (((-649 $) $ (-141)) 77)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-144) (-855))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-144) $ (-569) (-144)) 59 (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-1637 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3903 (($ $ (-1242 (-569)) $) 57)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-1698 (($ (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) NIL)) (-2528 (((-112) $ $) 90)) (-4036 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) 65 (|has| (-144) (-1108))) (((-569) $ $ (-569)) 63) (((-569) (-141) $ (-569)) 67)) (-2882 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) 9)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 32 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3256 (((-569) $) 47 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) 91)) (-4148 (((-776) $ $ (-144)) 88)) (-3834 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2588 (($ $) 41)) (-2268 (($ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-1648 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-3435 (((-1167) $) 43 (|has| (-144) (-1108)))) (-4298 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) 27)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) 87 (|has| (-144) (-1108)))) (-3513 (((-144) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1682 (($ $ (-144)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) NIL)) (-3162 (((-112) $) 15)) (-3635 (($) 10)) (-1869 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) 69) (($ $ (-1242 (-569))) 25) (($ $ $) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-2785 (($ $ $ (-569)) 84 (|has| $ (-6 -4448)))) (-3962 (($ $) 20)) (-1410 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) NIL)) (-2443 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-649 $)) 85)) (-3796 (($ (-144)) NIL) (((-867) $) 31 (|has| (-144) (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| (-144) (-1108)))) (-1980 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2920 (((-112) $ $) 17 (|has| (-144) (-1108)))) (-2966 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2944 (((-112) $ $) 18 (|has| (-144) (-855)))) (-2428 (((-776) $) 16 (|has| $ (-6 -4447))))) -(((-598 |#1|) (-1152) (-569)) (T -598)) -NIL -(-1152) -((-3272 (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1102 |#4|)) 32))) -(((-599 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1102 |#4|))) (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|)) (T -599)) -((-3272 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-3272 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1102 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798)) (-4 *4 (-855)) (-4 *7 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) (-5 *1 (-599 *6 *4 *7 *3))))) -(-10 -7 (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2| (-1102 |#4|))) (-15 -3272 ((-2 (|:| |num| |#4|) (|:| |den| (-569))) |#4| |#2|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 72)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 58) (($ $ (-569) (-569)) 59)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 65)) (-4208 (($ $) 110)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2818 (((-867) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1034 (-848 (-569))) (-1185) |#1| (-412 (-569))) 243)) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 36)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-1677 (((-112) $) NIL)) (-1466 (((-569) $) 63) (((-569) $ (-569)) 64)) (-2349 (((-112) $) NIL)) (-3003 (($ $ (-927)) 84)) (-2148 (($ (-1 |#1| (-569)) $) 81)) (-2198 (((-112) $) 26)) (-3923 (($ |#1| (-569)) 22) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 76)) (-3876 (($ (-1034 (-848 (-569))) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 13)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-2847 (((-3 $ "failed") $ $ (-112)) 109)) (-1376 (($ $ $) 117)) (-3547 (((-1128) $) NIL)) (-1570 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 15)) (-3359 (((-1034 (-848 (-569))) $) 14)) (-3166 (($ $ (-569)) 47)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-1869 ((|#1| $ (-569)) 62) (($ $ $) NIL (|has| (-569) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-4339 (((-569) $) NIL)) (-2007 (($ $) 48)) (-3796 (((-867) $) NIL) (($ (-569)) 29) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 28 (|has| |#1| (-173)))) (-4383 ((|#1| $ (-569)) 61)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 39 T CONST)) (-2170 ((|#1| $) NIL)) (-2323 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-3060 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-1355 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-1777 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4062 (($ $) 203 (|has| |#1| (-38 (-412 (-569)))))) (-1515 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-1436 (($ $ (-412 (-569))) 179 (|has| |#1| (-38 (-412 (-569)))))) (-4205 (($ $ |#1|) 159 (|has| |#1| (-38 (-412 (-569)))))) (-3295 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2971 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1874 (($ $) 205 (|has| |#1| (-38 (-412 (-569)))))) (-3342 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-2540 (($ $) 201 (|has| |#1| (-38 (-412 (-569)))))) (-4264 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-2910 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2099 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-1851 (($ $) 211 (|has| |#1| (-38 (-412 (-569)))))) (-2732 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-3433 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-3905 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-1371 (($ $) 215 (|has| |#1| (-38 (-412 (-569)))))) (-2474 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-1975 (($ $) 217 (|has| |#1| (-38 (-412 (-569)))))) (-4137 (($ $) 193 (|has| |#1| (-38 (-412 (-569)))))) (-4067 (($ $) 213 (|has| |#1| (-38 (-412 (-569)))))) (-4334 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-3864 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-1624 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-3091 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1804 (($) 30 T CONST)) (-1815 (($) 40 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2920 (((-112) $ $) 74)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) 92) (($ $ $) 73)) (-3012 (($ $ $) 89)) (** (($ $ (-927)) NIL) (($ $ (-776)) 112)) (* (($ (-927) $) 99) (($ (-776) $) 97) (($ (-569) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-600 |#1|) (-13 (-1253 |#1| (-569)) (-10 -8 (-15 -3876 ($ (-1034 (-848 (-569))) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -3359 ((-1034 (-848 (-569))) $)) (-15 -1570 ((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -3323 ($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -2198 ((-112) $)) (-15 -2148 ($ (-1 |#1| (-569)) $)) (-15 -2847 ((-3 $ "failed") $ $ (-112))) (-15 -4208 ($ $)) (-15 -1376 ($ $ $)) (-15 -2818 ((-867) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1034 (-848 (-569))) (-1185) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (-15 -4205 ($ $ |#1|)) (-15 -1436 ($ $ (-412 (-569)))) (-15 -2971 ($ $)) (-15 -3295 ($ $)) (-15 -1777 ($ $)) (-15 -2099 ($ $)) (-15 -3060 ($ $)) (-15 -4264 ($ $)) (-15 -1515 ($ $)) (-15 -3342 ($ $)) (-15 -3905 ($ $)) (-15 -1624 ($ $)) (-15 -2732 ($ $)) (-15 -4334 ($ $)) (-15 -2474 ($ $)) (-15 -4137 ($ $)) (-15 -1355 ($ $)) (-15 -2910 ($ $)) (-15 -2323 ($ $)) (-15 -2540 ($ $)) (-15 -4062 ($ $)) (-15 -1874 ($ $)) (-15 -3433 ($ $)) (-15 -3864 ($ $)) (-15 -1851 ($ $)) (-15 -4067 ($ $)) (-15 -1371 ($ $)) (-15 -1975 ($ $))) |%noBranch|))) (-1057)) (T -600)) -((-2198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-3876 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-848 (-569)))) (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1057)) (-5 *1 (-600 *4)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1034 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1057)) (-5 *1 (-600 *3)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-600 *3)))) (-2847 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) (-4208 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057)))) (-1376 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057)))) (-2818 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *6)))) (-5 *4 (-1034 (-848 (-569)))) (-5 *5 (-1185)) (-5 *7 (-412 (-569))) (-4 *6 (-1057)) (-5 *2 (-867)) (-5 *1 (-600 *6)))) (-3579 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4205 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1057)))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2099 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3060 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4264 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1515 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3342 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2732 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4334 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1355 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2323 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-2540 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4062 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1874 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-3864 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1851 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-4067 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1371 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) (-1975 (*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(-13 (-1253 |#1| (-569)) (-10 -8 (-15 -3876 ($ (-1034 (-848 (-569))) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -3359 ((-1034 (-848 (-569))) $)) (-15 -1570 ((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $)) (-15 -3323 ($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))))) (-15 -2198 ((-112) $)) (-15 -2148 ($ (-1 |#1| (-569)) $)) (-15 -2847 ((-3 $ "failed") $ $ (-112))) (-15 -4208 ($ $)) (-15 -1376 ($ $ $)) (-15 -2818 ((-867) (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) (-1034 (-848 (-569))) (-1185) |#1| (-412 (-569)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (-15 -4205 ($ $ |#1|)) (-15 -1436 ($ $ (-412 (-569)))) (-15 -2971 ($ $)) (-15 -3295 ($ $)) (-15 -1777 ($ $)) (-15 -2099 ($ $)) (-15 -3060 ($ $)) (-15 -4264 ($ $)) (-15 -1515 ($ $)) (-15 -3342 ($ $)) (-15 -3905 ($ $)) (-15 -1624 ($ $)) (-15 -2732 ($ $)) (-15 -4334 ($ $)) (-15 -2474 ($ $)) (-15 -4137 ($ $)) (-15 -1355 ($ $)) (-15 -2910 ($ $)) (-15 -2323 ($ $)) (-15 -2540 ($ $)) (-15 -4062 ($ $)) (-15 -1874 ($ $)) (-15 -3433 ($ $)) (-15 -3864 ($ $)) (-15 -1851 ($ $)) (-15 -4067 ($ $)) (-15 -1371 ($ $)) (-15 -1975 ($ $))) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 65)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3323 (($ (-1165 |#1|)) 9)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) 48)) (-1677 (((-112) $) 58)) (-1466 (((-776) $) 63) (((-776) $ (-776)) 62)) (-2349 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ $) 50 (|has| |#1| (-561)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-1165 |#1|) $) 29)) (-2721 (((-776)) 57 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 10 T CONST)) (-1815 (($) 14 T CONST)) (-2920 (((-112) $ $) 28)) (-3024 (($ $) 36) (($ $ $) 16)) (-3012 (($ $ $) 31)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-569)) 42))) -(((-601 |#1|) (-13 (-1057) (-111 |#1| |#1|) (-10 -8 (-15 -2512 ((-1165 |#1|) $)) (-15 -3323 ($ (-1165 |#1|))) (-15 -1677 ((-112) $)) (-15 -1466 ((-776) $)) (-15 -1466 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) (-1057)) (T -601)) -((-2512 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-601 *3)))) (-1677 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (-1466 (*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1057))))) -(-13 (-1057) (-111 |#1| |#1|) (-10 -8 (-15 -2512 ((-1165 |#1|) $)) (-15 -3323 ($ (-1165 |#1|))) (-15 -1677 ((-112) $)) (-15 -1466 ((-776) $)) (-15 -1466 ((-776) $ (-776))) (-15 * ($ $ (-569))) (IF (|has| |#1| (-561)) (-6 (-561)) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-4123 (($) 8 T CONST)) (-2720 (($) 7 T CONST)) (-3659 (($ $ (-649 $)) 16)) (-3435 (((-1167) $) NIL)) (-2465 (($) 6 T CONST)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) 15) (((-1190) $) 10)) (-2330 (($) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-602) (-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -2465 ($) -3709) (-15 -2720 ($) -3709) (-15 -4123 ($) -3709) (-15 -2330 ($) -3709) (-15 -3659 ($ $ (-649 $)))))) (T -602)) -((-2465 (*1 *1) (-5 *1 (-602))) (-2720 (*1 *1) (-5 *1 (-602))) (-4123 (*1 *1) (-5 *1 (-602))) (-2330 (*1 *1) (-5 *1 (-602))) (-3659 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602))))) -(-13 (-1108) (-495 (-1190)) (-10 -8 (-15 -2465 ($) -3709) (-15 -2720 ($) -3709) (-15 -4123 ($) -3709) (-15 -2330 ($) -3709) (-15 -3659 ($ $ (-649 $))))) -((-1346 (((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)) 15))) -(((-603 |#1| |#2|) (-10 -7 (-15 -1346 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) (-1225) (-1225)) (T -603)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6))))) -(-10 -7 (-15 -1346 ((-606 |#2|) (-1 |#2| |#1|) (-606 |#1|)))) -((-1346 (((-1165 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1165 |#2|)) 20) (((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-606 |#2|)) 19) (((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|)) 18))) -(((-604 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1165 |#2|)))) (-1225) (-1225) (-1225)) (T -604)) -((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1165 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) (-5 *1 (-604 *6 *7 *8)))) (-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-606 *8)) (-5 *1 (-604 *6 *7 *8))))) -(-10 -7 (-15 -1346 ((-606 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-606 |#2|))) (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-606 |#1|) (-1165 |#2|)))) -((-2104 ((|#3| |#3| (-649 (-617 |#3|)) (-649 (-1185))) 57)) (-3608 (((-170 |#2|) |#3|) 121)) (-3690 ((|#3| (-170 |#2|)) 46)) (-2135 ((|#2| |#3|) 21)) (-3851 ((|#3| |#2|) 35))) -(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -3690 (|#3| (-170 |#2|))) (-15 -2135 (|#2| |#3|)) (-15 -3851 (|#3| |#2|)) (-15 -3608 ((-170 |#2|) |#3|)) (-15 -2104 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1185))))) (-561) (-13 (-435 |#1|) (-1010) (-1210)) (-13 (-435 (-170 |#1|)) (-1010) (-1210))) (T -605)) -((-2104 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1185))) (-4 *2 (-13 (-435 (-170 *5)) (-1010) (-1210))) (-4 *5 (-561)) (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1010) (-1210))))) (-3608 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))) (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210))))) (-3851 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210))) (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1010) (-1210))))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))) (-5 *1 (-605 *4 *2 *3)) (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210))))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))) (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210))) (-5 *1 (-605 *4 *5 *2))))) -(-10 -7 (-15 -3690 (|#3| (-170 |#2|))) (-15 -2135 (|#2| |#3|)) (-15 -3851 (|#3| |#2|)) (-15 -3608 ((-170 |#2|) |#3|)) (-15 -2104 (|#3| |#3| (-649 (-617 |#3|)) (-649 (-1185))))) -((-1417 (($ (-1 (-112) |#1|) $) 17)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1340 (($ (-1 |#1| |#1|) |#1|) 9)) (-1392 (($ (-1 (-112) |#1|) $) 13)) (-1401 (($ (-1 (-112) |#1|) $) 15)) (-3809 (((-1165 |#1|) $) 18)) (-3796 (((-867) $) NIL))) -(((-606 |#1|) (-13 (-618 (-867)) (-10 -8 (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)) (-15 -1417 ($ (-1 (-112) |#1|) $)) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3809 ((-1165 |#1|) $)))) (-1225)) (T -606)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1225))))) -(-13 (-618 (-867)) (-10 -8 (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)) (-15 -1417 ($ (-1 (-112) |#1|) $)) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -3809 ((-1165 |#1|) $)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776)) NIL (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) NIL (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3420 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-4254 (((-112) $ (-776)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3040 ((|#1| $ $) NIL (|has| |#1| (-1057)))) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3260 (($ $ $) NIL (|has| |#1| (-1057)))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-607 |#1| |#2|) (-1273 |#1|) (-1225) (-569)) (T -607)) -NIL -(-1273 |#1|) -((-2002 (((-1280) $ |#2| |#2|) 35)) (-4426 ((|#2| $) 23)) (-3256 ((|#2| $) 21)) (-3834 (($ (-1 |#3| |#3|) $) 32)) (-1346 (($ (-1 |#3| |#3|) $) 30)) (-3513 ((|#3| $) 26)) (-1682 (($ $ |#3|) 33)) (-1957 (((-112) |#3| $) 17)) (-4199 (((-649 |#3|) $) 15)) (-1869 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-608 |#1| |#2| |#3|) (-10 -8 (-15 -2002 ((-1280) |#1| |#2| |#2|)) (-15 -1682 (|#1| |#1| |#3|)) (-15 -3513 (|#3| |#1|)) (-15 -4426 (|#2| |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -1957 ((-112) |#3| |#1|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|))) (-609 |#2| |#3|) (-1108) (-1225)) (T -608)) -NIL -(-10 -8 (-15 -2002 ((-1280) |#1| |#2| |#2|)) (-15 -1682 (|#1| |#1| |#3|)) (-15 -3513 (|#3| |#1|)) (-15 -4426 (|#2| |#1|)) (-15 -3256 (|#2| |#1|)) (-15 -1957 ((-112) |#3| |#1|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#2| (-1108)))) (-2002 (((-1280) $ |#1| |#1|) 41 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-3846 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 52)) (-2882 (((-649 |#2|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-4426 ((|#1| $) 44 (|has| |#1| (-855)))) (-2009 (((-649 |#2|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3256 ((|#1| $) 45 (|has| |#1| (-855)))) (-3834 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#2| (-1108)))) (-1696 (((-649 |#1|) $) 47)) (-1414 (((-112) |#1| $) 48)) (-3547 (((-1128) $) 21 (|has| |#2| (-1108)))) (-3513 ((|#2| $) 43 (|has| |#1| (-855)))) (-1682 (($ $ |#2|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) 27 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 26 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 24 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3560 (((-776) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4447))) (((-776) |#2| $) 29 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#2| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#2| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-609 |#1| |#2|) (-140) (-1108) (-1225)) (T -609)) -((-4199 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-649 *4)))) (-1414 (*1 *2 *3 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-112)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-649 *3)))) (-1957 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1108)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108)) (-4 *2 (-855)))) (-4426 (*1 *2 *1) (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108)) (-4 *2 (-855)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) (-4 *3 (-855)) (-4 *2 (-1225)))) (-1682 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) (-2002 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) (-5 *2 (-1280))))) -(-13 (-494 |t#2|) (-291 |t#1| |t#2|) (-10 -8 (-15 -4199 ((-649 |t#2|) $)) (-15 -1414 ((-112) |t#1| $)) (-15 -1696 ((-649 |t#1|) $)) (IF (|has| |t#2| (-1108)) (IF (|has| $ (-6 -4447)) (-15 -1957 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-855)) (PROGN (-15 -3256 (|t#1| $)) (-15 -4426 (|t#1| $)) (-15 -3513 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -1682 ($ $ |t#2|)) (-15 -2002 ((-1280) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1108)) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-618 (-867)))) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-1108) |has| |#2| (-1108)) ((-1225) . T)) -((-3796 (((-867) $) 19) (($ (-129)) 13) (((-129) $) 14))) -(((-610) (-13 (-618 (-867)) (-495 (-129)))) (T -610)) -NIL -(-13 (-618 (-867)) (-495 (-129))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) NIL) (((-1190) $) NIL) (((-1224) $) 14) (($ (-649 (-1224))) 13)) (-1934 (((-649 (-1224)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-611) (-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -1934 ((-649 (-1224)) $))))) (T -611)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611))))) -(-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-649 (-1224)))) (-15 -1934 ((-649 (-1224)) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1275 (-694 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3076 (((-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3207 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3400 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1564 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2183 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4379 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3319 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4375 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3850 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4136 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-2413 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2247 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1275 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3978 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-4095 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2411 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2399 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2904 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2999 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3339 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1866 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4059 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1308 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4167 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3674 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2761 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4307 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3703 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1869 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-2415 (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $) (-1275 $)) NIL (|has| |#2| (-371 |#1|))) (((-1275 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1410 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-1829 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3796 (((-867) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL (|has| |#2| (-422 |#1|)))) (-2643 (((-649 (-1275 |#1|))) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3451 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2887 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3967 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-612 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -612)) -((-3796 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3))))) -(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-2617 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) 39)) (-4287 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL) (($) NIL)) (-2002 (((-1280) $ (-1167) (-1167)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-1167) |#1|) 49)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#1| "failed") (-1167) $) 52)) (-4427 (($) NIL T CONST)) (-3229 (($ $ (-1167)) 25)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-1794 (((-3 |#1| "failed") (-1167) $) 53) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (|has| $ (-6 -4447)))) (-1698 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-3598 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-2358 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) 38)) (-3846 ((|#1| $ (-1167) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-1167)) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-4248 (($ $) 54)) (-1721 (($ (-393)) 23) (($ (-393) (-1167)) 22)) (-3573 (((-393) $) 40)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1167) $) NIL (|has| (-1167) (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447))) (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (((-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-3256 (((-1167) $) NIL (|has| (-1167) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2795 (((-649 (-1167)) $) 45)) (-3804 (((-112) (-1167) $) NIL)) (-4065 (((-1167) $) 41)) (-1877 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-1696 (((-649 (-1167)) $) NIL)) (-1414 (((-112) (-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 ((|#1| $) NIL (|has| (-1167) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) "failed") (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-649 (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 43)) (-1869 ((|#1| $ (-1167) |#1|) NIL) ((|#1| $ (-1167)) 48)) (-2434 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL) (($) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (((-776) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-776) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-3796 (((-867) $) 21)) (-2543 (($ $) 26)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-613 |#1|) (-13 (-368 (-393) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-1201 (-1167) |#1|) (-10 -8 (-6 -4447) (-15 -4248 ($ $)))) (-1108)) (T -613)) -((-4248 (*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1108))))) -(-13 (-368 (-393) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-1201 (-1167) |#1|) (-10 -8 (-6 -4447) (-15 -4248 ($ $)))) -((-2004 (((-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 16)) (-2795 (((-649 |#2|) $) 20)) (-3804 (((-112) |#2| $) 12))) -(((-614 |#1| |#2| |#3|) (-10 -8 (-15 -2795 ((-649 |#2|) |#1|)) (-15 -3804 ((-112) |#2| |#1|)) (-15 -2004 ((-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|))) (-615 |#2| |#3|) (-1108) (-1108)) (T -614)) -NIL -(-10 -8 (-15 -2795 ((-649 |#2|) |#1|)) (-15 -3804 ((-112) |#2| |#1|)) (-15 -2004 ((-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|))) -((-2417 (((-112) $ $) 19 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 56 (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 62)) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 47 (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 63)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 55 (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 57 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 54 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2795 (((-649 |#1|) $) 64)) (-3804 (((-112) |#1| $) 65)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 40)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 41)) (-3547 (((-1128) $) 21 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 52)) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 42)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 27 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 26 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 25 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 24 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2434 (($) 50) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 49)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 32 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 51)) (-3796 (((-867) $) 18 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 43)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-615 |#1| |#2|) (-140) (-1108) (-1108)) (T -615)) -((-3804 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-112)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-5 *2 (-649 *3)))) (-1794 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-2359 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))) -(-13 (-230 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|))) (-10 -8 (-15 -3804 ((-112) |t#1| $)) (-15 -2795 ((-649 |t#1|) $)) (-15 -1794 ((-3 |t#2| "failed") |t#1| $)) (-15 -2359 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-102) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) ((-618 (-867)) -2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-312 #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-494 #0#) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-1108) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) ((-1225) . T)) -((-3434 (((-617 |#2|) |#1|) 17)) (-1998 (((-3 |#1| "failed") (-617 |#2|)) 21))) -(((-616 |#1| |#2|) (-10 -7 (-15 -3434 ((-617 |#2|) |#1|)) (-15 -1998 ((-3 |#1| "failed") (-617 |#2|)))) (-1108) (-1108)) (T -616)) -((-1998 (*1 *2 *3) (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1108)) (-4 *2 (-1108)) (-5 *1 (-616 *2 *4)))) (-3434 (*1 *2 *3) (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))))) -(-10 -7 (-15 -3434 ((-617 |#2|) |#1|)) (-15 -1998 ((-3 |#1| "failed") (-617 |#2|)))) -((-2417 (((-112) $ $) NIL)) (-2193 (((-3 (-1185) "failed") $) 48)) (-4114 (((-1280) $ (-776)) 24)) (-4036 (((-776) $) 23)) (-3746 (((-114) $) 12)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1354 (($ (-114) (-649 |#1|) (-776)) 34) (($ (-1185)) 35)) (-1825 (((-112) $ (-114)) 18) (((-112) $ (-1185)) 16)) (-1427 (((-776) $) 20)) (-3547 (((-1128) $) NIL)) (-1410 (((-898 (-569)) $) 96 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 103 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 89 (|has| |#1| (-619 (-541))))) (-3796 (((-867) $) 73)) (-1520 (((-112) $ $) NIL)) (-1899 (((-649 |#1|) $) 22)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 52)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 54))) -(((-617 |#1|) (-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3746 ((-114) $)) (-15 -1899 ((-649 |#1|) $)) (-15 -1427 ((-776) $)) (-15 -1354 ($ (-114) (-649 |#1|) (-776))) (-15 -1354 ($ (-1185))) (-15 -2193 ((-3 (-1185) "failed") $)) (-15 -1825 ((-112) $ (-114))) (-15 -1825 ((-112) $ (-1185))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-1108)) (T -617)) -((-3746 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1899 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1354 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1108)) (-5 *1 (-617 *5)))) (-1354 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-2193 (*1 *2 *1) (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) (-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1108)))) (-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1108))))) -(-13 (-132) (-855) (-890 |#1|) (-10 -8 (-15 -3746 ((-114) $)) (-15 -1899 ((-649 |#1|) $)) (-15 -1427 ((-776) $)) (-15 -1354 ($ (-114) (-649 |#1|) (-776))) (-15 -1354 ($ (-1185))) (-15 -2193 ((-3 (-1185) "failed") $)) (-15 -1825 ((-112) $ (-114))) (-15 -1825 ((-112) $ (-1185))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) -((-3796 ((|#1| $) 6))) -(((-618 |#1|) (-140) (-1225)) (T -618)) -((-3796 (*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1225))))) -(-13 (-10 -8 (-15 -3796 (|t#1| $)))) -((-1410 ((|#1| $) 6))) -(((-619 |#1|) (-140) (-1225)) (T -619)) -((-1410 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1225))))) -(-13 (-10 -8 (-15 -1410 (|t#1| $)))) -((-1764 (((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)) 15) (((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 16))) -(((-620 |#1| |#2|) (-10 -7 (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)))) (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -620)) -((-1764 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-1181 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6)))) (-1764 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-1181 (-412 *5))) (-5 *1 (-620 *4 *5)) (-5 *3 (-412 *5))))) -(-10 -7 (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|))) (-15 -1764 ((-3 (-1181 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 (-423 |#2|) |#2|)))) -((-3796 (($ |#1|) 6))) -(((-621 |#1|) (-140) (-1225)) (T -621)) -((-3796 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1225))))) -(-13 (-10 -8 (-15 -3796 ($ |t#1|)))) -((-2417 (((-112) $ $) NIL)) (-1627 (($) 14 T CONST)) (-3018 (($) 15 T CONST)) (-1771 (($ $ $) 29)) (-1749 (($ $) 27)) (-3435 (((-1167) $) NIL)) (-3625 (($ $ $) 30)) (-3547 (((-1128) $) NIL)) (-1882 (($) 11 T CONST)) (-2069 (($ $ $) 31)) (-3796 (((-867) $) 35)) (-1795 (((-112) $ (|[\|\|]| -1882)) 24) (((-112) $ (|[\|\|]| -1627)) 26) (((-112) $ (|[\|\|]| -3018)) 21)) (-1520 (((-112) $ $) NIL)) (-1759 (($ $ $) 28)) (-2920 (((-112) $ $) 18))) -(((-622) (-13 (-975) (-10 -8 (-15 -1627 ($) -3709) (-15 -1795 ((-112) $ (|[\|\|]| -1882))) (-15 -1795 ((-112) $ (|[\|\|]| -1627))) (-15 -1795 ((-112) $ (|[\|\|]| -3018)))))) (T -622)) -((-1627 (*1 *1) (-5 *1 (-622))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1882)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1627)) (-5 *2 (-112)) (-5 *1 (-622)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3018)) (-5 *2 (-112)) (-5 *1 (-622))))) -(-13 (-975) (-10 -8 (-15 -1627 ($) -3709) (-15 -1795 ((-112) $ (|[\|\|]| -1882))) (-15 -1795 ((-112) $ (|[\|\|]| -1627))) (-15 -1795 ((-112) $ (|[\|\|]| -3018))))) -((-1410 (($ |#1|) 6))) -(((-623 |#1|) (-140) (-1225)) (T -623)) -((-1410 (*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1225))))) -(-13 (-10 -8 (-15 -1410 ($ |t#1|)))) -((-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10))) -(((-624 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-625 |#2|) (-1057)) (T -624)) -NIL -(-10 -8 (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 41)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#1| $) 42))) -(((-625 |#1|) (-140) (-1057)) (T -625)) -((-3796 (*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1057))))) -(-13 (-1057) (-653 |t#1|) (-10 -8 (-15 -3796 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2919 (((-569) $) NIL (|has| |#1| (-853)))) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-3712 (((-112) $) NIL (|has| |#1| (-853)))) (-2349 (((-112) $) NIL)) (-4399 ((|#1| $) 13)) (-2051 (((-112) $) NIL (|has| |#1| (-853)))) (-3380 (($ $ $) NIL (|has| |#1| (-853)))) (-2839 (($ $ $) NIL (|has| |#1| (-853)))) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4412 ((|#3| $) 15)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL)) (-2721 (((-776)) 20 T CONST)) (-1520 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| |#1| (-853)))) (-1804 (($) NIL T CONST)) (-1815 (($) 12 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-853)))) (-3035 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-626 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $)))) (-38 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -626)) -((-3035 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-3035 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4412 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $)))) -((-3351 ((|#2| |#2| (-1185) (-1185)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -3351 (|#2| |#2| (-1185) (-1185)))) (-13 (-310) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-965) (-29 |#1|))) (T -627)) -((-3351 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1210) (-965) (-29 *4)))))) -(-10 -7 (-15 -3351 (|#2| |#2| (-1185) (-1185)))) -((-2417 (((-112) $ $) 64)) (-4143 (((-112) $) 58)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1377 ((|#1| $) 55)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3818 (((-2 (|:| -2482 $) (|:| -4079 (-412 |#2|))) (-412 |#2|)) 111 (|has| |#1| (-367)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 27)) (-3086 (((-3 $ "failed") $) 88)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1466 (((-569) $) 22)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) 40)) (-3923 (($ |#1| (-569)) 24)) (-1857 ((|#1| $) 57)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) 101 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ $) 93)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2431 (((-776) $) 115 (|has| |#1| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 114 (|has| |#1| (-367)))) (-3517 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-4339 (((-569) $) 38)) (-1410 (((-412 |#2|) $) 47)) (-3796 (((-867) $) 69) (($ (-569)) 35) (($ $) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 34) (($ |#2|) 25)) (-4383 ((|#1| $ (-569)) 72)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 9 T CONST)) (-1815 (($) 14 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2920 (((-112) $ $) 21)) (-3024 (($ $) 51) (($ $ $) NIL)) (-3012 (($ $ $) 90)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 29) (($ $ $) 49))) -(((-628 |#1| |#2|) (-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1046 |#2|) (-10 -8 (-15 -2198 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1466 ((-569) $)) (-15 -1883 ($ $)) (-15 -1857 (|#1| $)) (-15 -1377 (|#1| $)) (-15 -4383 (|#1| $ (-569))) (-15 -3923 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -3818 ((-2 (|:| -2482 $) (|:| -4079 (-412 |#2|))) (-412 |#2|)))) |%noBranch|))) (-561) (-1251 |#1|)) (T -628)) -((-2198 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1251 *3)))) (-4339 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1251 *3)))) (-1466 (*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) (-4 *4 (-1251 *3)))) (-1883 (*1 *1 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) (-1857 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) (-1377 (*1 *2 *1) (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1251 *2)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) (-4 *4 (-1251 *2)))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2482 (-628 *4 *5)) (|:| -4079 (-412 *5)))) (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5))))) -(-13 (-232 |#2|) (-561) (-619 (-412 |#2|)) (-416 |#1|) (-1046 |#2|) (-10 -8 (-15 -2198 ((-112) $)) (-15 -4339 ((-569) $)) (-15 -1466 ((-569) $)) (-15 -1883 ($ $)) (-15 -1857 (|#1| $)) (-15 -1377 (|#1| $)) (-15 -4383 (|#1| $ (-569))) (-15 -3923 ($ |#1| (-569))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-6 (-310)) (-15 -3818 ((-2 (|:| -2482 $) (|:| -4079 (-412 |#2|))) (-412 |#2|)))) |%noBranch|))) -((-1806 (((-649 |#6|) (-649 |#4|) (-112)) 54)) (-3224 ((|#6| |#6|) 48))) -(((-629 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3224 (|#6| |#6|)) (-15 -1806 ((-649 |#6|) (-649 |#4|) (-112)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|) (-1117 |#1| |#2| |#3| |#4|)) (T -629)) -((-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10)) (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *10 (-1117 *5 *6 *7 *8)))) (-3224 (*1 *2 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *2 (-1117 *3 *4 *5 *6))))) -(-10 -7 (-15 -3224 (|#6| |#6|)) (-15 -1806 ((-649 |#6|) (-649 |#4|) (-112)))) -((-1915 (((-112) |#3| (-776) (-649 |#3|)) 32)) (-1451 (((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1181 |#3|)))) "failed") |#3| (-649 (-1181 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4360 (-649 (-2 (|:| |irr| |#4|) (|:| -4180 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)) 73))) -(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1915 ((-112) |#3| (-776) (-649 |#3|))) (-15 -1451 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1181 |#3|)))) "failed") |#3| (-649 (-1181 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4360 (-649 (-2 (|:| |irr| |#4|) (|:| -4180 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)))) (-855) (-798) (-310) (-955 |#3| |#2| |#1|)) (T -630)) -((-1451 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -4360 (-649 (-2 (|:| |irr| *10) (|:| -4180 (-569))))))) (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310)) (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798)) (-5 *2 (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3) (|:| |corrfact| (-649 (-1181 *3))))) (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1181 *3))))) (-1915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855)) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8)) (-4 *8 (-955 *3 *7 *6))))) -(-10 -7 (-15 -1915 ((-112) |#3| (-776) (-649 |#3|))) (-15 -1451 ((-3 (-2 (|:| |polfac| (-649 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-649 (-1181 |#3|)))) "failed") |#3| (-649 (-1181 |#3|)) (-2 (|:| |contp| |#3|) (|:| -4360 (-649 (-2 (|:| |irr| |#4|) (|:| -4180 (-569)))))) (-649 |#3|) (-649 |#1|) (-649 |#3|)))) -((-2417 (((-112) $ $) NIL)) (-2115 (((-1143) $) 11)) (-2105 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-631) (-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $))))) (T -631)) -((-2105 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631))))) -(-13 (-1091) (-10 -8 (-15 -2105 ((-1143) $)) (-15 -2115 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-2325 (($ $) 77)) (-2662 (((-669 |#1| |#2|) $) 60)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 81)) (-3122 (((-649 (-297 |#2|)) $ $) 42)) (-3547 (((-1128) $) NIL)) (-4389 (($ (-669 |#1| |#2|)) 56)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 66) (((-1290 |#1| |#2|) $) NIL) (((-1295 |#1| |#2|) $) 74)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 61 T CONST)) (-3655 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) 41)) (-3223 (((-649 (-669 |#1| |#2|)) (-649 |#1|)) 73)) (-3717 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) 46)) (-2920 (((-112) $ $) 62)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 52))) -(((-632 |#1| |#2| |#3|) (-13 (-478) (-10 -8 (-15 -4389 ($ (-669 |#1| |#2|))) (-15 -2662 ((-669 |#1| |#2|) $)) (-15 -3717 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1295 |#1| |#2|) $)) (-15 -2325 ($ $)) (-15 -3105 ((-649 |#1|) $)) (-15 -3223 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -3655 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -3122 ((-649 (-297 |#2|)) $ $)))) (-855) (-13 (-173) (-722 (-412 (-569)))) (-927)) (T -632)) -((-4389 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5)) (-14 *5 (-927)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-13 (-173) (-722 (-412 (-569))))) (-14 *4 (-927)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3223 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5))) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569))))) (-14 *6 (-927)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4)))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) (-3122 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))) -(-13 (-478) (-10 -8 (-15 -4389 ($ (-669 |#1| |#2|))) (-15 -2662 ((-669 |#1| |#2|) $)) (-15 -3717 ((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $)) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1295 |#1| |#2|) $)) (-15 -2325 ($ $)) (-15 -3105 ((-649 |#1|) $)) (-15 -3223 ((-649 (-669 |#1| |#2|)) (-649 |#1|))) (-15 -3655 ((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $)) (-15 -3122 ((-649 (-297 |#2|)) $ $)))) -((-1806 (((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 103) (((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 77)) (-2013 (((-112) (-649 (-785 |#1| (-869 |#2|)))) 26)) (-2326 (((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)) 102)) (-3791 (((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112)) 76)) (-2454 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) 30)) (-3959 (((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|)))) 29))) -(((-633 |#1| |#2|) (-10 -7 (-15 -2013 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3959 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -2454 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3791 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -2326 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)))) (-457) (-649 (-1185))) (T -633)) -((-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-633 *5 *6)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) (-5 *1 (-633 *5 *6)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-633 *5 *6)))) (-2454 (*1 *2 *2) (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4)))) (-3959 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457)) (-14 *5 (-649 (-1185))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5))))) -(-10 -7 (-15 -2013 ((-112) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3959 ((-3 (-649 (-785 |#1| (-869 |#2|))) "failed") (-649 (-785 |#1| (-869 |#2|))))) (-15 -2454 ((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))))) (-15 -3791 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -2326 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1054 |#1| |#2|)) (-649 (-785 |#1| (-869 |#2|))) (-112))) (-15 -1806 ((-649 (-1154 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|)))) (-649 (-785 |#1| (-869 |#2|))) (-112)))) -((-2771 (($ $) 38)) (-2626 (($ $) 21)) (-2746 (($ $) 37)) (-2601 (($ $) 22)) (-4118 (($ $) 36)) (-2647 (($ $) 23)) (-1312 (($) 48)) (-2662 (($ $) 45)) (-4171 (($ $) 17)) (-3898 (($ $ (-1100 $)) 7) (($ $ (-1185)) 6)) (-4389 (($ $) 46)) (-2555 (($ $) 15)) (-2589 (($ $) 16)) (-4128 (($ $) 35)) (-2661 (($ $) 24)) (-2783 (($ $) 34)) (-2635 (($ $) 25)) (-2758 (($ $) 33)) (-2614 (($ $) 26)) (-4161 (($ $) 44)) (-2701 (($ $) 32)) (-4140 (($ $) 43)) (-2675 (($ $) 31)) (-4183 (($ $) 42)) (-2723 (($ $) 30)) (-1503 (($ $) 41)) (-2734 (($ $) 29)) (-4175 (($ $) 40)) (-2712 (($ $) 28)) (-4151 (($ $) 39)) (-2689 (($ $) 27)) (-2370 (($ $) 19)) (-3569 (($ $) 20)) (-2717 (($ $) 18)) (** (($ $ $) 47))) -(((-634) (-140)) (T -634)) -((-3569 (*1 *1 *1) (-4 *1 (-634))) (-2370 (*1 *1 *1) (-4 *1 (-634))) (-2717 (*1 *1 *1) (-4 *1 (-634))) (-4171 (*1 *1 *1) (-4 *1 (-634))) (-2589 (*1 *1 *1) (-4 *1 (-634))) (-2555 (*1 *1 *1) (-4 *1 (-634)))) -(-13 (-965) (-1210) (-10 -8 (-15 -3569 ($ $)) (-15 -2370 ($ $)) (-15 -2717 ($ $)) (-15 -4171 ($ $)) (-15 -2589 ($ $)) (-15 -2555 ($ $)))) -(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-965) . T) ((-1210) . T) ((-1213) . T)) -((-3746 (((-114) (-114)) 88)) (-4171 ((|#2| |#2|) 28)) (-3898 ((|#2| |#2| (-1100 |#2|)) 84) ((|#2| |#2| (-1185)) 50)) (-2555 ((|#2| |#2|) 27)) (-2589 ((|#2| |#2|) 29)) (-4052 (((-112) (-114)) 33)) (-2370 ((|#2| |#2|) 24)) (-3569 ((|#2| |#2|) 26)) (-2717 ((|#2| |#2|) 25))) -(((-635 |#1| |#2|) (-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3569 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2717 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -2589 (|#2| |#2|)) (-15 -3898 (|#2| |#2| (-1185))) (-15 -3898 (|#2| |#2| (-1100 |#2|)))) (-561) (-13 (-435 |#1|) (-1010) (-1210))) (T -635)) -((-3898 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)))) (-3898 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))))) (-2589 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-2555 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-2717 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-3569 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) (-4 *2 (-13 (-435 *3) (-1010) (-1210))))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4)) (-4 *4 (-13 (-435 *3) (-1010) (-1210))))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210)))))) -(-10 -7 (-15 -4052 ((-112) (-114))) (-15 -3746 ((-114) (-114))) (-15 -3569 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2717 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -2555 (|#2| |#2|)) (-15 -2589 (|#2| |#2|)) (-15 -3898 (|#2| |#2| (-1185))) (-15 -3898 (|#2| |#2| (-1100 |#2|)))) -((-4365 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 66)) (-3021 (((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 92)) (-1703 (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 94) (((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|)) 93)) (-2343 (((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|))) 137)) (-2627 (((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 107)) (-4150 (((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|))) 147)) (-4145 (((-1275 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|))) 71)) (-2157 (((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|))) 48)) (-1428 (((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 63)) (-2756 (((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|))) 115))) -(((-636 |#1| |#2|) (-10 -7 (-15 -2343 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -4150 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3021 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2157 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -4145 ((-1275 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -2756 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2627 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1428 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -4365 ((-486 |#1| |#2|) (-248 |#1| |#2|)))) (-649 (-1185)) (-457)) (T -636)) -((-4365 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5)))) (-1428 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2627 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5)))) (-2756 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457)) (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1185))) (-5 *1 (-636 *5 *6)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-1275 *6)) (-5 *1 (-636 *5 *6)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1185))) (-4 *4 (-457)) (-5 *1 (-636 *3 *4)))) (-1703 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-1703 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) (-4 *6 (-457)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5)))) (-4150 (*1 *2 *3) (-12 (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569))))) (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5))))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *2 (-2 (|:| |gblist| (-649 (-248 *4 *5))) (|:| |gvlist| (-649 (-569))))) (-5 *1 (-636 *4 *5))))) -(-10 -7 (-15 -2343 ((-2 (|:| |gblist| (-649 (-248 |#1| |#2|))) (|:| |gvlist| (-649 (-569)))) (-649 (-486 |#1| |#2|)))) (-15 -4150 ((-2 (|:| |glbase| (-649 (-248 |#1| |#2|))) (|:| |glval| (-649 (-569)))) (-649 (-248 |#1| |#2|)))) (-15 -3021 ((-649 (-248 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -1703 ((-486 |#1| |#2|) (-649 (-486 |#1| |#2|)) (-869 |#1|))) (-15 -2157 ((-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -4145 ((-1275 |#2|) (-486 |#1| |#2|) (-649 (-486 |#1| |#2|)))) (-15 -2756 ((-248 |#1| |#2|) (-649 |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -2627 ((-649 (-486 |#1| |#2|)) (-869 |#1|) (-649 (-486 |#1| |#2|)) (-649 (-486 |#1| |#2|)))) (-15 -1428 ((-248 |#1| |#2|) (-248 |#1| |#2|) (-649 (-248 |#1| |#2|)))) (-15 -4365 ((-486 |#1| |#2|) (-248 |#1| |#2|)))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-2002 (((-1280) $ (-1167) (-1167)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-52) $ (-1167) (-52)) 16) (((-52) $ (-1185) (-52)) 17)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 (-52) "failed") (-1167) $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-3 (-52) "failed") (-1167) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-52) $ (-1167) (-52)) NIL (|has| $ (-6 -4448)))) (-3776 (((-52) $ (-1167)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-4248 (($ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1167) $) NIL (|has| (-1167) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-3256 (((-1167) $) NIL (|has| (-1167) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4221 (($ (-393)) 9)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-2795 (((-649 (-1167)) $) NIL)) (-3804 (((-112) (-1167) $) NIL)) (-1877 (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL)) (-1696 (((-649 (-1167)) $) NIL)) (-1414 (((-112) (-1167) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-3513 (((-52) $) NIL (|has| (-1167) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) "failed") (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL)) (-1682 (($ $ (-52)) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-4199 (((-649 (-52)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-52) $ (-1167)) 14) (((-52) $ (-1167) (-52)) NIL) (((-52) $ (-1185)) 15)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 (-52))) (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-637) (-13 (-1201 (-1167) (-52)) (-10 -8 (-15 -4221 ($ (-393))) (-15 -4248 ($ $)) (-15 -1869 ((-52) $ (-1185))) (-15 -3943 ((-52) $ (-1185) (-52)))))) (T -637)) -((-4221 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637)))) (-4248 (*1 *1 *1) (-5 *1 (-637))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-52)) (-5 *1 (-637)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1185)) (-5 *1 (-637))))) -(-13 (-1201 (-1167) (-52)) (-10 -8 (-15 -4221 ($ (-393))) (-15 -4248 ($ $)) (-15 -1869 ((-52) $ (-1185))) (-15 -3943 ((-52) $ (-1185) (-52))))) -((-3035 (($ $ |#2|) 10))) -(((-638 |#1| |#2|) (-10 -8 (-15 -3035 (|#1| |#1| |#2|))) (-639 |#2|) (-173)) (T -638)) -NIL -(-10 -8 (-15 -3035 (|#1| |#1| |#2|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3809 (($ $ $) 34)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 33 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-639 |#1|) (-140) (-173)) (T -639)) -((-3809 (*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)) (-4 *2 (-367))))) -(-13 (-722 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3809 ($ $ $)) (IF (|has| |t#1| (-367)) (-15 -3035 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-1275 (-694 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3076 (((-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4427 (($) NIL T CONST)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3207 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3400 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1564 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-2183 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4379 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3319 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4375 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3850 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4136 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-2413 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2247 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (($ (-1275 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3978 (((-927)) NIL (|has| |#2| (-371 |#1|)))) (-4095 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4311 (($ $ (-927)) NIL)) (-1756 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2411 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2399 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2904 (((-3 $ "failed")) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-2999 (((-694 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-3339 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-1866 (((-694 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-4059 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1308 (((-1181 (-958 |#1|))) NIL (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-367))))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#1| $) NIL (|has| |#2| (-371 |#1|)))) (-4167 (((-1181 |#1|) $) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-3674 ((|#1|) NIL (|has| |#2| (-422 |#1|))) ((|#1| (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2761 (((-1181 |#1|) $) NIL (|has| |#2| (-371 |#1|)))) (-4307 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3703 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-4324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1869 ((|#1| $ (-569)) NIL (|has| |#2| (-422 |#1|)))) (-2415 (((-694 |#1|) (-1275 $)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|))) (((-694 |#1|) (-1275 $) (-1275 $)) NIL (|has| |#2| (-371 |#1|))) (((-1275 |#1|) $ (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-1410 (($ (-1275 |#1|)) NIL (|has| |#2| (-422 |#1|))) (((-1275 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-1829 (((-649 (-958 |#1|))) NIL (|has| |#2| (-422 |#1|))) (((-649 (-958 |#1|)) (-1275 $)) NIL (|has| |#2| (-371 |#1|)))) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3796 (((-867) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL (|has| |#2| (-422 |#1|)))) (-2643 (((-649 (-1275 |#1|))) NIL (-2776 (-12 (|has| |#2| (-371 |#1|)) (|has| |#1| (-561))) (-12 (|has| |#2| (-422 |#1|)) (|has| |#1| (-561)))))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3451 (($ (-694 |#1|) $) NIL (|has| |#2| (-422 |#1|)))) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-2887 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-3967 (((-112)) NIL (|has| |#2| (-371 |#1|)))) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 20)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-640 |#1| |#2|) (-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) (-173) (-749 |#1|)) (T -640)) -((-3796 (*1 *1 *2) (-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3))))) -(-13 (-749 |#1|) (-618 |#2|) (-10 -8 (-15 -3796 ($ |#2|)) (IF (|has| |#2| (-422 |#1|)) (-6 (-422 |#1|)) |%noBranch|) (IF (|has| |#2| (-371 |#1|)) (-6 (-371 |#1|)) |%noBranch|))) -((-1517 (((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1167)) 106) (((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|))) 131)) (-2848 (((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|))) 136))) -(((-641 |#1| |#2|) (-10 -7 (-15 -1517 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -2848 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -1517 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1167)))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -641)) -((-1517 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1167)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3)))) (-2848 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-297 (-838 *3))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1210) (-435 *5))) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-641 *5 *3))))) -(-10 -7 (-15 -1517 ((-3 (-848 |#2|) (-2 (|:| |leftHandLimit| (-3 (-848 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-848 |#2|) "failed"))) "failed") |#2| (-297 (-848 |#2|)))) (-15 -2848 ((-3 (-838 |#2|) "failed") |#2| (-297 (-838 |#2|)))) (-15 -1517 ((-3 (-848 |#2|) "failed") |#2| (-297 |#2|) (-1167)))) -((-1517 (((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1167)) 86) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 20) (((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|)))) 35)) (-2848 (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 23) (((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|)))) 43))) -(((-642 |#1|) (-10 -7 (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1167)))) (-457)) (T -642)) -((-1517 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1167)) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3)) (-5 *1 (-642 *6)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))) (-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-457)) (-5 *2 (-3 (-848 *3) (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) "failed")) (-5 *1 (-642 *5)))) (-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457)) (-5 *2 (-3 (-848 (-412 (-958 *5))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))) "failed")) (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5)))))) -(-10 -7 (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-848 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-848 (-412 (-958 |#1|))) "failed"))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-838 (-958 |#1|))))) (-15 -2848 ((-838 (-412 (-958 |#1|))) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1517 ((-3 (-848 (-412 (-958 |#1|))) "failed") (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))) (-1167)))) -((-3170 (((-3 (-1275 (-412 |#1|)) "failed") (-1275 |#2|) |#2|) 64 (-1749 (|has| |#1| (-367)))) (((-3 (-1275 |#1|) "failed") (-1275 |#2|) |#2|) 49 (|has| |#1| (-367)))) (-3178 (((-112) (-1275 |#2|)) 33)) (-4284 (((-3 (-1275 |#1|) "failed") (-1275 |#2|)) 40))) -(((-643 |#1| |#2|) (-10 -7 (-15 -3178 ((-112) (-1275 |#2|))) (-15 -4284 ((-3 (-1275 |#1|) "failed") (-1275 |#2|))) (IF (|has| |#1| (-367)) (-15 -3170 ((-3 (-1275 |#1|) "failed") (-1275 |#2|) |#2|)) (-15 -3170 ((-3 (-1275 (-412 |#1|)) "failed") (-1275 |#2|) |#2|)))) (-561) (-644 |#1|)) (T -643)) -((-3170 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) (-1749 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1275 (-412 *5))) (-5 *1 (-643 *5 *4)))) (-3170 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367)) (-4 *5 (-561)) (-5 *2 (-1275 *5)) (-5 *1 (-643 *5 *4)))) (-4284 (*1 *2 *3) (|partial| -12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-1275 *4)) (-5 *1 (-643 *4 *5)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -3178 ((-112) (-1275 |#2|))) (-15 -4284 ((-3 (-1275 |#1|) "failed") (-1275 |#2|))) (IF (|has| |#1| (-367)) (-15 -3170 ((-3 (-1275 |#1|) "failed") (-1275 |#2|) |#2|)) (-15 -3170 ((-3 (-1275 (-412 |#1|)) "failed") (-1275 |#2|) |#2|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2957 (((-694 |#1|) (-694 $)) 40) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 39)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-644 |#1|) (-140) (-1057)) (T -644)) -((-2957 (*1 *2 *3) (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1057)) (-5 *2 (-694 *4)))) (-2957 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *1)) (-5 *4 (-1275 *1)) (-4 *1 (-644 *5)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 *5))))))) -(-13 (-1057) (-10 -8 (-15 -2957 ((-694 |t#1|) (-694 $))) (-15 -2957 ((-2 (|:| -1863 (-694 |t#1|)) (|:| |vec| (-1275 |t#1|))) (-694 $) (-1275 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) -(((-645 |#1|) (-140) (-1066)) (T -645)) -NIL -(-13 (-651 |t#1|) (-1059 |t#1|)) -(((-102) . T) ((-618 (-867)) . T) ((-651 |#1|) . T) ((-1059 |#1|) . T) ((-1108) . T)) -((-4148 ((|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|) 17) ((|#2| (-649 |#1|) (-649 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|)) 12))) -(((-646 |#1| |#2|) (-10 -7 (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)))) (-1108) (-1225)) (T -646)) -((-4148 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) (-4148 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *1 (-646 *5 *6)))) (-4148 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1108)) (-4 *5 (-1225)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) (-4148 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6))))) -(-10 -7 (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) |#2|)) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| |#2|)) (-15 -4148 ((-1 |#2| |#1|) (-649 |#1|) (-649 |#2|) (-1 |#2| |#1|))) (-15 -4148 (|#2| (-649 |#1|) (-649 |#2|) |#1| (-1 |#2| |#1|)))) -((-1610 (((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 16)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|) 18)) (-1346 (((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)) 13))) -(((-647 |#1| |#2|) (-10 -7 (-15 -1610 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) (-1225) (-1225)) (T -647)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-647 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5))))) -(-10 -7 (-15 -1610 ((-649 |#2|) (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-649 |#1|) |#2|)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-649 |#1|)))) -((-1346 (((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)) 21))) -(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)))) (-1225) (-1225) (-1225)) (T -648)) -((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-649 *8)) (-5 *1 (-648 *6 *7 *8))))) -(-10 -7 (-15 -1346 ((-649 |#3|) (-1 |#3| |#1| |#2|) (-649 |#1|) (-649 |#2|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) $) NIL (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2951 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3358 (($ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "rest" $) NIL (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-3440 (($ $ $) 37 (|has| |#1| (-1108)))) (-3429 (($ $ $) 41 (|has| |#1| (-1108)))) (-3418 (($ $ $) 44 (|has| |#1| (-1108)))) (-1796 (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3525 (($ $) 23) (($ $ (-776)) NIL)) (-2017 (($ $) NIL (|has| |#1| (-1108)))) (-3550 (($ $) 36 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) NIL (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) NIL)) (-1698 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-4036 (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108))) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1738 (((-112) $) 11)) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3057 (($) 9 T CONST)) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2292 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-4198 (($ $ $) NIL (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3382 (($ |#1|) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-3894 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) 20) (($ $ (-776)) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-4038 (((-112) $) NIL)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) 39)) (-3635 (($) 38)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) 42) ((|#1| $ (-569) |#1|) NIL)) (-2602 (((-569) $ $) NIL)) (-3301 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-3966 (((-112) $) NIL)) (-1641 (($ $) NIL)) (-4142 (($ $) NIL (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 53 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-3748 (($ |#1| $) 12)) (-2866 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2443 (($ $ $) 35) (($ |#1| $) 43) (($ (-649 $)) NIL) (($ $ |#1|) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1854 (($ $ $) 13)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3266 (((-1167) $) 31 (|has| |#1| (-833))) (((-1167) $ (-112)) 32 (|has| |#1| (-833))) (((-1280) (-827) $) 33 (|has| |#1| (-833))) (((-1280) (-827) $ (-112)) 34 (|has| |#1| (-833)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-649 |#1|) (-13 (-671 |#1|) (-10 -8 (-15 -3057 ($) -3709) (-15 -1738 ((-112) $)) (-15 -3748 ($ |#1| $)) (-15 -1854 ($ $ $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -3440 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) (-1225)) (T -649)) -((-3057 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) (-1738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1225)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) (-1854 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) (-3440 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))) (-3429 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)))) (-3418 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225))))) -(-13 (-671 |#1|) (-10 -8 (-15 -3057 ($) -3709) (-15 -1738 ((-112) $)) (-15 -3748 ($ |#1| $)) (-15 -1854 ($ $ $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -3440 ($ $ $)) (-15 -3429 ($ $ $)) (-15 -3418 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-833)) (-6 (-833)) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11) (($ (-1190)) NIL) (((-1190) $) NIL) ((|#1| $) 8)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-650 |#1|) (-13 (-1091) (-618 |#1|)) (-1108)) (T -650)) -NIL -(-13 (-1091) (-618 |#1|)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) 6)) (* (($ |#1| $) 14))) -(((-651 |#1|) (-140) (-1066)) (T -651)) -((-1804 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066))))) -(-13 (-1108) (-10 -8 (-15 (-1804) ($) -3709) (-15 -4143 ((-112) $)) (-15 * ($ |t#1| $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3537 (($ |#1| |#1| $) 46)) (-3914 (((-112) $ (-776)) NIL)) (-1796 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2017 (($ $) 48)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) 59 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 9 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 37)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 50)) (-3894 (($ |#1| $) 29) (($ |#1| $ (-776)) 45)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1781 ((|#1| $) 53)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 23)) (-3635 (($) 28)) (-1617 (((-112) $) 57)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 69)) (-2434 (($) 26) (($ (-649 |#1|)) 19)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) 66 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 20)) (-1410 (((-541) $) 34 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) NIL)) (-3796 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 24)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 71 (|has| |#1| (-1108)))) (-2428 (((-776) $) 17 (|has| $ (-6 -4447))))) -(((-652 |#1|) (-13 (-700 |#1|) (-10 -8 (-6 -4447) (-15 -1617 ((-112) $)) (-15 -3537 ($ |#1| |#1| $)))) (-1108)) (T -652)) -((-1617 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1108)))) (-3537 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1108))))) -(-13 (-700 |#1|) (-10 -8 (-6 -4447) (-15 -1617 ((-112) $)) (-15 -3537 ($ |#1| |#1| $)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27))) -(((-653 |#1|) (-140) (-1066)) (T -653)) -NIL -(-13 (-21) (-651 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776) $) 17)) (-4285 (($ $ |#1|) 69)) (-2507 (($ $) 39)) (-2251 (($ $) 37)) (-4381 (((-3 |#1| "failed") $) 61)) (-3150 ((|#1| $) NIL)) (-3245 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3548 (((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569)) 56)) (-3522 ((|#1| $ (-569)) 35)) (-2114 ((|#2| $ (-569)) 34)) (-3196 (($ (-1 |#1| |#1|) $) 41)) (-4308 (($ (-1 |#2| |#2|) $) 47)) (-2865 (($) 11)) (-2618 (($ |#1| |#2|) 24)) (-4010 (($ (-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|)))) 25)) (-2447 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $) 14)) (-1519 (($ |#1| $) 71)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2849 (((-112) $ $) 76)) (-3796 (((-867) $) 21) (($ |#1|) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 27))) -(((-654 |#1| |#2| |#3|) (-13 (-1108) (-1046 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -2447 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $)) (-15 -2618 ($ |#1| |#2|)) (-15 -4010 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))))) (-15 -2114 (|#2| $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2251 ($ $)) (-15 -2507 ($ $)) (-15 -3473 ((-776) $)) (-15 -2865 ($)) (-15 -4285 ($ $ |#1|)) (-15 -1519 ($ |#1| $)) (-15 -3245 ($ |#1| |#2| $)) (-15 -3245 ($ $ $)) (-15 -2849 ((-112) $ $)) (-15 -4308 ($ (-1 |#2| |#2|) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)))) (-1108) (-23) |#2|) (T -654)) -((-3548 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867)) (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1108)) (-4 *6 (-23)) (-14 *7 *6))) (-2447 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))) (-2618 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) (-4 *4 (-1108)) (-14 *5 *2))) (-3522 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *2 (-1108)) (-5 *1 (-654 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2251 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-2507 (*1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))) (-2865 (*1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-4285 (*1 *1 *1 *2) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-1519 (*1 *1 *2 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-3245 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-3245 (*1 *1 *1 *1) (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) (-14 *4 *3))) (-2849 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4))) (-4308 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)))) (-3196 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-654 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1108) (-1046 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-1 (-867) (-867) (-867)) (-1 (-867) (-867) (-867)) (-569))) (-15 -2447 ((-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))) $)) (-15 -2618 ($ |#1| |#2|)) (-15 -4010 ($ (-649 (-2 (|:| |gen| |#1|) (|:| -4389 |#2|))))) (-15 -2114 (|#2| $ (-569))) (-15 -3522 (|#1| $ (-569))) (-15 -2251 ($ $)) (-15 -2507 ($ $)) (-15 -3473 ((-776) $)) (-15 -2865 ($)) (-15 -4285 ($ $ |#1|)) (-15 -1519 ($ |#1| $)) (-15 -3245 ($ |#1| |#2| $)) (-15 -3245 ($ $ $)) (-15 -2849 ((-112) $ $)) (-15 -4308 ($ (-1 |#2| |#2|) $)) (-15 -3196 ($ (-1 |#1| |#1|) $)))) -((-3256 (((-569) $) 31)) (-4298 (($ |#2| $ (-569)) 27) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) 12)) (-1414 (((-112) (-569) $) 18)) (-2443 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-649 $)) NIL))) -(((-655 |#1| |#2|) (-10 -8 (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3256 ((-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -1414 ((-112) (-569) |#1|))) (-656 |#2|) (-1225)) (T -655)) -NIL -(-10 -8 (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -2443 (|#1| (-649 |#1|))) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -3256 ((-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -1414 ((-112) (-569) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-656 |#1|) (-140) (-1225)) (T -656)) -((-4300 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-2443 (*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-4328 (*1 *1 *1 *2) (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-4298 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1225)))) (-4298 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1242 (-569))) (|has| *1 (-6 -4448)) (-4 *1 (-656 *2)) (-4 *2 (-1225))))) -(-13 (-609 (-569) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4300 ($ (-776) |t#1|)) (-15 -2443 ($ $ |t#1|)) (-15 -2443 ($ |t#1| $)) (-15 -2443 ($ $ $)) (-15 -2443 ($ (-649 $))) (-15 -1346 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1869 ($ $ (-1242 (-569)))) (-15 -4328 ($ $ (-569))) (-15 -4328 ($ $ (-1242 (-569)))) (-15 -4298 ($ |t#1| $ (-569))) (-15 -4298 ($ $ $ (-569))) (IF (|has| $ (-6 -4448)) (-15 -3943 (|t#1| $ (-1242 (-569)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3218 (((-3 |#2| "failed") |#3| |#2| (-1185) |#2| (-649 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) "failed") |#3| |#2| (-1185)) 44))) -(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) "failed") |#3| |#2| (-1185))) (-15 -3218 ((-3 |#2| "failed") |#3| |#2| (-1185) |#2| (-649 |#2|)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965)) (-661 |#2|)) (T -657)) -((-3218 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1185)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1210) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4)))) (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4))))) -(-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) "failed") |#3| |#2| (-1185))) (-15 -3218 ((-3 |#2| "failed") |#3| |#2| (-1185) |#2| (-649 |#2|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-367)))) (-3438 (($ $ $) NIL (|has| |#1| (-367)))) (-3050 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) NIL)) (-2691 (($ $ $) NIL (|has| |#1| (-367)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) NIL)) (-2390 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-658 |#1|) (-661 |#1|) (-234)) (T -658)) -NIL -(-661 |#1|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-367)))) (-3438 (($ $ $) NIL (|has| |#1| (-367)))) (-3050 (($ $ (-776)) NIL (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2691 (($ $ $) NIL (|has| |#1| (-367)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) NIL)) (-2390 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-659 |#1| |#2|) (-13 (-661 |#1|) (-289 |#2| |#2|)) (-234) (-13 (-653 |#1|) (-10 -8 (-15 -3517 ($ $))))) (T -659)) -NIL -(-13 (-661 |#1|) (-289 |#2| |#2|)) -((-4135 (($ $) 29)) (-2390 (($ $) 27)) (-2832 (($) 13))) -(((-660 |#1| |#2|) (-10 -8 (-15 -4135 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2832 (|#1|))) (-661 |#2|) (-1057)) (T -660)) -NIL -(-10 -8 (-15 -4135 (|#1| |#1|)) (-15 -2390 (|#1| |#1|)) (-15 -2832 (|#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-4135 (($ $) 87 (|has| |#1| (-367)))) (-3438 (($ $ $) 89 (|has| |#1| (-367)))) (-3050 (($ $ (-776)) 88 (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3708 (($ $ $) 50 (|has| |#1| (-367)))) (-3187 (($ $ $) 51 (|has| |#1| (-367)))) (-4124 (($ $ $) 53 (|has| |#1| (-367)))) (-2200 (($ $ $) 48 (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 47 (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 52 (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3150 (((-569) $) 79 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 75)) (-1883 (($ $) 69)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 60 (|has| |#1| (-457)))) (-2349 (((-112) $) 35)) (-3923 (($ |#1| (-776)) 67)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 62 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63 (|has| |#1| (-561)))) (-2272 (((-776) $) 71)) (-4276 (($ $ $) 57 (|has| |#1| (-367)))) (-3662 (($ $ $) 58 (|has| |#1| (-367)))) (-3768 (($ $ $) 46 (|has| |#1| (-367)))) (-2036 (($ $ $) 55 (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 54 (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 59 (|has| |#1| (-367)))) (-1857 ((|#1| $) 70)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) 92)) (-2691 (($ $ $) 86 (|has| |#1| (-367)))) (-4339 (((-776) $) 72)) (-3833 ((|#1| $) 61 (|has| |#1| (-457)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 73)) (-2512 (((-649 |#1|) $) 66)) (-4383 ((|#1| $ (-776)) 68)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-3451 ((|#1| $ |#1| |#1|) 65)) (-2390 (($ $) 90)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($) 91)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-661 |#1|) (-140) (-1057)) (T -661)) -((-2832 (*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)))) (-2390 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)))) (-3438 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1057)) (-4 *3 (-367)))) (-4135 (*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2691 (*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(-13 (-857 |t#1|) (-289 |t#1| |t#1|) (-10 -8 (-15 -2832 ($)) (-15 -2390 ($ $)) (IF (|has| |t#1| (-367)) (PROGN (-15 -3438 ($ $ $)) (-15 -3050 ($ $ (-776))) (-15 -4135 ($ $)) (-15 -2691 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-289 |#1| |#1|) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-857 |#1|) . T)) -((-1554 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 87 (|has| |#1| (-27)))) (-3800 (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))) 86 (|has| |#1| (-27))) (((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 19))) -(((-662 |#1| |#2|) (-10 -7 (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -1554 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|)) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -662)) -((-1554 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5)))) (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-658 (-412 *6)))) (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6)))))) -(-10 -7 (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3800 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|)))) (-15 -1554 ((-649 (-658 (-412 |#2|))) (-658 (-412 |#2|))))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-367)))) (-3438 (($ $ $) 28 (|has| |#1| (-367)))) (-3050 (($ $ (-776)) 31 (|has| |#1| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-1869 ((|#1| $ |#1|) 24)) (-2691 (($ $ $) 33 (|has| |#1| (-367)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) 20) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) 23)) (-2390 (($ $) NIL)) (-1804 (($) 21 T CONST)) (-1815 (($) 8 T CONST)) (-2832 (($) NIL)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-663 |#1| |#2|) (-661 |#1|) (-1057) (-1 |#1| |#1|)) (T -663)) -NIL -(-661 |#1|) -((-3438 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-3050 ((|#2| |#2| (-776) (-1 |#1| |#1|)) 48)) (-2691 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-664 |#1| |#2|) (-10 -7 (-15 -3438 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3050 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2691 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -664)) -((-2691 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4)))) (-3050 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5)))) (-3438 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) (-4 *2 (-661 *4))))) -(-10 -7 (-15 -3438 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3050 (|#2| |#2| (-776) (-1 |#1| |#1|))) (-15 -2691 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-4419 (($ $ $) 9))) -(((-665 |#1|) (-10 -8 (-15 -4419 (|#1| |#1| |#1|))) (-666)) (T -665)) -NIL -(-10 -8 (-15 -4419 (|#1| |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-2436 (($ $) 10)) (-4419 (($ $ $) 8)) (-2920 (((-112) $ $) 6)) (-4406 (($ $ $) 9))) -(((-666) (-140)) (T -666)) -((-2436 (*1 *1 *1) (-4 *1 (-666))) (-4406 (*1 *1 *1 *1) (-4 *1 (-666))) (-4419 (*1 *1 *1 *1) (-4 *1 (-666)))) -(-13 (-102) (-10 -8 (-15 -2436 ($ $)) (-15 -4406 ($ $ $)) (-15 -4419 ($ $ $)))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#2| $ |#1| |#2|) NIL)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) NIL)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2799 (((-650 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2044 (((-650 |#1|) $) NIL)) (-1480 (((-112) |#1| $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-556 |#1| |#2| |#3|) (-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) (-1109) (-1109) (-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448)))) (T -556)) +NIL +(-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) +((-3373 (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-1 (-1182 |#2|) (-1182 |#2|))) 50))) +(((-557 |#1| |#2|) (-10 -7 (-15 -3373 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-1 (-1182 |#2|) (-1182 |#2|))))) (-562) (-13 (-27) (-436 |#1|))) (T -557)) +((-3373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-618 *3)) (-5 *5 (-1 (-1182 *3) (-1182 *3))) (-4 *3 (-13 (-27) (-436 *6))) (-4 *6 (-562)) (-5 *2 (-592 *3)) (-5 *1 (-557 *6 *3))))) +(-10 -7 (-15 -3373 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-1 (-1182 |#2|) (-1182 |#2|))))) +((-3973 (((-592 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2820 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-4251 (((-592 |#5|) |#5| (-1 |#3| |#3|)) 222))) +(((-558 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4251 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3973 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2820 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-562) (-1047 (-570))) (-13 (-27) (-436 |#1|)) (-1252 |#2|) (-1252 (-413 |#3|)) (-347 |#2| |#3| |#4|)) (T -558)) +((-2820 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-27) (-436 *4))) (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *7 (-1252 (-413 *6))) (-5 *1 (-558 *4 *5 *6 *7 *2)) (-4 *2 (-347 *5 *6 *7)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1252 *6)) (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) (-4 *8 (-1252 (-413 *7))) (-5 *2 (-592 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1252 *6)) (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) (-4 *8 (-1252 (-413 *7))) (-5 *2 (-592 *3)) (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8))))) +(-10 -7 (-15 -4251 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3973 ((-592 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2820 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1739 (((-112) (-570) (-570)) 12)) (-1685 (((-570) (-570)) 7)) (-3789 (((-570) (-570) (-570)) 10))) +(((-559) (-10 -7 (-15 -1685 ((-570) (-570))) (-15 -3789 ((-570) (-570) (-570))) (-15 -1739 ((-112) (-570) (-570))))) (T -559)) +((-1739 (*1 *2 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-559)))) (-3789 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559))))) +(-10 -7 (-15 -1685 ((-570) (-570))) (-15 -3789 ((-570) (-570) (-570))) (-15 -1739 ((-112) (-570) (-570)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3485 ((|#1| $) 67)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2774 (($ $) 97)) (-2629 (($ $) 80)) (-1647 ((|#1| $) 68)) (-2620 (((-3 $ "failed") $ $) 20)) (-3815 (($ $) 79)) (-2749 (($ $) 96)) (-2604 (($ $) 81)) (-4119 (($ $) 95)) (-2648 (($ $) 82)) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 75)) (-3152 (((-570) $) 76)) (-2229 (((-3 $ "failed") $) 37)) (-1499 (($ |#1| |#1|) 72)) (-2135 (((-112) $) 66)) (-1313 (($) 107)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 78)) (-3367 (((-112) $) 65)) (-3382 (($ $ $) 113)) (-2876 (($ $ $) 112)) (-2665 (($ $) 104)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-4422 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-413 (-570))) 70)) (-1483 ((|#1| $) 69)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-2410 (((-3 $ "failed") $ $) 48)) (-4390 (($ $) 105)) (-4129 (($ $) 94)) (-2664 (($ $) 83)) (-2786 (($ $) 93)) (-2636 (($ $) 84)) (-2761 (($ $) 92)) (-2616 (($ $) 85)) (-1924 (((-112) $ |#1|) 64)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-570)) 74)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 103)) (-2704 (($ $) 91)) (-3258 (((-112) $ $) 45)) (-4141 (($ $) 102)) (-2678 (($ $) 90)) (-4186 (($ $) 101)) (-2726 (($ $) 89)) (-1504 (($ $) 100)) (-2737 (($ $) 88)) (-4176 (($ $) 99)) (-2715 (($ $) 87)) (-4153 (($ $) 98)) (-2692 (($ $) 86)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 110)) (-2959 (((-112) $ $) 109)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 111)) (-2948 (((-112) $ $) 108)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ $) 106) (($ $ (-413 (-570))) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-560 |#1|) (-141) (-13 (-410) (-1211))) (T -560)) +((-4422 (*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) (-1499 (*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) (-4422 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) (-4422 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))))) (-1483 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))) (-5 *2 (-112)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))) (-5 *2 (-112)))) (-1924 (*1 *2 *1 *3) (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))) (-5 *2 (-112))))) +(-13 (-458) (-856) (-1211) (-1011) (-1047 (-570)) (-10 -8 (-6 -3093) (-15 -4422 ($ |t#1| |t#1|)) (-15 -1499 ($ |t#1| |t#1|)) (-15 -4422 ($ |t#1|)) (-15 -4422 ($ (-413 (-570)))) (-15 -1483 (|t#1| $)) (-15 -1647 (|t#1| $)) (-15 -3485 (|t#1| $)) (-15 -2135 ((-112) $)) (-15 -3367 ((-112) $)) (-15 -1924 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-288) . T) ((-294) . T) ((-458) . T) ((-499) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-856) . T) ((-1011) . T) ((-1047 (-570)) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1211) . T) ((-1214) . T)) +((-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 9)) (-2318 (($ $) 11)) (-2234 (((-112) $) 20)) (-2229 (((-3 $ "failed") $) 16)) (-3258 (((-112) $ $) 22))) +(((-561 |#1|) (-10 -8 (-15 -2234 ((-112) |#1|)) (-15 -3258 ((-112) |#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -1966 ((-2 (|:| -1738 |#1|) (|:| -4435 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|))) (-562)) (T -561)) +NIL +(-10 -8 (-15 -2234 ((-112) |#1|)) (-15 -3258 ((-112) |#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -1966 ((-2 (|:| -1738 |#1|) (|:| -4435 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ $) 48)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-562) (-141)) (T -562)) +((-2410 (*1 *1 *1 *1) (|partial| -4 *1 (-562))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1738 *1) (|:| -4435 *1) (|:| |associate| *1))) (-4 *1 (-562)))) (-2318 (*1 *1 *1) (-4 *1 (-562))) (-3258 (*1 *2 *1 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-294) (-10 -8 (-15 -2410 ((-3 $ "failed") $ $)) (-15 -1966 ((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $)) (-15 -2318 ($ $)) (-15 -3258 ((-112) $ $)) (-15 -2234 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2154 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1186) (-650 |#2|)) 38)) (-3644 (((-592 |#2|) |#2| (-1186)) 63)) (-3861 (((-3 |#2| "failed") |#2| (-1186)) 156)) (-1970 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) (-618 |#2|) (-650 (-618 |#2|))) 159)) (-3423 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) |#2|) 41))) +(((-563 |#1| |#2|) (-10 -7 (-15 -3423 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) |#2|)) (-15 -2154 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1186) (-650 |#2|))) (-15 -3861 ((-3 |#2| "failed") |#2| (-1186))) (-15 -3644 ((-592 |#2|) |#2| (-1186))) (-15 -1970 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) (-618 |#2|) (-650 (-618 |#2|))))) (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -563)) +((-1970 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1186)) (-5 *6 (-650 (-618 *3))) (-5 *5 (-618 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *7))) (-4 *7 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-563 *7 *3)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-3861 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) (-2154 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *6 *3)))) (-3423 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(-10 -7 (-15 -3423 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) |#2|)) (-15 -2154 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1186) (-650 |#2|))) (-15 -3861 ((-3 |#2| "failed") |#2| (-1186))) (-15 -3644 ((-592 |#2|) |#2| (-1186))) (-15 -1970 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1186) (-618 |#2|) (-650 (-618 |#2|))))) +((-2555 (((-424 |#1|) |#1|) 19)) (-3801 (((-424 |#1|) |#1|) 34)) (-3482 (((-3 |#1| "failed") |#1|) 51)) (-3538 (((-424 |#1|) |#1|) 64))) +(((-564 |#1|) (-10 -7 (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3538 ((-424 |#1|) |#1|)) (-15 -3482 ((-3 |#1| "failed") |#1|))) (-551)) (T -564)) +((-3482 (*1 *2 *2) (|partial| -12 (-5 *1 (-564 *2)) (-4 *2 (-551)))) (-3538 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))) (-2555 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551))))) +(-10 -7 (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3538 ((-424 |#1|) |#1|)) (-15 -3482 ((-3 |#1| "failed") |#1|))) +((-3343 (($) 9)) (-1620 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2799 (((-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2213 (($ (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-4311 (($ (-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2219 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-2880 (((-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3063 (((-1281)) 11))) +(((-565) (-10 -8 (-15 -3343 ($)) (-15 -3063 ((-1281))) (-15 -2799 ((-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4311 ($ (-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2213 ($ (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1620 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2880 ((-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2219 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -565)) +((-2219 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-565)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-565)))) (-1620 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-565)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-565)))) (-4311 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-565)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-565)))) (-3063 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-565)))) (-3343 (*1 *1) (-5 *1 (-565)))) +(-10 -8 (-15 -3343 ($)) (-15 -3063 ((-1281))) (-15 -2799 ((-650 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -4311 ($ (-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2213 ($ (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1620 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2880 ((-650 (-2 (|:| -2009 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2219 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3768 (((-1182 (-413 (-1182 |#2|))) |#2| (-618 |#2|) (-618 |#2|) (-1182 |#2|)) 35)) (-1805 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) |#2| (-1182 |#2|)) 115)) (-2594 (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 85) (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|)) 55)) (-1898 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| (-618 |#2|) |#2| (-413 (-1182 |#2|))) 92) (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| |#2| (-1182 |#2|)) 114)) (-4003 (((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) |#2| (-1182 |#2|)) 116)) (-4180 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))) 135 (|has| |#3| (-662 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|)) 134 (|has| |#3| (-662 |#2|)))) (-1699 ((|#2| (-1182 (-413 (-1182 |#2|))) (-618 |#2|) |#2|) 53)) (-3586 (((-1182 (-413 (-1182 |#2|))) (-1182 |#2|) (-618 |#2|)) 34))) +(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -2594 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -2594 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -1898 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| |#2| (-1182 |#2|))) (-15 -1898 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -1805 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) |#2| (-1182 |#2|))) (-15 -1805 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -4003 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) |#2| (-1182 |#2|))) (-15 -4003 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -3768 ((-1182 (-413 (-1182 |#2|))) |#2| (-618 |#2|) (-618 |#2|) (-1182 |#2|))) (-15 -1699 (|#2| (-1182 (-413 (-1182 |#2|))) (-618 |#2|) |#2|)) (-15 -3586 ((-1182 (-413 (-1182 |#2|))) (-1182 |#2|) (-618 |#2|))) (IF (|has| |#3| (-662 |#2|)) (PROGN (-15 -4180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -4180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))))) |%noBranch|)) (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))) (-13 (-436 |#1|) (-27) (-1211)) (-1109)) (T -566)) +((-4180 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-618 *4)) (-5 *6 (-413 (-1182 *4))) (-4 *4 (-13 (-436 *7) (-27) (-1211))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) (-4180 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-618 *4)) (-5 *6 (-1182 *4)) (-4 *4 (-13 (-436 *7) (-27) (-1211))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *4 (-618 *6)) (-4 *6 (-13 (-436 *5) (-27) (-1211))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-1182 (-413 (-1182 *6)))) (-5 *1 (-566 *5 *6 *7)) (-5 *3 (-1182 *6)) (-4 *7 (-1109)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1182 (-413 (-1182 *2)))) (-5 *4 (-618 *2)) (-4 *2 (-13 (-436 *5) (-27) (-1211))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1109)))) (-3768 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-1182 (-413 (-1182 *3)))) (-5 *1 (-566 *6 *3 *7)) (-5 *5 (-1182 *3)) (-4 *7 (-1109)))) (-4003 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-5 *5 (-413 (-1182 *2))) (-4 *2 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109)))) (-4003 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-5 *5 (-1182 *2)) (-4 *2 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109)))) (-1805 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-5 *6 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *7) (-27) (-1211))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109)))) (-1805 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-5 *6 (-1182 *3)) (-4 *3 (-13 (-436 *7) (-27) (-1211))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109)))) (-1898 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) (-1898 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) (-2594 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) (-2594 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109))))) +(-10 -7 (-15 -2594 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -2594 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -1898 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| |#2| (-1182 |#2|))) (-15 -1898 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2| (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -1805 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) |#2| (-1182 |#2|))) (-15 -1805 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -4003 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) |#2| (-1182 |#2|))) (-15 -4003 ((-3 |#2| "failed") |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)) (-618 |#2|) |#2| (-413 (-1182 |#2|)))) (-15 -3768 ((-1182 (-413 (-1182 |#2|))) |#2| (-618 |#2|) (-618 |#2|) (-1182 |#2|))) (-15 -1699 (|#2| (-1182 (-413 (-1182 |#2|))) (-618 |#2|) |#2|)) (-15 -3586 ((-1182 (-413 (-1182 |#2|))) (-1182 |#2|) (-618 |#2|))) (IF (|has| |#3| (-662 |#2|)) (PROGN (-15 -4180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) |#2| (-1182 |#2|))) (-15 -4180 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-618 |#2|) |#2| (-413 (-1182 |#2|))))) |%noBranch|)) +((-1636 (((-570) (-570) (-777)) 90)) (-1903 (((-570) (-570)) 88)) (-3395 (((-570) (-570)) 86)) (-1578 (((-570) (-570)) 92)) (-3893 (((-570) (-570) (-570)) 70)) (-2752 (((-570) (-570) (-570)) 67)) (-3293 (((-413 (-570)) (-570)) 30)) (-3287 (((-570) (-570)) 36)) (-2887 (((-570) (-570)) 79)) (-3141 (((-570) (-570)) 51)) (-4325 (((-650 (-570)) (-570)) 85)) (-2527 (((-570) (-570) (-570) (-570) (-570)) 63)) (-2212 (((-413 (-570)) (-570)) 60))) +(((-567) (-10 -7 (-15 -2212 ((-413 (-570)) (-570))) (-15 -2527 ((-570) (-570) (-570) (-570) (-570))) (-15 -4325 ((-650 (-570)) (-570))) (-15 -3141 ((-570) (-570))) (-15 -2887 ((-570) (-570))) (-15 -3287 ((-570) (-570))) (-15 -3293 ((-413 (-570)) (-570))) (-15 -2752 ((-570) (-570) (-570))) (-15 -3893 ((-570) (-570) (-570))) (-15 -1578 ((-570) (-570))) (-15 -3395 ((-570) (-570))) (-15 -1903 ((-570) (-570))) (-15 -1636 ((-570) (-570) (-777))))) (T -567)) +((-1636 (*1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-777)) (-5 *1 (-567)))) (-1903 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-1578 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2752 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-3293 (*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-3141 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-4325 (*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))) (-2527 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) (-2212 (*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570))))) +(-10 -7 (-15 -2212 ((-413 (-570)) (-570))) (-15 -2527 ((-570) (-570) (-570) (-570) (-570))) (-15 -4325 ((-650 (-570)) (-570))) (-15 -3141 ((-570) (-570))) (-15 -2887 ((-570) (-570))) (-15 -3287 ((-570) (-570))) (-15 -3293 ((-413 (-570)) (-570))) (-15 -2752 ((-570) (-570) (-570))) (-15 -3893 ((-570) (-570) (-570))) (-15 -1578 ((-570) (-570))) (-15 -3395 ((-570) (-570))) (-15 -1903 ((-570) (-570))) (-15 -1636 ((-570) (-570) (-777)))) +((-3974 (((-2 (|:| |answer| |#4|) (|:| -2506 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-568 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-2 (|:| |answer| |#4|) (|:| -2506 |#4|)) |#4| (-1 |#2| |#2|)))) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -568)) +((-3974 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-4 *7 (-1252 (-413 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2506 *3))) (-5 *1 (-568 *5 *6 *7 *3)) (-4 *3 (-347 *5 *6 *7))))) +(-10 -7 (-15 -3974 ((-2 (|:| |answer| |#4|) (|:| -2506 |#4|)) |#4| (-1 |#2| |#2|)))) +((-3974 (((-2 (|:| |answer| (-413 |#2|)) (|:| -2506 (-413 |#2|)) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)) 18))) +(((-569 |#1| |#2|) (-10 -7 (-15 -3974 ((-2 (|:| |answer| (-413 |#2|)) (|:| -2506 (-413 |#2|)) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)))) (-368) (-1252 |#1|)) (T -569)) +((-3974 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |answer| (-413 *6)) (|:| -2506 (-413 *6)) (|:| |specpart| (-413 *6)) (|:| |polypart| *6))) (-5 *1 (-569 *5 *6)) (-5 *3 (-413 *6))))) +(-10 -7 (-15 -3974 ((-2 (|:| |answer| (-413 |#2|)) (|:| -2506 (-413 |#2|)) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 30)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 97)) (-2318 (($ $) 98)) (-2234 (((-112) $) NIL)) (-2744 (($ $ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4233 (($ $ $ $) 52)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL)) (-3086 (($ $ $) 92)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL)) (-3152 (((-570) $) NIL)) (-2372 (($ $ $) 54)) (-2004 (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 77) (((-695 (-570)) (-695 $)) 73)) (-2229 (((-3 $ "failed") $) 94)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL)) (-3108 (((-112) $) NIL)) (-3875 (((-413 (-570)) $) NIL)) (-3408 (($) 79) (($ $) 80)) (-2380 (($ $ $) 91)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1991 (($ $ $ $) NIL)) (-2378 (($ $ $) 70)) (-2135 (((-112) $) NIL)) (-2375 (($ $ $) NIL)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-2481 (((-112) $) 34)) (-2639 (((-112) $) 86)) (-3641 (((-3 $ "failed") $) NIL)) (-3367 (((-112) $) 43)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2170 (($ $ $ $) 55)) (-3382 (($ $ $) 88)) (-2876 (($ $ $) 87)) (-2609 (($ $) NIL)) (-3847 (($ $) 49)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) 69)) (-2078 (($ $ $) NIL)) (-2310 (($) NIL T CONST)) (-3595 (($ $) 38)) (-3551 (((-1129) $) 42)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 129)) (-1869 (($ $ $) 95) (($ (-650 $)) NIL)) (-3067 (($ $) NIL)) (-3801 (((-424 $) $) 115)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2410 (((-3 $ "failed") $ $) 113)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3699 (((-112) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 90)) (-3519 (($ $ (-777)) NIL) (($ $) NIL)) (-2435 (($ $) 40)) (-3964 (($ $) 36)) (-1411 (((-570) $) 48) (((-542) $) 64) (((-899 (-570)) $) NIL) (((-384) $) 58) (((-227) $) 61) (((-1168) $) 66)) (-3798 (((-868) $) 46) (($ (-570)) 47) (($ $) NIL) (($ (-570)) 47)) (-2862 (((-777)) NIL T CONST)) (-3767 (((-112) $ $) NIL)) (-3755 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-4364 (($) 35)) (-3258 (((-112) $ $) NIL)) (-4078 (($ $ $ $) 51)) (-2216 (($ $) 78)) (-1809 (($) 6 T CONST)) (-1817 (($) 31 T CONST)) (-1985 (((-1168) $) 26) (((-1168) $ (-112)) 27) (((-1281) (-828) $) 28) (((-1281) (-828) $ (-112)) 29)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) 50)) (-2959 (((-112) $ $) 81)) (-2923 (((-112) $ $) 33)) (-2969 (((-112) $ $) 83)) (-2948 (((-112) $ $) 10)) (-3026 (($ $) 16) (($ $ $) 39)) (-3014 (($ $ $) 37)) (** (($ $ (-928)) NIL) (($ $ (-777)) 85)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 84) (($ $ $) 53))) +(((-570) (-13 (-551) (-620 (-1168)) (-834) (-10 -7 (-6 -4435) (-6 -4440) (-6 -4436) (-6 -4430)))) (T -570)) +NIL +(-13 (-551) (-620 (-1168)) (-834) (-10 -7 (-6 -4435) (-6 -4440) (-6 -4436) (-6 -4430))) +((-1643 (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775) (-1072)) 119) (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775)) 121)) (-1840 (((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1186)) 197) (((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1168)) 196) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384) (-1072)) 201) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384)) 202) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384)) 203) (((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384))))) 204) (((-1044) (-320 (-384)) (-1103 (-849 (-384)))) 192) (((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384)) 191) (((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384)) 187) (((-1044) (-775)) 179) (((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384) (-1072)) 186))) +(((-571) (-10 -7 (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384) (-1072))) (-15 -1840 ((-1044) (-775))) (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384) (-1072))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775) (-1072))) (-15 -1840 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1168))) (-15 -1840 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1186))))) (T -571)) +((-1840 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384)))) (-5 *5 (-1186)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384)))) (-5 *5 (-1168)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-775)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) (-5 *1 (-571)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-1044)) (-5 *1 (-571)))) (-1840 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571))))) +(-10 -7 (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384) (-1072))) (-15 -1840 ((-1044) (-775))) (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-1103 (-849 (-384))))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384))) (-15 -1840 ((-1044) (-320 (-384)) (-650 (-1103 (-849 (-384)))) (-384) (-384) (-1072))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044))) (-775) (-1072))) (-15 -1840 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1168))) (-15 -1840 ((-3 (-1044) "failed") (-320 (-384)) (-1101 (-849 (-384))) (-1186)))) +((-1369 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|)) 198)) (-1892 (((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|)) 99)) (-3669 (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2|) 194)) (-4253 (((-3 |#2| "failed") |#2| |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186))) 203)) (-2993 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-1186)) 212 (|has| |#3| (-662 |#2|))))) +(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -1892 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|))) (-15 -3669 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2|)) (-15 -1369 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|))) (-15 -4253 ((-3 |#2| "failed") |#2| |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)))) (IF (|has| |#3| (-662 |#2|)) (-15 -2993 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-1186))) |%noBranch|)) (-13 (-458) (-1047 (-570)) (-148) (-645 (-570))) (-13 (-436 |#1|) (-27) (-1211)) (-1109)) (T -572)) +((-2993 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-618 *4)) (-5 *6 (-1186)) (-4 *4 (-13 (-436 *7) (-27) (-1211))) (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) (-4253 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-618 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-4 *2 (-13 (-436 *5) (-27) (-1211))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1109)))) (-1369 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1211))) (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1109)))) (-3669 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *5) (-27) (-1211))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109)))) (-1892 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *5) (-27) (-1211))) (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 (-592 *3)) (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109))))) +(-10 -7 (-15 -1892 ((-592 |#2|) |#2| (-618 |#2|) (-618 |#2|))) (-15 -3669 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-618 |#2|) (-618 |#2|) |#2|)) (-15 -1369 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-618 |#2|) (-618 |#2|) (-650 |#2|))) (-15 -4253 ((-3 |#2| "failed") |#2| |#2| |#2| (-618 |#2|) (-618 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1186)))) (IF (|has| |#3| (-662 |#2|)) (-15 -2993 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2077 (-650 |#2|))) |#3| |#2| (-618 |#2|) (-618 |#2|) (-1186))) |%noBranch|)) +((-3479 (((-2 (|:| -1656 |#2|) (|:| |nconst| |#2|)) |#2| (-1186)) 64)) (-2982 (((-3 |#2| "failed") |#2| (-1186) (-849 |#2|) (-849 |#2|)) 175 (-12 (|has| |#2| (-1148)) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-893 (-570))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)) 154 (-12 (|has| |#2| (-635)) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-893 (-570)))))) (-2925 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)) 156 (-12 (|has| |#2| (-635)) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-893 (-570))))))) +(((-573 |#1| |#2|) (-10 -7 (-15 -3479 ((-2 (|:| -1656 |#2|) (|:| |nconst| |#2|)) |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (PROGN (IF (|has| |#2| (-635)) (PROGN (-15 -2925 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186))) (-15 -2982 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) (IF (|has| |#2| (-1148)) (-15 -2982 ((-3 |#2| "failed") |#2| (-1186) (-849 |#2|) (-849 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1047 (-570)) (-458) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -573)) +((-2982 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1186)) (-5 *4 (-849 *2)) (-4 *2 (-1148)) (-4 *2 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *1 (-573 *5 *2)))) (-2982 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-573 *5 *3)) (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-2925 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-573 *5 *3)) (-4 *3 (-635)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) (-5 *2 (-2 (|:| -1656 *3) (|:| |nconst| *3))) (-5 *1 (-573 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(-10 -7 (-15 -3479 ((-2 (|:| -1656 |#2|) (|:| |nconst| |#2|)) |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (PROGN (IF (|has| |#2| (-635)) (PROGN (-15 -2925 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186))) (-15 -2982 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) (IF (|has| |#2| (-1148)) (-15 -2982 ((-3 |#2| "failed") |#2| (-1186) (-849 |#2|) (-849 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2720 (((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-650 (-413 |#2|))) 41)) (-1840 (((-592 (-413 |#2|)) (-413 |#2|)) 28)) (-4366 (((-3 (-413 |#2|) "failed") (-413 |#2|)) 17)) (-3106 (((-3 (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-413 |#2|)) 48))) +(((-574 |#1| |#2|) (-10 -7 (-15 -1840 ((-592 (-413 |#2|)) (-413 |#2|))) (-15 -4366 ((-3 (-413 |#2|) "failed") (-413 |#2|))) (-15 -3106 ((-3 (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-413 |#2|))) (-15 -2720 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-650 (-413 |#2|))))) (-13 (-368) (-148) (-1047 (-570))) (-1252 |#1|)) (T -574)) +((-2720 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-650 (-413 *6))) (-5 *3 (-413 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *5 *6)))) (-3106 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| -2134 (-413 *5)) (|:| |coeff| (-413 *5)))) (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5)))) (-4366 (*1 *2 *2) (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-13 (-368) (-148) (-1047 (-570)))) (-5 *1 (-574 *3 *4)))) (-1840 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1252 *4)) (-5 *2 (-592 (-413 *5))) (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5))))) +(-10 -7 (-15 -1840 ((-592 (-413 |#2|)) (-413 |#2|))) (-15 -4366 ((-3 (-413 |#2|) "failed") (-413 |#2|))) (-15 -3106 ((-3 (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-413 |#2|))) (-15 -2720 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-650 (-413 |#2|))))) +((-2883 (((-3 (-570) "failed") |#1|) 14)) (-2381 (((-112) |#1|) 13)) (-1434 (((-570) |#1|) 9))) +(((-575 |#1|) (-10 -7 (-15 -1434 ((-570) |#1|)) (-15 -2381 ((-112) |#1|)) (-15 -2883 ((-3 (-570) "failed") |#1|))) (-1047 (-570))) (T -575)) +((-2883 (*1 *2 *3) (|partial| -12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2)))) (-2381 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1047 (-570))))) (-1434 (*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2))))) +(-10 -7 (-15 -1434 ((-570) |#1|)) (-15 -2381 ((-112) |#1|)) (-15 -2883 ((-3 (-570) "failed") |#1|))) +((-1953 (((-3 (-2 (|:| |mainpart| (-413 (-959 |#1|))) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 (-959 |#1|))) (|:| |logand| (-413 (-959 |#1|))))))) "failed") (-413 (-959 |#1|)) (-1186) (-650 (-413 (-959 |#1|)))) 48)) (-3919 (((-592 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-1186)) 28)) (-1916 (((-3 (-413 (-959 |#1|)) "failed") (-413 (-959 |#1|)) (-1186)) 23)) (-3901 (((-3 (-2 (|:| -2134 (-413 (-959 |#1|))) (|:| |coeff| (-413 (-959 |#1|)))) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))) 35))) +(((-576 |#1|) (-10 -7 (-15 -3919 ((-592 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -1916 ((-3 (-413 (-959 |#1|)) "failed") (-413 (-959 |#1|)) (-1186))) (-15 -1953 ((-3 (-2 (|:| |mainpart| (-413 (-959 |#1|))) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 (-959 |#1|))) (|:| |logand| (-413 (-959 |#1|))))))) "failed") (-413 (-959 |#1|)) (-1186) (-650 (-413 (-959 |#1|))))) (-15 -3901 ((-3 (-2 (|:| -2134 (-413 (-959 |#1|))) (|:| |coeff| (-413 (-959 |#1|)))) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))))) (-13 (-562) (-1047 (-570)) (-148))) (T -576)) +((-3901 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-148))) (-5 *2 (-2 (|:| -2134 (-413 (-959 *5))) (|:| |coeff| (-413 (-959 *5))))) (-5 *1 (-576 *5)) (-5 *3 (-413 (-959 *5))))) (-1953 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 (-413 (-959 *6)))) (-5 *3 (-413 (-959 *6))) (-4 *6 (-13 (-562) (-1047 (-570)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6)))) (-1916 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-148))) (-5 *1 (-576 *4)))) (-3919 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-148))) (-5 *2 (-592 (-413 (-959 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-413 (-959 *5)))))) +(-10 -7 (-15 -3919 ((-592 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -1916 ((-3 (-413 (-959 |#1|)) "failed") (-413 (-959 |#1|)) (-1186))) (-15 -1953 ((-3 (-2 (|:| |mainpart| (-413 (-959 |#1|))) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 (-959 |#1|))) (|:| |logand| (-413 (-959 |#1|))))))) "failed") (-413 (-959 |#1|)) (-1186) (-650 (-413 (-959 |#1|))))) (-15 -3901 ((-3 (-2 (|:| -2134 (-413 (-959 |#1|))) (|:| |coeff| (-413 (-959 |#1|)))) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))))) +((-2419 (((-112) $ $) 75)) (-1359 (((-112) $) 48)) (-3485 ((|#1| $) 39)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) 79)) (-2774 (($ $) 139)) (-2629 (($ $) 118)) (-1647 ((|#1| $) 37)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $) NIL)) (-2749 (($ $) 141)) (-2604 (($ $) 114)) (-4119 (($ $) 143)) (-2648 (($ $) 122)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) 93)) (-3152 (((-570) $) 95)) (-2229 (((-3 $ "failed") $) 78)) (-1499 (($ |#1| |#1|) 35)) (-2135 (((-112) $) 44)) (-1313 (($) 104)) (-2481 (((-112) $) 55)) (-3309 (($ $ (-570)) NIL)) (-3367 (((-112) $) 45)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-2665 (($ $) 106)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-4422 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-413 (-570))) 92)) (-1483 ((|#1| $) 36)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) 81) (($ (-650 $)) NIL)) (-2410 (((-3 $ "failed") $ $) 80)) (-4390 (($ $) 108)) (-4129 (($ $) 147)) (-2664 (($ $) 120)) (-2786 (($ $) 149)) (-2636 (($ $) 124)) (-2761 (($ $) 145)) (-2616 (($ $) 116)) (-1924 (((-112) $ |#1|) 42)) (-3798 (((-868) $) 100) (($ (-570)) 83) (($ $) NIL) (($ (-570)) 83)) (-2862 (((-777)) 102 T CONST)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) 161)) (-2704 (($ $) 130)) (-3258 (((-112) $ $) NIL)) (-4141 (($ $) 159)) (-2678 (($ $) 126)) (-4186 (($ $) 157)) (-2726 (($ $) 137)) (-1504 (($ $) 155)) (-2737 (($ $) 135)) (-4176 (($ $) 153)) (-2715 (($ $) 132)) (-4153 (($ $) 151)) (-2692 (($ $) 128)) (-1809 (($) 30 T CONST)) (-1817 (($) 10 T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 49)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 47)) (-3026 (($ $) 53) (($ $ $) 54)) (-3014 (($ $ $) 52)) (** (($ $ (-928)) 71) (($ $ (-777)) NIL) (($ $ $) 110) (($ $ (-413 (-570))) 163)) (* (($ (-928) $) 66) (($ (-777) $) NIL) (($ (-570) $) 65) (($ $ $) 61))) +(((-577 |#1|) (-560 |#1|) (-13 (-410) (-1211))) (T -577)) +NIL +(-560 |#1|) +((-4226 (((-3 (-650 (-1182 (-570))) "failed") (-650 (-1182 (-570))) (-1182 (-570))) 27))) +(((-578) (-10 -7 (-15 -4226 ((-3 (-650 (-1182 (-570))) "failed") (-650 (-1182 (-570))) (-1182 (-570)))))) (T -578)) +((-4226 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 (-570)))) (-5 *3 (-1182 (-570))) (-5 *1 (-578))))) +(-10 -7 (-15 -4226 ((-3 (-650 (-1182 (-570))) "failed") (-650 (-1182 (-570))) (-1182 (-570))))) +((-2958 (((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-1186)) 19)) (-1454 (((-650 (-618 |#2|)) (-650 |#2|) (-1186)) 23)) (-3971 (((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-650 (-618 |#2|))) 11)) (-4038 ((|#2| |#2| (-1186)) 59 (|has| |#1| (-562)))) (-2203 ((|#2| |#2| (-1186)) 87 (-12 (|has| |#2| (-288)) (|has| |#1| (-458))))) (-3351 (((-618 |#2|) (-618 |#2|) (-650 (-618 |#2|)) (-1186)) 25)) (-4395 (((-618 |#2|) (-650 (-618 |#2|))) 24)) (-4094 (((-592 |#2|) |#2| (-1186) (-1 (-592 |#2|) |#2| (-1186)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186))) 115 (-12 (|has| |#2| (-288)) (|has| |#2| (-635)) (|has| |#2| (-1047 (-1186))) (|has| |#1| (-620 (-899 (-570)))) (|has| |#1| (-458)) (|has| |#1| (-893 (-570))))))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2958 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-1186))) (-15 -4395 ((-618 |#2|) (-650 (-618 |#2|)))) (-15 -3351 ((-618 |#2|) (-618 |#2|) (-650 (-618 |#2|)) (-1186))) (-15 -3971 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-650 (-618 |#2|)))) (-15 -1454 ((-650 (-618 |#2|)) (-650 |#2|) (-1186))) (IF (|has| |#1| (-562)) (-15 -4038 (|#2| |#2| (-1186))) |%noBranch|) (IF (|has| |#1| (-458)) (IF (|has| |#2| (-288)) (PROGN (-15 -2203 (|#2| |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (IF (|has| |#2| (-635)) (IF (|has| |#2| (-1047 (-1186))) (-15 -4094 ((-592 |#2|) |#2| (-1186) (-1 (-592 |#2|) |#2| (-1186)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1109) (-436 |#1|)) (T -579)) +((-4094 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-592 *3) *3 (-1186))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1186))) (-4 *3 (-288)) (-4 *3 (-635)) (-4 *3 (-1047 *4)) (-4 *3 (-436 *7)) (-5 *4 (-1186)) (-4 *7 (-620 (-899 (-570)))) (-4 *7 (-458)) (-4 *7 (-893 (-570))) (-4 *7 (-1109)) (-5 *2 (-592 *3)) (-5 *1 (-579 *7 *3)))) (-2203 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-458)) (-4 *4 (-1109)) (-5 *1 (-579 *4 *2)) (-4 *2 (-288)) (-4 *2 (-436 *4)))) (-4038 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-4 *4 (-1109)) (-5 *1 (-579 *4 *2)) (-4 *2 (-436 *4)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-1186)) (-4 *6 (-436 *5)) (-4 *5 (-1109)) (-5 *2 (-650 (-618 *6))) (-5 *1 (-579 *5 *6)))) (-3971 (*1 *2 *2 *2) (-12 (-5 *2 (-650 (-618 *4))) (-4 *4 (-436 *3)) (-4 *3 (-1109)) (-5 *1 (-579 *3 *4)))) (-3351 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-650 (-618 *6))) (-5 *4 (-1186)) (-5 *2 (-618 *6)) (-4 *6 (-436 *5)) (-4 *5 (-1109)) (-5 *1 (-579 *5 *6)))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-650 (-618 *5))) (-4 *4 (-1109)) (-5 *2 (-618 *5)) (-5 *1 (-579 *4 *5)) (-4 *5 (-436 *4)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-618 *5))) (-5 *3 (-1186)) (-4 *5 (-436 *4)) (-4 *4 (-1109)) (-5 *1 (-579 *4 *5))))) +(-10 -7 (-15 -2958 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-1186))) (-15 -4395 ((-618 |#2|) (-650 (-618 |#2|)))) (-15 -3351 ((-618 |#2|) (-618 |#2|) (-650 (-618 |#2|)) (-1186))) (-15 -3971 ((-650 (-618 |#2|)) (-650 (-618 |#2|)) (-650 (-618 |#2|)))) (-15 -1454 ((-650 (-618 |#2|)) (-650 |#2|) (-1186))) (IF (|has| |#1| (-562)) (-15 -4038 (|#2| |#2| (-1186))) |%noBranch|) (IF (|has| |#1| (-458)) (IF (|has| |#2| (-288)) (PROGN (-15 -2203 (|#2| |#2| (-1186))) (IF (|has| |#1| (-620 (-899 (-570)))) (IF (|has| |#1| (-893 (-570))) (IF (|has| |#2| (-635)) (IF (|has| |#2| (-1047 (-1186))) (-15 -4094 ((-592 |#2|) |#2| (-1186) (-1 (-592 |#2|) |#2| (-1186)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1186)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-1951 (((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-650 |#1|) "failed") (-570) |#1| |#1|)) 201)) (-1975 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-650 (-413 |#2|))) 176)) (-1341 (((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-650 (-413 |#2|))) 173)) (-3430 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 164)) (-2645 (((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-2569 (((-3 (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-413 |#2|)) 204)) (-3704 (((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-413 |#2|)) 207)) (-3218 (((-2 (|:| |ir| (-592 (-413 |#2|))) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|)) 88)) (-2052 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2032 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-650 (-413 |#2|))) 180)) (-4001 (((-3 (-629 |#1| |#2|) "failed") (-629 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|)) 168)) (-4282 (((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|)) 191)) (-3462 (((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-413 |#2|)) 212))) +(((-580 |#1| |#2|) (-10 -7 (-15 -2645 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4282 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -1951 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-650 |#1|) "failed") (-570) |#1| |#1|))) (-15 -3704 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-413 |#2|))) (-15 -3462 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-413 |#2|))) (-15 -1975 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-650 (-413 |#2|)))) (-15 -2032 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-650 (-413 |#2|)))) (-15 -2569 ((-3 (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-413 |#2|))) (-15 -1341 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-650 (-413 |#2|)))) (-15 -3430 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4001 ((-3 (-629 |#1| |#2|) "failed") (-629 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -3218 ((-2 (|:| |ir| (-592 (-413 |#2|))) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|))) (-15 -2052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-368) (-1252 |#1|)) (T -580)) +((-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-580 *5 *3)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |ir| (-592 (-413 *6))) (|:| |specpart| (-413 *6)) (|:| |polypart| *6))) (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6)))) (-4001 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-629 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4411 *4) (|:| |sol?| (-112))) (-570) *4)) (-4 *4 (-368)) (-4 *5 (-1252 *4)) (-5 *1 (-580 *4 *5)))) (-3430 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-368)) (-5 *1 (-580 *4 *2)) (-4 *2 (-1252 *4)))) (-1341 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-650 (-413 *7))) (-4 *7 (-1252 *6)) (-5 *3 (-413 *7)) (-4 *6 (-368)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6 *7)))) (-2569 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -2134 (-413 *6)) (|:| |coeff| (-413 *6)))) (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6)))) (-2032 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4411 *7) (|:| |sol?| (-112))) (-570) *7)) (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1252 *7)) (-5 *3 (-413 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-580 *7 *8)))) (-1975 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2134 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1252 *7)) (-5 *3 (-413 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-580 *7 *8)))) (-3462 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4411 *6) (|:| |sol?| (-112))) (-570) *6)) (-4 *6 (-368)) (-4 *7 (-1252 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6)) (-2 (|:| -2134 (-413 *7)) (|:| |coeff| (-413 *7))) "failed")) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-3704 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-368)) (-4 *7 (-1252 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6)) (-2 (|:| -2134 (-413 *7)) (|:| |coeff| (-413 *7))) "failed")) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-1951 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-650 *6) "failed") (-570) *6 *6)) (-4 *6 (-368)) (-4 *7 (-1252 *6)) (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-4282 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4411 *6) (|:| |sol?| (-112))) (-570) *6)) (-4 *6 (-368)) (-4 *7 (-1252 *6)) (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7)))) (-2645 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-368)) (-4 *7 (-1252 *6)) (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7))))) +(-10 -7 (-15 -2645 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4282 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -1951 ((-2 (|:| |answer| (-592 (-413 |#2|))) (|:| |a0| |#1|)) (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-650 |#1|) "failed") (-570) |#1| |#1|))) (-15 -3704 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-413 |#2|))) (-15 -3462 ((-3 (-2 (|:| |answer| (-413 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-413 |#2|))) (-15 -1975 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-650 (-413 |#2|)))) (-15 -2032 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|))))))) (|:| |a0| |#1|)) "failed") (-413 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|) (-650 (-413 |#2|)))) (-15 -2569 ((-3 (-2 (|:| -2134 (-413 |#2|)) (|:| |coeff| (-413 |#2|))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-413 |#2|))) (-15 -1341 ((-3 (-2 (|:| |mainpart| (-413 |#2|)) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| (-413 |#2|)) (|:| |logand| (-413 |#2|)))))) "failed") (-413 |#2|) (-1 |#2| |#2|) (-650 (-413 |#2|)))) (-15 -3430 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4001 ((-3 (-629 |#1| |#2|) "failed") (-629 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4411 |#1|) (|:| |sol?| (-112))) (-570) |#1|))) (-15 -3218 ((-2 (|:| |ir| (-592 (-413 |#2|))) (|:| |specpart| (-413 |#2|)) (|:| |polypart| |#2|)) (-413 |#2|) (-1 |#2| |#2|))) (-15 -2052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3743 (((-3 |#2| "failed") |#2| (-1186) (-1186)) 10))) +(((-581 |#1| |#2|) (-10 -7 (-15 -3743 ((-3 |#2| "failed") |#2| (-1186) (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-966) (-1148) (-29 |#1|))) (T -581)) +((-3743 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-581 *4 *2)) (-4 *2 (-13 (-1211) (-966) (-1148) (-29 *4)))))) +(-10 -7 (-15 -3743 ((-3 |#2| "failed") |#2| (-1186) (-1186)))) +((-1816 (((-697 (-1234)) $ (-1234)) 26)) (-3927 (((-697 (-555)) $ (-555)) 25)) (-4024 (((-777) $ (-129)) 27)) (-1678 (((-697 (-130)) $ (-130)) 24)) (-4158 (((-697 (-1234)) $) 12)) (-1324 (((-697 (-1232)) $) 8)) (-1318 (((-697 (-1231)) $) 10)) (-1537 (((-697 (-555)) $) 13)) (-2505 (((-697 (-553)) $) 9)) (-4125 (((-697 (-552)) $) 11)) (-3169 (((-777) $ (-129)) 7)) (-2725 (((-697 (-130)) $) 14)) (-2514 (($ $) 6))) +(((-582) (-141)) (T -582)) +NIL +(-13 (-533) (-866)) +(((-175) . T) ((-533) . T) ((-866) . T)) +((-1816 (((-697 (-1234)) $ (-1234)) NIL)) (-3927 (((-697 (-555)) $ (-555)) NIL)) (-4024 (((-777) $ (-129)) NIL)) (-1678 (((-697 (-130)) $ (-130)) NIL)) (-4158 (((-697 (-1234)) $) NIL)) (-1324 (((-697 (-1232)) $) NIL)) (-1318 (((-697 (-1231)) $) NIL)) (-1537 (((-697 (-555)) $) NIL)) (-2505 (((-697 (-553)) $) NIL)) (-4125 (((-697 (-552)) $) NIL)) (-3169 (((-777) $ (-129)) NIL)) (-2725 (((-697 (-130)) $) NIL)) (-2046 (((-112) $) NIL)) (-2810 (($ (-394)) 14) (($ (-1168)) 16)) (-3798 (((-868) $) NIL)) (-2514 (($ $) NIL))) +(((-583) (-13 (-582) (-619 (-868)) (-10 -8 (-15 -2810 ($ (-394))) (-15 -2810 ($ (-1168))) (-15 -2046 ((-112) $))))) (T -583)) +((-2810 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-583)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-583)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583))))) +(-13 (-582) (-619 (-868)) (-10 -8 (-15 -2810 ($ (-394))) (-15 -2810 ($ (-1168))) (-15 -2046 ((-112) $)))) +((-2419 (((-112) $ $) NIL)) (-1873 (($) 7 T CONST)) (-4122 (((-1168) $) NIL)) (-4209 (($) 6 T CONST)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 15)) (-2654 (($) 9 T CONST)) (-3380 (($) 8 T CONST)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11))) +(((-584) (-13 (-1109) (-10 -8 (-15 -4209 ($) -3711) (-15 -1873 ($) -3711) (-15 -3380 ($) -3711) (-15 -2654 ($) -3711)))) (T -584)) +((-4209 (*1 *1) (-5 *1 (-584))) (-1873 (*1 *1) (-5 *1 (-584))) (-3380 (*1 *1) (-5 *1 (-584))) (-2654 (*1 *1) (-5 *1 (-584)))) +(-13 (-1109) (-10 -8 (-15 -4209 ($) -3711) (-15 -1873 ($) -3711) (-15 -3380 ($) -3711) (-15 -2654 ($) -3711))) +((-2419 (((-112) $ $) NIL)) (-2942 (((-697 $) (-497)) 21)) (-4122 (((-1168) $) NIL)) (-4321 (($ (-1168)) 14)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 34)) (-4264 (((-215 4 (-130)) $) 24)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 26))) +(((-585) (-13 (-1109) (-10 -8 (-15 -4321 ($ (-1168))) (-15 -4264 ((-215 4 (-130)) $)) (-15 -2942 ((-697 $) (-497)))))) (T -585)) +((-4321 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-585)))) (-4264 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-585)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *2 (-697 (-585))) (-5 *1 (-585))))) +(-13 (-1109) (-10 -8 (-15 -4321 ($ (-1168))) (-15 -4264 ((-215 4 (-130)) $)) (-15 -2942 ((-697 $) (-497))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $ (-570)) 77)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-4346 (($ (-1182 (-570)) (-570)) 83)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) 68)) (-3119 (($ $) 43)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-4202 (((-777) $) 16)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2132 (((-570)) 37)) (-4133 (((-570) $) 41)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3500 (($ $ (-570)) 24)) (-2410 (((-3 $ "failed") $ $) 73)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) 17)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 74)) (-1410 (((-1166 (-570)) $) 19)) (-2115 (($ $) 26)) (-3798 (((-868) $) 104) (($ (-570)) 63) (($ $) NIL)) (-2862 (((-777)) 15 T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-570) $ (-570)) 46)) (-1809 (($) 44 T CONST)) (-1817 (($) 21 T CONST)) (-2923 (((-112) $ $) 54)) (-3026 (($ $) 62) (($ $ $) 48)) (-3014 (($ $ $) 61)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 64) (($ $ $) 65))) +(((-586 |#1| |#2|) (-875 |#1|) (-570) (-112)) (T -586)) +NIL +(-875 |#1|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 30)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-2299 (((-1199 (-928) (-777)) (-570)) 59)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 $ "failed") $) 95)) (-3152 (($ $) 94)) (-2427 (($ (-1276 $)) 93)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) 44)) (-3408 (($) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) 61)) (-4316 (((-112) $) NIL)) (-3640 (($ $) NIL) (($ $ (-777)) NIL)) (-3701 (((-112) $) NIL)) (-4202 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-2481 (((-112) $) NIL)) (-3379 (($) 49 (|has| $ (-373)))) (-4246 (((-112) $) NIL (|has| $ (-373)))) (-2233 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 $) $ (-928)) NIL (|has| $ (-373))) (((-1182 $) $) 104)) (-2484 (((-928) $) 67)) (-2326 (((-1182 $) $) NIL (|has| $ (-373)))) (-2874 (((-3 (-1182 $) "failed") $ $) NIL (|has| $ (-373))) (((-1182 $) $) NIL (|has| $ (-373)))) (-3097 (($ $ (-1182 $)) NIL (|has| $ (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL T CONST)) (-2155 (($ (-928)) 60)) (-3288 (((-112) $) 87)) (-3551 (((-1129) $) NIL)) (-2335 (($) 28 (|has| $ (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 54)) (-3801 (((-424 $) $) NIL)) (-2877 (((-928)) 86) (((-839 (-928))) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-3 (-777) "failed") $ $) NIL) (((-777) $) NIL)) (-3374 (((-135)) NIL)) (-3519 (($ $ (-777)) NIL) (($ $) NIL)) (-3324 (((-928) $) 85) (((-839 (-928)) $) NIL)) (-1881 (((-1182 $)) 102)) (-2042 (($) 66)) (-3476 (($) 50 (|has| $ (-373)))) (-1861 (((-695 $) (-1276 $)) NIL) (((-1276 $) $) 91)) (-1411 (((-570) $) 40)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) 42) (($ $) NIL) (($ (-413 (-570))) NIL)) (-2917 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2862 (((-777)) 51 T CONST)) (-1319 (((-112) $ $) 107)) (-2077 (((-1276 $) (-928)) 97) (((-1276 $)) 96)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) 31 T CONST)) (-1817 (($) 27 T CONST)) (-2663 (($ $ (-777)) NIL (|has| $ (-373))) (($ $) NIL (|has| $ (-373)))) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 34)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 81) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-587 |#1|) (-13 (-354) (-333 $) (-620 (-570))) (-928)) (T -587)) +NIL +(-13 (-354) (-333 $) (-620 (-570))) +((-2539 (((-1281) (-1168)) 10))) +(((-588) (-10 -7 (-15 -2539 ((-1281) (-1168))))) (T -588)) +((-2539 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-588))))) +(-10 -7 (-15 -2539 ((-1281) (-1168)))) +((-3144 (((-592 |#2|) (-592 |#2|)) 42)) (-1381 (((-650 |#2|) (-592 |#2|)) 44)) (-2673 ((|#2| (-592 |#2|)) 50))) +(((-589 |#1| |#2|) (-10 -7 (-15 -3144 ((-592 |#2|) (-592 |#2|))) (-15 -1381 ((-650 |#2|) (-592 |#2|))) (-15 -2673 (|#2| (-592 |#2|)))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-29 |#1|) (-1211))) (T -589)) +((-2673 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-29 *4) (-1211))) (-5 *1 (-589 *4 *2)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-13 (-29 *4) (-1211))) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-650 *5)) (-5 *1 (-589 *4 *5)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-13 (-29 *3) (-1211))) (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-589 *3 *4))))) +(-10 -7 (-15 -3144 ((-592 |#2|) (-592 |#2|))) (-15 -1381 ((-650 |#2|) (-592 |#2|))) (-15 -2673 (|#2| (-592 |#2|)))) +((-1347 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 30))) +(((-590 |#1| |#2|) (-10 -7 (-15 -1347 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))) (-15 -1347 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1347 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1347 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-368) (-368)) (T -590)) +((-1347 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-590 *5 *6)))) (-1347 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-368)) (-4 *2 (-368)) (-5 *1 (-590 *5 *2)))) (-1347 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2134 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-2 (|:| -2134 *6) (|:| |coeff| *6))) (-5 *1 (-590 *5 *6)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6))))) +(-10 -7 (-15 -1347 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))) (-15 -1347 ((-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2134 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1347 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1347 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1496 (($ (-512) (-603)) 14)) (-3111 (($ (-512) (-603) $) 16)) (-1794 (($ (-512) (-603)) 15)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-1191)) 7) (((-1191) $) 6)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-591) (-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -1496 ($ (-512) (-603))) (-15 -1794 ($ (-512) (-603))) (-15 -3111 ($ (-512) (-603) $))))) (T -591)) +((-1496 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))) (-1794 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591)))) (-3111 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591))))) +(-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -1496 ($ (-512) (-603))) (-15 -1794 ($ (-512) (-603))) (-15 -3111 ($ (-512) (-603) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 76)) (-3152 ((|#1| $) NIL)) (-2134 ((|#1| $) 30)) (-4298 (((-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2251 (($ |#1| (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) (-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2506 (((-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) $) 31)) (-4122 (((-1168) $) NIL)) (-1316 (($ |#1| |#1|) 38) (($ |#1| (-1186)) 49 (|has| |#1| (-1047 (-1186))))) (-3551 (((-1129) $) NIL)) (-1624 (((-112) $) 35)) (-3519 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1186)) 89 (|has| |#1| (-907 (-1186))))) (-3798 (((-868) $) 112) (($ |#1|) 29)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 18 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) 17) (($ $ $) NIL)) (-3014 (($ $ $) 85)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 16) (($ (-413 (-570)) $) 41) (($ $ (-413 (-570))) NIL))) +(((-592 |#1|) (-13 (-723 (-413 (-570))) (-1047 |#1|) (-10 -8 (-15 -2251 ($ |#1| (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) (-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2134 (|#1| $)) (-15 -2506 ((-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) $)) (-15 -4298 ((-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1624 ((-112) $)) (-15 -1316 ($ |#1| |#1|)) (-15 -3519 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-907 (-1186))) (-15 -3519 (|#1| $ (-1186))) |%noBranch|) (IF (|has| |#1| (-1047 (-1186))) (-15 -1316 ($ |#1| (-1186))) |%noBranch|))) (-368)) (T -592)) +((-2251 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *2)) (|:| |logand| (-1182 *2))))) (-5 *4 (-650 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-368)) (-5 *1 (-592 *2)))) (-2134 (*1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *3)) (|:| |logand| (-1182 *3))))) (-5 *1 (-592 *3)) (-4 *3 (-368)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-592 *3)) (-4 *3 (-368)))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-368)))) (-1316 (*1 *1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-592 *2)) (-4 *2 (-368)))) (-3519 (*1 *2 *1 *3) (-12 (-4 *2 (-368)) (-4 *2 (-907 *3)) (-5 *1 (-592 *2)) (-5 *3 (-1186)))) (-1316 (*1 *1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *1 (-592 *2)) (-4 *2 (-1047 *3)) (-4 *2 (-368))))) +(-13 (-723 (-413 (-570))) (-1047 |#1|) (-10 -8 (-15 -2251 ($ |#1| (-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) (-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2134 (|#1| $)) (-15 -2506 ((-650 (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 |#1|)) (|:| |logand| (-1182 |#1|)))) $)) (-15 -4298 ((-650 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1624 ((-112) $)) (-15 -1316 ($ |#1| |#1|)) (-15 -3519 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-907 (-1186))) (-15 -3519 (|#1| $ (-1186))) |%noBranch|) (IF (|has| |#1| (-1047 (-1186))) (-15 -1316 ($ |#1| (-1186))) |%noBranch|))) +((-3028 (((-112) |#1|) 16)) (-2332 (((-3 |#1| "failed") |#1|) 14)) (-1952 (((-2 (|:| -4364 |#1|) (|:| -3283 (-777))) |#1|) 39) (((-3 |#1| "failed") |#1| (-777)) 18)) (-3809 (((-112) |#1| (-777)) 19)) (-2351 ((|#1| |#1|) 43)) (-1645 ((|#1| |#1| (-777)) 46))) +(((-593 |#1|) (-10 -7 (-15 -3809 ((-112) |#1| (-777))) (-15 -1952 ((-3 |#1| "failed") |#1| (-777))) (-15 -1952 ((-2 (|:| -4364 |#1|) (|:| -3283 (-777))) |#1|)) (-15 -1645 (|#1| |#1| (-777))) (-15 -3028 ((-112) |#1|)) (-15 -2332 ((-3 |#1| "failed") |#1|)) (-15 -2351 (|#1| |#1|))) (-551)) (T -593)) +((-2351 (*1 *2 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-2332 (*1 *2 *2) (|partial| -12 (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551)))) (-1645 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4364 *3) (|:| -3283 (-777)))) (-5 *1 (-593 *3)) (-4 *3 (-551)))) (-1952 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551))))) +(-10 -7 (-15 -3809 ((-112) |#1| (-777))) (-15 -1952 ((-3 |#1| "failed") |#1| (-777))) (-15 -1952 ((-2 (|:| -4364 |#1|) (|:| -3283 (-777))) |#1|)) (-15 -1645 (|#1| |#1| (-777))) (-15 -3028 ((-112) |#1|)) (-15 -2332 ((-3 |#1| "failed") |#1|)) (-15 -2351 (|#1| |#1|))) +((-4128 (((-1182 |#1|) (-928)) 44))) +(((-594 |#1|) (-10 -7 (-15 -4128 ((-1182 |#1|) (-928)))) (-354)) (T -594)) +((-4128 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-594 *4)) (-4 *4 (-354))))) +(-10 -7 (-15 -4128 ((-1182 |#1|) (-928)))) +((-3144 (((-592 (-413 (-959 |#1|))) (-592 (-413 (-959 |#1|)))) 27)) (-1840 (((-3 (-320 |#1|) (-650 (-320 |#1|))) (-413 (-959 |#1|)) (-1186)) 34 (|has| |#1| (-148)))) (-1381 (((-650 (-320 |#1|)) (-592 (-413 (-959 |#1|)))) 19)) (-1864 (((-320 |#1|) (-413 (-959 |#1|)) (-1186)) 32 (|has| |#1| (-148)))) (-2673 (((-320 |#1|) (-592 (-413 (-959 |#1|)))) 21))) +(((-595 |#1|) (-10 -7 (-15 -3144 ((-592 (-413 (-959 |#1|))) (-592 (-413 (-959 |#1|))))) (-15 -1381 ((-650 (-320 |#1|)) (-592 (-413 (-959 |#1|))))) (-15 -2673 ((-320 |#1|) (-592 (-413 (-959 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1840 ((-3 (-320 |#1|) (-650 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -1864 ((-320 |#1|) (-413 (-959 |#1|)) (-1186)))) |%noBranch|)) (-13 (-458) (-1047 (-570)) (-645 (-570)))) (T -595)) +((-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *5)) (-5 *1 (-595 *5)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (-320 *5) (-650 (-320 *5)))) (-5 *1 (-595 *5)))) (-2673 (*1 *2 *3) (-12 (-5 *3 (-592 (-413 (-959 *4)))) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *4)) (-5 *1 (-595 *4)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-592 (-413 (-959 *4)))) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-650 (-320 *4))) (-5 *1 (-595 *4)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-592 (-413 (-959 *3)))) (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-595 *3))))) +(-10 -7 (-15 -3144 ((-592 (-413 (-959 |#1|))) (-592 (-413 (-959 |#1|))))) (-15 -1381 ((-650 (-320 |#1|)) (-592 (-413 (-959 |#1|))))) (-15 -2673 ((-320 |#1|) (-592 (-413 (-959 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -1840 ((-3 (-320 |#1|) (-650 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -1864 ((-320 |#1|) (-413 (-959 |#1|)) (-1186)))) |%noBranch|)) +((-1900 (((-650 (-695 (-570))) (-650 (-570)) (-650 (-912 (-570)))) 78) (((-650 (-695 (-570))) (-650 (-570))) 79) (((-695 (-570)) (-650 (-570)) (-912 (-570))) 72)) (-4388 (((-777) (-650 (-570))) 69))) +(((-596) (-10 -7 (-15 -4388 ((-777) (-650 (-570)))) (-15 -1900 ((-695 (-570)) (-650 (-570)) (-912 (-570)))) (-15 -1900 ((-650 (-695 (-570))) (-650 (-570)))) (-15 -1900 ((-650 (-695 (-570))) (-650 (-570)) (-650 (-912 (-570))))))) (T -596)) +((-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-570))) (-5 *4 (-650 (-912 (-570)))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-596)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-596)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-570))) (-5 *4 (-912 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-596)))) (-4388 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-777)) (-5 *1 (-596))))) +(-10 -7 (-15 -4388 ((-777) (-650 (-570)))) (-15 -1900 ((-695 (-570)) (-650 (-570)) (-912 (-570)))) (-15 -1900 ((-650 (-695 (-570))) (-650 (-570)))) (-15 -1900 ((-650 (-695 (-570))) (-650 (-570)) (-650 (-912 (-570)))))) +((-3965 (((-650 |#5|) |#5| (-112)) 100)) (-2426 (((-112) |#5| (-650 |#5|)) 34))) +(((-597 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3965 ((-650 |#5|) |#5| (-112))) (-15 -2426 ((-112) |#5| (-650 |#5|)))) (-13 (-311) (-148)) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1118 |#1| |#2| |#3| |#4|)) (T -597)) +((-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1118 *5 *6 *7 *8)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-597 *5 *6 *7 *8 *3)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-650 *3)) (-5 *1 (-597 *5 *6 *7 *8 *3)) (-4 *3 (-1118 *5 *6 *7 *8))))) +(-10 -7 (-15 -3965 ((-650 |#5|) |#5| (-112))) (-15 -2426 ((-112) |#5| (-650 |#5|)))) +((-2419 (((-112) $ $) NIL)) (-2118 (((-1144) $) 11)) (-2108 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-598) (-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $))))) (T -598)) +((-2108 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598))))) +(-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $)))) +((-2419 (((-112) $ $) NIL (|has| (-145) (-1109)))) (-3432 (($ $) 38)) (-1385 (($ $) NIL)) (-3205 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2509 (((-112) $ $) 68)) (-2489 (((-112) $ $ (-570)) 62)) (-3144 (((-650 $) $ (-145)) 76) (((-650 $) $ (-142)) 77)) (-2163 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-856)))) (-2632 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| (-145) (-856))))) (-3360 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 (((-145) $ (-570) (-145)) 59 (|has| $ (-6 -4449))) (((-145) $ (-1243 (-570)) (-145)) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1637 (($ $ (-145)) 81) (($ $ (-142)) 82)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3797 (($ $ (-1243 (-570)) $) 57)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-1697 (($ (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4448))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3849 (((-145) $ (-570) (-145)) NIL (|has| $ (-6 -4449)))) (-3778 (((-145) $ (-570)) NIL)) (-2531 (((-112) $ $) 90)) (-4039 (((-570) (-1 (-112) (-145)) $) NIL) (((-570) (-145) $) NIL (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) 65 (|has| (-145) (-1109))) (((-570) $ $ (-570)) 63) (((-570) (-142) $ (-570)) 67)) (-2885 (((-650 (-145)) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) (-145)) 9)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 32 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| (-145) (-856)))) (-2735 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-856)))) (-2282 (((-650 (-145)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-3434 (((-570) $) 47 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-145) (-856)))) (-4047 (((-112) $ $ (-145)) 91)) (-4150 (((-777) $ $ (-145)) 88)) (-3837 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1765 (($ $) 41)) (-1956 (($ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-1648 (($ $ (-145)) 78) (($ $ (-142)) 79)) (-4122 (((-1168) $) 43 (|has| (-145) (-1109)))) (-4299 (($ (-145) $ (-570)) NIL) (($ $ $ (-570)) 27)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) 87 (|has| (-145) (-1109)))) (-3515 (((-145) $) NIL (|has| (-570) (-856)))) (-4089 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2973 (($ $ (-145)) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-145)))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2880 (((-650 (-145)) $) NIL)) (-4303 (((-112) $) 15)) (-4359 (($) 10)) (-1872 (((-145) $ (-570) (-145)) NIL) (((-145) $ (-570)) 69) (($ $ (-1243 (-570))) 25) (($ $ $) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448))) (((-777) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2662 (($ $ $ (-570)) 84 (|has| $ (-6 -4449)))) (-3964 (($ $) 20)) (-1411 (((-542) $) NIL (|has| (-145) (-620 (-542))))) (-3811 (($ (-650 (-145))) NIL)) (-2445 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-650 $)) 85)) (-3798 (($ (-145)) NIL) (((-868) $) 31 (|has| (-145) (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| (-145) (-1109)))) (-1431 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2923 (((-112) $ $) 17 (|has| (-145) (-1109)))) (-2969 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2948 (((-112) $ $) 18 (|has| (-145) (-856)))) (-2431 (((-777) $) 16 (|has| $ (-6 -4448))))) +(((-599 |#1|) (-1153) (-570)) (T -599)) +NIL +(-1153) +((-3274 (((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2| (-1103 |#4|)) 32))) +(((-600 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3274 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2| (-1103 |#4|))) (-15 -3274 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2|))) (-799) (-856) (-562) (-956 |#3| |#1| |#2|)) (T -600)) +((-3274 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570)))) (-5 *1 (-600 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) (-3274 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1103 *3)) (-4 *3 (-956 *7 *6 *4)) (-4 *6 (-799)) (-4 *4 (-856)) (-4 *7 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570)))) (-5 *1 (-600 *6 *4 *7 *3))))) +(-10 -7 (-15 -3274 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2| (-1103 |#4|))) (-15 -3274 ((-2 (|:| |num| |#4|) (|:| |den| (-570))) |#4| |#2|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 72)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-570)) 58) (($ $ (-570) (-570)) 59)) (-1919 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 65)) (-4393 (($ $) 110)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3070 (((-868) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) (-1035 (-849 (-570))) (-1186) |#1| (-413 (-570))) 243)) (-3325 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 36)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2465 (((-112) $) NIL)) (-4202 (((-570) $) 63) (((-570) $ (-570)) 64)) (-2481 (((-112) $) NIL)) (-2964 (($ $ (-928)) 84)) (-3989 (($ (-1 |#1| (-570)) $) 81)) (-2343 (((-112) $) 26)) (-3925 (($ |#1| (-570)) 22) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) 76)) (-4008 (($ (-1035 (-849 (-570))) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 13)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-1840 (($ $) 163 (|has| |#1| (-38 (-413 (-570)))))) (-1320 (((-3 $ "failed") $ $ (-112)) 109)) (-4224 (($ $ $) 117)) (-3551 (((-1129) $) NIL)) (-1839 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 15)) (-2379 (((-1035 (-849 (-570))) $) 14)) (-3500 (($ $ (-570)) 47)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-570)))))) (-1872 ((|#1| $ (-570)) 62) (($ $ $) NIL (|has| (-570) (-1121)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-3324 (((-570) $) NIL)) (-2115 (($ $) 48)) (-3798 (((-868) $) NIL) (($ (-570)) 29) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 28 (|has| |#1| (-174)))) (-3326 ((|#1| $ (-570)) 61)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) 39 T CONST)) (-2172 ((|#1| $) NIL)) (-1638 (($ $) 200 (|has| |#1| (-38 (-413 (-570)))))) (-3620 (($ $) 171 (|has| |#1| (-38 (-413 (-570)))))) (-3136 (($ $) 204 (|has| |#1| (-38 (-413 (-570)))))) (-1791 (($ $) 176 (|has| |#1| (-38 (-413 (-570)))))) (-1960 (($ $) 203 (|has| |#1| (-38 (-413 (-570)))))) (-1992 (($ $) 175 (|has| |#1| (-38 (-413 (-570)))))) (-3838 (($ $ (-413 (-570))) 179 (|has| |#1| (-38 (-413 (-570)))))) (-2260 (($ $ |#1|) 159 (|has| |#1| (-38 (-413 (-570)))))) (-1390 (($ $) 206 (|has| |#1| (-38 (-413 (-570)))))) (-2551 (($ $) 162 (|has| |#1| (-38 (-413 (-570)))))) (-2222 (($ $) 205 (|has| |#1| (-38 (-413 (-570)))))) (-2476 (($ $) 177 (|has| |#1| (-38 (-413 (-570)))))) (-3474 (($ $) 201 (|has| |#1| (-38 (-413 (-570)))))) (-1845 (($ $) 173 (|has| |#1| (-38 (-413 (-570)))))) (-4210 (($ $) 202 (|has| |#1| (-38 (-413 (-570)))))) (-2612 (($ $) 174 (|has| |#1| (-38 (-413 (-570)))))) (-4017 (($ $) 211 (|has| |#1| (-38 (-413 (-570)))))) (-1412 (($ $) 187 (|has| |#1| (-38 (-413 (-570)))))) (-3924 (($ $) 208 (|has| |#1| (-38 (-413 (-570)))))) (-3993 (($ $) 183 (|has| |#1| (-38 (-413 (-570)))))) (-2902 (($ $) 215 (|has| |#1| (-38 (-413 (-570)))))) (-1357 (($ $) 191 (|has| |#1| (-38 (-413 (-570)))))) (-2148 (($ $) 217 (|has| |#1| (-38 (-413 (-570)))))) (-2186 (($ $) 193 (|has| |#1| (-38 (-413 (-570)))))) (-4343 (($ $) 213 (|has| |#1| (-38 (-413 (-570)))))) (-4084 (($ $) 189 (|has| |#1| (-38 (-413 (-570)))))) (-2035 (($ $) 210 (|has| |#1| (-38 (-413 (-570)))))) (-3124 (($ $) 185 (|has| |#1| (-38 (-413 (-570)))))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-3093 ((|#1| $ (-570)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1809 (($) 30 T CONST)) (-1817 (($) 40 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-2923 (((-112) $ $) 74)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) 92) (($ $ $) 73)) (-3014 (($ $ $) 89)) (** (($ $ (-928)) NIL) (($ $ (-777)) 112)) (* (($ (-928) $) 99) (($ (-777) $) 97) (($ (-570) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-601 |#1|) (-13 (-1254 |#1| (-570)) (-10 -8 (-15 -4008 ($ (-1035 (-849 (-570))) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -2379 ((-1035 (-849 (-570))) $)) (-15 -1839 ((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $)) (-15 -3325 ($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -2343 ((-112) $)) (-15 -3989 ($ (-1 |#1| (-570)) $)) (-15 -1320 ((-3 $ "failed") $ $ (-112))) (-15 -4393 ($ $)) (-15 -4224 ($ $ $)) (-15 -3070 ((-868) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) (-1035 (-849 (-570))) (-1186) |#1| (-413 (-570)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $)) (-15 -2260 ($ $ |#1|)) (-15 -3838 ($ $ (-413 (-570)))) (-15 -2551 ($ $)) (-15 -1390 ($ $)) (-15 -1791 ($ $)) (-15 -2612 ($ $)) (-15 -3620 ($ $)) (-15 -1845 ($ $)) (-15 -1992 ($ $)) (-15 -2476 ($ $)) (-15 -3993 ($ $)) (-15 -3124 ($ $)) (-15 -1412 ($ $)) (-15 -4084 ($ $)) (-15 -1357 ($ $)) (-15 -2186 ($ $)) (-15 -3136 ($ $)) (-15 -4210 ($ $)) (-15 -1638 ($ $)) (-15 -3474 ($ $)) (-15 -1960 ($ $)) (-15 -2222 ($ $)) (-15 -3924 ($ $)) (-15 -2035 ($ $)) (-15 -4017 ($ $)) (-15 -4343 ($ $)) (-15 -2902 ($ $)) (-15 -2148 ($ $))) |%noBranch|))) (-1058)) (T -601)) +((-2343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-4008 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-849 (-570)))) (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *4)))) (-4 *4 (-1058)) (-5 *1 (-601 *4)))) (-2379 (*1 *2 *1) (-12 (-5 *2 (-1035 (-849 (-570)))) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) (-4 *3 (-1058)) (-5 *1 (-601 *3)))) (-3989 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-601 *3)))) (-1320 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) (-4393 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058)))) (-4224 (*1 *1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058)))) (-3070 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *6)))) (-5 *4 (-1035 (-849 (-570)))) (-5 *5 (-1186)) (-5 *7 (-413 (-570))) (-4 *6 (-1058)) (-5 *2 (-868)) (-5 *1 (-601 *6)))) (-1840 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2260 (*1 *1 *1 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-601 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1058)))) (-2551 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1390 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1791 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2612 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1845 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1992 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2476 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3993 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3124 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1412 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4084 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1357 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2186 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3136 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4210 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1638 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3474 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-1960 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2222 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-3924 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2035 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4017 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-4343 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2902 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) (-2148 (*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(-13 (-1254 |#1| (-570)) (-10 -8 (-15 -4008 ($ (-1035 (-849 (-570))) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -2379 ((-1035 (-849 (-570))) $)) (-15 -1839 ((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $)) (-15 -3325 ($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))))) (-15 -2343 ((-112) $)) (-15 -3989 ($ (-1 |#1| (-570)) $)) (-15 -1320 ((-3 $ "failed") $ $ (-112))) (-15 -4393 ($ $)) (-15 -4224 ($ $ $)) (-15 -3070 ((-868) (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) (-1035 (-849 (-570))) (-1186) |#1| (-413 (-570)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $)) (-15 -2260 ($ $ |#1|)) (-15 -3838 ($ $ (-413 (-570)))) (-15 -2551 ($ $)) (-15 -1390 ($ $)) (-15 -1791 ($ $)) (-15 -2612 ($ $)) (-15 -3620 ($ $)) (-15 -1845 ($ $)) (-15 -1992 ($ $)) (-15 -2476 ($ $)) (-15 -3993 ($ $)) (-15 -3124 ($ $)) (-15 -1412 ($ $)) (-15 -4084 ($ $)) (-15 -1357 ($ $)) (-15 -2186 ($ $)) (-15 -3136 ($ $)) (-15 -4210 ($ $)) (-15 -1638 ($ $)) (-15 -3474 ($ $)) (-15 -1960 ($ $)) (-15 -2222 ($ $)) (-15 -3924 ($ $)) (-15 -2035 ($ $)) (-15 -4017 ($ $)) (-15 -4343 ($ $)) (-15 -2902 ($ $)) (-15 -2148 ($ $))) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 65)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3325 (($ (-1166 |#1|)) 9)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) 48)) (-2465 (((-112) $) 58)) (-4202 (((-777) $) 63) (((-777) $ (-777)) 62)) (-2481 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ $) 50 (|has| |#1| (-562)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-1166 |#1|) $) 29)) (-2862 (((-777)) 57 T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) 10 T CONST)) (-1817 (($) 14 T CONST)) (-2923 (((-112) $ $) 28)) (-3026 (($ $) 36) (($ $ $) 16)) (-3014 (($ $ $) 31)) (** (($ $ (-928)) NIL) (($ $ (-777)) 55)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 40) (($ $ $) 34) (($ $ |#1|) 44) (($ |#1| $) 43) (($ $ (-570)) 42))) +(((-602 |#1|) (-13 (-1058) (-111 |#1| |#1|) (-10 -8 (-15 -2479 ((-1166 |#1|) $)) (-15 -3325 ($ (-1166 |#1|))) (-15 -2465 ((-112) $)) (-15 -4202 ((-777) $)) (-15 -4202 ((-777) $ (-777))) (-15 * ($ $ (-570))) (IF (|has| |#1| (-562)) (-6 (-562)) |%noBranch|))) (-1058)) (T -602)) +((-2479 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-602 *3)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (-4202 (*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-602 *3)) (-4 *3 (-1058))))) +(-13 (-1058) (-111 |#1| |#1|) (-10 -8 (-15 -2479 ((-1166 |#1|) $)) (-15 -3325 ($ (-1166 |#1|))) (-15 -2465 ((-112) $)) (-15 -4202 ((-777) $)) (-15 -4202 ((-777) $ (-777))) (-15 * ($ $ (-570))) (IF (|has| |#1| (-562)) (-6 (-562)) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-3463 (($) 8 T CONST)) (-2746 (($) 7 T CONST)) (-2739 (($ $ (-650 $)) 16)) (-4122 (((-1168) $) NIL)) (-2861 (($) 6 T CONST)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-1191)) 15) (((-1191) $) 10)) (-3730 (($) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-603) (-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -2861 ($) -3711) (-15 -2746 ($) -3711) (-15 -3463 ($) -3711) (-15 -3730 ($) -3711) (-15 -2739 ($ $ (-650 $)))))) (T -603)) +((-2861 (*1 *1) (-5 *1 (-603))) (-2746 (*1 *1) (-5 *1 (-603))) (-3463 (*1 *1) (-5 *1 (-603))) (-3730 (*1 *1) (-5 *1 (-603))) (-2739 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-603))) (-5 *1 (-603))))) +(-13 (-1109) (-496 (-1191)) (-10 -8 (-15 -2861 ($) -3711) (-15 -2746 ($) -3711) (-15 -3463 ($) -3711) (-15 -3730 ($) -3711) (-15 -2739 ($ $ (-650 $))))) +((-1347 (((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)) 15))) +(((-604 |#1| |#2|) (-10 -7 (-15 -1347 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) (-1226) (-1226)) (T -604)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-607 *6)) (-5 *1 (-604 *5 *6))))) +(-10 -7 (-15 -1347 ((-607 |#2|) (-1 |#2| |#1|) (-607 |#1|)))) +((-1347 (((-1166 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-1166 |#2|)) 20) (((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-607 |#2|)) 19) (((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|)) 18))) +(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|))) (-15 -1347 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-607 |#2|))) (-15 -1347 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-1166 |#2|)))) (-1226) (-1226) (-1226)) (T -605)) +((-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-1166 *7)) (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-1166 *8)) (-5 *1 (-605 *6 *7 *8)))) (-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-607 *7)) (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-1166 *8)) (-5 *1 (-605 *6 *7 *8)))) (-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-607 *8)) (-5 *1 (-605 *6 *7 *8))))) +(-10 -7 (-15 -1347 ((-607 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-607 |#2|))) (-15 -1347 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-607 |#2|))) (-15 -1347 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-607 |#1|) (-1166 |#2|)))) +((-3132 ((|#3| |#3| (-650 (-618 |#3|)) (-650 (-1186))) 57)) (-1487 (((-171 |#2|) |#3|) 121)) (-3870 ((|#3| (-171 |#2|)) 46)) (-2947 ((|#2| |#3|) 21)) (-3348 ((|#3| |#2|) 35))) +(((-606 |#1| |#2| |#3|) (-10 -7 (-15 -3870 (|#3| (-171 |#2|))) (-15 -2947 (|#2| |#3|)) (-15 -3348 (|#3| |#2|)) (-15 -1487 ((-171 |#2|) |#3|)) (-15 -3132 (|#3| |#3| (-650 (-618 |#3|)) (-650 (-1186))))) (-562) (-13 (-436 |#1|) (-1011) (-1211)) (-13 (-436 (-171 |#1|)) (-1011) (-1211))) (T -606)) +((-3132 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-650 (-1186))) (-4 *2 (-13 (-436 (-171 *5)) (-1011) (-1211))) (-4 *5 (-562)) (-5 *1 (-606 *5 *6 *2)) (-4 *6 (-13 (-436 *5) (-1011) (-1211))))) (-1487 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-171 *5)) (-5 *1 (-606 *4 *5 *3)) (-4 *5 (-13 (-436 *4) (-1011) (-1211))) (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1211))))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1211))) (-5 *1 (-606 *4 *3 *2)) (-4 *3 (-13 (-436 *4) (-1011) (-1211))))) (-2947 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 *4) (-1011) (-1211))) (-5 *1 (-606 *4 *2 *3)) (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1211))))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1211))) (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1211))) (-5 *1 (-606 *4 *5 *2))))) +(-10 -7 (-15 -3870 (|#3| (-171 |#2|))) (-15 -2947 (|#2| |#3|)) (-15 -3348 (|#3| |#2|)) (-15 -1487 ((-171 |#2|) |#3|)) (-15 -3132 (|#3| |#3| (-650 (-618 |#3|)) (-650 (-1186))))) +((-1418 (($ (-1 (-112) |#1|) $) 17)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1342 (($ (-1 |#1| |#1|) |#1|) 9)) (-1392 (($ (-1 (-112) |#1|) $) 13)) (-1404 (($ (-1 (-112) |#1|) $) 15)) (-3811 (((-1166 |#1|) $) 18)) (-3798 (((-868) $) NIL))) +(((-607 |#1|) (-13 (-619 (-868)) (-10 -8 (-15 -1347 ($ (-1 |#1| |#1|) $)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)) (-15 -1418 ($ (-1 (-112) |#1|) $)) (-15 -1342 ($ (-1 |#1| |#1|) |#1|)) (-15 -3811 ((-1166 |#1|) $)))) (-1226)) (T -607)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) (-1404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) (-1418 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) (-1342 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) (-3811 (*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1226))))) +(-13 (-619 (-868)) (-10 -8 (-15 -1347 ($ (-1 |#1| |#1|) $)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)) (-15 -1418 ($ (-1 (-112) |#1|) $)) (-15 -1342 ($ (-1 |#1| |#1|) |#1|)) (-15 -3811 ((-1166 |#1|) $)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3469 (($ (-777)) NIL (|has| |#1| (-23)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1368 (((-695 |#1|) $ $) NIL (|has| |#1| (-1058)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1757 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-2063 (((-112) $ (-777)) NIL)) (-3847 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-2331 ((|#1| $ $) NIL (|has| |#1| (-1058)))) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-2597 (($ $ $) NIL (|has| |#1| (-1058)))) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) NIL)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3026 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3014 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-570) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-732))) (($ $ |#1|) NIL (|has| |#1| (-732)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-608 |#1| |#2|) (-1274 |#1|) (-1226) (-570)) (T -608)) +NIL +(-1274 |#1|) +((-2926 (((-1281) $ |#2| |#2|) 35)) (-1720 ((|#2| $) 23)) (-3434 ((|#2| $) 21)) (-3837 (($ (-1 |#3| |#3|) $) 32)) (-1347 (($ (-1 |#3| |#3|) $) 30)) (-3515 ((|#3| $) 26)) (-2973 (($ $ |#3|) 33)) (-2821 (((-112) |#3| $) 17)) (-2880 (((-650 |#3|) $) 15)) (-1872 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-609 |#1| |#2| |#3|) (-10 -8 (-15 -2926 ((-1281) |#1| |#2| |#2|)) (-15 -2973 (|#1| |#1| |#3|)) (-15 -3515 (|#3| |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -3434 (|#2| |#1|)) (-15 -2821 ((-112) |#3| |#1|)) (-15 -2880 ((-650 |#3|) |#1|)) (-15 -1872 (|#3| |#1| |#2|)) (-15 -1872 (|#3| |#1| |#2| |#3|)) (-15 -3837 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1347 (|#1| (-1 |#3| |#3|) |#1|))) (-610 |#2| |#3|) (-1109) (-1226)) (T -609)) +NIL +(-10 -8 (-15 -2926 ((-1281) |#1| |#2| |#2|)) (-15 -2973 (|#1| |#1| |#3|)) (-15 -3515 (|#3| |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -3434 (|#2| |#1|)) (-15 -2821 ((-112) |#3| |#1|)) (-15 -2880 ((-650 |#3|) |#1|)) (-15 -1872 (|#3| |#1| |#2|)) (-15 -1872 (|#3| |#1| |#2| |#3|)) (-15 -3837 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1347 (|#1| (-1 |#3| |#3|) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#2| (-1109)))) (-2926 (((-1281) $ |#1| |#1|) 41 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4449)))) (-3734 (($) 7 T CONST)) (-3849 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) 52)) (-2885 (((-650 |#2|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-1720 ((|#1| $) 44 (|has| |#1| (-856)))) (-2282 (((-650 |#2|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-3434 ((|#1| $) 45 (|has| |#1| (-856)))) (-3837 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#2| (-1109)))) (-2044 (((-650 |#1|) $) 47)) (-1480 (((-112) |#1| $) 48)) (-3551 (((-1129) $) 21 (|has| |#2| (-1109)))) (-3515 ((|#2| $) 43 (|has| |#1| (-856)))) (-2973 (($ $ |#2|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) 27 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 26 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 24 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3562 (((-777) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4448))) (((-777) |#2| $) 29 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#2| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#2| (-1109)))) (-1431 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#2| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-610 |#1| |#2|) (-141) (-1109) (-1226)) (T -610)) +((-2880 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) (-5 *2 (-650 *4)))) (-1480 (*1 *2 *3 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) (-5 *2 (-112)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) (-5 *2 (-650 *3)))) (-2821 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-610 *4 *3)) (-4 *4 (-1109)) (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-3434 (*1 *2 *1) (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1226)) (-4 *2 (-1109)) (-4 *2 (-856)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1226)) (-4 *2 (-1109)) (-4 *2 (-856)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) (-4 *3 (-856)) (-4 *2 (-1226)))) (-2973 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) (-2926 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) (-5 *2 (-1281))))) +(-13 (-495 |t#2|) (-292 |t#1| |t#2|) (-10 -8 (-15 -2880 ((-650 |t#2|) $)) (-15 -1480 ((-112) |t#1| $)) (-15 -2044 ((-650 |t#1|) $)) (IF (|has| |t#2| (-1109)) (IF (|has| $ (-6 -4448)) (-15 -2821 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-856)) (PROGN (-15 -3434 (|t#1| $)) (-15 -1720 (|t#1| $)) (-15 -3515 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4449)) (PROGN (-15 -2973 ($ $ |t#2|)) (-15 -2926 ((-1281) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1109)) ((-619 (-868)) -2779 (|has| |#2| (-1109)) (|has| |#2| (-619 (-868)))) ((-290 |#1| |#2|) . T) ((-292 |#1| |#2|) . T) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-495 |#2|) . T) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-1109) |has| |#2| (-1109)) ((-1226) . T)) +((-3798 (((-868) $) 19) (($ (-130)) 13) (((-130) $) 14))) +(((-611) (-13 (-619 (-868)) (-496 (-130)))) (T -611)) +NIL +(-13 (-619 (-868)) (-496 (-130))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-1191)) NIL) (((-1191) $) NIL) (((-1225) $) 14) (($ (-650 (-1225))) 13)) (-1937 (((-650 (-1225)) $) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-612) (-13 (-1092) (-619 (-1225)) (-10 -8 (-15 -3798 ($ (-650 (-1225)))) (-15 -1937 ((-650 (-1225)) $))))) (T -612)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-612)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-612))))) +(-13 (-1092) (-619 (-1225)) (-10 -8 (-15 -3798 ($ (-650 (-1225)))) (-15 -1937 ((-650 (-1225)) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1738 (((-3 $ "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-1601 (((-1276 (-695 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-1276 (-695 |#1|)) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-4392 (((-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-3734 (($) NIL T CONST)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3025 (((-3 $ "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1460 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-3754 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-3277 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2487 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3019 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-2559 (($ $ (-928)) NIL)) (-3928 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-3387 (((-1182 |#1|) $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3235 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2099 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-1654 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2427 (($ (-1276 |#1|)) NIL (|has| |#2| (-423 |#1|))) (($ (-1276 |#1|) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2229 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3979 (((-928)) NIL (|has| |#2| (-372 |#1|)))) (-1438 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1752 (($ $ (-928)) NIL)) (-4414 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1451 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2882 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1822 (((-3 $ "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3792 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2215 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2961 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-3645 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2463 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-3619 (($ $ (-928)) NIL)) (-3926 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-3823 (((-1182 |#1|) $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2908 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2005 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-4420 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-4122 (((-1168) $) NIL)) (-2585 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2522 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1363 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3551 (((-1129) $) NIL)) (-1422 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1872 ((|#1| $ (-570)) NIL (|has| |#2| (-423 |#1|)))) (-1861 (((-695 |#1|) (-1276 $)) NIL (|has| |#2| (-423 |#1|))) (((-1276 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1276 $) (-1276 $)) NIL (|has| |#2| (-372 |#1|))) (((-1276 |#1|) $ (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-1411 (($ (-1276 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-1276 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-3594 (((-650 (-959 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-650 (-959 |#1|)) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-4307 (($ $ $) NIL)) (-1743 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3798 (((-868) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL (|has| |#2| (-423 |#1|)))) (-3532 (((-650 (-1276 |#1|))) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3666 (($ $ $ $) NIL)) (-2939 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3453 (($ (-695 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-3616 (($ $ $) NIL)) (-3089 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2313 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3772 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1809 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) 24)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-613 |#1| |#2|) (-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -3798 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|))) (-174) (-750 |#1|)) (T -613)) +((-3798 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-613 *3 *2)) (-4 *2 (-750 *3))))) +(-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -3798 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-2307 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) 39)) (-4290 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL) (($) NIL)) (-2926 (((-1281) $ (-1168) (-1168)) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-1168) |#1|) 49)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#1| "failed") (-1168) $) 52)) (-3734 (($) NIL T CONST)) (-3611 (($ $ (-1168)) 25)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109))))) (-2571 (((-3 |#1| "failed") (-1168) $) 53) (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (($ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (|has| $ (-6 -4448)))) (-1697 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (($ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109))))) (-3600 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109))))) (-2289 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) 38)) (-3849 ((|#1| $ (-1168) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-1168)) NIL)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448))) (((-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-4010 (($ $) 54)) (-1718 (($ (-394)) 23) (($ (-394) (-1168)) 22)) (-3574 (((-394) $) 40)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-1168) $) NIL (|has| (-1168) (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448))) (((-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (((-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109))))) (-3434 (((-1168) $) NIL (|has| (-1168) (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-2799 (((-650 (-1168)) $) 45)) (-4242 (((-112) (-1168) $) NIL)) (-3608 (((-1168) $) 41)) (-1334 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL)) (-2044 (((-650 (-1168)) $) NIL)) (-1480 (((-112) (-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 ((|#1| $) NIL (|has| (-1168) (-856)))) (-4089 (((-3 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) "failed") (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-650 (-298 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 43)) (-1872 ((|#1| $ (-1168) |#1|) NIL) ((|#1| $ (-1168)) 48)) (-2709 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL) (($) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (((-777) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (((-777) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL)) (-3798 (((-868) $) 21)) (-2514 (($ $) 26)) (-1319 (((-112) $ $) NIL)) (-2089 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-614 |#1|) (-13 (-369 (-394) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) (-1202 (-1168) |#1|) (-10 -8 (-6 -4448) (-15 -4010 ($ $)))) (-1109)) (T -614)) +((-4010 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1109))))) +(-13 (-369 (-394) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) (-1202 (-1168) |#1|) (-10 -8 (-6 -4448) (-15 -4010 ($ $)))) +((-1935 (((-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) $) 16)) (-2799 (((-650 |#2|) $) 20)) (-4242 (((-112) |#2| $) 12))) +(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -2799 ((-650 |#2|) |#1|)) (-15 -4242 ((-112) |#2| |#1|)) (-15 -1935 ((-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|))) (-616 |#2| |#3|) (-1109) (-1109)) (T -615)) +NIL +(-10 -8 (-15 -2799 ((-650 |#2|) |#1|)) (-15 -4242 ((-112) |#2| |#1|)) (-15 -1935 ((-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|))) +((-2419 (((-112) $ $) 19 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 56 (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) 62)) (-3734 (($) 7 T CONST)) (-3552 (($ $) 59 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 47 (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) 63)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 55 (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 57 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 54 (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 53 (|has| $ (-6 -4448)))) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-2799 (((-650 |#1|) $) 64)) (-4242 (((-112) |#1| $) 65)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 40)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 41)) (-3551 (((-1129) $) 21 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 52)) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 42)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) 27 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 26 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 25 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 24 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2709 (($) 50) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 49)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 32 (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 51)) (-3798 (((-868) $) 18 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 43)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-616 |#1| |#2|) (-141) (-1109) (-1109)) (T -616)) +((-4242 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-112)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-5 *2 (-650 *3)))) (-2571 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-2361 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))) +(-13 (-231 (-2 (|:| -2009 |t#1|) (|:| -2219 |t#2|))) (-10 -8 (-15 -4242 ((-112) |t#1| $)) (-15 -2799 ((-650 |t#1|) $)) (-15 -2571 ((-3 |t#2| "failed") |t#1| $)) (-15 -2361 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((-102) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) ((-619 (-868)) -2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868)))) ((-152 #0#) . T) ((-620 (-542)) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))) ((-231 #0#) . T) ((-237 #0#) . T) ((-313 #0#) -12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-495 #0#) . T) ((-520 #0# #0#) -12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-1109) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) ((-1226) . T)) +((-4015 (((-618 |#2|) |#1|) 17)) (-2503 (((-3 |#1| "failed") (-618 |#2|)) 21))) +(((-617 |#1| |#2|) (-10 -7 (-15 -4015 ((-618 |#2|) |#1|)) (-15 -2503 ((-3 |#1| "failed") (-618 |#2|)))) (-1109) (-1109)) (T -617)) +((-2503 (*1 *2 *3) (|partial| -12 (-5 *3 (-618 *4)) (-4 *4 (-1109)) (-4 *2 (-1109)) (-5 *1 (-617 *2 *4)))) (-4015 (*1 *2 *3) (-12 (-5 *2 (-618 *4)) (-5 *1 (-617 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))))) +(-10 -7 (-15 -4015 ((-618 |#2|) |#1|)) (-15 -2503 ((-3 |#1| "failed") (-618 |#2|)))) +((-2419 (((-112) $ $) NIL)) (-3047 (((-3 (-1186) "failed") $) 48)) (-2583 (((-1281) $ (-777)) 24)) (-4039 (((-777) $) 23)) (-3748 (((-115) $) 12)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1355 (($ (-115) (-650 |#1|) (-777)) 34) (($ (-1186)) 35)) (-3257 (((-112) $ (-115)) 18) (((-112) $ (-1186)) 16)) (-1428 (((-777) $) 20)) (-3551 (((-1129) $) NIL)) (-1411 (((-899 (-570)) $) 96 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 103 (|has| |#1| (-620 (-899 (-384))))) (((-542) $) 89 (|has| |#1| (-620 (-542))))) (-3798 (((-868) $) 73)) (-1319 (((-112) $ $) NIL)) (-2990 (((-650 |#1|) $) 22)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 52)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 54))) +(((-618 |#1|) (-13 (-133) (-856) (-891 |#1|) (-10 -8 (-15 -3748 ((-115) $)) (-15 -2990 ((-650 |#1|) $)) (-15 -1428 ((-777) $)) (-15 -1355 ($ (-115) (-650 |#1|) (-777))) (-15 -1355 ($ (-1186))) (-15 -3047 ((-3 (-1186) "failed") $)) (-15 -3257 ((-112) $ (-115))) (-15 -3257 ((-112) $ (-1186))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) (-1109)) (T -618)) +((-3748 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-1355 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-1109)) (-5 *1 (-618 *5)))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-3047 (*1 *2 *1) (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) (-3257 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-618 *4)) (-4 *4 (-1109)))) (-3257 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-112)) (-5 *1 (-618 *4)) (-4 *4 (-1109))))) +(-13 (-133) (-856) (-891 |#1|) (-10 -8 (-15 -3748 ((-115) $)) (-15 -2990 ((-650 |#1|) $)) (-15 -1428 ((-777) $)) (-15 -1355 ($ (-115) (-650 |#1|) (-777))) (-15 -1355 ($ (-1186))) (-15 -3047 ((-3 (-1186) "failed") $)) (-15 -3257 ((-112) $ (-115))) (-15 -3257 ((-112) $ (-1186))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) +((-3798 ((|#1| $) 6))) +(((-619 |#1|) (-141) (-1226)) (T -619)) +((-3798 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1226))))) +(-13 (-10 -8 (-15 -3798 (|t#1| $)))) +((-1411 ((|#1| $) 6))) +(((-620 |#1|) (-141) (-1226)) (T -620)) +((-1411 (*1 *2 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1226))))) +(-13 (-10 -8 (-15 -1411 (|t#1| $)))) +((-3857 (((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 (-424 |#2|) |#2|)) 15) (((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)) 16))) +(((-621 |#1| |#2|) (-10 -7 (-15 -3857 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|))) (-15 -3857 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 (-424 |#2|) |#2|)))) (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570)))) (-1252 |#1|)) (T -621)) +((-3857 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-1182 (-413 *6))) (-5 *1 (-621 *5 *6)) (-5 *3 (-413 *6)))) (-3857 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *2 (-1182 (-413 *5))) (-5 *1 (-621 *4 *5)) (-5 *3 (-413 *5))))) +(-10 -7 (-15 -3857 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|))) (-15 -3857 ((-3 (-1182 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 (-424 |#2|) |#2|)))) +((-3798 (($ |#1|) 6))) +(((-622 |#1|) (-141) (-1226)) (T -622)) +((-3798 (*1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1226))))) +(-13 (-10 -8 (-15 -3798 ($ |t#1|)))) +((-2419 (((-112) $ $) NIL)) (-1626 (($) 14 T CONST)) (-3020 (($) 15 T CONST)) (-1773 (($ $ $) 29)) (-1748 (($ $) 27)) (-4122 (((-1168) $) NIL)) (-1365 (($ $ $) 30)) (-3551 (((-1129) $) NIL)) (-1883 (($) 11 T CONST)) (-1569 (($ $ $) 31)) (-3798 (((-868) $) 35)) (-1798 (((-112) $ (|[\|\|]| -1883)) 24) (((-112) $ (|[\|\|]| -1626)) 26) (((-112) $ (|[\|\|]| -3020)) 21)) (-1319 (((-112) $ $) NIL)) (-1760 (($ $ $) 28)) (-2923 (((-112) $ $) 18))) +(((-623) (-13 (-976) (-10 -8 (-15 -1626 ($) -3711) (-15 -1798 ((-112) $ (|[\|\|]| -1883))) (-15 -1798 ((-112) $ (|[\|\|]| -1626))) (-15 -1798 ((-112) $ (|[\|\|]| -3020)))))) (T -623)) +((-1626 (*1 *1) (-5 *1 (-623))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1883)) (-5 *2 (-112)) (-5 *1 (-623)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1626)) (-5 *2 (-112)) (-5 *1 (-623)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3020)) (-5 *2 (-112)) (-5 *1 (-623))))) +(-13 (-976) (-10 -8 (-15 -1626 ($) -3711) (-15 -1798 ((-112) $ (|[\|\|]| -1883))) (-15 -1798 ((-112) $ (|[\|\|]| -1626))) (-15 -1798 ((-112) $ (|[\|\|]| -3020))))) +((-1411 (($ |#1|) 6))) +(((-624 |#1|) (-141) (-1226)) (T -624)) +((-1411 (*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1226))))) +(-13 (-10 -8 (-15 -1411 ($ |t#1|)))) +((-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) 10))) +(((-625 |#1| |#2|) (-10 -8 (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-626 |#2|) (-1058)) (T -625)) +NIL +(-10 -8 (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 41)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +(((-626 |#1|) (-141) (-1058)) (T -626)) +((-3798 (*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1058))))) +(-13 (-1058) (-654 |t#1|) (-10 -8 (-15 -3798 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2579 (((-570) $) NIL (|has| |#1| (-854)))) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2135 (((-112) $) NIL (|has| |#1| (-854)))) (-2481 (((-112) $) NIL)) (-4400 ((|#1| $) 13)) (-3367 (((-112) $) NIL (|has| |#1| (-854)))) (-3382 (($ $ $) NIL (|has| |#1| (-854)))) (-2876 (($ $ $) NIL (|has| |#1| (-854)))) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-4413 ((|#3| $) 15)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL)) (-2862 (((-777)) 20 T CONST)) (-1319 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| |#1| (-854)))) (-1809 (($) NIL T CONST)) (-1817 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-854)))) (-3037 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-627 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (-15 -3037 ($ $ |#3|)) (-15 -3037 ($ |#1| |#3|)) (-15 -4400 (|#1| $)) (-15 -4413 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-732) |#2|)) (T -627)) +((-3037 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-732) *4)))) (-3037 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-627 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-732) *4)))) (-4400 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-627 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-732) *3)))) (-4413 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4)) (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (-15 -3037 ($ $ |#3|)) (-15 -3037 ($ |#1| |#3|)) (-15 -4400 (|#1| $)) (-15 -4413 (|#3| $)))) +((-1875 ((|#2| |#2| (-1186) (-1186)) 16))) +(((-628 |#1| |#2|) (-10 -7 (-15 -1875 (|#2| |#2| (-1186) (-1186)))) (-13 (-311) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-966) (-29 |#1|))) (T -628)) +((-1875 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-1211) (-966) (-29 *4)))))) +(-10 -7 (-15 -1875 (|#2| |#2| (-1186) (-1186)))) +((-2419 (((-112) $ $) 64)) (-1359 (((-112) $) 58)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-4340 ((|#1| $) 55)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2651 (((-2 (|:| -4116 $) (|:| -3282 (-413 |#2|))) (-413 |#2|)) 111 (|has| |#1| (-368)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) 27)) (-2229 (((-3 $ "failed") $) 88)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-4202 (((-570) $) 22)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) 40)) (-3925 (($ |#1| (-570)) 24)) (-1860 ((|#1| $) 57)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) 101 (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ $) 93)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-3788 (((-777) $) 115 (|has| |#1| (-368)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 114 (|has| |#1| (-368)))) (-3519 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-3324 (((-570) $) 38)) (-1411 (((-413 |#2|) $) 47)) (-3798 (((-868) $) 69) (($ (-570)) 35) (($ $) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 34) (($ |#2|) 25)) (-3326 ((|#1| $ (-570)) 72)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 9 T CONST)) (-1817 (($) 14 T CONST)) (-2835 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-2923 (((-112) $ $) 21)) (-3026 (($ $) 51) (($ $ $) NIL)) (-3014 (($ $ $) 90)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 29) (($ $ $) 49))) +(((-629 |#1| |#2|) (-13 (-233 |#2|) (-562) (-620 (-413 |#2|)) (-417 |#1|) (-1047 |#2|) (-10 -8 (-15 -2343 ((-112) $)) (-15 -3324 ((-570) $)) (-15 -4202 ((-570) $)) (-15 -1885 ($ $)) (-15 -1860 (|#1| $)) (-15 -4340 (|#1| $)) (-15 -3326 (|#1| $ (-570))) (-15 -3925 ($ |#1| (-570))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-311)) (-15 -2651 ((-2 (|:| -4116 $) (|:| -3282 (-413 |#2|))) (-413 |#2|)))) |%noBranch|))) (-562) (-1252 |#1|)) (T -629)) +((-2343 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-629 *3 *4)) (-4 *4 (-1252 *3)))) (-3324 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4)) (-4 *4 (-1252 *3)))) (-4202 (*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4)) (-4 *4 (-1252 *3)))) (-1885 (*1 *1 *1) (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1252 *2)))) (-1860 (*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1252 *2)))) (-4340 (*1 *2 *1) (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1252 *2)))) (-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4)) (-4 *4 (-1252 *2)))) (-3925 (*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4)) (-4 *4 (-1252 *2)))) (-2651 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *4 (-562)) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| -4116 (-629 *4 *5)) (|:| -3282 (-413 *5)))) (-5 *1 (-629 *4 *5)) (-5 *3 (-413 *5))))) +(-13 (-233 |#2|) (-562) (-620 (-413 |#2|)) (-417 |#1|) (-1047 |#2|) (-10 -8 (-15 -2343 ((-112) $)) (-15 -3324 ((-570) $)) (-15 -4202 ((-570) $)) (-15 -1885 ($ $)) (-15 -1860 (|#1| $)) (-15 -4340 (|#1| $)) (-15 -3326 (|#1| $ (-570))) (-15 -3925 ($ |#1| (-570))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-6 (-311)) (-15 -2651 ((-2 (|:| -4116 $) (|:| -3282 (-413 |#2|))) (-413 |#2|)))) |%noBranch|))) +((-2242 (((-650 |#6|) (-650 |#4|) (-112)) 54)) (-3226 ((|#6| |#6|) 48))) +(((-630 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3226 (|#6| |#6|)) (-15 -2242 ((-650 |#6|) (-650 |#4|) (-112)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|) (-1118 |#1| |#2| |#3| |#4|)) (T -630)) +((-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *10)) (-5 *1 (-630 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *10 (-1118 *5 *6 *7 *8)))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-630 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *2 (-1118 *3 *4 *5 *6))))) +(-10 -7 (-15 -3226 (|#6| |#6|)) (-15 -2242 ((-650 |#6|) (-650 |#4|) (-112)))) +((-2669 (((-112) |#3| (-777) (-650 |#3|)) 32)) (-2150 (((-3 (-2 (|:| |polfac| (-650 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-650 (-1182 |#3|)))) "failed") |#3| (-650 (-1182 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1629 (-650 (-2 (|:| |irr| |#4|) (|:| -2306 (-570)))))) (-650 |#3|) (-650 |#1|) (-650 |#3|)) 73))) +(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2669 ((-112) |#3| (-777) (-650 |#3|))) (-15 -2150 ((-3 (-2 (|:| |polfac| (-650 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-650 (-1182 |#3|)))) "failed") |#3| (-650 (-1182 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1629 (-650 (-2 (|:| |irr| |#4|) (|:| -2306 (-570)))))) (-650 |#3|) (-650 |#1|) (-650 |#3|)))) (-856) (-799) (-311) (-956 |#3| |#2| |#1|)) (T -631)) +((-2150 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1629 (-650 (-2 (|:| |irr| *10) (|:| -2306 (-570))))))) (-5 *6 (-650 *3)) (-5 *7 (-650 *8)) (-4 *8 (-856)) (-4 *3 (-311)) (-4 *10 (-956 *3 *9 *8)) (-4 *9 (-799)) (-5 *2 (-2 (|:| |polfac| (-650 *10)) (|:| |correct| *3) (|:| |corrfact| (-650 (-1182 *3))))) (-5 *1 (-631 *8 *9 *3 *10)) (-5 *4 (-650 (-1182 *3))))) (-2669 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-777)) (-5 *5 (-650 *3)) (-4 *3 (-311)) (-4 *6 (-856)) (-4 *7 (-799)) (-5 *2 (-112)) (-5 *1 (-631 *6 *7 *3 *8)) (-4 *8 (-956 *3 *7 *6))))) +(-10 -7 (-15 -2669 ((-112) |#3| (-777) (-650 |#3|))) (-15 -2150 ((-3 (-2 (|:| |polfac| (-650 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-650 (-1182 |#3|)))) "failed") |#3| (-650 (-1182 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1629 (-650 (-2 (|:| |irr| |#4|) (|:| -2306 (-570)))))) (-650 |#3|) (-650 |#1|) (-650 |#3|)))) +((-2419 (((-112) $ $) NIL)) (-2118 (((-1144) $) 11)) (-2108 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-632) (-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $))))) (T -632)) +((-2108 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632))))) +(-13 (-1092) (-10 -8 (-15 -2108 ((-1144) $)) (-15 -2118 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-3107 (((-650 |#1|) $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-1660 (($ $) 77)) (-2665 (((-670 |#1| |#2|) $) 60)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 81)) (-2413 (((-650 (-298 |#2|)) $ $) 42)) (-3551 (((-1129) $) NIL)) (-4390 (($ (-670 |#1| |#2|)) 56)) (-3897 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-3798 (((-868) $) 66) (((-1291 |#1| |#2|) $) NIL) (((-1296 |#1| |#2|) $) 74)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 61 T CONST)) (-3681 (((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $) 41)) (-3130 (((-650 (-670 |#1| |#2|)) (-650 |#1|)) 73)) (-4425 (((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $) 46)) (-2923 (((-112) $ $) 62)) (-3037 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ $ $) 52))) +(((-633 |#1| |#2| |#3|) (-13 (-479) (-10 -8 (-15 -4390 ($ (-670 |#1| |#2|))) (-15 -2665 ((-670 |#1| |#2|) $)) (-15 -4425 ((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $)) (-15 -3798 ((-1291 |#1| |#2|) $)) (-15 -3798 ((-1296 |#1| |#2|) $)) (-15 -1660 ($ $)) (-15 -3107 ((-650 |#1|) $)) (-15 -3130 ((-650 (-670 |#1| |#2|)) (-650 |#1|))) (-15 -3681 ((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $)) (-15 -2413 ((-650 (-298 |#2|)) $ $)))) (-856) (-13 (-174) (-723 (-413 (-570)))) (-928)) (T -633)) +((-4390 (*1 *1 *2) (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-5 *1 (-633 *3 *4 *5)) (-14 *5 (-928)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-670 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-4425 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| (-900 *3)) (|:| |c| *4)))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-856)) (-4 *3 (-13 (-174) (-723 (-413 (-570))))) (-14 *4 (-928)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-670 *4 *5))) (-5 *1 (-633 *4 *5 *6)) (-4 *5 (-13 (-174) (-723 (-413 (-570))))) (-14 *6 (-928)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| (-678 *3)) (|:| |c| *4)))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) (-2413 (*1 *2 *1 *1) (-12 (-5 *2 (-650 (-298 *4))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))) +(-13 (-479) (-10 -8 (-15 -4390 ($ (-670 |#1| |#2|))) (-15 -2665 ((-670 |#1| |#2|) $)) (-15 -4425 ((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $)) (-15 -3798 ((-1291 |#1| |#2|) $)) (-15 -3798 ((-1296 |#1| |#2|) $)) (-15 -1660 ($ $)) (-15 -3107 ((-650 |#1|) $)) (-15 -3130 ((-650 (-670 |#1| |#2|)) (-650 |#1|))) (-15 -3681 ((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $)) (-15 -2413 ((-650 (-298 |#2|)) $ $)))) +((-2242 (((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)) 103) (((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112)) 77)) (-1494 (((-112) (-650 (-786 |#1| (-870 |#2|)))) 26)) (-1745 (((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)) 102)) (-3199 (((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112)) 76)) (-3098 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|)))) 30)) (-4213 (((-3 (-650 (-786 |#1| (-870 |#2|))) "failed") (-650 (-786 |#1| (-870 |#2|)))) 29))) +(((-634 |#1| |#2|) (-10 -7 (-15 -1494 ((-112) (-650 (-786 |#1| (-870 |#2|))))) (-15 -4213 ((-3 (-650 (-786 |#1| (-870 |#2|))) "failed") (-650 (-786 |#1| (-870 |#2|))))) (-15 -3098 ((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))))) (-15 -3199 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1745 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -2242 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -2242 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)))) (-458) (-650 (-1186))) (T -634)) +((-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6))))) (-5 *1 (-634 *5 *6)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-634 *5 *6)))) (-1745 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6))))) (-5 *1 (-634 *5 *6)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-634 *5 *6)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458)) (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4)))) (-4213 (*1 *2 *2) (|partial| -12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458)) (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-650 (-786 *4 (-870 *5)))) (-4 *4 (-458)) (-14 *5 (-650 (-1186))) (-5 *2 (-112)) (-5 *1 (-634 *4 *5))))) +(-10 -7 (-15 -1494 ((-112) (-650 (-786 |#1| (-870 |#2|))))) (-15 -4213 ((-3 (-650 (-786 |#1| (-870 |#2|))) "failed") (-650 (-786 |#1| (-870 |#2|))))) (-15 -3098 ((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))))) (-15 -3199 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -1745 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -2242 ((-650 (-1055 |#1| |#2|)) (-650 (-786 |#1| (-870 |#2|))) (-112))) (-15 -2242 ((-650 (-1155 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|)))) (-650 (-786 |#1| (-870 |#2|))) (-112)))) +((-2774 (($ $) 38)) (-2629 (($ $) 21)) (-2749 (($ $) 37)) (-2604 (($ $) 22)) (-4119 (($ $) 36)) (-2648 (($ $) 23)) (-1313 (($) 48)) (-2665 (($ $) 45)) (-4173 (($ $) 17)) (-1316 (($ $ (-1101 $)) 7) (($ $ (-1186)) 6)) (-4390 (($ $) 46)) (-2558 (($ $) 15)) (-2592 (($ $) 16)) (-4129 (($ $) 35)) (-2664 (($ $) 24)) (-2786 (($ $) 34)) (-2636 (($ $) 25)) (-2761 (($ $) 33)) (-2616 (($ $) 26)) (-4165 (($ $) 44)) (-2704 (($ $) 32)) (-4141 (($ $) 43)) (-2678 (($ $) 31)) (-4186 (($ $) 42)) (-2726 (($ $) 30)) (-1504 (($ $) 41)) (-2737 (($ $) 29)) (-4176 (($ $) 40)) (-2715 (($ $) 28)) (-4153 (($ $) 39)) (-2692 (($ $) 27)) (-3943 (($ $) 19)) (-2241 (($ $) 20)) (-3732 (($ $) 18)) (** (($ $ $) 47))) +(((-635) (-141)) (T -635)) +((-2241 (*1 *1 *1) (-4 *1 (-635))) (-3943 (*1 *1 *1) (-4 *1 (-635))) (-3732 (*1 *1 *1) (-4 *1 (-635))) (-4173 (*1 *1 *1) (-4 *1 (-635))) (-2592 (*1 *1 *1) (-4 *1 (-635))) (-2558 (*1 *1 *1) (-4 *1 (-635)))) +(-13 (-966) (-1211) (-10 -8 (-15 -2241 ($ $)) (-15 -3943 ($ $)) (-15 -3732 ($ $)) (-15 -4173 ($ $)) (-15 -2592 ($ $)) (-15 -2558 ($ $)))) +(((-35) . T) ((-95) . T) ((-288) . T) ((-499) . T) ((-966) . T) ((-1211) . T) ((-1214) . T)) +((-3748 (((-115) (-115)) 88)) (-4173 ((|#2| |#2|) 28)) (-1316 ((|#2| |#2| (-1101 |#2|)) 84) ((|#2| |#2| (-1186)) 50)) (-2558 ((|#2| |#2|) 27)) (-2592 ((|#2| |#2|) 29)) (-4217 (((-112) (-115)) 33)) (-3943 ((|#2| |#2|) 24)) (-2241 ((|#2| |#2|) 26)) (-3732 ((|#2| |#2|) 25))) +(((-636 |#1| |#2|) (-10 -7 (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -2241 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3732 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -1316 (|#2| |#2| (-1186))) (-15 -1316 (|#2| |#2| (-1101 |#2|)))) (-562) (-13 (-436 |#1|) (-1011) (-1211))) (T -636)) +((-1316 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-1011) (-1211))) (-4 *4 (-562)) (-5 *1 (-636 *4 *2)))) (-1316 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-636 *4 *2)) (-4 *2 (-13 (-436 *4) (-1011) (-1211))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1211))))) (-2558 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1211))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1211))))) (-3732 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1211))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1211))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) (-4 *2 (-13 (-436 *3) (-1011) (-1211))))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-636 *3 *4)) (-4 *4 (-13 (-436 *3) (-1011) (-1211))))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1211)))))) +(-10 -7 (-15 -4217 ((-112) (-115))) (-15 -3748 ((-115) (-115))) (-15 -2241 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3732 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2558 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -1316 (|#2| |#2| (-1186))) (-15 -1316 (|#2| |#2| (-1101 |#2|)))) +((-1828 (((-487 |#1| |#2|) (-249 |#1| |#2|)) 66)) (-3410 (((-650 (-249 |#1| |#2|)) (-650 (-487 |#1| |#2|))) 92)) (-2353 (((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-870 |#1|)) 94) (((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)) (-870 |#1|)) 93)) (-3073 (((-2 (|:| |gblist| (-650 (-249 |#1| |#2|))) (|:| |gvlist| (-650 (-570)))) (-650 (-487 |#1| |#2|))) 137)) (-1882 (((-650 (-487 |#1| |#2|)) (-870 |#1|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|))) 107)) (-3880 (((-2 (|:| |glbase| (-650 (-249 |#1| |#2|))) (|:| |glval| (-650 (-570)))) (-650 (-249 |#1| |#2|))) 147)) (-1572 (((-1276 |#2|) (-487 |#1| |#2|) (-650 (-487 |#1| |#2|))) 71)) (-3621 (((-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|))) 48)) (-1430 (((-249 |#1| |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|))) 63)) (-2858 (((-249 |#1| |#2|) (-650 |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|))) 115))) +(((-637 |#1| |#2|) (-10 -7 (-15 -3073 ((-2 (|:| |gblist| (-650 (-249 |#1| |#2|))) (|:| |gvlist| (-650 (-570)))) (-650 (-487 |#1| |#2|)))) (-15 -3880 ((-2 (|:| |glbase| (-650 (-249 |#1| |#2|))) (|:| |glval| (-650 (-570)))) (-650 (-249 |#1| |#2|)))) (-15 -3410 ((-650 (-249 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -2353 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -2353 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -3621 ((-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1572 ((-1276 |#2|) (-487 |#1| |#2|) (-650 (-487 |#1| |#2|)))) (-15 -2858 ((-249 |#1| |#2|) (-650 |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -1882 ((-650 (-487 |#1| |#2|)) (-870 |#1|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1430 ((-249 |#1| |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -1828 ((-487 |#1| |#2|) (-249 |#1| |#2|)))) (-650 (-1186)) (-458)) (T -637)) +((-1828 (*1 *2 *3) (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-487 *4 *5)) (-5 *1 (-637 *4 *5)))) (-1430 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-249 *4 *5))) (-5 *2 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5)))) (-1882 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-870 *4)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5)))) (-2858 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-249 *5 *6))) (-4 *6 (-458)) (-5 *2 (-249 *5 *6)) (-14 *5 (-650 (-1186))) (-5 *1 (-637 *5 *6)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-487 *5 *6))) (-5 *3 (-487 *5 *6)) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-1276 *6)) (-5 *1 (-637 *5 *6)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-650 (-487 *3 *4))) (-14 *3 (-650 (-1186))) (-4 *4 (-458)) (-5 *1 (-637 *3 *4)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5)) (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6)) (-4 *6 (-458)))) (-2353 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5)) (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6)) (-4 *6 (-458)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-650 (-249 *4 *5))) (-5 *1 (-637 *4 *5)))) (-3880 (*1 *2 *3) (-12 (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-2 (|:| |glbase| (-650 (-249 *4 *5))) (|:| |glval| (-650 (-570))))) (-5 *1 (-637 *4 *5)) (-5 *3 (-650 (-249 *4 *5))))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *2 (-2 (|:| |gblist| (-650 (-249 *4 *5))) (|:| |gvlist| (-650 (-570))))) (-5 *1 (-637 *4 *5))))) +(-10 -7 (-15 -3073 ((-2 (|:| |gblist| (-650 (-249 |#1| |#2|))) (|:| |gvlist| (-650 (-570)))) (-650 (-487 |#1| |#2|)))) (-15 -3880 ((-2 (|:| |glbase| (-650 (-249 |#1| |#2|))) (|:| |glval| (-650 (-570)))) (-650 (-249 |#1| |#2|)))) (-15 -3410 ((-650 (-249 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -2353 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -2353 ((-487 |#1| |#2|) (-650 (-487 |#1| |#2|)) (-870 |#1|))) (-15 -3621 ((-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1572 ((-1276 |#2|) (-487 |#1| |#2|) (-650 (-487 |#1| |#2|)))) (-15 -2858 ((-249 |#1| |#2|) (-650 |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -1882 ((-650 (-487 |#1| |#2|)) (-870 |#1|) (-650 (-487 |#1| |#2|)) (-650 (-487 |#1| |#2|)))) (-15 -1430 ((-249 |#1| |#2|) (-249 |#1| |#2|) (-650 (-249 |#1| |#2|)))) (-15 -1828 ((-487 |#1| |#2|) (-249 |#1| |#2|)))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) NIL)) (-2926 (((-1281) $ (-1168) (-1168)) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 (((-52) $ (-1168) (-52)) 16) (((-52) $ (-1186) (-52)) 17)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 (-52) "failed") (-1168) $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109))))) (-2571 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-3 (-52) "failed") (-1168) $) NIL)) (-1697 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $ (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (((-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $ (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-3849 (((-52) $ (-1168) (-52)) NIL (|has| $ (-6 -4449)))) (-3778 (((-52) $ (-1168)) NIL)) (-2885 (((-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-650 (-52)) $) NIL (|has| $ (-6 -4448)))) (-4010 (($ $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-1168) $) NIL (|has| (-1168) (-856)))) (-2282 (((-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-650 (-52)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109))))) (-3434 (((-1168) $) NIL (|has| (-1168) (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4449))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4222 (($ (-394)) 9)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109))))) (-2799 (((-650 (-1168)) $) NIL)) (-4242 (((-112) (-1168) $) NIL)) (-1334 (((-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL)) (-2213 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL)) (-2044 (((-650 (-1168)) $) NIL)) (-1480 (((-112) (-1168) $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109))))) (-3515 (((-52) $) NIL (|has| (-1168) (-856)))) (-4089 (((-3 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) "failed") (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL)) (-2973 (($ $ (-52)) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (($ $ (-298 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (($ $ (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (($ $ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (($ $ (-650 (-52)) (-650 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-298 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-650 (-298 (-52)))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109))))) (-2880 (((-650 (-52)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 (((-52) $ (-1168)) 14) (((-52) $ (-1168) (-52)) NIL) (((-52) $ (-1186)) 15)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109)))) (((-777) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109)))) (((-777) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-52) (-619 (-868))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 (-52))) (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-638) (-13 (-1202 (-1168) (-52)) (-10 -8 (-15 -4222 ($ (-394))) (-15 -4010 ($ $)) (-15 -1872 ((-52) $ (-1186))) (-15 -3945 ((-52) $ (-1186) (-52)))))) (T -638)) +((-4222 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-638)))) (-4010 (*1 *1 *1) (-5 *1 (-638))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-52)) (-5 *1 (-638)))) (-3945 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1186)) (-5 *1 (-638))))) +(-13 (-1202 (-1168) (-52)) (-10 -8 (-15 -4222 ($ (-394))) (-15 -4010 ($ $)) (-15 -1872 ((-52) $ (-1186))) (-15 -3945 ((-52) $ (-1186) (-52))))) +((-3037 (($ $ |#2|) 10))) +(((-639 |#1| |#2|) (-10 -8 (-15 -3037 (|#1| |#1| |#2|))) (-640 |#2|) (-174)) (T -639)) +NIL +(-10 -8 (-15 -3037 (|#1| |#1| |#2|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3811 (($ $ $) 34)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 33 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-640 |#1|) (-141) (-174)) (T -640)) +((-3811 (*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)) (-4 *2 (-368))))) +(-13 (-723 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3811 ($ $ $)) (IF (|has| |t#1| (-368)) (-15 -3037 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1738 (((-3 $ "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-1601 (((-1276 (-695 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-1276 (-695 |#1|)) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-4392 (((-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-3734 (($) NIL T CONST)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3025 (((-3 $ "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1460 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-3754 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-3277 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2487 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3019 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-2559 (($ $ (-928)) NIL)) (-3928 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-3387 (((-1182 |#1|) $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3235 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2099 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-1654 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2427 (($ (-1276 |#1|)) NIL (|has| |#2| (-423 |#1|))) (($ (-1276 |#1|) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2229 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3979 (((-928)) NIL (|has| |#2| (-372 |#1|)))) (-1438 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1752 (($ $ (-928)) NIL)) (-4414 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1451 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2882 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-1822 (((-3 $ "failed")) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3792 (((-695 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2215 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-2961 (((-695 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) $ (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-3645 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2463 (((-1182 (-959 |#1|))) NIL (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-368))))) (-3619 (($ $ (-928)) NIL)) (-3926 ((|#1| $) NIL (|has| |#2| (-372 |#1|)))) (-3823 (((-1182 |#1|) $) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-2908 ((|#1|) NIL (|has| |#2| (-423 |#1|))) ((|#1| (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-2005 (((-1182 |#1|) $) NIL (|has| |#2| (-372 |#1|)))) (-4420 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-4122 (((-1168) $) NIL)) (-2585 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2522 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1363 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3551 (((-1129) $) NIL)) (-1422 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1872 ((|#1| $ (-570)) NIL (|has| |#2| (-423 |#1|)))) (-1861 (((-695 |#1|) (-1276 $)) NIL (|has| |#2| (-423 |#1|))) (((-1276 |#1|) $) NIL (|has| |#2| (-423 |#1|))) (((-695 |#1|) (-1276 $) (-1276 $)) NIL (|has| |#2| (-372 |#1|))) (((-1276 |#1|) $ (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-1411 (($ (-1276 |#1|)) NIL (|has| |#2| (-423 |#1|))) (((-1276 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-3594 (((-650 (-959 |#1|))) NIL (|has| |#2| (-423 |#1|))) (((-650 (-959 |#1|)) (-1276 $)) NIL (|has| |#2| (-372 |#1|)))) (-4307 (($ $ $) NIL)) (-1743 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3798 (((-868) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL (|has| |#2| (-423 |#1|)))) (-3532 (((-650 (-1276 |#1|))) NIL (-2779 (-12 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))))) (-3666 (($ $ $ $) NIL)) (-2939 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3453 (($ (-695 |#1|) $) NIL (|has| |#2| (-423 |#1|)))) (-3616 (($ $ $) NIL)) (-3089 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-2313 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-3772 (((-112)) NIL (|has| |#2| (-372 |#1|)))) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) 20)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-641 |#1| |#2|) (-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -3798 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|))) (-174) (-750 |#1|)) (T -641)) +((-3798 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-641 *3 *2)) (-4 *2 (-750 *3))))) +(-13 (-750 |#1|) (-619 |#2|) (-10 -8 (-15 -3798 ($ |#2|)) (IF (|has| |#2| (-423 |#1|)) (-6 (-423 |#1|)) |%noBranch|) (IF (|has| |#2| (-372 |#1|)) (-6 (-372 |#1|)) |%noBranch|))) +((-2207 (((-3 (-849 |#2|) "failed") |#2| (-298 |#2|) (-1168)) 106) (((-3 (-849 |#2|) (-2 (|:| |leftHandLimit| (-3 (-849 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-849 |#2|) "failed"))) "failed") |#2| (-298 (-849 |#2|))) 131)) (-1414 (((-3 (-839 |#2|) "failed") |#2| (-298 (-839 |#2|))) 136))) +(((-642 |#1| |#2|) (-10 -7 (-15 -2207 ((-3 (-849 |#2|) (-2 (|:| |leftHandLimit| (-3 (-849 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-849 |#2|) "failed"))) "failed") |#2| (-298 (-849 |#2|)))) (-15 -1414 ((-3 (-839 |#2|) "failed") |#2| (-298 (-839 |#2|)))) (-15 -2207 ((-3 (-849 |#2|) "failed") |#2| (-298 |#2|) (-1168)))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -642)) +((-2207 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-298 *3)) (-5 *5 (-1168)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-849 *3)) (-5 *1 (-642 *6 *3)))) (-1414 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-298 (-839 *3))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-839 *3)) (-5 *1 (-642 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) (-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-849 *3))) (-4 *3 (-13 (-27) (-1211) (-436 *5))) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-3 (-849 *3) (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed")) (|:| |rightHandLimit| (-3 (-849 *3) "failed"))) "failed")) (-5 *1 (-642 *5 *3))))) +(-10 -7 (-15 -2207 ((-3 (-849 |#2|) (-2 (|:| |leftHandLimit| (-3 (-849 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-849 |#2|) "failed"))) "failed") |#2| (-298 (-849 |#2|)))) (-15 -1414 ((-3 (-839 |#2|) "failed") |#2| (-298 (-839 |#2|)))) (-15 -2207 ((-3 (-849 |#2|) "failed") |#2| (-298 |#2|) (-1168)))) +((-2207 (((-3 (-849 (-413 (-959 |#1|))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))) (-1168)) 86) (((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|)))) 20) (((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-849 (-959 |#1|)))) 35)) (-1414 (((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|)))) 23) (((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-839 (-959 |#1|)))) 43))) +(((-643 |#1|) (-10 -7 (-15 -2207 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-849 (-959 |#1|))))) (-15 -2207 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -1414 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-839 (-959 |#1|))))) (-15 -1414 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -2207 ((-3 (-849 (-413 (-959 |#1|))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))) (-1168)))) (-458)) (T -643)) +((-2207 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-298 (-413 (-959 *6)))) (-5 *5 (-1168)) (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-849 *3)) (-5 *1 (-643 *6)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-458)) (-5 *2 (-839 *3)) (-5 *1 (-643 *5)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-839 (-959 *5)))) (-4 *5 (-458)) (-5 *2 (-839 (-413 (-959 *5)))) (-5 *1 (-643 *5)) (-5 *3 (-413 (-959 *5))))) (-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-458)) (-5 *2 (-3 (-849 *3) (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed")) (|:| |rightHandLimit| (-3 (-849 *3) "failed"))) "failed")) (-5 *1 (-643 *5)))) (-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-298 (-849 (-959 *5)))) (-4 *5 (-458)) (-5 *2 (-3 (-849 (-413 (-959 *5))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 *5))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 *5))) "failed"))) "failed")) (-5 *1 (-643 *5)) (-5 *3 (-413 (-959 *5)))))) +(-10 -7 (-15 -2207 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-849 (-959 |#1|))))) (-15 -2207 ((-3 (-849 (-413 (-959 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-849 (-413 (-959 |#1|))) "failed"))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -1414 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-839 (-959 |#1|))))) (-15 -1414 ((-839 (-413 (-959 |#1|))) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -2207 ((-3 (-849 (-413 (-959 |#1|))) "failed") (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))) (-1168)))) +((-2626 (((-3 (-1276 (-413 |#1|)) "failed") (-1276 |#2|) |#2|) 64 (-1748 (|has| |#1| (-368)))) (((-3 (-1276 |#1|) "failed") (-1276 |#2|) |#2|) 49 (|has| |#1| (-368)))) (-2205 (((-112) (-1276 |#2|)) 33)) (-3112 (((-3 (-1276 |#1|) "failed") (-1276 |#2|)) 40))) +(((-644 |#1| |#2|) (-10 -7 (-15 -2205 ((-112) (-1276 |#2|))) (-15 -3112 ((-3 (-1276 |#1|) "failed") (-1276 |#2|))) (IF (|has| |#1| (-368)) (-15 -2626 ((-3 (-1276 |#1|) "failed") (-1276 |#2|) |#2|)) (-15 -2626 ((-3 (-1276 (-413 |#1|)) "failed") (-1276 |#2|) |#2|)))) (-562) (-645 |#1|)) (T -644)) +((-2626 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 *5)) (-1748 (-4 *5 (-368))) (-4 *5 (-562)) (-5 *2 (-1276 (-413 *5))) (-5 *1 (-644 *5 *4)))) (-2626 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 *5)) (-4 *5 (-368)) (-4 *5 (-562)) (-5 *2 (-1276 *5)) (-5 *1 (-644 *5 *4)))) (-3112 (*1 *2 *3) (|partial| -12 (-5 *3 (-1276 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562)) (-5 *2 (-1276 *4)) (-5 *1 (-644 *4 *5)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-1276 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-644 *4 *5))))) +(-10 -7 (-15 -2205 ((-112) (-1276 |#2|))) (-15 -3112 ((-3 (-1276 |#1|) "failed") (-1276 |#2|))) (IF (|has| |#1| (-368)) (-15 -2626 ((-3 (-1276 |#1|) "failed") (-1276 |#2|) |#2|)) (-15 -2626 ((-3 (-1276 (-413 |#1|)) "failed") (-1276 |#2|) |#2|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2004 (((-695 |#1|) (-695 $)) 40) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 39)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-645 |#1|) (-141) (-1058)) (T -645)) +((-2004 (*1 *2 *3) (-12 (-5 *3 (-695 *1)) (-4 *1 (-645 *4)) (-4 *4 (-1058)) (-5 *2 (-695 *4)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *1)) (-5 *4 (-1276 *1)) (-4 *1 (-645 *5)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -2568 (-695 *5)) (|:| |vec| (-1276 *5))))))) +(-13 (-1058) (-10 -8 (-15 -2004 ((-695 |t#1|) (-695 $))) (-15 -2004 ((-2 (|:| -2568 (-695 |t#1|)) (|:| |vec| (-1276 |t#1|))) (-695 $) (-1276 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 16 T CONST)) (-2923 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19))) +(((-646 |#1|) (-141) (-1067)) (T -646)) +NIL +(-13 (-652 |t#1|) (-1060 |t#1|)) +(((-102) . T) ((-619 (-868)) . T) ((-652 |#1|) . T) ((-1060 |#1|) . T) ((-1109) . T)) +((-4150 ((|#2| (-650 |#1|) (-650 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-650 |#1|) (-650 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) |#2|) 17) ((|#2| (-650 |#1|) (-650 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|)) 12))) +(((-647 |#1| |#2|) (-10 -7 (-15 -4150 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|))) (-15 -4150 (|#2| (-650 |#1|) (-650 |#2|) |#1|)) (-15 -4150 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) |#2|)) (-15 -4150 (|#2| (-650 |#1|) (-650 |#2|) |#1| |#2|)) (-15 -4150 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) (-1 |#2| |#1|))) (-15 -4150 (|#2| (-650 |#1|) (-650 |#2|) |#1| (-1 |#2| |#1|)))) (-1109) (-1226)) (T -647)) +((-4150 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1109)) (-4 *2 (-1226)) (-5 *1 (-647 *5 *2)))) (-4150 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) (-4 *5 (-1109)) (-4 *6 (-1226)) (-5 *1 (-647 *5 *6)))) (-4150 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109)) (-4 *2 (-1226)) (-5 *1 (-647 *5 *2)))) (-4150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 *5)) (-4 *6 (-1109)) (-4 *5 (-1226)) (-5 *2 (-1 *5 *6)) (-5 *1 (-647 *6 *5)))) (-4150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109)) (-4 *2 (-1226)) (-5 *1 (-647 *5 *2)))) (-4150 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) (-4 *5 (-1109)) (-4 *6 (-1226)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *5 *6))))) +(-10 -7 (-15 -4150 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|))) (-15 -4150 (|#2| (-650 |#1|) (-650 |#2|) |#1|)) (-15 -4150 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) |#2|)) (-15 -4150 (|#2| (-650 |#1|) (-650 |#2|) |#1| |#2|)) (-15 -4150 ((-1 |#2| |#1|) (-650 |#1|) (-650 |#2|) (-1 |#2| |#1|))) (-15 -4150 (|#2| (-650 |#1|) (-650 |#2|) |#1| (-1 |#2| |#1|)))) +((-4292 (((-650 |#2|) (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|) 16)) (-3600 ((|#2| (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|) 18)) (-1347 (((-650 |#2|) (-1 |#2| |#1|) (-650 |#1|)) 13))) +(((-648 |#1| |#2|) (-10 -7 (-15 -4292 ((-650 |#2|) (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -1347 ((-650 |#2|) (-1 |#2| |#1|) (-650 |#1|)))) (-1226) (-1226)) (T -648)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-650 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-650 *6)) (-5 *1 (-648 *5 *6)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-650 *5)) (-4 *5 (-1226)) (-4 *2 (-1226)) (-5 *1 (-648 *5 *2)))) (-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-650 *6)) (-4 *6 (-1226)) (-4 *5 (-1226)) (-5 *2 (-650 *5)) (-5 *1 (-648 *6 *5))))) +(-10 -7 (-15 -4292 ((-650 |#2|) (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-650 |#1|) |#2|)) (-15 -1347 ((-650 |#2|) (-1 |#2| |#1|) (-650 |#1|)))) +((-1347 (((-650 |#3|) (-1 |#3| |#1| |#2|) (-650 |#1|) (-650 |#2|)) 21))) +(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-650 |#3|) (-1 |#3| |#1| |#2|) (-650 |#1|) (-650 |#2|)))) (-1226) (-1226) (-1226)) (T -649)) +((-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-650 *6)) (-5 *5 (-650 *7)) (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-650 *8)) (-5 *1 (-649 *6 *7 *8))))) +(-10 -7 (-15 -1347 ((-650 |#3|) (-1 |#3| |#1| |#2|) (-650 |#1|) (-650 |#2|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) NIL)) (-2566 ((|#1| $) NIL)) (-1568 (($ $) NIL)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) $) NIL (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2632 (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-3360 (($ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-1716 (($ $ $) NIL (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "rest" $) NIL (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-3442 (($ $ $) 37 (|has| |#1| (-1109)))) (-3431 (($ $ $) 41 (|has| |#1| (-1109)))) (-3420 (($ $ $) 44 (|has| |#1| (-1109)))) (-2660 (($ (-1 (-112) |#1|) $) NIL)) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2553 ((|#1| $) NIL)) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3527 (($ $) 23) (($ $ (-777)) NIL)) (-3786 (($ $) NIL (|has| |#1| (-1109)))) (-3552 (($ $) 36 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) NIL (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) NIL)) (-1697 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-2430 (((-112) $) NIL)) (-4039 (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109))) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) NIL)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1736 (((-112) $) 11)) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3059 (($) 9 T CONST)) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-3583 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2735 (($ $ $) NIL (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3384 (($ |#1|) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1723 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-2213 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-4299 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) 20) (($ $ (-777)) NIL)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-2356 (((-112) $) NIL)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) 39)) (-4359 (($) 38)) (-1872 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1243 (-570))) NIL) ((|#1| $ (-570)) 42) ((|#1| $ (-570) |#1|) NIL)) (-3536 (((-570) $ $) NIL)) (-3886 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-4331 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-3680 (((-112) $) NIL)) (-3566 (($ $) NIL)) (-2447 (($ $) NIL (|has| $ (-6 -4449)))) (-1497 (((-777) $) NIL)) (-2360 (($ $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) 53 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) NIL)) (-3749 (($ |#1| $) 12)) (-2832 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2445 (($ $ $) 35) (($ |#1| $) 43) (($ (-650 $)) NIL) (($ $ |#1|) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1858 (($ $ $) 13)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1985 (((-1168) $) 31 (|has| |#1| (-834))) (((-1168) $ (-112)) 32 (|has| |#1| (-834))) (((-1281) (-828) $) 33 (|has| |#1| (-834))) (((-1281) (-828) $ (-112)) 34 (|has| |#1| (-834)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-650 |#1|) (-13 (-672 |#1|) (-10 -8 (-15 -3059 ($) -3711) (-15 -1736 ((-112) $)) (-15 -3749 ($ |#1| $)) (-15 -1858 ($ $ $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -3442 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -3420 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|))) (-1226)) (T -650)) +((-3059 (*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1226)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-1226)))) (-3749 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1226)))) (-1858 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1226)))) (-3442 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1226)))) (-3431 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1226)))) (-3420 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1226))))) +(-13 (-672 |#1|) (-10 -8 (-15 -3059 ($) -3711) (-15 -1736 ((-112) $)) (-15 -3749 ($ |#1| $)) (-15 -1858 ($ $ $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -3442 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -3420 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-834)) (-6 (-834)) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 11) (($ (-1191)) NIL) (((-1191) $) NIL) ((|#1| $) 8)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-651 |#1|) (-13 (-1092) (-619 |#1|)) (-1109)) (T -651)) +NIL +(-13 (-1092) (-619 |#1|)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 16 T CONST)) (-2923 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +(((-652 |#1|) (-141) (-1067)) (T -652)) +((-1809 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067))))) +(-13 (-1109) (-10 -8 (-15 (-1809) ($) -3711) (-15 -1359 ((-112) $)) (-15 * ($ |t#1| $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3539 (($ |#1| |#1| $) 46)) (-3636 (((-112) $ (-777)) NIL)) (-2660 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-3786 (($ $) 48)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) 59 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 9 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 37)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1334 ((|#1| $) 50)) (-2213 (($ |#1| $) 29) (($ |#1| $ (-777)) 45)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4067 ((|#1| $) 53)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 23)) (-4359 (($) 28)) (-2547 (((-112) $) 57)) (-2718 (((-650 (-2 (|:| -2219 |#1|) (|:| -3562 (-777)))) $) 69)) (-2709 (($) 26) (($ (-650 |#1|)) 19)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) 66 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 20)) (-1411 (((-542) $) 34 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) NIL)) (-3798 (((-868) $) 14 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 24)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 71 (|has| |#1| (-1109)))) (-2431 (((-777) $) 17 (|has| $ (-6 -4448))))) +(((-653 |#1|) (-13 (-701 |#1|) (-10 -8 (-6 -4448) (-15 -2547 ((-112) $)) (-15 -3539 ($ |#1| |#1| $)))) (-1109)) (T -653)) +((-2547 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1109)))) (-3539 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1109))))) +(-13 (-701 |#1|) (-10 -8 (-6 -4448) (-15 -2547 ((-112) $)) (-15 -3539 ($ |#1| |#1| $)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27))) +(((-654 |#1|) (-141) (-1067)) (T -654)) +NIL +(-13 (-21) (-652 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777) $) 17)) (-3113 (($ $ |#1|) 69)) (-1500 (($ $) 39)) (-2256 (($ $) 37)) (-4382 (((-3 |#1| "failed") $) 61)) (-3152 ((|#1| $) NIL)) (-3247 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3949 (((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-570)) 56)) (-4308 ((|#1| $ (-570)) 35)) (-1598 ((|#2| $ (-570)) 34)) (-3213 (($ (-1 |#1| |#1|) $) 41)) (-1432 (($ (-1 |#2| |#2|) $) 47)) (-2701 (($) 11)) (-2396 (($ |#1| |#2|) 24)) (-1621 (($ (-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|)))) 25)) (-1740 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))) $) 14)) (-2389 (($ |#1| $) 71)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1524 (((-112) $ $) 76)) (-3798 (((-868) $) 21) (($ |#1|) 18)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 27))) +(((-655 |#1| |#2| |#3|) (-13 (-1109) (-1047 |#1|) (-10 -8 (-15 -3949 ((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-570))) (-15 -1740 ((-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))) $)) (-15 -2396 ($ |#1| |#2|)) (-15 -1621 ($ (-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))))) (-15 -1598 (|#2| $ (-570))) (-15 -4308 (|#1| $ (-570))) (-15 -2256 ($ $)) (-15 -1500 ($ $)) (-15 -3475 ((-777) $)) (-15 -2701 ($)) (-15 -3113 ($ $ |#1|)) (-15 -2389 ($ |#1| $)) (-15 -3247 ($ |#1| |#2| $)) (-15 -3247 ($ $ $)) (-15 -1524 ((-112) $ $)) (-15 -1432 ($ (-1 |#2| |#2|) $)) (-15 -3213 ($ (-1 |#1| |#1|) $)))) (-1109) (-23) |#2|) (T -655)) +((-3949 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-868) (-868) (-868))) (-5 *4 (-570)) (-5 *2 (-868)) (-5 *1 (-655 *5 *6 *7)) (-4 *5 (-1109)) (-4 *6 (-23)) (-14 *7 *6))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 *4)))) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) (-2396 (*1 *1 *2 *3) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 *4)))) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-655 *3 *4 *5)))) (-1598 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-23)) (-5 *1 (-655 *4 *2 *5)) (-4 *4 (-1109)) (-14 *5 *2))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *2 (-1109)) (-5 *1 (-655 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) (-2701 (*1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-3113 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-2389 (*1 *1 *2 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-3247 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-3247 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) (-1524 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) (-1432 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)))) (-3213 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-655 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1109) (-1047 |#1|) (-10 -8 (-15 -3949 ((-868) $ (-1 (-868) (-868) (-868)) (-1 (-868) (-868) (-868)) (-570))) (-15 -1740 ((-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))) $)) (-15 -2396 ($ |#1| |#2|)) (-15 -1621 ($ (-650 (-2 (|:| |gen| |#1|) (|:| -4390 |#2|))))) (-15 -1598 (|#2| $ (-570))) (-15 -4308 (|#1| $ (-570))) (-15 -2256 ($ $)) (-15 -1500 ($ $)) (-15 -3475 ((-777) $)) (-15 -2701 ($)) (-15 -3113 ($ $ |#1|)) (-15 -2389 ($ |#1| $)) (-15 -3247 ($ |#1| |#2| $)) (-15 -3247 ($ $ $)) (-15 -1524 ((-112) $ $)) (-15 -1432 ($ (-1 |#2| |#2|) $)) (-15 -3213 ($ (-1 |#1| |#1|) $)))) +((-3434 (((-570) $) 31)) (-4299 (($ |#2| $ (-570)) 27) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) 12)) (-1480 (((-112) (-570) $) 18)) (-2445 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-650 $)) NIL))) +(((-656 |#1| |#2|) (-10 -8 (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -2445 (|#1| (-650 |#1|))) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -3434 ((-570) |#1|)) (-15 -2044 ((-650 (-570)) |#1|)) (-15 -1480 ((-112) (-570) |#1|))) (-657 |#2|) (-1226)) (T -656)) +NIL +(-10 -8 (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -2445 (|#1| (-650 |#1|))) (-15 -2445 (|#1| |#1| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -3434 ((-570) |#1|)) (-15 -2044 ((-650 (-570)) |#1|)) (-15 -1480 ((-112) (-570) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3552 (($ $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 52)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 43 (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2973 (($ $ |#1|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1243 (-570))) 64)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 71)) (-2445 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-657 |#1|) (-141) (-1226)) (T -657)) +((-4300 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-2445 (*1 *1 *1 *2) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1226)))) (-2445 (*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1226)))) (-2445 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1226)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-1347 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-1243 (-570))) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-4331 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-4331 (*1 *1 *1 *2) (-12 (-5 *2 (-1243 (-570))) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-4299 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-657 *2)) (-4 *2 (-1226)))) (-4299 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) (-3945 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1243 (-570))) (|has| *1 (-6 -4449)) (-4 *1 (-657 *2)) (-4 *2 (-1226))))) +(-13 (-610 (-570) |t#1|) (-152 |t#1|) (-10 -8 (-15 -4300 ($ (-777) |t#1|)) (-15 -2445 ($ $ |t#1|)) (-15 -2445 ($ |t#1| $)) (-15 -2445 ($ $ $)) (-15 -2445 ($ (-650 $))) (-15 -1347 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1872 ($ $ (-1243 (-570)))) (-15 -4331 ($ $ (-570))) (-15 -4331 ($ $ (-1243 (-570)))) (-15 -4299 ($ |t#1| $ (-570))) (-15 -4299 ($ $ $ (-570))) (IF (|has| $ (-6 -4449)) (-15 -3945 (|t#1| $ (-1243 (-570)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3884 (((-3 |#2| "failed") |#3| |#2| (-1186) |#2| (-650 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) "failed") |#3| |#2| (-1186)) 44))) +(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -3884 ((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) "failed") |#3| |#2| (-1186))) (-15 -3884 ((-3 |#2| "failed") |#3| |#2| (-1186) |#2| (-650 |#2|)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1211) (-966)) (-662 |#2|)) (T -658)) +((-3884 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *2)) (-4 *2 (-13 (-29 *6) (-1211) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-658 *6 *2 *3)) (-4 *3 (-662 *2)))) (-3884 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1186)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-4 *4 (-13 (-29 *6) (-1211) (-966))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2077 (-650 *4)))) (-5 *1 (-658 *6 *4 *3)) (-4 *3 (-662 *4))))) +(-10 -7 (-15 -3884 ((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) "failed") |#3| |#2| (-1186))) (-15 -3884 ((-3 |#2| "failed") |#3| |#2| (-1186) |#2| (-650 |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2010 (($ $) NIL (|has| |#1| (-368)))) (-3183 (($ $ $) NIL (|has| |#1| (-368)))) (-4045 (($ $ (-777)) NIL (|has| |#1| (-368)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3039 (($ $ $) NIL (|has| |#1| (-368)))) (-1821 (($ $ $) NIL (|has| |#1| (-368)))) (-3575 (($ $ $) NIL (|has| |#1| (-368)))) (-3125 (($ $ $) NIL (|has| |#1| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458)))) (-2481 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) NIL)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2302 (((-777) $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-368)))) (-2955 (($ $ $) NIL (|has| |#1| (-368)))) (-2913 (($ $ $) NIL (|has| |#1| (-368)))) (-3773 (($ $ $) NIL (|has| |#1| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-1872 ((|#1| $ |#1|) NIL)) (-3722 (($ $ $) NIL (|has| |#1| (-368)))) (-3324 (((-777) $) NIL)) (-1427 ((|#1| $) NIL (|has| |#1| (-458)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3453 ((|#1| $ |#1| |#1|) NIL)) (-3323 (($ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($) NIL)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-659 |#1|) (-662 |#1|) (-235)) (T -659)) +NIL +(-662 |#1|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2010 (($ $) NIL (|has| |#1| (-368)))) (-3183 (($ $ $) NIL (|has| |#1| (-368)))) (-4045 (($ $ (-777)) NIL (|has| |#1| (-368)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3039 (($ $ $) NIL (|has| |#1| (-368)))) (-1821 (($ $ $) NIL (|has| |#1| (-368)))) (-3575 (($ $ $) NIL (|has| |#1| (-368)))) (-3125 (($ $ $) NIL (|has| |#1| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458)))) (-2481 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) NIL)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2302 (((-777) $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-368)))) (-2955 (($ $ $) NIL (|has| |#1| (-368)))) (-2913 (($ $ $) NIL (|has| |#1| (-368)))) (-3773 (($ $ $) NIL (|has| |#1| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-1872 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3722 (($ $ $) NIL (|has| |#1| (-368)))) (-3324 (((-777) $) NIL)) (-1427 ((|#1| $) NIL (|has| |#1| (-458)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3453 ((|#1| $ |#1| |#1|) NIL)) (-3323 (($ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($) NIL)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-660 |#1| |#2|) (-13 (-662 |#1|) (-290 |#2| |#2|)) (-235) (-13 (-654 |#1|) (-10 -8 (-15 -3519 ($ $))))) (T -660)) +NIL +(-13 (-662 |#1|) (-290 |#2| |#2|)) +((-2010 (($ $) 29)) (-3323 (($ $) 27)) (-2835 (($) 13))) +(((-661 |#1| |#2|) (-10 -8 (-15 -2010 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -2835 (|#1|))) (-662 |#2|) (-1058)) (T -661)) +NIL +(-10 -8 (-15 -2010 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -2835 (|#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2010 (($ $) 87 (|has| |#1| (-368)))) (-3183 (($ $ $) 89 (|has| |#1| (-368)))) (-4045 (($ $ (-777)) 88 (|has| |#1| (-368)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-3039 (($ $ $) 50 (|has| |#1| (-368)))) (-1821 (($ $ $) 51 (|has| |#1| (-368)))) (-3575 (($ $ $) 53 (|has| |#1| (-368)))) (-3125 (($ $ $) 48 (|has| |#1| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 47 (|has| |#1| (-368)))) (-2322 (((-3 $ "failed") $ $) 49 (|has| |#1| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 52 (|has| |#1| (-368)))) (-4382 (((-3 (-570) "failed") $) 80 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 77 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 74)) (-3152 (((-570) $) 79 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 76 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 75)) (-1885 (($ $) 69)) (-2229 (((-3 $ "failed") $) 37)) (-1908 (($ $) 60 (|has| |#1| (-458)))) (-2481 (((-112) $) 35)) (-3925 (($ |#1| (-777)) 67)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 62 (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63 (|has| |#1| (-562)))) (-2302 (((-777) $) 71)) (-3498 (($ $ $) 57 (|has| |#1| (-368)))) (-2955 (($ $ $) 58 (|has| |#1| (-368)))) (-2913 (($ $ $) 46 (|has| |#1| (-368)))) (-3773 (($ $ $) 55 (|has| |#1| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 54 (|has| |#1| (-368)))) (-2371 (((-3 $ "failed") $ $) 56 (|has| |#1| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 59 (|has| |#1| (-368)))) (-1860 ((|#1| $) 70)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-562)))) (-1872 ((|#1| $ |#1|) 92)) (-3722 (($ $ $) 86 (|has| |#1| (-368)))) (-3324 (((-777) $) 72)) (-1427 ((|#1| $) 61 (|has| |#1| (-458)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 78 (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 73)) (-2479 (((-650 |#1|) $) 66)) (-3326 ((|#1| $ (-777)) 68)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3453 ((|#1| $ |#1| |#1|) 65)) (-3323 (($ $) 90)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($) 91)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-662 |#1|) (-141) (-1058)) (T -662)) +((-2835 (*1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)))) (-3183 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-4045 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-662 *3)) (-4 *3 (-1058)) (-4 *3 (-368)))) (-2010 (*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3722 (*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(-13 (-858 |t#1|) (-290 |t#1| |t#1|) (-10 -8 (-15 -2835 ($)) (-15 -3323 ($ $)) (IF (|has| |t#1| (-368)) (PROGN (-15 -3183 ($ $ $)) (-15 -4045 ($ $ (-777))) (-15 -2010 ($ $)) (-15 -3722 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-290 |#1| |#1|) . T) ((-417 |#1|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-858 |#1|) . T)) +((-3878 (((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))) 87 (|has| |#1| (-27)))) (-3801 (((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))) 86 (|has| |#1| (-27))) (((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 19))) +(((-663 |#1| |#2|) (-10 -7 (-15 -3801 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3801 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)))) (-15 -3878 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))))) |%noBranch|)) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1252 |#1|)) (T -663)) +((-3878 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *2 (-650 (-659 (-413 *5)))) (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5))))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *2 (-650 (-659 (-413 *5)))) (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5))))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-659 (-413 *6)))) (-5 *1 (-663 *5 *6)) (-5 *3 (-659 (-413 *6)))))) +(-10 -7 (-15 -3801 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3801 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|)))) (-15 -3878 ((-650 (-659 (-413 |#2|))) (-659 (-413 |#2|))))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2010 (($ $) NIL (|has| |#1| (-368)))) (-3183 (($ $ $) 28 (|has| |#1| (-368)))) (-4045 (($ $ (-777)) 31 (|has| |#1| (-368)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3039 (($ $ $) NIL (|has| |#1| (-368)))) (-1821 (($ $ $) NIL (|has| |#1| (-368)))) (-3575 (($ $ $) NIL (|has| |#1| (-368)))) (-3125 (($ $ $) NIL (|has| |#1| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458)))) (-2481 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) NIL)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2302 (((-777) $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-368)))) (-2955 (($ $ $) NIL (|has| |#1| (-368)))) (-2913 (($ $ $) NIL (|has| |#1| (-368)))) (-3773 (($ $ $) NIL (|has| |#1| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-1872 ((|#1| $ |#1|) 24)) (-3722 (($ $ $) 33 (|has| |#1| (-368)))) (-3324 (((-777) $) NIL)) (-1427 ((|#1| $) NIL (|has| |#1| (-458)))) (-3798 (((-868) $) 20) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3453 ((|#1| $ |#1| |#1|) 23)) (-3323 (($ $) NIL)) (-1809 (($) 21 T CONST)) (-1817 (($) 8 T CONST)) (-2835 (($) NIL)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-664 |#1| |#2|) (-662 |#1|) (-1058) (-1 |#1| |#1|)) (T -664)) +NIL +(-662 |#1|) +((-3183 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-4045 ((|#2| |#2| (-777) (-1 |#1| |#1|)) 48)) (-3722 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-665 |#1| |#2|) (-10 -7 (-15 -3183 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4045 (|#2| |#2| (-777) (-1 |#1| |#1|))) (-15 -3722 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-368) (-662 |#1|)) (T -665)) +((-3722 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2)) (-4 *2 (-662 *4)))) (-4045 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) (-5 *1 (-665 *5 *2)) (-4 *2 (-662 *5)))) (-3183 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2)) (-4 *2 (-662 *4))))) +(-10 -7 (-15 -3183 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4045 (|#2| |#2| (-777) (-1 |#1| |#1|))) (-15 -3722 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-4423 (($ $ $) 9))) +(((-666 |#1|) (-10 -8 (-15 -4423 (|#1| |#1| |#1|))) (-667)) (T -666)) +NIL +(-10 -8 (-15 -4423 (|#1| |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-2439 (($ $) 10)) (-4423 (($ $ $) 8)) (-2923 (((-112) $ $) 6)) (-4407 (($ $ $) 9))) +(((-667) (-141)) (T -667)) +((-2439 (*1 *1 *1) (-4 *1 (-667))) (-4407 (*1 *1 *1 *1) (-4 *1 (-667))) (-4423 (*1 *1 *1 *1) (-4 *1 (-667)))) +(-13 (-102) (-10 -8 (-15 -2439 ($ $)) (-15 -4407 ($ $ $)) (-15 -4423 ($ $ $)))) (((-102) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 15)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4399 ((|#1| $) 23)) (-3380 (($ $ $) NIL (|has| |#1| (-796)))) (-2839 (($ $ $) NIL (|has| |#1| (-796)))) (-3435 (((-1167) $) 48)) (-3547 (((-1128) $) NIL)) (-4412 ((|#3| $) 24)) (-3796 (((-867) $) 43)) (-1520 (((-112) $ $) 22)) (-1804 (($) 10 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2920 (((-112) $ $) 20)) (-2966 (((-112) $ $) NIL (|has| |#1| (-796)))) (-2944 (((-112) $ $) 26 (|has| |#1| (-796)))) (-3035 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3024 (($ $) 17) (($ $ $) NIL)) (-3012 (($ $ $) 29)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-667 |#1| |#2| |#3|) (-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $)))) (-722 |#2|) (-173) (|SubsetCategory| (-731) |#2|)) (T -667)) -((-3035 (*1 *1 *1 *2) (-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)) (-4 *2 (|SubsetCategory| (-731) *4)))) (-3035 (*1 *1 *2 *3) (-12 (-4 *4 (-173)) (-5 *1 (-667 *2 *4 *3)) (-4 *2 (-722 *4)) (-4 *3 (|SubsetCategory| (-731) *4)))) (-4399 (*1 *2 *1) (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-731) *3)))) (-4412 (*1 *2 *1) (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4))))) -(-13 (-722 |#2|) (-10 -8 (IF (|has| |#1| (-796)) (-6 (-796)) |%noBranch|) (-15 -3035 ($ $ |#3|)) (-15 -3035 ($ |#1| |#3|)) (-15 -4399 (|#1| $)) (-15 -4412 (|#3| $)))) -((-4366 (((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|)) 33))) -(((-668 |#1|) (-10 -7 (-15 -4366 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|)))) (-915)) (T -668)) -((-4366 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *4))) (-5 *3 (-1181 *4)) (-4 *4 (-915)) (-5 *1 (-668 *4))))) -(-10 -7 (-15 -4366 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 84)) (-1604 (($ $ (-776)) 94)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1768 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 50)) (-4381 (((-3 (-677 |#1|) "failed") $) NIL)) (-3150 (((-677 |#1|) $) NIL)) (-1883 (($ $) 93)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-677 |#1|) |#2|) 70)) (-2325 (($ $) 89)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-3714 (((-1299 |#1| |#2|) (-1299 |#1| |#2|) $) 49)) (-3379 (((-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1849 (((-677 |#1|) $) NIL)) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1725 (($ $ |#1| $) 32) (($ $ (-649 |#1|) (-649 $)) 34)) (-4339 (((-776) $) 91)) (-3809 (($ $ $) 20) (($ (-677 |#1|) (-677 |#1|)) 79) (($ (-677 |#1|) $) 77) (($ $ (-677 |#1|)) 78)) (-3796 (((-867) $) NIL) (($ |#1|) 76) (((-1290 |#1| |#2|) $) 60) (((-1299 |#1| |#2|) $) 43) (($ (-677 |#1|)) 27)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-677 |#1|)) NIL)) (-1435 ((|#2| (-1299 |#1| |#2|) $) 45)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 23 T CONST)) (-3717 (((-649 (-2 (|:| |k| (-677 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3740 (((-3 $ "failed") (-1290 |#1| |#2|)) 62)) (-4229 (($ (-677 |#1|)) 14)) (-2920 (((-112) $ $) 46)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) 68) (($ $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-677 |#1|)) NIL))) -(((-669 |#1| |#2|) (-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -3740 ((-3 $ "failed") (-1290 |#1| |#2|))) (-15 -3809 ($ (-677 |#1|) (-677 |#1|))) (-15 -3809 ($ (-677 |#1|) $)) (-15 -3809 ($ $ (-677 |#1|))))) (-855) (-173)) (T -669)) -((-3740 (*1 *1 *2) (|partial| -12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-669 *3 *4)))) (-3809 (*1 *1 *2 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) (-4 *4 (-173))))) -(-13 (-378 |#1| |#2|) (-386 |#2| (-677 |#1|)) (-10 -8 (-15 -3740 ((-3 $ "failed") (-1290 |#1| |#2|))) (-15 -3809 ($ (-677 |#1|) (-677 |#1|))) (-15 -3809 ($ (-677 |#1|) $)) (-15 -3809 ($ $ (-677 |#1|))))) -((-1317 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2951 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1796 (($ (-1 (-112) |#2|) $) 29)) (-2507 (($ $) 67)) (-2017 (($ $) 78)) (-1794 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3598 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-4036 (((-569) |#2| $ (-569)) 75) (((-569) |#2| $) NIL) (((-569) (-1 (-112) |#2|) $) 56)) (-4300 (($ (-776) |#2|) 65)) (-2292 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-4198 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1346 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3382 (($ |#2|) 15)) (-3894 (($ $ $ (-569)) 42) (($ |#2| $ (-569)) 40)) (-1574 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3301 (($ $ (-1242 (-569))) 51) (($ $ (-569)) 44)) (-2785 (($ $ $ (-569)) 74)) (-3962 (($ $) 72)) (-2944 (((-112) $ $) 80))) -(((-670 |#1| |#2|) (-10 -8 (-15 -3382 (|#1| |#2|)) (-15 -3301 (|#1| |#1| (-569))) (-15 -3301 (|#1| |#1| (-1242 (-569)))) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3894 (|#1| |#2| |#1| (-569))) (-15 -3894 (|#1| |#1| |#1| (-569))) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4198 (|#1| |#1| |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -2507 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| (-776) |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|))) (-671 |#2|) (-1225)) (T -670)) -NIL -(-10 -8 (-15 -3382 (|#1| |#2|)) (-15 -3301 (|#1| |#1| (-569))) (-15 -3301 (|#1| |#1| (-1242 (-569)))) (-15 -1794 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3894 (|#1| |#2| |#1| (-569))) (-15 -3894 (|#1| |#1| |#1| (-569))) (-15 -2292 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1796 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1794 (|#1| |#2| |#1|)) (-15 -2017 (|#1| |#1|)) (-15 -2292 (|#1| |#1| |#1|)) (-15 -4198 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1317 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4036 ((-569) (-1 (-112) |#2|) |#1|)) (-15 -4036 ((-569) |#2| |#1|)) (-15 -4036 ((-569) |#2| |#1| (-569))) (-15 -4198 (|#1| |#1| |#1|)) (-15 -1317 ((-112) |#1|)) (-15 -2785 (|#1| |#1| |#1| (-569))) (-15 -2507 (|#1| |#1|)) (-15 -2951 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -2944 ((-112) |#1| |#1|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3598 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1574 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| (-776) |#2|)) (-15 -1346 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3962 (|#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2002 (((-1280) $ (-569) (-569)) 98 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-1317 (((-112) $) 143 (|has| |#1| (-855))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2951 (($ $) 147 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4448)))) (-3358 (($ $) 142 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 118 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-1796 (($ (-1 (-112) |#1|) $) 130)) (-1417 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4447)))) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-2507 (($ $) 145 (|has| $ (-6 -4448)))) (-2251 (($ $) 135)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-2017 (($ $) 132 (|has| |#1| (-1108)))) (-3550 (($ $) 100 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 131 (|has| |#1| (-1108))) (($ (-1 (-112) |#1|) $) 126)) (-1698 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4447))) (($ |#1| $) 101 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3846 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 88)) (-2199 (((-112) $) 84)) (-4036 (((-569) |#1| $ (-569)) 140 (|has| |#1| (-1108))) (((-569) |#1| $) 139 (|has| |#1| (-1108))) (((-569) (-1 (-112) |#1|) $) 138)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) 109)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 96 (|has| (-569) (-855)))) (-3380 (($ $ $) 148 (|has| |#1| (-855)))) (-2292 (($ $ $) 133 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-4198 (($ $ $) 141 (|has| |#1| (-855))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 95 (|has| (-569) (-855)))) (-2839 (($ $ $) 149 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3382 (($ |#1|) 123)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-3894 (($ $ $ (-569)) 128) (($ |#1| $ (-569)) 127)) (-4298 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1696 (((-649 (-569)) $) 93)) (-1414 (((-112) (-569) $) 92)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1682 (($ $ |#1|) 97 (|has| $ (-6 -4448)))) (-4038 (((-112) $) 85)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 91)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1242 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-2602 (((-569) $ $) 45)) (-3301 (($ $ (-1242 (-569))) 125) (($ $ (-569)) 124)) (-4328 (($ $ (-1242 (-569))) 115) (($ $ (-569)) 114)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 144 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 108)) (-2866 (($ $ $) 62) (($ $ |#1|) 61)) (-2443 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 151 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 152 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 150 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 153 (|has| |#1| (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-671 |#1|) (-140) (-1225)) (T -671)) -((-3382 (*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1225))))) -(-13 (-1157 |t#1|) (-377 |t#1|) (-285 |t#1|) (-10 -8 (-15 -3382 ($ |t#1|)))) -(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-285 |#1|) . T) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1018 |#1|) . T) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1157 |#1|) . T) ((-1225) . T) ((-1263 |#1|) . T)) -((-3218 (((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-649 (-649 |#1|)) (-649 (-1275 |#1|))) 22) (((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-694 |#1|) (-649 (-1275 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-649 (-649 |#1|)) (-1275 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)) 14)) (-3978 (((-776) (-694 |#1|) (-1275 |#1|)) 30)) (-1393 (((-3 (-1275 |#1|) "failed") (-694 |#1|) (-1275 |#1|)) 24)) (-2126 (((-112) (-694 |#1|) (-1275 |#1|)) 27))) -(((-672 |#1|) (-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|))) (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-649 (-649 |#1|)) (-1275 |#1|))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-694 |#1|) (-649 (-1275 |#1|)))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-649 (-649 |#1|)) (-649 (-1275 |#1|)))) (-15 -1393 ((-3 (-1275 |#1|) "failed") (-694 |#1|) (-1275 |#1|))) (-15 -2126 ((-112) (-694 |#1|) (-1275 |#1|))) (-15 -3978 ((-776) (-694 |#1|) (-1275 |#1|)))) (-367)) (T -672)) -((-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-672 *5)))) (-2126 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-5 *2 (-112)) (-5 *1 (-672 *5)))) (-1393 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1275 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *1 (-672 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5)))))) (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1275 *5)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 *5) "failed")) (|:| -2403 (-649 (-1275 *5))))) (-5 *1 (-672 *5)) (-5 *4 (-1275 *5))))) -(-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|))) (-15 -3218 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-649 (-649 |#1|)) (-1275 |#1|))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-694 |#1|) (-649 (-1275 |#1|)))) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|))))) (-649 (-649 |#1|)) (-649 (-1275 |#1|)))) (-15 -1393 ((-3 (-1275 |#1|) "failed") (-694 |#1|) (-1275 |#1|))) (-15 -2126 ((-112) (-694 |#1|) (-1275 |#1|))) (-15 -3978 ((-776) (-694 |#1|) (-1275 |#1|)))) -((-3218 (((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|)))) |#4| (-649 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|) 60)) (-3978 (((-776) |#4| |#3|) 18)) (-1393 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2126 (((-112) |#4| |#3|) 14))) -(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|)) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -1393 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2126 ((-112) |#4| |#3|)) (-15 -3978 ((-776) |#4| |#3|))) (-367) (-13 (-377 |#1|) (-10 -7 (-6 -4448))) (-13 (-377 |#1|) (-10 -7 (-6 -4448))) (-692 |#1| |#2| |#3|)) (T -673)) -((-3978 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-776)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-2126 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-112)) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-1393 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-367)) (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4448)))) (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))) (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2)))) (-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-649 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2403 (-649 *7))))) (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7)) (-4 *3 (-692 *5 *6 *7)))) (-3218 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))) -(-10 -7 (-15 -3218 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|)) (-15 -3218 ((-649 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|)))) |#4| (-649 |#3|))) (-15 -1393 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2126 ((-112) |#4| |#3|)) (-15 -3978 ((-776) |#4| |#3|))) -((-1611 (((-2 (|:| |particular| (-3 (-1275 (-412 |#4|)) "failed")) (|:| -2403 (-649 (-1275 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)) 52))) -(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1611 ((-2 (|:| |particular| (-3 (-1275 (-412 |#4|)) "failed")) (|:| -2403 (-649 (-1275 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)))) (-561) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -674)) -((-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 (-412 *8)) "failed")) (|:| -2403 (-649 (-1275 (-412 *8)))))) (-5 *1 (-674 *5 *6 *7 *8))))) -(-10 -7 (-15 -1611 ((-2 (|:| |particular| (-3 (-1275 (-412 |#4|)) "failed")) (|:| -2403 (-649 (-1275 (-412 |#4|))))) (-649 |#4|) (-649 |#3|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2736 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-3140 ((|#2| $) NIL)) (-1551 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2901 (((-1275 (-694 |#2|))) NIL) (((-1275 (-694 |#2|)) (-1275 $)) NIL)) (-3169 (((-112) $) NIL)) (-3076 (((-1275 $)) 44)) (-3914 (((-112) $ (-776)) NIL)) (-3419 (($ |#2|) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) NIL (|has| |#2| (-310)))) (-4044 (((-241 |#1| |#2|) $ (-569)) NIL)) (-2707 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-3207 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-3400 (((-694 |#2|)) NIL) (((-694 |#2|) (-1275 $)) NIL)) (-1564 ((|#2| $) NIL)) (-2183 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1275 $)) NIL)) (-4379 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-3319 (((-1181 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-2395 (($ $ (-927)) NIL)) (-3156 ((|#2| $) NIL)) (-4375 (((-1181 |#2|) $) NIL (|has| |#2| (-561)))) (-3850 ((|#2|) NIL) ((|#2| (-1275 $)) NIL)) (-4136 (((-1181 |#2|) $) NIL)) (-2413 (((-112)) NIL)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) NIL)) (-2247 (($ (-1275 |#2|)) NIL) (($ (-1275 |#2|) (-1275 $)) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3978 (((-776) $) NIL (|has| |#2| (-561))) (((-927)) 45)) (-3776 ((|#2| $ (-569) (-569)) NIL)) (-4095 (((-112)) NIL)) (-4311 (($ $ (-927)) NIL)) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL)) (-1539 (((-776) $) NIL (|has| |#2| (-561)))) (-2970 (((-649 (-241 |#1| |#2|)) $) NIL (|has| |#2| (-561)))) (-3225 (((-776) $) NIL)) (-1756 (((-112)) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#2| $) NIL (|has| |#2| (-6 (-4449 "*"))))) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#2|))) NIL)) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2884 (((-649 (-649 |#2|)) $) NIL)) (-2411 (((-112)) NIL)) (-2399 (((-112)) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4391 (((-3 (-2 (|:| |particular| $) (|:| -2403 (-649 $))) "failed")) NIL (|has| |#2| (-561)))) (-2904 (((-3 $ "failed")) NIL (|has| |#2| (-561)))) (-2999 (((-694 |#2|)) NIL) (((-694 |#2|) (-1275 $)) NIL)) (-3339 ((|#2| $) NIL)) (-1866 (((-694 |#2|) $) NIL) (((-694 |#2|) $ (-1275 $)) NIL)) (-4059 (((-3 $ "failed") $) NIL (|has| |#2| (-561)))) (-1308 (((-1181 (-958 |#2|))) NIL (|has| |#2| (-367)))) (-2667 (($ $ (-927)) NIL)) (-2907 ((|#2| $) NIL)) (-4167 (((-1181 |#2|) $) NIL (|has| |#2| (-561)))) (-3674 ((|#2|) NIL) ((|#2| (-1275 $)) NIL)) (-2761 (((-1181 |#2|) $) NIL)) (-4307 (((-112)) NIL)) (-3435 (((-1167) $) NIL)) (-2189 (((-112)) NIL)) (-3703 (((-112)) NIL)) (-4324 (((-112)) NIL)) (-2725 (((-3 $ "failed") $) NIL (|has| |#2| (-367)))) (-3547 (((-1128) $) NIL)) (-3749 (((-112)) NIL)) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) 30) ((|#2| $ (-569)) NIL)) (-3517 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-1928 ((|#2| $) NIL)) (-3687 (($ (-649 |#2|)) NIL)) (-3387 (((-112) $) NIL)) (-1912 (((-241 |#1| |#2|) $) NIL)) (-3242 ((|#2| $) NIL (|has| |#2| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-2415 (((-694 |#2|) (-1275 $)) NIL) (((-1275 |#2|) $) NIL) (((-694 |#2|) (-1275 $) (-1275 $)) NIL) (((-1275 |#2|) $ (-1275 $)) 33)) (-1410 (($ (-1275 |#2|)) NIL) (((-1275 |#2|) $) NIL)) (-1829 (((-649 (-958 |#2|))) NIL) (((-649 (-958 |#2|)) (-1275 $)) NIL)) (-2180 (($ $ $) NIL)) (-2324 (((-112)) NIL)) (-3041 (((-241 |#1| |#2|) $ (-569)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 43)) (-2643 (((-649 (-1275 |#2|))) NIL (|has| |#2| (-561)))) (-1676 (($ $ $ $) NIL)) (-3821 (((-112)) NIL)) (-3451 (($ (-694 |#2|) $) NIL)) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2489 (($ $ $) NIL)) (-3649 (((-112)) NIL)) (-2887 (((-112)) NIL)) (-3967 (((-112)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) NIL) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-675 |#1| |#2|) (-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|)) (-927) (-173)) (T -675)) -NIL -(-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-422 |#2|)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4251 (((-649 (-1143)) $) 10)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-676) (-13 (-1091) (-10 -8 (-15 -4251 ((-649 (-1143)) $))))) (T -676)) -((-4251 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-676))))) -(-13 (-1091) (-10 -8 (-15 -4251 ((-649 (-1143)) $)))) -((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) NIL)) (-4410 (($ $) 62)) (-4132 (((-112) $) NIL)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3487 (((-3 $ "failed") (-824 |#1|)) 27)) (-1935 (((-112) (-824 |#1|)) 17)) (-3311 (($ (-824 |#1|)) 28)) (-2259 (((-112) $ $) 36)) (-3845 (((-927) $) 43)) (-4398 (($ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3800 (((-649 $) (-824 |#1|)) 19)) (-3796 (((-867) $) 51) (($ |#1|) 40) (((-824 |#1|) $) 47) (((-682 |#1|) $) 52)) (-1520 (((-112) $ $) NIL)) (-2803 (((-59 (-649 $)) (-649 |#1|) (-927)) 67)) (-3149 (((-649 $) (-649 |#1|) (-927)) 72)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 63)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 46))) -(((-677 |#1|) (-13 (-855) (-1046 |#1|) (-10 -8 (-15 -4132 ((-112) $)) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ((-682 |#1|) $)) (-15 -3800 ((-649 $) (-824 |#1|))) (-15 -1935 ((-112) (-824 |#1|))) (-15 -3311 ($ (-824 |#1|))) (-15 -3487 ((-3 $ "failed") (-824 |#1|))) (-15 -3105 ((-649 |#1|) $)) (-15 -2803 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -3149 ((-649 $) (-649 |#1|) (-927))))) (-855)) (T -677)) -((-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-4398 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4))) (-5 *1 (-677 *4)))) (-1935 (*1 *2 *3) (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) (-5 *1 (-677 *4)))) (-3311 (*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-3487 (*1 *1 *2) (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5))))) -(-13 (-855) (-1046 |#1|) (-10 -8 (-15 -4132 ((-112) $)) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ((-682 |#1|) $)) (-15 -3800 ((-649 $) (-824 |#1|))) (-15 -1935 ((-112) (-824 |#1|))) (-15 -3311 ($ (-824 |#1|))) (-15 -3487 ((-3 $ "failed") (-824 |#1|))) (-15 -3105 ((-649 |#1|) $)) (-15 -2803 ((-59 (-649 $)) (-649 |#1|) (-927))) (-15 -3149 ((-649 $) (-649 |#1|) (-927))))) -((-2188 ((|#2| $) 103)) (-1568 (($ $) 124)) (-3914 (((-112) $ (-776)) 35)) (-3525 (($ $) 112) (($ $ (-776)) 115)) (-2199 (((-112) $) 125)) (-2280 (((-649 $) $) 99)) (-1534 (((-112) $ $) 95)) (-2314 (((-112) $ (-776)) 33)) (-4426 (((-569) $) 69)) (-3256 (((-569) $) 68)) (-4254 (((-112) $ (-776)) 31)) (-1887 (((-112) $) 101)) (-1724 ((|#2| $) 116) (($ $ (-776)) 120)) (-4298 (($ $ $ (-569)) 86) (($ |#2| $ (-569)) 85)) (-1696 (((-649 (-569)) $) 67)) (-1414 (((-112) (-569) $) 61)) (-3513 ((|#2| $) NIL) (($ $ (-776)) 111)) (-3166 (($ $ (-569)) 128)) (-4038 (((-112) $) 127)) (-3208 (((-112) (-1 (-112) |#2|) $) 44)) (-4199 (((-649 |#2|) $) 48)) (-1869 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1242 (-569))) 82) ((|#2| $ (-569)) 59) ((|#2| $ (-569) |#2|) 60)) (-2602 (((-569) $ $) 94)) (-4328 (($ $ (-1242 (-569))) 81) (($ $ (-569)) 75)) (-3966 (((-112) $) 90)) (-1641 (($ $) 108)) (-1490 (((-776) $) 107)) (-4322 (($ $) 106)) (-3809 (($ (-649 |#2|)) 55)) (-2007 (($ $) 129)) (-4001 (((-649 $) $) 93)) (-4280 (((-112) $ $) 92)) (-1980 (((-112) (-1 (-112) |#2|) $) 43)) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 41))) -(((-678 |#1| |#2|) (-10 -8 (-15 -2007 (|#1| |#1|)) (-15 -3166 (|#1| |#1| (-569))) (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -4199 ((-649 |#2|) |#1|)) (-15 -1414 ((-112) (-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -3256 ((-569) |#1|)) (-15 -4426 ((-569) |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -2602 ((-569) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776)))) (-679 |#2|) (-1225)) (T -678)) -NIL -(-10 -8 (-15 -2007 (|#1| |#1|)) (-15 -3166 (|#1| |#1| (-569))) (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -4199 ((-649 |#2|) |#1|)) (-15 -1414 ((-112) (-569) |#1|)) (-15 -1696 ((-649 (-569)) |#1|)) (-15 -3256 ((-569) |#1|)) (-15 -4426 ((-569) |#1|)) (-15 -3809 (|#1| (-649 |#2|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -4328 (|#1| |#1| (-569))) (-15 -4328 (|#1| |#1| (-1242 (-569)))) (-15 -4298 (|#1| |#2| |#1| (-569))) (-15 -4298 (|#1| |#1| |#1| (-569))) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -2602 ((-569) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -3208 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776)))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2002 (((-1280) $ (-569) (-569)) 98 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 118 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 103)) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-3115 (($ $) 125)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-3550 (($ $) 100 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 101 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 104)) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3846 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 88)) (-2199 (((-112) $) 84)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1465 (((-776) $) 124)) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) 109)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 96 (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 95 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-1438 (($ $) 127)) (-2350 (((-112) $) 128)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-4298 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1696 (((-649 (-569)) $) 93)) (-1414 (((-112) (-569) $) 92)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-2867 ((|#1| $) 126)) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1682 (($ $ |#1|) 97 (|has| $ (-6 -4448)))) (-3166 (($ $ (-569)) 123)) (-4038 (((-112) $) 85)) (-1949 (((-112) $) 129)) (-3934 (((-112) $) 130)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 91)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1242 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-2602 (((-569) $ $) 45)) (-4328 (($ $ (-1242 (-569))) 115) (($ $ (-569)) 114)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 108)) (-2866 (($ $ $) 62 (|has| $ (-6 -4448))) (($ $ |#1|) 61 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-2007 (($ $) 122)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-679 |#1|) (-140) (-1225)) (T -679)) -((-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-1438 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) (-3115 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) (-2007 (*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225))))) -(-13 (-1157 |t#1|) (-10 -8 (-15 -1698 ($ (-1 (-112) |t#1|) $)) (-15 -1417 ($ (-1 (-112) |t#1|) $)) (-15 -3934 ((-112) $)) (-15 -1949 ((-112) $)) (-15 -2350 ((-112) $)) (-15 -1438 ($ $)) (-15 -2867 (|t#1| $)) (-15 -3115 ($ $)) (-15 -1465 ((-776) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1157 |#1|) . T) ((-1225) . T) ((-1263 |#1|) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2656 (($ (-776) (-776) (-776)) 55 (|has| |#1| (-1057)))) (-3914 (((-112) $ (-776)) NIL)) (-4281 ((|#1| $ (-776) (-776) (-776) |#1|) 49)) (-4427 (($) NIL T CONST)) (-3245 (($ $ $) 60 (|has| |#1| (-1057)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2622 (((-1275 (-776)) $) 12)) (-1437 (($ (-1185) $ $) 37)) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4154 (($ (-776)) 57 (|has| |#1| (-1057)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-776) (-776) (-776)) 46)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3809 (($ (-649 (-649 (-649 |#1|)))) 70)) (-3796 (($ (-964 (-964 (-964 |#1|)))) 23) (((-964 (-964 (-964 |#1|))) $) 19) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-680 |#1|) (-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1057)) (PROGN (-15 -2656 ($ (-776) (-776) (-776))) (-15 -4154 ($ (-776))) (-15 -3245 ($ $ $))) |%noBranch|) (-15 -3809 ($ (-649 (-649 (-649 |#1|))))) (-15 -1869 (|#1| $ (-776) (-776) (-776))) (-15 -4281 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -3796 ($ (-964 (-964 (-964 |#1|))))) (-15 -3796 ((-964 (-964 (-964 |#1|))) $)) (-15 -1437 ($ (-1185) $ $)) (-15 -2622 ((-1275 (-776)) $)))) (-1108)) (T -680)) -((-2656 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057)) (-4 *3 (-1108)))) (-4154 (*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057)) (-4 *3 (-1108)))) (-3245 (*1 *1 *1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1057)) (-4 *2 (-1108)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1108)) (-5 *1 (-680 *3)))) (-1869 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108)))) (-4281 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1108)) (-5 *1 (-680 *3)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) (-4 *3 (-1108)))) (-1437 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-680 *3)) (-4 *3 (-1108)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-1275 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1108))))) -(-13 (-494 |#1|) (-10 -8 (IF (|has| |#1| (-1057)) (PROGN (-15 -2656 ($ (-776) (-776) (-776))) (-15 -4154 ($ (-776))) (-15 -3245 ($ $ $))) |%noBranch|) (-15 -3809 ($ (-649 (-649 (-649 |#1|))))) (-15 -1869 (|#1| $ (-776) (-776) (-776))) (-15 -4281 (|#1| $ (-776) (-776) (-776) |#1|)) (-15 -3796 ($ (-964 (-964 (-964 |#1|))))) (-15 -3796 ((-964 (-964 (-964 |#1|))) $)) (-15 -1437 ($ (-1185) $ $)) (-15 -2622 ((-1275 (-776)) $)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2122 (((-488) $) 10)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 19) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-681) (-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -3586 ((-1143) $))))) (T -681)) -((-2122 (*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-681))))) -(-13 (-1091) (-10 -8 (-15 -2122 ((-488) $)) (-15 -3586 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) 15)) (-4410 (($ $) 19)) (-4132 (((-112) $) 20)) (-4381 (((-3 |#1| "failed") $) 23)) (-3150 ((|#1| $) 21)) (-3525 (($ $) 37)) (-2325 (($ $) 25)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2259 (((-112) $ $) 47)) (-3845 (((-927) $) 40)) (-4398 (($ $) 18)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 ((|#1| $) 36)) (-3796 (((-867) $) 32) (($ |#1|) 24) (((-824 |#1|) $) 28)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 13)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-682 |#1|) (-13 (-855) (-1046 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3513 (|#1| $)) (-15 -4398 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -2325 ($ $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -4410 ($ $)) (-15 -3105 ((-649 |#1|) $)))) (-855)) (T -682)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-3513 (*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4398 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) (-4410 (*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855))))) -(-13 (-855) (-1046 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3796 ((-824 |#1|) $)) (-15 -3513 (|#1| $)) (-15 -4398 ($ $)) (-15 -3845 ((-927) $)) (-15 -2259 ((-112) $ $)) (-15 -2325 ($ $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -4410 ($ $)) (-15 -3105 ((-649 |#1|) $)))) -((-4023 ((|#1| (-1 |#1| (-776) |#1|) (-776) |#1|) 14)) (-4320 ((|#1| (-1 |#1| |#1|) (-776) |#1|) 12))) -(((-683 |#1|) (-10 -7 (-15 -4320 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -4023 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|))) (-1108)) (T -683)) -((-4023 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1108)) (-5 *1 (-683 *2)))) (-4320 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1108)) (-5 *1 (-683 *2))))) -(-10 -7 (-15 -4320 (|#1| (-1 |#1| |#1|) (-776) |#1|)) (-15 -4023 (|#1| (-1 |#1| (-776) |#1|) (-776) |#1|))) -((-4116 ((|#2| |#1| |#2|) 9)) (-4104 ((|#1| |#1| |#2|) 8))) -(((-684 |#1| |#2|) (-10 -7 (-15 -4104 (|#1| |#1| |#2|)) (-15 -4116 (|#2| |#1| |#2|))) (-1108) (-1108)) (T -684)) -((-4116 (*1 *2 *3 *2) (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-4104 (*1 *2 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(-10 -7 (-15 -4104 (|#1| |#1| |#2|)) (-15 -4116 (|#2| |#1| |#2|))) -((-3332 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1108) (-1108) (-1108)) (T -685)) -((-3332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-685 *5 *6 *2))))) -(-10 -7 (-15 -3332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 21)) (-3815 (((-649 (-1224)) $) 19)) (-1463 (($ (-649 (-1224)) (-1224)) 14)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 29) (($ (-1190)) NIL) (((-1190) $) NIL) (((-1224) $) 22) (($ (-1126)) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-686) (-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-1126))) (-15 -1463 ($ (-649 (-1224)) (-1224))) (-15 -3815 ((-649 (-1224)) $)) (-15 -3870 ((-1224) $))))) (T -686)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-686)))) (-1463 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1224))) (-5 *3 (-1224)) (-5 *1 (-686)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-686)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-686))))) -(-13 (-1091) (-618 (-1224)) (-10 -8 (-15 -3796 ($ (-1126))) (-15 -1463 ($ (-649 (-1224)) (-1224))) (-15 -3815 ((-649 (-1224)) $)) (-15 -3870 ((-1224) $)))) -((-4023 (((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)) 29)) (-4394 (((-1 |#1|) |#1|) 8)) (-4267 ((|#1| |#1|) 23)) (-3079 (((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3796 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-776)) 26))) -(((-687 |#1|) (-10 -7 (-15 -4394 ((-1 |#1|) |#1|)) (-15 -3796 ((-1 |#1|) |#1|)) (-15 -3079 (|#1| (-1 |#1| |#1|))) (-15 -3079 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4267 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -4023 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)))) (-1108)) (T -687)) -((-4023 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1108)) (-5 *1 (-687 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1108)) (-5 *1 (-687 *4)))) (-4267 (*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1108)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569)) (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1108)))) (-3079 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1108)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108)))) (-4394 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108))))) -(-10 -7 (-15 -4394 ((-1 |#1|) |#1|)) (-15 -3796 ((-1 |#1|) |#1|)) (-15 -3079 (|#1| (-1 |#1| |#1|))) (-15 -3079 ((-649 |#1|) (-1 (-649 |#1|) (-649 |#1|)) (-569))) (-15 -4267 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-776))) (-15 -4023 ((-1 |#1| (-776) |#1|) (-1 |#1| (-776) |#1|)))) -((-4351 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4370 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3709 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2587 (((-1 |#2| |#1|) |#2|) 11))) -(((-688 |#1| |#2|) (-10 -7 (-15 -2587 ((-1 |#2| |#1|) |#2|)) (-15 -4370 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3709 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4351 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1108) (-1108)) (T -688)) -((-4351 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5)) (-4 *4 (-1108)))) (-4370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5)))) (-2587 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1108)) (-4 *3 (-1108))))) -(-10 -7 (-15 -2587 ((-1 |#2| |#1|) |#2|)) (-15 -4370 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3709 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4351 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3583 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2988 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3254 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-1937 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1800 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -2988 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3254 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1937 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1800 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3583 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1108) (-1108) (-1108)) (T -689)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-1 *7 *5)) (-5 *1 (-689 *5 *6 *7)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1108)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1108)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)))) (-2988 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1108)) (-4 *4 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6))))) -(-10 -7 (-15 -2988 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3254 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -1937 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1800 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3583 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-3598 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1346 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-690 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1346 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3598 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1057) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|) (-1057) (-377 |#5|) (-377 |#5|) (-692 |#5| |#6| |#7|)) (T -690)) -((-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1057)) (-4 *2 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2)) (-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9)))) (-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1057)) (-4 *8 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1057)) (-4 *8 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8))))) -(-10 -7 (-15 -1346 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1346 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3598 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3467 (($ (-776) (-776)) 43)) (-3182 (($ $ $) 71)) (-2937 (($ |#3|) 66) (($ $) 67)) (-1551 (((-112) $) 38)) (-1532 (($ $ (-569) (-569)) 82)) (-2986 (($ $ (-569) (-569)) 83)) (-1952 (($ $ (-569) (-569) (-569) (-569)) 88)) (-1383 (($ $) 69)) (-3169 (((-112) $) 15)) (-3312 (($ $ (-569) (-569) $) 89)) (-3943 ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) 87)) (-3419 (($ (-776) |#2|) 53)) (-2430 (($ (-649 (-649 |#2|))) 51)) (-2884 (((-649 (-649 |#2|)) $) 78)) (-2838 (($ $ $) 70)) (-2407 (((-3 $ "failed") $ |#2|) 121)) (-1869 ((|#2| $ (-569) (-569)) NIL) ((|#2| $ (-569) (-569) |#2|) NIL) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-3687 (($ (-649 |#2|)) 54) (($ (-649 $)) 56)) (-3387 (((-112) $) 28)) (-3796 (($ |#4|) 61) (((-867) $) NIL)) (-2768 (((-112) $) 40)) (-3035 (($ $ |#2|) 123)) (-3024 (($ $ $) 93) (($ $) 96)) (-3012 (($ $ $) 91)) (** (($ $ (-776)) 110) (($ $ (-569)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-569) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) -(((-691 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#2|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3312 (|#1| |#1| (-569) (-569) |#1|)) (-15 -1952 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -2986 (|#1| |#1| (-569) (-569))) (-15 -1532 (|#1| |#1| (-569) (-569))) (-15 -3943 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1869 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -2884 ((-649 (-649 |#2|)) |#1|)) (-15 -3182 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1|)) (-15 -2937 (|#1| |#1|)) (-15 -2937 (|#1| |#3|)) (-15 -3796 (|#1| |#4|)) (-15 -3687 (|#1| (-649 |#1|))) (-15 -3687 (|#1| (-649 |#2|))) (-15 -3419 (|#1| (-776) |#2|)) (-15 -2430 (|#1| (-649 (-649 |#2|)))) (-15 -3467 (|#1| (-776) (-776))) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569)))) (-692 |#2| |#3| |#4|) (-1057) (-377 |#2|) (-377 |#2|)) (T -691)) -NIL -(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -3035 (|#1| |#1| |#2|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-776))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3312 (|#1| |#1| (-569) (-569) |#1|)) (-15 -1952 (|#1| |#1| (-569) (-569) (-569) (-569))) (-15 -2986 (|#1| |#1| (-569) (-569))) (-15 -1532 (|#1| |#1| (-569) (-569))) (-15 -3943 (|#1| |#1| (-649 (-569)) (-649 (-569)) |#1|)) (-15 -1869 (|#1| |#1| (-649 (-569)) (-649 (-569)))) (-15 -2884 ((-649 (-649 |#2|)) |#1|)) (-15 -3182 (|#1| |#1| |#1|)) (-15 -2838 (|#1| |#1| |#1|)) (-15 -1383 (|#1| |#1|)) (-15 -2937 (|#1| |#1|)) (-15 -2937 (|#1| |#3|)) (-15 -3796 (|#1| |#4|)) (-15 -3687 (|#1| (-649 |#1|))) (-15 -3687 (|#1| (-649 |#2|))) (-15 -3419 (|#1| (-776) |#2|)) (-15 -2430 (|#1| (-649 (-649 |#2|)))) (-15 -3467 (|#1| (-776) (-776))) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) (-569)))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) 98)) (-3182 (($ $ $) 88)) (-2937 (($ |#2|) 92) (($ $) 91)) (-1551 (((-112) $) 100)) (-1532 (($ $ (-569) (-569)) 84)) (-2986 (($ $ (-569) (-569)) 83)) (-1952 (($ $ (-569) (-569) (-569) (-569)) 82)) (-1383 (($ $) 90)) (-3169 (((-112) $) 102)) (-3914 (((-112) $ (-776)) 8)) (-3312 (($ $ (-569) (-569) $) 81)) (-3943 ((|#1| $ (-569) (-569) |#1|) 45) (($ $ (-649 (-569)) (-649 (-569)) $) 85)) (-2400 (($ $ (-569) |#2|) 43)) (-3259 (($ $ (-569) |#3|) 42)) (-3419 (($ (-776) |#1|) 96)) (-4427 (($) 7 T CONST)) (-2439 (($ $) 68 (|has| |#1| (-310)))) (-4044 ((|#2| $ (-569)) 47)) (-3978 (((-776) $) 67 (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) 44)) (-3776 ((|#1| $ (-569) (-569)) 49)) (-2882 (((-649 |#1|) $) 31)) (-1539 (((-776) $) 66 (|has| |#1| (-561)))) (-2970 (((-649 |#3|) $) 65 (|has| |#1| (-561)))) (-3225 (((-776) $) 52)) (-4300 (($ (-776) (-776) |#1|) 58)) (-3236 (((-776) $) 51)) (-2314 (((-112) $ (-776)) 9)) (-2874 ((|#1| $) 63 (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) 56)) (-1537 (((-569) $) 54)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 55)) (-2742 (((-569) $) 53)) (-2430 (($ (-649 (-649 |#1|))) 97)) (-3834 (($ (-1 |#1| |#1|) $) 35)) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2884 (((-649 (-649 |#1|)) $) 87)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) 62 (|has| |#1| (-367)))) (-2838 (($ $ $) 89)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) 57)) (-2407 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) (-569)) 50) ((|#1| $ (-569) (-569) |#1|) 48) (($ $ (-649 (-569)) (-649 (-569))) 86)) (-3687 (($ (-649 |#1|)) 95) (($ (-649 $)) 94)) (-3387 (((-112) $) 101)) (-3242 ((|#1| $) 64 (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3041 ((|#3| $ (-569)) 46)) (-3796 (($ |#3|) 93) (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2768 (((-112) $) 99)) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) 69 (|has| |#1| (-367)))) (-3024 (($ $ $) 79) (($ $) 78)) (-3012 (($ $ $) 80)) (** (($ $ (-776)) 71) (($ $ (-569)) 61 (|has| |#1| (-367)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-569) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-692 |#1| |#2| |#3|) (-140) (-1057) (-377 |t#1|) (-377 |t#1|)) (T -692)) -((-3169 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-112)))) (-3467 (*1 *1 *2 *2) (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (-2937 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (-2937 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-1383 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2838 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3182 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3))))) (-1869 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3943 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1532 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2986 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-1952 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3312 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *2 (-377 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1057)) (-4 *2 (-377 *3)) (-4 *4 (-377 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (-2439 (*1 *1 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-310)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2725 (*1 *1 *1) (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4448) (-6 -4447) (-15 -3169 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -1551 ((-112) $)) (-15 -2768 ((-112) $)) (-15 -3467 ($ (-776) (-776))) (-15 -2430 ($ (-649 (-649 |t#1|)))) (-15 -3419 ($ (-776) |t#1|)) (-15 -3687 ($ (-649 |t#1|))) (-15 -3687 ($ (-649 $))) (-15 -3796 ($ |t#3|)) (-15 -2937 ($ |t#2|)) (-15 -2937 ($ $)) (-15 -1383 ($ $)) (-15 -2838 ($ $ $)) (-15 -3182 ($ $ $)) (-15 -2884 ((-649 (-649 |t#1|)) $)) (-15 -1869 ($ $ (-649 (-569)) (-649 (-569)))) (-15 -3943 ($ $ (-649 (-569)) (-649 (-569)) $)) (-15 -1532 ($ $ (-569) (-569))) (-15 -2986 ($ $ (-569) (-569))) (-15 -1952 ($ $ (-569) (-569) (-569) (-569))) (-15 -3312 ($ $ (-569) (-569) $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3024 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-569) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-776))) (IF (|has| |t#1| (-561)) (-15 -2407 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -3035 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-310)) (-15 -2439 ($ $)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -3978 ((-776) $)) (-15 -1539 ((-776) $)) (-15 -2970 ((-649 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4449 "*"))) (PROGN (-15 -3242 (|t#1| $)) (-15 -2874 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -2725 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-57 |#1| |#2| |#3|) . T) ((-1225) . T)) -((-2439 ((|#4| |#4|) 97 (|has| |#1| (-310)))) (-3978 (((-776) |#4|) 125 (|has| |#1| (-561)))) (-1539 (((-776) |#4|) 101 (|has| |#1| (-561)))) (-2970 (((-649 |#3|) |#4|) 108 (|has| |#1| (-561)))) (-3512 (((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|) 140 (|has| |#1| (-310)))) (-2874 ((|#1| |#4|) 57)) (-1492 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-561)))) (-2725 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-367)))) (-2708 ((|#4| |#4|) 93 (|has| |#1| (-561)))) (-3530 ((|#4| |#4| |#1| (-569) (-569)) 65)) (-2468 ((|#4| |#4| (-569) (-569)) 60)) (-4081 ((|#4| |#4| |#1| (-569) (-569)) 70)) (-3242 ((|#1| |#4|) 103)) (-2390 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-561))))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3242 (|#1| |#4|)) (-15 -2874 (|#1| |#4|)) (-15 -2468 (|#4| |#4| (-569) (-569))) (-15 -3530 (|#4| |#4| |#1| (-569) (-569))) (-15 -4081 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (-15 -2970 ((-649 |#3|) |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1492 ((-3 |#4| "failed") |#4|)) (-15 -2390 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -2439 (|#4| |#4|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-173) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -693)) -((-2725 (*1 *2 *2) (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3512 (*1 *2 *3 *3) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5)))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2390 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1492 (*1 *2 *2) (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-2970 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1539 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3978 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-4081 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-3530 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) (-4 *2 (-692 *3 *5 *6)))) (-2468 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2)) (-4 *2 (-692 *4 *5 *6)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5))))) -(-10 -7 (-15 -3242 (|#1| |#4|)) (-15 -2874 (|#1| |#4|)) (-15 -2468 (|#4| |#4| (-569) (-569))) (-15 -3530 (|#4| |#4| |#1| (-569) (-569))) (-15 -4081 (|#4| |#4| |#1| (-569) (-569))) (IF (|has| |#1| (-561)) (PROGN (-15 -3978 ((-776) |#4|)) (-15 -1539 ((-776) |#4|)) (-15 -2970 ((-649 |#3|) |#4|)) (-15 -2708 (|#4| |#4|)) (-15 -1492 ((-3 |#4| "failed") |#4|)) (-15 -2390 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-310)) (PROGN (-15 -2439 (|#4| |#4|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776) (-776)) 64)) (-3182 (($ $ $) NIL)) (-2937 (($ (-1275 |#1|)) NIL) (($ $) NIL)) (-1551 (((-112) $) NIL)) (-1532 (($ $ (-569) (-569)) 22)) (-2986 (($ $ (-569) (-569)) NIL)) (-1952 (($ $ (-569) (-569) (-569) (-569)) NIL)) (-1383 (($ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3312 (($ $ (-569) (-569) $) NIL)) (-3943 ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569)) $) NIL)) (-2400 (($ $ (-569) (-1275 |#1|)) NIL)) (-3259 (($ $ (-569) (-1275 |#1|)) NIL)) (-3419 (($ (-776) |#1|) 37)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 46 (|has| |#1| (-310)))) (-4044 (((-1275 |#1|) $ (-569)) NIL)) (-3978 (((-776) $) 48 (|has| |#1| (-561)))) (-3846 ((|#1| $ (-569) (-569) |#1|) 69)) (-3776 ((|#1| $ (-569) (-569)) NIL)) (-2882 (((-649 |#1|) $) NIL)) (-1539 (((-776) $) 50 (|has| |#1| (-561)))) (-2970 (((-649 (-1275 |#1|)) $) 53 (|has| |#1| (-561)))) (-3225 (((-776) $) 32)) (-4300 (($ (-776) (-776) |#1|) 28)) (-3236 (((-776) $) 33)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#1| $) 44 (|has| |#1| (-6 (-4449 "*"))))) (-4241 (((-569) $) 10)) (-1537 (((-569) $) 11)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1378 (((-569) $) 14)) (-2742 (((-569) $) 65)) (-2430 (($ (-649 (-649 |#1|))) NIL)) (-3834 (($ (-1 |#1| |#1|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2884 (((-649 (-649 |#1|)) $) 76)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-2725 (((-3 $ "failed") $) 60 (|has| |#1| (-367)))) (-2838 (($ $ $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1682 (($ $ |#1|) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) (-569)) NIL) ((|#1| $ (-569) (-569) |#1|) NIL) (($ $ (-649 (-569)) (-649 (-569))) NIL)) (-3687 (($ (-649 |#1|)) NIL) (($ (-649 $)) NIL) (($ (-1275 |#1|)) 70)) (-3387 (((-112) $) NIL)) (-3242 ((|#1| $) 42 (|has| |#1| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3041 (((-1275 |#1|) $ (-569)) NIL)) (-3796 (($ (-1275 |#1|)) NIL) (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $ $) NIL) (($ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) 38) (($ $ (-569)) 62 (|has| |#1| (-367)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-569) $) NIL) (((-1275 |#1|) $ (-1275 |#1|)) NIL) (((-1275 |#1|) (-1275 |#1|) $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-694 |#1|) (-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 -3687 ($ (-1275 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 $ "failed") $)) |%noBranch|))) (-1057)) (T -694)) -((-2725 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1057)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-694 *3))))) -(-13 (-692 |#1| (-1275 |#1|) (-1275 |#1|)) (-10 -8 (-15 -3687 ($ (-1275 |#1|))) (IF (|has| |#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -2725 ((-3 $ "failed") $)) |%noBranch|))) -((-2932 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 37)) (-4362 (((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|) 34)) (-3882 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776)) 43)) (-4290 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 27)) (-2828 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|)) 31) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 29)) (-2463 (((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|)) 33)) (-3175 (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 25)) (** (((-694 |#1|) (-694 |#1|) (-776)) 46))) -(((-695 |#1|) (-10 -7 (-15 -3175 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4290 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2463 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -4362 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2932 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3882 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776)))) (-1057)) (T -695)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-695 *4)))) (-3882 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-695 *4)))) (-2932 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-4362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-2463 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-2828 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-2828 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-4290 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) (-3175 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) -(-10 -7 (-15 -3175 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -4290 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2828 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -2463 ((-694 |#1|) (-694 |#1|) |#1| (-694 |#1|))) (-15 -4362 ((-694 |#1|) (-694 |#1|) (-694 |#1|) |#1|)) (-15 -2932 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -3882 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-694 |#1|) (-776))) (-15 ** ((-694 |#1|) (-694 |#1|) (-776)))) -((-4381 (((-3 |#1| "failed") $) 18)) (-3150 ((|#1| $) NIL)) (-1587 (($) 7 T CONST)) (-3629 (($ |#1|) 8)) (-3796 (($ |#1|) 16) (((-867) $) 23)) (-1795 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1587)) 11)) (-3993 ((|#1| $) 15))) -(((-696 |#1|) (-13 (-1270) (-1046 |#1|) (-618 (-867)) (-10 -8 (-15 -3629 ($ |#1|)) (-15 -1795 ((-112) $ (|[\|\|]| |#1|))) (-15 -1795 ((-112) $ (|[\|\|]| -1587))) (-15 -3993 (|#1| $)) (-15 -1587 ($) -3709))) (-618 (-867))) (T -696)) -((-3629 (*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112)) (-5 *1 (-696 *4)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1587)) (-5 *2 (-112)) (-5 *1 (-696 *4)) (-4 *4 (-618 (-867))))) (-3993 (*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) (-1587 (*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867)))))) -(-13 (-1270) (-1046 |#1|) (-618 (-867)) (-10 -8 (-15 -3629 ($ |#1|)) (-15 -1795 ((-112) $ (|[\|\|]| |#1|))) (-15 -1795 ((-112) $ (|[\|\|]| -1587))) (-15 -3993 (|#1| $)) (-15 -1587 ($) -3709))) -((-2591 ((|#2| |#2| |#4|) 33)) (-1765 (((-694 |#2|) |#3| |#4|) 39)) (-1320 (((-694 |#2|) |#2| |#4|) 38)) (-2287 (((-1275 |#2|) |#2| |#4|) 16)) (-4096 ((|#2| |#3| |#4|) 32)) (-3416 (((-694 |#2|) |#3| |#4| (-776) (-776)) 48)) (-2975 (((-694 |#2|) |#2| |#4| (-776)) 47))) -(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2287 ((-1275 |#2|) |#2| |#4|)) (-15 -4096 (|#2| |#3| |#4|)) (-15 -2591 (|#2| |#2| |#4|)) (-15 -1320 ((-694 |#2|) |#2| |#4|)) (-15 -2975 ((-694 |#2|) |#2| |#4| (-776))) (-15 -1765 ((-694 |#2|) |#3| |#4|)) (-15 -3416 ((-694 |#2|) |#3| |#4| (-776) (-776)))) (-1108) (-906 |#1|) (-377 |#2|) (-13 (-377 |#1|) (-10 -7 (-6 -4447)))) (T -697)) -((-3416 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *7 (-906 *6)) (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447)))))) (-1765 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6)) (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))) (-2975 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *3 (-906 *6)) (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3)) (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447)))))) (-1320 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))) (-2591 (*1 *2 *2 *3) (-12 (-4 *4 (-1108)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3)) (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4447)))))) (-4096 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447)))))) (-2287 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-1275 *3)) (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447))))))) -(-10 -7 (-15 -2287 ((-1275 |#2|) |#2| |#4|)) (-15 -4096 (|#2| |#3| |#4|)) (-15 -2591 (|#2| |#2| |#4|)) (-15 -1320 ((-694 |#2|) |#2| |#4|)) (-15 -2975 ((-694 |#2|) |#2| |#4| (-776))) (-15 -1765 ((-694 |#2|) |#3| |#4|)) (-15 -3416 ((-694 |#2|) |#3| |#4| (-776) (-776)))) -((-2974 (((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)) 20)) (-4377 ((|#1| (-694 |#2|)) 9)) (-3110 (((-694 |#1|) (-694 |#2|)) 18))) -(((-698 |#1| |#2|) (-10 -7 (-15 -4377 (|#1| (-694 |#2|))) (-15 -3110 ((-694 |#1|) (-694 |#2|))) (-15 -2974 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)))) (-561) (-1000 |#1|)) (T -698)) -((-2974 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) (-5 *1 (-698 *4 *5)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561)) (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5)))) (-4377 (*1 *2 *3) (-12 (-5 *3 (-694 *4)) (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-698 *2 *4))))) -(-10 -7 (-15 -4377 (|#1| (-694 |#2|))) (-15 -3110 ((-694 |#1|) (-694 |#2|))) (-15 -2974 ((-2 (|:| |num| (-694 |#1|)) (|:| |den| |#1|)) (-694 |#2|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1547 (((-694 (-704))) NIL) (((-694 (-704)) (-1275 $)) NIL)) (-3140 (((-704) $) NIL)) (-2771 (($ $) NIL (|has| (-704) (-1210)))) (-2626 (($ $) NIL (|has| (-704) (-1210)))) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-704) (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-1830 (($ $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3764 (((-423 $) $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3813 (($ $) NIL (-12 (|has| (-704) (-1010)) (|has| (-704) (-1210))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-2227 (((-112) $ $) NIL (|has| (-704) (-310)))) (-3473 (((-776)) NIL (|has| (-704) (-372)))) (-2746 (($ $) NIL (|has| (-704) (-1210)))) (-2601 (($ $) NIL (|has| (-704) (-1210)))) (-4118 (($ $) NIL (|has| (-704) (-1210)))) (-2647 (($ $) NIL (|has| (-704) (-1210)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-704) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-1046 (-412 (-569)))))) (-3150 (((-569) $) NIL) (((-704) $) NIL) (((-412 (-569)) $) NIL (|has| (-704) (-1046 (-412 (-569)))))) (-2247 (($ (-1275 (-704))) NIL) (($ (-1275 (-704)) (-1275 $)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-704) (-353)))) (-2368 (($ $ $) NIL (|has| (-704) (-310)))) (-1833 (((-694 (-704)) $) NIL) (((-694 (-704)) $ (-1275 $)) NIL)) (-2957 (((-694 (-704)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-704))) (|:| |vec| (-1275 (-704)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-704) (-644 (-569)))) (((-694 (-569)) (-694 $)) NIL (|has| (-704) (-644 (-569))))) (-3598 (((-3 $ "failed") (-412 (-1181 (-704)))) NIL (|has| (-704) (-367))) (($ (-1181 (-704))) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3824 (((-704) $) 29)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-704) (-550)))) (-1441 (((-112) $) NIL (|has| (-704) (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| (-704) (-550)))) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| (-704) (-372)))) (-2379 (($ $ $) NIL (|has| (-704) (-310)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| (-704) (-310)))) (-1616 (($) NIL (|has| (-704) (-353)))) (-2807 (((-112) $) NIL (|has| (-704) (-353)))) (-3701 (($ $) NIL (|has| (-704) (-353))) (($ $ (-776)) NIL (|has| (-704) (-353)))) (-1473 (((-112) $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-2149 (((-2 (|:| |r| (-704)) (|:| |phi| (-704))) $) NIL (-12 (|has| (-704) (-1068)) (|has| (-704) (-1210))))) (-1312 (($) NIL (|has| (-704) (-1210)))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-704) (-892 (-383)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-704) (-892 (-569))))) (-1466 (((-838 (-927)) $) NIL (|has| (-704) (-353))) (((-927) $) NIL (|has| (-704) (-353)))) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (-12 (|has| (-704) (-1010)) (|has| (-704) (-1210))))) (-3829 (((-704) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-704) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-3859 (((-1181 (-704)) $) NIL (|has| (-704) (-367)))) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-1346 (($ (-1 (-704) (-704)) $) NIL)) (-2731 (((-927) $) NIL (|has| (-704) (-372)))) (-2662 (($ $) NIL (|has| (-704) (-1210)))) (-3585 (((-1181 (-704)) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| (-704) (-367)))) (-2307 (($) NIL (|has| (-704) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-704) (-372)))) (-1734 (($) NIL)) (-3836 (((-704) $) 31)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| (-704) (-310)))) (-1870 (($ (-649 $)) NIL (|has| (-704) (-310))) (($ $ $) NIL (|has| (-704) (-310)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-704) (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-704) (-310)) (|has| (-704) (-915))))) (-3800 (((-423 $) $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| (-704) (-915))) (|has| (-704) (-367))))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-704) (-310))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| (-704) (-310)))) (-2407 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-704)) NIL (|has| (-704) (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-704) (-310)))) (-4389 (($ $) NIL (|has| (-704) (-1210)))) (-1725 (($ $ (-1185) (-704)) NIL (|has| (-704) (-519 (-1185) (-704)))) (($ $ (-649 (-1185)) (-649 (-704))) NIL (|has| (-704) (-519 (-1185) (-704)))) (($ $ (-649 (-297 (-704)))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-297 (-704))) NIL (|has| (-704) (-312 (-704)))) (($ $ (-704) (-704)) NIL (|has| (-704) (-312 (-704)))) (($ $ (-649 (-704)) (-649 (-704))) NIL (|has| (-704) (-312 (-704))))) (-2431 (((-776) $) NIL (|has| (-704) (-310)))) (-1869 (($ $ (-704)) NIL (|has| (-704) (-289 (-704) (-704))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| (-704) (-310)))) (-3059 (((-704)) NIL) (((-704) (-1275 $)) NIL)) (-2166 (((-3 (-776) "failed") $ $) NIL (|has| (-704) (-353))) (((-776) $) NIL (|has| (-704) (-353)))) (-3517 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2594 (((-694 (-704)) (-1275 $) (-1 (-704) (-704))) NIL (|has| (-704) (-367)))) (-4061 (((-1181 (-704))) NIL)) (-4128 (($ $) NIL (|has| (-704) (-1210)))) (-2661 (($ $) NIL (|has| (-704) (-1210)))) (-4234 (($) NIL (|has| (-704) (-353)))) (-2783 (($ $) NIL (|has| (-704) (-1210)))) (-2635 (($ $) NIL (|has| (-704) (-1210)))) (-2758 (($ $) NIL (|has| (-704) (-1210)))) (-2614 (($ $) NIL (|has| (-704) (-1210)))) (-2415 (((-694 (-704)) (-1275 $)) NIL) (((-1275 (-704)) $) NIL) (((-694 (-704)) (-1275 $) (-1275 $)) NIL) (((-1275 (-704)) $ (-1275 $)) NIL)) (-1410 (((-541) $) NIL (|has| (-704) (-619 (-541)))) (((-170 (-226)) $) NIL (|has| (-704) (-1030))) (((-170 (-383)) $) NIL (|has| (-704) (-1030))) (((-898 (-383)) $) NIL (|has| (-704) (-619 (-898 (-383))))) (((-898 (-569)) $) NIL (|has| (-704) (-619 (-898 (-569))))) (($ (-1181 (-704))) NIL) (((-1181 (-704)) $) NIL) (($ (-1275 (-704))) NIL) (((-1275 (-704)) $) NIL)) (-3476 (($ $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-353))))) (-3101 (($ (-704) (-704)) 12)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-569)) NIL) (($ (-704)) NIL) (($ (-170 (-383))) 13) (($ (-170 (-569))) 19) (($ (-170 (-704))) 28) (($ (-170 (-706))) 25) (((-170 (-383)) $) 33) (($ (-412 (-569))) NIL (-2776 (|has| (-704) (-1046 (-412 (-569)))) (|has| (-704) (-367))))) (-2239 (($ $) NIL (|has| (-704) (-353))) (((-3 $ "failed") $) NIL (-2776 (-12 (|has| (-704) (-310)) (|has| $ (-145)) (|has| (-704) (-915))) (|has| (-704) (-145))))) (-1886 (((-1181 (-704)) $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-4161 (($ $) NIL (|has| (-704) (-1210)))) (-2701 (($ $) NIL (|has| (-704) (-1210)))) (-2664 (((-112) $ $) NIL)) (-4140 (($ $) NIL (|has| (-704) (-1210)))) (-2675 (($ $) NIL (|has| (-704) (-1210)))) (-4183 (($ $) NIL (|has| (-704) (-1210)))) (-2723 (($ $) NIL (|has| (-704) (-1210)))) (-1899 (((-704) $) NIL (|has| (-704) (-1210)))) (-1503 (($ $) NIL (|has| (-704) (-1210)))) (-2734 (($ $) NIL (|has| (-704) (-1210)))) (-4175 (($ $) NIL (|has| (-704) (-1210)))) (-2712 (($ $) NIL (|has| (-704) (-1210)))) (-4151 (($ $) NIL (|has| (-704) (-1210)))) (-2689 (($ $) NIL (|has| (-704) (-1210)))) (-2271 (($ $) NIL (|has| (-704) (-1068)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1 (-704) (-704))) NIL) (($ $ (-1 (-704) (-704)) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-1185)) NIL (|has| (-704) (-906 (-1185)))) (($ $ (-776)) NIL (|has| (-704) (-234))) (($ $) NIL (|has| (-704) (-234)))) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| (-704) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| (-704) (-1210))) (($ $ (-412 (-569))) NIL (-12 (|has| (-704) (-1010)) (|has| (-704) (-1210)))) (($ $ (-569)) NIL (|has| (-704) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ (-704) $) NIL) (($ $ (-704)) NIL) (($ (-412 (-569)) $) NIL (|has| (-704) (-367))) (($ $ (-412 (-569))) NIL (|has| (-704) (-367))))) -(((-699) (-13 (-392) (-166 (-704)) (-10 -8 (-15 -3796 ($ (-170 (-383)))) (-15 -3796 ($ (-170 (-569)))) (-15 -3796 ($ (-170 (-704)))) (-15 -3796 ($ (-170 (-706)))) (-15 -3796 ((-170 (-383)) $))))) (T -699)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-569))) (-5 *1 (-699)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-704))) (-5 *1 (-699)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699))))) -(-13 (-392) (-166 (-704)) (-10 -8 (-15 -3796 ($ (-170 (-383)))) (-15 -3796 ($ (-170 (-569)))) (-15 -3796 ($ (-170 (-704)))) (-15 -3796 ($ (-170 (-706)))) (-15 -3796 ((-170 (-383)) $)))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 63)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 62)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-700 |#1|) (-140) (-1108)) (T -700)) -((-3894 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1108)))) (-2017 (*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1108)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-700 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-2 (|:| -2216 *3) (|:| -3560 (-776)))))))) -(-13 (-236 |t#1|) (-10 -8 (-15 -3894 ($ |t#1| $ (-776))) (-15 -2017 ($ $)) (-15 -3262 ((-649 (-2 (|:| -2216 |t#1|) (|:| -3560 (-776)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3893 (((-649 |#1|) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) (-569)) 65)) (-3744 ((|#1| |#1| (-569)) 62)) (-1870 ((|#1| |#1| |#1| (-569)) 46)) (-3800 (((-649 |#1|) |#1| (-569)) 49)) (-3247 ((|#1| |#1| (-569) |#1| (-569)) 40)) (-3126 (((-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) |#1| (-569)) 61))) -(((-701 |#1|) (-10 -7 (-15 -1870 (|#1| |#1| |#1| (-569))) (-15 -3744 (|#1| |#1| (-569))) (-15 -3800 ((-649 |#1|) |#1| (-569))) (-15 -3126 ((-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) |#1| (-569))) (-15 -3893 ((-649 |#1|) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) (-569))) (-15 -3247 (|#1| |#1| (-569) |#1| (-569)))) (-1251 (-569))) (T -701)) -((-3247 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))) (-3893 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| -3800 *5) (|:| -4339 (-569))))) (-5 *4 (-569)) (-4 *5 (-1251 *4)) (-5 *2 (-649 *5)) (-5 *1 (-701 *5)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -4339 *4)))) (-5 *1 (-701 *3)) (-4 *3 (-1251 *4)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1251 *4)))) (-3744 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))) (-1870 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3))))) -(-10 -7 (-15 -1870 (|#1| |#1| |#1| (-569))) (-15 -3744 (|#1| |#1| (-569))) (-15 -3800 ((-649 |#1|) |#1| (-569))) (-15 -3126 ((-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) |#1| (-569))) (-15 -3893 ((-649 |#1|) (-649 (-2 (|:| -3800 |#1|) (|:| -4339 (-569)))) (-569))) (-15 -3247 (|#1| |#1| (-569) |#1| (-569)))) -((-2715 (((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))) 17)) (-1897 (((-1141 (-226)) (-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 56) (((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 58) (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 60)) (-4305 (((-1141 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-649 (-265))) NIL)) (-1549 (((-1141 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265))) 61))) -(((-702) (-10 -7 (-15 -1897 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1549 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -4305 ((-1141 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -2715 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226)))))) (T -702)) -((-2715 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1 (-226) (-226) (-226) (-226))) (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702)))) (-4305 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) (-1549 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) (-1897 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702)))) (-1897 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-226))) (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) (-1897 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702))))) -(-10 -7 (-15 -1897 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1897 ((-1141 (-226)) (-1141 (-226)) (-1 (-949 (-226)) (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -1549 ((-1141 (-226)) (-1 (-226) (-226) (-226)) (-3 (-1 (-226) (-226) (-226) (-226)) "undefined") (-1102 (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -4305 ((-1141 (-226)) (-319 (-569)) (-319 (-569)) (-319 (-569)) (-1 (-226) (-226)) (-1102 (-226)) (-649 (-265)))) (-15 -2715 ((-1 (-949 (-226)) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226)) (-1 (-226) (-226) (-226) (-226))))) -((-3800 (((-423 (-1181 |#4|)) (-1181 |#4|)) 86) (((-423 |#4|) |#4|) 269))) -(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|)))) (-855) (-798) (-353) (-955 |#3| |#2| |#1|)) (T -703)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))) -(-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 97)) (-1938 (((-569) $) 34)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2917 (($ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-4427 (($) NIL T CONST)) (-1482 (($ $) NIL)) (-4381 (((-3 (-569) "failed") $) 85) (((-3 (-412 (-569)) "failed") $) 28) (((-3 (-383) "failed") $) 82)) (-3150 (((-569) $) 87) (((-412 (-569)) $) 79) (((-383) $) 80)) (-2368 (($ $ $) 109)) (-3086 (((-3 $ "failed") $) 100)) (-2379 (($ $ $) 108)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3500 (((-927)) 89) (((-927) (-927)) 88)) (-3712 (((-112) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL)) (-1466 (((-569) $) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL)) (-3829 (($ $) NIL)) (-2051 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2426 (((-569) (-569)) 94) (((-569)) 95)) (-3380 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-2516 (((-569) (-569)) 92) (((-569)) 93)) (-2839 (($ $ $) NIL) (($) NIL (-12 (-1749 (|has| $ (-6 -4430))) (-1749 (|has| $ (-6 -4438)))))) (-3034 (((-569) $) 17)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 104)) (-3630 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL)) (-3465 (($ $) NIL)) (-2557 (($ (-569) (-569)) NIL) (($ (-569) (-569) (-927)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) 105)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1993 (((-569) $) 24)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 107)) (-2171 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-3884 (((-927) (-569)) NIL (|has| $ (-6 -4438)))) (-1410 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) NIL)) (-3796 (((-867) $) 63) (($ (-569)) 75) (($ $) NIL) (($ (-412 (-569))) 78) (($ (-569)) 75) (($ (-412 (-569))) 78) (($ (-383)) 72) (((-383) $) 61) (($ (-706)) 66)) (-2721 (((-776)) 119 T CONST)) (-4318 (($ (-569) (-569) (-927)) 54)) (-2040 (($ $) NIL)) (-3251 (((-927)) NIL) (((-927) (-927)) NIL (|has| $ (-6 -4438)))) (-1520 (((-112) $ $) NIL)) (-4363 (((-927)) 91) (((-927) (-927)) 90)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) 37 T CONST)) (-1815 (($) 18 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 96)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 118)) (-3035 (($ $ $) 77)) (-3024 (($ $) 115) (($ $ $) 116)) (-3012 (($ $ $) 114)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 101) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-704) (-13 (-409) (-392) (-367) (-1046 (-383)) (-1046 (-412 (-569))) (-147) (-10 -8 (-15 -3500 ((-927) (-927))) (-15 -3500 ((-927))) (-15 -4363 ((-927) (-927))) (-15 -2516 ((-569) (-569))) (-15 -2516 ((-569))) (-15 -2426 ((-569) (-569))) (-15 -2426 ((-569))) (-15 -3796 ((-383) $)) (-15 -3796 ($ (-706))) (-15 -3034 ((-569) $)) (-15 -1993 ((-569) $)) (-15 -4318 ($ (-569) (-569) (-927)))))) (T -704)) -((-1993 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3500 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-4363 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2516 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2426 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-2426 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704)))) (-4318 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704))))) -(-13 (-409) (-392) (-367) (-1046 (-383)) (-1046 (-412 (-569))) (-147) (-10 -8 (-15 -3500 ((-927) (-927))) (-15 -3500 ((-927))) (-15 -4363 ((-927) (-927))) (-15 -2516 ((-569) (-569))) (-15 -2516 ((-569))) (-15 -2426 ((-569) (-569))) (-15 -2426 ((-569))) (-15 -3796 ((-383) $)) (-15 -3796 ($ (-706))) (-15 -3034 ((-569) $)) (-15 -1993 ((-569) $)) (-15 -4318 ($ (-569) (-569) (-927))))) -((-2577 (((-694 |#1|) (-694 |#1|) |#1| |#1|) 88)) (-2439 (((-694 |#1|) (-694 |#1|) |#1|) 67)) (-4085 (((-694 |#1|) (-694 |#1|) |#1|) 89)) (-2378 (((-694 |#1|) (-694 |#1|)) 68)) (-3512 (((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|) 87))) -(((-705 |#1|) (-10 -7 (-15 -2378 ((-694 |#1|) (-694 |#1|))) (-15 -2439 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -4085 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2577 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) (-310)) (T -705)) -((-3512 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-705 *3)) (-4 *3 (-310)))) (-2577 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-4085 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2439 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))) -(-10 -7 (-15 -2378 ((-694 |#1|) (-694 |#1|))) (-15 -2439 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -4085 ((-694 |#1|) (-694 |#1|) |#1|)) (-15 -2577 ((-694 |#1|) (-694 |#1|) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) 31)) (-3150 (((-569) $) 29)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($ $) NIL) (($) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) NIL)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) NIL)) (-3380 (($ $ $) NIL)) (-1936 (((-927) (-927)) 10) (((-927)) 9)) (-2839 (($ $ $) NIL)) (-2606 (($ $) NIL)) (-3845 (($ $) NIL)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-3593 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL) (($ $ (-776)) NIL)) (-2432 (($ $) NIL)) (-3962 (($ $) NIL)) (-1410 (((-226) $) NIL) (((-383) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (((-569) $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) 28) (($ $) NIL) (($ (-569)) 28) (((-319 $) (-319 (-569))) 18)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) NIL)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL) (($ $ (-776)) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL))) -(((-706) (-13 (-392) (-550) (-10 -8 (-15 -1936 ((-927) (-927))) (-15 -1936 ((-927))) (-15 -3796 ((-319 $) (-319 (-569))))))) (T -706)) -((-1936 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-1936 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706))))) -(-13 (-392) (-550) (-10 -8 (-15 -1936 ((-927) (-927))) (-15 -1936 ((-927))) (-15 -3796 ((-319 $) (-319 (-569)))))) -((-2778 (((-1 |#4| |#2| |#3|) |#1| (-1185) (-1185)) 19)) (-2927 (((-1 |#4| |#2| |#3|) (-1185)) 12))) -(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 ((-1 |#4| |#2| |#3|) (-1185))) (-15 -2778 ((-1 |#4| |#2| |#3|) |#1| (-1185) (-1185)))) (-619 (-541)) (-1225) (-1225) (-1225)) (T -707)) -((-2778 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7)) (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)) (-4 *7 (-1225)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7)) (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)) (-4 *7 (-1225))))) -(-10 -7 (-15 -2927 ((-1 |#4| |#2| |#3|) (-1185))) (-15 -2778 ((-1 |#4| |#2| |#3|) |#1| (-1185) (-1185)))) -((-1485 (((-1 (-226) (-226) (-226)) |#1| (-1185) (-1185)) 43) (((-1 (-226) (-226)) |#1| (-1185)) 48))) -(((-708 |#1|) (-10 -7 (-15 -1485 ((-1 (-226) (-226)) |#1| (-1185))) (-15 -1485 ((-1 (-226) (-226) (-226)) |#1| (-1185) (-1185)))) (-619 (-541))) (T -708)) -((-1485 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541))))) (-1485 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3)) (-4 *3 (-619 (-541)))))) -(-10 -7 (-15 -1485 ((-1 (-226) (-226)) |#1| (-1185))) (-15 -1485 ((-1 (-226) (-226) (-226)) |#1| (-1185) (-1185)))) -((-1699 (((-1185) |#1| (-1185) (-649 (-1185))) 10) (((-1185) |#1| (-1185) (-1185) (-1185)) 13) (((-1185) |#1| (-1185) (-1185)) 12) (((-1185) |#1| (-1185)) 11))) -(((-709 |#1|) (-10 -7 (-15 -1699 ((-1185) |#1| (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-649 (-1185))))) (-619 (-541))) (T -709)) -((-1699 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1699 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1699 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) (-1699 (*1 *2 *3 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541)))))) -(-10 -7 (-15 -1699 ((-1185) |#1| (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-1185) (-1185))) (-15 -1699 ((-1185) |#1| (-1185) (-649 (-1185))))) -((-1486 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-710 |#1| |#2|) (-10 -7 (-15 -1486 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1225) (-1225)) (T -710)) -((-1486 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-710 *3 *4)) (-4 *3 (-1225)) (-4 *4 (-1225))))) -(-10 -7 (-15 -1486 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3129 (((-1 |#3| |#2|) (-1185)) 11)) (-2778 (((-1 |#3| |#2|) |#1| (-1185)) 21))) -(((-711 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-1 |#3| |#2|) (-1185))) (-15 -2778 ((-1 |#3| |#2|) |#1| (-1185)))) (-619 (-541)) (-1225) (-1225)) (T -711)) -((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6)) (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6)) (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225))))) -(-10 -7 (-15 -3129 ((-1 |#3| |#2|) (-1185))) (-15 -2778 ((-1 |#3| |#2|) |#1| (-1185)))) -((-1581 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1275 (-649 (-1181 |#3|))) |#3|) 95)) (-4011 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|) 113)) (-2422 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1181 |#4|)) (-1275 (-649 (-1181 |#3|))) |#3|) 47))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2422 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1181 |#4|)) (-1275 (-649 (-1181 |#3|))) |#3|)) (-15 -4011 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -1581 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1275 (-649 (-1181 |#3|))) |#3|))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -712)) -((-1581 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-649 (-1181 *13))) (-5 *3 (-1181 *13)) (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13)) (-5 *7 (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *13))))) (-5 *8 (-649 (-776))) (-5 *9 (-1275 (-649 (-1181 *10)))) (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12)) (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13)))) (-4011 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1181 *9))) (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776))) (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11)) (-4 *10 (-798)) (-5 *2 (-649 (-1181 *12))) (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1181 *12)))) (-2422 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-649 (-1181 *11))) (-5 *3 (-1181 *11)) (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776))) (-5 *7 (-1275 (-649 (-1181 *8)))) (-4 *10 (-855)) (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798)) (-5 *1 (-712 *9 *10 *8 *11))))) -(-10 -7 (-15 -2422 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 |#3|) (-649 (-776)) (-649 (-1181 |#4|)) (-1275 (-649 (-1181 |#3|))) |#3|)) (-15 -4011 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#3|)) (-649 |#3|) (-649 |#4|) (-649 (-776)) |#3|)) (-15 -1581 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-649 |#2|) (-649 (-1181 |#4|)) (-649 |#3|) (-649 |#4|) (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#4|)))) (-649 (-776)) (-1275 (-649 (-1181 |#3|))) |#3|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 48)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3923 (($ |#1| (-776)) 46)) (-2272 (((-776) $) 50)) (-1857 ((|#1| $) 49)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 (((-776) $) 51)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45 (|has| |#1| (-173)))) (-4383 ((|#1| $ (-776)) 47)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) -(((-713 |#1|) (-140) (-1057)) (T -713)) -((-4339 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057))))) -(-13 (-1057) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4339 ((-776) $)) (-15 -2272 ((-776) $)) (-15 -1857 (|t#1| $)) (-15 -1883 ($ $)) (-15 -4383 (|t#1| $ (-776))) (-15 -3923 ($ |t#1| (-776))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1346 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-714 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1346 (|#6| (-1 |#4| |#1|) |#3|))) (-561) (-1251 |#1|) (-1251 (-412 |#2|)) (-561) (-1251 |#4|) (-1251 (-412 |#5|))) (T -714)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) (-4 *6 (-1251 *5)) (-4 *2 (-1251 (-412 *8))) (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1251 (-412 *6))) (-4 *8 (-1251 *7))))) -(-10 -7 (-15 -1346 (|#6| (-1 |#4| |#1|) |#3|))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1550 (((-1167) (-867)) 38)) (-4158 (((-1280) (-1167)) 31)) (-2023 (((-1167) (-867)) 28)) (-3468 (((-1167) (-867)) 29)) (-3796 (((-867) $) NIL) (((-1167) (-867)) 27)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-715) (-13 (-1108) (-10 -7 (-15 -3796 ((-1167) (-867))) (-15 -2023 ((-1167) (-867))) (-15 -3468 ((-1167) (-867))) (-15 -1550 ((-1167) (-867))) (-15 -4158 ((-1280) (-1167)))))) (T -715)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-715))))) -(-13 (-1108) (-10 -7 (-15 -3796 ((-1167) (-867))) (-15 -2023 ((-1167) (-867))) (-15 -3468 ((-1167) (-867))) (-15 -1550 ((-1167) (-867))) (-15 -4158 ((-1280) (-1167))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-3598 (($ |#1| |#2|) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 ((|#2| $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4054 (((-3 $ "failed") $ $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) ((|#1| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-367) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716)) -((-2520 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4054 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-367) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)))) -((-2417 (((-112) $ $) 90)) (-4143 (((-112) $) 36)) (-3678 (((-1275 |#1|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#1|)) NIL)) (-3767 (((-1181 $) $ (-1090)) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3473 (((-776)) 56 (|has| |#1| (-372)))) (-2401 (($ $ (-776)) NIL)) (-2452 (($ $ (-776)) NIL)) (-3616 ((|#2| |#2|) 52)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1090) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $ $) NIL (|has| |#1| (-173)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 40)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3598 (($ |#2|) 50)) (-3086 (((-3 $ "failed") $) 100)) (-3406 (($) 61 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1525 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-4180 (((-964 $)) 92)) (-2870 (($ $ |#1| (-776) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) NIL) (($ (-1181 $) (-1090)) NIL)) (-3003 (($ $ (-776)) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 88) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2520 ((|#2|) 53)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-1181 |#1|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3585 ((|#2| $) 49)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) 34)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1652 (($ $) 91 (|has| |#1| (-353)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-649 (-1090)) (-649 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 101 (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4339 (((-776) $) 38) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3144 (((-964 $)) 42)) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3796 (((-867) $) 71) (($ (-569)) NIL) (($ |#1|) 68) (($ (-1090)) NIL) (($ |#2|) 78) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) 73) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 25 T CONST)) (-3973 (((-1275 |#1|) $) 86)) (-2354 (($ (-1275 |#1|)) 60)) (-1815 (($) 8 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2578 (((-1275 |#1|) $) NIL)) (-2920 (((-112) $ $) 79)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) 82) (($ $ $) NIL)) (-3012 (($ $ $) 39)) (** (($ $ (-927)) NIL) (($ $ (-776)) 95)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 67) (($ $ $) 85) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) -(((-717 |#1| |#2|) (-13 (-1251 |#1|) (-621 |#2|) (-10 -8 (-15 -3616 (|#2| |#2|)) (-15 -2520 (|#2|)) (-15 -3598 ($ |#2|)) (-15 -3585 (|#2| $)) (-15 -3973 ((-1275 |#1|) $)) (-15 -2354 ($ (-1275 |#1|))) (-15 -2578 ((-1275 |#1|) $)) (-15 -4180 ((-964 $))) (-15 -3144 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -1652 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|))) (-1057) (-1251 |#1|)) (T -717)) -((-3616 (*1 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3)))) (-2520 (*1 *2) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057)))) (-3598 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3)))) (-3585 (*1 *2 *1) (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-2354 (*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-2578 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-4180 (*1 *2) (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-3144 (*1 *2) (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) (-4 *4 (-1251 *3)))) (-1652 (*1 *1 *1) (-12 (-4 *2 (-353)) (-4 *2 (-1057)) (-5 *1 (-717 *2 *3)) (-4 *3 (-1251 *2))))) -(-13 (-1251 |#1|) (-621 |#2|) (-10 -8 (-15 -3616 (|#2| |#2|)) (-15 -2520 (|#2|)) (-15 -3598 ($ |#2|)) (-15 -3585 (|#2| $)) (-15 -3973 ((-1275 |#1|) $)) (-15 -2354 ($ (-1275 |#1|))) (-15 -2578 ((-1275 |#1|) $)) (-15 -4180 ((-964 $))) (-15 -3144 ((-964 $))) (IF (|has| |#1| (-353)) (-15 -1652 ($ $)) |%noBranch|) (IF (|has| |#1| (-372)) (-6 (-372)) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 ((|#1| $) 13)) (-3547 (((-1128) $) NIL)) (-1993 ((|#2| $) 12)) (-3809 (($ |#1| |#2|) 16)) (-3796 (((-867) $) NIL) (($ (-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) 15) (((-2 (|:| -2150 |#1|) (|:| -1993 |#2|)) $) 14)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 11))) -(((-718 |#1| |#2| |#3|) (-13 (-855) (-495 (-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) (-10 -8 (-15 -1993 (|#2| $)) (-15 -2150 (|#1| $)) (-15 -3809 ($ |#1| |#2|)))) (-855) (-1108) (-1 (-112) (-2 (|:| -2150 |#1|) (|:| -1993 |#2|)) (-2 (|:| -2150 |#1|) (|:| -1993 |#2|)))) (T -718)) -((-1993 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *2)) (-2 (|:| -2150 *3) (|:| -1993 *2)))))) (-2150 (*1 *2 *1) (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3)) (-2 (|:| -2150 *2) (|:| -1993 *3)))))) (-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1108)) (-14 *4 (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3)) (-2 (|:| -2150 *2) (|:| -1993 *3))))))) -(-13 (-855) (-495 (-2 (|:| -2150 |#1|) (|:| -1993 |#2|))) (-10 -8 (-15 -1993 (|#2| $)) (-15 -2150 (|#1| $)) (-15 -3809 ($ |#1| |#2|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 66)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3150 ((|#1| $) NIL) (((-114) $) 39)) (-3086 (((-3 $ "failed") $) 106)) (-1416 ((|#2| (-114) |#2|) 93)) (-2349 (((-112) $) NIL)) (-2883 (($ |#1| (-365 (-114))) 14)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4321 (($ $ (-1 |#2| |#2|)) 65)) (-2924 (($ $ (-1 |#2| |#2|)) 44)) (-1869 ((|#2| $ |#2|) 33)) (-1506 ((|#1| |#1|) 121 (|has| |#1| (-173)))) (-3796 (((-867) $) 73) (($ (-569)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 37 T CONST)) (-1520 (((-112) $ $) NIL)) (-2390 (($ $) 115 (|has| |#1| (-173))) (($ $ $) 119 (|has| |#1| (-173)))) (-1804 (($) 21 T CONST)) (-1815 (($) 9 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) 48) (($ $ $) NIL)) (-3012 (($ $ $) 83)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) 64)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-173))) (($ $ |#1|) 113 (|has| |#1| (-173))))) -(((-719 |#1| |#2|) (-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#2| |#2|))) (-15 -4321 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#2| (-114) |#2|)) (-15 -2883 ($ |#1| (-365 (-114)))))) (-1057) (-653 |#1|)) (T -719)) -((-2390 (*1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2390 (*1 *1 *1 *1) (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-1506 (*1 *2 *2) (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) (-4 *3 (-653 *2)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)) (-4 *4 (-653 *3)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1057)) (-5 *1 (-719 *4 *2)) (-4 *2 (-653 *4)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1057)) (-5 *1 (-719 *2 *4)) (-4 *4 (-653 *2))))) -(-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#2| |#2|))) (-15 -4321 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#2| (-114) |#2|)) (-15 -2883 ($ |#1| (-365 (-114)))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 33)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ |#1| |#2|) 25)) (-3086 (((-3 $ "failed") $) 51)) (-2349 (((-112) $) 35)) (-2520 ((|#2| $) 12)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 52)) (-3547 (((-1128) $) NIL)) (-4054 (((-3 $ "failed") $ $) 50)) (-3796 (((-867) $) 24) (($ (-569)) 19) ((|#1| $) 13)) (-2721 (((-776)) 28 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 16 T CONST)) (-1815 (($) 30 T CONST)) (-2920 (((-112) $ $) 41)) (-3024 (($ $) 46) (($ $ $) 40)) (-3012 (($ $ $) 43)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 21) (($ $ $) 20))) -(((-720 |#1| |#2| |#3| |#4| |#5|) (-13 (-1057) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)))) (-173) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -720)) -((-3086 (*1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2520 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3598 (*1 *1 *2 *3) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4054 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1817 (*1 *1 *1) (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1057) (-10 -8 (-15 -2520 (|#2| $)) (-15 -3796 (|#1| $)) (-15 -3598 ($ |#1| |#2|)) (-15 -4054 ((-3 $ "failed") $ $)) (-15 -3086 ((-3 $ "failed") $)) (-15 -1817 ($ $)))) -((* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-721 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-722 |#2|) (-173)) (T -721)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-722 |#1|) (-140) (-173)) (T -722)) -NIL -(-13 (-111 |t#1| |t#1|) (-645 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3084 (($ |#1|) 17) (($ $ |#1|) 20)) (-4092 (($ |#1|) 18) (($ $ |#1|) 21)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2349 (((-112) $) NIL)) (-2600 (($ |#1| |#1| |#1| |#1|) 8)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 16)) (-3547 (((-1128) $) NIL)) (-1725 ((|#1| $ |#1|) 24) (((-838 |#1|) $ (-838 |#1|)) 32)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-3796 (((-867) $) 39)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 9 T CONST)) (-2920 (((-112) $ $) 48)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 14))) -(((-723 |#1|) (-13 (-478) (-10 -8 (-15 -2600 ($ |#1| |#1| |#1| |#1|)) (-15 -3084 ($ |#1|)) (-15 -4092 ($ |#1|)) (-15 -3086 ($)) (-15 -3084 ($ $ |#1|)) (-15 -4092 ($ $ |#1|)) (-15 -3086 ($ $)) (-15 -1725 (|#1| $ |#1|)) (-15 -1725 ((-838 |#1|) $ (-838 |#1|))))) (-367)) (T -723)) -((-2600 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3084 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4092 (*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3086 (*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-4092 (*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-3086 (*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3))))) -(-13 (-478) (-10 -8 (-15 -2600 ($ |#1| |#1| |#1| |#1|)) (-15 -3084 ($ |#1|)) (-15 -4092 ($ |#1|)) (-15 -3086 ($)) (-15 -3084 ($ $ |#1|)) (-15 -4092 ($ $ |#1|)) (-15 -3086 ($ $)) (-15 -1725 (|#1| $ |#1|)) (-15 -1725 ((-838 |#1|) $ (-838 |#1|))))) -((-2395 (($ $ (-927)) 21)) (-2667 (($ $ (-927)) 22)) (** (($ $ (-927)) 10))) -(((-724 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927)))) (-725)) (T -724)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-2395 (($ $ (-927)) 16)) (-2667 (($ $ (-927)) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 17))) -(((-725) (-140)) (T -725)) -((* (*1 *1 *1 *1) (-4 *1 (-725))) (-2395 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927))))) -(-13 (-1108) (-10 -8 (-15 * ($ $ $)) (-15 -2395 ($ $ (-927))) (-15 -2667 ($ $ (-927))) (-15 ** ($ $ (-927))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2395 (($ $ (-927)) NIL) (($ $ (-776)) 21)) (-2349 (((-112) $) 10)) (-2667 (($ $ (-927)) NIL) (($ $ (-776)) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) 16))) -(((-726 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2667 (|#1| |#1| (-776))) (-15 -2395 (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927)))) (-727)) (T -726)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-776))) (-15 -2667 (|#1| |#1| (-776))) (-15 -2395 (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 ** (|#1| |#1| (-927))) (-15 -2667 (|#1| |#1| (-927))) (-15 -2395 (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-4379 (((-3 $ "failed") $) 18)) (-2395 (($ $ (-927)) 16) (($ $ (-776)) 23)) (-3086 (((-3 $ "failed") $) 20)) (-2349 (((-112) $) 24)) (-4059 (((-3 $ "failed") $) 19)) (-2667 (($ $ (-927)) 15) (($ $ (-776)) 22)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 25 T CONST)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 21)) (* (($ $ $) 17))) -(((-727) (-140)) (T -727)) -((-1815 (*1 *1) (-4 *1 (-727))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (-2395 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-2667 (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) (-3086 (*1 *1 *1) (|partial| -4 *1 (-727))) (-4059 (*1 *1 *1) (|partial| -4 *1 (-727))) (-4379 (*1 *1 *1) (|partial| -4 *1 (-727)))) -(-13 (-725) (-10 -8 (-15 (-1815) ($) -3709) (-15 -2349 ((-112) $)) (-15 -2395 ($ $ (-776))) (-15 -2667 ($ $ (-776))) (-15 ** ($ $ (-776))) (-15 -3086 ((-3 $ "failed") $)) (-15 -4059 ((-3 $ "failed") $)) (-15 -4379 ((-3 $ "failed") $)))) -(((-102) . T) ((-618 (-867)) . T) ((-725) . T) ((-1108) . T)) -((-3473 (((-776)) 42)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 23)) (-3598 (($ |#3|) NIL) (((-3 $ "failed") (-412 |#3|)) 52)) (-3086 (((-3 $ "failed") $) 72)) (-3406 (($) 46)) (-3829 ((|#2| $) 21)) (-2332 (($) 18)) (-3517 (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-2594 (((-694 |#2|) (-1275 $) (-1 |#2| |#2|)) 67)) (-1410 (((-1275 |#2|) $) NIL) (($ (-1275 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1886 ((|#3| $) 39)) (-2403 (((-1275 $)) 36))) -(((-728 |#1| |#2| |#3|) (-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3406 (|#1|)) (-15 -3473 ((-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2594 ((-694 |#2|) (-1275 |#1|) (-1 |#2| |#2|))) (-15 -3598 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1410 (|#1| |#3|)) (-15 -3598 (|#1| |#3|)) (-15 -2332 (|#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 (|#3| |#1|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2403 ((-1275 |#1|))) (-15 -1886 (|#3| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|))) (-729 |#2| |#3|) (-173) (-1251 |#2|)) (T -728)) -((-3473 (*1 *2) (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-776)) (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5))))) -(-10 -8 (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3406 (|#1|)) (-15 -3473 ((-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -2594 ((-694 |#2|) (-1275 |#1|) (-1 |#2| |#2|))) (-15 -3598 ((-3 |#1| "failed") (-412 |#3|))) (-15 -1410 (|#1| |#3|)) (-15 -3598 (|#1| |#3|)) (-15 -2332 (|#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -1410 (|#3| |#1|)) (-15 -1410 (|#1| (-1275 |#2|))) (-15 -1410 ((-1275 |#2|) |#1|)) (-15 -2403 ((-1275 |#1|))) (-15 -1886 (|#3| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3086 ((-3 |#1| "failed") |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102 (|has| |#1| (-367)))) (-4355 (($ $) 103 (|has| |#1| (-367)))) (-3039 (((-112) $) 105 (|has| |#1| (-367)))) (-1547 (((-694 |#1|) (-1275 $)) 53) (((-694 |#1|)) 68)) (-3140 ((|#1| $) 59)) (-3715 (((-1198 (-927) (-776)) (-569)) 155 (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 122 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 123 (|has| |#1| (-367)))) (-2227 (((-112) $ $) 113 (|has| |#1| (-367)))) (-3473 (((-776)) 96 (|has| |#1| (-372)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 178 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 176 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 173)) (-3150 (((-569) $) 177 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 175 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 174)) (-2247 (($ (-1275 |#1|) (-1275 $)) 55) (($ (-1275 |#1|)) 71)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-353)))) (-2368 (($ $ $) 117 (|has| |#1| (-367)))) (-1833 (((-694 |#1|) $ (-1275 $)) 60) (((-694 |#1|) $) 66)) (-2957 (((-694 (-569)) (-694 $)) 172 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 171 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 170) (((-694 |#1|) (-694 $)) 169)) (-3598 (($ |#2|) 166) (((-3 $ "failed") (-412 |#2|)) 163 (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-927)) 61)) (-3406 (($) 99 (|has| |#1| (-372)))) (-2379 (($ $ $) 116 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111 (|has| |#1| (-367)))) (-1616 (($) 157 (|has| |#1| (-353)))) (-2807 (((-112) $) 158 (|has| |#1| (-353)))) (-3701 (($ $ (-776)) 149 (|has| |#1| (-353))) (($ $) 148 (|has| |#1| (-353)))) (-1473 (((-112) $) 124 (|has| |#1| (-367)))) (-1466 (((-927) $) 160 (|has| |#1| (-353))) (((-838 (-927)) $) 146 (|has| |#1| (-353)))) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 58)) (-3885 (((-3 $ "failed") $) 150 (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120 (|has| |#1| (-367)))) (-3859 ((|#2| $) 51 (|has| |#1| (-367)))) (-2731 (((-927) $) 98 (|has| |#1| (-372)))) (-3585 ((|#2| $) 164)) (-1839 (($ (-649 $)) 109 (|has| |#1| (-367))) (($ $ $) 108 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 125 (|has| |#1| (-367)))) (-2307 (($) 151 (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 97 (|has| |#1| (-372)))) (-3547 (((-1128) $) 11)) (-2332 (($) 168)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 107 (|has| |#1| (-367))) (($ $ $) 106 (|has| |#1| (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) 154 (|has| |#1| (-353)))) (-3800 (((-423 $) $) 121 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118 (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ $) 101 (|has| |#1| (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112 (|has| |#1| (-367)))) (-2431 (((-776) $) 114 (|has| |#1| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115 (|has| |#1| (-367)))) (-3059 ((|#1| (-1275 $)) 54) ((|#1|) 67)) (-2166 (((-776) $) 159 (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) 147 (|has| |#1| (-353)))) (-3517 (($ $) 145 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 143 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) 141 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185))) 140 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1185) (-776)) 139 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-776))) 138 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 131 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-367)))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-367)))) (-4061 ((|#2|) 167)) (-4234 (($) 156 (|has| |#1| (-353)))) (-2415 (((-1275 |#1|) $ (-1275 $)) 57) (((-694 |#1|) (-1275 $) (-1275 $)) 56) (((-1275 |#1|) $) 73) (((-694 |#1|) (-1275 $)) 72)) (-1410 (((-1275 |#1|) $) 70) (($ (-1275 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 153 (|has| |#1| (-353)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-367))) (($ (-412 (-569))) 95 (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (($ $) 152 (|has| |#1| (-353))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1886 ((|#2| $) 52)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2403 (((-1275 $)) 74)) (-2664 (((-112) $ $) 104 (|has| |#1| (-367)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 144 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) 142 (-2776 (-1759 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) 137 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185))) 136 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1185) (-776)) 135 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-776))) 134 (-1759 (|has| |#1| (-906 (-1185))) (|has| |#1| (-367)))) (($ $ (-1 |#1| |#1|) (-776)) 133 (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-367)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 129 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-412 (-569)) $) 128 (|has| |#1| (-367))) (($ $ (-412 (-569))) 127 (|has| |#1| (-367))))) -(((-729 |#1| |#2|) (-140) (-173) (-1251 |t#1|)) (T -729)) -((-2332 (*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1251 *2)))) (-4061 (*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) (-3598 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3)))) (-1410 (*1 *1 *2) (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) (-3598 (*1 *1 *2) (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-367)) (-4 *3 (-173)) (-4 *1 (-729 *3 *4)))) (-2594 (*1 *2 *3 *4) (-12 (-5 *3 (-1275 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1251 *5)) (-5 *2 (-694 *5))))) -(-13 (-414 |t#1| |t#2|) (-173) (-619 |t#2|) (-416 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2332 ($)) (-15 -4061 (|t#2|)) (-15 -3598 ($ |t#2|)) (-15 -1410 ($ |t#2|)) (-15 -3585 (|t#2| $)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-367)) (-6 (-232 |t#1|)) (-15 -3598 ((-3 $ "failed") (-412 |t#2|))) (-15 -2594 ((-694 |t#1|) (-1275 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-353)) (-6 (-353)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-38 |#1|) . T) ((-38 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-102) . T) ((-111 #0# #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-353)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-353)) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) . T) ((-619 |#2|) . T) ((-232 |#1|) |has| |#1| (-367)) ((-234) -2776 (|has| |#1| (-353)) (-12 (|has| |#1| (-234)) (|has| |#1| (-367)))) ((-244) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-293) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-310) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-367) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-407) |has| |#1| (-353)) ((-372) -2776 (|has| |#1| (-372)) (|has| |#1| (-353))) ((-353) |has| |#1| (-353)) ((-374 |#1| |#2|) . T) ((-414 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-561) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-645 |#1|) . T) ((-645 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-722 |#1|) . T) ((-722 $) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185)))) ((-926) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) -2776 (|has| |#1| (-353)) (|has| |#1| (-367))) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-353)) ((-1229) -2776 (|has| |#1| (-353)) (|has| |#1| (-367)))) -((-4427 (($) 11)) (-3086 (((-3 $ "failed") $) 14)) (-2349 (((-112) $) 10)) (** (($ $ (-927)) NIL) (($ $ (-776)) 20))) -(((-730 |#1|) (-10 -8 (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 ** (|#1| |#1| (-927)))) (-731)) (T -730)) -NIL -(-10 -8 (-15 -3086 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-776))) (-15 -2349 ((-112) |#1|)) (-15 -4427 (|#1|)) (-15 ** (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-4427 (($) 19 T CONST)) (-3086 (((-3 $ "failed") $) 16)) (-2349 (((-112) $) 18)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14) (($ $ (-776)) 17)) (* (($ $ $) 15))) -(((-731) (-140)) (T -731)) -((-1815 (*1 *1) (-4 *1 (-731))) (-4427 (*1 *1) (-4 *1 (-731))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776)))) (-3086 (*1 *1 *1) (|partial| -4 *1 (-731)))) -(-13 (-1120) (-10 -8 (-15 (-1815) ($) -3709) (-15 -4427 ($) -3709) (-15 -2349 ((-112) $)) (-15 ** ($ $ (-776))) (-15 -3086 ((-3 $ "failed") $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1120) . T) ((-1108) . T)) -((-4043 (((-2 (|:| -3364 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2241 (((-2 (|:| -3364 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2534 ((|#2| (-412 |#2|) (-1 |#2| |#2|)) 13)) (-2316 (((-2 (|:| |poly| |#2|) (|:| -3364 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)) 48))) -(((-732 |#1| |#2|) (-10 -7 (-15 -2241 ((-2 (|:| -3364 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4043 ((-2 (|:| -3364 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2534 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| |poly| |#2|) (|:| -3364 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)))) (-367) (-1251 |#1|)) (T -732)) -((-2316 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3364 (-412 *6)) (|:| |special| (-412 *6)))) (-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6)))) (-2534 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1251 *5)) (-5 *1 (-732 *5 *2)) (-4 *5 (-367)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3364 (-423 *3)) (|:| |special| (-423 *3)))) (-5 *1 (-732 *5 *3)))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -3364 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3))))) -(-10 -7 (-15 -2241 ((-2 (|:| -3364 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4043 ((-2 (|:| -3364 (-423 |#2|)) (|:| |special| (-423 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2534 (|#2| (-412 |#2|) (-1 |#2| |#2|))) (-15 -2316 ((-2 (|:| |poly| |#2|) (|:| -3364 (-412 |#2|)) (|:| |special| (-412 |#2|))) (-412 |#2|) (-1 |#2| |#2|)))) -((-3935 ((|#7| (-649 |#5|) |#6|) NIL)) (-1346 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-733 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1346 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3935 (|#7| (-649 |#5|) |#6|))) (-855) (-798) (-798) (-1057) (-1057) (-955 |#4| |#2| |#1|) (-955 |#5| |#3| |#1|)) (T -733)) -((-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *9)) (-4 *9 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *8 (-1057)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1057)) (-4 *9 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5)) (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) (-4 *4 (-955 *8 *6 *5))))) -(-10 -7 (-15 -1346 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3935 (|#7| (-649 |#5|) |#6|))) -((-1346 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1346 (|#7| (-1 |#2| |#1|) |#6|))) (-855) (-855) (-798) (-798) (-1057) (-955 |#5| |#3| |#1|) (-955 |#5| |#4| |#2|)) (T -734)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798)) (-4 *9 (-1057)) (-4 *2 (-955 *9 *8 *6)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798)) (-4 *4 (-955 *9 *7 *5))))) -(-10 -7 (-15 -1346 (|#7| (-1 |#2| |#1|) |#6|))) -((-3800 (((-423 |#4|) |#4|) 42))) -(((-735 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185))))) (-310) (-955 (-958 |#3|) |#1| |#2|)) (T -735)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3)) (-4 *3 (-955 (-958 *6) *4 *5))))) -(-10 -7 (-15 -3800 ((-423 |#4|) |#4|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-869 |#1|)) $) NIL)) (-3767 (((-1181 $) $ (-869 |#1|)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-869 |#1|))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-869 |#1|) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-869 |#1|) $) NIL)) (-3346 (($ $ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-536 (-869 |#1|)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-869 |#1|) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#2|) (-869 |#1|)) NIL) (($ (-1181 $) (-869 |#1|)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-869 |#1|)) NIL)) (-2272 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-2492 (($ (-1 (-536 (-869 |#1|)) (-536 (-869 |#1|))) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2306 (((-3 (-869 |#1|) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-869 |#1|)) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-869 |#1|) |#2|) NIL) (($ $ (-649 (-869 |#1|)) (-649 |#2|)) NIL) (($ $ (-869 |#1|) $) NIL) (($ $ (-649 (-869 |#1|)) (-649 $)) NIL)) (-3059 (($ $ (-869 |#1|)) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-4339 (((-536 (-869 |#1|)) $) NIL) (((-776) $ (-869 |#1|)) NIL) (((-649 (-776)) $ (-649 (-869 |#1|))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-869 |#1|) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-869 |#1|) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-869 |#1|)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-869 |#1|)) NIL) (($ $) NIL (|has| |#2| (-561))) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569))))))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-536 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-869 |#1|)) NIL) (($ $ (-649 (-869 |#1|))) NIL) (($ $ (-869 |#1|) (-776)) NIL) (($ $ (-649 (-869 |#1|)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-736 |#1| |#2|) (-955 |#2| (-536 (-869 |#1|)) (-869 |#1|)) (-649 (-1185)) (-1057)) (T -736)) -NIL -(-955 |#2| (-536 (-869 |#1|)) (-869 |#1|)) -((-3577 (((-2 (|:| -3151 (-958 |#3|)) (|:| -3078 (-958 |#3|))) |#4|) 14)) (-2559 ((|#4| |#4| |#2|) 33)) (-1776 ((|#4| (-412 (-958 |#3|)) |#2|) 64)) (-2108 ((|#4| (-1181 (-958 |#3|)) |#2|) 77)) (-2185 ((|#4| (-1181 |#4|) |#2|) 51)) (-4243 ((|#4| |#4| |#2|) 54)) (-3800 (((-423 |#4|) |#4|) 40))) -(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3577 ((-2 (|:| -3151 (-958 |#3|)) (|:| -3078 (-958 |#3|))) |#4|)) (-15 -4243 (|#4| |#4| |#2|)) (-15 -2185 (|#4| (-1181 |#4|) |#2|)) (-15 -2559 (|#4| |#4| |#2|)) (-15 -2108 (|#4| (-1181 (-958 |#3|)) |#2|)) (-15 -1776 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3800 ((-423 |#4|) |#4|))) (-798) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)))) (-561) (-955 (-412 (-958 |#3|)) |#1| |#2|)) (T -737)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-958 *6))) (-4 *6 (-561)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))))) (-2559 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-2185 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)))) (-4243 (*1 *2 *2 *3) (-12 (-4 *4 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561)) (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) (-3577 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)) (-5 *2 (-2 (|:| -3151 (-958 *6)) (|:| -3078 (-958 *6)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5))))) -(-10 -7 (-15 -3577 ((-2 (|:| -3151 (-958 |#3|)) (|:| -3078 (-958 |#3|))) |#4|)) (-15 -4243 (|#4| |#4| |#2|)) (-15 -2185 (|#4| (-1181 |#4|) |#2|)) (-15 -2559 (|#4| |#4| |#2|)) (-15 -2108 (|#4| (-1181 (-958 |#3|)) |#2|)) (-15 -1776 (|#4| (-412 (-958 |#3|)) |#2|)) (-15 -3800 ((-423 |#4|) |#4|))) -((-3800 (((-423 |#4|) |#4|) 54))) -(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|))) (-798) (-855) (-13 (-310) (-147)) (-955 (-412 |#3|) |#1| |#2|)) (T -738)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-955 (-412 *6) *4 *5))))) -(-10 -7 (-15 -3800 ((-423 |#4|) |#4|))) -((-1346 (((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)) 18))) -(((-739 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)))) (-1057) (-1057) (-731)) (T -739)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) (-5 *1 (-739 *5 *6 *7))))) -(-10 -7 (-15 -1346 ((-740 |#2| |#3|) (-1 |#2| |#1|) (-740 |#1| |#3|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 38)) (-2300 (((-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))) $) 39)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776)) 22 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3150 ((|#2| $) NIL) ((|#1| $) NIL)) (-1883 (($ $) 104 (|has| |#2| (-855)))) (-3086 (((-3 $ "failed") $) 87)) (-3406 (($) 50 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 72)) (-2572 (((-649 $) $) 54)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| |#2|) 17)) (-1346 (($ (-1 |#1| |#1|) $) 70)) (-2731 (((-927) $) 45 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-1849 ((|#2| $) 103 (|has| |#2| (-855)))) (-1857 ((|#1| $) 102 (|has| |#2| (-855)))) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 37 (-12 (|has| |#2| (-372)) (|has| |#1| (-372))))) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 101) (($ (-569)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|)))) 11)) (-2512 (((-649 |#1|) $) 56)) (-4383 ((|#1| $ |#2|) 117)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 12 T CONST)) (-1815 (($) 46 T CONST)) (-2920 (((-112) $ $) 107)) (-3024 (($ $) 63) (($ $ $) NIL)) (-3012 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) -(((-740 |#1| |#2|) (-13 (-1057) (-1046 |#2|) (-1046 |#1|) (-10 -8 (-15 -3923 ($ |#1| |#2|)) (-15 -4383 (|#1| $ |#2|)) (-15 -3796 ($ (-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))))) (-15 -2300 ((-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -2198 ((-112) $)) (-15 -2512 ((-649 |#1|) $)) (-15 -2572 ((-649 $) $)) (-15 -3366 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1849 (|#2| $)) (-15 -1857 (|#1| $)) (-15 -1883 ($ $))) |%noBranch|))) (-1057) (-731)) (T -740)) -((-3923 (*1 *1 *2 *3) (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-731)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4)))) (-4 *3 (-1057)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4)))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-740 *3 *4)) (-4 *4 (-731)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-3366 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) (-1849 (*1 *2 *1) (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) (-4 *3 (-1057)))) (-1857 (*1 *2 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *3 (-731)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1057)) (-4 *3 (-731))))) -(-13 (-1057) (-1046 |#2|) (-1046 |#1|) (-10 -8 (-15 -3923 ($ |#1| |#2|)) (-15 -4383 (|#1| $ |#2|)) (-15 -3796 ($ (-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))))) (-15 -2300 ((-649 (-2 (|:| -1435 |#1|) (|:| -3348 |#2|))) $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (-15 -2198 ((-112) $)) (-15 -2512 ((-649 |#1|) $)) (-15 -2572 ((-649 $) $)) (-15 -3366 ((-776) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-855)) (PROGN (-15 -1849 (|#2| $)) (-15 -1857 (|#1| $)) (-15 -1883 ($ $))) |%noBranch|))) -((-2417 (((-112) $ $) 19)) (-3969 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2541 (($ $ $) 73)) (-4179 (((-112) $ $) 74)) (-3914 (((-112) $ (-776)) 8)) (-4257 (($ (-649 |#1|)) 69) (($) 68)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 63)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 65)) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22)) (-2101 (($ $ $) 70)) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3547 (((-1128) $) 21)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 62)) (-2237 (($ $ |#1|) 72) (($ $ $) 71)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18)) (-3868 (($ (-649 |#1|)) 67) (($) 66)) (-1520 (((-112) $ $) 23)) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-741 |#1|) (-140) (-1108)) (T -741)) -NIL -(-13 (-700 |t#1|) (-1106 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-700 |#1|) . T) ((-1106 |#1|) . T) ((-1108) . T) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-3969 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2541 (($ $ $) 99)) (-4179 (((-112) $ $) 107)) (-3914 (((-112) $ (-776)) NIL)) (-4257 (($ (-649 |#1|)) 26) (($) 17)) (-1796 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2017 (($ $) 85)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) 70 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4447))) (($ |#1| $ (-569)) 75) (($ (-1 (-112) |#1|) $ (-569)) 78)) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (($ |#1| $ (-569)) 80) (($ (-1 (-112) |#1|) $ (-569)) 81)) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 32 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 106)) (-2083 (($) 15) (($ |#1|) 28) (($ (-649 |#1|)) 23)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) 38)) (-2004 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 89)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 97)) (-1877 ((|#1| $) 62)) (-3894 (($ |#1| $) 63) (($ |#1| $ (-776)) 86)) (-3547 (((-1128) $) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1781 ((|#1| $) 61)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 56)) (-3635 (($) 14)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 55)) (-2237 (($ $ |#1|) NIL) (($ $ $) 98)) (-2434 (($) 16) (($ (-649 |#1|)) 25)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) 68 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 79)) (-1410 (((-541) $) 36 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 22)) (-3796 (((-867) $) 49)) (-3868 (($ (-649 |#1|)) 27) (($) 18)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 |#1|)) 24)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 103)) (-2428 (((-776) $) 67 (|has| $ (-6 -4447))))) -(((-742 |#1|) (-13 (-741 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2083 ($)) (-15 -2083 ($ |#1|)) (-15 -2083 ($ (-649 |#1|))) (-15 -2009 ((-649 |#1|) $)) (-15 -1698 ($ |#1| $ (-569))) (-15 -1698 ($ (-1 (-112) |#1|) $ (-569))) (-15 -1794 ($ |#1| $ (-569))) (-15 -1794 ($ (-1 (-112) |#1|) $ (-569))))) (-1108)) (T -742)) -((-2083 (*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-2083 (*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-2083 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-742 *3)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1108)))) (-1698 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-1698 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108)) (-5 *1 (-742 *4)))) (-1794 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108)))) (-1794 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108)) (-5 *1 (-742 *4))))) -(-13 (-741 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2083 ($)) (-15 -2083 ($ |#1|)) (-15 -2083 ($ (-649 |#1|))) (-15 -2009 ((-649 |#1|) $)) (-15 -1698 ($ |#1| $ (-569))) (-15 -1698 ($ (-1 (-112) |#1|) $ (-569))) (-15 -1794 ($ |#1| $ (-569))) (-15 -1794 ($ (-1 (-112) |#1|) $ (-569))))) -((-3318 (((-1280) (-1167)) 8))) -(((-743) (-10 -7 (-15 -3318 ((-1280) (-1167))))) (T -743)) -((-3318 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-743))))) -(-10 -7 (-15 -3318 ((-1280) (-1167)))) -((-1757 (((-649 |#1|) (-649 |#1|) (-649 |#1|)) 15))) -(((-744 |#1|) (-10 -7 (-15 -1757 ((-649 |#1|) (-649 |#1|) (-649 |#1|)))) (-855)) (T -744)) -((-1757 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3))))) -(-10 -7 (-15 -1757 ((-649 |#1|) (-649 |#1|) (-649 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#2|) $) 148)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 141 (|has| |#1| (-561)))) (-4355 (($ $) 140 (|has| |#1| (-561)))) (-3039 (((-112) $) 138 (|has| |#1| (-561)))) (-2771 (($ $) 97 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 80 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $) 79 (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-4118 (($ $) 95 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-1883 (($ $) 132)) (-3086 (((-3 $ "failed") $) 37)) (-3278 (((-958 |#1|) $ (-776)) 110) (((-958 |#1|) $ (-776) (-776)) 109)) (-1677 (((-112) $) 149)) (-1312 (($) 107 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $ |#2|) 112) (((-776) $ |#2| (-776)) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 78 (|has| |#1| (-38 (-412 (-569)))))) (-2198 (((-112) $) 130)) (-3923 (($ $ (-649 |#2|) (-649 (-536 |#2|))) 147) (($ $ |#2| (-536 |#2|)) 146) (($ |#1| (-536 |#2|)) 131) (($ $ |#2| (-776)) 114) (($ $ (-649 |#2|) (-649 (-776))) 113)) (-1346 (($ (-1 |#1| |#1|) $) 129)) (-2662 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 127)) (-1857 ((|#1| $) 126)) (-3435 (((-1167) $) 10)) (-3579 (($ $ |#2|) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) 11)) (-3166 (($ $ (-776)) 115)) (-2407 (((-3 $ "failed") $ $) 142 (|has| |#1| (-561)))) (-4389 (($ $) 105 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (($ $ |#2| $) 123) (($ $ (-649 |#2|) (-649 $)) 122) (($ $ (-649 (-297 $))) 121) (($ $ (-297 $)) 120) (($ $ $ $) 119) (($ $ (-649 $) (-649 $)) 118)) (-3517 (($ $ |#2|) 46) (($ $ (-649 |#2|)) 45) (($ $ |#2| (-776)) 44) (($ $ (-649 |#2|) (-649 (-776))) 43)) (-4339 (((-536 |#2|) $) 128)) (-4128 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 83 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 93 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 84 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 85 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 150)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 145 (|has| |#1| (-173))) (($ $) 143 (|has| |#1| (-561))) (($ (-412 (-569))) 135 (|has| |#1| (-38 (-412 (-569)))))) (-4383 ((|#1| $ (-536 |#2|)) 133) (($ $ |#2| (-776)) 117) (($ $ (-649 |#2|) (-649 (-776))) 116)) (-2239 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 103 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 91 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 139 (|has| |#1| (-561)))) (-4140 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 101 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 89 (|has| |#1| (-38 (-412 (-569)))))) (-1503 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 99 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 87 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 86 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#2|) 42) (($ $ (-649 |#2|)) 41) (($ $ |#2| (-776)) 40) (($ $ (-649 |#2|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 134 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ $) 106 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 77 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 136 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 125) (($ $ |#1|) 124))) -(((-745 |#1| |#2|) (-140) (-1057) (-855)) (T -745)) -((-4383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057)) (-4 *2 (-855)))) (-4383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057)) (-4 *2 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)))) (-1466 (*1 *2 *1 *3) (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) (-4 *3 (-855)) (-5 *2 (-776)))) (-1466 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) (-4 *3 (-855)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-3278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) (-4 *5 (-855)) (-5 *2 (-958 *4)))) (-3579 (*1 *1 *1 *2) (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855)) (-4 *3 (-38 (-412 (-569))))))) -(-13 (-906 |t#2|) (-981 |t#1| (-536 |t#2|) |t#2|) (-519 |t#2| $) (-312 $) (-10 -8 (-15 -4383 ($ $ |t#2| (-776))) (-15 -4383 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -3166 ($ $ (-776))) (-15 -3923 ($ $ |t#2| (-776))) (-15 -3923 ($ $ (-649 |t#2|) (-649 (-776)))) (-15 -1466 ((-776) $ |t#2|)) (-15 -1466 ((-776) $ |t#2| (-776))) (-15 -3278 ((-958 |t#1|) $ (-776))) (-15 -3278 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ |t#2|)) (-6 (-1010)) (-6 (-1210))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-536 |#2|)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-293) |has| |#1| (-561)) ((-312 $) . T) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 |#2| $) . T) ((-519 $ $) . T) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 |#2|) . T) ((-981 |#1| #0# |#2|) . T) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569))))) -((-3800 (((-423 (-1181 |#4|)) (-1181 |#4|)) 30) (((-423 |#4|) |#4|) 26))) -(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|)))) (-855) (-798) (-13 (-310) (-147)) (-955 |#3| |#2| |#1|)) (T -746)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-423 *3)) (-5 *1 (-746 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))) -(-10 -7 (-15 -3800 ((-423 |#4|) |#4|)) (-15 -3800 ((-423 (-1181 |#4|)) (-1181 |#4|)))) -((-3385 (((-423 |#4|) |#4| |#2|) 142)) (-3411 (((-423 |#4|) |#4|) NIL)) (-3764 (((-423 (-1181 |#4|)) (-1181 |#4|)) 127) (((-423 |#4|) |#4|) 52)) (-1400 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 |#4|)) (|:| -1993 (-569)))))) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 81)) (-1514 (((-1181 |#3|) (-1181 |#3|) (-569)) 168)) (-2942 (((-649 (-776)) (-1181 |#4|) (-649 |#2|) (-776)) 75)) (-3585 (((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-1181 |#3|) (-1181 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|)) 79)) (-4301 (((-2 (|:| |upol| (-1181 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) (|:| |ctpol| |#3|)) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|))) 27)) (-2833 (((-2 (|:| -1814 (-1181 |#4|)) (|:| |polval| (-1181 |#3|))) (-1181 |#4|) (-1181 |#3|) (-569)) 72)) (-1955 (((-569) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) 164)) (-3287 ((|#4| (-569) (-423 |#4|)) 73)) (-3982 (((-112) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) NIL))) -(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 ((-423 |#4|) |#4|)) (-15 -3764 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -3411 ((-423 |#4|) |#4|)) (-15 -1955 ((-569) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3385 ((-423 |#4|) |#4| |#2|)) (-15 -2833 ((-2 (|:| -1814 (-1181 |#4|)) (|:| |polval| (-1181 |#3|))) (-1181 |#4|) (-1181 |#3|) (-569))) (-15 -1400 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 |#4|)) (|:| -1993 (-569)))))) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -4301 ((-2 (|:| |upol| (-1181 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) (|:| |ctpol| |#3|)) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -3287 (|#4| (-569) (-423 |#4|))) (-15 -3982 ((-112) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3585 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-1181 |#3|) (-1181 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -2942 ((-649 (-776)) (-1181 |#4|) (-649 |#2|) (-776))) (-15 -1514 ((-1181 |#3|) (-1181 |#3|) (-569)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -747)) -((-1514 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-2942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776)))) (-3585 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1181 *11)) (-5 *6 (-649 *10)) (-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855)) (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10)) (-5 *2 (-649 (-1181 *5))) (-5 *1 (-747 *9 *10 *11 *5)) (-5 *3 (-1181 *5)))) (-3982 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6)) (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-310)))) (-4301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-5 *2 (-2 (|:| |upol| (-1181 *8)) (|:| |Lval| (-649 *8)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 *8)) (|:| -1993 (-569))))) (|:| |ctpol| *8))) (-5 *1 (-747 *6 *7 *8 *9)))) (-1400 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 *9)) (|:| -1993 (-569))))))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)))) (-2833 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-5 *2 (-2 (|:| -1814 (-1181 *9)) (|:| |polval| (-1181 *8)))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)) (-5 *4 (-1181 *8)))) (-3385 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569))))) (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5))))) -(-10 -7 (-15 -3764 ((-423 |#4|) |#4|)) (-15 -3764 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -3411 ((-423 |#4|) |#4|)) (-15 -1955 ((-569) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3385 ((-423 |#4|) |#4| |#2|)) (-15 -2833 ((-2 (|:| -1814 (-1181 |#4|)) (|:| |polval| (-1181 |#3|))) (-1181 |#4|) (-1181 |#3|) (-569))) (-15 -1400 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-649 (-2 (|:| -3800 (-1181 |#4|)) (|:| -1993 (-569)))))) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -4301 ((-2 (|:| |upol| (-1181 |#3|)) (|:| |Lval| (-649 |#3|)) (|:| |Lfact| (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569))))) (|:| |ctpol| |#3|)) (-1181 |#4|) (-649 |#2|) (-649 (-649 |#3|)))) (-15 -3287 (|#4| (-569) (-423 |#4|))) (-15 -3982 ((-112) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))) (-649 (-2 (|:| -3800 (-1181 |#3|)) (|:| -1993 (-569)))))) (-15 -3585 ((-3 (-649 (-1181 |#4|)) "failed") (-1181 |#4|) (-1181 |#3|) (-1181 |#3|) |#4| (-649 |#2|) (-649 (-776)) (-649 |#3|))) (-15 -2942 ((-649 (-776)) (-1181 |#4|) (-649 |#2|) (-776))) (-15 -1514 ((-1181 |#3|) (-1181 |#3|) (-569)))) -((-4311 (($ $ (-927)) 17))) -(((-748 |#1| |#2|) (-10 -8 (-15 -4311 (|#1| |#1| (-927)))) (-749 |#2|) (-173)) (T -748)) -NIL -(-10 -8 (-15 -4311 (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2395 (($ $ (-927)) 31)) (-4311 (($ $ (-927)) 38)) (-2667 (($ $ (-927)) 32)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2180 (($ $ $) 28)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1676 (($ $ $ $) 29)) (-2489 (($ $ $) 27)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-749 |#1|) (-140) (-173)) (T -749)) -((-4311 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173))))) -(-13 (-766) (-722 |t#1|) (-10 -8 (-15 -4311 ($ $ (-927))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-725) . T) ((-766) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-3602 (((-1043) (-694 (-226)) (-569) (-112) (-569)) 25)) (-2780 (((-1043) (-694 (-226)) (-569) (-112) (-569)) 24))) -(((-750) (-10 -7 (-15 -2780 ((-1043) (-694 (-226)) (-569) (-112) (-569))) (-15 -3602 ((-1043) (-694 (-226)) (-569) (-112) (-569))))) (T -750)) -((-3602 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-750)))) (-2780 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-750))))) -(-10 -7 (-15 -2780 ((-1043) (-694 (-226)) (-569) (-112) (-569))) (-15 -3602 ((-1043) (-694 (-226)) (-569) (-112) (-569)))) -((-4385 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) 43)) (-2830 (((-1043) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) 39)) (-3328 (((-1043) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 32))) -(((-751) (-10 -7 (-15 -3328 ((-1043) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -2830 ((-1043) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -4385 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN))))))) (T -751)) -((-4385 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1043)) (-5 *1 (-751)))) (-2830 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1043)) (-5 *1 (-751)))) (-3328 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-751))))) -(-10 -7 (-15 -3328 ((-1043) (-226) (-226) (-226) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -2830 ((-1043) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN))))) (-15 -4385 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))))) -((-2556 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 34)) (-4169 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 33)) (-1337 (((-1043) (-569) (-694 (-226)) (-569)) 32)) (-1526 (((-1043) (-569) (-694 (-226)) (-569)) 31)) (-1913 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 30)) (-3303 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-4372 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-4286 (((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-3819 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2142 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-2451 (((-1043) (-569) (-694 (-226)) (-569)) 22)) (-4073 (((-1043) (-569) (-694 (-226)) (-569)) 21))) -(((-752) (-10 -7 (-15 -4073 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2451 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2142 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3819 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4286 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4372 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3303 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1913 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1526 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -1337 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -4169 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -2556 ((-1043) (-569) (-569) (-694 (-226)) (-569))))) (T -752)) -((-2556 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4169 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-1337 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-1526 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-1913 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-3303 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4372 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4286 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-3819 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-2142 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-2451 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752)))) (-4073 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-752))))) -(-10 -7 (-15 -4073 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2451 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -2142 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3819 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4286 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4372 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3303 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1913 ((-1043) (-569) (-569) (-1167) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1526 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -1337 ((-1043) (-569) (-694 (-226)) (-569))) (-15 -4169 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -2556 ((-1043) (-569) (-569) (-694 (-226)) (-569)))) -((-2030 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3563 (((-1043) (-694 (-226)) (-694 (-226)) (-569) (-569)) 51)) (-2120 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3624 (((-1043) (-226) (-226) (-569) (-569) (-569) (-569)) 46)) (-3820 (((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 45)) (-2143 (((-1043) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 44)) (-3546 (((-1043) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 43)) (-1841 (((-1043) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) 42)) (-3092 (((-1043) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 38)) (-3478 (((-1043) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 37)) (-1943 (((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 33)) (-2230 (((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) 32))) -(((-753) (-10 -7 (-15 -2230 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1943 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3478 ((-1043) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3092 ((-1043) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1841 ((-1043) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3546 ((-1043) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2143 ((-1043) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3820 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3624 ((-1043) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -2120 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -3563 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2030 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))))) (T -753)) -((-2030 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3563 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-753)))) (-2120 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3624 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3820 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-2143 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3546 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-1841 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3092 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-3478 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-753)))) (-1943 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-753)))) (-2230 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *2 (-1043)) (-5 *1 (-753))))) -(-10 -7 (-15 -2230 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1943 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3478 ((-1043) (-226) (-226) (-569) (-694 (-226)) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -3092 ((-1043) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668))))) (-15 -1841 ((-1043) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3546 ((-1043) (-226) (-226) (-226) (-226) (-569) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -2143 ((-1043) (-226) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3820 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G))))) (-15 -3624 ((-1043) (-226) (-226) (-569) (-569) (-569) (-569))) (-15 -2120 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN))))) (-15 -3563 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-569))) (-15 -2030 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-226) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))))) -((-4239 (((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1543 (((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393)) 69) (((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1981 (((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) 57)) (-2414 (((-1043) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 50)) (-2713 (((-1043) (-226) (-569) (-569) (-1167) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3088 (((-1043) (-226) (-569) (-569) (-226) (-1167) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3450 (((-1043) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) 42)) (-1821 (((-1043) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-754) (-10 -7 (-15 -1821 ((-1043) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -3450 ((-1043) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -3088 ((-1043) (-226) (-569) (-569) (-226) (-1167) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2713 ((-1043) (-226) (-569) (-569) (-1167) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2414 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -1981 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -4239 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -754)) -((-4239 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1543 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-393)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1543 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1981 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-2414 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1043)) (-5 *1 (-754)))) (-2713 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-3088 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-3450 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754)))) (-1821 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754))))) -(-10 -7 (-15 -1821 ((-1043) (-226) (-569) (-569) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -3450 ((-1043) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -3088 ((-1043) (-226) (-569) (-569) (-226) (-1167) (-226) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2713 ((-1043) (-226) (-569) (-569) (-1167) (-569) (-226) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT))))) (-15 -2414 ((-1043) (-694 (-226)) (-694 (-226)) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN))))) (-15 -1981 ((-1043) (-226) (-226) (-569) (-226) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))))) (-15 -1543 ((-1043) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL))) (-393) (-393))) (-15 -4239 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1685 (((-1043) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569)) 45)) (-2124 (((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1167) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) 41)) (-2510 (((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 23))) -(((-755) (-10 -7 (-15 -2510 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2124 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1167) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -1685 ((-1043) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569))))) (T -755)) -((-1685 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226))) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-755)))) (-2124 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1043)) (-5 *1 (-755)))) (-2510 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-755))))) -(-10 -7 (-15 -2510 ((-1043) (-569) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2124 ((-1043) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-1167) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY))))) (-15 -1685 ((-1043) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-680 (-226)) (-569)))) -((-3718 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569)) 35)) (-4210 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569)) 34)) (-3263 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569)) 33)) (-3807 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-2256 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-2825 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569)) 27)) (-3036 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 24)) (-1326 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569)) 23)) (-1914 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569)) 22)) (-2487 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 21))) -(((-756) (-10 -7 (-15 -2487 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1914 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1326 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3036 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2825 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2256 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3807 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3263 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -4210 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -3718 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569))))) (T -756)) -((-3718 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-4210 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-3263 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-3807 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-2256 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-2825 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-756)))) (-3036 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-1326 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-1914 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756)))) (-2487 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-756))))) -(-10 -7 (-15 -2487 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -1914 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1326 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -3036 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2825 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-226) (-569))) (-15 -2256 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3807 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3263 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-694 (-226)) (-226) (-226) (-569))) (-15 -4210 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-226) (-226) (-569))) (-15 -3718 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-694 (-226)) (-226) (-226) (-569)))) -((-1363 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 45)) (-2598 (((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569)) 44)) (-4004 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)) 43)) (-2076 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 42)) (-2408 (((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569)) 41)) (-2955 (((-1043) (-1167) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 40)) (-3591 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569)) 39)) (-2702 (((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569))) 38)) (-1989 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569)) 35)) (-2952 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569)) 34)) (-3383 (((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569)) 33)) (-3886 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 32)) (-2141 (((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569)) 31)) (-2552 (((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569)) 30)) (-2033 (((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 29)) (-3481 (((-1043) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569)) 28)) (-1711 (((-1043) (-569) (-694 (-226)) (-226) (-569)) 24)) (-2116 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 21))) -(((-757) (-10 -7 (-15 -2116 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1711 ((-1043) (-569) (-694 (-226)) (-226) (-569))) (-15 -3481 ((-1043) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -2033 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -2552 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -2141 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -3886 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3383 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -2952 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -1989 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2702 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -3591 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -2955 ((-1043) (-1167) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -2408 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2076 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4004 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -2598 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1363 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))))) (T -757)) -((-1363 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2598 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-4004 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2076 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2408 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2955 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3591 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2702 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-1989 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2952 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3383 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3886 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2141 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2552 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2033 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-3481 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-1711 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) (-5 *2 (-1043)) (-5 *1 (-757)))) (-2116 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-757))))) -(-10 -7 (-15 -2116 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1711 ((-1043) (-569) (-694 (-226)) (-226) (-569))) (-15 -3481 ((-1043) (-569) (-569) (-569) (-226) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-569)) (-569) (-569) (-569))) (-15 -2033 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -2552 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569) (-569) (-569))) (-15 -2141 ((-1043) (-569) (-226) (-226) (-694 (-226)) (-569) (-569) (-226) (-569))) (-15 -3886 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3383 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569))) (-15 -2952 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569))) (-15 -1989 ((-1043) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2702 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)))) (-15 -3591 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569) (-569) (-569) (-226) (-694 (-226)) (-569))) (-15 -2955 ((-1043) (-1167) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -2408 ((-1043) (-1167) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2076 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4004 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569))) (-15 -2598 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1363 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569) (-694 (-226)) (-694 (-226)) (-569) (-569) (-569)))) -((-3664 (((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569)) 63)) (-3913 (((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2252 (((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) 58)) (-3580 (((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569)) 51)) (-3932 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2336 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2645 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4146 (((-1043) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-758) (-10 -7 (-15 -4146 ((-1043) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -2645 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -2336 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -3932 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -3580 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -2252 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -3913 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3664 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569))))) (T -758)) -((-3664 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-3913 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-2252 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-3580 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-758)))) (-3932 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1043)) (-5 *1 (-758)))) (-2336 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1043)) (-5 *1 (-758)))) (-2645 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1043)) (-5 *1 (-758)))) (-4146 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758))))) -(-10 -7 (-15 -4146 ((-1043) (-569) (-226) (-226) (-569) (-226) (-112) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -2645 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1))))) (-15 -2336 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2))))) (-15 -3932 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1))))) (-15 -3580 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-569) (-569) (-694 (-226)) (-569))) (-15 -2252 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-226) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-112) (-112) (-112) (-569) (-569) (-694 (-226)) (-694 (-569)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS))))) (-15 -3913 ((-1043) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-569) (-112) (-226) (-569) (-226) (-226) (-112) (-226) (-226) (-226) (-226) (-112) (-569) (-569) (-569) (-569) (-569) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-569) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN))))) (-15 -3664 ((-1043) (-569) (-569) (-569) (-226) (-694 (-226)) (-569) (-694 (-226)) (-569)))) -((-2962 (((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 47)) (-3274 (((-1043) (-1167) (-1167) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569)) 46)) (-3285 (((-1043) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 45)) (-3572 (((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 40)) (-1681 (((-1043) (-1167) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569)) 39)) (-2895 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-569)) 36)) (-3145 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569)) 35)) (-2750 (((-1043) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569)) 34)) (-4117 (((-1043) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569)) 33)) (-2315 (((-1043) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569)) 32))) -(((-759) (-10 -7 (-15 -2315 ((-1043) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -4117 ((-1043) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -2750 ((-1043) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -3145 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -2895 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1681 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -3572 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3285 ((-1043) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -3274 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -2962 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -759)) -((-2962 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3274 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3285 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3572 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-1681 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-2895 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-759)))) (-3145 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-759)))) (-2750 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-759)))) (-4117 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226))) (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-759)))) (-2315 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226))) (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112)) (-5 *2 (-1043)) (-5 *1 (-759))))) -(-10 -7 (-15 -2315 ((-1043) (-569) (-569) (-569) (-569) (-226) (-112) (-112) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-569))) (-15 -4117 ((-1043) (-569) (-569) (-569) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-694 (-569)) (-112) (-226) (-112) (-694 (-569)) (-694 (-226)) (-569))) (-15 -2750 ((-1043) (-569) (-569) (-569) (-569) (-649 (-112)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-226) (-226) (-569))) (-15 -3145 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569))) (-15 -2895 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -1681 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)) (-569))) (-15 -3572 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3285 ((-1043) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -3274 ((-1043) (-1167) (-1167) (-569) (-569) (-694 (-170 (-226))) (-569) (-694 (-170 (-226))) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -2962 ((-1043) (-1167) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)))) -((-4255 (((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)) 79)) (-1483 (((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 68)) (-3017 (((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393)) 56) (((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) 55)) (-3471 (((-1043) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569)) 37)) (-3828 (((-1043) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569)) 33)) (-3991 (((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569)) 30)) (-4390 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 29)) (-2697 (((-1043) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 28)) (-4072 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 27)) (-3357 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569)) 26)) (-2477 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 25)) (-1481 (((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 24)) (-2912 (((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569)) 23)) (-3172 (((-1043) (-694 (-226)) (-569) (-569) (-569) (-569)) 22)) (-1521 (((-1043) (-569) (-569) (-694 (-226)) (-569)) 21))) -(((-760) (-10 -7 (-15 -1521 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3172 ((-1043) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2912 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1481 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2477 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3357 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -4072 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2697 ((-1043) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4390 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3991 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -3828 ((-1043) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -3471 ((-1043) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -1483 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4255 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569))))) (T -760)) -((-4255 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-1483 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3017 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3017 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3471 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3828 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3991 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-4390 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-2697 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-4072 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3357 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-2477 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-1481 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-2912 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760)))) (-3172 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-760)))) (-1521 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-760))))) -(-10 -7 (-15 -1521 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3172 ((-1043) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2912 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -1481 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2477 ((-1043) (-569) (-569) (-694 (-226)) (-569))) (-15 -3357 ((-1043) (-569) (-569) (-569) (-569) (-694 (-226)) (-569))) (-15 -4072 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -2697 ((-1043) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4390 ((-1043) (-569) (-569) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3991 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569) (-569))) (-15 -3828 ((-1043) (-569) (-569) (-226) (-226) (-569) (-569) (-694 (-226)) (-569))) (-15 -3471 ((-1043) (-569) (-569) (-569) (-226) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))))) (-15 -3017 ((-1043) (-569) (-569) (-226) (-569) (-569) (-569) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE))) (-393))) (-15 -1483 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4255 ((-1043) (-569) (-569) (-569) (-569) (-569) (-112) (-569) (-112) (-569) (-694 (-170 (-226))) (-694 (-170 (-226))) (-569)))) -((-2767 (((-1043) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) 64)) (-4053 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569)) 60)) (-1966 (((-1043) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) 59)) (-4097 (((-1043) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569)) 37)) (-3642 (((-1043) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569)) 36)) (-3865 (((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569)) 33)) (-2267 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226))) 32)) (-2634 (((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569)) 28)) (-4155 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 27)) (-1318 (((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569)) 26)) (-3835 (((-1043) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569)) 22))) -(((-761) (-10 -7 (-15 -3835 ((-1043) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1318 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -4155 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2634 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -2267 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -3865 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3642 ((-1043) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4097 ((-1043) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1966 ((-1043) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -4053 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2767 ((-1043) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD))))))) (T -761)) -((-2767 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-4053 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-1966 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-4097 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-3642 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-3865 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-2267 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-2634 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-761)))) (-4155 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-1318 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-761)))) (-3835 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043)) (-5 *1 (-761))))) -(-10 -7 (-15 -3835 ((-1043) (-569) (-694 (-170 (-226))) (-569) (-569) (-569) (-569) (-694 (-170 (-226))) (-569))) (-15 -1318 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -4155 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-569))) (-15 -2634 ((-1043) (-694 (-226)) (-569) (-694 (-226)) (-569) (-569) (-569))) (-15 -2267 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-569)) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)))) (-15 -3865 ((-1043) (-569) (-569) (-694 (-226)) (-694 (-226)) (-694 (-226)) (-569))) (-15 -3642 ((-1043) (-569) (-569) (-569) (-226) (-569) (-694 (-226)) (-694 (-226)) (-569))) (-15 -4097 ((-1043) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-569)) (-694 (-226)) (-694 (-569)) (-694 (-569)) (-694 (-226)) (-694 (-226)) (-694 (-569)) (-569))) (-15 -1966 ((-1043) (-569) (-694 (-226)) (-112) (-226) (-569) (-569) (-569) (-569) (-226) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE))))) (-15 -4053 ((-1043) (-569) (-694 (-226)) (-569) (-694 (-226)) (-694 (-569)) (-569) (-694 (-226)) (-569) (-569) (-569) (-569))) (-15 -2767 ((-1043) (-569) (-569) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-694 (-226)) (-569) (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))))) -((-1997 (((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226))) 29)) (-3353 (((-1043) (-1167) (-569) (-569) (-694 (-226))) 28)) (-3360 (((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226))) 27)) (-1662 (((-1043) (-569) (-569) (-569) (-694 (-226))) 21))) -(((-762) (-10 -7 (-15 -1662 ((-1043) (-569) (-569) (-569) (-694 (-226)))) (-15 -3360 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3353 ((-1043) (-1167) (-569) (-569) (-694 (-226)))) (-15 -1997 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226)))))) (T -762)) -((-1997 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-762)))) (-3353 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-762)))) (-3360 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-762)))) (-1662 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) (-5 *1 (-762))))) -(-10 -7 (-15 -1662 ((-1043) (-569) (-569) (-569) (-694 (-226)))) (-15 -3360 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-694 (-569)) (-569) (-694 (-226)))) (-15 -3353 ((-1043) (-1167) (-569) (-569) (-694 (-226)))) (-15 -1997 ((-1043) (-1167) (-569) (-569) (-694 (-226)) (-569) (-569) (-694 (-226))))) -((-2711 (((-1043) (-226) (-226) (-226) (-226) (-569)) 62)) (-4222 (((-1043) (-226) (-226) (-226) (-569)) 61)) (-2302 (((-1043) (-226) (-226) (-226) (-569)) 60)) (-1862 (((-1043) (-226) (-226) (-569)) 59)) (-2167 (((-1043) (-226) (-569)) 58)) (-3444 (((-1043) (-226) (-569)) 57)) (-1675 (((-1043) (-226) (-569)) 56)) (-2958 (((-1043) (-226) (-569)) 55)) (-4299 (((-1043) (-226) (-569)) 54)) (-2178 (((-1043) (-226) (-569)) 53)) (-3765 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 52)) (-4012 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 51)) (-2308 (((-1043) (-226) (-569)) 50)) (-3738 (((-1043) (-226) (-569)) 49)) (-2592 (((-1043) (-226) (-569)) 48)) (-4182 (((-1043) (-226) (-569)) 47)) (-4413 (((-1043) (-569) (-226) (-170 (-226)) (-569) (-1167) (-569)) 46)) (-2610 (((-1043) (-1167) (-170 (-226)) (-1167) (-569)) 45)) (-4013 (((-1043) (-1167) (-170 (-226)) (-1167) (-569)) 44)) (-1920 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 43)) (-4069 (((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569)) 42)) (-2305 (((-1043) (-226) (-569)) 39)) (-2440 (((-1043) (-226) (-569)) 38)) (-3883 (((-1043) (-226) (-569)) 37)) (-2077 (((-1043) (-226) (-569)) 36)) (-2195 (((-1043) (-226) (-569)) 35)) (-3343 (((-1043) (-226) (-569)) 34)) (-3484 (((-1043) (-226) (-569)) 33)) (-1691 (((-1043) (-226) (-569)) 32)) (-2931 (((-1043) (-226) (-569)) 31)) (-4407 (((-1043) (-226) (-569)) 30)) (-2547 (((-1043) (-226) (-226) (-226) (-569)) 29)) (-1836 (((-1043) (-226) (-569)) 28)) (-3027 (((-1043) (-226) (-569)) 27)) (-3094 (((-1043) (-226) (-569)) 26)) (-2130 (((-1043) (-226) (-569)) 25)) (-3626 (((-1043) (-226) (-569)) 24)) (-1881 (((-1043) (-170 (-226)) (-569)) 21))) -(((-763) (-10 -7 (-15 -1881 ((-1043) (-170 (-226)) (-569))) (-15 -3626 ((-1043) (-226) (-569))) (-15 -2130 ((-1043) (-226) (-569))) (-15 -3094 ((-1043) (-226) (-569))) (-15 -3027 ((-1043) (-226) (-569))) (-15 -1836 ((-1043) (-226) (-569))) (-15 -2547 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4407 ((-1043) (-226) (-569))) (-15 -2931 ((-1043) (-226) (-569))) (-15 -1691 ((-1043) (-226) (-569))) (-15 -3484 ((-1043) (-226) (-569))) (-15 -3343 ((-1043) (-226) (-569))) (-15 -2195 ((-1043) (-226) (-569))) (-15 -2077 ((-1043) (-226) (-569))) (-15 -3883 ((-1043) (-226) (-569))) (-15 -2440 ((-1043) (-226) (-569))) (-15 -2305 ((-1043) (-226) (-569))) (-15 -4069 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -1920 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4013 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -2610 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -4413 ((-1043) (-569) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4182 ((-1043) (-226) (-569))) (-15 -2592 ((-1043) (-226) (-569))) (-15 -3738 ((-1043) (-226) (-569))) (-15 -2308 ((-1043) (-226) (-569))) (-15 -4012 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -3765 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -2178 ((-1043) (-226) (-569))) (-15 -4299 ((-1043) (-226) (-569))) (-15 -2958 ((-1043) (-226) (-569))) (-15 -1675 ((-1043) (-226) (-569))) (-15 -3444 ((-1043) (-226) (-569))) (-15 -2167 ((-1043) (-226) (-569))) (-15 -1862 ((-1043) (-226) (-226) (-569))) (-15 -2302 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4222 ((-1043) (-226) (-226) (-226) (-569))) (-15 -2711 ((-1043) (-226) (-226) (-226) (-226) (-569))))) (T -763)) -((-2711 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4222 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2302 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1862 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4299 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3765 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4012 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3738 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4413 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1167)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2610 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4013 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1920 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4069 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2077 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3484 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-4407 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2547 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3027 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-2130 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(-10 -7 (-15 -1881 ((-1043) (-170 (-226)) (-569))) (-15 -3626 ((-1043) (-226) (-569))) (-15 -2130 ((-1043) (-226) (-569))) (-15 -3094 ((-1043) (-226) (-569))) (-15 -3027 ((-1043) (-226) (-569))) (-15 -1836 ((-1043) (-226) (-569))) (-15 -2547 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4407 ((-1043) (-226) (-569))) (-15 -2931 ((-1043) (-226) (-569))) (-15 -1691 ((-1043) (-226) (-569))) (-15 -3484 ((-1043) (-226) (-569))) (-15 -3343 ((-1043) (-226) (-569))) (-15 -2195 ((-1043) (-226) (-569))) (-15 -2077 ((-1043) (-226) (-569))) (-15 -3883 ((-1043) (-226) (-569))) (-15 -2440 ((-1043) (-226) (-569))) (-15 -2305 ((-1043) (-226) (-569))) (-15 -4069 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -1920 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4013 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -2610 ((-1043) (-1167) (-170 (-226)) (-1167) (-569))) (-15 -4413 ((-1043) (-569) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -4182 ((-1043) (-226) (-569))) (-15 -2592 ((-1043) (-226) (-569))) (-15 -3738 ((-1043) (-226) (-569))) (-15 -2308 ((-1043) (-226) (-569))) (-15 -4012 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -3765 ((-1043) (-226) (-170 (-226)) (-569) (-1167) (-569))) (-15 -2178 ((-1043) (-226) (-569))) (-15 -4299 ((-1043) (-226) (-569))) (-15 -2958 ((-1043) (-226) (-569))) (-15 -1675 ((-1043) (-226) (-569))) (-15 -3444 ((-1043) (-226) (-569))) (-15 -2167 ((-1043) (-226) (-569))) (-15 -1862 ((-1043) (-226) (-226) (-569))) (-15 -2302 ((-1043) (-226) (-226) (-226) (-569))) (-15 -4222 ((-1043) (-226) (-226) (-226) (-569))) (-15 -2711 ((-1043) (-226) (-226) (-226) (-226) (-569)))) -((-4111 (((-1280)) 20)) (-2038 (((-1167)) 31)) (-3643 (((-1167)) 30)) (-4420 (((-1112) (-1185) (-694 (-569))) 45) (((-1112) (-1185) (-694 (-226))) 41)) (-2079 (((-112)) 19)) (-3789 (((-1167) (-1167)) 34))) -(((-764) (-10 -7 (-15 -3643 ((-1167))) (-15 -2038 ((-1167))) (-15 -3789 ((-1167) (-1167))) (-15 -4420 ((-1112) (-1185) (-694 (-226)))) (-15 -4420 ((-1112) (-1185) (-694 (-569)))) (-15 -2079 ((-112))) (-15 -4111 ((-1280))))) (T -764)) -((-4111 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-764)))) (-2079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764)))) (-4420 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-569))) (-5 *2 (-1112)) (-5 *1 (-764)))) (-4420 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-226))) (-5 *2 (-1112)) (-5 *1 (-764)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))) (-2038 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764)))) (-3643 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764))))) -(-10 -7 (-15 -3643 ((-1167))) (-15 -2038 ((-1167))) (-15 -3789 ((-1167) (-1167))) (-15 -4420 ((-1112) (-1185) (-694 (-226)))) (-15 -4420 ((-1112) (-1185) (-694 (-569)))) (-15 -2079 ((-112))) (-15 -4111 ((-1280)))) -((-2180 (($ $ $) 10)) (-1676 (($ $ $ $) 9)) (-2489 (($ $ $) 12))) -(((-765 |#1|) (-10 -8 (-15 -2489 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -1676 (|#1| |#1| |#1| |#1|))) (-766)) (T -765)) -NIL -(-10 -8 (-15 -2489 (|#1| |#1| |#1|)) (-15 -2180 (|#1| |#1| |#1|)) (-15 -1676 (|#1| |#1| |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-2395 (($ $ (-927)) 31)) (-2667 (($ $ (-927)) 32)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2180 (($ $ $) 28)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1676 (($ $ $ $) 29)) (-2489 (($ $ $) 27)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30))) -(((-766) (-140)) (T -766)) -((-1676 (*1 *1 *1 *1 *1) (-4 *1 (-766))) (-2180 (*1 *1 *1 *1) (-4 *1 (-766))) (-2489 (*1 *1 *1 *1) (-4 *1 (-766)))) -(-13 (-21) (-725) (-10 -8 (-15 -1676 ($ $ $ $)) (-15 -2180 ($ $ $)) (-15 -2489 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-1108) . T)) -((-3796 (((-867) $) NIL) (($ (-569)) 10))) -(((-767 |#1|) (-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-768)) (T -767)) -NIL -(-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4379 (((-3 $ "failed") $) 43)) (-2395 (($ $ (-927)) 31) (($ $ (-776)) 38)) (-3086 (((-3 $ "failed") $) 41)) (-2349 (((-112) $) 37)) (-4059 (((-3 $ "failed") $) 42)) (-2667 (($ $ (-927)) 32) (($ $ (-776)) 39)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2180 (($ $ $) 28)) (-3796 (((-867) $) 12) (($ (-569)) 34)) (-2721 (((-776)) 35 T CONST)) (-1520 (((-112) $ $) 9)) (-1676 (($ $ $ $) 29)) (-2489 (($ $ $) 27)) (-1804 (($) 19 T CONST)) (-1815 (($) 36 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 33) (($ $ (-776)) 40)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 30))) -(((-768) (-140)) (T -768)) -((-2721 (*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768))))) -(-13 (-766) (-727) (-10 -8 (-15 -2721 ((-776)) -3709) (-15 -3796 ($ (-569))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-725) . T) ((-727) . T) ((-766) . T) ((-1108) . T)) -((-3341 (((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|) 33)) (-3134 (((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|) 23)) (-1886 (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1185)) 20) (((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569))))) 19))) -(((-769 |#1|) (-10 -7 (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1185))) (-15 -3134 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -3341 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|))) (-13 (-367) (-853))) (T -769)) -((-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 *4))))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-3134 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1185)) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5)) (-4 *5 (-13 (-367) (-853))))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853)))))) -(-10 -7 (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))))) (-15 -1886 ((-958 (-170 (-412 (-569)))) (-694 (-170 (-412 (-569)))) (-1185))) (-15 -3134 ((-649 (-170 |#1|)) (-694 (-170 (-412 (-569)))) |#1|)) (-15 -3341 ((-649 (-2 (|:| |outval| (-170 |#1|)) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 (-170 |#1|)))))) (-694 (-170 (-412 (-569)))) |#1|))) -((-1855 (((-175 (-569)) |#1|) 27))) -(((-770 |#1|) (-10 -7 (-15 -1855 ((-175 (-569)) |#1|))) (-409)) (T -770)) -((-1855 (*1 *2 *3) (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409))))) -(-10 -7 (-15 -1855 ((-175 (-569)) |#1|))) -((-4276 ((|#1| |#1| |#1|) 28)) (-3662 ((|#1| |#1| |#1|) 27)) (-3768 ((|#1| |#1| |#1|) 38)) (-2036 ((|#1| |#1| |#1|) 34)) (-1598 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3391 (((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|) 26))) -(((-771 |#1| |#2|) (-10 -7 (-15 -3391 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| |#1|))) (-713 |#2|) (-367)) (T -771)) -((-3768 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-2036 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-1598 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-4276 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-3662 (*1 *2 *2 *2) (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) (-3391 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4))))) -(-10 -7 (-15 -3391 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -3768 (|#1| |#1| |#1|))) -((-2641 (((-696 (-1233)) $ (-1233)) 26)) (-2283 (((-696 (-554)) $ (-554)) 25)) (-2340 (((-776) $ (-128)) 27)) (-3998 (((-696 (-129)) $ (-129)) 24)) (-3694 (((-696 (-1233)) $) 12)) (-1690 (((-696 (-1231)) $) 8)) (-1979 (((-696 (-1230)) $) 10)) (-1389 (((-696 (-554)) $) 13)) (-3281 (((-696 (-552)) $) 9)) (-1933 (((-696 (-551)) $) 11)) (-3732 (((-776) $ (-128)) 7)) (-3171 (((-696 (-129)) $) 14)) (-3986 (((-112) $) 31)) (-2462 (((-696 $) |#1| (-960)) 32)) (-2543 (($ $) 6))) -(((-772 |#1|) (-140) (-1108)) (T -772)) -((-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-960)) (-4 *3 (-1108)) (-5 *2 (-696 *1)) (-4 *1 (-772 *3)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(-13 (-581) (-10 -8 (-15 -2462 ((-696 $) |t#1| (-960))) (-15 -3986 ((-112) $)))) -(((-174) . T) ((-532) . T) ((-581) . T) ((-865) . T)) -((-3615 (((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)) 71)) (-4002 (((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) 69)) (-3059 (((-569)) 85))) -(((-773 |#1| |#2|) (-10 -7 (-15 -3059 ((-569))) (-15 -4002 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -3615 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)))) (-1251 (-569)) (-414 (-569) |#1|)) (T -773)) -((-3615 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4)))) (-4002 (*1 *2) (-12 (-4 *3 (-1251 (-569))) (-5 *2 (-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569))))) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3)))) (-3059 (*1 *2) (-12 (-4 *3 (-1251 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4)) (-4 *4 (-414 *2 *3))))) -(-10 -7 (-15 -3059 ((-569))) (-15 -4002 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))))) (-15 -3615 ((-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) (|:| |basisInv| (-694 (-569)))) (-569)))) -((-2417 (((-112) $ $) NIL)) (-3150 (((-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $) 21)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 13) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-774) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3150 ((-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $))))) (T -774)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-774)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-5 *1 (-774))))) -(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3796 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (-15 -3150 ((-3 (|:| |nia| (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| |mdnia| (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) $)))) -((-3855 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 18) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185))) 17)) (-3218 (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))) 20) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185))) 19))) -(((-775 |#1|) (-10 -7 (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))))) (-561)) (T -775)) -((-3218 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) (-3855 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5))))) -(-10 -7 (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3855 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-958 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3151 (($ $ $) 10)) (-2208 (((-3 $ "failed") $ $) 15)) (-3084 (($ $ (-569)) 11)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($ $) NIL)) (-2379 (($ $ $) NIL)) (-2349 (((-112) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1870 (($ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 6 T CONST)) (-1815 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ $ $) NIL))) -(((-776) (-13 (-798) (-731) (-10 -8 (-15 -2379 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -2084 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2407 ((-3 $ "failed") $ $)) (-15 -3084 ($ $ (-569))) (-15 -3406 ($ $)) (-6 (-4449 "*"))))) (T -776)) -((-2379 (*1 *1 *1 *1) (-5 *1 (-776))) (-2368 (*1 *1 *1 *1) (-5 *1 (-776))) (-1870 (*1 *1 *1 *1) (-5 *1 (-776))) (-2084 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4007 (-776)) (|:| -2054 (-776)))) (-5 *1 (-776)))) (-2407 (*1 *1 *1 *1) (|partial| -5 *1 (-776))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776)))) (-3406 (*1 *1 *1) (-5 *1 (-776)))) -(-13 (-798) (-731) (-10 -8 (-15 -2379 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -1870 ($ $ $)) (-15 -2084 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2407 ((-3 $ "failed") $ $)) (-15 -3084 ($ $ (-569))) (-15 -3406 ($ $)) (-6 (-4449 "*")))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 15)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4400 ((|#1| $) 23)) (-3382 (($ $ $) NIL (|has| |#1| (-797)))) (-2876 (($ $ $) NIL (|has| |#1| (-797)))) (-4122 (((-1168) $) 48)) (-3551 (((-1129) $) NIL)) (-4413 ((|#3| $) 24)) (-3798 (((-868) $) 43)) (-1319 (((-112) $ $) 22)) (-1809 (($) 10 T CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-797)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-797)))) (-2923 (((-112) $ $) 20)) (-2969 (((-112) $ $) NIL (|has| |#1| (-797)))) (-2948 (((-112) $ $) 26 (|has| |#1| (-797)))) (-3037 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3026 (($ $) 17) (($ $ $) NIL)) (-3014 (($ $ $) 29)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-668 |#1| |#2| |#3|) (-13 (-723 |#2|) (-10 -8 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) (-15 -3037 ($ $ |#3|)) (-15 -3037 ($ |#1| |#3|)) (-15 -4400 (|#1| $)) (-15 -4413 (|#3| $)))) (-723 |#2|) (-174) (|SubsetCategory| (-732) |#2|)) (T -668)) +((-3037 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4)) (-4 *2 (|SubsetCategory| (-732) *4)))) (-3037 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-668 *2 *4 *3)) (-4 *2 (-723 *4)) (-4 *3 (|SubsetCategory| (-732) *4)))) (-4400 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-723 *3)) (-5 *1 (-668 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-732) *3)))) (-4413 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4)) (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4))))) +(-13 (-723 |#2|) (-10 -8 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|) (-15 -3037 ($ $ |#3|)) (-15 -3037 ($ |#1| |#3|)) (-15 -4400 (|#1| $)) (-15 -4413 (|#3| $)))) +((-3821 (((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|)) 33))) +(((-669 |#1|) (-10 -7 (-15 -3821 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|)))) (-916)) (T -669)) +((-3821 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *4))) (-5 *3 (-1182 *4)) (-4 *4 (-916)) (-5 *1 (-669 *4))))) +(-10 -7 (-15 -3821 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3107 (((-650 |#1|) $) 84)) (-1755 (($ $ (-777)) 94)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-2276 (((-1300 |#1| |#2|) (-1300 |#1| |#2|) $) 50)) (-4382 (((-3 (-678 |#1|) "failed") $) NIL)) (-3152 (((-678 |#1|) $) NIL)) (-1885 (($ $) 93)) (-1700 (((-777) $) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3350 (($ (-678 |#1|) |#2|) 70)) (-1660 (($ $) 89)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-2223 (((-1300 |#1| |#2|) (-1300 |#1| |#2|) $) 49)) (-3560 (((-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1851 (((-678 |#1|) $) NIL)) (-1860 ((|#2| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1725 (($ $ |#1| $) 32) (($ $ (-650 |#1|) (-650 $)) 34)) (-3324 (((-777) $) 91)) (-3811 (($ $ $) 20) (($ (-678 |#1|) (-678 |#1|)) 79) (($ (-678 |#1|) $) 77) (($ $ (-678 |#1|)) 78)) (-3798 (((-868) $) NIL) (($ |#1|) 76) (((-1291 |#1| |#2|) $) 60) (((-1300 |#1| |#2|) $) 43) (($ (-678 |#1|)) 27)) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-678 |#1|)) NIL)) (-1436 ((|#2| (-1300 |#1| |#2|) $) 45)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 23 T CONST)) (-4425 (((-650 (-2 (|:| |k| (-678 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1917 (((-3 $ "failed") (-1291 |#1| |#2|)) 62)) (-2682 (($ (-678 |#1|)) 14)) (-2923 (((-112) $ $) 46)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) 68) (($ $ $) NIL)) (-3014 (($ $ $) 31)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-678 |#1|)) NIL))) +(((-670 |#1| |#2|) (-13 (-379 |#1| |#2|) (-387 |#2| (-678 |#1|)) (-10 -8 (-15 -1917 ((-3 $ "failed") (-1291 |#1| |#2|))) (-15 -3811 ($ (-678 |#1|) (-678 |#1|))) (-15 -3811 ($ (-678 |#1|) $)) (-15 -3811 ($ $ (-678 |#1|))))) (-856) (-174)) (T -670)) +((-1917 (*1 *1 *2) (|partial| -12 (-5 *2 (-1291 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *1 (-670 *3 *4)))) (-3811 (*1 *1 *2 *2) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) (-4 *4 (-174)))) (-3811 (*1 *1 *2 *1) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) (-4 *4 (-174)))) (-3811 (*1 *1 *1 *2) (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) (-4 *4 (-174))))) +(-13 (-379 |#1| |#2|) (-387 |#2| (-678 |#1|)) (-10 -8 (-15 -1917 ((-3 $ "failed") (-1291 |#1| |#2|))) (-15 -3811 ($ (-678 |#1|) (-678 |#1|))) (-15 -3811 ($ (-678 |#1|) $)) (-15 -3811 ($ $ (-678 |#1|))))) +((-2163 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-2632 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2660 (($ (-1 (-112) |#2|) $) 29)) (-1500 (($ $) 67)) (-3786 (($ $) 78)) (-2571 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3600 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-4039 (((-570) |#2| $ (-570)) 75) (((-570) |#2| $) NIL) (((-570) (-1 (-112) |#2|) $) 56)) (-4300 (($ (-777) |#2|) 65)) (-3583 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-2735 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1347 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3384 (($ |#2|) 15)) (-2213 (($ $ $ (-570)) 42) (($ |#2| $ (-570)) 40)) (-4089 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-3886 (($ $ (-1243 (-570))) 51) (($ $ (-570)) 44)) (-2662 (($ $ $ (-570)) 74)) (-3964 (($ $) 72)) (-2948 (((-112) $ $) 80))) +(((-671 |#1| |#2|) (-10 -8 (-15 -3384 (|#1| |#2|)) (-15 -3886 (|#1| |#1| (-570))) (-15 -3886 (|#1| |#1| (-1243 (-570)))) (-15 -2571 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2213 (|#1| |#2| |#1| (-570))) (-15 -2213 (|#1| |#1| |#1| (-570))) (-15 -3583 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2660 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -2735 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4039 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -4039 ((-570) |#2| |#1|)) (-15 -4039 ((-570) |#2| |#1| (-570))) (-15 -2735 (|#1| |#1| |#1|)) (-15 -2163 ((-112) |#1|)) (-15 -2662 (|#1| |#1| |#1| (-570))) (-15 -1500 (|#1| |#1|)) (-15 -2632 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4089 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| (-777) |#2|)) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3964 (|#1| |#1|))) (-672 |#2|) (-1226)) (T -671)) +NIL +(-10 -8 (-15 -3384 (|#1| |#2|)) (-15 -3886 (|#1| |#1| (-570))) (-15 -3886 (|#1| |#1| (-1243 (-570)))) (-15 -2571 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2213 (|#1| |#2| |#1| (-570))) (-15 -2213 (|#1| |#1| |#1| (-570))) (-15 -3583 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2660 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2571 (|#1| |#2| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -2735 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2163 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4039 ((-570) (-1 (-112) |#2|) |#1|)) (-15 -4039 ((-570) |#2| |#1|)) (-15 -4039 ((-570) |#2| |#1| (-570))) (-15 -2735 (|#1| |#1| |#1|)) (-15 -2163 ((-112) |#1|)) (-15 -2662 (|#1| |#1| |#1| (-570))) (-15 -1500 (|#1| |#1|)) (-15 -2632 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2632 (|#1| |#1|)) (-15 -2948 ((-112) |#1| |#1|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3600 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4089 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4300 (|#1| (-777) |#2|)) (-15 -1347 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3964 (|#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-2566 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2926 (((-1281) $ (-570) (-570)) 98 (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) 53 (|has| $ (-6 -4449)))) (-2163 (((-112) $) 143 (|has| |#1| (-856))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-2632 (($ $) 147 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4449)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4449)))) (-3360 (($ $) 142 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1716 (($ $ $) 57 (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) 55 (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) 59 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4449))) (($ $ "rest" $) 56 (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 118 (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) 87 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-2660 (($ (-1 (-112) |#1|) $) 130)) (-1418 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4448)))) (-2553 ((|#1| $) 67)) (-3734 (($) 7 T CONST)) (-1500 (($ $) 145 (|has| $ (-6 -4449)))) (-2256 (($ $) 135)) (-3527 (($ $) 74) (($ $ (-777)) 72)) (-3786 (($ $) 132 (|has| |#1| (-1109)))) (-3552 (($ $) 100 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 131 (|has| |#1| (-1109))) (($ (-1 (-112) |#1|) $) 126)) (-1697 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4448))) (($ |#1| $) 101 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3849 ((|#1| $ (-570) |#1|) 86 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 88)) (-2430 (((-112) $) 84)) (-4039 (((-570) |#1| $ (-570)) 140 (|has| |#1| (-1109))) (((-570) |#1| $) 139 (|has| |#1| (-1109))) (((-570) (-1 (-112) |#1|) $) 138)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-4300 (($ (-777) |#1|) 109)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 96 (|has| (-570) (-856)))) (-3382 (($ $ $) 148 (|has| |#1| (-856)))) (-3583 (($ $ $) 133 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-2735 (($ $ $) 141 (|has| |#1| (-856))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 95 (|has| (-570) (-856)))) (-2876 (($ $ $) 149 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3384 (($ |#1|) 123)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1723 ((|#1| $) 71) (($ $ (-777)) 69)) (-2213 (($ $ $ (-570)) 128) (($ |#1| $ (-570)) 127)) (-4299 (($ $ $ (-570)) 117) (($ |#1| $ (-570)) 116)) (-2044 (((-650 (-570)) $) 93)) (-1480 (((-112) (-570) $) 92)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 77) (($ $ (-777)) 75)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2973 (($ $ |#1|) 97 (|has| $ (-6 -4449)))) (-2356 (((-112) $) 85)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 91)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1243 (-570))) 113) ((|#1| $ (-570)) 90) ((|#1| $ (-570) |#1|) 89)) (-3536 (((-570) $ $) 45)) (-3886 (($ $ (-1243 (-570))) 125) (($ $ (-570)) 124)) (-4331 (($ $ (-1243 (-570))) 115) (($ $ (-570)) 114)) (-3680 (((-112) $) 47)) (-3566 (($ $) 63)) (-2447 (($ $) 60 (|has| $ (-6 -4449)))) (-1497 (((-777) $) 64)) (-2360 (($ $) 65)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 144 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 99 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 108)) (-2832 (($ $ $) 62) (($ $ |#1|) 61)) (-2445 (($ $ $) 79) (($ |#1| $) 78) (($ (-650 $)) 111) (($ $ |#1|) 110)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 151 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 152 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2969 (((-112) $ $) 150 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 153 (|has| |#1| (-856)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-672 |#1|) (-141) (-1226)) (T -672)) +((-3384 (*1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1226))))) +(-13 (-1158 |t#1|) (-378 |t#1|) (-286 |t#1|) (-10 -8 (-15 -3384 ($ |t#1|)))) +(((-34) . T) ((-102) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-286 |#1|) . T) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1019 |#1|) . T) ((-1109) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1158 |#1|) . T) ((-1226) . T) ((-1264 |#1|) . T)) +((-3884 (((-650 (-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|))))) (-650 (-650 |#1|)) (-650 (-1276 |#1|))) 22) (((-650 (-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|))))) (-695 |#1|) (-650 (-1276 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-650 (-650 |#1|)) (-1276 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-695 |#1|) (-1276 |#1|)) 14)) (-3979 (((-777) (-695 |#1|) (-1276 |#1|)) 30)) (-3643 (((-3 (-1276 |#1|) "failed") (-695 |#1|) (-1276 |#1|)) 24)) (-3317 (((-112) (-695 |#1|) (-1276 |#1|)) 27))) +(((-673 |#1|) (-10 -7 (-15 -3884 ((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-695 |#1|) (-1276 |#1|))) (-15 -3884 ((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-650 (-650 |#1|)) (-1276 |#1|))) (-15 -3884 ((-650 (-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|))))) (-695 |#1|) (-650 (-1276 |#1|)))) (-15 -3884 ((-650 (-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|))))) (-650 (-650 |#1|)) (-650 (-1276 |#1|)))) (-15 -3643 ((-3 (-1276 |#1|) "failed") (-695 |#1|) (-1276 |#1|))) (-15 -3317 ((-112) (-695 |#1|) (-1276 |#1|))) (-15 -3979 ((-777) (-695 |#1|) (-1276 |#1|)))) (-368)) (T -673)) +((-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)) (-4 *5 (-368)) (-5 *2 (-777)) (-5 *1 (-673 *5)))) (-3317 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)) (-4 *5 (-368)) (-5 *2 (-112)) (-5 *1 (-673 *5)))) (-3643 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1276 *4)) (-5 *3 (-695 *4)) (-4 *4 (-368)) (-5 *1 (-673 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368)) (-5 *2 (-650 (-2 (|:| |particular| (-3 (-1276 *5) "failed")) (|:| -2077 (-650 (-1276 *5)))))) (-5 *1 (-673 *5)) (-5 *4 (-650 (-1276 *5))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 (-650 (-2 (|:| |particular| (-3 (-1276 *5) "failed")) (|:| -2077 (-650 (-1276 *5)))))) (-5 *1 (-673 *5)) (-5 *4 (-650 (-1276 *5))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368)) (-5 *2 (-2 (|:| |particular| (-3 (-1276 *5) "failed")) (|:| -2077 (-650 (-1276 *5))))) (-5 *1 (-673 *5)) (-5 *4 (-1276 *5)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |particular| (-3 (-1276 *5) "failed")) (|:| -2077 (-650 (-1276 *5))))) (-5 *1 (-673 *5)) (-5 *4 (-1276 *5))))) +(-10 -7 (-15 -3884 ((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-695 |#1|) (-1276 |#1|))) (-15 -3884 ((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-650 (-650 |#1|)) (-1276 |#1|))) (-15 -3884 ((-650 (-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|))))) (-695 |#1|) (-650 (-1276 |#1|)))) (-15 -3884 ((-650 (-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|))))) (-650 (-650 |#1|)) (-650 (-1276 |#1|)))) (-15 -3643 ((-3 (-1276 |#1|) "failed") (-695 |#1|) (-1276 |#1|))) (-15 -3317 ((-112) (-695 |#1|) (-1276 |#1|))) (-15 -3979 ((-777) (-695 |#1|) (-1276 |#1|)))) +((-3884 (((-650 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|)))) |#4| (-650 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|))) |#4| |#3|) 60)) (-3979 (((-777) |#4| |#3|) 18)) (-3643 (((-3 |#3| "failed") |#4| |#3|) 21)) (-3317 (((-112) |#4| |#3|) 14))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3884 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|))) |#4| |#3|)) (-15 -3884 ((-650 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|)))) |#4| (-650 |#3|))) (-15 -3643 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3317 ((-112) |#4| |#3|)) (-15 -3979 ((-777) |#4| |#3|))) (-368) (-13 (-378 |#1|) (-10 -7 (-6 -4449))) (-13 (-378 |#1|) (-10 -7 (-6 -4449))) (-693 |#1| |#2| |#3|)) (T -674)) +((-3979 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-5 *2 (-777)) (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) (-3317 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-5 *2 (-112)) (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) (-3643 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-368)) (-4 *5 (-13 (-378 *4) (-10 -7 (-6 -4449)))) (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449)))) (-5 *1 (-674 *4 *5 *2 *3)) (-4 *3 (-693 *4 *5 *2)))) (-3884 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-4 *7 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-5 *2 (-650 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2077 (-650 *7))))) (-5 *1 (-674 *5 *6 *7 *3)) (-5 *4 (-650 *7)) (-4 *3 (-693 *5 *6 *7)))) (-3884 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4))))) +(-10 -7 (-15 -3884 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|))) |#4| |#3|)) (-15 -3884 ((-650 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|)))) |#4| (-650 |#3|))) (-15 -3643 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3317 ((-112) |#4| |#3|)) (-15 -3979 ((-777) |#4| |#3|))) +((-3165 (((-2 (|:| |particular| (-3 (-1276 (-413 |#4|)) "failed")) (|:| -2077 (-650 (-1276 (-413 |#4|))))) (-650 |#4|) (-650 |#3|)) 52))) +(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3165 ((-2 (|:| |particular| (-3 (-1276 (-413 |#4|)) "failed")) (|:| -2077 (-650 (-1276 (-413 |#4|))))) (-650 |#4|) (-650 |#3|)))) (-562) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -675)) +((-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *7)) (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-5 *2 (-2 (|:| |particular| (-3 (-1276 (-413 *8)) "failed")) (|:| -2077 (-650 (-1276 (-413 *8)))))) (-5 *1 (-675 *5 *6 *7 *8))))) +(-10 -7 (-15 -3165 ((-2 (|:| |particular| (-3 (-1276 (-413 |#4|)) "failed")) (|:| -2077 (-650 (-1276 (-413 |#4|))))) (-650 |#4|) (-650 |#3|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| |#2| (-562)))) (-3142 ((|#2| $) NIL)) (-1630 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-1601 (((-1276 (-695 |#2|))) NIL) (((-1276 (-695 |#2|)) (-1276 $)) NIL)) (-2525 (((-112) $) NIL)) (-4392 (((-1276 $)) 44)) (-3636 (((-112) $ (-777)) NIL)) (-1650 (($ |#2|) NIL)) (-3734 (($) NIL T CONST)) (-3081 (($ $) NIL (|has| |#2| (-311)))) (-1774 (((-242 |#1| |#2|) $ (-570)) NIL)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (|has| |#2| (-562)))) (-3025 (((-3 $ "failed")) NIL (|has| |#2| (-562)))) (-1460 (((-695 |#2|)) NIL) (((-695 |#2|) (-1276 $)) NIL)) (-3754 ((|#2| $) NIL)) (-3277 (((-695 |#2|) $) NIL) (((-695 |#2|) $ (-1276 $)) NIL)) (-2487 (((-3 $ "failed") $) NIL (|has| |#2| (-562)))) (-3019 (((-1182 (-959 |#2|))) NIL (|has| |#2| (-368)))) (-2559 (($ $ (-928)) NIL)) (-3928 ((|#2| $) NIL)) (-3387 (((-1182 |#2|) $) NIL (|has| |#2| (-562)))) (-3235 ((|#2|) NIL) ((|#2| (-1276 $)) NIL)) (-2099 (((-1182 |#2|) $) NIL)) (-1654 (((-112)) NIL)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) NIL)) (-2427 (($ (-1276 |#2|)) NIL) (($ (-1276 |#2|) (-1276 $)) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3979 (((-777) $) NIL (|has| |#2| (-562))) (((-928)) 45)) (-3778 ((|#2| $ (-570) (-570)) NIL)) (-1438 (((-112)) NIL)) (-1752 (($ $ (-928)) NIL)) (-2885 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL)) (-2758 (((-777) $) NIL (|has| |#2| (-562)))) (-3766 (((-650 (-242 |#1| |#2|)) $) NIL (|has| |#2| (-562)))) (-3227 (((-777) $) NIL)) (-4414 (((-112)) NIL)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-3646 ((|#2| $) NIL (|has| |#2| (-6 (-4450 "*"))))) (-1515 (((-570) $) NIL)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-1579 (((-570) $) NIL)) (-4110 (((-570) $) NIL)) (-2433 (($ (-650 (-650 |#2|))) NIL)) (-3837 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2139 (((-650 (-650 |#2|)) $) NIL)) (-1451 (((-112)) NIL)) (-2882 (((-112)) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-1597 (((-3 (-2 (|:| |particular| $) (|:| -2077 (-650 $))) "failed")) NIL (|has| |#2| (-562)))) (-1822 (((-3 $ "failed")) NIL (|has| |#2| (-562)))) (-3792 (((-695 |#2|)) NIL) (((-695 |#2|) (-1276 $)) NIL)) (-2215 ((|#2| $) NIL)) (-2961 (((-695 |#2|) $) NIL) (((-695 |#2|) $ (-1276 $)) NIL)) (-3645 (((-3 $ "failed") $) NIL (|has| |#2| (-562)))) (-2463 (((-1182 (-959 |#2|))) NIL (|has| |#2| (-368)))) (-3619 (($ $ (-928)) NIL)) (-3926 ((|#2| $) NIL)) (-3823 (((-1182 |#2|) $) NIL (|has| |#2| (-562)))) (-2908 ((|#2|) NIL) ((|#2| (-1276 $)) NIL)) (-2005 (((-1182 |#2|) $) NIL)) (-4420 (((-112)) NIL)) (-4122 (((-1168) $) NIL)) (-2585 (((-112)) NIL)) (-2522 (((-112)) NIL)) (-1363 (((-112)) NIL)) (-1972 (((-3 $ "failed") $) NIL (|has| |#2| (-368)))) (-3551 (((-1129) $) NIL)) (-1422 (((-112)) NIL)) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-3116 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ (-570) (-570) |#2|) NIL) ((|#2| $ (-570) (-570)) 30) ((|#2| $ (-570)) NIL)) (-3519 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-1689 ((|#2| $) NIL)) (-1668 (($ (-650 |#2|)) NIL)) (-2881 (((-112) $) NIL)) (-3672 (((-242 |#1| |#2|) $) NIL)) (-4415 ((|#2| $) NIL (|has| |#2| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3964 (($ $) NIL)) (-1861 (((-695 |#2|) (-1276 $)) NIL) (((-1276 |#2|) $) NIL) (((-695 |#2|) (-1276 $) (-1276 $)) NIL) (((-1276 |#2|) $ (-1276 $)) 33)) (-1411 (($ (-1276 |#2|)) NIL) (((-1276 |#2|) $) NIL)) (-3594 (((-650 (-959 |#2|))) NIL) (((-650 (-959 |#2|)) (-1276 $)) NIL)) (-4307 (($ $ $) NIL)) (-1743 (((-112)) NIL)) (-4357 (((-242 |#1| |#2|) $ (-570)) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) NIL) (((-695 |#2|) $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) 43)) (-3532 (((-650 (-1276 |#2|))) NIL (|has| |#2| (-562)))) (-3666 (($ $ $ $) NIL)) (-2939 (((-112)) NIL)) (-3453 (($ (-695 |#2|) $) NIL)) (-1431 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2501 (((-112) $) NIL)) (-3616 (($ $ $) NIL)) (-3089 (((-112)) NIL)) (-2313 (((-112)) NIL)) (-3772 (((-112)) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#2| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-242 |#1| |#2|) $ (-242 |#1| |#2|)) NIL) (((-242 |#1| |#2|) (-242 |#1| |#2|) $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-676 |#1| |#2|) (-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-423 |#2|)) (-928) (-174)) (T -676)) +NIL +(-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-423 |#2|)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2934 (((-650 (-1144)) $) 10)) (-3798 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-677) (-13 (-1092) (-10 -8 (-15 -2934 ((-650 (-1144)) $))))) (T -677)) +((-2934 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-677))))) +(-13 (-1092) (-10 -8 (-15 -2934 ((-650 (-1144)) $)))) +((-2419 (((-112) $ $) NIL)) (-3107 (((-650 |#1|) $) NIL)) (-4411 (($ $) 62)) (-3007 (((-112) $) NIL)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-3550 (((-3 $ "failed") (-825 |#1|)) 27)) (-4234 (((-112) (-825 |#1|)) 17)) (-3642 (($ (-825 |#1|)) 28)) (-3682 (((-112) $ $) 36)) (-3847 (((-928) $) 43)) (-4399 (($ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3801 (((-650 $) (-825 |#1|)) 19)) (-3798 (((-868) $) 51) (($ |#1|) 40) (((-825 |#1|) $) 47) (((-683 |#1|) $) 52)) (-1319 (((-112) $ $) NIL)) (-4012 (((-59 (-650 $)) (-650 |#1|) (-928)) 67)) (-1534 (((-650 $) (-650 |#1|) (-928)) 72)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 63)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 46))) +(((-678 |#1|) (-13 (-856) (-1047 |#1|) (-10 -8 (-15 -3007 ((-112) $)) (-15 -4399 ($ $)) (-15 -4411 ($ $)) (-15 -3847 ((-928) $)) (-15 -3682 ((-112) $ $)) (-15 -3798 ((-825 |#1|) $)) (-15 -3798 ((-683 |#1|) $)) (-15 -3801 ((-650 $) (-825 |#1|))) (-15 -4234 ((-112) (-825 |#1|))) (-15 -3642 ($ (-825 |#1|))) (-15 -3550 ((-3 $ "failed") (-825 |#1|))) (-15 -3107 ((-650 |#1|) $)) (-15 -4012 ((-59 (-650 $)) (-650 |#1|) (-928))) (-15 -1534 ((-650 $) (-650 |#1|) (-928))))) (-856)) (T -678)) +((-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-4399 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856)))) (-4411 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-3682 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-678 *4))) (-5 *1 (-678 *4)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-112)) (-5 *1 (-678 *4)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3)))) (-3550 (*1 *1 *2) (|partial| -12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856)) (-5 *2 (-59 (-650 (-678 *5)))) (-5 *1 (-678 *5)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856)) (-5 *2 (-650 (-678 *5))) (-5 *1 (-678 *5))))) +(-13 (-856) (-1047 |#1|) (-10 -8 (-15 -3007 ((-112) $)) (-15 -4399 ($ $)) (-15 -4411 ($ $)) (-15 -3847 ((-928) $)) (-15 -3682 ((-112) $ $)) (-15 -3798 ((-825 |#1|) $)) (-15 -3798 ((-683 |#1|) $)) (-15 -3801 ((-650 $) (-825 |#1|))) (-15 -4234 ((-112) (-825 |#1|))) (-15 -3642 ($ (-825 |#1|))) (-15 -3550 ((-3 $ "failed") (-825 |#1|))) (-15 -3107 ((-650 |#1|) $)) (-15 -4012 ((-59 (-650 $)) (-650 |#1|) (-928))) (-15 -1534 ((-650 $) (-650 |#1|) (-928))))) +((-2190 ((|#2| $) 103)) (-1568 (($ $) 124)) (-3636 (((-112) $ (-777)) 35)) (-3527 (($ $) 112) (($ $ (-777)) 115)) (-2430 (((-112) $) 125)) (-1713 (((-650 $) $) 99)) (-3471 (((-112) $ $) 95)) (-3846 (((-112) $ (-777)) 33)) (-1720 (((-570) $) 69)) (-3434 (((-570) $) 68)) (-2063 (((-112) $ (-777)) 31)) (-4142 (((-112) $) 101)) (-1723 ((|#2| $) 116) (($ $ (-777)) 120)) (-4299 (($ $ $ (-570)) 86) (($ |#2| $ (-570)) 85)) (-2044 (((-650 (-570)) $) 67)) (-1480 (((-112) (-570) $) 61)) (-3515 ((|#2| $) NIL) (($ $ (-777)) 111)) (-3500 (($ $ (-570)) 128)) (-2356 (((-112) $) 127)) (-3116 (((-112) (-1 (-112) |#2|) $) 44)) (-2880 (((-650 |#2|) $) 48)) (-1872 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1243 (-570))) 82) ((|#2| $ (-570)) 59) ((|#2| $ (-570) |#2|) 60)) (-3536 (((-570) $ $) 94)) (-4331 (($ $ (-1243 (-570))) 81) (($ $ (-570)) 75)) (-3680 (((-112) $) 90)) (-3566 (($ $) 108)) (-1497 (((-777) $) 107)) (-2360 (($ $) 106)) (-3811 (($ (-650 |#2|)) 55)) (-2115 (($ $) 129)) (-1974 (((-650 $) $) 93)) (-2650 (((-112) $ $) 92)) (-1431 (((-112) (-1 (-112) |#2|) $) 43)) (-2923 (((-112) $ $) 20)) (-2431 (((-777) $) 41))) +(((-679 |#1| |#2|) (-10 -8 (-15 -2115 (|#1| |#1|)) (-15 -3500 (|#1| |#1| (-570))) (-15 -2430 ((-112) |#1|)) (-15 -2356 ((-112) |#1|)) (-15 -1872 (|#2| |#1| (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570))) (-15 -2880 ((-650 |#2|) |#1|)) (-15 -1480 ((-112) (-570) |#1|)) (-15 -2044 ((-650 (-570)) |#1|)) (-15 -3434 ((-570) |#1|)) (-15 -1720 ((-570) |#1|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -4331 (|#1| |#1| (-570))) (-15 -4331 (|#1| |#1| (-1243 (-570)))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -3566 (|#1| |#1|)) (-15 -1497 ((-777) |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "last")) (-15 -1723 (|#2| |#1|)) (-15 -3527 (|#1| |#1| (-777))) (-15 -1872 (|#1| |#1| "rest")) (-15 -3527 (|#1| |#1|)) (-15 -3515 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "first")) (-15 -3515 (|#2| |#1|)) (-15 -3471 ((-112) |#1| |#1|)) (-15 -2650 ((-112) |#1| |#1|)) (-15 -3536 ((-570) |#1| |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -1872 (|#2| |#1| "value")) (-15 -2190 (|#2| |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -1713 ((-650 |#1|) |#1|)) (-15 -1974 ((-650 |#1|) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777)))) (-680 |#2|) (-1226)) (T -679)) +NIL +(-10 -8 (-15 -2115 (|#1| |#1|)) (-15 -3500 (|#1| |#1| (-570))) (-15 -2430 ((-112) |#1|)) (-15 -2356 ((-112) |#1|)) (-15 -1872 (|#2| |#1| (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570))) (-15 -2880 ((-650 |#2|) |#1|)) (-15 -1480 ((-112) (-570) |#1|)) (-15 -2044 ((-650 (-570)) |#1|)) (-15 -3434 ((-570) |#1|)) (-15 -1720 ((-570) |#1|)) (-15 -3811 (|#1| (-650 |#2|))) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -4331 (|#1| |#1| (-570))) (-15 -4331 (|#1| |#1| (-1243 (-570)))) (-15 -4299 (|#1| |#2| |#1| (-570))) (-15 -4299 (|#1| |#1| |#1| (-570))) (-15 -3566 (|#1| |#1|)) (-15 -1497 ((-777) |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "last")) (-15 -1723 (|#2| |#1|)) (-15 -3527 (|#1| |#1| (-777))) (-15 -1872 (|#1| |#1| "rest")) (-15 -3527 (|#1| |#1|)) (-15 -3515 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "first")) (-15 -3515 (|#2| |#1|)) (-15 -3471 ((-112) |#1| |#1|)) (-15 -2650 ((-112) |#1| |#1|)) (-15 -3536 ((-570) |#1| |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -1872 (|#2| |#1| "value")) (-15 -2190 (|#2| |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -1713 ((-650 |#1|) |#1|)) (-15 -1974 ((-650 |#1|) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -3116 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777)))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-2566 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2926 (((-1281) $ (-570) (-570)) 98 (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) 53 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1716 (($ $ $) 57 (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) 55 (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) 59 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4449))) (($ $ "rest" $) 56 (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 118 (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) 87 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 103)) (-2553 ((|#1| $) 67)) (-3734 (($) 7 T CONST)) (-3129 (($ $) 125)) (-3527 (($ $) 74) (($ $ (-777)) 72)) (-3552 (($ $) 100 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 101 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 104)) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3849 ((|#1| $ (-570) |#1|) 86 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 88)) (-2430 (((-112) $) 84)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-4104 (((-777) $) 124)) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-4300 (($ (-777) |#1|) 109)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 96 (|has| (-570) (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 95 (|has| (-570) (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4035 (($ $) 127)) (-2601 (((-112) $) 128)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1723 ((|#1| $) 71) (($ $ (-777)) 69)) (-4299 (($ $ $ (-570)) 117) (($ |#1| $ (-570)) 116)) (-2044 (((-650 (-570)) $) 93)) (-1480 (((-112) (-570) $) 92)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2928 ((|#1| $) 126)) (-3515 ((|#1| $) 77) (($ $ (-777)) 75)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2973 (($ $ |#1|) 97 (|has| $ (-6 -4449)))) (-3500 (($ $ (-570)) 123)) (-2356 (((-112) $) 85)) (-3188 (((-112) $) 129)) (-1865 (((-112) $) 130)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 91)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1243 (-570))) 113) ((|#1| $ (-570)) 90) ((|#1| $ (-570) |#1|) 89)) (-3536 (((-570) $ $) 45)) (-4331 (($ $ (-1243 (-570))) 115) (($ $ (-570)) 114)) (-3680 (((-112) $) 47)) (-3566 (($ $) 63)) (-2447 (($ $) 60 (|has| $ (-6 -4449)))) (-1497 (((-777) $) 64)) (-2360 (($ $) 65)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 99 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 108)) (-2832 (($ $ $) 62 (|has| $ (-6 -4449))) (($ $ |#1|) 61 (|has| $ (-6 -4449)))) (-2445 (($ $ $) 79) (($ |#1| $) 78) (($ (-650 $)) 111) (($ $ |#1|) 110)) (-2115 (($ $) 122)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-680 |#1|) (-141) (-1226)) (T -680)) +((-1697 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1226)))) (-1418 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1226)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) (-4035 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-777)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-680 *3)) (-4 *3 (-1226)))) (-2115 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226))))) +(-13 (-1158 |t#1|) (-10 -8 (-15 -1697 ($ (-1 (-112) |t#1|) $)) (-15 -1418 ($ (-1 (-112) |t#1|) $)) (-15 -1865 ((-112) $)) (-15 -3188 ((-112) $)) (-15 -2601 ((-112) $)) (-15 -4035 ($ $)) (-15 -2928 (|t#1| $)) (-15 -3129 ($ $)) (-15 -4104 ((-777) $)) (-15 -3500 ($ $ (-570))) (-15 -2115 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1158 |#1|) . T) ((-1226) . T) ((-1264 |#1|) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3977 (($ (-777) (-777) (-777)) 55 (|has| |#1| (-1058)))) (-3636 (((-112) $ (-777)) NIL)) (-2773 ((|#1| $ (-777) (-777) (-777) |#1|) 49)) (-3734 (($) NIL T CONST)) (-3247 (($ $ $) 60 (|has| |#1| (-1058)))) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1607 (((-1276 (-777)) $) 12)) (-3936 (($ (-1186) $ $) 37)) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4063 (($ (-777)) 57 (|has| |#1| (-1058)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-777) (-777) (-777)) 46)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3811 (($ (-650 (-650 (-650 |#1|)))) 70)) (-3798 (($ (-965 (-965 (-965 |#1|)))) 23) (((-965 (-965 (-965 |#1|))) $) 19) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-681 |#1|) (-13 (-495 |#1|) (-10 -8 (IF (|has| |#1| (-1058)) (PROGN (-15 -3977 ($ (-777) (-777) (-777))) (-15 -4063 ($ (-777))) (-15 -3247 ($ $ $))) |%noBranch|) (-15 -3811 ($ (-650 (-650 (-650 |#1|))))) (-15 -1872 (|#1| $ (-777) (-777) (-777))) (-15 -2773 (|#1| $ (-777) (-777) (-777) |#1|)) (-15 -3798 ($ (-965 (-965 (-965 |#1|))))) (-15 -3798 ((-965 (-965 (-965 |#1|))) $)) (-15 -3936 ($ (-1186) $ $)) (-15 -1607 ((-1276 (-777)) $)))) (-1109)) (T -681)) +((-3977 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058)) (-4 *3 (-1109)))) (-4063 (*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058)) (-4 *3 (-1109)))) (-3247 (*1 *1 *1 *1) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1058)) (-4 *2 (-1109)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-650 *3)))) (-4 *3 (-1109)) (-5 *1 (-681 *3)))) (-1872 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109)))) (-2773 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-4 *3 (-1109)) (-5 *1 (-681 *3)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-5 *1 (-681 *3)) (-4 *3 (-1109)))) (-3936 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-681 *3)) (-4 *3 (-1109)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-1276 (-777))) (-5 *1 (-681 *3)) (-4 *3 (-1109))))) +(-13 (-495 |#1|) (-10 -8 (IF (|has| |#1| (-1058)) (PROGN (-15 -3977 ($ (-777) (-777) (-777))) (-15 -4063 ($ (-777))) (-15 -3247 ($ $ $))) |%noBranch|) (-15 -3811 ($ (-650 (-650 (-650 |#1|))))) (-15 -1872 (|#1| $ (-777) (-777) (-777))) (-15 -2773 (|#1| $ (-777) (-777) (-777) |#1|)) (-15 -3798 ($ (-965 (-965 (-965 |#1|))))) (-15 -3798 ((-965 (-965 (-965 |#1|))) $)) (-15 -3936 ($ (-1186) $ $)) (-15 -1607 ((-1276 (-777)) $)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-4188 (((-489) $) 10)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 19) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-1144) $) 12)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-682) (-13 (-1092) (-10 -8 (-15 -4188 ((-489) $)) (-15 -3587 ((-1144) $))))) (T -682)) +((-4188 (*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-682)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-682))))) +(-13 (-1092) (-10 -8 (-15 -4188 ((-489) $)) (-15 -3587 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-3107 (((-650 |#1|) $) 15)) (-4411 (($ $) 19)) (-3007 (((-112) $) 20)) (-4382 (((-3 |#1| "failed") $) 23)) (-3152 ((|#1| $) 21)) (-3527 (($ $) 37)) (-1660 (($ $) 25)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-3682 (((-112) $ $) 47)) (-3847 (((-928) $) 40)) (-4399 (($ $) 18)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 ((|#1| $) 36)) (-3798 (((-868) $) 32) (($ |#1|) 24) (((-825 |#1|) $) 28)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 13)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-683 |#1|) (-13 (-856) (-1047 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3798 ((-825 |#1|) $)) (-15 -3515 (|#1| $)) (-15 -4399 ($ $)) (-15 -3847 ((-928) $)) (-15 -3682 ((-112) $ $)) (-15 -1660 ($ $)) (-15 -3527 ($ $)) (-15 -3007 ((-112) $)) (-15 -4411 ($ $)) (-15 -3107 ((-650 |#1|) $)))) (-856)) (T -683)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-3515 (*1 *2 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-4399 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-3682 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-3527 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) (-4411 (*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856))))) +(-13 (-856) (-1047 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3798 ((-825 |#1|) $)) (-15 -3515 (|#1| $)) (-15 -4399 ($ $)) (-15 -3847 ((-928) $)) (-15 -3682 ((-112) $ $)) (-15 -1660 ($ $)) (-15 -3527 ($ $)) (-15 -3007 ((-112) $)) (-15 -4411 ($ $)) (-15 -3107 ((-650 |#1|) $)))) +((-3599 ((|#1| (-1 |#1| (-777) |#1|) (-777) |#1|) 14)) (-4323 ((|#1| (-1 |#1| |#1|) (-777) |#1|) 12))) +(((-684 |#1|) (-10 -7 (-15 -4323 (|#1| (-1 |#1| |#1|) (-777) |#1|)) (-15 -3599 (|#1| (-1 |#1| (-777) |#1|) (-777) |#1|))) (-1109)) (T -684)) +((-3599 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-777) *2)) (-5 *4 (-777)) (-4 *2 (-1109)) (-5 *1 (-684 *2)))) (-4323 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-777)) (-4 *2 (-1109)) (-5 *1 (-684 *2))))) +(-10 -7 (-15 -4323 (|#1| (-1 |#1| |#1|) (-777) |#1|)) (-15 -3599 (|#1| (-1 |#1| (-777) |#1|) (-777) |#1|))) +((-4117 ((|#2| |#1| |#2|) 9)) (-4106 ((|#1| |#1| |#2|) 8))) +(((-685 |#1| |#2|) (-10 -7 (-15 -4106 (|#1| |#1| |#2|)) (-15 -4117 (|#2| |#1| |#2|))) (-1109) (-1109)) (T -685)) +((-4117 (*1 *2 *3 *2) (-12 (-5 *1 (-685 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-4106 (*1 *2 *2 *3) (-12 (-5 *1 (-685 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(-10 -7 (-15 -4106 (|#1| |#1| |#2|)) (-15 -4117 (|#2| |#1| |#2|))) +((-3334 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-686 |#1| |#2| |#3|) (-10 -7 (-15 -3334 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1109) (-1109) (-1109)) (T -686)) +((-3334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-686 *5 *6 *2))))) +(-10 -7 (-15 -3334 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2419 (((-112) $ $) NIL)) (-3873 (((-1225) $) 21)) (-3818 (((-650 (-1225)) $) 19)) (-3939 (($ (-650 (-1225)) (-1225)) 14)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 29) (($ (-1191)) NIL) (((-1191) $) NIL) (((-1225) $) 22) (($ (-1127)) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-687) (-13 (-1092) (-619 (-1225)) (-10 -8 (-15 -3798 ($ (-1127))) (-15 -3939 ($ (-650 (-1225)) (-1225))) (-15 -3818 ((-650 (-1225)) $)) (-15 -3873 ((-1225) $))))) (T -687)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-687)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-650 (-1225))) (-5 *3 (-1225)) (-5 *1 (-687)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-687)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-687))))) +(-13 (-1092) (-619 (-1225)) (-10 -8 (-15 -3798 ($ (-1127))) (-15 -3939 ($ (-650 (-1225)) (-1225))) (-15 -3818 ((-650 (-1225)) $)) (-15 -3873 ((-1225) $)))) +((-3599 (((-1 |#1| (-777) |#1|) (-1 |#1| (-777) |#1|)) 29)) (-3997 (((-1 |#1|) |#1|) 8)) (-4271 ((|#1| |#1|) 23)) (-1595 (((-650 |#1|) (-1 (-650 |#1|) (-650 |#1|)) (-570)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3798 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-777)) 26))) +(((-688 |#1|) (-10 -7 (-15 -3997 ((-1 |#1|) |#1|)) (-15 -3798 ((-1 |#1|) |#1|)) (-15 -1595 (|#1| (-1 |#1| |#1|))) (-15 -1595 ((-650 |#1|) (-1 (-650 |#1|) (-650 |#1|)) (-570))) (-15 -4271 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-777))) (-15 -3599 ((-1 |#1| (-777) |#1|) (-1 |#1| (-777) |#1|)))) (-1109)) (T -688)) +((-3599 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-777) *3)) (-4 *3 (-1109)) (-5 *1 (-688 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *4 (-1109)) (-5 *1 (-688 *4)))) (-4271 (*1 *2 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1109)))) (-1595 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-650 *5) (-650 *5))) (-5 *4 (-570)) (-5 *2 (-650 *5)) (-5 *1 (-688 *5)) (-4 *5 (-1109)))) (-1595 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-688 *2)) (-4 *2 (-1109)))) (-3798 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109)))) (-3997 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109))))) +(-10 -7 (-15 -3997 ((-1 |#1|) |#1|)) (-15 -3798 ((-1 |#1|) |#1|)) (-15 -1595 (|#1| (-1 |#1| |#1|))) (-15 -1595 ((-650 |#1|) (-1 (-650 |#1|) (-650 |#1|)) (-570))) (-15 -4271 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-777))) (-15 -3599 ((-1 |#1| (-777) |#1|) (-1 |#1| (-777) |#1|)))) +((-2056 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4174 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3711 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1656 (((-1 |#2| |#1|) |#2|) 11))) +(((-689 |#1| |#2|) (-10 -7 (-15 -1656 ((-1 |#2| |#1|) |#2|)) (-15 -4174 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3711 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2056 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1109) (-1109)) (T -689)) +((-2056 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *4)) (-5 *1 (-689 *4 *5)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *4)) (-5 *1 (-689 *4 *5)) (-4 *4 (-1109)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-5 *2 (-1 *5)) (-5 *1 (-689 *4 *5)))) (-1656 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-689 *4 *3)) (-4 *4 (-1109)) (-4 *3 (-1109))))) +(-10 -7 (-15 -1656 ((-1 |#2| |#1|) |#2|)) (-15 -4174 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3711 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2056 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-4152 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1905 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3156 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3228 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2974 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-690 |#1| |#2| |#3|) (-10 -7 (-15 -1905 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3156 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3228 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2974 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4152 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1109) (-1109) (-1109)) (T -690)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-1 *7 *5)) (-5 *1 (-690 *5 *6 *7)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-690 *4 *5 *6)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *4 (-1109)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *5 (-1109)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *4 *5 *6)))) (-1905 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1109)) (-4 *4 (-1109)) (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *5 *4 *6))))) +(-10 -7 (-15 -1905 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3156 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3228 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2974 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4152 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-3600 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1347 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-691 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1347 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1347 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3600 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1058) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|) (-1058) (-378 |#5|) (-378 |#5|) (-693 |#5| |#6| |#7|)) (T -691)) +((-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1058)) (-4 *2 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *8 (-378 *2)) (-4 *9 (-378 *2)) (-5 *1 (-691 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-693 *5 *6 *7)) (-4 *10 (-693 *2 *8 *9)))) (-1347 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1058)) (-4 *8 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *2 (-693 *8 *9 *10)) (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-693 *5 *6 *7)) (-4 *9 (-378 *8)) (-4 *10 (-378 *8)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1058)) (-4 *8 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *2 (-693 *8 *9 *10)) (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-693 *5 *6 *7)) (-4 *9 (-378 *8)) (-4 *10 (-378 *8))))) +(-10 -7 (-15 -1347 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1347 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3600 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3469 (($ (-777) (-777)) 43)) (-2466 (($ $ $) 71)) (-3933 (($ |#3|) 66) (($ $) 67)) (-1630 (((-112) $) 38)) (-3238 (($ $ (-570) (-570)) 82)) (-1679 (($ $ (-570) (-570)) 83)) (-3553 (($ $ (-570) (-570) (-570) (-570)) 88)) (-2927 (($ $) 69)) (-2525 (((-112) $) 15)) (-3762 (($ $ (-570) (-570) $) 89)) (-3945 ((|#2| $ (-570) (-570) |#2|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) 87)) (-1650 (($ (-777) |#2|) 53)) (-2433 (($ (-650 (-650 |#2|))) 51)) (-2139 (((-650 (-650 |#2|)) $) 78)) (-2763 (($ $ $) 70)) (-2410 (((-3 $ "failed") $ |#2|) 121)) (-1872 ((|#2| $ (-570) (-570)) NIL) ((|#2| $ (-570) (-570) |#2|) NIL) (($ $ (-650 (-570)) (-650 (-570))) 86)) (-1668 (($ (-650 |#2|)) 54) (($ (-650 $)) 56)) (-2881 (((-112) $) 28)) (-3798 (($ |#4|) 61) (((-868) $) NIL)) (-2501 (((-112) $) 40)) (-3037 (($ $ |#2|) 123)) (-3026 (($ $ $) 93) (($ $) 96)) (-3014 (($ $ $) 91)) (** (($ $ (-777)) 110) (($ $ (-570)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-570) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118))) +(((-692 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3798 ((-868) |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -3037 (|#1| |#1| |#2|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-570) (-570) |#1|)) (-15 -3553 (|#1| |#1| (-570) (-570) (-570) (-570))) (-15 -1679 (|#1| |#1| (-570) (-570))) (-15 -3238 (|#1| |#1| (-570) (-570))) (-15 -3945 (|#1| |#1| (-650 (-570)) (-650 (-570)) |#1|)) (-15 -1872 (|#1| |#1| (-650 (-570)) (-650 (-570)))) (-15 -2139 ((-650 (-650 |#2|)) |#1|)) (-15 -2466 (|#1| |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -2927 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3933 (|#1| |#3|)) (-15 -3798 (|#1| |#4|)) (-15 -1668 (|#1| (-650 |#1|))) (-15 -1668 (|#1| (-650 |#2|))) (-15 -1650 (|#1| (-777) |#2|)) (-15 -2433 (|#1| (-650 (-650 |#2|)))) (-15 -3469 (|#1| (-777) (-777))) (-15 -2501 ((-112) |#1|)) (-15 -1630 ((-112) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2525 ((-112) |#1|)) (-15 -3945 (|#2| |#1| (-570) (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) (-570)))) (-693 |#2| |#3| |#4|) (-1058) (-378 |#2|) (-378 |#2|)) (T -692)) +NIL +(-10 -8 (-15 -3798 ((-868) |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -3037 (|#1| |#1| |#2|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-777))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -3762 (|#1| |#1| (-570) (-570) |#1|)) (-15 -3553 (|#1| |#1| (-570) (-570) (-570) (-570))) (-15 -1679 (|#1| |#1| (-570) (-570))) (-15 -3238 (|#1| |#1| (-570) (-570))) (-15 -3945 (|#1| |#1| (-650 (-570)) (-650 (-570)) |#1|)) (-15 -1872 (|#1| |#1| (-650 (-570)) (-650 (-570)))) (-15 -2139 ((-650 (-650 |#2|)) |#1|)) (-15 -2466 (|#1| |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -2927 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3933 (|#1| |#3|)) (-15 -3798 (|#1| |#4|)) (-15 -1668 (|#1| (-650 |#1|))) (-15 -1668 (|#1| (-650 |#2|))) (-15 -1650 (|#1| (-777) |#2|)) (-15 -2433 (|#1| (-650 (-650 |#2|)))) (-15 -3469 (|#1| (-777) (-777))) (-15 -2501 ((-112) |#1|)) (-15 -1630 ((-112) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2525 ((-112) |#1|)) (-15 -3945 (|#2| |#1| (-570) (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) (-570)))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3469 (($ (-777) (-777)) 98)) (-2466 (($ $ $) 88)) (-3933 (($ |#2|) 92) (($ $) 91)) (-1630 (((-112) $) 100)) (-3238 (($ $ (-570) (-570)) 84)) (-1679 (($ $ (-570) (-570)) 83)) (-3553 (($ $ (-570) (-570) (-570) (-570)) 82)) (-2927 (($ $) 90)) (-2525 (((-112) $) 102)) (-3636 (((-112) $ (-777)) 8)) (-3762 (($ $ (-570) (-570) $) 81)) (-3945 ((|#1| $ (-570) (-570) |#1|) 45) (($ $ (-650 (-570)) (-650 (-570)) $) 85)) (-2986 (($ $ (-570) |#2|) 43)) (-2478 (($ $ (-570) |#3|) 42)) (-1650 (($ (-777) |#1|) 96)) (-3734 (($) 7 T CONST)) (-3081 (($ $) 68 (|has| |#1| (-311)))) (-1774 ((|#2| $ (-570)) 47)) (-3979 (((-777) $) 67 (|has| |#1| (-562)))) (-3849 ((|#1| $ (-570) (-570) |#1|) 44)) (-3778 ((|#1| $ (-570) (-570)) 49)) (-2885 (((-650 |#1|) $) 31)) (-2758 (((-777) $) 66 (|has| |#1| (-562)))) (-3766 (((-650 |#3|) $) 65 (|has| |#1| (-562)))) (-3227 (((-777) $) 52)) (-4300 (($ (-777) (-777) |#1|) 58)) (-3239 (((-777) $) 51)) (-3846 (((-112) $ (-777)) 9)) (-3646 ((|#1| $) 63 (|has| |#1| (-6 (-4450 "*"))))) (-1515 (((-570) $) 56)) (-2523 (((-570) $) 54)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1579 (((-570) $) 55)) (-4110 (((-570) $) 53)) (-2433 (($ (-650 (-650 |#1|))) 97)) (-3837 (($ (-1 |#1| |#1|) $) 35)) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2139 (((-650 (-650 |#1|)) $) 87)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1972 (((-3 $ "failed") $) 62 (|has| |#1| (-368)))) (-2763 (($ $ $) 89)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) 57)) (-2410 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-562)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) (-570)) 50) ((|#1| $ (-570) (-570) |#1|) 48) (($ $ (-650 (-570)) (-650 (-570))) 86)) (-1668 (($ (-650 |#1|)) 95) (($ (-650 $)) 94)) (-2881 (((-112) $) 101)) (-4415 ((|#1| $) 64 (|has| |#1| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-4357 ((|#3| $ (-570)) 46)) (-3798 (($ |#3|) 93) (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2501 (((-112) $) 99)) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-3037 (($ $ |#1|) 69 (|has| |#1| (-368)))) (-3026 (($ $ $) 79) (($ $) 78)) (-3014 (($ $ $) 80)) (** (($ $ (-777)) 71) (($ $ (-570)) 61 (|has| |#1| (-368)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-570) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-693 |#1| |#2| |#3|) (-141) (-1058) (-378 |t#1|) (-378 |t#1|)) (T -693)) +((-2525 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-112)))) (-3469 (*1 *1 *2 *2) (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1650 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3798 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *2)) (-4 *4 (-378 *3)) (-4 *2 (-378 *3)))) (-3933 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *2 *4)) (-4 *2 (-378 *3)) (-4 *4 (-378 *3)))) (-3933 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2927 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2763 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2466 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-650 (-650 *3))))) (-1872 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3945 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3238 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-1679 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3553 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3762 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-3014 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-3026 (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-693 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *2 (-378 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-693 *3 *2 *4)) (-4 *3 (-1058)) (-4 *2 (-378 *3)) (-4 *4 (-378 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) (-2410 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-562)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-368)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-311)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-650 *5)))) (-4415 (*1 *2 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058)))) (-1972 (*1 *1 *1) (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-368)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-368))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4449) (-6 -4448) (-15 -2525 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -1630 ((-112) $)) (-15 -2501 ((-112) $)) (-15 -3469 ($ (-777) (-777))) (-15 -2433 ($ (-650 (-650 |t#1|)))) (-15 -1650 ($ (-777) |t#1|)) (-15 -1668 ($ (-650 |t#1|))) (-15 -1668 ($ (-650 $))) (-15 -3798 ($ |t#3|)) (-15 -3933 ($ |t#2|)) (-15 -3933 ($ $)) (-15 -2927 ($ $)) (-15 -2763 ($ $ $)) (-15 -2466 ($ $ $)) (-15 -2139 ((-650 (-650 |t#1|)) $)) (-15 -1872 ($ $ (-650 (-570)) (-650 (-570)))) (-15 -3945 ($ $ (-650 (-570)) (-650 (-570)) $)) (-15 -3238 ($ $ (-570) (-570))) (-15 -1679 ($ $ (-570) (-570))) (-15 -3553 ($ $ (-570) (-570) (-570) (-570))) (-15 -3762 ($ $ (-570) (-570) $)) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -3026 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-570) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-777))) (IF (|has| |t#1| (-562)) (-15 -2410 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -3037 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-311)) (-15 -3081 ($ $)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -3979 ((-777) $)) (-15 -2758 ((-777) $)) (-15 -3766 ((-650 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4450 "*"))) (PROGN (-15 -4415 (|t#1| $)) (-15 -3646 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-15 -1972 ((-3 $ "failed") $)) (-15 ** ($ $ (-570)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-57 |#1| |#2| |#3|) . T) ((-1226) . T)) +((-3081 ((|#4| |#4|) 97 (|has| |#1| (-311)))) (-3979 (((-777) |#4|) 125 (|has| |#1| (-562)))) (-2758 (((-777) |#4|) 101 (|has| |#1| (-562)))) (-3766 (((-650 |#3|) |#4|) 108 (|has| |#1| (-562)))) (-1762 (((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 140 (|has| |#1| (-311)))) (-3646 ((|#1| |#4|) 57)) (-1686 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-562)))) (-1972 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-368)))) (-4147 ((|#4| |#4|) 93 (|has| |#1| (-562)))) (-3813 ((|#4| |#4| |#1| (-570) (-570)) 65)) (-1944 ((|#4| |#4| (-570) (-570)) 60)) (-3570 ((|#4| |#4| |#1| (-570) (-570)) 70)) (-4415 ((|#1| |#4|) 103)) (-3323 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-562))))) +(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4415 (|#1| |#4|)) (-15 -3646 (|#1| |#4|)) (-15 -1944 (|#4| |#4| (-570) (-570))) (-15 -3813 (|#4| |#4| |#1| (-570) (-570))) (-15 -3570 (|#4| |#4| |#1| (-570) (-570))) (IF (|has| |#1| (-562)) (PROGN (-15 -3979 ((-777) |#4|)) (-15 -2758 ((-777) |#4|)) (-15 -3766 ((-650 |#3|) |#4|)) (-15 -4147 (|#4| |#4|)) (-15 -1686 ((-3 |#4| "failed") |#4|)) (-15 -3323 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3081 (|#4| |#4|)) (-15 -1762 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -1972 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -694)) +((-1972 (*1 *2 *2) (|partial| -12 (-4 *3 (-368)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-1762 (*1 *2 *3 *3) (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-694 *3 *4 *5 *6)) (-4 *6 (-693 *3 *4 *5)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-3323 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-1686 (*1 *2 *2) (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-2758 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3570 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3)) (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2)) (-4 *2 (-693 *3 *5 *6)))) (-3813 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3)) (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2)) (-4 *2 (-693 *3 *5 *6)))) (-1944 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-570)) (-4 *4 (-174)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *1 (-694 *4 *5 *6 *2)) (-4 *2 (-693 *4 *5 *6)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174)) (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) (-4415 (*1 *2 *3) (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174)) (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5))))) +(-10 -7 (-15 -4415 (|#1| |#4|)) (-15 -3646 (|#1| |#4|)) (-15 -1944 (|#4| |#4| (-570) (-570))) (-15 -3813 (|#4| |#4| |#1| (-570) (-570))) (-15 -3570 (|#4| |#4| |#1| (-570) (-570))) (IF (|has| |#1| (-562)) (PROGN (-15 -3979 ((-777) |#4|)) (-15 -2758 ((-777) |#4|)) (-15 -3766 ((-650 |#3|) |#4|)) (-15 -4147 (|#4| |#4|)) (-15 -1686 ((-3 |#4| "failed") |#4|)) (-15 -3323 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-311)) (PROGN (-15 -3081 (|#4| |#4|)) (-15 -1762 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -1972 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3469 (($ (-777) (-777)) 64)) (-2466 (($ $ $) NIL)) (-3933 (($ (-1276 |#1|)) NIL) (($ $) NIL)) (-1630 (((-112) $) NIL)) (-3238 (($ $ (-570) (-570)) 22)) (-1679 (($ $ (-570) (-570)) NIL)) (-3553 (($ $ (-570) (-570) (-570) (-570)) NIL)) (-2927 (($ $) NIL)) (-2525 (((-112) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3762 (($ $ (-570) (-570) $) NIL)) (-3945 ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570)) $) NIL)) (-2986 (($ $ (-570) (-1276 |#1|)) NIL)) (-2478 (($ $ (-570) (-1276 |#1|)) NIL)) (-1650 (($ (-777) |#1|) 37)) (-3734 (($) NIL T CONST)) (-3081 (($ $) 46 (|has| |#1| (-311)))) (-1774 (((-1276 |#1|) $ (-570)) NIL)) (-3979 (((-777) $) 48 (|has| |#1| (-562)))) (-3849 ((|#1| $ (-570) (-570) |#1|) 69)) (-3778 ((|#1| $ (-570) (-570)) NIL)) (-2885 (((-650 |#1|) $) NIL)) (-2758 (((-777) $) 50 (|has| |#1| (-562)))) (-3766 (((-650 (-1276 |#1|)) $) 53 (|has| |#1| (-562)))) (-3227 (((-777) $) 32)) (-4300 (($ (-777) (-777) |#1|) 28)) (-3239 (((-777) $) 33)) (-3846 (((-112) $ (-777)) NIL)) (-3646 ((|#1| $) 44 (|has| |#1| (-6 (-4450 "*"))))) (-1515 (((-570) $) 10)) (-2523 (((-570) $) 11)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1579 (((-570) $) 14)) (-4110 (((-570) $) 65)) (-2433 (($ (-650 (-650 |#1|))) NIL)) (-3837 (($ (-1 |#1| |#1|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2139 (((-650 (-650 |#1|)) $) 76)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1972 (((-3 $ "failed") $) 60 (|has| |#1| (-368)))) (-2763 (($ $ $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2973 (($ $ |#1|) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) (-570)) NIL) ((|#1| $ (-570) (-570) |#1|) NIL) (($ $ (-650 (-570)) (-650 (-570))) NIL)) (-1668 (($ (-650 |#1|)) NIL) (($ (-650 $)) NIL) (($ (-1276 |#1|)) 70)) (-2881 (((-112) $) NIL)) (-4415 ((|#1| $) 42 (|has| |#1| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-4357 (((-1276 |#1|) $ (-570)) NIL)) (-3798 (($ (-1276 |#1|)) NIL) (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2501 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $ $) NIL) (($ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) 38) (($ $ (-570)) 62 (|has| |#1| (-368)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-570) $) NIL) (((-1276 |#1|) $ (-1276 |#1|)) NIL) (((-1276 |#1|) (-1276 |#1|) $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-695 |#1|) (-13 (-693 |#1| (-1276 |#1|) (-1276 |#1|)) (-10 -8 (-15 -1668 ($ (-1276 |#1|))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -1972 ((-3 $ "failed") $)) |%noBranch|))) (-1058)) (T -695)) +((-1972 (*1 *1 *1) (|partial| -12 (-5 *1 (-695 *2)) (-4 *2 (-368)) (-4 *2 (-1058)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1058)) (-5 *1 (-695 *3))))) +(-13 (-693 |#1| (-1276 |#1|) (-1276 |#1|)) (-10 -8 (-15 -1668 ($ (-1276 |#1|))) (IF (|has| |#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -1972 ((-3 $ "failed") $)) |%noBranch|))) +((-1462 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|)) 37)) (-1737 (((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|) 34)) (-3259 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-777)) 43)) (-3590 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|)) 27)) (-1353 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|)) 31) (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 29)) (-2723 (((-695 |#1|) (-695 |#1|) |#1| (-695 |#1|)) 33)) (-3143 (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 25)) (** (((-695 |#1|) (-695 |#1|) (-777)) 46))) +(((-696 |#1|) (-10 -7 (-15 -3143 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -3590 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1353 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1353 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2723 ((-695 |#1|) (-695 |#1|) |#1| (-695 |#1|))) (-15 -1737 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -1462 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -3259 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-777))) (-15 ** ((-695 |#1|) (-695 |#1|) (-777)))) (-1058)) (T -696)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-696 *4)))) (-3259 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-696 *4)))) (-1462 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-1737 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-2723 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-1353 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-1353 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-3590 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) (-3143 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) +(-10 -7 (-15 -3143 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -3590 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1353 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -1353 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2723 ((-695 |#1|) (-695 |#1|) |#1| (-695 |#1|))) (-15 -1737 ((-695 |#1|) (-695 |#1|) (-695 |#1|) |#1|)) (-15 -1462 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -3259 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-695 |#1|) (-777))) (-15 ** ((-695 |#1|) (-695 |#1|) (-777)))) +((-4382 (((-3 |#1| "failed") $) 18)) (-3152 ((|#1| $) NIL)) (-1586 (($) 7 T CONST)) (-1834 (($ |#1|) 8)) (-3798 (($ |#1|) 16) (((-868) $) 23)) (-1798 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1586)) 11)) (-3994 ((|#1| $) 15))) +(((-697 |#1|) (-13 (-1271) (-1047 |#1|) (-619 (-868)) (-10 -8 (-15 -1834 ($ |#1|)) (-15 -1798 ((-112) $ (|[\|\|]| |#1|))) (-15 -1798 ((-112) $ (|[\|\|]| -1586))) (-15 -3994 (|#1| $)) (-15 -1586 ($) -3711))) (-619 (-868))) (T -697)) +((-1834 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-619 (-868))) (-5 *2 (-112)) (-5 *1 (-697 *4)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1586)) (-5 *2 (-112)) (-5 *1 (-697 *4)) (-4 *4 (-619 (-868))))) (-3994 (*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))) (-1586 (*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868)))))) +(-13 (-1271) (-1047 |#1|) (-619 (-868)) (-10 -8 (-15 -1834 ($ |#1|)) (-15 -1798 ((-112) $ (|[\|\|]| |#1|))) (-15 -1798 ((-112) $ (|[\|\|]| -1586))) (-15 -3994 (|#1| $)) (-15 -1586 ($) -3711))) +((-3882 ((|#2| |#2| |#4|) 33)) (-3962 (((-695 |#2|) |#3| |#4|) 39)) (-4391 (((-695 |#2|) |#2| |#4|) 38)) (-4289 (((-1276 |#2|) |#2| |#4|) 16)) (-1548 ((|#2| |#3| |#4|) 32)) (-1649 (((-695 |#2|) |#3| |#4| (-777) (-777)) 48)) (-3011 (((-695 |#2|) |#2| |#4| (-777)) 47))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4289 ((-1276 |#2|) |#2| |#4|)) (-15 -1548 (|#2| |#3| |#4|)) (-15 -3882 (|#2| |#2| |#4|)) (-15 -4391 ((-695 |#2|) |#2| |#4|)) (-15 -3011 ((-695 |#2|) |#2| |#4| (-777))) (-15 -3962 ((-695 |#2|) |#3| |#4|)) (-15 -1649 ((-695 |#2|) |#3| |#4| (-777) (-777)))) (-1109) (-907 |#1|) (-378 |#2|) (-13 (-378 |#1|) (-10 -7 (-6 -4448)))) (T -698)) +((-1649 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *7 (-907 *6)) (-5 *2 (-695 *7)) (-5 *1 (-698 *6 *7 *3 *4)) (-4 *3 (-378 *7)) (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4448)))))) (-3962 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *6 (-907 *5)) (-5 *2 (-695 *6)) (-5 *1 (-698 *5 *6 *3 *4)) (-4 *3 (-378 *6)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448)))))) (-3011 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *3 (-907 *6)) (-5 *2 (-695 *3)) (-5 *1 (-698 *6 *3 *7 *4)) (-4 *7 (-378 *3)) (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4448)))))) (-4391 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-695 *3)) (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448)))))) (-3882 (*1 *2 *2 *3) (-12 (-4 *4 (-1109)) (-4 *2 (-907 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *5 (-378 *2)) (-4 *3 (-13 (-378 *4) (-10 -7 (-6 -4448)))))) (-1548 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *2 (-907 *5)) (-5 *1 (-698 *5 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448)))))) (-4289 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-1276 *3)) (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448))))))) +(-10 -7 (-15 -4289 ((-1276 |#2|) |#2| |#4|)) (-15 -1548 (|#2| |#3| |#4|)) (-15 -3882 (|#2| |#2| |#4|)) (-15 -4391 ((-695 |#2|) |#2| |#4|)) (-15 -3011 ((-695 |#2|) |#2| |#4| (-777))) (-15 -3962 ((-695 |#2|) |#3| |#4|)) (-15 -1649 ((-695 |#2|) |#3| |#4| (-777) (-777)))) +((-2899 (((-2 (|:| |num| (-695 |#1|)) (|:| |den| |#1|)) (-695 |#2|)) 20)) (-3606 ((|#1| (-695 |#2|)) 9)) (-3860 (((-695 |#1|) (-695 |#2|)) 18))) +(((-699 |#1| |#2|) (-10 -7 (-15 -3606 (|#1| (-695 |#2|))) (-15 -3860 ((-695 |#1|) (-695 |#2|))) (-15 -2899 ((-2 (|:| |num| (-695 |#1|)) (|:| |den| |#1|)) (-695 |#2|)))) (-562) (-1001 |#1|)) (T -699)) +((-2899 (*1 *2 *3) (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |num| (-695 *4)) (|:| |den| *4))) (-5 *1 (-699 *4 *5)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562)) (-5 *2 (-695 *4)) (-5 *1 (-699 *4 *5)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-695 *4)) (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-699 *2 *4))))) +(-10 -7 (-15 -3606 (|#1| (-695 |#2|))) (-15 -3860 ((-695 |#1|) (-695 |#2|))) (-15 -2899 ((-2 (|:| |num| (-695 |#1|)) (|:| |den| |#1|)) (-695 |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2365 (((-695 (-705))) NIL) (((-695 (-705)) (-1276 $)) NIL)) (-3142 (((-705) $) NIL)) (-2774 (($ $) NIL (|has| (-705) (-1211)))) (-2629 (($ $) NIL (|has| (-705) (-1211)))) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-705) (-354)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-3696 (($ $) NIL (-2779 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-2555 (((-424 $) $) NIL (-2779 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-3815 (($ $) NIL (-12 (|has| (-705) (-1011)) (|has| (-705) (-1211))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-4073 (((-112) $ $) NIL (|has| (-705) (-311)))) (-3475 (((-777)) NIL (|has| (-705) (-373)))) (-2749 (($ $) NIL (|has| (-705) (-1211)))) (-2604 (($ $) NIL (|has| (-705) (-1211)))) (-4119 (($ $) NIL (|has| (-705) (-1211)))) (-2648 (($ $) NIL (|has| (-705) (-1211)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-705) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-705) (-1047 (-413 (-570)))))) (-3152 (((-570) $) NIL) (((-705) $) NIL) (((-413 (-570)) $) NIL (|has| (-705) (-1047 (-413 (-570)))))) (-2427 (($ (-1276 (-705))) NIL) (($ (-1276 (-705)) (-1276 $)) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-705) (-354)))) (-2372 (($ $ $) NIL (|has| (-705) (-311)))) (-2684 (((-695 (-705)) $) NIL) (((-695 (-705)) $ (-1276 $)) NIL)) (-2004 (((-695 (-705)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-705))) (|:| |vec| (-1276 (-705)))) (-695 $) (-1276 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-705) (-645 (-570)))) (((-695 (-570)) (-695 $)) NIL (|has| (-705) (-645 (-570))))) (-3600 (((-3 $ "failed") (-413 (-1182 (-705)))) NIL (|has| (-705) (-368))) (($ (-1182 (-705))) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3827 (((-705) $) 29)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL (|has| (-705) (-551)))) (-3108 (((-112) $) NIL (|has| (-705) (-551)))) (-3875 (((-413 (-570)) $) NIL (|has| (-705) (-551)))) (-3979 (((-928)) NIL)) (-3408 (($) NIL (|has| (-705) (-373)))) (-2380 (($ $ $) NIL (|has| (-705) (-311)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| (-705) (-311)))) (-3740 (($) NIL (|has| (-705) (-354)))) (-4316 (((-112) $) NIL (|has| (-705) (-354)))) (-3640 (($ $) NIL (|has| (-705) (-354))) (($ $ (-777)) NIL (|has| (-705) (-354)))) (-3701 (((-112) $) NIL (-2779 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-4065 (((-2 (|:| |r| (-705)) (|:| |phi| (-705))) $) NIL (-12 (|has| (-705) (-1069)) (|has| (-705) (-1211))))) (-1313 (($) NIL (|has| (-705) (-1211)))) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-705) (-893 (-384)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-705) (-893 (-570))))) (-4202 (((-839 (-928)) $) NIL (|has| (-705) (-354))) (((-928) $) NIL (|has| (-705) (-354)))) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (-12 (|has| (-705) (-1011)) (|has| (-705) (-1211))))) (-2233 (((-705) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-705) (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-705) (-311)))) (-2780 (((-1182 (-705)) $) NIL (|has| (-705) (-368)))) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-1347 (($ (-1 (-705) (-705)) $) NIL)) (-2484 (((-928) $) NIL (|has| (-705) (-373)))) (-2665 (($ $) NIL (|has| (-705) (-1211)))) (-3586 (((-1182 (-705)) $) NIL)) (-1841 (($ (-650 $)) NIL (|has| (-705) (-311))) (($ $ $) NIL (|has| (-705) (-311)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| (-705) (-368)))) (-2310 (($) NIL (|has| (-705) (-354)) CONST)) (-2155 (($ (-928)) NIL (|has| (-705) (-373)))) (-4208 (($) NIL)) (-3839 (((-705) $) 31)) (-3551 (((-1129) $) NIL)) (-2335 (($) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| (-705) (-311)))) (-1869 (($ (-650 $)) NIL (|has| (-705) (-311))) (($ $ $) NIL (|has| (-705) (-311)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-705) (-354)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-705) (-311)) (|has| (-705) (-916))))) (-3801 (((-424 $) $) NIL (-2779 (-12 (|has| (-705) (-311)) (|has| (-705) (-916))) (|has| (-705) (-368))))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-705) (-311))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| (-705) (-311)))) (-2410 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-705)) NIL (|has| (-705) (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-705) (-311)))) (-4390 (($ $) NIL (|has| (-705) (-1211)))) (-1725 (($ $ (-1186) (-705)) NIL (|has| (-705) (-520 (-1186) (-705)))) (($ $ (-650 (-1186)) (-650 (-705))) NIL (|has| (-705) (-520 (-1186) (-705)))) (($ $ (-650 (-298 (-705)))) NIL (|has| (-705) (-313 (-705)))) (($ $ (-298 (-705))) NIL (|has| (-705) (-313 (-705)))) (($ $ (-705) (-705)) NIL (|has| (-705) (-313 (-705)))) (($ $ (-650 (-705)) (-650 (-705))) NIL (|has| (-705) (-313 (-705))))) (-3788 (((-777) $) NIL (|has| (-705) (-311)))) (-1872 (($ $ (-705)) NIL (|has| (-705) (-290 (-705) (-705))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| (-705) (-311)))) (-3511 (((-705)) NIL) (((-705) (-1276 $)) NIL)) (-2174 (((-3 (-777) "failed") $ $) NIL (|has| (-705) (-354))) (((-777) $) NIL (|has| (-705) (-354)))) (-3519 (($ $ (-1 (-705) (-705))) NIL) (($ $ (-1 (-705) (-705)) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-777)) NIL (|has| (-705) (-235))) (($ $) NIL (|has| (-705) (-235)))) (-4169 (((-695 (-705)) (-1276 $) (-1 (-705) (-705))) NIL (|has| (-705) (-368)))) (-1881 (((-1182 (-705))) NIL)) (-4129 (($ $) NIL (|has| (-705) (-1211)))) (-2664 (($ $) NIL (|has| (-705) (-1211)))) (-2042 (($) NIL (|has| (-705) (-354)))) (-2786 (($ $) NIL (|has| (-705) (-1211)))) (-2636 (($ $) NIL (|has| (-705) (-1211)))) (-2761 (($ $) NIL (|has| (-705) (-1211)))) (-2616 (($ $) NIL (|has| (-705) (-1211)))) (-1861 (((-695 (-705)) (-1276 $)) NIL) (((-1276 (-705)) $) NIL) (((-695 (-705)) (-1276 $) (-1276 $)) NIL) (((-1276 (-705)) $ (-1276 $)) NIL)) (-1411 (((-542) $) NIL (|has| (-705) (-620 (-542)))) (((-171 (-227)) $) NIL (|has| (-705) (-1031))) (((-171 (-384)) $) NIL (|has| (-705) (-1031))) (((-899 (-384)) $) NIL (|has| (-705) (-620 (-899 (-384))))) (((-899 (-570)) $) NIL (|has| (-705) (-620 (-899 (-570))))) (($ (-1182 (-705))) NIL) (((-1182 (-705)) $) NIL) (($ (-1276 (-705))) NIL) (((-1276 (-705)) $) NIL)) (-3897 (($ $) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-2779 (-12 (|has| (-705) (-311)) (|has| $ (-146)) (|has| (-705) (-916))) (|has| (-705) (-354))))) (-3103 (($ (-705) (-705)) 12)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-570)) NIL) (($ (-705)) NIL) (($ (-171 (-384))) 13) (($ (-171 (-570))) 19) (($ (-171 (-705))) 28) (($ (-171 (-707))) 25) (((-171 (-384)) $) 33) (($ (-413 (-570))) NIL (-2779 (|has| (-705) (-1047 (-413 (-570)))) (|has| (-705) (-368))))) (-2917 (($ $) NIL (|has| (-705) (-354))) (((-3 $ "failed") $) NIL (-2779 (-12 (|has| (-705) (-311)) (|has| $ (-146)) (|has| (-705) (-916))) (|has| (-705) (-146))))) (-4042 (((-1182 (-705)) $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL)) (-4165 (($ $) NIL (|has| (-705) (-1211)))) (-2704 (($ $) NIL (|has| (-705) (-1211)))) (-3258 (((-112) $ $) NIL)) (-4141 (($ $) NIL (|has| (-705) (-1211)))) (-2678 (($ $) NIL (|has| (-705) (-1211)))) (-4186 (($ $) NIL (|has| (-705) (-1211)))) (-2726 (($ $) NIL (|has| (-705) (-1211)))) (-2990 (((-705) $) NIL (|has| (-705) (-1211)))) (-1504 (($ $) NIL (|has| (-705) (-1211)))) (-2737 (($ $) NIL (|has| (-705) (-1211)))) (-4176 (($ $) NIL (|has| (-705) (-1211)))) (-2715 (($ $) NIL (|has| (-705) (-1211)))) (-4153 (($ $) NIL (|has| (-705) (-1211)))) (-2692 (($ $) NIL (|has| (-705) (-1211)))) (-2216 (($ $) NIL (|has| (-705) (-1069)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-1 (-705) (-705))) NIL) (($ $ (-1 (-705) (-705)) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-1186)) NIL (|has| (-705) (-907 (-1186)))) (($ $ (-777)) NIL (|has| (-705) (-235))) (($ $) NIL (|has| (-705) (-235)))) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL (|has| (-705) (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ $) NIL (|has| (-705) (-1211))) (($ $ (-413 (-570))) NIL (-12 (|has| (-705) (-1011)) (|has| (-705) (-1211)))) (($ $ (-570)) NIL (|has| (-705) (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ (-705) $) NIL) (($ $ (-705)) NIL) (($ (-413 (-570)) $) NIL (|has| (-705) (-368))) (($ $ (-413 (-570))) NIL (|has| (-705) (-368))))) +(((-700) (-13 (-393) (-167 (-705)) (-10 -8 (-15 -3798 ($ (-171 (-384)))) (-15 -3798 ($ (-171 (-570)))) (-15 -3798 ($ (-171 (-705)))) (-15 -3798 ($ (-171 (-707)))) (-15 -3798 ((-171 (-384)) $))))) (T -700)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-171 (-570))) (-5 *1 (-700)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-171 (-705))) (-5 *1 (-700)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-700)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700))))) +(-13 (-393) (-167 (-705)) (-10 -8 (-15 -3798 ($ (-171 (-384)))) (-15 -3798 ($ (-171 (-570)))) (-15 -3798 ($ (-171 (-705)))) (-15 -3798 ($ (-171 (-707)))) (-15 -3798 ((-171 (-384)) $)))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-2660 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3786 (($ $) 63)) (-3552 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41) (($ |#1| $ (-777)) 64)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2718 (((-650 (-2 (|:| -2219 |#1|) (|:| -3562 (-777)))) $) 62)) (-2709 (($) 50) (($ (-650 |#1|)) 49)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 51)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-701 |#1|) (-141) (-1109)) (T -701)) +((-2213 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-701 *2)) (-4 *2 (-1109)))) (-3786 (*1 *1 *1) (-12 (-4 *1 (-701 *2)) (-4 *2 (-1109)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-701 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-2 (|:| -2219 *3) (|:| -3562 (-777)))))))) +(-13 (-237 |t#1|) (-10 -8 (-15 -2213 ($ |t#1| $ (-777))) (-15 -3786 ($ $)) (-15 -2718 ((-650 (-2 (|:| -2219 |t#1|) (|:| -3562 (-777)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-2105 (((-650 |#1|) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))) (-570)) 65)) (-3819 ((|#1| |#1| (-570)) 62)) (-1869 ((|#1| |#1| |#1| (-570)) 46)) (-3801 (((-650 |#1|) |#1| (-570)) 49)) (-1771 ((|#1| |#1| (-570) |#1| (-570)) 40)) (-2770 (((-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))) |#1| (-570)) 61))) +(((-702 |#1|) (-10 -7 (-15 -1869 (|#1| |#1| |#1| (-570))) (-15 -3819 (|#1| |#1| (-570))) (-15 -3801 ((-650 |#1|) |#1| (-570))) (-15 -2770 ((-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))) |#1| (-570))) (-15 -2105 ((-650 |#1|) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))) (-570))) (-15 -1771 (|#1| |#1| (-570) |#1| (-570)))) (-1252 (-570))) (T -702)) +((-1771 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1252 *3)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| -3801 *5) (|:| -3324 (-570))))) (-5 *4 (-570)) (-4 *5 (-1252 *4)) (-5 *2 (-650 *5)) (-5 *1 (-702 *5)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-5 *2 (-650 (-2 (|:| -3801 *3) (|:| -3324 *4)))) (-5 *1 (-702 *3)) (-4 *3 (-1252 *4)))) (-3801 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-5 *2 (-650 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1252 *4)))) (-3819 (*1 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1252 *3)))) (-1869 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1252 *3))))) +(-10 -7 (-15 -1869 (|#1| |#1| |#1| (-570))) (-15 -3819 (|#1| |#1| (-570))) (-15 -3801 ((-650 |#1|) |#1| (-570))) (-15 -2770 ((-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))) |#1| (-570))) (-15 -2105 ((-650 |#1|) (-650 (-2 (|:| -3801 |#1|) (|:| -3324 (-570)))) (-570))) (-15 -1771 (|#1| |#1| (-570) |#1| (-570)))) +((-3525 (((-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2753 (((-1142 (-227)) (-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 56) (((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 58) (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 60)) (-2293 (((-1142 (-227)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-650 (-266))) NIL)) (-1397 (((-1142 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266))) 61))) +(((-703) (-10 -7 (-15 -2753 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2753 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2753 ((-1142 (-227)) (-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -1397 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2293 ((-1142 (-227)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -3525 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -703)) +((-3525 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-950 (-227)) (-227) (-227))) (-5 *1 (-703)))) (-2293 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) (-1397 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) (-2753 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-227))) (-5 *5 (-650 (-266))) (-5 *1 (-703)))) (-2753 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-227))) (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) (-2753 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703))))) +(-10 -7 (-15 -2753 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2753 ((-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2753 ((-1142 (-227)) (-1142 (-227)) (-1 (-950 (-227)) (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -1397 ((-1142 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1103 (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -2293 ((-1142 (-227)) (-320 (-570)) (-320 (-570)) (-320 (-570)) (-1 (-227) (-227)) (-1103 (-227)) (-650 (-266)))) (-15 -3525 ((-1 (-950 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-3801 (((-424 (-1182 |#4|)) (-1182 |#4|)) 86) (((-424 |#4|) |#4|) 269))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 |#4|) |#4|)) (-15 -3801 ((-424 (-1182 |#4|)) (-1182 |#4|)))) (-856) (-799) (-354) (-956 |#3| |#2| |#1|)) (T -704)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-704 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))) +(-10 -7 (-15 -3801 ((-424 |#4|) |#4|)) (-15 -3801 ((-424 (-1182 |#4|)) (-1182 |#4|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 97)) (-3356 (((-570) $) 34)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-3667 (($ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-3815 (($ $) NIL)) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL)) (-3734 (($) NIL T CONST)) (-2109 (($ $) NIL)) (-4382 (((-3 (-570) "failed") $) 85) (((-3 (-413 (-570)) "failed") $) 28) (((-3 (-384) "failed") $) 82)) (-3152 (((-570) $) 87) (((-413 (-570)) $) 79) (((-384) $) 80)) (-2372 (($ $ $) 109)) (-2229 (((-3 $ "failed") $) 100)) (-2380 (($ $ $) 108)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-3503 (((-928)) 89) (((-928) (-928)) 88)) (-2135 (((-112) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL)) (-4202 (((-570) $) NIL)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL)) (-2233 (($ $) NIL)) (-3367 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3492 (((-570) (-570)) 94) (((-570)) 95)) (-3382 (($ $ $) NIL) (($) NIL (-12 (-1748 (|has| $ (-6 -4431))) (-1748 (|has| $ (-6 -4439)))))) (-2922 (((-570) (-570)) 92) (((-570)) 93)) (-2876 (($ $ $) NIL) (($) NIL (-12 (-1748 (|has| $ (-6 -4431))) (-1748 (|has| $ (-6 -4439)))))) (-3033 (((-570) $) 17)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 104)) (-3830 (((-928) (-570)) NIL (|has| $ (-6 -4439)))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL)) (-4140 (($ $) NIL)) (-2560 (($ (-570) (-570)) NIL) (($ (-570) (-570) (-928)) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) 105)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3283 (((-570) $) 24)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 107)) (-1410 (((-928)) NIL) (((-928) (-928)) NIL (|has| $ (-6 -4439)))) (-3510 (((-928) (-570)) NIL (|has| $ (-6 -4439)))) (-1411 (((-384) $) NIL) (((-227) $) NIL) (((-899 (-384)) $) NIL)) (-3798 (((-868) $) 63) (($ (-570)) 75) (($ $) NIL) (($ (-413 (-570))) 78) (($ (-570)) 75) (($ (-413 (-570))) 78) (($ (-384)) 72) (((-384) $) 61) (($ (-707)) 66)) (-2862 (((-777)) 119 T CONST)) (-4056 (($ (-570) (-570) (-928)) 54)) (-1442 (($ $) NIL)) (-4081 (((-928)) NIL) (((-928) (-928)) NIL (|has| $ (-6 -4439)))) (-1319 (((-112) $ $) NIL)) (-4364 (((-928)) 91) (((-928) (-928)) 90)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL)) (-1809 (($) 37 T CONST)) (-1817 (($) 18 T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 96)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 118)) (-3037 (($ $ $) 77)) (-3026 (($ $) 115) (($ $ $) 116)) (-3014 (($ $ $) 114)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ $ (-413 (-570))) 103)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 110) (($ $ $) 101) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-705) (-13 (-410) (-393) (-368) (-1047 (-384)) (-1047 (-413 (-570))) (-148) (-10 -8 (-15 -3503 ((-928) (-928))) (-15 -3503 ((-928))) (-15 -4364 ((-928) (-928))) (-15 -2922 ((-570) (-570))) (-15 -2922 ((-570))) (-15 -3492 ((-570) (-570))) (-15 -3492 ((-570))) (-15 -3798 ((-384) $)) (-15 -3798 ($ (-707))) (-15 -3033 ((-570) $)) (-15 -3283 ((-570) $)) (-15 -4056 ($ (-570) (-570) (-928)))))) (T -705)) +((-3283 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-3503 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) (-4364 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) (-2922 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-2922 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-3492 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-384)) (-5 *1 (-705)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-705)))) (-4056 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-5 *1 (-705))))) +(-13 (-410) (-393) (-368) (-1047 (-384)) (-1047 (-413 (-570))) (-148) (-10 -8 (-15 -3503 ((-928) (-928))) (-15 -3503 ((-928))) (-15 -4364 ((-928) (-928))) (-15 -2922 ((-570) (-570))) (-15 -2922 ((-570))) (-15 -3492 ((-570) (-570))) (-15 -3492 ((-570))) (-15 -3798 ((-384) $)) (-15 -3798 ($ (-707))) (-15 -3033 ((-570) $)) (-15 -3283 ((-570) $)) (-15 -4056 ($ (-570) (-570) (-928))))) +((-2001 (((-695 |#1|) (-695 |#1|) |#1| |#1|) 88)) (-3081 (((-695 |#1|) (-695 |#1|) |#1|) 67)) (-2756 (((-695 |#1|) (-695 |#1|) |#1|) 89)) (-3489 (((-695 |#1|) (-695 |#1|)) 68)) (-1762 (((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 87))) +(((-706 |#1|) (-10 -7 (-15 -3489 ((-695 |#1|) (-695 |#1|))) (-15 -3081 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -2756 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -2001 ((-695 |#1|) (-695 |#1|) |#1| |#1|)) (-15 -1762 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) (-311)) (T -706)) +((-1762 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-706 *3)) (-4 *3 (-311)))) (-2001 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) (-2756 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) (-3081 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3))))) +(-10 -7 (-15 -3489 ((-695 |#1|) (-695 |#1|))) (-15 -3081 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -2756 ((-695 |#1|) (-695 |#1|) |#1|)) (-15 -2001 ((-695 |#1|) (-695 |#1|) |#1| |#1|)) (-15 -1762 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2744 (($ $ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4233 (($ $ $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL)) (-3086 (($ $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) 31)) (-3152 (((-570) $) 29)) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL)) (-3108 (((-112) $) NIL)) (-3875 (((-413 (-570)) $) NIL)) (-3408 (($ $) NIL) (($) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1991 (($ $ $ $) NIL)) (-2378 (($ $ $) NIL)) (-2135 (((-112) $) NIL)) (-2375 (($ $ $) NIL)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-2481 (((-112) $) NIL)) (-2639 (((-112) $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-3367 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2170 (($ $ $ $) NIL)) (-3382 (($ $ $) NIL)) (-4348 (((-928) (-928)) 10) (((-928)) 9)) (-2876 (($ $ $) NIL)) (-2609 (($ $) NIL)) (-3847 (($ $) NIL)) (-1841 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-2078 (($ $ $) NIL)) (-2310 (($) NIL T CONST)) (-3595 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3067 (($ $) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3699 (((-112) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL) (($ $ (-777)) NIL)) (-2435 (($ $) NIL)) (-3964 (($ $) NIL)) (-1411 (((-227) $) NIL) (((-384) $) NIL) (((-899 (-570)) $) NIL) (((-542) $) NIL) (((-570) $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) 28) (($ $) NIL) (($ (-570)) 28) (((-320 $) (-320 (-570))) 18)) (-2862 (((-777)) NIL T CONST)) (-3767 (((-112) $ $) NIL)) (-3755 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-4364 (($) NIL)) (-3258 (((-112) $ $) NIL)) (-4078 (($ $ $ $) NIL)) (-2216 (($ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL) (($ $ (-777)) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL))) +(((-707) (-13 (-393) (-551) (-10 -8 (-15 -4348 ((-928) (-928))) (-15 -4348 ((-928))) (-15 -3798 ((-320 $) (-320 (-570))))))) (T -707)) +((-4348 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707)))) (-4348 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-320 (-570))) (-5 *2 (-320 (-707))) (-5 *1 (-707))))) +(-13 (-393) (-551) (-10 -8 (-15 -4348 ((-928) (-928))) (-15 -4348 ((-928))) (-15 -3798 ((-320 $) (-320 (-570)))))) +((-3272 (((-1 |#4| |#2| |#3|) |#1| (-1186) (-1186)) 19)) (-2231 (((-1 |#4| |#2| |#3|) (-1186)) 12))) +(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2231 ((-1 |#4| |#2| |#3|) (-1186))) (-15 -3272 ((-1 |#4| |#2| |#3|) |#1| (-1186) (-1186)))) (-620 (-542)) (-1226) (-1226) (-1226)) (T -708)) +((-3272 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *3 *5 *6 *7)) (-4 *3 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226)) (-4 *7 (-1226)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *4 *5 *6 *7)) (-4 *4 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226)) (-4 *7 (-1226))))) +(-10 -7 (-15 -2231 ((-1 |#4| |#2| |#3|) (-1186))) (-15 -3272 ((-1 |#4| |#2| |#3|) |#1| (-1186) (-1186)))) +((-2387 (((-1 (-227) (-227) (-227)) |#1| (-1186) (-1186)) 43) (((-1 (-227) (-227)) |#1| (-1186)) 48))) +(((-709 |#1|) (-10 -7 (-15 -2387 ((-1 (-227) (-227)) |#1| (-1186))) (-15 -2387 ((-1 (-227) (-227) (-227)) |#1| (-1186) (-1186)))) (-620 (-542))) (T -709)) +((-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-709 *3)) (-4 *3 (-620 (-542))))) (-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-709 *3)) (-4 *3 (-620 (-542)))))) +(-10 -7 (-15 -2387 ((-1 (-227) (-227)) |#1| (-1186))) (-15 -2387 ((-1 (-227) (-227) (-227)) |#1| (-1186) (-1186)))) +((-1694 (((-1186) |#1| (-1186) (-650 (-1186))) 10) (((-1186) |#1| (-1186) (-1186) (-1186)) 13) (((-1186) |#1| (-1186) (-1186)) 12) (((-1186) |#1| (-1186)) 11))) +(((-710 |#1|) (-10 -7 (-15 -1694 ((-1186) |#1| (-1186))) (-15 -1694 ((-1186) |#1| (-1186) (-1186))) (-15 -1694 ((-1186) |#1| (-1186) (-1186) (-1186))) (-15 -1694 ((-1186) |#1| (-1186) (-650 (-1186))))) (-620 (-542))) (T -710)) +((-1694 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) (-1694 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) (-1694 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) (-1694 (*1 *2 *3 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542)))))) +(-10 -7 (-15 -1694 ((-1186) |#1| (-1186))) (-15 -1694 ((-1186) |#1| (-1186) (-1186))) (-15 -1694 ((-1186) |#1| (-1186) (-1186) (-1186))) (-15 -1694 ((-1186) |#1| (-1186) (-650 (-1186))))) +((-1488 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-711 |#1| |#2|) (-10 -7 (-15 -1488 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1226) (-1226)) (T -711)) +((-1488 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-711 *3 *4)) (-4 *3 (-1226)) (-4 *4 (-1226))))) +(-10 -7 (-15 -1488 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-1932 (((-1 |#3| |#2|) (-1186)) 11)) (-3272 (((-1 |#3| |#2|) |#1| (-1186)) 21))) +(((-712 |#1| |#2| |#3|) (-10 -7 (-15 -1932 ((-1 |#3| |#2|) (-1186))) (-15 -3272 ((-1 |#3| |#2|) |#1| (-1186)))) (-620 (-542)) (-1226) (-1226)) (T -712)) +((-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *3 *5 *6)) (-4 *3 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226)))) (-1932 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *4 *5 *6)) (-4 *4 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226))))) +(-10 -7 (-15 -1932 ((-1 |#3| |#2|) (-1186))) (-15 -3272 ((-1 |#3| |#2|) |#1| (-1186)))) +((-3299 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#4|)) (-650 |#3|) (-650 |#4|) (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| |#4|)))) (-650 (-777)) (-1276 (-650 (-1182 |#3|))) |#3|) 95)) (-1728 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#3|)) (-650 |#3|) (-650 |#4|) (-650 (-777)) |#3|) 113)) (-4328 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 |#3|) (-650 (-777)) (-650 (-1182 |#4|)) (-1276 (-650 (-1182 |#3|))) |#3|) 47))) +(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4328 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 |#3|) (-650 (-777)) (-650 (-1182 |#4|)) (-1276 (-650 (-1182 |#3|))) |#3|)) (-15 -1728 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#3|)) (-650 |#3|) (-650 |#4|) (-650 (-777)) |#3|)) (-15 -3299 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#4|)) (-650 |#3|) (-650 |#4|) (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| |#4|)))) (-650 (-777)) (-1276 (-650 (-1182 |#3|))) |#3|))) (-799) (-856) (-311) (-956 |#3| |#1| |#2|)) (T -713)) +((-3299 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-650 (-1182 *13))) (-5 *3 (-1182 *13)) (-5 *4 (-650 *12)) (-5 *5 (-650 *10)) (-5 *6 (-650 *13)) (-5 *7 (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| *13))))) (-5 *8 (-650 (-777))) (-5 *9 (-1276 (-650 (-1182 *10)))) (-4 *12 (-856)) (-4 *10 (-311)) (-4 *13 (-956 *10 *11 *12)) (-4 *11 (-799)) (-5 *1 (-713 *11 *12 *10 *13)))) (-1728 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-650 *11)) (-5 *5 (-650 (-1182 *9))) (-5 *6 (-650 *9)) (-5 *7 (-650 *12)) (-5 *8 (-650 (-777))) (-4 *11 (-856)) (-4 *9 (-311)) (-4 *12 (-956 *9 *10 *11)) (-4 *10 (-799)) (-5 *2 (-650 (-1182 *12))) (-5 *1 (-713 *10 *11 *9 *12)) (-5 *3 (-1182 *12)))) (-4328 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-650 (-1182 *11))) (-5 *3 (-1182 *11)) (-5 *4 (-650 *10)) (-5 *5 (-650 *8)) (-5 *6 (-650 (-777))) (-5 *7 (-1276 (-650 (-1182 *8)))) (-4 *10 (-856)) (-4 *8 (-311)) (-4 *11 (-956 *8 *9 *10)) (-4 *9 (-799)) (-5 *1 (-713 *9 *10 *8 *11))))) +(-10 -7 (-15 -4328 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 |#3|) (-650 (-777)) (-650 (-1182 |#4|)) (-1276 (-650 (-1182 |#3|))) |#3|)) (-15 -1728 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#3|)) (-650 |#3|) (-650 |#4|) (-650 (-777)) |#3|)) (-15 -3299 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-650 |#2|) (-650 (-1182 |#4|)) (-650 |#3|) (-650 |#4|) (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| |#4|)))) (-650 (-777)) (-1276 (-650 (-1182 |#3|))) |#3|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-1885 (($ $) 48)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-3925 (($ |#1| (-777)) 46)) (-2302 (((-777) $) 50)) (-1860 ((|#1| $) 49)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3324 (((-777) $) 51)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-3326 ((|#1| $ (-777)) 47)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +(((-714 |#1|) (-141) (-1058)) (T -714)) +((-3324 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058)))) (-1885 (*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058)))) (-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058)))) (-3925 (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058))))) +(-13 (-1058) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3324 ((-777) $)) (-15 -2302 ((-777) $)) (-15 -1860 (|t#1| $)) (-15 -1885 ($ $)) (-15 -3326 (|t#1| $ (-777))) (-15 -3925 ($ |t#1| (-777))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-1347 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-715 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1347 (|#6| (-1 |#4| |#1|) |#3|))) (-562) (-1252 |#1|) (-1252 (-413 |#2|)) (-562) (-1252 |#4|) (-1252 (-413 |#5|))) (T -715)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-562)) (-4 *7 (-562)) (-4 *6 (-1252 *5)) (-4 *2 (-1252 (-413 *8))) (-5 *1 (-715 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1252 (-413 *6))) (-4 *8 (-1252 *7))))) +(-10 -7 (-15 -1347 (|#6| (-1 |#4| |#1|) |#3|))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1518 (((-1168) (-868)) 38)) (-4160 (((-1281) (-1168)) 31)) (-2471 (((-1168) (-868)) 28)) (-3078 (((-1168) (-868)) 29)) (-3798 (((-868) $) NIL) (((-1168) (-868)) 27)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-716) (-13 (-1109) (-10 -7 (-15 -3798 ((-1168) (-868))) (-15 -2471 ((-1168) (-868))) (-15 -3078 ((-1168) (-868))) (-15 -1518 ((-1168) (-868))) (-15 -4160 ((-1281) (-1168)))))) (T -716)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-716))))) +(-13 (-1109) (-10 -7 (-15 -3798 ((-1168) (-868))) (-15 -2471 ((-1168) (-868))) (-15 -3078 ((-1168) (-868))) (-15 -1518 ((-1168) (-868))) (-15 -4160 ((-1281) (-1168))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL)) (-3600 (($ |#1| |#2|) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2132 ((|#2| $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3137 (((-3 $ "failed") $ $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) ((|#1| $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-717 |#1| |#2| |#3| |#4| |#5|) (-13 (-368) (-10 -8 (-15 -2132 (|#2| $)) (-15 -3798 (|#1| $)) (-15 -3600 ($ |#1| |#2|)) (-15 -3137 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -717)) +((-2132 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3600 (*1 *1 *2 *3) (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3137 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-368) (-10 -8 (-15 -2132 (|#2| $)) (-15 -3798 (|#1| $)) (-15 -3600 ($ |#1| |#2|)) (-15 -3137 ((-3 $ "failed") $ $)))) +((-2419 (((-112) $ $) 90)) (-1359 (((-112) $) 36)) (-2012 (((-1276 |#1|) $ (-777)) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-3832 (($ (-1182 |#1|)) NIL)) (-3768 (((-1182 $) $ (-1091)) NIL) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-1485 (($ $ $) NIL (|has| |#1| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3475 (((-777)) 56 (|has| |#1| (-373)))) (-3100 (($ $ (-777)) NIL)) (-4146 (($ $ (-777)) NIL)) (-2824 ((|#2| |#2|) 52)) (-2651 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-458)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1091) $) NIL)) (-2865 (($ $ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) 40)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3600 (($ |#2|) 50)) (-2229 (((-3 $ "failed") $) 100)) (-3408 (($) 61 (|has| |#1| (-373)))) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-3770 (($ $ $) NIL)) (-3858 (($ $ $) NIL (|has| |#1| (-562)))) (-1874 (((-2 (|:| -1436 |#1|) (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-2306 (((-965 $)) 92)) (-3155 (($ $ |#1| (-777) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4202 (((-777) $ $) NIL (|has| |#1| (-562)))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-1699 (($ (-1182 |#1|) (-1091)) NIL) (($ (-1182 $) (-1091)) NIL)) (-2964 (($ $ (-777)) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) 88) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1091)) NIL) (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2132 ((|#2|) 53)) (-2302 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2550 (($ (-1 (-777) (-777)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-3713 (((-1182 |#1|) $) NIL)) (-4372 (((-3 (-1091) "failed") $) NIL)) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-3586 ((|#2| $) 49)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) 34)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-3627 (((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777)) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-1091)) (|:| -3283 (-777))) "failed") $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2310 (($) NIL (|has| |#1| (-1161)) CONST)) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-2020 (($ $) 91 (|has| |#1| (-354)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-650 (-1091)) (-650 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) NIL (|has| |#1| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#1| (-562)))) (-2575 (((-3 $ "failed") $ (-777)) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 101 (|has| |#1| (-368)))) (-3511 (($ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3519 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3324 (((-777) $) 38) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-4097 (((-965 $)) 42)) (-3276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#1| (-562)))) (-3798 (((-868) $) 71) (($ (-570)) NIL) (($ |#1|) 68) (($ (-1091)) NIL) (($ |#2|) 78) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) 73) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) 25 T CONST)) (-3041 (((-1276 |#1|) $) 86)) (-1907 (($ (-1276 |#1|)) 60)) (-1817 (($) 8 T CONST)) (-2835 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2101 (((-1276 |#1|) $) NIL)) (-2923 (((-112) $ $) 79)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) 82) (($ $ $) NIL)) (-3014 (($ $ $) 39)) (** (($ $ (-928)) NIL) (($ $ (-777)) 95)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 67) (($ $ $) 85) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 65) (($ $ |#1|) NIL))) +(((-718 |#1| |#2|) (-13 (-1252 |#1|) (-622 |#2|) (-10 -8 (-15 -2824 (|#2| |#2|)) (-15 -2132 (|#2|)) (-15 -3600 ($ |#2|)) (-15 -3586 (|#2| $)) (-15 -3041 ((-1276 |#1|) $)) (-15 -1907 ($ (-1276 |#1|))) (-15 -2101 ((-1276 |#1|) $)) (-15 -2306 ((-965 $))) (-15 -4097 ((-965 $))) (IF (|has| |#1| (-354)) (-15 -2020 ($ $)) |%noBranch|) (IF (|has| |#1| (-373)) (-6 (-373)) |%noBranch|))) (-1058) (-1252 |#1|)) (T -718)) +((-2824 (*1 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1252 *3)))) (-2132 (*1 *2) (-12 (-4 *2 (-1252 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058)))) (-3600 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1252 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *2 (-1252 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058)))) (-3041 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-1276 *3)) (-5 *1 (-718 *3 *4)) (-4 *4 (-1252 *3)))) (-1907 (*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1058)) (-5 *1 (-718 *3 *4)) (-4 *4 (-1252 *3)))) (-2101 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-1276 *3)) (-5 *1 (-718 *3 *4)) (-4 *4 (-1252 *3)))) (-2306 (*1 *2) (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *4 (-1252 *3)))) (-4097 (*1 *2) (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *4 (-1252 *3)))) (-2020 (*1 *1 *1) (-12 (-4 *2 (-354)) (-4 *2 (-1058)) (-5 *1 (-718 *2 *3)) (-4 *3 (-1252 *2))))) +(-13 (-1252 |#1|) (-622 |#2|) (-10 -8 (-15 -2824 (|#2| |#2|)) (-15 -2132 (|#2|)) (-15 -3600 ($ |#2|)) (-15 -3586 (|#2| $)) (-15 -3041 ((-1276 |#1|) $)) (-15 -1907 ($ (-1276 |#1|))) (-15 -2101 ((-1276 |#1|) $)) (-15 -2306 ((-965 $))) (-15 -4097 ((-965 $))) (IF (|has| |#1| (-354)) (-15 -2020 ($ $)) |%noBranch|) (IF (|has| |#1| (-373)) (-6 (-373)) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 ((|#1| $) 13)) (-3551 (((-1129) $) NIL)) (-3283 ((|#2| $) 12)) (-3811 (($ |#1| |#2|) 16)) (-3798 (((-868) $) NIL) (($ (-2 (|:| -2155 |#1|) (|:| -3283 |#2|))) 15) (((-2 (|:| -2155 |#1|) (|:| -3283 |#2|)) $) 14)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 11))) +(((-719 |#1| |#2| |#3|) (-13 (-856) (-496 (-2 (|:| -2155 |#1|) (|:| -3283 |#2|))) (-10 -8 (-15 -3283 (|#2| $)) (-15 -2155 (|#1| $)) (-15 -3811 ($ |#1| |#2|)))) (-856) (-1109) (-1 (-112) (-2 (|:| -2155 |#1|) (|:| -3283 |#2|)) (-2 (|:| -2155 |#1|) (|:| -3283 |#2|)))) (T -719)) +((-3283 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-719 *3 *2 *4)) (-4 *3 (-856)) (-14 *4 (-1 (-112) (-2 (|:| -2155 *3) (|:| -3283 *2)) (-2 (|:| -2155 *3) (|:| -3283 *2)))))) (-2155 (*1 *2 *1) (-12 (-4 *2 (-856)) (-5 *1 (-719 *2 *3 *4)) (-4 *3 (-1109)) (-14 *4 (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *3)) (-2 (|:| -2155 *2) (|:| -3283 *3)))))) (-3811 (*1 *1 *2 *3) (-12 (-5 *1 (-719 *2 *3 *4)) (-4 *2 (-856)) (-4 *3 (-1109)) (-14 *4 (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *3)) (-2 (|:| -2155 *2) (|:| -3283 *3))))))) +(-13 (-856) (-496 (-2 (|:| -2155 |#1|) (|:| -3283 |#2|))) (-10 -8 (-15 -3283 (|#2| $)) (-15 -2155 (|#1| $)) (-15 -3811 ($ |#1| |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 66)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 105) (((-3 (-115) "failed") $) 111)) (-3152 ((|#1| $) NIL) (((-115) $) 39)) (-2229 (((-3 $ "failed") $) 106)) (-1659 ((|#2| (-115) |#2|) 93)) (-2481 (((-112) $) NIL)) (-2021 (($ |#1| (-366 (-115))) 14)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2274 (($ $ (-1 |#2| |#2|)) 65)) (-1926 (($ $ (-1 |#2| |#2|)) 44)) (-1872 ((|#2| $ |#2|) 33)) (-3436 ((|#1| |#1|) 121 (|has| |#1| (-174)))) (-3798 (((-868) $) 73) (($ (-570)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) 37 T CONST)) (-1319 (((-112) $ $) NIL)) (-3323 (($ $) 115 (|has| |#1| (-174))) (($ $ $) 119 (|has| |#1| (-174)))) (-1809 (($) 21 T CONST)) (-1817 (($) 9 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) 48) (($ $ $) NIL)) (-3014 (($ $ $) 83)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ (-115) (-570)) NIL) (($ $ (-570)) 64)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-174))) (($ $ |#1|) 113 (|has| |#1| (-174))))) +(((-720 |#1| |#2|) (-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3323 ($ $)) (-15 -3323 ($ $ $)) (-15 -3436 (|#1| |#1|))) |%noBranch|) (-15 -1926 ($ $ (-1 |#2| |#2|))) (-15 -2274 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -1659 (|#2| (-115) |#2|)) (-15 -2021 ($ |#1| (-366 (-115)))))) (-1058) (-654 |#1|)) (T -720)) +((-3323 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) (-4 *3 (-654 *2)))) (-3323 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) (-4 *3 (-654 *2)))) (-3436 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) (-4 *3 (-654 *2)))) (-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-720 *4 *5)) (-4 *5 (-654 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)) (-4 *4 (-654 *3)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1058)) (-5 *1 (-720 *4 *2)) (-4 *2 (-654 *4)))) (-2021 (*1 *1 *2 *3) (-12 (-5 *3 (-366 (-115))) (-4 *2 (-1058)) (-5 *1 (-720 *2 *4)) (-4 *4 (-654 *2))))) +(-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3323 ($ $)) (-15 -3323 ($ $ $)) (-15 -3436 (|#1| |#1|))) |%noBranch|) (-15 -1926 ($ $ (-1 |#2| |#2|))) (-15 -2274 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -1659 (|#2| (-115) |#2|)) (-15 -2021 ($ |#1| (-366 (-115)))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 33)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3600 (($ |#1| |#2|) 25)) (-2229 (((-3 $ "failed") $) 51)) (-2481 (((-112) $) 35)) (-2132 ((|#2| $) 12)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 52)) (-3551 (((-1129) $) NIL)) (-3137 (((-3 $ "failed") $ $) 50)) (-3798 (((-868) $) 24) (($ (-570)) 19) ((|#1| $) 13)) (-2862 (((-777)) 28 T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 16 T CONST)) (-1817 (($) 30 T CONST)) (-2923 (((-112) $ $) 41)) (-3026 (($ $) 46) (($ $ $) 40)) (-3014 (($ $ $) 43)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 21) (($ $ $) 20))) +(((-721 |#1| |#2| |#3| |#4| |#5|) (-13 (-1058) (-10 -8 (-15 -2132 (|#2| $)) (-15 -3798 (|#1| $)) (-15 -3600 ($ |#1| |#2|)) (-15 -3137 ((-3 $ "failed") $ $)) (-15 -2229 ((-3 $ "failed") $)) (-15 -1820 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -721)) +((-2229 (*1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2132 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3600 (*1 *1 *2 *3) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3137 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1820 (*1 *1 *1) (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1058) (-10 -8 (-15 -2132 (|#2| $)) (-15 -3798 (|#1| $)) (-15 -3600 ($ |#1| |#2|)) (-15 -3137 ((-3 $ "failed") $ $)) (-15 -2229 ((-3 $ "failed") $)) (-15 -1820 ($ $)))) +((* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-722 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-723 |#2|) (-174)) (T -722)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-723 |#1|) (-141) (-174)) (T -723)) +NIL +(-13 (-111 |t#1| |t#1|) (-646 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-3086 (($ |#1|) 17) (($ $ |#1|) 20)) (-2298 (($ |#1|) 18) (($ $ |#1|) 21)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2481 (((-112) $) NIL)) (-3417 (($ |#1| |#1| |#1| |#1|) 8)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 16)) (-3551 (((-1129) $) NIL)) (-1725 ((|#1| $ |#1|) 24) (((-839 |#1|) $ (-839 |#1|)) 32)) (-3897 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-3798 (((-868) $) 39)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 9 T CONST)) (-2923 (((-112) $ $) 48)) (-3037 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ $ $) 14))) +(((-724 |#1|) (-13 (-479) (-10 -8 (-15 -3417 ($ |#1| |#1| |#1| |#1|)) (-15 -3086 ($ |#1|)) (-15 -2298 ($ |#1|)) (-15 -2229 ($)) (-15 -3086 ($ $ |#1|)) (-15 -2298 ($ $ |#1|)) (-15 -2229 ($ $)) (-15 -1725 (|#1| $ |#1|)) (-15 -1725 ((-839 |#1|) $ (-839 |#1|))))) (-368)) (T -724)) +((-3417 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3086 (*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-2298 (*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-2229 (*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-3086 (*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-2229 (*1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) (-1725 (*1 *2 *1 *2) (-12 (-5 *2 (-839 *3)) (-4 *3 (-368)) (-5 *1 (-724 *3))))) +(-13 (-479) (-10 -8 (-15 -3417 ($ |#1| |#1| |#1| |#1|)) (-15 -3086 ($ |#1|)) (-15 -2298 ($ |#1|)) (-15 -2229 ($)) (-15 -3086 ($ $ |#1|)) (-15 -2298 ($ $ |#1|)) (-15 -2229 ($ $)) (-15 -1725 (|#1| $ |#1|)) (-15 -1725 ((-839 |#1|) $ (-839 |#1|))))) +((-2559 (($ $ (-928)) 21)) (-3619 (($ $ (-928)) 22)) (** (($ $ (-928)) 10))) +(((-725 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-928))) (-15 -3619 (|#1| |#1| (-928))) (-15 -2559 (|#1| |#1| (-928)))) (-726)) (T -725)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-928))) (-15 -3619 (|#1| |#1| (-928))) (-15 -2559 (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-2559 (($ $ (-928)) 16)) (-3619 (($ $ (-928)) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6)) (** (($ $ (-928)) 14)) (* (($ $ $) 17))) +(((-726) (-141)) (T -726)) +((* (*1 *1 *1 *1) (-4 *1 (-726))) (-2559 (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928))))) +(-13 (-1109) (-10 -8 (-15 * ($ $ $)) (-15 -2559 ($ $ (-928))) (-15 -3619 ($ $ (-928))) (-15 ** ($ $ (-928))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2559 (($ $ (-928)) NIL) (($ $ (-777)) 21)) (-2481 (((-112) $) 10)) (-3619 (($ $ (-928)) NIL) (($ $ (-777)) 22)) (** (($ $ (-928)) NIL) (($ $ (-777)) 16))) +(((-727 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-777))) (-15 -3619 (|#1| |#1| (-777))) (-15 -2559 (|#1| |#1| (-777))) (-15 -2481 ((-112) |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -3619 (|#1| |#1| (-928))) (-15 -2559 (|#1| |#1| (-928)))) (-728)) (T -727)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-777))) (-15 -3619 (|#1| |#1| (-777))) (-15 -2559 (|#1| |#1| (-777))) (-15 -2481 ((-112) |#1|)) (-15 ** (|#1| |#1| (-928))) (-15 -3619 (|#1| |#1| (-928))) (-15 -2559 (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-2487 (((-3 $ "failed") $) 18)) (-2559 (($ $ (-928)) 16) (($ $ (-777)) 23)) (-2229 (((-3 $ "failed") $) 20)) (-2481 (((-112) $) 24)) (-3645 (((-3 $ "failed") $) 19)) (-3619 (($ $ (-928)) 15) (($ $ (-777)) 22)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1817 (($) 25 T CONST)) (-2923 (((-112) $ $) 6)) (** (($ $ (-928)) 14) (($ $ (-777)) 21)) (* (($ $ $) 17))) +(((-728) (-141)) (T -728)) +((-1817 (*1 *1) (-4 *1 (-728))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112)))) (-2559 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) (-2229 (*1 *1 *1) (|partial| -4 *1 (-728))) (-3645 (*1 *1 *1) (|partial| -4 *1 (-728))) (-2487 (*1 *1 *1) (|partial| -4 *1 (-728)))) +(-13 (-726) (-10 -8 (-15 (-1817) ($) -3711) (-15 -2481 ((-112) $)) (-15 -2559 ($ $ (-777))) (-15 -3619 ($ $ (-777))) (-15 ** ($ $ (-777))) (-15 -2229 ((-3 $ "failed") $)) (-15 -3645 ((-3 $ "failed") $)) (-15 -2487 ((-3 $ "failed") $)))) +(((-102) . T) ((-619 (-868)) . T) ((-726) . T) ((-1109) . T)) +((-3475 (((-777)) 42)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3152 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 23)) (-3600 (($ |#3|) NIL) (((-3 $ "failed") (-413 |#3|)) 52)) (-2229 (((-3 $ "failed") $) 72)) (-3408 (($) 46)) (-2233 ((|#2| $) 21)) (-2335 (($) 18)) (-3519 (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 60) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-4169 (((-695 |#2|) (-1276 $) (-1 |#2| |#2|)) 67)) (-1411 (((-1276 |#2|) $) NIL) (($ (-1276 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4042 ((|#3| $) 39)) (-2077 (((-1276 $)) 36))) +(((-729 |#1| |#2| |#3|) (-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3408 (|#1|)) (-15 -3475 ((-777))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -4169 ((-695 |#2|) (-1276 |#1|) (-1 |#2| |#2|))) (-15 -3600 ((-3 |#1| "failed") (-413 |#3|))) (-15 -1411 (|#1| |#3|)) (-15 -3600 (|#1| |#3|)) (-15 -2335 (|#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -1411 (|#3| |#1|)) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -2077 ((-1276 |#1|))) (-15 -4042 (|#3| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|))) (-730 |#2| |#3|) (-174) (-1252 |#2|)) (T -729)) +((-3475 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-777)) (-5 *1 (-729 *3 *4 *5)) (-4 *3 (-730 *4 *5))))) +(-10 -8 (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3408 (|#1|)) (-15 -3475 ((-777))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -4169 ((-695 |#2|) (-1276 |#1|) (-1 |#2| |#2|))) (-15 -3600 ((-3 |#1| "failed") (-413 |#3|))) (-15 -1411 (|#1| |#3|)) (-15 -3600 (|#1| |#3|)) (-15 -2335 (|#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -1411 (|#3| |#1|)) (-15 -1411 (|#1| (-1276 |#2|))) (-15 -1411 ((-1276 |#2|) |#1|)) (-15 -2077 ((-1276 |#1|))) (-15 -4042 (|#3| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -2229 ((-3 |#1| "failed") |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 102 (|has| |#1| (-368)))) (-2318 (($ $) 103 (|has| |#1| (-368)))) (-2234 (((-112) $) 105 (|has| |#1| (-368)))) (-2365 (((-695 |#1|) (-1276 $)) 53) (((-695 |#1|)) 68)) (-3142 ((|#1| $) 59)) (-2299 (((-1199 (-928) (-777)) (-570)) 155 (|has| |#1| (-354)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 122 (|has| |#1| (-368)))) (-2555 (((-424 $) $) 123 (|has| |#1| (-368)))) (-4073 (((-112) $ $) 113 (|has| |#1| (-368)))) (-3475 (((-777)) 96 (|has| |#1| (-373)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 178 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 176 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 173)) (-3152 (((-570) $) 177 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 175 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 174)) (-2427 (($ (-1276 |#1|) (-1276 $)) 55) (($ (-1276 |#1|)) 71)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-354)))) (-2372 (($ $ $) 117 (|has| |#1| (-368)))) (-2684 (((-695 |#1|) $ (-1276 $)) 60) (((-695 |#1|) $) 66)) (-2004 (((-695 (-570)) (-695 $)) 172 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 171 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 170) (((-695 |#1|) (-695 $)) 169)) (-3600 (($ |#2|) 166) (((-3 $ "failed") (-413 |#2|)) 163 (|has| |#1| (-368)))) (-2229 (((-3 $ "failed") $) 37)) (-3979 (((-928)) 61)) (-3408 (($) 99 (|has| |#1| (-373)))) (-2380 (($ $ $) 116 (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 111 (|has| |#1| (-368)))) (-3740 (($) 157 (|has| |#1| (-354)))) (-4316 (((-112) $) 158 (|has| |#1| (-354)))) (-3640 (($ $ (-777)) 149 (|has| |#1| (-354))) (($ $) 148 (|has| |#1| (-354)))) (-3701 (((-112) $) 124 (|has| |#1| (-368)))) (-4202 (((-928) $) 160 (|has| |#1| (-354))) (((-839 (-928)) $) 146 (|has| |#1| (-354)))) (-2481 (((-112) $) 35)) (-2233 ((|#1| $) 58)) (-3641 (((-3 $ "failed") $) 150 (|has| |#1| (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 120 (|has| |#1| (-368)))) (-2780 ((|#2| $) 51 (|has| |#1| (-368)))) (-2484 (((-928) $) 98 (|has| |#1| (-373)))) (-3586 ((|#2| $) 164)) (-1841 (($ (-650 $)) 109 (|has| |#1| (-368))) (($ $ $) 108 (|has| |#1| (-368)))) (-4122 (((-1168) $) 10)) (-1820 (($ $) 125 (|has| |#1| (-368)))) (-2310 (($) 151 (|has| |#1| (-354)) CONST)) (-2155 (($ (-928)) 97 (|has| |#1| (-373)))) (-3551 (((-1129) $) 11)) (-2335 (($) 168)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 110 (|has| |#1| (-368)))) (-1869 (($ (-650 $)) 107 (|has| |#1| (-368))) (($ $ $) 106 (|has| |#1| (-368)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) 154 (|has| |#1| (-354)))) (-3801 (((-424 $) $) 121 (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118 (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ $) 101 (|has| |#1| (-368)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 112 (|has| |#1| (-368)))) (-3788 (((-777) $) 114 (|has| |#1| (-368)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 115 (|has| |#1| (-368)))) (-3511 ((|#1| (-1276 $)) 54) ((|#1|) 67)) (-2174 (((-777) $) 159 (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) 147 (|has| |#1| (-354)))) (-3519 (($ $) 145 (-2779 (-1760 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) 143 (-2779 (-1760 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) 141 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186))) 140 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1186) (-777)) 139 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-777))) 138 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1 |#1| |#1|) (-777)) 131 (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-368)))) (-4169 (((-695 |#1|) (-1276 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-368)))) (-1881 ((|#2|) 167)) (-2042 (($) 156 (|has| |#1| (-354)))) (-1861 (((-1276 |#1|) $ (-1276 $)) 57) (((-695 |#1|) (-1276 $) (-1276 $)) 56) (((-1276 |#1|) $) 73) (((-695 |#1|) (-1276 $)) 72)) (-1411 (((-1276 |#1|) $) 70) (($ (-1276 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 153 (|has| |#1| (-354)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-368))) (($ (-413 (-570))) 95 (-2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-2917 (($ $) 152 (|has| |#1| (-354))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-4042 ((|#2| $) 52)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-2077 (((-1276 $)) 74)) (-3258 (((-112) $ $) 104 (|has| |#1| (-368)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $) 144 (-2779 (-1760 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) 142 (-2779 (-1760 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) 137 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186))) 136 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1186) (-777)) 135 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-777))) 134 (-1760 (|has| |#1| (-907 (-1186))) (|has| |#1| (-368)))) (($ $ (-1 |#1| |#1|) (-777)) 133 (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-368)))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 129 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 126 (|has| |#1| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-413 (-570)) $) 128 (|has| |#1| (-368))) (($ $ (-413 (-570))) 127 (|has| |#1| (-368))))) +(((-730 |#1| |#2|) (-141) (-174) (-1252 |t#1|)) (T -730)) +((-2335 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-730 *2 *3)) (-4 *3 (-1252 *2)))) (-1881 (*1 *2) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1252 *3)))) (-3600 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1252 *3)))) (-1411 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1252 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1252 *3)))) (-3600 (*1 *1 *2) (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-368)) (-4 *3 (-174)) (-4 *1 (-730 *3 *4)))) (-4169 (*1 *2 *3 *4) (-12 (-5 *3 (-1276 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) (-4 *1 (-730 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1252 *5)) (-5 *2 (-695 *5))))) +(-13 (-415 |t#1| |t#2|) (-174) (-620 |t#2|) (-417 |t#1|) (-382 |t#1|) (-10 -8 (-15 -2335 ($)) (-15 -1881 (|t#2|)) (-15 -3600 ($ |t#2|)) (-15 -1411 ($ |t#2|)) (-15 -3586 (|t#2| $)) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-6 (-233 |t#1|)) (-15 -3600 ((-3 $ "failed") (-413 |t#2|))) (-15 -4169 ((-695 |t#1|) (-1276 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-354)) (-6 (-354)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-38 |#1|) . T) ((-38 $) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-102) . T) ((-111 #0# #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2779 (|has| |#1| (-354)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-354)) (|has| |#1| (-368))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) . T) ((-620 |#2|) . T) ((-233 |#1|) |has| |#1| (-368)) ((-235) -2779 (|has| |#1| (-354)) (-12 (|has| |#1| (-235)) (|has| |#1| (-368)))) ((-245) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-294) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-311) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-368) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-408) |has| |#1| (-354)) ((-373) -2779 (|has| |#1| (-373)) (|has| |#1| (-354))) ((-354) |has| |#1| (-354)) ((-375 |#1| |#2|) . T) ((-415 |#1| |#2|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-562) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-652 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-646 |#1|) . T) ((-646 $) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-723 |#1|) . T) ((-723 $) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186)))) ((-927) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) -2779 (|has| |#1| (-354)) (|has| |#1| (-368))) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-354)) ((-1230) -2779 (|has| |#1| (-354)) (|has| |#1| (-368)))) +((-3734 (($) 11)) (-2229 (((-3 $ "failed") $) 14)) (-2481 (((-112) $) 10)) (** (($ $ (-928)) NIL) (($ $ (-777)) 20))) +(((-731 |#1|) (-10 -8 (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 -2481 ((-112) |#1|)) (-15 -3734 (|#1|)) (-15 ** (|#1| |#1| (-928)))) (-732)) (T -731)) +NIL +(-10 -8 (-15 -2229 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-777))) (-15 -2481 ((-112) |#1|)) (-15 -3734 (|#1|)) (-15 ** (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-3734 (($) 19 T CONST)) (-2229 (((-3 $ "failed") $) 16)) (-2481 (((-112) $) 18)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1817 (($) 20 T CONST)) (-2923 (((-112) $ $) 6)) (** (($ $ (-928)) 14) (($ $ (-777)) 17)) (* (($ $ $) 15))) +(((-732) (-141)) (T -732)) +((-1817 (*1 *1) (-4 *1 (-732))) (-3734 (*1 *1) (-4 *1 (-732))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-777)))) (-2229 (*1 *1 *1) (|partial| -4 *1 (-732)))) +(-13 (-1121) (-10 -8 (-15 (-1817) ($) -3711) (-15 -3734 ($) -3711) (-15 -2481 ((-112) $)) (-15 ** ($ $ (-777))) (-15 -2229 ((-3 $ "failed") $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1121) . T) ((-1109) . T)) +((-1674 (((-2 (|:| -3366 (-424 |#2|)) (|:| |special| (-424 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3144 (((-2 (|:| -3366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4049 ((|#2| (-413 |#2|) (-1 |#2| |#2|)) 13)) (-4022 (((-2 (|:| |poly| |#2|) (|:| -3366 (-413 |#2|)) (|:| |special| (-413 |#2|))) (-413 |#2|) (-1 |#2| |#2|)) 48))) +(((-733 |#1| |#2|) (-10 -7 (-15 -3144 ((-2 (|:| -3366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1674 ((-2 (|:| -3366 (-424 |#2|)) (|:| |special| (-424 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4049 (|#2| (-413 |#2|) (-1 |#2| |#2|))) (-15 -4022 ((-2 (|:| |poly| |#2|) (|:| -3366 (-413 |#2|)) (|:| |special| (-413 |#2|))) (-413 |#2|) (-1 |#2| |#2|)))) (-368) (-1252 |#1|)) (T -733)) +((-4022 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3366 (-413 *6)) (|:| |special| (-413 *6)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-413 *6)))) (-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1252 *5)) (-5 *1 (-733 *5 *2)) (-4 *5 (-368)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -3366 (-424 *3)) (|:| |special| (-424 *3)))) (-5 *1 (-733 *5 *3)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -3366 *3) (|:| |special| *3))) (-5 *1 (-733 *5 *3))))) +(-10 -7 (-15 -3144 ((-2 (|:| -3366 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1674 ((-2 (|:| -3366 (-424 |#2|)) (|:| |special| (-424 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4049 (|#2| (-413 |#2|) (-1 |#2| |#2|))) (-15 -4022 ((-2 (|:| |poly| |#2|) (|:| -3366 (-413 |#2|)) (|:| |special| (-413 |#2|))) (-413 |#2|) (-1 |#2| |#2|)))) +((-3940 ((|#7| (-650 |#5|) |#6|) NIL)) (-1347 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-734 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1347 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3940 (|#7| (-650 |#5|) |#6|))) (-856) (-799) (-799) (-1058) (-1058) (-956 |#4| |#2| |#1|) (-956 |#5| |#3| |#1|)) (T -734)) +((-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *9)) (-4 *9 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *8 (-1058)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799)) (-4 *4 (-956 *8 *6 *5)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1058)) (-4 *9 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) (-4 *2 (-956 *9 *7 *5)) (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799)) (-4 *4 (-956 *8 *6 *5))))) +(-10 -7 (-15 -1347 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3940 (|#7| (-650 |#5|) |#6|))) +((-1347 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-735 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1347 (|#7| (-1 |#2| |#1|) |#6|))) (-856) (-856) (-799) (-799) (-1058) (-956 |#5| |#3| |#1|) (-956 |#5| |#4| |#2|)) (T -735)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-856)) (-4 *6 (-856)) (-4 *7 (-799)) (-4 *9 (-1058)) (-4 *2 (-956 *9 *8 *6)) (-5 *1 (-735 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-799)) (-4 *4 (-956 *9 *7 *5))))) +(-10 -7 (-15 -1347 (|#7| (-1 |#2| |#1|) |#6|))) +((-3801 (((-424 |#4|) |#4|) 42))) +(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 |#4|) |#4|))) (-799) (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186))))) (-311) (-956 (-959 |#3|) |#1| |#2|)) (T -736)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-736 *4 *5 *6 *3)) (-4 *3 (-956 (-959 *6) *4 *5))))) +(-10 -7 (-15 -3801 ((-424 |#4|) |#4|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-870 |#1|)) $) NIL)) (-3768 (((-1182 $) $ (-870 |#1|)) NIL) (((-1182 |#2|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2318 (($ $) NIL (|has| |#2| (-562)))) (-2234 (((-112) $) NIL (|has| |#2| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-870 |#1|))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3696 (($ $) NIL (|has| |#2| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#2| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-870 |#1|) "failed") $) NIL)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-870 |#1|) $) NIL)) (-2865 (($ $ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#2| (-916)))) (-3155 (($ $ |#2| (-537 (-870 |#1|)) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-870 |#1|) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#2|) (-870 |#1|)) NIL) (($ (-1182 $) (-870 |#1|)) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#2| (-537 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-870 |#1|)) NIL)) (-2302 (((-537 (-870 |#1|)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-2550 (($ (-1 (-537 (-870 |#1|)) (-537 (-870 |#1|))) $) NIL)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-4372 (((-3 (-870 |#1|) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#2| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-870 |#1|)) (|:| -3283 (-777))) "failed") $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#2| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#2| (-916)))) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-870 |#1|) |#2|) NIL) (($ $ (-650 (-870 |#1|)) (-650 |#2|)) NIL) (($ $ (-870 |#1|) $) NIL) (($ $ (-650 (-870 |#1|)) (-650 $)) NIL)) (-3511 (($ $ (-870 |#1|)) NIL (|has| |#2| (-174)))) (-3519 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-3324 (((-537 (-870 |#1|)) $) NIL) (((-777) $ (-870 |#1|)) NIL) (((-650 (-777)) $ (-650 (-870 |#1|))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-870 |#1|) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-870 |#1|) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-1427 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-870 |#1|)) NIL (|has| |#2| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-870 |#1|)) NIL) (($ $) NIL (|has| |#2| (-562))) (($ (-413 (-570))) NIL (-2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570))))))) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-537 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-870 |#1|)) NIL) (($ $ (-650 (-870 |#1|))) NIL) (($ $ (-870 |#1|) (-777)) NIL) (($ $ (-650 (-870 |#1|)) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-737 |#1| |#2|) (-956 |#2| (-537 (-870 |#1|)) (-870 |#1|)) (-650 (-1186)) (-1058)) (T -737)) +NIL +(-956 |#2| (-537 (-870 |#1|)) (-870 |#1|)) +((-1596 (((-2 (|:| -1647 (-959 |#3|)) (|:| -1483 (-959 |#3|))) |#4|) 14)) (-2607 ((|#4| |#4| |#2|) 33)) (-1703 ((|#4| (-413 (-959 |#3|)) |#2|) 64)) (-2214 ((|#4| (-1182 (-959 |#3|)) |#2|) 77)) (-3530 ((|#4| (-1182 |#4|) |#2|) 51)) (-1715 ((|#4| |#4| |#2|) 54)) (-3801 (((-424 |#4|) |#4|) 40))) +(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1596 ((-2 (|:| -1647 (-959 |#3|)) (|:| -1483 (-959 |#3|))) |#4|)) (-15 -1715 (|#4| |#4| |#2|)) (-15 -3530 (|#4| (-1182 |#4|) |#2|)) (-15 -2607 (|#4| |#4| |#2|)) (-15 -2214 (|#4| (-1182 (-959 |#3|)) |#2|)) (-15 -1703 (|#4| (-413 (-959 |#3|)) |#2|)) (-15 -3801 ((-424 |#4|) |#4|))) (-799) (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)))) (-562) (-956 (-413 (-959 |#3|)) |#1| |#2|)) (T -738)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *6 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-413 (-959 *6)) *4 *5)))) (-1703 (*1 *2 *3 *4) (-12 (-4 *6 (-562)) (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) (-5 *3 (-413 (-959 *6))) (-4 *5 (-799)) (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))))) (-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 (-959 *6))) (-4 *6 (-562)) (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) (-4 *5 (-799)) (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))))) (-2607 (*1 *2 *2 *3) (-12 (-4 *4 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *5 (-562)) (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-1182 *2)) (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) (-4 *5 (-799)) (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *6 (-562)))) (-1715 (*1 *2 *2 *3) (-12 (-4 *4 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *5 (-562)) (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3)))) (-1596 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *6 (-562)) (-5 *2 (-2 (|:| -1647 (-959 *6)) (|:| -1483 (-959 *6)))) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-413 (-959 *6)) *4 *5))))) +(-10 -7 (-15 -1596 ((-2 (|:| -1647 (-959 |#3|)) (|:| -1483 (-959 |#3|))) |#4|)) (-15 -1715 (|#4| |#4| |#2|)) (-15 -3530 (|#4| (-1182 |#4|) |#2|)) (-15 -2607 (|#4| |#4| |#2|)) (-15 -2214 (|#4| (-1182 (-959 |#3|)) |#2|)) (-15 -1703 (|#4| (-413 (-959 |#3|)) |#2|)) (-15 -3801 ((-424 |#4|) |#4|))) +((-3801 (((-424 |#4|) |#4|) 54))) +(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 |#4|) |#4|))) (-799) (-856) (-13 (-311) (-148)) (-956 (-413 |#3|) |#1| |#2|)) (T -739)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-13 (-311) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-956 (-413 *6) *4 *5))))) +(-10 -7 (-15 -3801 ((-424 |#4|) |#4|))) +((-1347 (((-741 |#2| |#3|) (-1 |#2| |#1|) (-741 |#1| |#3|)) 18))) +(((-740 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-741 |#2| |#3|) (-1 |#2| |#1|) (-741 |#1| |#3|)))) (-1058) (-1058) (-732)) (T -740)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-741 *5 *7)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *7 (-732)) (-5 *2 (-741 *6 *7)) (-5 *1 (-740 *5 *6 *7))))) +(-10 -7 (-15 -1347 ((-741 |#2| |#3|) (-1 |#2| |#1|) (-741 |#1| |#3|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 38)) (-1919 (((-650 (-2 (|:| -1436 |#1|) (|:| -3350 |#2|))) $) 39)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3475 (((-777)) 22 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3152 ((|#2| $) NIL) ((|#1| $) NIL)) (-1885 (($ $) 104 (|has| |#2| (-856)))) (-2229 (((-3 $ "failed") $) 87)) (-3408 (($) 50 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) 72)) (-2717 (((-650 $) $) 54)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| |#2|) 17)) (-1347 (($ (-1 |#1| |#1|) $) 70)) (-2484 (((-928) $) 45 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-1851 ((|#2| $) 103 (|has| |#2| (-856)))) (-1860 ((|#1| $) 102 (|has| |#2| (-856)))) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) 37 (-12 (|has| |#2| (-373)) (|has| |#1| (-373))))) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 101) (($ (-570)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-650 (-2 (|:| -1436 |#1|) (|:| -3350 |#2|)))) 11)) (-2479 (((-650 |#1|) $) 56)) (-3326 ((|#1| $ |#2|) 117)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 12 T CONST)) (-1817 (($) 46 T CONST)) (-2923 (((-112) $ $) 107)) (-3026 (($ $) 63) (($ $ $) NIL)) (-3014 (($ $ $) 35)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-741 |#1| |#2|) (-13 (-1058) (-1047 |#2|) (-1047 |#1|) (-10 -8 (-15 -3925 ($ |#1| |#2|)) (-15 -3326 (|#1| $ |#2|)) (-15 -3798 ($ (-650 (-2 (|:| -1436 |#1|) (|:| -3350 |#2|))))) (-15 -1919 ((-650 (-2 (|:| -1436 |#1|) (|:| -3350 |#2|))) $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (-15 -2343 ((-112) $)) (-15 -2479 ((-650 |#1|) $)) (-15 -2717 ((-650 $) $)) (-15 -1700 ((-777) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-856)) (PROGN (-15 -1851 (|#2| $)) (-15 -1860 (|#1| $)) (-15 -1885 ($ $))) |%noBranch|))) (-1058) (-732)) (T -741)) +((-3925 (*1 *1 *2 *3) (-12 (-5 *1 (-741 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-732)))) (-3326 (*1 *2 *1 *3) (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-732)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -1436 *3) (|:| -3350 *4)))) (-4 *3 (-1058)) (-4 *4 (-732)) (-5 *1 (-741 *3 *4)))) (-1919 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -1436 *3) (|:| -3350 *4)))) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-741 *3 *4)) (-4 *4 (-732)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-2717 (*1 *2 *1) (-12 (-5 *2 (-650 (-741 *3 *4))) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) (-1851 (*1 *2 *1) (-12 (-4 *2 (-732)) (-4 *2 (-856)) (-5 *1 (-741 *3 *2)) (-4 *3 (-1058)))) (-1860 (*1 *2 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) (-4 *3 (-732)))) (-1885 (*1 *1 *1) (-12 (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1058)) (-4 *3 (-732))))) +(-13 (-1058) (-1047 |#2|) (-1047 |#1|) (-10 -8 (-15 -3925 ($ |#1| |#2|)) (-15 -3326 (|#1| $ |#2|)) (-15 -3798 ($ (-650 (-2 (|:| -1436 |#1|) (|:| -3350 |#2|))))) (-15 -1919 ((-650 (-2 (|:| -1436 |#1|) (|:| -3350 |#2|))) $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (-15 -2343 ((-112) $)) (-15 -2479 ((-650 |#1|) $)) (-15 -2717 ((-650 $) $)) (-15 -1700 ((-777) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-856)) (PROGN (-15 -1851 (|#2| $)) (-15 -1860 (|#1| $)) (-15 -1885 ($ $))) |%noBranch|))) +((-2419 (((-112) $ $) 19)) (-3971 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3612 (($ $ $) 73)) (-2220 (((-112) $ $) 74)) (-3636 (((-112) $ (-777)) 8)) (-4259 (($ (-650 |#1|)) 69) (($) 68)) (-2660 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3786 (($ $) 63)) (-3552 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) 65)) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22)) (-2842 (($ $ $) 70)) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41) (($ |#1| $ (-777)) 64)) (-3551 (((-1129) $) 21)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2718 (((-650 (-2 (|:| -2219 |#1|) (|:| -3562 (-777)))) $) 62)) (-2688 (($ $ |#1|) 72) (($ $ $) 71)) (-2709 (($) 50) (($ (-650 |#1|)) 49)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 51)) (-3798 (((-868) $) 18)) (-3871 (($ (-650 |#1|)) 67) (($) 66)) (-1319 (((-112) $ $) 23)) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20)) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-742 |#1|) (-141) (-1109)) (T -742)) +NIL +(-13 (-701 |t#1|) (-1107 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-701 |#1|) . T) ((-1107 |#1|) . T) ((-1109) . T) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-3971 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3612 (($ $ $) 99)) (-2220 (((-112) $ $) 107)) (-3636 (((-112) $ (-777)) NIL)) (-4259 (($ (-650 |#1|)) 26) (($) 17)) (-2660 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-3786 (($ $) 85)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) 70 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4448))) (($ |#1| $ (-570)) 75) (($ (-1 (-112) |#1|) $ (-570)) 78)) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (($ |#1| $ (-570)) 80) (($ (-1 (-112) |#1|) $ (-570)) 81)) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 32 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) 106)) (-1754 (($) 15) (($ |#1|) 28) (($ (-650 |#1|)) 23)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) 38)) (-1935 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 89)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-2842 (($ $ $) 97)) (-1334 ((|#1| $) 62)) (-2213 (($ |#1| $) 63) (($ |#1| $ (-777)) 86)) (-3551 (((-1129) $) NIL)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4067 ((|#1| $) 61)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 56)) (-4359 (($) 14)) (-2718 (((-650 (-2 (|:| -2219 |#1|) (|:| -3562 (-777)))) $) 55)) (-2688 (($ $ |#1|) NIL) (($ $ $) 98)) (-2709 (($) 16) (($ (-650 |#1|)) 25)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) 68 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 79)) (-1411 (((-542) $) 36 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 22)) (-3798 (((-868) $) 49)) (-3871 (($ (-650 |#1|)) 27) (($) 18)) (-1319 (((-112) $ $) NIL)) (-2089 (($ (-650 |#1|)) 24)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 103)) (-2431 (((-777) $) 67 (|has| $ (-6 -4448))))) +(((-743 |#1|) (-13 (-742 |#1|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -1754 ($)) (-15 -1754 ($ |#1|)) (-15 -1754 ($ (-650 |#1|))) (-15 -2282 ((-650 |#1|) $)) (-15 -1697 ($ |#1| $ (-570))) (-15 -1697 ($ (-1 (-112) |#1|) $ (-570))) (-15 -2571 ($ |#1| $ (-570))) (-15 -2571 ($ (-1 (-112) |#1|) $ (-570))))) (-1109)) (T -743)) +((-1754 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-1754 (*1 *1 *2) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-1754 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-743 *3)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-743 *3)) (-4 *3 (-1109)))) (-1697 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-1697 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109)) (-5 *1 (-743 *4)))) (-2571 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109)))) (-2571 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109)) (-5 *1 (-743 *4))))) +(-13 (-742 |#1|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -1754 ($)) (-15 -1754 ($ |#1|)) (-15 -1754 ($ (-650 |#1|))) (-15 -2282 ((-650 |#1|) $)) (-15 -1697 ($ |#1| $ (-570))) (-15 -1697 ($ (-1 (-112) |#1|) $ (-570))) (-15 -2571 ($ |#1| $ (-570))) (-15 -2571 ($ (-1 (-112) |#1|) $ (-570))))) +((-3320 (((-1281) (-1168)) 8))) +(((-744) (-10 -7 (-15 -3320 ((-1281) (-1168))))) (T -744)) +((-3320 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-744))))) +(-10 -7 (-15 -3320 ((-1281) (-1168)))) +((-1423 (((-650 |#1|) (-650 |#1|) (-650 |#1|)) 15))) +(((-745 |#1|) (-10 -7 (-15 -1423 ((-650 |#1|) (-650 |#1|) (-650 |#1|)))) (-856)) (T -745)) +((-1423 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-745 *3))))) +(-10 -7 (-15 -1423 ((-650 |#1|) (-650 |#1|) (-650 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 |#2|) $) 148)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 141 (|has| |#1| (-562)))) (-2318 (($ $) 140 (|has| |#1| (-562)))) (-2234 (((-112) $) 138 (|has| |#1| (-562)))) (-2774 (($ $) 97 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 80 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) 20)) (-3815 (($ $) 79 (|has| |#1| (-38 (-413 (-570)))))) (-2749 (($ $) 96 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 81 (|has| |#1| (-38 (-413 (-570)))))) (-4119 (($ $) 95 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 82 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) 18 T CONST)) (-1885 (($ $) 132)) (-2229 (((-3 $ "failed") $) 37)) (-3280 (((-959 |#1|) $ (-777)) 110) (((-959 |#1|) $ (-777) (-777)) 109)) (-2465 (((-112) $) 149)) (-1313 (($) 107 (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-777) $ |#2|) 112) (((-777) $ |#2| (-777)) 111)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 78 (|has| |#1| (-38 (-413 (-570)))))) (-2343 (((-112) $) 130)) (-3925 (($ $ (-650 |#2|) (-650 (-537 |#2|))) 147) (($ $ |#2| (-537 |#2|)) 146) (($ |#1| (-537 |#2|)) 131) (($ $ |#2| (-777)) 114) (($ $ (-650 |#2|) (-650 (-777))) 113)) (-1347 (($ (-1 |#1| |#1|) $) 129)) (-2665 (($ $) 104 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) 127)) (-1860 ((|#1| $) 126)) (-4122 (((-1168) $) 10)) (-1840 (($ $ |#2|) 108 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) 11)) (-3500 (($ $ (-777)) 115)) (-2410 (((-3 $ "failed") $ $) 142 (|has| |#1| (-562)))) (-4390 (($ $) 105 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (($ $ |#2| $) 123) (($ $ (-650 |#2|) (-650 $)) 122) (($ $ (-650 (-298 $))) 121) (($ $ (-298 $)) 120) (($ $ $ $) 119) (($ $ (-650 $) (-650 $)) 118)) (-3519 (($ $ |#2|) 46) (($ $ (-650 |#2|)) 45) (($ $ |#2| (-777)) 44) (($ $ (-650 |#2|) (-650 (-777))) 43)) (-3324 (((-537 |#2|) $) 128)) (-4129 (($ $) 94 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 83 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 93 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 84 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 92 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 85 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 150)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 145 (|has| |#1| (-174))) (($ $) 143 (|has| |#1| (-562))) (($ (-413 (-570))) 135 (|has| |#1| (-38 (-413 (-570)))))) (-3326 ((|#1| $ (-537 |#2|)) 133) (($ $ |#2| (-777)) 117) (($ $ (-650 |#2|) (-650 (-777))) 116)) (-2917 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 103 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 91 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) 139 (|has| |#1| (-562)))) (-4141 (($ $) 102 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 90 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 101 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 89 (|has| |#1| (-38 (-413 (-570)))))) (-1504 (($ $) 100 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 88 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 99 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 87 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 98 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 86 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ |#2|) 42) (($ $ (-650 |#2|)) 41) (($ $ |#2| (-777)) 40) (($ $ (-650 |#2|) (-650 (-777))) 39)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 134 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ $) 106 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 77 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 137 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 136 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 125) (($ $ |#1|) 124))) +(((-746 |#1| |#2|) (-141) (-1058) (-856)) (T -746)) +((-3326 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058)) (-4 *2 (-856)))) (-3326 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-746 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-856)))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058)) (-4 *2 (-856)))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) (-4 *3 (-856)) (-5 *2 (-777)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-777)) (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) (-4 *3 (-856)))) (-3280 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)) (-5 *2 (-959 *4)))) (-3280 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) (-4 *5 (-856)) (-5 *2 (-959 *4)))) (-1840 (*1 *1 *1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856)) (-4 *3 (-38 (-413 (-570))))))) +(-13 (-907 |t#2|) (-982 |t#1| (-537 |t#2|) |t#2|) (-520 |t#2| $) (-313 $) (-10 -8 (-15 -3326 ($ $ |t#2| (-777))) (-15 -3326 ($ $ (-650 |t#2|) (-650 (-777)))) (-15 -3500 ($ $ (-777))) (-15 -3925 ($ $ |t#2| (-777))) (-15 -3925 ($ $ (-650 |t#2|) (-650 (-777)))) (-15 -4202 ((-777) $ |t#2|)) (-15 -4202 ((-777) $ |t#2| (-777))) (-15 -3280 ((-959 |t#1|) $ (-777))) (-15 -3280 ((-959 |t#1|) $ (-777) (-777))) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $ |t#2|)) (-6 (-1011)) (-6 (-1211))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-537 |#2|)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-294) |has| |#1| (-562)) ((-313 $) . T) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-520 |#2| $) . T) ((-520 $ $) . T) ((-562) |has| |#1| (-562)) ((-652 #1#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #1#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-907 |#2|) . T) ((-982 |#1| #0# |#2|) . T) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1211) |has| |#1| (-38 (-413 (-570)))) ((-1214) |has| |#1| (-38 (-413 (-570))))) +((-3801 (((-424 (-1182 |#4|)) (-1182 |#4|)) 30) (((-424 |#4|) |#4|) 26))) +(((-747 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 |#4|) |#4|)) (-15 -3801 ((-424 (-1182 |#4|)) (-1182 |#4|)))) (-856) (-799) (-13 (-311) (-148)) (-956 |#3| |#2| |#1|)) (T -747)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148))) (-5 *2 (-424 *3)) (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))) +(-10 -7 (-15 -3801 ((-424 |#4|) |#4|)) (-15 -3801 ((-424 (-1182 |#4|)) (-1182 |#4|)))) +((-2675 (((-424 |#4|) |#4| |#2|) 142)) (-4205 (((-424 |#4|) |#4|) NIL)) (-2555 (((-424 (-1182 |#4|)) (-1182 |#4|)) 127) (((-424 |#4|) |#4|) 52)) (-2978 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-650 (-2 (|:| -3801 (-1182 |#4|)) (|:| -3283 (-570)))))) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|))) 81)) (-1921 (((-1182 |#3|) (-1182 |#3|) (-570)) 168)) (-4237 (((-650 (-777)) (-1182 |#4|) (-650 |#2|) (-777)) 75)) (-3586 (((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-1182 |#3|) (-1182 |#3|) |#4| (-650 |#2|) (-650 (-777)) (-650 |#3|)) 79)) (-1984 (((-2 (|:| |upol| (-1182 |#3|)) (|:| |Lval| (-650 |#3|)) (|:| |Lfact| (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570))))) (|:| |ctpol| |#3|)) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|))) 27)) (-1779 (((-2 (|:| -1750 (-1182 |#4|)) (|:| |polval| (-1182 |#3|))) (-1182 |#4|) (-1182 |#3|) (-570)) 72)) (-2584 (((-570) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570))))) 164)) (-3071 ((|#4| (-570) (-424 |#4|)) 73)) (-2548 (((-112) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570))))) NIL))) +(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2555 ((-424 |#4|) |#4|)) (-15 -2555 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -4205 ((-424 |#4|) |#4|)) (-15 -2584 ((-570) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))))) (-15 -2675 ((-424 |#4|) |#4| |#2|)) (-15 -1779 ((-2 (|:| -1750 (-1182 |#4|)) (|:| |polval| (-1182 |#3|))) (-1182 |#4|) (-1182 |#3|) (-570))) (-15 -2978 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-650 (-2 (|:| -3801 (-1182 |#4|)) (|:| -3283 (-570)))))) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -1984 ((-2 (|:| |upol| (-1182 |#3|)) (|:| |Lval| (-650 |#3|)) (|:| |Lfact| (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570))))) (|:| |ctpol| |#3|)) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -3071 (|#4| (-570) (-424 |#4|))) (-15 -2548 ((-112) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))))) (-15 -3586 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-1182 |#3|) (-1182 |#3|) |#4| (-650 |#2|) (-650 (-777)) (-650 |#3|))) (-15 -4237 ((-650 (-777)) (-1182 |#4|) (-650 |#2|) (-777))) (-15 -1921 ((-1182 |#3|) (-1182 |#3|) (-570)))) (-799) (-856) (-311) (-956 |#3| |#1| |#2|)) (T -748)) +((-1921 (*1 *2 *2 *3) (-12 (-5 *2 (-1182 *6)) (-5 *3 (-570)) (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-4237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-4 *7 (-856)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-4 *8 (-311)) (-5 *2 (-650 (-777))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *5 (-777)))) (-3586 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1182 *11)) (-5 *6 (-650 *10)) (-5 *7 (-650 (-777))) (-5 *8 (-650 *11)) (-4 *10 (-856)) (-4 *11 (-311)) (-4 *9 (-799)) (-4 *5 (-956 *11 *9 *10)) (-5 *2 (-650 (-1182 *5))) (-5 *1 (-748 *9 *10 *11 *5)) (-5 *3 (-1182 *5)))) (-2548 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-2 (|:| -3801 (-1182 *6)) (|:| -3283 (-570))))) (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-570)) (-5 *4 (-424 *2)) (-4 *2 (-956 *7 *5 *6)) (-5 *1 (-748 *5 *6 *7 *2)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-311)))) (-1984 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) (-4 *7 (-856)) (-4 *8 (-311)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-5 *2 (-2 (|:| |upol| (-1182 *8)) (|:| |Lval| (-650 *8)) (|:| |Lfact| (-650 (-2 (|:| -3801 (-1182 *8)) (|:| -3283 (-570))))) (|:| |ctpol| *8))) (-5 *1 (-748 *6 *7 *8 *9)))) (-2978 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) (-4 *7 (-856)) (-4 *8 (-311)) (-4 *6 (-799)) (-4 *9 (-956 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-650 (-2 (|:| -3801 (-1182 *9)) (|:| -3283 (-570))))))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)))) (-1779 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-570)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-311)) (-4 *9 (-956 *8 *6 *7)) (-5 *2 (-2 (|:| -1750 (-1182 *9)) (|:| |polval| (-1182 *8)))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)) (-5 *4 (-1182 *8)))) (-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-748 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -3801 (-1182 *6)) (|:| -3283 (-570))))) (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-4205 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-748 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5))))) +(-10 -7 (-15 -2555 ((-424 |#4|) |#4|)) (-15 -2555 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -4205 ((-424 |#4|) |#4|)) (-15 -2584 ((-570) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))))) (-15 -2675 ((-424 |#4|) |#4| |#2|)) (-15 -1779 ((-2 (|:| -1750 (-1182 |#4|)) (|:| |polval| (-1182 |#3|))) (-1182 |#4|) (-1182 |#3|) (-570))) (-15 -2978 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-650 (-2 (|:| -3801 (-1182 |#4|)) (|:| -3283 (-570)))))) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -1984 ((-2 (|:| |upol| (-1182 |#3|)) (|:| |Lval| (-650 |#3|)) (|:| |Lfact| (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570))))) (|:| |ctpol| |#3|)) (-1182 |#4|) (-650 |#2|) (-650 (-650 |#3|)))) (-15 -3071 (|#4| (-570) (-424 |#4|))) (-15 -2548 ((-112) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))) (-650 (-2 (|:| -3801 (-1182 |#3|)) (|:| -3283 (-570)))))) (-15 -3586 ((-3 (-650 (-1182 |#4|)) "failed") (-1182 |#4|) (-1182 |#3|) (-1182 |#3|) |#4| (-650 |#2|) (-650 (-777)) (-650 |#3|))) (-15 -4237 ((-650 (-777)) (-1182 |#4|) (-650 |#2|) (-777))) (-15 -1921 ((-1182 |#3|) (-1182 |#3|) (-570)))) +((-1752 (($ $ (-928)) 17))) +(((-749 |#1| |#2|) (-10 -8 (-15 -1752 (|#1| |#1| (-928)))) (-750 |#2|) (-174)) (T -749)) +NIL +(-10 -8 (-15 -1752 (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2559 (($ $ (-928)) 31)) (-1752 (($ $ (-928)) 38)) (-3619 (($ $ (-928)) 32)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-4307 (($ $ $) 28)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3666 (($ $ $ $) 29)) (-3616 (($ $ $) 27)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-750 |#1|) (-141) (-174)) (T -750)) +((-1752 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-750 *3)) (-4 *3 (-174))))) +(-13 (-767) (-723 |t#1|) (-10 -8 (-15 -1752 ($ $ (-928))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-726) . T) ((-767) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-2123 (((-1044) (-695 (-227)) (-570) (-112) (-570)) 25)) (-3524 (((-1044) (-695 (-227)) (-570) (-112) (-570)) 24))) +(((-751) (-10 -7 (-15 -3524 ((-1044) (-695 (-227)) (-570) (-112) (-570))) (-15 -2123 ((-1044) (-695 (-227)) (-570) (-112) (-570))))) (T -751)) +((-2123 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-751)))) (-3524 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-751))))) +(-10 -7 (-15 -3524 ((-1044) (-695 (-227)) (-570) (-112) (-570))) (-15 -2123 ((-1044) (-695 (-227)) (-570) (-112) (-570)))) +((-3930 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))) 43)) (-1555 (((-1044) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN)))) 39)) (-2437 (((-1044) (-227) (-227) (-227) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) 32))) +(((-752) (-10 -7 (-15 -2437 ((-1044) (-227) (-227) (-227) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -1555 ((-1044) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN))))) (-15 -3930 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN))))))) (T -752)) +((-3930 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1044)) (-5 *1 (-752)))) (-1555 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1044)) (-5 *1 (-752)))) (-2437 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) (-5 *2 (-1044)) (-5 *1 (-752))))) +(-10 -7 (-15 -2437 ((-1044) (-227) (-227) (-227) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -1555 ((-1044) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN))))) (-15 -3930 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))))) +((-3692 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 34)) (-2731 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 33)) (-3454 (((-1044) (-570) (-695 (-227)) (-570)) 32)) (-3862 (((-1044) (-570) (-695 (-227)) (-570)) 31)) (-3744 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 30)) (-4095 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 29)) (-4334 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570)) 28)) (-3220 (((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570)) 27)) (-2757 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 24)) (-1456 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570)) 23)) (-4036 (((-1044) (-570) (-695 (-227)) (-570)) 22)) (-4046 (((-1044) (-570) (-695 (-227)) (-570)) 21))) +(((-753) (-10 -7 (-15 -4046 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -4036 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -1456 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2757 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3220 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4334 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4095 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3744 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3862 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -3454 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -2731 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -3692 ((-1044) (-570) (-570) (-695 (-227)) (-570))))) (T -753)) +((-3692 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-2731 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3454 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3862 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3744 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-4095 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-4334 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-3220 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-2757 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-1456 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-4036 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753)))) (-4046 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-753))))) +(-10 -7 (-15 -4046 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -4036 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -1456 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2757 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3220 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4334 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4095 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3744 ((-1044) (-570) (-570) (-1168) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3862 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -3454 ((-1044) (-570) (-695 (-227)) (-570))) (-15 -2731 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -3692 ((-1044) (-570) (-570) (-695 (-227)) (-570)))) +((-1682 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2870 (((-1044) (-695 (-227)) (-695 (-227)) (-570) (-570)) 51)) (-4005 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2440 (((-1044) (-227) (-227) (-570) (-570) (-570) (-570)) 46)) (-2852 (((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 45)) (-1523 (((-1044) (-227) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 44)) (-3817 (((-1044) (-227) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 43)) (-2341 (((-1044) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) 42)) (-1516 (((-1044) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) 38)) (-4087 (((-1044) (-227) (-227) (-570) (-695 (-227)) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) 37)) (-2602 (((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) 33)) (-3175 (((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) 32))) +(((-754) (-10 -7 (-15 -3175 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -2602 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -4087 ((-1044) (-227) (-227) (-570) (-695 (-227)) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -1516 ((-1044) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -2341 ((-1044) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -3817 ((-1044) (-227) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -1523 ((-1044) (-227) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2852 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2440 ((-1044) (-227) (-227) (-570) (-570) (-570) (-570))) (-15 -4005 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))) (-15 -2870 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-570))) (-15 -1682 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))))) (T -754)) +((-1682 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2870 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-754)))) (-4005 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2440 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2852 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-1523 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-3817 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2341 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-1516 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-4087 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-754)))) (-2602 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) (-5 *2 (-1044)) (-5 *1 (-754)))) (-3175 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) (-5 *2 (-1044)) (-5 *1 (-754))))) +(-10 -7 (-15 -3175 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -2602 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -4087 ((-1044) (-227) (-227) (-570) (-695 (-227)) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -1516 ((-1044) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667))))) (-15 -2341 ((-1044) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -3817 ((-1044) (-227) (-227) (-227) (-227) (-570) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -1523 ((-1044) (-227) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2852 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G))))) (-15 -2440 ((-1044) (-227) (-227) (-570) (-570) (-570) (-570))) (-15 -4005 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN))))) (-15 -2870 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-570))) (-15 -1682 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-227) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))))) +((-1321 (((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-1971 (((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))) (-394) (-394)) 69) (((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1532 (((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG)))) 57)) (-1775 (((-1044) (-695 (-227)) (-695 (-227)) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) 50)) (-3284 (((-1044) (-227) (-570) (-570) (-1168) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2393 (((-1044) (-227) (-570) (-570) (-227) (-1168) (-227) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1997 (((-1044) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) 42)) (-4121 (((-1044) (-227) (-570) (-570) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-755) (-10 -7 (-15 -4121 ((-1044) (-227) (-570) (-570) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -1997 ((-1044) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -2393 ((-1044) (-227) (-570) (-570) (-227) (-1168) (-227) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -3284 ((-1044) (-227) (-570) (-570) (-1168) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -1775 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -1532 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG))))) (-15 -1971 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))))) (-15 -1971 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))) (-394) (-394))) (-15 -1321 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -755)) +((-1321 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1971 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-394)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1971 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1532 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1775 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1044)) (-5 *1 (-755)))) (-3284 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-2393 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-1997 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755)))) (-4121 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755))))) +(-10 -7 (-15 -4121 ((-1044) (-227) (-570) (-570) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -1997 ((-1044) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -2393 ((-1044) (-227) (-570) (-570) (-227) (-1168) (-227) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -3284 ((-1044) (-227) (-570) (-570) (-1168) (-570) (-227) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT))))) (-15 -1775 ((-1044) (-695 (-227)) (-695 (-227)) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN))))) (-15 -1532 ((-1044) (-227) (-227) (-570) (-227) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG))))) (-15 -1971 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))))) (-15 -1971 ((-1044) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL))) (-394) (-394))) (-15 -1321 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2066 (((-1044) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-681 (-227)) (-570)) 45)) (-4363 (((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-1168) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY)))) 41)) (-3580 (((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 23))) +(((-756) (-10 -7 (-15 -3580 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4363 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-1168) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY))))) (-15 -2066 ((-1044) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-681 (-227)) (-570))))) (T -756)) +((-2066 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-681 (-227))) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-756)))) (-4363 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1044)) (-5 *1 (-756)))) (-3580 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-756))))) +(-10 -7 (-15 -3580 ((-1044) (-570) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4363 ((-1044) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-1168) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY))))) (-15 -2066 ((-1044) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-681 (-227)) (-570)))) +((-1409 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-695 (-227)) (-227) (-227) (-570)) 35)) (-1508 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-227) (-227) (-570)) 34)) (-2837 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-695 (-227)) (-227) (-227) (-570)) 33)) (-3166 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 29)) (-2002 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 28)) (-2266 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570)) 27)) (-1993 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570)) 24)) (-3742 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570)) 23)) (-2564 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570)) 22)) (-3330 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)) 21))) +(((-757) (-10 -7 (-15 -3330 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -2564 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3742 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -1993 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -2266 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570))) (-15 -2002 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3166 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2837 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-695 (-227)) (-227) (-227) (-570))) (-15 -1508 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-227) (-227) (-570))) (-15 -1409 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-695 (-227)) (-227) (-227) (-570))))) (T -757)) +((-1409 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-1508 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2837 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-3166 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2002 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2266 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-757)))) (-1993 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-3742 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-2564 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757)))) (-3330 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-757))))) +(-10 -7 (-15 -3330 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -2564 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3742 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -1993 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -2266 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-227) (-570))) (-15 -2002 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3166 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2837 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-695 (-227)) (-227) (-227) (-570))) (-15 -1508 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-227) (-227) (-570))) (-15 -1409 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-695 (-227)) (-227) (-227) (-570)))) +((-2040 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)) 45)) (-3194 (((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-570)) 44)) (-2225 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)) 43)) (-4164 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 42)) (-2436 (((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570)) 41)) (-3104 (((-1044) (-1168) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570)) 40)) (-3605 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570) (-570) (-570) (-227) (-695 (-227)) (-570)) 39)) (-3422 (((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570))) 38)) (-4134 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570)) 35)) (-2766 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570)) 34)) (-2483 (((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570)) 33)) (-3718 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 32)) (-1328 (((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570)) 31)) (-3331 (((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-570)) 30)) (-1899 (((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-570) (-570) (-570)) 29)) (-4272 (((-1044) (-570) (-570) (-570) (-227) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-570)) (-570) (-570) (-570)) 28)) (-1639 (((-1044) (-570) (-695 (-227)) (-227) (-570)) 24)) (-1698 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 21))) +(((-758) (-10 -7 (-15 -1698 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1639 ((-1044) (-570) (-695 (-227)) (-227) (-570))) (-15 -4272 ((-1044) (-570) (-570) (-570) (-227) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-570)) (-570) (-570) (-570))) (-15 -1899 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -3331 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-570))) (-15 -1328 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570))) (-15 -3718 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2483 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570))) (-15 -2766 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570))) (-15 -4134 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3422 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)))) (-15 -3605 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570) (-570) (-570) (-227) (-695 (-227)) (-570))) (-15 -3104 ((-1044) (-1168) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -2436 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4164 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2225 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -3194 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2040 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))))) (T -758)) +((-2040 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3194 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2225 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-4164 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2436 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3104 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3605 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3422 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-4134 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2766 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-2483 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3718 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1328 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-3331 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1899 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-4272 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1639 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) (-5 *2 (-1044)) (-5 *1 (-758)))) (-1698 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-758))))) +(-10 -7 (-15 -1698 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1639 ((-1044) (-570) (-695 (-227)) (-227) (-570))) (-15 -4272 ((-1044) (-570) (-570) (-570) (-227) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-570)) (-570) (-570) (-570))) (-15 -1899 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -3331 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570) (-570) (-570))) (-15 -1328 ((-1044) (-570) (-227) (-227) (-695 (-227)) (-570) (-570) (-227) (-570))) (-15 -3718 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2483 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570))) (-15 -2766 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570))) (-15 -4134 ((-1044) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -3422 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)))) (-15 -3605 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570) (-570) (-570) (-227) (-695 (-227)) (-570))) (-15 -3104 ((-1044) (-1168) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -2436 ((-1044) (-1168) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4164 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2225 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570))) (-15 -3194 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2040 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570) (-695 (-227)) (-695 (-227)) (-570) (-570) (-570)))) +((-1894 (((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-570) (-695 (-227)) (-570)) 63)) (-3543 (((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-112) (-227) (-570) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-570) (-570) (-570) (-570) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2775 (((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-112) (-112) (-570) (-570) (-695 (-227)) (-695 (-570)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS)))) 58)) (-3834 (((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-570) (-570) (-695 (-227)) (-570)) 51)) (-1669 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1)))) 50)) (-1509 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2)))) 46)) (-3085 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1)))) 42)) (-1676 (((-1044) (-570) (-227) (-227) (-570) (-227) (-112) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-759) (-10 -7 (-15 -1676 ((-1044) (-570) (-227) (-227) (-570) (-227) (-112) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -3085 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1))))) (-15 -1509 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2))))) (-15 -1669 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1))))) (-15 -3834 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-570) (-570) (-695 (-227)) (-570))) (-15 -2775 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-112) (-112) (-570) (-570) (-695 (-227)) (-695 (-570)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS))))) (-15 -3543 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-112) (-227) (-570) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-570) (-570) (-570) (-570) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -1894 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-570) (-695 (-227)) (-570))))) (T -759)) +((-1894 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3543 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-695 (-570))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-2775 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-695 (-227))) (-5 *6 (-112)) (-5 *7 (-695 (-570))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3834 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-759)))) (-1669 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1044)) (-5 *1 (-759)))) (-1509 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1044)) (-5 *1 (-759)))) (-3085 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1044)) (-5 *1 (-759)))) (-1676 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759))))) +(-10 -7 (-15 -1676 ((-1044) (-570) (-227) (-227) (-570) (-227) (-112) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -3085 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1))))) (-15 -1509 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2))))) (-15 -1669 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1))))) (-15 -3834 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-570) (-570) (-695 (-227)) (-570))) (-15 -2775 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-227) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-112) (-112) (-112) (-570) (-570) (-695 (-227)) (-695 (-570)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS))))) (-15 -3543 ((-1044) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-570) (-112) (-227) (-570) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-570) (-570) (-570) (-570) (-570) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-570) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN))))) (-15 -1894 ((-1044) (-570) (-570) (-570) (-227) (-695 (-227)) (-570) (-695 (-227)) (-570)))) +((-4306 (((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570)) 47)) (-3212 (((-1044) (-1168) (-1168) (-570) (-570) (-695 (-171 (-227))) (-570) (-695 (-171 (-227))) (-570) (-570) (-695 (-171 (-227))) (-570)) 46)) (-2847 (((-1044) (-570) (-570) (-570) (-695 (-171 (-227))) (-570)) 45)) (-4379 (((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 40)) (-2871 (((-1044) (-1168) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)) (-570)) 39)) (-2167 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-570)) 36)) (-4175 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570)) 35)) (-3569 (((-1044) (-570) (-570) (-570) (-570) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-227) (-227) (-570)) 34)) (-2776 (((-1044) (-570) (-570) (-570) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-112) (-227) (-112) (-695 (-570)) (-695 (-227)) (-570)) 33)) (-3953 (((-1044) (-570) (-570) (-570) (-570) (-227) (-112) (-112) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-570)) 32))) +(((-760) (-10 -7 (-15 -3953 ((-1044) (-570) (-570) (-570) (-570) (-227) (-112) (-112) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-570))) (-15 -2776 ((-1044) (-570) (-570) (-570) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-112) (-227) (-112) (-695 (-570)) (-695 (-227)) (-570))) (-15 -3569 ((-1044) (-570) (-570) (-570) (-570) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-227) (-227) (-570))) (-15 -4175 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570))) (-15 -2167 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -2871 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)) (-570))) (-15 -4379 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2847 ((-1044) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -3212 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-171 (-227))) (-570) (-695 (-171 (-227))) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -4306 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570))))) (T -760)) +((-4306 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-3212 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2847 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-4379 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2871 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2167 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-760)))) (-4175 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-760)))) (-3569 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-650 (-112))) (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *7 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-760)))) (-2776 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-695 (-570))) (-5 *5 (-112)) (-5 *7 (-695 (-227))) (-5 *3 (-570)) (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-760)))) (-3953 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-650 (-112))) (-5 *7 (-695 (-227))) (-5 *8 (-695 (-570))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1044)) (-5 *1 (-760))))) +(-10 -7 (-15 -3953 ((-1044) (-570) (-570) (-570) (-570) (-227) (-112) (-112) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-570))) (-15 -2776 ((-1044) (-570) (-570) (-570) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-695 (-570)) (-112) (-227) (-112) (-695 (-570)) (-695 (-227)) (-570))) (-15 -3569 ((-1044) (-570) (-570) (-570) (-570) (-650 (-112)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-227) (-227) (-570))) (-15 -4175 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570))) (-15 -2167 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -2871 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)) (-570))) (-15 -4379 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2847 ((-1044) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -3212 ((-1044) (-1168) (-1168) (-570) (-570) (-695 (-171 (-227))) (-570) (-695 (-171 (-227))) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -4306 ((-1044) (-1168) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570)))) +((-2161 (((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570)) 79)) (-2196 (((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570)) 68)) (-2931 (((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))) (-394)) 56) (((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) 55)) (-3344 (((-1044) (-570) (-570) (-570) (-227) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570)) 37)) (-2137 (((-1044) (-570) (-570) (-227) (-227) (-570) (-570) (-695 (-227)) (-570)) 33)) (-2235 (((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570) (-570)) 30)) (-1464 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 29)) (-4275 (((-1044) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 28)) (-3947 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 27)) (-2284 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570)) 26)) (-1721 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 25)) (-2019 (((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 24)) (-3173 (((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570)) 23)) (-2831 (((-1044) (-695 (-227)) (-570) (-570) (-570) (-570)) 22)) (-1444 (((-1044) (-570) (-570) (-695 (-227)) (-570)) 21))) +(((-761) (-10 -7 (-15 -1444 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2831 ((-1044) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -3173 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2019 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1721 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2284 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -3947 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4275 ((-1044) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1464 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2235 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -2137 ((-1044) (-570) (-570) (-227) (-227) (-570) (-570) (-695 (-227)) (-570))) (-15 -3344 ((-1044) (-570) (-570) (-570) (-227) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2931 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))))) (-15 -2931 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))) (-394))) (-15 -2196 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2161 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570))))) (T -761)) +((-2161 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2196 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2931 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-394)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2931 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3344 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2137 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2235 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-1464 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-4275 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3947 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2284 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-1721 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2019 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-3173 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761)))) (-2831 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-761)))) (-1444 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-761))))) +(-10 -7 (-15 -1444 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2831 ((-1044) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -3173 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2019 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1721 ((-1044) (-570) (-570) (-695 (-227)) (-570))) (-15 -2284 ((-1044) (-570) (-570) (-570) (-570) (-695 (-227)) (-570))) (-15 -3947 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -4275 ((-1044) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1464 ((-1044) (-570) (-570) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2235 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570) (-570))) (-15 -2137 ((-1044) (-570) (-570) (-227) (-227) (-570) (-570) (-695 (-227)) (-570))) (-15 -3344 ((-1044) (-570) (-570) (-570) (-227) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2931 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))))) (-15 -2931 ((-1044) (-570) (-570) (-227) (-570) (-570) (-570) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE))) (-394))) (-15 -2196 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2161 ((-1044) (-570) (-570) (-570) (-570) (-570) (-112) (-570) (-112) (-570) (-695 (-171 (-227))) (-695 (-171 (-227))) (-570)))) +((-2401 (((-1044) (-570) (-570) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))) 64)) (-4284 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570)) 60)) (-2595 (((-1044) (-570) (-695 (-227)) (-112) (-227) (-570) (-570) (-570) (-570) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE)))) 59)) (-1661 (((-1044) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570)) 37)) (-2628 (((-1044) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-570)) 36)) (-2084 (((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570)) 33)) (-1887 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227))) 32)) (-3179 (((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570)) 28)) (-4154 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570)) 27)) (-2259 (((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570)) 26)) (-1520 (((-1044) (-570) (-695 (-171 (-227))) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-570)) 22))) +(((-762) (-10 -7 (-15 -1520 ((-1044) (-570) (-695 (-171 (-227))) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -2259 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -4154 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -3179 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570))) (-15 -1887 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)))) (-15 -2084 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2628 ((-1044) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1661 ((-1044) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -2595 ((-1044) (-570) (-695 (-227)) (-112) (-227) (-570) (-570) (-570) (-570) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE))))) (-15 -4284 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -2401 ((-1044) (-570) (-570) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD))))))) (T -762)) +((-2401 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-4284 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-2595 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-1661 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-2628 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-2084 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-1887 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-3179 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-762)))) (-4154 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-2259 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-762)))) (-1520 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044)) (-5 *1 (-762))))) +(-10 -7 (-15 -1520 ((-1044) (-570) (-695 (-171 (-227))) (-570) (-570) (-570) (-570) (-695 (-171 (-227))) (-570))) (-15 -2259 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -4154 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-570))) (-15 -3179 ((-1044) (-695 (-227)) (-570) (-695 (-227)) (-570) (-570) (-570))) (-15 -1887 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-570)) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)))) (-15 -2084 ((-1044) (-570) (-570) (-695 (-227)) (-695 (-227)) (-695 (-227)) (-570))) (-15 -2628 ((-1044) (-570) (-570) (-570) (-227) (-570) (-695 (-227)) (-695 (-227)) (-570))) (-15 -1661 ((-1044) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-570)) (-695 (-227)) (-695 (-570)) (-695 (-570)) (-695 (-227)) (-695 (-227)) (-695 (-570)) (-570))) (-15 -2595 ((-1044) (-570) (-695 (-227)) (-112) (-227) (-570) (-570) (-570) (-570) (-227) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE))))) (-15 -4284 ((-1044) (-570) (-695 (-227)) (-570) (-695 (-227)) (-695 (-570)) (-570) (-695 (-227)) (-570) (-570) (-570) (-570))) (-15 -2401 ((-1044) (-570) (-570) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-695 (-227)) (-570) (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))))) +((-3719 (((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-570) (-695 (-227))) 29)) (-2041 (((-1044) (-1168) (-570) (-570) (-695 (-227))) 28)) (-4421 (((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-227))) 27)) (-1802 (((-1044) (-570) (-570) (-570) (-695 (-227))) 21))) +(((-763) (-10 -7 (-15 -1802 ((-1044) (-570) (-570) (-570) (-695 (-227)))) (-15 -4421 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-227)))) (-15 -2041 ((-1044) (-1168) (-570) (-570) (-695 (-227)))) (-15 -3719 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-570) (-695 (-227)))))) (T -763)) +((-3719 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-763)))) (-2041 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-763)))) (-4421 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-763)))) (-1802 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) (-5 *1 (-763))))) +(-10 -7 (-15 -1802 ((-1044) (-570) (-570) (-570) (-695 (-227)))) (-15 -4421 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-695 (-570)) (-570) (-695 (-227)))) (-15 -2041 ((-1044) (-1168) (-570) (-570) (-695 (-227)))) (-15 -3719 ((-1044) (-1168) (-570) (-570) (-695 (-227)) (-570) (-570) (-695 (-227))))) +((-3176 (((-1044) (-227) (-227) (-227) (-227) (-570)) 62)) (-3147 (((-1044) (-227) (-227) (-227) (-570)) 61)) (-2087 (((-1044) (-227) (-227) (-227) (-570)) 60)) (-2474 (((-1044) (-227) (-227) (-570)) 59)) (-2281 (((-1044) (-227) (-570)) 58)) (-2491 (((-1044) (-227) (-570)) 57)) (-3571 (((-1044) (-227) (-570)) 56)) (-2112 (((-1044) (-227) (-570)) 55)) (-1912 (((-1044) (-227) (-570)) 54)) (-4090 (((-1044) (-227) (-570)) 53)) (-2674 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 52)) (-1832 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 51)) (-1335 (((-1044) (-227) (-570)) 50)) (-1719 (((-1044) (-227) (-570)) 49)) (-3988 (((-1044) (-227) (-570)) 48)) (-2461 (((-1044) (-227) (-570)) 47)) (-2815 (((-1044) (-570) (-227) (-171 (-227)) (-570) (-1168) (-570)) 46)) (-2937 (((-1044) (-1168) (-171 (-227)) (-1168) (-570)) 45)) (-3840 (((-1044) (-1168) (-171 (-227)) (-1168) (-570)) 44)) (-2023 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 43)) (-1521 (((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570)) 42)) (-2337 (((-1044) (-227) (-570)) 39)) (-3181 (((-1044) (-227) (-570)) 38)) (-3393 (((-1044) (-227) (-570)) 37)) (-4254 (((-1044) (-227) (-570)) 36)) (-2072 (((-1044) (-227) (-570)) 35)) (-2561 (((-1044) (-227) (-570)) 34)) (-3308 (((-1044) (-227) (-570)) 33)) (-1439 (((-1044) (-227) (-570)) 32)) (-1345 (((-1044) (-227) (-570)) 31)) (-2453 (((-1044) (-227) (-570)) 30)) (-2975 (((-1044) (-227) (-227) (-227) (-570)) 29)) (-2878 (((-1044) (-227) (-570)) 28)) (-2507 (((-1044) (-227) (-570)) 27)) (-1691 (((-1044) (-227) (-570)) 26)) (-3746 (((-1044) (-227) (-570)) 25)) (-1478 (((-1044) (-227) (-570)) 24)) (-1806 (((-1044) (-171 (-227)) (-570)) 21))) +(((-764) (-10 -7 (-15 -1806 ((-1044) (-171 (-227)) (-570))) (-15 -1478 ((-1044) (-227) (-570))) (-15 -3746 ((-1044) (-227) (-570))) (-15 -1691 ((-1044) (-227) (-570))) (-15 -2507 ((-1044) (-227) (-570))) (-15 -2878 ((-1044) (-227) (-570))) (-15 -2975 ((-1044) (-227) (-227) (-227) (-570))) (-15 -2453 ((-1044) (-227) (-570))) (-15 -1345 ((-1044) (-227) (-570))) (-15 -1439 ((-1044) (-227) (-570))) (-15 -3308 ((-1044) (-227) (-570))) (-15 -2561 ((-1044) (-227) (-570))) (-15 -2072 ((-1044) (-227) (-570))) (-15 -4254 ((-1044) (-227) (-570))) (-15 -3393 ((-1044) (-227) (-570))) (-15 -3181 ((-1044) (-227) (-570))) (-15 -2337 ((-1044) (-227) (-570))) (-15 -1521 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2023 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -3840 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -2937 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -2815 ((-1044) (-570) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2461 ((-1044) (-227) (-570))) (-15 -3988 ((-1044) (-227) (-570))) (-15 -1719 ((-1044) (-227) (-570))) (-15 -1335 ((-1044) (-227) (-570))) (-15 -1832 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2674 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -4090 ((-1044) (-227) (-570))) (-15 -1912 ((-1044) (-227) (-570))) (-15 -2112 ((-1044) (-227) (-570))) (-15 -3571 ((-1044) (-227) (-570))) (-15 -2491 ((-1044) (-227) (-570))) (-15 -2281 ((-1044) (-227) (-570))) (-15 -2474 ((-1044) (-227) (-227) (-570))) (-15 -2087 ((-1044) (-227) (-227) (-227) (-570))) (-15 -3147 ((-1044) (-227) (-227) (-227) (-570))) (-15 -3176 ((-1044) (-227) (-227) (-227) (-227) (-570))))) (T -764)) +((-3176 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3147 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2087 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2474 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2281 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2491 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3571 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1912 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2674 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1832 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1719 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2815 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-570)) (-5 *5 (-171 (-227))) (-5 *6 (-1168)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2937 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3840 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2023 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1521 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-4254 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1439 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1345 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2975 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1478 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(-10 -7 (-15 -1806 ((-1044) (-171 (-227)) (-570))) (-15 -1478 ((-1044) (-227) (-570))) (-15 -3746 ((-1044) (-227) (-570))) (-15 -1691 ((-1044) (-227) (-570))) (-15 -2507 ((-1044) (-227) (-570))) (-15 -2878 ((-1044) (-227) (-570))) (-15 -2975 ((-1044) (-227) (-227) (-227) (-570))) (-15 -2453 ((-1044) (-227) (-570))) (-15 -1345 ((-1044) (-227) (-570))) (-15 -1439 ((-1044) (-227) (-570))) (-15 -3308 ((-1044) (-227) (-570))) (-15 -2561 ((-1044) (-227) (-570))) (-15 -2072 ((-1044) (-227) (-570))) (-15 -4254 ((-1044) (-227) (-570))) (-15 -3393 ((-1044) (-227) (-570))) (-15 -3181 ((-1044) (-227) (-570))) (-15 -2337 ((-1044) (-227) (-570))) (-15 -1521 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2023 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -3840 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -2937 ((-1044) (-1168) (-171 (-227)) (-1168) (-570))) (-15 -2815 ((-1044) (-570) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2461 ((-1044) (-227) (-570))) (-15 -3988 ((-1044) (-227) (-570))) (-15 -1719 ((-1044) (-227) (-570))) (-15 -1335 ((-1044) (-227) (-570))) (-15 -1832 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -2674 ((-1044) (-227) (-171 (-227)) (-570) (-1168) (-570))) (-15 -4090 ((-1044) (-227) (-570))) (-15 -1912 ((-1044) (-227) (-570))) (-15 -2112 ((-1044) (-227) (-570))) (-15 -3571 ((-1044) (-227) (-570))) (-15 -2491 ((-1044) (-227) (-570))) (-15 -2281 ((-1044) (-227) (-570))) (-15 -2474 ((-1044) (-227) (-227) (-570))) (-15 -2087 ((-1044) (-227) (-227) (-227) (-570))) (-15 -3147 ((-1044) (-227) (-227) (-227) (-570))) (-15 -3176 ((-1044) (-227) (-227) (-227) (-227) (-570)))) +((-3591 (((-1281)) 20)) (-1877 (((-1168)) 31)) (-2748 (((-1168)) 30)) (-2248 (((-1113) (-1186) (-695 (-570))) 45) (((-1113) (-1186) (-695 (-227))) 41)) (-2079 (((-112)) 19)) (-4283 (((-1168) (-1168)) 34))) +(((-765) (-10 -7 (-15 -2748 ((-1168))) (-15 -1877 ((-1168))) (-15 -4283 ((-1168) (-1168))) (-15 -2248 ((-1113) (-1186) (-695 (-227)))) (-15 -2248 ((-1113) (-1186) (-695 (-570)))) (-15 -2079 ((-112))) (-15 -3591 ((-1281))))) (T -765)) +((-3591 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-765)))) (-2079 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-765)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-570))) (-5 *2 (-1113)) (-5 *1 (-765)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-227))) (-5 *2 (-1113)) (-5 *1 (-765)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))) (-1877 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765)))) (-2748 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765))))) +(-10 -7 (-15 -2748 ((-1168))) (-15 -1877 ((-1168))) (-15 -4283 ((-1168) (-1168))) (-15 -2248 ((-1113) (-1186) (-695 (-227)))) (-15 -2248 ((-1113) (-1186) (-695 (-570)))) (-15 -2079 ((-112))) (-15 -3591 ((-1281)))) +((-4307 (($ $ $) 10)) (-3666 (($ $ $ $) 9)) (-3616 (($ $ $) 12))) +(((-766 |#1|) (-10 -8 (-15 -3616 (|#1| |#1| |#1|)) (-15 -4307 (|#1| |#1| |#1|)) (-15 -3666 (|#1| |#1| |#1| |#1|))) (-767)) (T -766)) +NIL +(-10 -8 (-15 -3616 (|#1| |#1| |#1|)) (-15 -4307 (|#1| |#1| |#1|)) (-15 -3666 (|#1| |#1| |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2559 (($ $ (-928)) 31)) (-3619 (($ $ (-928)) 32)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-4307 (($ $ $) 28)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3666 (($ $ $ $) 29)) (-3616 (($ $ $) 27)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 33)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30))) +(((-767) (-141)) (T -767)) +((-3666 (*1 *1 *1 *1 *1) (-4 *1 (-767))) (-4307 (*1 *1 *1 *1) (-4 *1 (-767))) (-3616 (*1 *1 *1 *1) (-4 *1 (-767)))) +(-13 (-21) (-726) (-10 -8 (-15 -3666 ($ $ $ $)) (-15 -4307 ($ $ $)) (-15 -3616 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-726) . T) ((-1109) . T)) +((-3798 (((-868) $) NIL) (($ (-570)) 10))) +(((-768 |#1|) (-10 -8 (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-769)) (T -768)) +NIL +(-10 -8 (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2487 (((-3 $ "failed") $) 43)) (-2559 (($ $ (-928)) 31) (($ $ (-777)) 38)) (-2229 (((-3 $ "failed") $) 41)) (-2481 (((-112) $) 37)) (-3645 (((-3 $ "failed") $) 42)) (-3619 (($ $ (-928)) 32) (($ $ (-777)) 39)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-4307 (($ $ $) 28)) (-3798 (((-868) $) 12) (($ (-570)) 34)) (-2862 (((-777)) 35 T CONST)) (-1319 (((-112) $ $) 9)) (-3666 (($ $ $ $) 29)) (-3616 (($ $ $) 27)) (-1809 (($) 19 T CONST)) (-1817 (($) 36 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 33) (($ $ (-777)) 40)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 30))) +(((-769) (-141)) (T -769)) +((-2862 (*1 *2) (-12 (-4 *1 (-769)) (-5 *2 (-777)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-769))))) +(-13 (-767) (-728) (-10 -8 (-15 -2862 ((-777)) -3711) (-15 -3798 ($ (-570))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-726) . T) ((-728) . T) ((-767) . T) ((-1109) . T)) +((-3670 (((-650 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 |#1|)))))) (-695 (-171 (-413 (-570)))) |#1|) 33)) (-4341 (((-650 (-171 |#1|)) (-695 (-171 (-413 (-570)))) |#1|) 23)) (-4042 (((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))) (-1186)) 20) (((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570))))) 19))) +(((-770 |#1|) (-10 -7 (-15 -4042 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))))) (-15 -4042 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))) (-1186))) (-15 -4341 ((-650 (-171 |#1|)) (-695 (-171 (-413 (-570)))) |#1|)) (-15 -3670 ((-650 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 |#1|)))))) (-695 (-171 (-413 (-570)))) |#1|))) (-13 (-368) (-854))) (T -770)) +((-3670 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-650 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 *4))))))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))) (-4341 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-650 (-171 *4))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854))))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *4 (-1186)) (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *5)) (-4 *5 (-13 (-368) (-854))))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854)))))) +(-10 -7 (-15 -4042 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))))) (-15 -4042 ((-959 (-171 (-413 (-570)))) (-695 (-171 (-413 (-570)))) (-1186))) (-15 -4341 ((-650 (-171 |#1|)) (-695 (-171 (-413 (-570)))) |#1|)) (-15 -3670 ((-650 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 (-171 |#1|)))))) (-695 (-171 (-413 (-570)))) |#1|))) +((-4322 (((-176 (-570)) |#1|) 27))) +(((-771 |#1|) (-10 -7 (-15 -4322 ((-176 (-570)) |#1|))) (-410)) (T -771)) +((-4322 (*1 *2 *3) (-12 (-5 *2 (-176 (-570))) (-5 *1 (-771 *3)) (-4 *3 (-410))))) +(-10 -7 (-15 -4322 ((-176 (-570)) |#1|))) +((-3498 ((|#1| |#1| |#1|) 28)) (-2955 ((|#1| |#1| |#1|) 27)) (-2913 ((|#1| |#1| |#1|) 38)) (-3773 ((|#1| |#1| |#1|) 34)) (-2371 (((-3 |#1| "failed") |#1| |#1|) 31)) (-1909 (((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|) 26))) +(((-772 |#1| |#2|) (-10 -7 (-15 -1909 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| |#1|))) (-714 |#2|) (-368)) (T -772)) +((-2913 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-3773 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-2371 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-3498 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-2955 (*1 *2 *2 *2) (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) (-1909 (*1 *2 *3 *3) (-12 (-4 *4 (-368)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-772 *3 *4)) (-4 *3 (-714 *4))))) +(-10 -7 (-15 -1909 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -2913 (|#1| |#1| |#1|))) +((-1816 (((-697 (-1234)) $ (-1234)) 26)) (-3927 (((-697 (-555)) $ (-555)) 25)) (-4024 (((-777) $ (-129)) 27)) (-1678 (((-697 (-130)) $ (-130)) 24)) (-4158 (((-697 (-1234)) $) 12)) (-1324 (((-697 (-1232)) $) 8)) (-1318 (((-697 (-1231)) $) 10)) (-1537 (((-697 (-555)) $) 13)) (-2505 (((-697 (-553)) $) 9)) (-4125 (((-697 (-552)) $) 11)) (-3169 (((-777) $ (-129)) 7)) (-2725 (((-697 (-130)) $) 14)) (-2999 (((-112) $) 31)) (-2591 (((-697 $) |#1| (-961)) 32)) (-2514 (($ $) 6))) +(((-773 |#1|) (-141) (-1109)) (T -773)) +((-2591 (*1 *2 *3 *4) (-12 (-5 *4 (-961)) (-4 *3 (-1109)) (-5 *2 (-697 *1)) (-4 *1 (-773 *3)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(-13 (-582) (-10 -8 (-15 -2591 ((-697 $) |t#1| (-961))) (-15 -2999 ((-112) $)))) +(((-175) . T) ((-533) . T) ((-582) . T) ((-866) . T)) +((-2708 (((-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))) (-570)) 71)) (-2061 (((-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570))))) 69)) (-3511 (((-570)) 85))) +(((-774 |#1| |#2|) (-10 -7 (-15 -3511 ((-570))) (-15 -2061 ((-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))))) (-15 -2708 ((-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))) (-570)))) (-1252 (-570)) (-415 (-570) |#1|)) (T -774)) +((-2708 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-1252 *3)) (-5 *2 (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-774 *4 *5)) (-4 *5 (-415 *3 *4)))) (-2061 (*1 *2) (-12 (-4 *3 (-1252 (-570))) (-5 *2 (-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570))))) (-5 *1 (-774 *3 *4)) (-4 *4 (-415 (-570) *3)))) (-3511 (*1 *2) (-12 (-4 *3 (-1252 *2)) (-5 *2 (-570)) (-5 *1 (-774 *3 *4)) (-4 *4 (-415 *2 *3))))) +(-10 -7 (-15 -3511 ((-570))) (-15 -2061 ((-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))))) (-15 -2708 ((-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) (|:| |basisInv| (-695 (-570)))) (-570)))) +((-2419 (((-112) $ $) NIL)) (-3152 (((-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 20) (($ (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-775) (-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3798 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3798 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -3152 ((-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -775)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-775)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-775)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-775)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-775))))) +(-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3798 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3798 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -3152 ((-3 (|:| |nia| (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-3777 (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))) 18) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186))) 17)) (-3884 (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))) 20) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186))) 19))) +(((-776 |#1|) (-10 -7 (-15 -3777 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3777 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))))) (-562)) (T -776)) +((-3884 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5))))) +(-10 -7 (-15 -3777 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3777 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-959 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1647 (($ $ $) 10)) (-2620 (((-3 $ "failed") $ $) 15)) (-3086 (($ $ (-570)) 11)) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($ $) NIL)) (-2380 (($ $ $) NIL)) (-2481 (((-112) $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1869 (($ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 6 T CONST)) (-1817 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ $ $) NIL))) +(((-777) (-13 (-799) (-732) (-10 -8 (-15 -2380 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -1869 ($ $ $)) (-15 -1854 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -2410 ((-3 $ "failed") $ $)) (-15 -3086 ($ $ (-570))) (-15 -3408 ($ $)) (-6 (-4450 "*"))))) (T -777)) +((-2380 (*1 *1 *1 *1) (-5 *1 (-777))) (-2372 (*1 *1 *1 *1) (-5 *1 (-777))) (-1869 (*1 *1 *1 *1) (-5 *1 (-777))) (-1854 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1310 (-777)) (|:| -2423 (-777)))) (-5 *1 (-777)))) (-2410 (*1 *1 *1 *1) (|partial| -5 *1 (-777))) (-3086 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-777)))) (-3408 (*1 *1 *1) (-5 *1 (-777)))) +(-13 (-799) (-732) (-10 -8 (-15 -2380 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -1869 ($ $ $)) (-15 -1854 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -2410 ((-3 $ "failed") $ $)) (-15 -3086 ($ $ (-570))) (-15 -3408 ($ $)) (-6 (-4450 "*")))) ((|Integer|) (>= |#1| 0)) -((-3218 (((-3 |#2| "failed") |#2| |#2| (-114) (-1185)) 37))) -(((-777 |#1| |#2|) (-10 -7 (-15 -3218 ((-3 |#2| "failed") |#2| |#2| (-114) (-1185)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965))) (T -777)) -((-3218 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1210) (-965)))))) -(-10 -7 (-15 -3218 ((-3 |#2| "failed") |#2| |#2| (-114) (-1185)))) -((-3796 (((-779) |#1|) 8))) -(((-778 |#1|) (-10 -7 (-15 -3796 ((-779) |#1|))) (-1225)) (T -778)) -((-3796 (*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1225))))) -(-10 -7 (-15 -3796 ((-779) |#1|))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 7)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9))) -(((-779) (-1108)) (T -779)) -NIL -(-1108) -((-3829 ((|#2| |#4|) 35))) -(((-780 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#2| |#4|))) (-457) (-1251 |#1|) (-729 |#1| |#2|) (-1251 |#3|)) (T -780)) -((-3829 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1251 *5))))) -(-10 -7 (-15 -3829 (|#2| |#4|))) -((-3086 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1567 (((-1280) (-1167) (-1167) |#4| |#5|) 33)) (-2228 ((|#4| |#4| |#5|) 74)) (-3832 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|) 79)) (-1385 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 16))) -(((-781 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3086 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2228 (|#4| |#4| |#5|)) (-15 -3832 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1567 ((-1280) (-1167) (-1167) |#4| |#5|)) (-15 -1385 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -781)) -((-1385 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-1567 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1167)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *4 (-1073 *6 *7 *8)) (-5 *2 (-1280)) (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1079 *6 *7 *8 *4)))) (-3832 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2228 (*1 *2 *2 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *2 (-1073 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3)) (-4 *3 (-1079 *4 *5 *6 *2)))) (-3086 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(-10 -7 (-15 -3086 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2228 (|#4| |#4| |#5|)) (-15 -3832 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1567 ((-1280) (-1167) (-1167) |#4| |#5|)) (-15 -1385 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|))) -((-4381 (((-3 (-1181 (-1181 |#1|)) "failed") |#4|) 53)) (-3320 (((-649 |#4|) |#4|) 24)) (-1679 ((|#4| |#4|) 19))) -(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3320 ((-649 |#4|) |#4|)) (-15 -4381 ((-3 (-1181 (-1181 |#1|)) "failed") |#4|)) (-15 -1679 (|#4| |#4|))) (-353) (-332 |#1|) (-1251 |#2|) (-1251 |#3|) (-927)) (T -782)) -((-1679 (*1 *2 *2) (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1251 *4)) (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1251 *5)) (-14 *6 (-927)))) (-4381 (*1 *2 *3) (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1251 *6)) (-14 *7 (-927)))) (-3320 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5)) (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1251 *6)) (-14 *7 (-927))))) -(-10 -7 (-15 -3320 ((-649 |#4|) |#4|)) (-15 -4381 ((-3 (-1181 (-1181 |#1|)) "failed") |#4|)) (-15 -1679 (|#4| |#4|))) -((-2093 (((-2 (|:| |deter| (-649 (-1181 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1181 |#5|) (-649 |#1|) (-649 |#5|)) 75)) (-3843 (((-649 (-776)) |#1|) 20))) -(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2093 ((-2 (|:| |deter| (-649 (-1181 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1181 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -3843 ((-649 (-776)) |#1|))) (-1251 |#4|) (-798) (-855) (-310) (-955 |#4| |#2| |#3|)) (T -783)) -((-3843 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7)) (-4 *3 (-1251 *6)) (-4 *7 (-955 *6 *4 *5)))) (-2093 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1251 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310)) (-4 *10 (-955 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-649 (-1181 *10))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *10))))) (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10)))) (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1181 *10)) (-5 *4 (-649 *6)) (-5 *5 (-649 *10))))) -(-10 -7 (-15 -2093 ((-2 (|:| |deter| (-649 (-1181 |#5|))) (|:| |dterm| (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-649 |#1|)) (|:| |nlead| (-649 |#5|))) (-1181 |#5|) (-649 |#1|) (-649 |#5|))) (-15 -3843 ((-649 (-776)) |#1|))) -((-2154 (((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|) 31)) (-3535 (((-649 |#1|) (-694 (-412 (-569))) |#1|) 21)) (-1886 (((-958 (-412 (-569))) (-694 (-412 (-569))) (-1185)) 18) (((-958 (-412 (-569))) (-694 (-412 (-569)))) 17))) -(((-784 |#1|) (-10 -7 (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1185))) (-15 -3535 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -2154 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|))) (-13 (-367) (-853))) (T -784)) -((-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 (-2 (|:| |outval| *4) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 *4)))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1185)) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-367) (-853))))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853)))))) -(-10 -7 (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))))) (-15 -1886 ((-958 (-412 (-569))) (-694 (-412 (-569))) (-1185))) (-15 -3535 ((-649 |#1|) (-694 (-412 (-569))) |#1|)) (-15 -2154 ((-649 (-2 (|:| |outval| |#1|) (|:| |outmult| (-569)) (|:| |outvect| (-649 (-694 |#1|))))) (-694 (-412 (-569))) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 36)) (-1712 (((-649 |#2|) $) NIL)) (-3767 (((-1181 $) $ |#2|) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 |#2|)) NIL)) (-1568 (($ $) 30)) (-3623 (((-112) $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) 110 (|has| |#1| (-561)))) (-3536 (((-649 $) $ $) 123 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))))) (((-3 $ "failed") (-958 (-569))) NIL (-2776 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185)))))) (((-3 $ "failed") (-958 |#1|)) NIL (-2776 (-12 (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-1000 (-569))))))) (((-3 (-1133 |#1| |#2|) "failed") $) 21)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) ((|#2| $) NIL) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))))) (($ (-958 (-569))) NIL (-2776 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185)))))) (($ (-958 |#1|)) NIL (-2776 (-12 (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569))))) (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-550)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-1000 (-569))))))) (((-1133 |#1| |#2|) $) NIL)) (-3346 (($ $ $ |#2|) NIL (|has| |#1| (-173))) (($ $ $) 121 (|has| |#1| (-561)))) (-1883 (($ $) NIL) (($ $ |#2|) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-2288 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-1345 (((-112) $) NIL)) (-3514 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 81)) (-2727 (($ $) 136 (|has| |#1| (-457)))) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-3508 (($ $) NIL (|has| |#1| (-561)))) (-1996 (($ $) NIL (|has| |#1| (-561)))) (-2700 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-4200 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2870 (($ $ |#1| (-536 |#2|) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) 57)) (-3366 (((-776) $) NIL)) (-2140 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-1430 (($ $ $ $ $) 107 (|has| |#1| (-561)))) (-3372 ((|#2| $) 22)) (-1700 (($ (-1181 |#1|) |#2|) NIL) (($ (-1181 $) |#2|) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 38) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-3189 (($ $ $) 63)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#2|) NIL)) (-4107 (((-112) $) NIL)) (-2272 (((-536 |#2|) $) NIL) (((-776) $ |#2|) NIL) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-3762 (((-776) $) 23)) (-2492 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2306 (((-3 |#2| "failed") $) NIL)) (-2442 (($ $) NIL (|has| |#1| (-457)))) (-2382 (($ $) NIL (|has| |#1| (-457)))) (-1872 (((-649 $) $) NIL)) (-2890 (($ $) 39)) (-4203 (($ $) NIL (|has| |#1| (-457)))) (-1602 (((-649 $) $) 43)) (-3237 (($ $) 41)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $) 96)) (-2834 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 78) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |#2|) NIL)) (-1330 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $) NIL) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |#2|) NIL)) (-4421 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2763 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3435 (((-1167) $) NIL)) (-1384 (($ $ $) 125 (|has| |#1| (-561)))) (-3737 (((-649 $) $) 32)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-776))) "failed") $) NIL)) (-2310 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-1341 (($ $ $) NIL)) (-2307 (($ $) 24)) (-2151 (((-112) $ $) NIL)) (-4046 (((-112) $ $) NIL) (((-112) $ (-649 $)) NIL)) (-4348 (($ $ $) NIL)) (-2122 (($ $) 26)) (-3547 (((-1128) $) NIL)) (-3396 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-561)))) (-2127 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-561)))) (-1828 (((-112) $) 56)) (-1835 ((|#1| $) 58)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 ((|#1| |#1| $) 133 (|has| |#1| (-457))) (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2549 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-561)))) (-2081 (($ $ |#1|) 129 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-3997 (($ $ |#1|) 128 (|has| |#1| (-561))) (($ $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-649 |#2|) (-649 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-649 |#2|) (-649 $)) NIL)) (-3059 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3517 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4339 (((-536 |#2|) $) NIL) (((-776) $ |#2|) 45) (((-649 (-776)) $ (-649 |#2|)) NIL)) (-3596 (($ $) NIL)) (-1791 (($ $) 35)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541))))) (($ (-958 (-412 (-569)))) NIL (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185))))) (($ (-958 (-569))) NIL (-2776 (-12 (|has| |#1| (-38 (-569))) (|has| |#2| (-619 (-1185))) (-1749 (|has| |#1| (-38 (-412 (-569)))))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#2| (-619 (-1185)))))) (($ (-958 |#1|)) NIL (|has| |#2| (-619 (-1185)))) (((-1167) $) NIL (-12 (|has| |#1| (-1046 (-569))) (|has| |#2| (-619 (-1185))))) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1185))))) (-3833 ((|#1| $) 132 (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-958 |#1|) $) NIL (|has| |#2| (-619 (-1185)))) (((-1133 |#1| |#2|) $) 18) (($ (-1133 |#1| |#2|)) 19) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) 47) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 13 T CONST)) (-2136 (((-3 (-112) "failed") $ $) NIL)) (-1815 (($) 37 T CONST)) (-3089 (($ $ $ $ (-776)) 105 (|has| |#1| (-561)))) (-1876 (($ $ $ (-776)) 104 (|has| |#1| (-561)))) (-2832 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 75)) (-3012 (($ $ $) 85)) (** (($ $ (-927)) NIL) (($ $ (-776)) 70)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 62) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) -(((-785 |#1| |#2|) (-13 (-1073 |#1| (-536 |#2|) |#2|) (-618 (-1133 |#1| |#2|)) (-1046 (-1133 |#1| |#2|))) (-1057) (-855)) (T -785)) -NIL -(-13 (-1073 |#1| (-536 |#2|) |#2|) (-618 (-1133 |#1| |#2|)) (-1046 (-1133 |#1| |#2|))) -((-1346 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 13))) -(((-786 |#1| |#2|) (-10 -7 (-15 -1346 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1057) (-1057)) (T -786)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))) -(-10 -7 (-15 -1346 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 12)) (-3678 (((-1275 |#1|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#1|)) NIL)) (-3767 (((-1181 $) $ (-1090)) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3426 (((-649 $) $ $) 54 (|has| |#1| (-561)))) (-1726 (($ $ $) 50 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2401 (($ $ (-776)) NIL)) (-2452 (($ $ (-776)) NIL)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL) (((-3 (-1181 |#1|) "failed") $) 10)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1090) $) NIL) (((-1181 |#1|) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $ $) 58 (|has| |#1| (-173)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1525 (($ $ $) NIL)) (-3405 (($ $ $) 87 (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) 86 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-776) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) NIL) (($ (-1181 $) (-1090)) NIL)) (-3003 (($ $ (-776)) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-3189 (($ $ $) 27)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-1181 |#1|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4037 (-776))) $ $) 37)) (-3940 (($ $ $) 41)) (-2152 (($ $ $) 47)) (-2834 (((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 46)) (-3435 (((-1167) $) NIL)) (-1384 (($ $ $) 56 (|has| |#1| (-561)))) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-3396 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-561)))) (-2127 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-561)))) (-4031 (((-2 (|:| -3346 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-561)))) (-2584 (((-2 (|:| -3346 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-561)))) (-1828 (((-112) $) 13)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2448 (($ $ (-776) |#1| $) 26)) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2549 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-561)))) (-1601 (((-2 (|:| -3346 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-561)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-649 (-1090)) (-649 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4339 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1090)) NIL) (((-1181 |#1|) $) 7) (($ (-1181 |#1|)) 8) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 28 T CONST)) (-1815 (($) 32 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) 40) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-787 |#1|) (-13 (-1251 |#1|) (-618 (-1181 |#1|)) (-1046 (-1181 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#1| $)) (-15 -3189 ($ $ $)) (-15 -1664 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4037 (-776))) $ $)) (-15 -3940 ($ $ $)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2152 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3426 ((-649 $) $ $)) (-15 -1384 ($ $ $)) (-15 -2549 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2127 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -3396 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -1601 ((-2 (|:| -3346 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2584 ((-2 (|:| -3346 |#1|) (|:| |coef1| $)) $ $)) (-15 -4031 ((-2 (|:| -3346 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1057)) (T -787)) -((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) (-3189 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) (-1664 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -4037 (-776)))) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) (-3940 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) (-2834 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1435 *3) (|:| |gap| (-776)) (|:| -4007 (-787 *3)) (|:| -2054 (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) (-2152 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) (-3426 (*1 *2 *1 *1) (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-1384 (*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1057)))) (-2549 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-2127 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-3396 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-1601 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-2584 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) (-4031 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef2| (-787 *3)))) (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))) -(-13 (-1251 |#1|) (-618 (-1181 |#1|)) (-1046 (-1181 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#1| $)) (-15 -3189 ($ $ $)) (-15 -1664 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4037 (-776))) $ $)) (-15 -3940 ($ $ $)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2152 ($ $ $)) (IF (|has| |#1| (-561)) (PROGN (-15 -3426 ((-649 $) $ $)) (-15 -1384 ($ $ $)) (-15 -2549 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2127 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -3396 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -1601 ((-2 (|:| -3346 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2584 ((-2 (|:| -3346 |#1|) (|:| |coef1| $)) $ $)) (-15 -4031 ((-2 (|:| -3346 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2388 ((|#1| (-776) |#1|) 33 (|has| |#1| (-38 (-412 (-569)))))) (-3665 ((|#1| (-776) |#1|) 23)) (-2526 ((|#1| (-776) |#1|) 35 (|has| |#1| (-38 (-412 (-569))))))) -(((-788 |#1|) (-10 -7 (-15 -3665 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2526 (|#1| (-776) |#1|)) (-15 -2388 (|#1| (-776) |#1|))) |%noBranch|)) (-173)) (T -788)) -((-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-2526 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-3665 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173))))) -(-10 -7 (-15 -3665 (|#1| (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -2526 (|#1| (-776) |#1|)) (-15 -2388 (|#1| (-776) |#1|))) |%noBranch|)) -((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-789 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -789)) -NIL -(-13 (-1079 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1079 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T)) -((-2694 (((-3 (-383) "failed") (-319 |#1|) (-927)) 62 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-319 |#1|)) 54 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-383) "failed") (-412 (-958 |#1|)) (-927)) 41 (|has| |#1| (-561))) (((-3 (-383) "failed") (-412 (-958 |#1|))) 40 (|has| |#1| (-561))) (((-3 (-383) "failed") (-958 |#1|) (-927)) 31 (|has| |#1| (-1057))) (((-3 (-383) "failed") (-958 |#1|)) 30 (|has| |#1| (-1057)))) (-3479 (((-383) (-319 |#1|) (-927)) 99 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-319 |#1|)) 94 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-383) (-412 (-958 |#1|)) (-927)) 91 (|has| |#1| (-561))) (((-383) (-412 (-958 |#1|))) 90 (|has| |#1| (-561))) (((-383) (-958 |#1|) (-927)) 86 (|has| |#1| (-1057))) (((-383) (-958 |#1|)) 85 (|has| |#1| (-1057))) (((-383) |#1| (-927)) 76) (((-383) |#1|) 22)) (-1351 (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)) 71 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 (-170 |#1|))) 70 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|) (-927)) 63 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-319 |#1|)) 61 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927)) 46 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|)))) 45 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927)) 39 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-412 (-958 |#1|))) 38 (|has| |#1| (-561))) (((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)) 28 (|has| |#1| (-1057))) (((-3 (-170 (-383)) "failed") (-958 |#1|)) 26 (|has| |#1| (-1057))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)) 18 (|has| |#1| (-173))) (((-3 (-170 (-383)) "failed") (-958 (-170 |#1|))) 15 (|has| |#1| (-173)))) (-3713 (((-170 (-383)) (-319 (-170 |#1|)) (-927)) 102 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 (-170 |#1|))) 101 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|) (-927)) 100 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-319 |#1|)) 98 (-12 (|has| |#1| (-561)) (|has| |#1| (-855)))) (((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927)) 93 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 (-170 |#1|)))) 92 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|)) (-927)) 89 (|has| |#1| (-561))) (((-170 (-383)) (-412 (-958 |#1|))) 88 (|has| |#1| (-561))) (((-170 (-383)) (-958 |#1|) (-927)) 84 (|has| |#1| (-1057))) (((-170 (-383)) (-958 |#1|)) 83 (|has| |#1| (-1057))) (((-170 (-383)) (-958 (-170 |#1|)) (-927)) 78 (|has| |#1| (-173))) (((-170 (-383)) (-958 (-170 |#1|))) 77 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|) (-927)) 80 (|has| |#1| (-173))) (((-170 (-383)) (-170 |#1|)) 79 (|has| |#1| (-173))) (((-170 (-383)) |#1| (-927)) 27) (((-170 (-383)) |#1|) 25))) -(((-790 |#1|) (-10 -7 (-15 -3479 ((-383) |#1|)) (-15 -3479 ((-383) |#1| (-927))) (-15 -3713 ((-170 (-383)) |#1|)) (-15 -3713 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3713 ((-170 (-383)) (-170 |#1|))) (-15 -3713 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -3479 ((-383) (-958 |#1|))) (-15 -3479 ((-383) (-958 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 |#1|))) (-15 -3713 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3479 ((-383) (-412 (-958 |#1|)))) (-15 -3479 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3479 ((-383) (-319 |#1|))) (-15 -3479 ((-383) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 |#1|))) (-15 -3713 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-958 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-319 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|)) (-619 (-383))) (T -790)) -((-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-2694 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-1351 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-170 *5)) (-5 *4 (-927)) (-4 *5 (-173)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-170 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3713 (*1 *2 *3) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))) (-3479 (*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2))))) -(-10 -7 (-15 -3479 ((-383) |#1|)) (-15 -3479 ((-383) |#1| (-927))) (-15 -3713 ((-170 (-383)) |#1|)) (-15 -3713 ((-170 (-383)) |#1| (-927))) (IF (|has| |#1| (-173)) (PROGN (-15 -3713 ((-170 (-383)) (-170 |#1|))) (-15 -3713 ((-170 (-383)) (-170 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -3479 ((-383) (-958 |#1|))) (-15 -3479 ((-383) (-958 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-958 |#1|))) (-15 -3713 ((-170 (-383)) (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -3479 ((-383) (-412 (-958 |#1|)))) (-15 -3479 ((-383) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)))) (-15 -3713 ((-170 (-383)) (-412 (-958 |#1|)) (-927))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))))) (-15 -3713 ((-170 (-383)) (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -3479 ((-383) (-319 |#1|))) (-15 -3479 ((-383) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 |#1|))) (-15 -3713 ((-170 (-383)) (-319 |#1|) (-927))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)))) (-15 -3713 ((-170 (-383)) (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 (-170 |#1|)) (-927)))) |%noBranch|) (IF (|has| |#1| (-1057)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-958 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-958 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-958 |#1|) (-927)))) |%noBranch|) (IF (|has| |#1| (-561)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)))) (-15 -2694 ((-3 (-383) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 |#1|)) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-412 (-958 (-170 |#1|))) (-927))) (IF (|has| |#1| (-855)) (PROGN (-15 -2694 ((-3 (-383) "failed") (-319 |#1|))) (-15 -2694 ((-3 (-383) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 |#1|) (-927))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)))) (-15 -1351 ((-3 (-170 (-383)) "failed") (-319 (-170 |#1|)) (-927)))) |%noBranch|)) |%noBranch|)) -((-2493 (((-927) (-1167)) 92)) (-4055 (((-3 (-383) "failed") (-1167)) 36)) (-2240 (((-383) (-1167)) 34)) (-2972 (((-927) (-1167)) 63)) (-2724 (((-1167) (-927)) 75)) (-4357 (((-1167) (-927)) 62))) -(((-791) (-10 -7 (-15 -4357 ((-1167) (-927))) (-15 -2972 ((-927) (-1167))) (-15 -2724 ((-1167) (-927))) (-15 -2493 ((-927) (-1167))) (-15 -2240 ((-383) (-1167))) (-15 -4055 ((-3 (-383) "failed") (-1167))))) (T -791)) -((-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791))))) -(-10 -7 (-15 -4357 ((-1167) (-927))) (-15 -2972 ((-927) (-1167))) (-15 -2724 ((-1167) (-927))) (-15 -2493 ((-927) (-1167))) (-15 -2240 ((-383) (-1167))) (-15 -4055 ((-3 (-383) "failed") (-1167)))) -((-2417 (((-112) $ $) 7)) (-2519 (((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 16) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043)) 14)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 17) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-792) (-140)) (T -792)) -((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043)))))) (-2519 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1043)) (-5 *3 (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) (-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-792)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043)))))) (-2519 (*1 *2 *3 *2) (-12 (-4 *1 (-792)) (-5 *2 (-1043)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) -(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2519 ((-1043) (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) (|:| |extra| (-1043))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2519 ((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) (-1043))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-1720 (((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383))) 55) (((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 52)) (-1599 (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 61)) (-3960 (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 50)) (-2296 (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383))) 63) (((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))) 62))) -(((-793) (-10 -7 (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -3960 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -1599 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))))) (T -793)) -((-1599 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-1720 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383)))) (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-1720 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-569)) (-5 *6 (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383)))) (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-3960 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-2296 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793)))) (-2296 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) (-5 *1 (-793))))) -(-10 -7 (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -2296 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -3960 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)))) (-15 -1720 ((-1280) (-1275 (-383)) (-569) (-383) (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383))) (-383) (-1275 (-383)) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)) (-1275 (-383)))) (-15 -1599 ((-1280) (-1275 (-383)) (-569) (-383) (-383) (-569) (-1 (-1280) (-1275 (-383)) (-1275 (-383)) (-383))))) -((-1552 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 66)) (-2202 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 42)) (-3847 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 65)) (-3730 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 40)) (-3910 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 64)) (-3927 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)) 26)) (-4077 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 43)) (-2266 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 41)) (-3520 (((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569)) 39))) -(((-794) (-10 -7 (-15 -3520 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -2266 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -4077 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3927 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3730 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -2202 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3910 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3847 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -1552 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))))) (T -794)) -((-1552 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3847 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3910 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-2202 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3730 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3927 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-4077 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-2266 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569)))) (-3520 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) (-5 *2 (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) (|:| |success| (-112)))) (-5 *1 (-794)) (-5 *5 (-569))))) -(-10 -7 (-15 -3520 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -2266 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -4077 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569) (-569))) (-15 -3927 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3730 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -2202 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3910 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -3847 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569))) (-15 -1552 ((-2 (|:| -2188 (-383)) (|:| -3647 (-383)) (|:| |totalpts| (-569)) (|:| |success| (-112))) (-1 (-383) (-383)) (-383) (-383) (-383) (-383) (-569) (-569)))) -((-3983 (((-1220 |#1|) |#1| (-226) (-569)) 69))) -(((-795 |#1|) (-10 -7 (-15 -3983 ((-1220 |#1|) |#1| (-226) (-569)))) (-982)) (T -795)) -((-3983 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1220 *3)) (-5 *1 (-795 *3)) (-4 *3 (-982))))) -(-10 -7 (-15 -3983 ((-1220 |#1|) |#1| (-226) (-569)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-2208 (((-3 $ "failed") $ $) 27)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3024 (($ $ $) 31) (($ $) 30)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29))) -(((-796) (-140)) (T -796)) -NIL -(-13 (-800) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26))) -(((-797) (-140)) (T -797)) -NIL -(-13 (-799) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-799) . T) ((-855) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-3151 (($ $ $) 28)) (-2208 (((-3 $ "failed") $ $) 27)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26))) -(((-798) (-140)) (T -798)) -((-3151 (*1 *1 *1 *1) (-4 *1 (-798)))) -(-13 (-800) (-10 -8 (-15 -3151 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22))) -(((-799) (-140)) (T -799)) -NIL -(-13 (-855) (-25)) -(((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-2208 (((-3 $ "failed") $ $) 27)) (-4427 (($) 24 T CONST)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3012 (($ $ $) 21)) (* (($ (-927) $) 22) (($ (-776) $) 26))) -(((-800) (-140)) (T -800)) -NIL -(-13 (-797) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-797) . T) ((-799) . T) ((-855) . T) ((-1108) . T)) -((-4143 (((-112) $) 42)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 43)) (-3377 (((-3 (-412 (-569)) "failed") $) 78)) (-1441 (((-112) $) 72)) (-1606 (((-412 (-569)) $) 76)) (-3829 ((|#2| $) 26)) (-1346 (($ (-1 |#2| |#2|) $) 23)) (-1817 (($ $) 58)) (-1410 (((-541) $) 67)) (-3476 (($ $) 21)) (-3796 (((-867) $) 53) (($ (-569)) 40) (($ |#2|) 38) (($ (-412 (-569))) NIL)) (-2721 (((-776)) 10)) (-2271 ((|#2| $) 71)) (-2920 (((-112) $ $) 30)) (-2944 (((-112) $ $) 69)) (-3024 (($ $) 32) (($ $ $) NIL)) (-3012 (($ $ $) 31)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-801 |#1| |#2|) (-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-802 |#2|) (-173)) (T -801)) -((-2721 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4)) (-4 *3 (-802 *4))))) -(-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1817 (|#1| |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-3473 (((-776)) 58 (|has| |#1| (-372)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 100 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 94)) (-3150 (((-569) $) 99 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 96 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 95)) (-3086 (((-3 $ "failed") $) 37)) (-3824 ((|#1| $) 84)) (-3377 (((-3 (-412 (-569)) "failed") $) 71 (|has| |#1| (-550)))) (-1441 (((-112) $) 73 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 72 (|has| |#1| (-550)))) (-3406 (($) 61 (|has| |#1| (-372)))) (-2349 (((-112) $) 35)) (-3721 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3829 ((|#1| $) 76)) (-3380 (($ $ $) 67 (|has| |#1| (-855)))) (-2839 (($ $ $) 66 (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) 86)) (-2731 (((-927) $) 60 (|has| |#1| (-372)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 70 (|has| |#1| (-367)))) (-2150 (($ (-927)) 59 (|has| |#1| (-372)))) (-1782 ((|#1| $) 81)) (-3671 ((|#1| $) 82)) (-2147 ((|#1| $) 83)) (-4310 ((|#1| $) 77)) (-2982 ((|#1| $) 78)) (-1686 ((|#1| $) 79)) (-1907 ((|#1| $) 80)) (-3547 (((-1128) $) 11)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 92 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 90 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 89 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 88 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 87 (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) 93 (|has| |#1| (-289 |#1| |#1|)))) (-1410 (((-541) $) 68 (|has| |#1| (-619 (-541))))) (-3476 (($ $) 85)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 98 (|has| |#1| (-1046 (-412 (-569)))))) (-2239 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2271 ((|#1| $) 74 (|has| |#1| (-1068)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 64 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 63 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 65 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 62 (|has| |#1| (-855)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-802 |#1|) (-140) (-173)) (T -802)) -((-3476 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2147 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-3721 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-1817 (*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367))))) -(-13 (-38 |t#1|) (-416 |t#1|) (-342 |t#1|) (-10 -8 (-15 -3476 ($ $)) (-15 -3824 (|t#1| $)) (-15 -2147 (|t#1| $)) (-15 -3671 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -1907 (|t#1| $)) (-15 -1686 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -4310 (|t#1| $)) (-15 -3829 (|t#1| $)) (-15 -3721 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-372)) (-6 (-372)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2271 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-367)) (-15 -1817 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-372) |has| |#1| (-372)) ((-342 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1346 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) (-802 |#2|) (-173) (-802 |#4|) (-173)) (T -803)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5))))) -(-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-1007 |#1|) "failed") $) 35) (((-3 (-569) "failed") $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-569))) (|has| |#1| (-1046 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-3150 ((|#1| $) NIL) (((-1007 |#1|) $) 33) (((-569) $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-569))) (|has| |#1| (-1046 (-569))))) (((-412 (-569)) $) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-3086 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| $) 16)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1441 (((-112) $) NIL (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-3406 (($) NIL (|has| |#1| (-372)))) (-2349 (((-112) $) NIL)) (-3721 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1007 |#1|) (-1007 |#1|)) 29)) (-3829 ((|#1| $) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-1782 ((|#1| $) 22)) (-3671 ((|#1| $) 20)) (-2147 ((|#1| $) 18)) (-4310 ((|#1| $) 26)) (-2982 ((|#1| $) 25)) (-1686 ((|#1| $) 24)) (-1907 ((|#1| $) 23)) (-3547 (((-1128) $) NIL)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3476 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1007 |#1|)) 30) (($ (-412 (-569))) NIL (-2776 (|has| (-1007 |#1|) (-1046 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2271 ((|#1| $) NIL (|has| |#1| (-1068)))) (-1804 (($) 8 T CONST)) (-1815 (($) 12 T CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-804 |#1|) (-13 (-802 |#1|) (-416 (-1007 |#1|)) (-10 -8 (-15 -3721 ($ (-1007 |#1|) (-1007 |#1|))))) (-173)) (T -804)) -((-3721 (*1 *1 *2 *2) (-12 (-5 *2 (-1007 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3))))) -(-13 (-802 |#1|) (-416 (-1007 |#1|)) (-10 -8 (-15 -3721 ($ (-1007 |#1|) (-1007 |#1|))))) -((-2417 (((-112) $ $) 7)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2389 (((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 14)) (-2920 (((-112) $ $) 6))) -(((-805) (-140)) (T -805)) -((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-805)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-2389 (*1 *2 *3) (-12 (-4 *1 (-805)) (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-1043))))) -(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -2389 ((-1043) (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-4094 (((-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#3| |#2| (-1185)) 19))) -(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -4094 ((-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#3| |#2| (-1185)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965)) (-661 |#2|)) (T -806)) -((-4094 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1185)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-4 *4 (-13 (-29 *6) (-1210) (-965))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4)))) (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4))))) -(-10 -7 (-15 -4094 ((-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#3| |#2| (-1185)))) -((-3218 (((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)) 28) (((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1185)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1185)) 18) (((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1185)) 24) (((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1185)) 26) (((-3 (-649 (-1275 |#2|)) "failed") (-694 |#2|) (-1185)) 37) (((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-694 |#2|) (-1275 |#2|) (-1185)) 35))) -(((-807 |#1| |#2|) (-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-694 |#2|) (-1275 |#2|) (-1185))) (-15 -3218 ((-3 (-649 (-1275 |#2|)) "failed") (-694 |#2|) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1185))) (-15 -3218 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -3218 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965))) (T -807)) -((-3218 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-807 *6 *2)))) (-3218 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2)) (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-5 *1 (-807 *6 *2)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))))) (-3218 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1185)) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2403 (-649 *3))) *3 "failed")) (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1210) (-965))))) (-3218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2403 (-649 *7))) *7 "failed")) (-5 *1 (-807 *6 *7)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) (-5 *1 (-807 *6 *7)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) (-5 *1 (-807 *6 *7)))) (-3218 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1185)) (-4 *6 (-13 (-29 *5) (-1210) (-965))) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-1275 *6))) (-5 *1 (-807 *5 *6)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) (-5 *1 (-807 *6 *7)) (-5 *4 (-1275 *7))))) -(-10 -7 (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-694 |#2|) (-1275 |#2|) (-1185))) (-15 -3218 ((-3 (-649 (-1275 |#2|)) "failed") (-694 |#2|) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 (-297 |#2|)) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#2|)) (|:| -2403 (-649 (-1275 |#2|)))) "failed") (-649 |#2|) (-649 (-114)) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") (-297 |#2|) (-114) (-1185))) (-15 -3218 ((-3 (-2 (|:| |particular| |#2|) (|:| -2403 (-649 |#2|))) |#2| "failed") |#2| (-114) (-1185))) (-15 -3218 ((-3 |#2| "failed") (-297 |#2|) (-114) (-297 |#2|) (-649 |#2|))) (-15 -3218 ((-3 |#2| "failed") |#2| (-114) (-297 |#2|) (-649 |#2|)))) -((-2805 (($) 9)) (-2282 (((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 30)) (-2795 (((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $) 27)) (-3894 (($ (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) 24)) (-2628 (($ (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) 22)) (-2678 (((-1280)) 11))) -(((-808) (-10 -8 (-15 -2805 ($)) (-15 -2678 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2628 ($ (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -2282 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))))) (T -808)) -((-2282 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *2 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))) (-5 *1 (-808)))) (-3894 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))) (-5 *1 (-808)))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-5 *1 (-808)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-5 *1 (-808)))) (-2678 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-808)))) (-2805 (*1 *1) (-5 *1 (-808)))) -(-10 -8 (-15 -2805 ($)) (-15 -2678 ((-1280))) (-15 -2795 ((-649 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) $)) (-15 -2628 ($ (-649 (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383)))))))) (-15 -3894 ($ (-2 (|:| -2006 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (|:| -2216 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))))))) (-15 -2282 ((-3 (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) (|:| |expense| (-383)) (|:| |accuracy| (-383)) (|:| |intermediateResults| (-383))) "failed") (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) -((-3805 ((|#2| |#2| (-1185)) 17)) (-4091 ((|#2| |#2| (-1185)) 56)) (-2673 (((-1 |#2| |#2|) (-1185)) 11))) -(((-809 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2| (-1185))) (-15 -4091 (|#2| |#2| (-1185))) (-15 -2673 ((-1 |#2| |#2|) (-1185)))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147)) (-13 (-29 |#1|) (-1210) (-965))) (T -809)) -((-2673 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5)) (-4 *5 (-13 (-29 *4) (-1210) (-965))))) (-4091 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965))))) (-3805 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965)))))) -(-10 -7 (-15 -3805 (|#2| |#2| (-1185))) (-15 -4091 (|#2| |#2| (-1185))) (-15 -2673 ((-1 |#2| |#2|) (-1185)))) -((-3218 (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383)) 131) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383)) 132) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383)) 134) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383)) 136) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383)) 137) (((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383))) 139) (((-1043) (-813) (-1071)) 123) (((-1043) (-813)) 124)) (-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813) (-1071)) 83) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813)) 85))) -(((-810) (-10 -7 (-15 -3218 ((-1043) (-813))) (-15 -3218 ((-1043) (-813) (-1071))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813) (-1071))))) (T -810)) -((-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-810)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-813)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-810)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1043)) (-5 *1 (-810))))) -(-10 -7 (-15 -3218 ((-1043) (-813))) (-15 -3218 ((-1043) (-813) (-1071))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383))) (-15 -3218 ((-1043) (-1275 (-319 (-383))) (-383) (-383) (-649 (-383)) (-319 (-383)) (-649 (-383)) (-383) (-383))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-813) (-1071)))) -((-2437 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2403 (-649 |#4|))) (-658 |#4|) |#4|) 33))) -(((-811 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2437 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2403 (-649 |#4|))) (-658 |#4|) |#4|))) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|)) (T -811)) -((-2437 (*1 *2 *3 *4) (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-811 *5 *6 *7 *4))))) -(-10 -7 (-15 -2437 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2403 (-649 |#4|))) (-658 |#4|) |#4|))) -((-2974 (((-2 (|:| -4312 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))) 53)) (-1545 (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4| |#2|) 62) (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4|) 61) (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3| |#2|) 20) (((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3|) 21)) (-3185 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2751 ((|#2| |#3| (-649 (-412 |#2|))) 111) (((-3 |#2| "failed") |#3| (-412 |#2|)) 107))) -(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2751 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3| |#2|)) (-15 -3185 (|#2| |#3| |#1|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4| |#2|)) (-15 -3185 (|#2| |#4| |#1|)) (-15 -2974 ((-2 (|:| -4312 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))))) (-13 (-367) (-147) (-1046 (-412 (-569)))) (-1251 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -812)) -((-2974 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-2 (|:| -4312 *7) (|:| |rh| (-649 (-412 *6))))) (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6))) (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6))))) (-3185 (*1 *2 *3 *4) (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *5 *3)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-661 *2)) (-4 *3 (-661 (-412 *2))))) (-1545 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4)))) (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4)) (-4 *3 (-661 (-412 *4))))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5)))) (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 (-412 *5))))) (-3185 (*1 *2 *3 *4) (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2))))) (-1545 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4)))) (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4)) (-4 *6 (-661 (-412 *4))))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5)))) (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1251 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 (-412 *2))))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1251 *5)) (-5 *1 (-812 *5 *2 *3 *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *6 (-661 *4))))) -(-10 -7 (-15 -2751 ((-3 |#2| "failed") |#3| (-412 |#2|))) (-15 -2751 (|#2| |#3| (-649 (-412 |#2|)))) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#3| |#2|)) (-15 -3185 (|#2| |#3| |#1|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4|)) (-15 -1545 ((-649 (-2 (|:| -2170 |#2|) (|:| -3497 |#2|))) |#4| |#2|)) (-15 -3185 (|#2| |#4| |#1|)) (-15 -2974 ((-2 (|:| -4312 |#3|) (|:| |rh| (-649 (-412 |#2|)))) |#4| (-649 (-412 |#2|))))) -((-2417 (((-112) $ $) NIL)) (-3150 (((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-813) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3150 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $))))) (T -813)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226)))) (-5 *1 (-813))))) -(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))))) (-15 -3150 ((-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) (|:| |relerr| (-226))) $)))) -((-3210 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1181 |#2|)) (-1 (-423 |#2|) |#2|)) 157)) (-1429 (((-649 (-2 (|:| |poly| |#2|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 54)) (-3019 (((-649 (-2 (|:| |deg| (-776)) (|:| -4312 |#2|))) |#3|) 126)) (-3142 ((|#2| |#3|) 45)) (-2941 (((-649 (-2 (|:| -3709 |#1|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|)) 103)) (-1498 ((|#3| |#3| (-412 |#2|)) 74) ((|#3| |#3| |#2|) 100))) -(((-814 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 (|#2| |#3|)) (-15 -3019 ((-649 (-2 (|:| |deg| (-776)) (|:| -4312 |#2|))) |#3|)) (-15 -2941 ((-649 (-2 (|:| -3709 |#1|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1181 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1498 (|#3| |#3| |#2|)) (-15 -1498 (|#3| |#3| (-412 |#2|)))) (-13 (-367) (-147) (-1046 (-412 (-569)))) (-1251 |#1|) (-661 |#2|) (-661 (-412 |#2|))) (T -814)) -((-1498 (*1 *2 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3)))) (-1498 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-1251 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3)) (-4 *5 (-661 (-412 *3))))) (-3210 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-649 *7) *7 (-1181 *7))) (-5 *5 (-1 (-423 *7) *7)) (-4 *7 (-1251 *6)) (-4 *6 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4312 *3)))) (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7)) (-4 *8 (-661 (-412 *7))))) (-1429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-2941 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -3709 *5) (|:| -4312 *3)))) (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) (-4 *7 (-661 (-412 *6))))) (-3019 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4312 *5)))) (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-661 (-412 *5))))) (-3142 (*1 *2 *3) (-12 (-4 *2 (-1251 *4)) (-5 *1 (-814 *4 *2 *3 *5)) (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) (-4 *5 (-661 (-412 *2)))))) -(-10 -7 (-15 -3142 (|#2| |#3|)) (-15 -3019 ((-649 (-2 (|:| |deg| (-776)) (|:| -4312 |#2|))) |#3|)) (-15 -2941 ((-649 (-2 (|:| -3709 |#1|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 |#3|))) |#3| (-1 (-649 |#1|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 |#3|))) |#3| (-1 (-649 |#2|) |#2| (-1181 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1498 (|#3| |#3| |#2|)) (-15 -1498 (|#3| |#3| (-412 |#2|)))) -((-3139 (((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|))) 149) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|)) 148) (((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|))) 143) (((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|)) 141)) (-2981 ((|#2| (-659 |#2| (-412 |#2|))) 89) ((|#2| (-658 (-412 |#2|))) 92))) -(((-815 |#1| |#2|) (-10 -7 (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2981 (|#2| (-658 (-412 |#2|)))) (-15 -2981 (|#2| (-659 |#2| (-412 |#2|))))) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -815)) -((-2981 (*1 *2 *3) (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-815 *4 *2)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-815 *5 *6)))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5)))) (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) (-3139 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-815 *5 *6))))) -(-10 -7 (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-658 (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-658 (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -3139 ((-2 (|:| |particular| (-3 (-412 |#2|) "failed")) (|:| -2403 (-649 (-412 |#2|)))) (-659 |#2| (-412 |#2|)) (-412 |#2|))) (-15 -3139 ((-2 (|:| -2403 (-649 (-412 |#2|))) (|:| -1863 (-694 |#1|))) (-659 |#2| (-412 |#2|)) (-649 (-412 |#2|)))) (-15 -2981 (|#2| (-658 (-412 |#2|)))) (-15 -2981 (|#2| (-659 |#2| (-412 |#2|))))) -((-1558 (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) |#5| |#4|) 52))) -(((-816 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1558 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) |#5| |#4|))) (-367) (-661 |#1|) (-1251 |#1|) (-729 |#1| |#3|) (-661 |#4|)) (T -816)) -((-1558 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *7 (-1251 *5)) (-4 *4 (-729 *5 *7)) (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5)))) (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4))))) -(-10 -7 (-15 -1558 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) |#5| |#4|))) -((-3210 (((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 47)) (-3116 (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|))) 168 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-658 (-412 |#2|))) 170 (|has| |#1| (-27))) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 38) (((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 39) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|)) 36) (((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 37)) (-1429 (((-649 (-2 (|:| |poly| |#2|) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|)) 99))) -(((-817 |#1| |#2|) (-10 -7 (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|)) (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))) (-1251 |#1|)) (T -817)) -((-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) (-1429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-3210 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-5 *2 (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4312 (-659 *6 (-412 *6)))))) (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6))))) (-3116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) (-3116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) (-5 *5 (-1 (-423 *7) *7)) (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))) -(-10 -7 (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|) (-1 (-423 |#2|) |#2|))) (-15 -3210 ((-649 (-2 (|:| |frac| (-412 |#2|)) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -1429 ((-649 (-2 (|:| |poly| |#2|) (|:| -4312 (-659 |#2| (-412 |#2|))))) (-659 |#2| (-412 |#2|)) (-1 (-649 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-658 (-412 |#2|)) (-1 (-423 |#2|) |#2|))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)))) (-15 -3116 ((-649 (-412 |#2|)) (-659 |#2| (-412 |#2|)) (-1 (-423 |#2|) |#2|)))) |%noBranch|)) -((-1921 (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) (-694 |#2|) (-1275 |#1|)) 110) (((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)) (|:| -4312 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1275 |#1|)) 15)) (-3855 (((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#2|) (-1275 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2403 (-649 |#1|))) |#2| |#1|)) 116)) (-3218 (((-3 (-2 (|:| |particular| (-1275 |#1|)) (|:| -2403 (-694 |#1|))) "failed") (-694 |#1|) (-1275 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed") |#2| |#1|)) 52))) -(((-818 |#1| |#2|) (-10 -7 (-15 -1921 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)) (|:| -4312 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1275 |#1|))) (-15 -1921 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) (-694 |#2|) (-1275 |#1|))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#1|)) (|:| -2403 (-694 |#1|))) "failed") (-694 |#1|) (-1275 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -3855 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#2|) (-1275 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2403 (-649 |#1|))) |#2| |#1|)))) (-367) (-661 |#1|)) (T -818)) -((-3855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2403 (-649 *6))) *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1275 *6) "failed")) (|:| -2403 (-649 (-1275 *6))))) (-5 *1 (-818 *6 *7)) (-5 *4 (-1275 *6)))) (-3218 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2403 (-649 *6))) "failed") *7 *6)) (-4 *6 (-367)) (-4 *7 (-661 *6)) (-5 *2 (-2 (|:| |particular| (-1275 *6)) (|:| -2403 (-694 *6)))) (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *6)))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-4 *6 (-661 *5)) (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5)))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *5)))) (-1921 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| A (-694 *5)) (|:| |eqs| (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5)) (|:| -4312 *6) (|:| |rh| *5)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *6 (-661 *5))))) -(-10 -7 (-15 -1921 ((-2 (|:| A (-694 |#1|)) (|:| |eqs| (-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)) (|:| -4312 |#2|) (|:| |rh| |#1|))))) (-694 |#1|) (-1275 |#1|))) (-15 -1921 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#1|))) (-694 |#2|) (-1275 |#1|))) (-15 -3218 ((-3 (-2 (|:| |particular| (-1275 |#1|)) (|:| -2403 (-694 |#1|))) "failed") (-694 |#1|) (-1275 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2403 (-649 |#1|))) "failed") |#2| |#1|))) (-15 -3855 ((-2 (|:| |particular| (-3 (-1275 |#1|) "failed")) (|:| -2403 (-649 (-1275 |#1|)))) (-694 |#2|) (-1275 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2403 (-649 |#1|))) |#2| |#1|)))) -((-3669 (((-694 |#1|) (-649 |#1|) (-776)) 14) (((-694 |#1|) (-649 |#1|)) 15)) (-3677 (((-3 (-1275 |#1|) "failed") |#2| |#1| (-649 |#1|)) 39)) (-1393 (((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)) 46))) -(((-819 |#1| |#2|) (-10 -7 (-15 -3669 ((-694 |#1|) (-649 |#1|))) (-15 -3669 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3677 ((-3 (-1275 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -1393 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)))) (-367) (-661 |#1|)) (T -819)) -((-1393 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367)) (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2)))) (-3677 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1275 *4)) (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4))))) -(-10 -7 (-15 -3669 ((-694 |#1|) (-649 |#1|))) (-15 -3669 ((-694 |#1|) (-649 |#1|) (-776))) (-15 -3677 ((-3 (-1275 |#1|) "failed") |#2| |#1| (-649 |#1|))) (-15 -1393 ((-3 |#1| "failed") |#2| |#1| (-649 |#1|) (-1 |#1| |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-4143 (((-112) $) NIL (|has| |#2| (-131)))) (-3636 (($ (-927)) NIL (|has| |#2| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#2| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#2| (-372)))) (-2919 (((-569) $) NIL (|has| |#2| (-853)))) (-3943 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) ((|#2| $) NIL (|has| |#2| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#2| (-1057)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#2| (-1057))) (((-694 |#2|) (-694 $)) NIL (|has| |#2| (-1057)))) (-3086 (((-3 $ "failed") $) NIL (|has| |#2| (-731)))) (-3406 (($) NIL (|has| |#2| (-372)))) (-3846 ((|#2| $ (-569) |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ (-569)) NIL)) (-3712 (((-112) $) NIL (|has| |#2| (-853)))) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#2| (-731)))) (-2051 (((-112) $) NIL (|has| |#2| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#2| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#2| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#2| (-372)))) (-3547 (((-1128) $) NIL (|has| |#2| (-1108)))) (-3513 ((|#2| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) |#2|) NIL) ((|#2| $ (-569)) NIL)) (-3040 ((|#2| $ $) NIL (|has| |#2| (-1057)))) (-3848 (($ (-1275 |#2|)) NIL)) (-2377 (((-134)) NIL (|has| |#2| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#2|) $) NIL) (($ (-569)) NIL (-2776 (-12 (|has| |#2| (-1046 (-569))) (|has| |#2| (-1108))) (|has| |#2| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#2| (-1046 (-412 (-569)))) (|has| |#2| (-1108)))) (($ |#2|) NIL (|has| |#2| (-1108))) (((-867) $) NIL (|has| |#2| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#2| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#2| (-853)))) (-1804 (($) NIL (|has| |#2| (-131)) CONST)) (-1815 (($) NIL (|has| |#2| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#2| (-234)) (|has| |#2| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#2| (-906 (-1185))) (|has| |#2| (-1057)))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#2| (-1057))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2920 (((-112) $ $) NIL (|has| |#2| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-2944 (((-112) $ $) 11 (-2776 (|has| |#2| (-798)) (|has| |#2| (-853))))) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $ $) NIL (|has| |#2| (-1057))) (($ $) NIL (|has| |#2| (-1057)))) (-3012 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-776)) NIL (|has| |#2| (-731))) (($ $ (-927)) NIL (|has| |#2| (-731)))) (* (($ (-569) $) NIL (|has| |#2| (-1057))) (($ $ $) NIL (|has| |#2| (-731))) (($ $ |#2|) NIL (|has| |#2| (-731))) (($ |#2| $) NIL (|has| |#2| (-731))) (($ (-776) $) NIL (|has| |#2| (-131))) (($ (-927) $) NIL (|has| |#2| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-820 |#1| |#2| |#3|) (-239 |#1| |#2|) (-776) (-798) (-1 (-112) (-1275 |#2|) (-1275 |#2|))) (T -820)) -NIL -(-239 |#1| |#2|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3072 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1185)) NIL)) (-3766 (((-776) $) NIL) (((-776) $ (-1185)) NIL)) (-1712 (((-649 (-823 (-1185))) $) NIL)) (-3767 (((-1181 $) $ (-823 (-1185))) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-823 (-1185)))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1590 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-823 (-1185)) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL) (((-3 (-1133 |#1| (-1185)) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-823 (-1185)) $) NIL) (((-1185) $) NIL) (((-1133 |#1| (-1185)) $) NIL)) (-3346 (($ $ $ (-823 (-1185))) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1185))) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 (-823 (-1185))) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-823 (-1185)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-823 (-1185)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ (-1185)) NIL) (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) (-823 (-1185))) NIL) (($ (-1181 $) (-823 (-1185))) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-823 (-1185))) NIL)) (-2272 (((-536 (-823 (-1185))) $) NIL) (((-776) $ (-823 (-1185))) NIL) (((-649 (-776)) $ (-649 (-823 (-1185)))) NIL)) (-2492 (($ (-1 (-536 (-823 (-1185))) (-536 (-823 (-1185)))) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3389 (((-1 $ (-776)) (-1185)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-2306 (((-3 (-823 (-1185)) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3152 (((-823 (-1185)) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-3173 (((-112) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-823 (-1185))) (|:| -1993 (-776))) "failed") $) NIL)) (-1510 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-823 (-1185)) |#1|) NIL) (($ $ (-649 (-823 (-1185))) (-649 |#1|)) NIL) (($ $ (-823 (-1185)) $) NIL) (($ $ (-649 (-823 (-1185))) (-649 $)) NIL) (($ $ (-1185) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-3059 (($ $ (-823 (-1185))) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-823 (-1185))) NIL) (($ $ (-649 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1848 (((-649 (-1185)) $) NIL)) (-4339 (((-536 (-823 (-1185))) $) NIL) (((-776) $ (-823 (-1185))) NIL) (((-649 (-776)) $ (-649 (-823 (-1185)))) NIL) (((-776) $ (-1185)) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-823 (-1185)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-823 (-1185)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-823 (-1185)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-823 (-1185))) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-823 (-1185))) NIL) (($ (-1185)) NIL) (($ (-1133 |#1| (-1185))) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-823 (-1185))) NIL) (($ $ (-649 (-823 (-1185)))) NIL) (($ $ (-823 (-1185)) (-776)) NIL) (($ $ (-649 (-823 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-821 |#1|) (-13 (-255 |#1| (-1185) (-823 (-1185)) (-536 (-823 (-1185)))) (-1046 (-1133 |#1| (-1185)))) (-1057)) (T -821)) -NIL -(-13 (-255 |#1| (-1185) (-823 (-1185)) (-536 (-823 (-1185)))) (-1046 (-1133 |#1| (-1185)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-367)))) (-4355 (($ $) NIL (|has| |#2| (-367)))) (-3039 (((-112) $) NIL (|has| |#2| (-367)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#2| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-367)))) (-2227 (((-112) $ $) NIL (|has| |#2| (-367)))) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL (|has| |#2| (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#2| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-1473 (((-112) $) NIL (|has| |#2| (-367)))) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1839 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 20 (|has| |#2| (-367)))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-367))) (($ $ $) NIL (|has| |#2| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-2431 (((-776) $) NIL (|has| |#2| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-3517 (($ $ (-776)) NIL) (($ $) 13)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-412 (-569))) NIL (|has| |#2| (-367))) (($ $) NIL (|has| |#2| (-367)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-367)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) 15 (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL) (($ $ (-569)) 18 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-412 (-569)) $) NIL (|has| |#2| (-367))) (($ $ (-412 (-569))) NIL (|has| |#2| (-367))))) -(((-822 |#1| |#2| |#3|) (-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|))) (-1108) (-906 |#1|) |#1|) (T -822)) -NIL -(-13 (-111 $ $) (-234) (-495 |#2|) (-10 -7 (IF (|has| |#2| (-367)) (-6 (-367)) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-3766 (((-776) $) NIL)) (-2672 ((|#1| $) 10)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-1466 (((-776) $) 11)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3389 (($ |#1| (-776)) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3517 (($ $) NIL) (($ $ (-776)) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-823 |#1|) (-268 |#1|) (-855)) (T -823)) -NIL -(-268 |#1|) -((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) 38)) (-3473 (((-776) $) NIL)) (-4427 (($) NIL T CONST)) (-1768 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-3525 (($ $) 42)) (-3086 (((-3 $ "failed") $) NIL)) (-2102 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2349 (((-112) $) NIL)) (-3522 ((|#1| $ (-569)) NIL)) (-2114 (((-776) $ (-569)) NIL)) (-2325 (($ $) 54)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3196 (($ (-1 |#1| |#1|) $) NIL)) (-4308 (($ (-1 (-776) (-776)) $) NIL)) (-3714 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2259 (((-112) $ $) 51)) (-3845 (((-776) $) 34)) (-3435 (((-1167) $) NIL)) (-3887 (($ $ $) NIL)) (-1684 (($ $ $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 ((|#1| $) 41)) (-4360 (((-649 (-2 (|:| |gen| |#1|) (|:| -4389 (-776)))) $) NIL)) (-2084 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2396 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 20 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 53)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ |#1| (-776)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-824 |#1|) (-13 (-390 |#1|) (-851) (-10 -8 (-15 -3513 (|#1| $)) (-15 -3525 ($ $)) (-15 -2325 ($ $)) (-15 -2259 ((-112) $ $)) (-15 -3714 ((-3 $ "failed") $ |#1|)) (-15 -1768 ((-3 $ "failed") $ |#1|)) (-15 -2396 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3845 ((-776) $)) (-15 -3105 ((-649 |#1|) $)))) (-855)) (T -824)) -((-3513 (*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2325 (*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2259 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3714 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-1768 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) (-2396 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3)))) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855))))) -(-13 (-390 |#1|) (-851) (-10 -8 (-15 -3513 (|#1| $)) (-15 -3525 ($ $)) (-15 -2325 ($ $)) (-15 -2259 ((-112) $ $)) (-15 -3714 ((-3 $ "failed") $ |#1|)) (-15 -1768 ((-3 $ "failed") $ |#1|)) (-15 -2396 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3845 ((-776) $)) (-15 -3105 ((-649 |#1|) $)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-2919 (((-569) $) 59)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-3712 (((-112) $) 57)) (-2349 (((-112) $) 35)) (-2051 (((-112) $) 58)) (-3380 (($ $ $) 56)) (-2839 (($ $ $) 55)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 60)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 53)) (-2956 (((-112) $ $) 52)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 54)) (-2944 (((-112) $ $) 51)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-825) (-140)) (T -825)) -NIL -(-13 (-561) (-853)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-4129 (($ (-1128)) 7)) (-2258 (((-112) $ (-1167) (-1128)) 15)) (-3448 (((-827) $) 12)) (-2449 (((-827) $) 11)) (-2608 (((-1280) $) 9)) (-4263 (((-112) $ (-1128)) 16))) -(((-826) (-10 -8 (-15 -4129 ($ (-1128))) (-15 -2608 ((-1280) $)) (-15 -2449 ((-827) $)) (-15 -3448 ((-827) $)) (-15 -2258 ((-112) $ (-1167) (-1128))) (-15 -4263 ((-112) $ (-1128))))) (T -826)) -((-4263 (*1 *2 *1 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-112)) (-5 *1 (-826)))) (-2258 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-1128)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-826)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-826))))) -(-10 -8 (-15 -4129 ($ (-1128))) (-15 -2608 ((-1280) $)) (-15 -2449 ((-827) $)) (-15 -3448 ((-827) $)) (-15 -2258 ((-112) $ (-1167) (-1128))) (-15 -4263 ((-112) $ (-1128)))) -((-4057 (((-1280) $ (-828)) 12)) (-4373 (((-1280) $ (-1185)) 32)) (-2419 (((-1280) $ (-1167) (-1167)) 34)) (-2765 (((-1280) $ (-1167)) 33)) (-1408 (((-1280) $) 19)) (-2949 (((-1280) $ (-569)) 28)) (-1411 (((-1280) $ (-226)) 30)) (-2743 (((-1280) $) 18)) (-3163 (((-1280) $) 26)) (-3298 (((-1280) $) 25)) (-1896 (((-1280) $) 23)) (-1722 (((-1280) $) 24)) (-3071 (((-1280) $) 22)) (-3336 (((-1280) $) 21)) (-4326 (((-1280) $) 20)) (-2337 (((-1280) $) 16)) (-4157 (((-1280) $) 17)) (-1309 (((-1280) $) 15)) (-2494 (((-1280) $) 14)) (-2636 (((-1280) $) 13)) (-1634 (($ (-1167) (-828)) 9)) (-2896 (($ (-1167) (-1167) (-828)) 8)) (-3441 (((-1185) $) 51)) (-4256 (((-1185) $) 55)) (-1349 (((-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))) $) 54)) (-3008 (((-1167) $) 52)) (-1445 (((-1280) $) 41)) (-2658 (((-569) $) 49)) (-3371 (((-226) $) 50)) (-4048 (((-1280) $) 40)) (-4181 (((-1280) $) 48)) (-4409 (((-1280) $) 47)) (-3299 (((-1280) $) 45)) (-2737 (((-1280) $) 46)) (-3044 (((-1280) $) 44)) (-3275 (((-1280) $) 43)) (-3307 (((-1280) $) 42)) (-2502 (((-1280) $) 38)) (-1352 (((-1280) $) 39)) (-3909 (((-1280) $) 37)) (-2209 (((-1280) $) 36)) (-3402 (((-1280) $) 35)) (-2050 (((-1280) $) 11))) -(((-827) (-10 -8 (-15 -2896 ($ (-1167) (-1167) (-828))) (-15 -1634 ($ (-1167) (-828))) (-15 -2050 ((-1280) $)) (-15 -4057 ((-1280) $ (-828))) (-15 -2636 ((-1280) $)) (-15 -2494 ((-1280) $)) (-15 -1309 ((-1280) $)) (-15 -2337 ((-1280) $)) (-15 -4157 ((-1280) $)) (-15 -2743 ((-1280) $)) (-15 -1408 ((-1280) $)) (-15 -4326 ((-1280) $)) (-15 -3336 ((-1280) $)) (-15 -3071 ((-1280) $)) (-15 -1896 ((-1280) $)) (-15 -1722 ((-1280) $)) (-15 -3298 ((-1280) $)) (-15 -3163 ((-1280) $)) (-15 -2949 ((-1280) $ (-569))) (-15 -1411 ((-1280) $ (-226))) (-15 -4373 ((-1280) $ (-1185))) (-15 -2765 ((-1280) $ (-1167))) (-15 -2419 ((-1280) $ (-1167) (-1167))) (-15 -3402 ((-1280) $)) (-15 -2209 ((-1280) $)) (-15 -3909 ((-1280) $)) (-15 -2502 ((-1280) $)) (-15 -1352 ((-1280) $)) (-15 -4048 ((-1280) $)) (-15 -1445 ((-1280) $)) (-15 -3307 ((-1280) $)) (-15 -3275 ((-1280) $)) (-15 -3044 ((-1280) $)) (-15 -3299 ((-1280) $)) (-15 -2737 ((-1280) $)) (-15 -4409 ((-1280) $)) (-15 -4181 ((-1280) $)) (-15 -2658 ((-569) $)) (-15 -3371 ((-226) $)) (-15 -3441 ((-1185) $)) (-15 -3008 ((-1167) $)) (-15 -1349 ((-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))) $)) (-15 -4256 ((-1185) $)))) (T -827)) -((-4256 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1167)) (|:| -3573 (-1167)))) (-5 *1 (-827)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-827)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4409 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3275 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1352 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2502 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2209 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2419 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-2765 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-4373 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-1411 (*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1408 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2743 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2337 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-4057 (*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1280)) (-5 *1 (-827)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827)))) (-1634 (*1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827)))) (-2896 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827))))) -(-10 -8 (-15 -2896 ($ (-1167) (-1167) (-828))) (-15 -1634 ($ (-1167) (-828))) (-15 -2050 ((-1280) $)) (-15 -4057 ((-1280) $ (-828))) (-15 -2636 ((-1280) $)) (-15 -2494 ((-1280) $)) (-15 -1309 ((-1280) $)) (-15 -2337 ((-1280) $)) (-15 -4157 ((-1280) $)) (-15 -2743 ((-1280) $)) (-15 -1408 ((-1280) $)) (-15 -4326 ((-1280) $)) (-15 -3336 ((-1280) $)) (-15 -3071 ((-1280) $)) (-15 -1896 ((-1280) $)) (-15 -1722 ((-1280) $)) (-15 -3298 ((-1280) $)) (-15 -3163 ((-1280) $)) (-15 -2949 ((-1280) $ (-569))) (-15 -1411 ((-1280) $ (-226))) (-15 -4373 ((-1280) $ (-1185))) (-15 -2765 ((-1280) $ (-1167))) (-15 -2419 ((-1280) $ (-1167) (-1167))) (-15 -3402 ((-1280) $)) (-15 -2209 ((-1280) $)) (-15 -3909 ((-1280) $)) (-15 -2502 ((-1280) $)) (-15 -1352 ((-1280) $)) (-15 -4048 ((-1280) $)) (-15 -1445 ((-1280) $)) (-15 -3307 ((-1280) $)) (-15 -3275 ((-1280) $)) (-15 -3044 ((-1280) $)) (-15 -3299 ((-1280) $)) (-15 -2737 ((-1280) $)) (-15 -4409 ((-1280) $)) (-15 -4181 ((-1280) $)) (-15 -2658 ((-569) $)) (-15 -3371 ((-226) $)) (-15 -3441 ((-1185) $)) (-15 -3008 ((-1167) $)) (-15 -1349 ((-2 (|:| |cd| (-1167)) (|:| -3573 (-1167))) $)) (-15 -4256 ((-1185) $))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 13)) (-1520 (((-112) $ $) NIL)) (-2285 (($) 16)) (-1878 (($) 14)) (-1324 (($) 17)) (-2769 (($) 15)) (-2920 (((-112) $ $) 9))) -(((-828) (-13 (-1108) (-10 -8 (-15 -1878 ($)) (-15 -2285 ($)) (-15 -1324 ($)) (-15 -2769 ($))))) (T -828)) -((-1878 (*1 *1) (-5 *1 (-828))) (-2285 (*1 *1) (-5 *1 (-828))) (-1324 (*1 *1) (-5 *1 (-828))) (-2769 (*1 *1) (-5 *1 (-828)))) -(-13 (-1108) (-10 -8 (-15 -1878 ($)) (-15 -2285 ($)) (-15 -1324 ($)) (-15 -2769 ($)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 23) (($ (-1185)) 19)) (-1520 (((-112) $ $) NIL)) (-4066 (((-112) $) 10)) (-2568 (((-112) $) 9)) (-4202 (((-112) $) 11)) (-1336 (((-112) $) 8)) (-2920 (((-112) $ $) 21))) -(((-829) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -1336 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4202 ((-112) $))))) (T -829)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-829)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-2568 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) -(-13 (-1108) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -1336 ((-112) $)) (-15 -2568 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4202 ((-112) $)))) -((-2417 (((-112) $ $) NIL)) (-3825 (($ (-829) (-649 (-1185))) 32)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4423 (((-829) $) 33)) (-2508 (((-649 (-1185)) $) 34)) (-3796 (((-867) $) 31)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-830) (-13 (-1108) (-10 -8 (-15 -4423 ((-829) $)) (-15 -2508 ((-649 (-1185)) $)) (-15 -3825 ($ (-829) (-649 (-1185))))))) (T -830)) -((-4423 (*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-830)))) (-3825 (*1 *1 *2 *3) (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1185))) (-5 *1 (-830))))) -(-13 (-1108) (-10 -8 (-15 -4423 ((-829) $)) (-15 -2508 ((-649 (-1185)) $)) (-15 -3825 ($ (-829) (-649 (-1185)))))) -((-3266 (((-1280) (-827) (-319 |#1|) (-112)) 23) (((-1280) (-827) (-319 |#1|)) 89) (((-1167) (-319 |#1|) (-112)) 88) (((-1167) (-319 |#1|)) 87))) -(((-831 |#1|) (-10 -7 (-15 -3266 ((-1167) (-319 |#1|))) (-15 -3266 ((-1167) (-319 |#1|) (-112))) (-15 -3266 ((-1280) (-827) (-319 |#1|))) (-15 -3266 ((-1280) (-827) (-319 |#1|) (-112)))) (-13 (-833) (-1057))) (T -831)) -((-3266 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-833) (-1057))) (-5 *2 (-1280)) (-5 *1 (-831 *6)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1057))) (-5 *2 (-1280)) (-5 *1 (-831 *5)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1057))) (-5 *2 (-1167)) (-5 *1 (-831 *5)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1057))) (-5 *2 (-1167)) (-5 *1 (-831 *4))))) -(-10 -7 (-15 -3266 ((-1167) (-319 |#1|))) (-15 -3266 ((-1167) (-319 |#1|) (-112))) (-15 -3266 ((-1280) (-827) (-319 |#1|))) (-15 -3266 ((-1280) (-827) (-319 |#1|) (-112)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2977 ((|#1| $) 10)) (-3906 (($ |#1|) 9)) (-2349 (((-112) $) NIL)) (-3923 (($ |#2| (-776)) NIL)) (-2272 (((-776) $) NIL)) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3517 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-4339 (((-776) $) NIL)) (-3796 (((-867) $) 17) (($ (-569)) NIL) (($ |#2|) NIL (|has| |#2| (-173)))) (-4383 ((|#2| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $) NIL (|has| |#1| (-234)))) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-832 |#1| |#2|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3906 ($ |#1|)) (-15 -2977 (|#1| $)))) (-713 |#2|) (-1057)) (T -832)) -((-3906 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3)))) (-2977 (*1 *2 *1) (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1057))))) -(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-234)) (-6 (-234)) |%noBranch|) (-15 -3906 ($ |#1|)) (-15 -2977 (|#1| $)))) -((-3266 (((-1280) (-827) $ (-112)) 9) (((-1280) (-827) $) 8) (((-1167) $ (-112)) 7) (((-1167) $) 6))) -(((-833) (-140)) (T -833)) -((-3266 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1280)))) (-3266 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1280)))) (-3266 (*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1167)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1167))))) -(-13 (-10 -8 (-15 -3266 ((-1167) $)) (-15 -3266 ((-1167) $ (-112))) (-15 -3266 ((-1280) (-827) $)) (-15 -3266 ((-1280) (-827) $ (-112))))) -((-1704 (((-315) (-1167) (-1167)) 12)) (-3022 (((-112) (-1167) (-1167)) 34)) (-3361 (((-112) (-1167)) 33)) (-1357 (((-52) (-1167)) 25)) (-2479 (((-52) (-1167)) 23)) (-3924 (((-52) (-827)) 17)) (-2863 (((-649 (-1167)) (-1167)) 28)) (-4253 (((-649 (-1167))) 27))) -(((-834) (-10 -7 (-15 -3924 ((-52) (-827))) (-15 -2479 ((-52) (-1167))) (-15 -1357 ((-52) (-1167))) (-15 -4253 ((-649 (-1167)))) (-15 -2863 ((-649 (-1167)) (-1167))) (-15 -3361 ((-112) (-1167))) (-15 -3022 ((-112) (-1167) (-1167))) (-15 -1704 ((-315) (-1167) (-1167))))) (T -834)) -((-1704 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-834)))) (-3022 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834)))) (-2863 (*1 *2 *3) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)) (-5 *3 (-1167)))) (-4253 (*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834))))) -(-10 -7 (-15 -3924 ((-52) (-827))) (-15 -2479 ((-52) (-1167))) (-15 -1357 ((-52) (-1167))) (-15 -4253 ((-649 (-1167)))) (-15 -2863 ((-649 (-1167)) (-1167))) (-15 -3361 ((-112) (-1167))) (-15 -3022 ((-112) (-1167) (-1167))) (-15 -1704 ((-315) (-1167) (-1167)))) -((-2417 (((-112) $ $) 19)) (-3969 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-2541 (($ $ $) 73)) (-4179 (((-112) $ $) 74)) (-3914 (((-112) $ (-776)) 8)) (-4257 (($ (-649 |#1|)) 69) (($) 68)) (-1796 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2017 (($ $) 63)) (-3550 (($ $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ |#1| $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 65)) (-2314 (((-112) $ (-776)) 9)) (-3380 ((|#1| $) 79)) (-2292 (($ $ $) 82)) (-4198 (($ $ $) 81)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2839 ((|#1| $) 80)) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22)) (-2101 (($ $ $) 70)) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41) (($ |#1| $ (-776)) 64)) (-3547 (((-1128) $) 21)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3262 (((-649 (-2 (|:| -2216 |#1|) (|:| -3560 (-776)))) $) 62)) (-2237 (($ $ |#1|) 72) (($ $ $) 71)) (-2434 (($) 50) (($ (-649 |#1|)) 49)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 51)) (-3796 (((-867) $) 18)) (-3868 (($ (-649 |#1|)) 67) (($) 66)) (-1520 (((-112) $ $) 23)) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20)) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-835 |#1|) (-140) (-855)) (T -835)) -((-3380 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855))))) -(-13 (-741 |t#1|) (-976 |t#1|) (-10 -8 (-15 -3380 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-236 |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-700 |#1|) . T) ((-741 |#1|) . T) ((-976 |#1|) . T) ((-1106 |#1|) . T) ((-1108) . T) ((-1225) . T)) -((-1891 (((-1280) (-1128) (-1128)) 48)) (-3186 (((-1280) (-826) (-52)) 45)) (-3472 (((-52) (-826)) 16))) -(((-836) (-10 -7 (-15 -3472 ((-52) (-826))) (-15 -3186 ((-1280) (-826) (-52))) (-15 -1891 ((-1280) (-1128) (-1128))))) (T -836)) -((-1891 (*1 *2 *3 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-1280)) (-5 *1 (-836)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1280)) (-5 *1 (-836)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836))))) -(-10 -7 (-15 -3472 ((-52) (-826))) (-15 -3186 ((-1280) (-826) (-52))) (-15 -1891 ((-1280) (-1128) (-1128)))) -((-1346 (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)) 12) (((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|)) 13))) -(((-837 |#1| |#2|) (-10 -7 (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)))) (-1108) (-1108)) (T -837)) -((-1346 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-837 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6))))) -(-10 -7 (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|))) (-15 -1346 ((-838 |#2|) (-1 |#2| |#1|) (-838 |#1|) (-838 |#2|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL (|has| |#1| (-21)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2919 (((-569) $) NIL (|has| |#1| (-853)))) (-4427 (($) NIL (|has| |#1| (-21)) CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 15)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 9)) (-3086 (((-3 $ "failed") $) 42 (|has| |#1| (-853)))) (-3377 (((-3 (-412 (-569)) "failed") $) 52 (|has| |#1| (-550)))) (-1441 (((-112) $) 46 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 49 (|has| |#1| (-550)))) (-3712 (((-112) $) NIL (|has| |#1| (-853)))) (-2349 (((-112) $) NIL (|has| |#1| (-853)))) (-2051 (((-112) $) NIL (|has| |#1| (-853)))) (-3380 (($ $ $) NIL (|has| |#1| (-853)))) (-2839 (($ $ $) NIL (|has| |#1| (-853)))) (-3435 (((-1167) $) NIL)) (-1321 (($) 13)) (-4223 (((-112) $) 12)) (-3547 (((-1128) $) NIL)) (-2733 (((-112) $) 11)) (-3796 (((-867) $) 18) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))))) (-2721 (((-776)) 36 (|has| |#1| (-853)) CONST)) (-1520 (((-112) $ $) 54)) (-2271 (($ $) NIL (|has| |#1| (-853)))) (-1804 (($) 23 (|has| |#1| (-21)) CONST)) (-1815 (($) 33 (|has| |#1| (-853)) CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2920 (((-112) $ $) 21)) (-2966 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2944 (((-112) $ $) 45 (|has| |#1| (-853)))) (-3024 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3012 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 39 (|has| |#1| (-853))) (($ (-569) $) 27 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21))))) -(((-838 |#1|) (-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1321 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1108)) (T -838)) -((-1321 (*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1108)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108))))) -(-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1321 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) -((-1825 (((-112) $ |#2|) 14)) (-3796 (((-867) $) 11))) -(((-839 |#1| |#2|) (-10 -8 (-15 -1825 ((-112) |#1| |#2|)) (-15 -3796 ((-867) |#1|))) (-840 |#2|) (-1108)) (T -839)) -NIL -(-10 -8 (-15 -1825 ((-112) |#1| |#2|)) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-3573 ((|#1| $) 16)) (-3435 (((-1167) $) 10)) (-1825 (((-112) $ |#1|) 14)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-3324 (((-55) $) 15)) (-2920 (((-112) $ $) 6))) -(((-840 |#1|) (-140) (-1108)) (T -840)) -((-3573 (*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1108)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-55)))) (-1825 (*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(-13 (-1108) (-10 -8 (-15 -3573 (|t#1| $)) (-15 -3324 ((-55) $)) (-15 -1825 ((-112) $ |t#1|)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-114) $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-1416 ((|#1| (-114) |#1|) NIL)) (-2349 (((-112) $) NIL)) (-2883 (($ |#1| (-365 (-114))) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4321 (($ $ (-1 |#1| |#1|)) NIL)) (-2924 (($ $ (-1 |#1| |#1|)) NIL)) (-1869 ((|#1| $ |#1|) NIL)) (-1506 ((|#1| |#1|) NIL (|has| |#1| (-173)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2390 (($ $) NIL (|has| |#1| (-173))) (($ $ $) NIL (|has| |#1| (-173)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ (-114) (-569)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) -(((-841 |#1|) (-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#1| |#1|))) (-15 -4321 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#1| (-114) |#1|)) (-15 -2883 ($ |#1| (-365 (-114)))))) (-1057)) (T -841)) -((-2390 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) (-2390 (*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) (-1506 (*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3)))) (-4321 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1057)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1057)))) (-1416 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1057)))) (-2883 (*1 *1 *2 *3) (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1057))))) -(-13 (-1057) (-1046 |#1|) (-1046 (-114)) (-289 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-173)) (PROGN (-6 (-38 |#1|)) (-15 -2390 ($ $)) (-15 -2390 ($ $ $)) (-15 -1506 (|#1| |#1|))) |%noBranch|) (-15 -2924 ($ $ (-1 |#1| |#1|))) (-15 -4321 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-569))) (-15 ** ($ $ (-569))) (-15 -1416 (|#1| (-114) |#1|)) (-15 -2883 ($ |#1| (-365 (-114)))))) -((-3985 (((-215 (-507)) (-1167)) 9))) -(((-842) (-10 -7 (-15 -3985 ((-215 (-507)) (-1167))))) (T -842)) -((-3985 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-215 (-507))) (-5 *1 (-842))))) -(-10 -7 (-15 -3985 ((-215 (-507)) (-1167)))) -((-2417 (((-112) $ $) NIL)) (-4331 (((-1126) $) 10)) (-3573 (((-511) $) 9)) (-3435 (((-1167) $) NIL)) (-1825 (((-112) $ (-511)) NIL)) (-3547 (((-1128) $) NIL)) (-3809 (($ (-511) (-1126)) 8)) (-3796 (((-867) $) 25)) (-1520 (((-112) $ $) NIL)) (-3324 (((-55) $) 20)) (-2920 (((-112) $ $) 12))) -(((-843) (-13 (-840 (-511)) (-10 -8 (-15 -4331 ((-1126) $)) (-15 -3809 ($ (-511) (-1126)))))) (T -843)) -((-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-843)))) (-3809 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-843))))) -(-13 (-840 (-511)) (-10 -8 (-15 -4331 ((-1126) $)) (-15 -3809 ($ (-511) (-1126))))) -((-2417 (((-112) $ $) 7)) (-2586 (((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 15) (((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 17) (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 16)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-844) (-140)) (T -844)) -((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-844)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-2586 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *2 (-1043)))) (-2586 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *3 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *2 (-1043))))) -(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2586 ((-1043) (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -2586 ((-1043) (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2905 (((-1043) (-649 (-319 (-383))) (-649 (-383))) 169) (((-1043) (-319 (-383)) (-649 (-383))) 167) (((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383)))) 165) (((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383)))) 163) (((-1043) (-846)) 128) (((-1043) (-846) (-1071)) 127)) (-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846) (-1071)) 88) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846)) 90)) (-1394 (((-1043) (-649 (-319 (-383))) (-649 (-383))) 170) (((-1043) (-846)) 153))) -(((-845) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846) (-1071))) (-15 -2905 ((-1043) (-846) (-1071))) (-15 -2905 ((-1043) (-846))) (-15 -1394 ((-1043) (-846))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)))) (-15 -2905 ((-1043) (-649 (-319 (-383))) (-649 (-383)))) (-15 -1394 ((-1043) (-649 (-319 (-383))) (-649 (-383)))))) (T -845)) -((-1394 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1043)) (-5 *1 (-845)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-845)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-846)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-845)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-845))))) -(-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-846) (-1071))) (-15 -2905 ((-1043) (-846) (-1071))) (-15 -2905 ((-1043) (-846))) (-15 -1394 ((-1043) (-846))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-319 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)) (-649 (-848 (-383))) (-649 (-848 (-383))))) (-15 -2905 ((-1043) (-319 (-383)) (-649 (-383)))) (-15 -2905 ((-1043) (-649 (-319 (-383))) (-649 (-383)))) (-15 -1394 ((-1043) (-649 (-319 (-383))) (-649 (-383))))) -((-2417 (((-112) $ $) NIL)) (-3150 (((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) $) 21)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) 14) (($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-846) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3796 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3796 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))) (-15 -3150 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) $))))) (T -846)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (-5 *1 (-846)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) (-5 *1 (-846)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) (-5 *1 (-846)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))))) (-5 *1 (-846))))) -(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226))))))) (-15 -3796 ($ (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) (-15 -3796 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))))) (-15 -3150 ((-3 (|:| |noa| (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) (|:| |ub| (-649 (-848 (-226)))))) (|:| |lsa| (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226)))))) $)))) -((-1346 (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)) 13) (((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|)) 14))) -(((-847 |#1| |#2|) (-10 -7 (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)))) (-1108) (-1108)) (T -847)) -((-1346 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-847 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6))))) -(-10 -7 (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|))) (-15 -1346 ((-848 |#2|) (-1 |#2| |#1|) (-848 |#1|) (-848 |#2|) (-848 |#2|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL (|has| |#1| (-21)))) (-3111 (((-1128) $) 31)) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2919 (((-569) $) NIL (|has| |#1| (-853)))) (-4427 (($) NIL (|has| |#1| (-21)) CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 18)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 9)) (-3086 (((-3 $ "failed") $) 58 (|has| |#1| (-853)))) (-3377 (((-3 (-412 (-569)) "failed") $) 65 (|has| |#1| (-550)))) (-1441 (((-112) $) 60 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 63 (|has| |#1| (-550)))) (-3712 (((-112) $) NIL (|has| |#1| (-853)))) (-1974 (($) 14)) (-2349 (((-112) $) NIL (|has| |#1| (-853)))) (-2051 (((-112) $) NIL (|has| |#1| (-853)))) (-1984 (($) 16)) (-3380 (($ $ $) NIL (|has| |#1| (-853)))) (-2839 (($ $ $) NIL (|has| |#1| (-853)))) (-3435 (((-1167) $) NIL)) (-4223 (((-112) $) 12)) (-3547 (((-1128) $) NIL)) (-2733 (((-112) $) 11)) (-3796 (((-867) $) 24) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 8) (($ (-569)) NIL (-2776 (|has| |#1| (-853)) (|has| |#1| (-1046 (-569)))))) (-2721 (((-776)) 51 (|has| |#1| (-853)) CONST)) (-1520 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| |#1| (-853)))) (-1804 (($) 37 (|has| |#1| (-21)) CONST)) (-1815 (($) 48 (|has| |#1| (-853)) CONST)) (-2978 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2920 (((-112) $ $) 35)) (-2966 (((-112) $ $) NIL (|has| |#1| (-853)))) (-2944 (((-112) $ $) 59 (|has| |#1| (-853)))) (-3024 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3012 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-927)) NIL (|has| |#1| (-853))) (($ $ (-776)) NIL (|has| |#1| (-853)))) (* (($ $ $) 55 (|has| |#1| (-853))) (($ (-569) $) 42 (|has| |#1| (-21))) (($ (-776) $) NIL (|has| |#1| (-21))) (($ (-927) $) NIL (|has| |#1| (-21))))) -(((-848 |#1|) (-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1974 ($)) (-15 -1984 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (-15 -3111 ((-1128) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) (-1108)) (T -848)) -((-1974 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108)))) (-1984 (*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-848 *3)) (-4 *3 (-1108)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-1606 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) (-3377 (*1 *2 *1) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108))))) -(-13 (-1108) (-416 |#1|) (-10 -8 (-15 -1974 ($)) (-15 -1984 ($)) (-15 -2733 ((-112) $)) (-15 -4223 ((-112) $)) (-15 -3111 ((-1128) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-853)) |%noBranch|) (IF (|has| |#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) -((-2417 (((-112) $ $) 7)) (-3473 (((-776)) 23)) (-3406 (($) 26)) (-3380 (($ $ $) 14) (($) 22 T CONST)) (-2839 (($ $ $) 15) (($) 21 T CONST)) (-2731 (((-927) $) 25)) (-3435 (((-1167) $) 10)) (-2150 (($ (-927)) 24)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19))) -(((-849) (-140)) (T -849)) -((-3380 (*1 *1) (-4 *1 (-849))) (-2839 (*1 *1) (-4 *1 (-849)))) -(-13 (-855) (-372) (-10 -8 (-15 -3380 ($) -3709) (-15 -2839 ($) -3709))) -(((-102) . T) ((-618 (-867)) . T) ((-372) . T) ((-855) . T) ((-1108) . T)) -((-4265 (((-112) (-1275 |#2|) (-1275 |#2|)) 23)) (-2835 (((-112) (-1275 |#2|) (-1275 |#2|)) 24)) (-1386 (((-112) (-1275 |#2|) (-1275 |#2|)) 20))) -(((-850 |#1| |#2|) (-10 -7 (-15 -1386 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -4265 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -2835 ((-112) (-1275 |#2|) (-1275 |#2|)))) (-776) (-797)) (T -850)) -((-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-4265 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776)))) (-1386 (*1 *2 *3 *3) (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) (-5 *1 (-850 *4 *5)) (-14 *4 (-776))))) -(-10 -7 (-15 -1386 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -4265 ((-112) (-1275 |#2|) (-1275 |#2|))) (-15 -2835 ((-112) (-1275 |#2|) (-1275 |#2|)))) -((-2417 (((-112) $ $) 7)) (-4427 (($) 24 T CONST)) (-3086 (((-3 $ "failed") $) 27)) (-2349 (((-112) $) 25)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 23 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (** (($ $ (-927)) 22) (($ $ (-776)) 26)) (* (($ $ $) 21))) -(((-851) (-140)) (T -851)) -NIL -(-13 (-862) (-731)) -(((-102) . T) ((-618 (-867)) . T) ((-731) . T) ((-862) . T) ((-855) . T) ((-1120) . T) ((-1108) . T)) -((-2919 (((-569) $) 21)) (-3712 (((-112) $) 10)) (-2051 (((-112) $) 12)) (-2271 (($ $) 23))) -(((-852 |#1|) (-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2919 ((-569) |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -3712 ((-112) |#1|))) (-853)) (T -852)) -NIL -(-10 -8 (-15 -2271 (|#1| |#1|)) (-15 -2919 ((-569) |#1|)) (-15 -2051 ((-112) |#1|)) (-15 -3712 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 25)) (-2208 (((-3 $ "failed") $ $) 27)) (-2919 (((-569) $) 37)) (-4427 (($) 24 T CONST)) (-3086 (((-3 $ "failed") $) 42)) (-3712 (((-112) $) 39)) (-2349 (((-112) $) 44)) (-2051 (((-112) $) 38)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 46)) (-2721 (((-776)) 47 T CONST)) (-1520 (((-112) $ $) 9)) (-2271 (($ $) 36)) (-1804 (($) 23 T CONST)) (-1815 (($) 45 T CONST)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (-3024 (($ $ $) 31) (($ $) 30)) (-3012 (($ $ $) 21)) (** (($ $ (-776)) 43) (($ $ (-927)) 40)) (* (($ (-927) $) 22) (($ (-776) $) 26) (($ (-569) $) 29) (($ $ $) 41))) -(((-853) (-140)) (T -853)) -((-3712 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) (-2919 (*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569)))) (-2271 (*1 *1 *1) (-4 *1 (-853)))) -(-13 (-796) (-1057) (-731) (-10 -8 (-15 -3712 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -2919 ((-569) $)) (-15 -2271 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-855) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3380 (($ $ $) 12)) (-2839 (($ $ $) 11)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 15)) (-2956 (((-112) $ $) 13)) (-2966 (((-112) $ $) 16))) -(((-854 |#1|) (-10 -8 (-15 -3380 (|#1| |#1| |#1|)) (-15 -2839 (|#1| |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2956 ((-112) |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|))) (-855)) (T -854)) -NIL -(-10 -8 (-15 -3380 (|#1| |#1| |#1|)) (-15 -2839 (|#1| |#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2978 ((-112) |#1| |#1|)) (-15 -2956 ((-112) |#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19))) -(((-855) (-140)) (T -855)) -((-2944 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2956 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2978 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) (-2839 (*1 *1 *1 *1) (-4 *1 (-855))) (-3380 (*1 *1 *1 *1) (-4 *1 (-855)))) -(-13 (-1108) (-10 -8 (-15 -2944 ((-112) $ $)) (-15 -2956 ((-112) $ $)) (-15 -2978 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -2839 ($ $ $)) (-15 -3380 ($ $ $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-3708 (($ $ $) 49)) (-3187 (($ $ $) 48)) (-4124 (($ $ $) 46)) (-2200 (($ $ $) 55)) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 50)) (-3992 (((-3 $ "failed") $ $) 53)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2642 (($ $) 39)) (-4276 (($ $ $) 43)) (-3662 (($ $ $) 42)) (-3768 (($ $ $) 51)) (-2036 (($ $ $) 57)) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 45)) (-1598 (((-3 $ "failed") $ $) 52)) (-2407 (((-3 $ "failed") $ |#2|) 32)) (-3833 ((|#2| $) 36)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#2|) 13)) (-2512 (((-649 |#2|) $) 21)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-856 |#1| |#2|) (-10 -8 (-15 -3768 (|#1| |#1| |#1|)) (-15 -3496 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2200 (|#1| |#1| |#1|)) (-15 -3992 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3708 (|#1| |#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -4124 (|#1| |#1| |#1|)) (-15 -3611 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3796 ((-867) |#1|))) (-857 |#2|) (-1057)) (T -856)) -NIL -(-10 -8 (-15 -3768 (|#1| |#1| |#1|)) (-15 -3496 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2200 (|#1| |#1| |#1|)) (-15 -3992 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3708 (|#1| |#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -4124 (|#1| |#1| |#1|)) (-15 -3611 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2332 |#1|)) |#1| |#1|)) (-15 -2036 (|#1| |#1| |#1|)) (-15 -1598 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4276 (|#1| |#1| |#1|)) (-15 -3662 (|#1| |#1| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2407 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-649 |#2|) |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3708 (($ $ $) 50 (|has| |#1| (-367)))) (-3187 (($ $ $) 51 (|has| |#1| (-367)))) (-4124 (($ $ $) 53 (|has| |#1| (-367)))) (-2200 (($ $ $) 48 (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 47 (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) 49 (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 52 (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) 80 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 77 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 74)) (-3150 (((-569) $) 79 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 76 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 75)) (-1883 (($ $) 69)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 60 (|has| |#1| (-457)))) (-2349 (((-112) $) 35)) (-3923 (($ |#1| (-776)) 67)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 62 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63 (|has| |#1| (-561)))) (-2272 (((-776) $) 71)) (-4276 (($ $ $) 57 (|has| |#1| (-367)))) (-3662 (($ $ $) 58 (|has| |#1| (-367)))) (-3768 (($ $ $) 46 (|has| |#1| (-367)))) (-2036 (($ $ $) 55 (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 54 (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) 56 (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 59 (|has| |#1| (-367)))) (-1857 ((|#1| $) 70)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-561)))) (-4339 (((-776) $) 72)) (-3833 ((|#1| $) 61 (|has| |#1| (-457)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 78 (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) 73)) (-2512 (((-649 |#1|) $) 66)) (-4383 ((|#1| $ (-776)) 68)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-3451 ((|#1| $ |#1| |#1|) 65)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) -(((-857 |#1|) (-140) (-1057)) (T -857)) -((-4339 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-2272 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-3923 (*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-649 *3)))) (-3451 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-2021 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3779 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457)))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457)))) (-3391 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3662 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-4276 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-1598 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2036 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3611 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) (-4 *1 (-857 *3)))) (-4124 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2934 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3708 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3992 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-2200 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) (-4 *1 (-857 *3)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(-13 (-1057) (-111 |t#1| |t#1|) (-416 |t#1|) (-10 -8 (-15 -4339 ((-776) $)) (-15 -2272 ((-776) $)) (-15 -1857 (|t#1| $)) (-15 -1883 ($ $)) (-15 -4383 (|t#1| $ (-776))) (-15 -3923 ($ |t#1| (-776))) (-15 -2512 ((-649 |t#1|) $)) (-15 -3451 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -2407 ((-3 $ "failed") $ |t#1|)) (-15 -2021 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3779 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -3833 (|t#1| $)) (-15 -2642 ($ $))) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-15 -3391 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3662 ($ $ $)) (-15 -4276 ($ $ $)) (-15 -1598 ((-3 $ "failed") $ $)) (-15 -2036 ($ $ $)) (-15 -3611 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $)) (-15 -4124 ($ $ $)) (-15 -2934 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3187 ($ $ $)) (-15 -3708 ($ $ $)) (-15 -3992 ((-3 $ "failed") $ $)) (-15 -2200 ($ $ $)) (-15 -3496 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $)) (-15 -3768 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-416 |#1|) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1046 #0#) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3290 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2934 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-367)))) (-3779 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-561)))) (-3391 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-367)))) (-3451 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-858 |#1| |#2|) (-10 -7 (-15 -3290 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3451 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2021 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3779 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3391 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2934 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1057) (-857 |#1|)) (T -858)) -((-2934 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3391 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3779 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-2021 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) (-4 *3 (-857 *5)))) (-3451 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1057)) (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2)))) (-3290 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1057)) (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5))))) -(-10 -7 (-15 -3290 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3451 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-561)) (PROGN (-15 -2021 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3779 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3391 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2934 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#1| (-367)))) (-3187 (($ $ $) NIL (|has| |#1| (-367)))) (-4124 (($ $ $) NIL (|has| |#1| (-367)))) (-2200 (($ $ $) NIL (|has| |#1| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 34 (|has| |#1| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-3548 (((-867) $ (-867)) NIL)) (-2349 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) NIL)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 30 (|has| |#1| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 28 (|has| |#1| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#1| (-367)))) (-3662 (($ $ $) NIL (|has| |#1| (-367)))) (-3768 (($ $ $) NIL (|has| |#1| (-367)))) (-2036 (($ $ $) NIL (|has| |#1| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 32 (|has| |#1| (-367)))) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-4339 (((-776) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-1046 (-412 (-569))))) (($ |#1|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#1| $ |#1| |#1|) 15)) (-1804 (($) NIL T CONST)) (-1815 (($) 23 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 19) (($ $ (-776)) 24)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-859 |#1| |#2| |#3|) (-13 (-857 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))))) (-1057) (-99 |#1|) (-1 |#1| |#1|)) (T -859)) -((-3548 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-857 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3708 (($ $ $) NIL (|has| |#2| (-367)))) (-3187 (($ $ $) NIL (|has| |#2| (-367)))) (-4124 (($ $ $) NIL (|has| |#2| (-367)))) (-2200 (($ $ $) NIL (|has| |#2| (-367)))) (-3496 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-3992 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-2934 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#2| (-457)))) (-2349 (((-112) $) NIL)) (-3923 (($ |#2| (-776)) 17)) (-3779 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-561)))) (-2021 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-561)))) (-2272 (((-776) $) NIL)) (-4276 (($ $ $) NIL (|has| |#2| (-367)))) (-3662 (($ $ $) NIL (|has| |#2| (-367)))) (-3768 (($ $ $) NIL (|has| |#2| (-367)))) (-2036 (($ $ $) NIL (|has| |#2| (-367)))) (-3611 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-1598 (((-3 $ "failed") $ $) NIL (|has| |#2| (-367)))) (-3391 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-4339 (((-776) $) NIL)) (-3833 ((|#2| $) NIL (|has| |#2| (-457)))) (-3796 (((-867) $) 24) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) NIL) (($ (-1271 |#1|)) 19)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-776)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-3451 ((|#2| $ |#2| |#2|) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) 13 T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-860 |#1| |#2| |#3| |#4|) (-13 (-857 |#2|) (-621 (-1271 |#1|))) (-1185) (-1057) (-99 |#2|) (-1 |#2| |#2|)) (T -860)) -NIL -(-13 (-857 |#2|) (-621 (-1271 |#1|))) -((-2607 ((|#1| (-776) |#1|) 48 (|has| |#1| (-38 (-412 (-569)))))) (-4193 ((|#1| (-776) (-776) |#1|) 39) ((|#1| (-776) |#1|) 27)) (-1439 ((|#1| (-776) |#1|) 43)) (-3902 ((|#1| (-776) |#1|) 41)) (-2356 ((|#1| (-776) |#1|) 40))) -(((-861 |#1|) (-10 -7 (-15 -2356 (|#1| (-776) |#1|)) (-15 -3902 (|#1| (-776) |#1|)) (-15 -1439 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2607 (|#1| (-776) |#1|)) |%noBranch|)) (-173)) (T -861)) -((-2607 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-173)))) (-4193 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-4193 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-1439 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-3902 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) (-2356 (*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))) -(-10 -7 (-15 -2356 (|#1| (-776) |#1|)) (-15 -3902 (|#1| (-776) |#1|)) (-15 -1439 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) |#1|)) (-15 -4193 (|#1| (-776) (-776) |#1|)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -2607 (|#1| (-776) |#1|)) |%noBranch|)) -((-2417 (((-112) $ $) 7)) (-3380 (($ $ $) 14)) (-2839 (($ $ $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2978 (((-112) $ $) 17)) (-2956 (((-112) $ $) 18)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 16)) (-2944 (((-112) $ $) 19)) (** (($ $ (-927)) 22)) (* (($ $ $) 21))) -(((-862) (-140)) (T -862)) -NIL -(-13 (-855) (-1120)) -(((-102) . T) ((-618 (-867)) . T) ((-855) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-2188 (((-569) $) 14)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 20) (($ (-569)) 13)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 9)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 11))) -(((-863) (-13 (-855) (-10 -8 (-15 -3796 ($ (-569))) (-15 -2188 ((-569) $))))) (T -863)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-863)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863))))) -(-13 (-855) (-10 -8 (-15 -3796 ($ (-569))) (-15 -2188 ((-569) $)))) -((-2641 (((-696 (-1233)) $ (-1233)) 15)) (-2283 (((-696 (-554)) $ (-554)) 12)) (-2340 (((-776) $ (-128)) 30))) -(((-864 |#1|) (-10 -8 (-15 -2340 ((-776) |#1| (-128))) (-15 -2641 ((-696 (-1233)) |#1| (-1233))) (-15 -2283 ((-696 (-554)) |#1| (-554)))) (-865)) (T -864)) -NIL -(-10 -8 (-15 -2340 ((-776) |#1| (-128))) (-15 -2641 ((-696 (-1233)) |#1| (-1233))) (-15 -2283 ((-696 (-554)) |#1| (-554)))) -((-2641 (((-696 (-1233)) $ (-1233)) 8)) (-2283 (((-696 (-554)) $ (-554)) 9)) (-2340 (((-776) $ (-128)) 7)) (-3998 (((-696 (-129)) $ (-129)) 10)) (-2543 (($ $) 6))) -(((-865) (-140)) (T -865)) -((-3998 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129)))) (-2283 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1233))) (-5 *3 (-1233)))) (-2340 (*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776))))) -(-13 (-174) (-10 -8 (-15 -3998 ((-696 (-129)) $ (-129))) (-15 -2283 ((-696 (-554)) $ (-554))) (-15 -2641 ((-696 (-1233)) $ (-1233))) (-15 -2340 ((-776) $ (-128))))) -(((-174) . T)) -((-2641 (((-696 (-1233)) $ (-1233)) NIL)) (-2283 (((-696 (-554)) $ (-554)) NIL)) (-2340 (((-776) $ (-128)) NIL)) (-3998 (((-696 (-129)) $ (-129)) 22)) (-3384 (($ (-393)) 12) (($ (-1167)) 14)) (-3771 (((-112) $) 19)) (-3796 (((-867) $) 26)) (-2543 (($ $) 23))) -(((-866) (-13 (-865) (-618 (-867)) (-10 -8 (-15 -3384 ($ (-393))) (-15 -3384 ($ (-1167))) (-15 -3771 ((-112) $))))) (T -866)) -((-3384 (*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-866)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866))))) -(-13 (-865) (-618 (-867)) (-10 -8 (-15 -3384 ($ (-393))) (-15 -3384 ($ (-1167))) (-15 -3771 ((-112) $)))) -((-2417 (((-112) $ $) NIL) (($ $ $) 85)) (-3946 (($ $ $) 125)) (-3485 (((-569) $) 31) (((-569)) 36)) (-2475 (($ (-569)) 53)) (-4163 (($ $ $) 54) (($ (-649 $)) 84)) (-1758 (($ $ (-649 $)) 82)) (-3958 (((-569) $) 34)) (-3570 (($ $ $) 73)) (-3272 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3719 (((-569) $) 33)) (-2699 (($ $ $) 72)) (-3390 (($ $) 114)) (-3505 (($ $ $) 129)) (-2852 (($ (-649 $)) 61)) (-3857 (($ $ (-649 $)) 79)) (-2312 (($ (-569) (-569)) 55)) (-1978 (($ $) 126) (($ $ $) 127)) (-4410 (($ $ (-569)) 43) (($ $) 46)) (-2368 (($ $ $) 97)) (-2269 (($ $ $) 132)) (-1929 (($ $) 115)) (-2379 (($ $ $) 98)) (-3931 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2929 (((-1280) $) 10)) (-3335 (($ $) 118) (($ $ (-776)) 122)) (-3230 (($ $ $) 75)) (-4270 (($ $ $) 74)) (-4313 (($ $ (-649 $)) 110)) (-2500 (($ $ $) 113)) (-4288 (($ (-649 $)) 59)) (-2687 (($ $) 70) (($ (-649 $)) 71)) (-1683 (($ $ $) 123)) (-1412 (($ $) 116)) (-3104 (($ $ $) 128)) (-3548 (($ (-569)) 21) (($ (-1185)) 23) (($ (-1167)) 30) (($ (-226)) 25)) (-1771 (($ $ $) 101)) (-1749 (($ $) 102)) (-2078 (((-1280) (-1167)) 15)) (-1793 (($ (-1167)) 14)) (-2430 (($ (-649 (-649 $))) 58)) (-4398 (($ $ (-569)) 42) (($ $) 45)) (-3435 (((-1167) $) NIL)) (-1504 (($ $ $) 131)) (-3805 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2595 (((-112) $) 108)) (-2353 (($ $ (-649 $)) 111) (($ $ $ $) 112)) (-2242 (($ (-569)) 39)) (-1427 (((-569) $) 32) (((-569)) 35)) (-2561 (($ $ $) 40) (($ (-649 $)) 83)) (-3547 (((-1128) $) NIL)) (-2407 (($ $ $) 99)) (-3635 (($) 13)) (-1869 (($ $ (-649 $)) 109)) (-3452 (((-1167) (-1167)) 8)) (-3040 (($ $) 117) (($ $ (-776)) 121)) (-2396 (($ $ $) 96)) (-3517 (($ $ (-776)) 139)) (-1390 (($ (-649 $)) 60)) (-3796 (((-867) $) 19)) (-2170 (($ $ (-569)) 41) (($ $) 44)) (-2344 (($ $) 68) (($ (-649 $)) 69)) (-3868 (($ $) 66) (($ (-649 $)) 67)) (-4213 (($ $) 124)) (-2028 (($ (-649 $)) 65)) (-3613 (($ $ $) 105)) (-1520 (((-112) $ $) NIL)) (-3866 (($ $ $) 130)) (-1759 (($ $ $) 100)) (-3645 (($ $ $) 103) (($ $) 104)) (-2978 (($ $ $) 89)) (-2956 (($ $ $) 87)) (-2920 (((-112) $ $) 16) (($ $ $) 17)) (-2966 (($ $ $) 88)) (-2944 (($ $ $) 86)) (-3035 (($ $ $) 94)) (-3024 (($ $ $) 91) (($ $) 92)) (-3012 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-867) (-13 (-1108) (-10 -8 (-15 -2929 ((-1280) $)) (-15 -1793 ($ (-1167))) (-15 -2078 ((-1280) (-1167))) (-15 -3548 ($ (-569))) (-15 -3548 ($ (-1185))) (-15 -3548 ($ (-1167))) (-15 -3548 ($ (-226))) (-15 -3635 ($)) (-15 -3452 ((-1167) (-1167))) (-15 -3485 ((-569) $)) (-15 -1427 ((-569) $)) (-15 -3485 ((-569))) (-15 -1427 ((-569))) (-15 -3719 ((-569) $)) (-15 -3958 ((-569) $)) (-15 -2242 ($ (-569))) (-15 -2475 ($ (-569))) (-15 -2312 ($ (-569) (-569))) (-15 -4398 ($ $ (-569))) (-15 -4410 ($ $ (-569))) (-15 -2170 ($ $ (-569))) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -2170 ($ $)) (-15 -2561 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -2561 ($ (-649 $))) (-15 -4163 ($ (-649 $))) (-15 -4313 ($ $ (-649 $))) (-15 -2353 ($ $ (-649 $))) (-15 -2353 ($ $ $ $)) (-15 -2500 ($ $ $)) (-15 -2595 ((-112) $)) (-15 -1869 ($ $ (-649 $))) (-15 -3390 ($ $)) (-15 -1504 ($ $ $)) (-15 -4213 ($ $)) (-15 -2430 ($ (-649 (-649 $)))) (-15 -3946 ($ $ $)) (-15 -1978 ($ $)) (-15 -1978 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3505 ($ $ $)) (-15 -3866 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -3517 ($ $ (-776))) (-15 -3613 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -4270 ($ $ $)) (-15 -3230 ($ $ $)) (-15 -3857 ($ $ (-649 $))) (-15 -1758 ($ $ (-649 $))) (-15 -1929 ($ $)) (-15 -3040 ($ $)) (-15 -3040 ($ $ (-776))) (-15 -3335 ($ $)) (-15 -3335 ($ $ (-776))) (-15 -1412 ($ $)) (-15 -1683 ($ $ $)) (-15 -3272 ($ $)) (-15 -3272 ($ $ $)) (-15 -3272 ($ $ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -3805 ($ $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ $ $ $)) (-15 -3868 ($ $)) (-15 -3868 ($ (-649 $))) (-15 -2344 ($ $)) (-15 -2344 ($ (-649 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-649 $))) (-15 -4288 ($ (-649 $))) (-15 -1390 ($ (-649 $))) (-15 -2852 ($ (-649 $))) (-15 -2028 ($ (-649 $))) (-15 -2920 ($ $ $)) (-15 -2417 ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3024 ($ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2407 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1749 ($ $)) (-15 -3645 ($ $ $)) (-15 -3645 ($ $))))) (T -867)) -((-2929 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-867)))) (-1793 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) (-2078 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867)))) (-3635 (*1 *1) (-5 *1 (-867))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3485 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-1427 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2242 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2475 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2312 (*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4410 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-2170 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) (-4398 (*1 *1 *1) (-5 *1 (-867))) (-4410 (*1 *1 *1) (-5 *1 (-867))) (-2170 (*1 *1 *1) (-5 *1 (-867))) (-2561 (*1 *1 *1 *1) (-5 *1 (-867))) (-4163 (*1 *1 *1 *1) (-5 *1 (-867))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4313 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2353 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2353 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-2500 (*1 *1 *1 *1) (-5 *1 (-867))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-3390 (*1 *1 *1) (-5 *1 (-867))) (-1504 (*1 *1 *1 *1) (-5 *1 (-867))) (-4213 (*1 *1 *1) (-5 *1 (-867))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867)))) (-3946 (*1 *1 *1 *1) (-5 *1 (-867))) (-1978 (*1 *1 *1) (-5 *1 (-867))) (-1978 (*1 *1 *1 *1) (-5 *1 (-867))) (-3104 (*1 *1 *1 *1) (-5 *1 (-867))) (-3505 (*1 *1 *1 *1) (-5 *1 (-867))) (-3866 (*1 *1 *1 *1) (-5 *1 (-867))) (-2269 (*1 *1 *1 *1) (-5 *1 (-867))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-3613 (*1 *1 *1 *1) (-5 *1 (-867))) (-2699 (*1 *1 *1 *1) (-5 *1 (-867))) (-3570 (*1 *1 *1 *1) (-5 *1 (-867))) (-4270 (*1 *1 *1 *1) (-5 *1 (-867))) (-3230 (*1 *1 *1 *1) (-5 *1 (-867))) (-3857 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1929 (*1 *1 *1) (-5 *1 (-867))) (-3040 (*1 *1 *1) (-5 *1 (-867))) (-3040 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-3335 (*1 *1 *1) (-5 *1 (-867))) (-3335 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) (-1412 (*1 *1 *1) (-5 *1 (-867))) (-1683 (*1 *1 *1 *1) (-5 *1 (-867))) (-3272 (*1 *1 *1) (-5 *1 (-867))) (-3272 (*1 *1 *1 *1) (-5 *1 (-867))) (-3272 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3931 (*1 *1 *1) (-5 *1 (-867))) (-3931 (*1 *1 *1 *1) (-5 *1 (-867))) (-3931 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3805 (*1 *1 *1) (-5 *1 (-867))) (-3805 (*1 *1 *1 *1) (-5 *1 (-867))) (-3805 (*1 *1 *1 *1 *1) (-5 *1 (-867))) (-3868 (*1 *1 *1) (-5 *1 (-867))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2344 (*1 *1 *1) (-5 *1 (-867))) (-2344 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2687 (*1 *1 *1) (-5 *1 (-867))) (-2687 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-4288 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-1390 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2852 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2028 (*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) (-2920 (*1 *1 *1 *1) (-5 *1 (-867))) (-2417 (*1 *1 *1 *1) (-5 *1 (-867))) (-2944 (*1 *1 *1 *1) (-5 *1 (-867))) (-2956 (*1 *1 *1 *1) (-5 *1 (-867))) (-2966 (*1 *1 *1 *1) (-5 *1 (-867))) (-2978 (*1 *1 *1 *1) (-5 *1 (-867))) (-3012 (*1 *1 *1 *1) (-5 *1 (-867))) (-3024 (*1 *1 *1 *1) (-5 *1 (-867))) (-3024 (*1 *1 *1) (-5 *1 (-867))) (* (*1 *1 *1 *1) (-5 *1 (-867))) (-3035 (*1 *1 *1 *1) (-5 *1 (-867))) (** (*1 *1 *1 *1) (-5 *1 (-867))) (-2396 (*1 *1 *1 *1) (-5 *1 (-867))) (-2368 (*1 *1 *1 *1) (-5 *1 (-867))) (-2379 (*1 *1 *1 *1) (-5 *1 (-867))) (-2407 (*1 *1 *1 *1) (-5 *1 (-867))) (-1759 (*1 *1 *1 *1) (-5 *1 (-867))) (-1771 (*1 *1 *1 *1) (-5 *1 (-867))) (-1749 (*1 *1 *1) (-5 *1 (-867))) (-3645 (*1 *1 *1 *1) (-5 *1 (-867))) (-3645 (*1 *1 *1) (-5 *1 (-867)))) -(-13 (-1108) (-10 -8 (-15 -2929 ((-1280) $)) (-15 -1793 ($ (-1167))) (-15 -2078 ((-1280) (-1167))) (-15 -3548 ($ (-569))) (-15 -3548 ($ (-1185))) (-15 -3548 ($ (-1167))) (-15 -3548 ($ (-226))) (-15 -3635 ($)) (-15 -3452 ((-1167) (-1167))) (-15 -3485 ((-569) $)) (-15 -1427 ((-569) $)) (-15 -3485 ((-569))) (-15 -1427 ((-569))) (-15 -3719 ((-569) $)) (-15 -3958 ((-569) $)) (-15 -2242 ($ (-569))) (-15 -2475 ($ (-569))) (-15 -2312 ($ (-569) (-569))) (-15 -4398 ($ $ (-569))) (-15 -4410 ($ $ (-569))) (-15 -2170 ($ $ (-569))) (-15 -4398 ($ $)) (-15 -4410 ($ $)) (-15 -2170 ($ $)) (-15 -2561 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -2561 ($ (-649 $))) (-15 -4163 ($ (-649 $))) (-15 -4313 ($ $ (-649 $))) (-15 -2353 ($ $ (-649 $))) (-15 -2353 ($ $ $ $)) (-15 -2500 ($ $ $)) (-15 -2595 ((-112) $)) (-15 -1869 ($ $ (-649 $))) (-15 -3390 ($ $)) (-15 -1504 ($ $ $)) (-15 -4213 ($ $)) (-15 -2430 ($ (-649 (-649 $)))) (-15 -3946 ($ $ $)) (-15 -1978 ($ $)) (-15 -1978 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -3505 ($ $ $)) (-15 -3866 ($ $ $)) (-15 -2269 ($ $ $)) (-15 -3517 ($ $ (-776))) (-15 -3613 ($ $ $)) (-15 -2699 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -4270 ($ $ $)) (-15 -3230 ($ $ $)) (-15 -3857 ($ $ (-649 $))) (-15 -1758 ($ $ (-649 $))) (-15 -1929 ($ $)) (-15 -3040 ($ $)) (-15 -3040 ($ $ (-776))) (-15 -3335 ($ $)) (-15 -3335 ($ $ (-776))) (-15 -1412 ($ $)) (-15 -1683 ($ $ $)) (-15 -3272 ($ $)) (-15 -3272 ($ $ $)) (-15 -3272 ($ $ $ $)) (-15 -3931 ($ $)) (-15 -3931 ($ $ $)) (-15 -3931 ($ $ $ $)) (-15 -3805 ($ $)) (-15 -3805 ($ $ $)) (-15 -3805 ($ $ $ $)) (-15 -3868 ($ $)) (-15 -3868 ($ (-649 $))) (-15 -2344 ($ $)) (-15 -2344 ($ (-649 $))) (-15 -2687 ($ $)) (-15 -2687 ($ (-649 $))) (-15 -4288 ($ (-649 $))) (-15 -1390 ($ (-649 $))) (-15 -2852 ($ (-649 $))) (-15 -2028 ($ (-649 $))) (-15 -2920 ($ $ $)) (-15 -2417 ($ $ $)) (-15 -2944 ($ $ $)) (-15 -2956 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2978 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3024 ($ $)) (-15 * ($ $ $)) (-15 -3035 ($ $ $)) (-15 ** ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2368 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -2407 ($ $ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -1749 ($ $)) (-15 -3645 ($ $ $)) (-15 -3645 ($ $)))) -((-4411 (((-1280) (-649 (-52))) 23)) (-1871 (((-1280) (-1167) (-867)) 13) (((-1280) (-867)) 8) (((-1280) (-1167)) 10))) -(((-868) (-10 -7 (-15 -1871 ((-1280) (-1167))) (-15 -1871 ((-1280) (-867))) (-15 -1871 ((-1280) (-1167) (-867))) (-15 -4411 ((-1280) (-649 (-52)))))) (T -868)) -((-4411 (*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1280)) (-5 *1 (-868)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-868)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-868)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-868))))) -(-10 -7 (-15 -1871 ((-1280) (-1167))) (-15 -1871 ((-1280) (-867))) (-15 -1871 ((-1280) (-1167) (-867))) (-15 -4411 ((-1280) (-649 (-52))))) -((-2417 (((-112) $ $) NIL)) (-2672 (((-3 $ "failed") (-1185)) 39)) (-3473 (((-776)) 32)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) 29)) (-3435 (((-1167) $) 46)) (-2150 (($ (-927)) 28)) (-3547 (((-1128) $) NIL)) (-1410 (((-1185) $) 13) (((-541) $) 19) (((-898 (-383)) $) 26) (((-898 (-569)) $) 22)) (-3796 (((-867) $) 16)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 43)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 41))) -(((-869 |#1|) (-13 (-849) (-619 (-1185)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2672 ((-3 $ "failed") (-1185))))) (-649 (-1185))) (T -869)) -((-2672 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2))))) -(-13 (-849) (-619 (-1185)) (-619 (-541)) (-619 (-898 (-383))) (-619 (-898 (-569))) (-10 -8 (-15 -2672 ((-3 $ "failed") (-1185))))) -((-2417 (((-112) $ $) NIL)) (-3573 (((-511) $) 9)) (-2009 (((-649 (-444)) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 21)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 16))) -(((-870) (-13 (-1108) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2009 ((-649 (-444)) $))))) (T -870)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870))))) -(-13 (-1108) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2009 ((-649 (-444)) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-958 |#1|)) NIL) (((-958 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-173)))) (-2721 (((-776)) NIL T CONST)) (-3284 (((-1280) (-776)) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) -(((-871 |#1| |#2| |#3| |#4|) (-13 (-1057) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776))))) (-1057) (-649 (-1185)) (-649 (-776)) (-776)) (T -871)) -((-3035 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-776))) (-14 *5 (-776)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-871 *4 *5 *6 *7)) (-4 *4 (-1057)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 *3)) (-14 *7 *3)))) -(-13 (-1057) (-495 (-958 |#1|)) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776))))) -((-1657 (((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|) 43)) (-3235 (((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|) 34))) -(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -3235 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -1657 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|))) (-367) (-1266 |#1|) (-1251 |#1|)) (T -872)) -((-1657 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5)))) (-3235 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6)) (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5))))) -(-10 -7 (-15 -3235 ((-3 (-412 |#3|) "failed") (-776) (-776) |#2| |#2|)) (-15 -1657 ((-3 (-175 |#3|) "failed") (-776) (-776) |#2| |#2|))) -((-3235 (((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|)) 30) (((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) 28))) -(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|)))) (-367) (-1185) |#1|) (T -873)) -((-3235 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5))) (-5 *1 (-873 *5 *6 *7)))) (-3235 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367)) (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5))) (-5 *1 (-873 *5 *6 *7))))) -(-10 -7 (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (-15 -3235 ((-3 (-412 (-1248 |#2| |#1|)) "failed") (-776) (-776) (-1267 |#1| |#2| |#3|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $ (-569)) 68)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-1978 (($ (-1181 (-569)) (-569)) 67)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-4337 (($ $) 70)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1466 (((-776) $) 75)) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-2520 (((-569)) 72)) (-4074 (((-569) $) 71)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3166 (($ $ (-569)) 74)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2171 (((-1165 (-569)) $) 76)) (-2007 (($ $) 73)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-3091 (((-569) $ (-569)) 69)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-874 |#1|) (-140) (-569)) (T -874)) -((-2171 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1165 (-569))))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-2007 (*1 *1 *1) (-4 *1 (-874 *2))) (-2520 (*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-4337 (*1 *1 *1) (-4 *1 (-874 *2))) (-3091 (*1 *2 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) (-1978 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4))))) -(-13 (-310) (-147) (-10 -8 (-15 -2171 ((-1165 (-569)) $)) (-15 -1466 ((-776) $)) (-15 -3166 ($ $ (-569))) (-15 -2007 ($ $)) (-15 -2520 ((-569))) (-15 -4074 ((-569) $)) (-15 -4337 ($ $)) (-15 -3091 ((-569) $ (-569))) (-15 -3813 ($ $ (-569))) (-15 -1978 ($ (-1181 (-569)) (-569))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-310) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $ (-569)) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-1978 (($ (-1181 (-569)) (-569)) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-4337 (($ $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1466 (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2520 (((-569)) NIL)) (-4074 (((-569) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3166 (($ $ (-569)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2171 (((-1165 (-569)) $) NIL)) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-569) $ (-569)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL))) -(((-875 |#1|) (-874 |#1|) (-569)) (T -875)) -NIL -(-874 |#1|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-875 |#1|) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-875 |#1|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| (-875 |#1|) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-875 |#1|) (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| (-875 |#1|) (-1046 (-569))))) (-3150 (((-875 |#1|) $) NIL) (((-1185) $) NIL (|has| (-875 |#1|) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-875 |#1|) (-1046 (-569)))) (((-569) $) NIL (|has| (-875 |#1|) (-1046 (-569))))) (-2612 (($ $) NIL) (($ (-569) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-875 |#1|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-875 |#1|))) (|:| |vec| (-1275 (-875 |#1|)))) (-694 $) (-1275 $)) NIL) (((-694 (-875 |#1|)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-875 |#1|) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-875 |#1|) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-875 |#1|) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-875 |#1|) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| (-875 |#1|) (-1160)))) (-2051 (((-112) $) NIL (|has| (-875 |#1|) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-2839 (($ $ $) NIL (|has| (-875 |#1|) (-855)))) (-1346 (($ (-1 (-875 |#1|) (-875 |#1|)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-875 |#1|) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-875 |#1|) (-310)))) (-3465 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-875 |#1|) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-875 |#1|)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-875 |#1|) (-875 |#1|)) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-297 (-875 |#1|))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-297 (-875 |#1|)))) NIL (|has| (-875 |#1|) (-312 (-875 |#1|)))) (($ $ (-649 (-1185)) (-649 (-875 |#1|))) NIL (|has| (-875 |#1|) (-519 (-1185) (-875 |#1|)))) (($ $ (-1185) (-875 |#1|)) NIL (|has| (-875 |#1|) (-519 (-1185) (-875 |#1|))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-875 |#1|)) NIL (|has| (-875 |#1|) (-289 (-875 |#1|) (-875 |#1|))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-875 |#1|) $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-875 |#1|) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-875 |#1|) (-619 (-541)))) (((-383) $) NIL (|has| (-875 |#1|) (-1030))) (((-226) $) NIL (|has| (-875 |#1|) (-1030)))) (-1855 (((-175 (-412 (-569))) $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL) (($ (-875 |#1|)) NIL) (($ (-1185)) NIL (|has| (-875 |#1|) (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-875 |#1|) (-915))) (|has| (-875 |#1|) (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 (((-875 |#1|) $) NIL (|has| (-875 |#1|) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ (-569)) NIL)) (-2271 (($ $) NIL (|has| (-875 |#1|) (-825)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $) NIL (|has| (-875 |#1|) (-234))) (($ $ (-776)) NIL (|has| (-875 |#1|) (-234))) (($ $ (-1185)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-875 |#1|) (-906 (-1185)))) (($ $ (-1 (-875 |#1|) (-875 |#1|)) (-776)) NIL) (($ $ (-1 (-875 |#1|) (-875 |#1|))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-875 |#1|) (-855)))) (-3035 (($ $ $) NIL) (($ (-875 |#1|) (-875 |#1|)) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-875 |#1|) $) NIL) (($ $ (-875 |#1|)) NIL))) -(((-876 |#1|) (-13 (-1000 (-875 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) (-569)) (T -876)) -((-3091 (*1 *2 *1 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-876 *4)) (-14 *4 *3) (-5 *3 (-569)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569)))) (-2612 (*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2)))) -(-13 (-1000 (-875 |#1|)) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 ((|#2| $) NIL (|has| |#2| (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| |#2| (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (|has| |#2| (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569))))) (-3150 ((|#2| $) NIL) (((-1185) $) NIL (|has| |#2| (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-569)))) (((-569) $) NIL (|has| |#2| (-1046 (-569))))) (-2612 (($ $) 35) (($ (-569) $) 38)) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 64)) (-3406 (($) NIL (|has| |#2| (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) NIL (|has| |#2| (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| |#2| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| |#2| (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 ((|#2| $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#2| (-1160)))) (-2051 (((-112) $) NIL (|has| |#2| (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| |#2| (-855)))) (-2839 (($ $ $) NIL (|has| |#2| (-855)))) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 60)) (-2307 (($) NIL (|has| |#2| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| |#2| (-310)))) (-3465 ((|#2| $) NIL (|has| |#2| (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 |#2|) (-649 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-312 |#2|))) (($ $ (-297 |#2|)) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-297 |#2|))) NIL (|has| |#2| (-312 |#2|))) (($ $ (-649 (-1185)) (-649 |#2|)) NIL (|has| |#2| (-519 (-1185) |#2|))) (($ $ (-1185) |#2|) NIL (|has| |#2| (-519 (-1185) |#2|)))) (-2431 (((-776) $) NIL)) (-1869 (($ $ |#2|) NIL (|has| |#2| (-289 |#2| |#2|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3181 (($ $) NIL)) (-4412 ((|#2| $) NIL)) (-1410 (((-898 (-569)) $) NIL (|has| |#2| (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| |#2| (-619 (-898 (-383))))) (((-541) $) NIL (|has| |#2| (-619 (-541)))) (((-383) $) NIL (|has| |#2| (-1030))) (((-226) $) NIL (|has| |#2| (-1030)))) (-1855 (((-175 (-412 (-569))) $) 78)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-3796 (((-867) $) 108) (($ (-569)) 20) (($ $) NIL) (($ (-412 (-569))) 25) (($ |#2|) 19) (($ (-1185)) NIL (|has| |#2| (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-2040 ((|#2| $) NIL (|has| |#2| (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ (-569)) 71)) (-2271 (($ $) NIL (|has| |#2| (-825)))) (-1804 (($) 15 T CONST)) (-1815 (($) 17 T CONST)) (-2832 (($ $) NIL (|has| |#2| (-234))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2978 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2920 (((-112) $ $) 46)) (-2966 (((-112) $ $) NIL (|has| |#2| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#2| (-855)))) (-3035 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3024 (($ $) 50) (($ $ $) 52)) (-3012 (($ $ $) 48)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 53) (($ $ $) 55) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-877 |#1| |#2|) (-13 (-1000 |#2|) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) (-569) (-874 |#1|)) (T -877)) -((-3091 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5)) (-5 *3 (-569)) (-4 *5 (-874 *4)))) (-1855 (*1 *2 *1) (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3)))) (-2612 (*1 *1 *1) (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3))))) -(-13 (-1000 |#2|) (-10 -8 (-15 -3091 ((-412 (-569)) $ (-569))) (-15 -1855 ((-175 (-412 (-569))) $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)))) -((-2417 (((-112) $ $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-2550 ((|#2| $) 12)) (-2181 (($ |#1| |#2|) 9)) (-3435 (((-1167) $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-3547 (((-1128) $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#1| $) 11)) (-3809 (($ |#1| |#2|) 10)) (-3796 (((-867) $) 18 (-2776 (-12 (|has| |#1| (-618 (-867))) (|has| |#2| (-618 (-867)))) (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108)))))) (-1520 (((-112) $ $) NIL (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108))))) (-2920 (((-112) $ $) 23 (-12 (|has| |#1| (-1108)) (|has| |#2| (-1108)))))) -(((-878 |#1| |#2|) (-13 (-1225) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1108)) (IF (|has| |#2| (-1108)) (-6 (-1108)) |%noBranch|) |%noBranch|) (-15 -2181 ($ |#1| |#2|)) (-15 -3809 ($ |#1| |#2|)) (-15 -3513 (|#1| $)) (-15 -2550 (|#2| $)))) (-1225) (-1225)) (T -878)) -((-2181 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225)))) (-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225)))) (-3513 (*1 *2 *1) (-12 (-4 *2 (-1225)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1225)))) (-2550 (*1 *2 *1) (-12 (-4 *2 (-1225)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1225))))) -(-13 (-1225) (-10 -8 (IF (|has| |#1| (-618 (-867))) (IF (|has| |#2| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1108)) (IF (|has| |#2| (-1108)) (-6 (-1108)) |%noBranch|) |%noBranch|) (-15 -2181 ($ |#1| |#2|)) (-15 -3809 ($ |#1| |#2|)) (-15 -3513 (|#1| $)) (-15 -2550 (|#2| $)))) -((-2417 (((-112) $ $) NIL)) (-1366 (((-569) $) 16)) (-1963 (($ (-157)) 13)) (-3515 (($ (-157)) 14)) (-3435 (((-1167) $) NIL)) (-2787 (((-157) $) 15)) (-3547 (((-1128) $) NIL)) (-2409 (($ (-157)) 11)) (-3199 (($ (-157)) 10)) (-3796 (((-867) $) 24) (($ (-157)) 17)) (-4160 (($ (-157)) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-879) (-13 (-1108) (-10 -8 (-15 -3199 ($ (-157))) (-15 -2409 ($ (-157))) (-15 -4160 ($ (-157))) (-15 -1963 ($ (-157))) (-15 -3515 ($ (-157))) (-15 -2787 ((-157) $)) (-15 -1366 ((-569) $)) (-15 -3796 ($ (-157)))))) (T -879)) -((-3199 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-1963 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) (-1366 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))) -(-13 (-1108) (-10 -8 (-15 -3199 ($ (-157))) (-15 -2409 ($ (-157))) (-15 -4160 ($ (-157))) (-15 -1963 ($ (-157))) (-15 -3515 ($ (-157))) (-15 -2787 ((-157) $)) (-15 -1366 ((-569) $)) (-15 -3796 ($ (-157))))) -((-3796 (((-319 (-569)) (-412 (-958 (-48)))) 23) (((-319 (-569)) (-958 (-48))) 18))) -(((-880) (-10 -7 (-15 -3796 ((-319 (-569)) (-958 (-48)))) (-15 -3796 ((-319 (-569)) (-412 (-958 (-48))))))) (T -880)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 (-48)))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-958 (-48))) (-5 *2 (-319 (-569))) (-5 *1 (-880))))) -(-10 -7 (-15 -3796 ((-319 (-569)) (-958 (-48)))) (-15 -3796 ((-319 (-569)) (-412 (-958 (-48)))))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 18) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1795 (((-112) $ (|[\|\|]| (-511))) 9) (((-112) $ (|[\|\|]| (-1167))) 13)) (-1520 (((-112) $ $) NIL)) (-3993 (((-511) $) 10) (((-1167) $) 14)) (-2920 (((-112) $ $) 15))) -(((-881) (-13 (-1091) (-1270) (-10 -8 (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -3993 ((-511) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))) (-15 -3993 ((-1167) $))))) (T -881)) -((-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-881)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-881))))) -(-13 (-1091) (-1270) (-10 -8 (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -3993 ((-511) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))) (-15 -3993 ((-1167) $)))) -((-1346 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15))) -(((-882 |#1| |#2|) (-10 -7 (-15 -1346 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1225) (-1225)) (T -882)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))) -(-10 -7 (-15 -1346 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) -((-2207 (($ |#1| |#1|) 8)) (-4190 ((|#1| $ (-776)) 15))) -(((-883 |#1|) (-10 -8 (-15 -2207 ($ |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) (-1225)) (T -883)) -((-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1225)))) (-2207 (*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1225))))) -(-10 -8 (-15 -2207 ($ |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) -((-1346 (((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)) 15))) -(((-884 |#1| |#2|) (-10 -7 (-15 -1346 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) (-1225) (-1225)) (T -884)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6))))) -(-10 -7 (-15 -1346 ((-885 |#2|) (-1 |#2| |#1|) (-885 |#1|)))) -((-2207 (($ |#1| |#1| |#1|) 8)) (-4190 ((|#1| $ (-776)) 15))) -(((-885 |#1|) (-10 -8 (-15 -2207 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) (-1225)) (T -885)) -((-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1225)))) (-2207 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1225))))) -(-10 -8 (-15 -2207 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) -((-2843 (((-649 (-1190)) (-1167)) 9))) -(((-886) (-10 -7 (-15 -2843 ((-649 (-1190)) (-1167))))) (T -886)) -((-2843 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-886))))) -(-10 -7 (-15 -2843 ((-649 (-1190)) (-1167)))) -((-1346 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 15))) -(((-887 |#1| |#2|) (-10 -7 (-15 -1346 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1225) (-1225)) (T -887)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) -(-10 -7 (-15 -1346 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) -((-1415 (($ |#1| |#1| |#1|) 8)) (-4190 ((|#1| $ (-776)) 15))) -(((-888 |#1|) (-10 -8 (-15 -1415 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) (-1225)) (T -888)) -((-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1225)))) (-1415 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1225))))) -(-10 -8 (-15 -1415 ($ |#1| |#1| |#1|)) (-15 -4190 (|#1| $ (-776)))) -((-2714 (((-1165 (-649 (-569))) (-649 (-569)) (-1165 (-649 (-569)))) 48)) (-3217 (((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569))) 44)) (-2346 (((-1165 (-649 (-569))) (-649 (-569))) 58) (((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569))) 56)) (-3996 (((-1165 (-649 (-569))) (-569)) 59)) (-2671 (((-1165 (-649 (-569))) (-569) (-569)) 34) (((-1165 (-649 (-569))) (-569)) 23) (((-1165 (-649 (-569))) (-569) (-569) (-569)) 19)) (-3501 (((-1165 (-649 (-569))) (-1165 (-649 (-569)))) 42)) (-3476 (((-649 (-569)) (-649 (-569))) 41))) -(((-889) (-10 -7 (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569))) (-15 -3476 ((-649 (-569)) (-649 (-569)))) (-15 -3501 ((-1165 (-649 (-569))) (-1165 (-649 (-569))))) (-15 -3217 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2714 ((-1165 (-649 (-569))) (-649 (-569)) (-1165 (-649 (-569))))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)))) (-15 -3996 ((-1165 (-649 (-569))) (-569))))) (T -889)) -((-3996 (*1 *2 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-2346 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-2714 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *3 (-649 (-569))) (-5 *1 (-889)))) (-3217 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-649 (-569))))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)))) (-3476 (*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889)))) (-2671 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2671 (*1 *2 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) (-2671 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))) -(-10 -7 (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569))) (-15 -2671 ((-1165 (-649 (-569))) (-569) (-569))) (-15 -3476 ((-649 (-569)) (-649 (-569)))) (-15 -3501 ((-1165 (-649 (-569))) (-1165 (-649 (-569))))) (-15 -3217 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2714 ((-1165 (-649 (-569))) (-649 (-569)) (-1165 (-649 (-569))))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)) (-649 (-569)))) (-15 -2346 ((-1165 (-649 (-569))) (-649 (-569)))) (-15 -3996 ((-1165 (-649 (-569))) (-569)))) -((-1410 (((-898 (-383)) $) 9 (|has| |#1| (-619 (-898 (-383))))) (((-898 (-569)) $) 8 (|has| |#1| (-619 (-898 (-569))))))) -(((-890 |#1|) (-140) (-1225)) (T -890)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|))) -(((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569))))) -((-2417 (((-112) $ $) NIL)) (-4300 (($) 14)) (-2063 (($ (-895 |#1| |#2|) (-895 |#1| |#3|)) 28)) (-4047 (((-895 |#1| |#3|) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3042 (((-112) $) 22)) (-2495 (($) 19)) (-3796 (((-867) $) 31)) (-1520 (((-112) $ $) NIL)) (-3652 (((-895 |#1| |#2|) $) 15)) (-2920 (((-112) $ $) 26))) -(((-891 |#1| |#2| |#3|) (-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -2063 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -3652 ((-895 |#1| |#2|) $)) (-15 -4047 ((-895 |#1| |#3|) $)))) (-1108) (-1108) (-671 |#2|)) (T -891)) -((-3042 (*1 *2 *1) (-12 (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1108)) (-4 *5 (-671 *4)))) (-2495 (*1 *1) (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108)) (-4 *4 (-671 *3)))) (-4300 (*1 *1) (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108)) (-4 *4 (-671 *3)))) (-2063 (*1 *1 *2 *3) (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6)))) (-3652 (*1 *2 *1) (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1108)) (-4 *5 (-671 *4)))) (-4047 (*1 *2 *1) (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5)) (-4 *3 (-1108)) (-4 *5 (-671 *4))))) -(-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -2063 ($ (-895 |#1| |#2|) (-895 |#1| |#3|))) (-15 -3652 ((-895 |#1| |#2|) $)) (-15 -4047 ((-895 |#1| |#3|) $)))) -((-2417 (((-112) $ $) 7)) (-3131 (((-895 |#1| $) $ (-898 |#1|) (-895 |#1| $)) 14)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-892 |#1|) (-140) (-1108)) (T -892)) -((-3131 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4)) (-4 *4 (-1108))))) -(-13 (-1108) (-10 -8 (-15 -3131 ((-895 |t#1| $) $ (-898 |t#1|) (-895 |t#1| $))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-1825 (((-112) (-649 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1650 (((-895 |#1| |#2|) |#2| |#3|) 45 (-12 (-1749 (|has| |#2| (-1046 (-1185)))) (-1749 (|has| |#2| (-1057))))) (((-649 (-297 (-958 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1057)) (-1749 (|has| |#2| (-1046 (-1185)))))) (((-649 (-297 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1046 (-1185)))) (((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|) 21))) -(((-893 |#1| |#2| |#3|) (-10 -7 (-15 -1825 ((-112) |#2| |#3|)) (-15 -1825 ((-112) (-649 |#2|) |#3|)) (-15 -1650 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1650 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1057)) (-15 -1650 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -1650 ((-895 |#1| |#2|) |#2| |#3|))))) (-1108) (-892 |#1|) (-619 (-898 |#1|))) (T -893)) -((-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4)) (-1749 (-4 *3 (-1046 (-1185)))) (-1749 (-4 *3 (-1057))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 (-958 *3)))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1057)) (-1749 (-4 *3 (-1046 (-1185)))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1046 (-1185))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) (-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6))) (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5))))) (-1825 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5))))) (-1825 (*1 *2 *3 *4) (-12 (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))) -(-10 -7 (-15 -1825 ((-112) |#2| |#3|)) (-15 -1825 ((-112) (-649 |#2|) |#3|)) (-15 -1650 ((-891 |#1| |#2| (-649 |#2|)) (-649 |#2|) |#3|)) (IF (|has| |#2| (-1046 (-1185))) (-15 -1650 ((-649 (-297 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1057)) (-15 -1650 ((-649 (-297 (-958 |#2|))) |#2| |#3|)) (-15 -1650 ((-895 |#1| |#2|) |#2| |#3|))))) -((-1346 (((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)) 22))) -(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)))) (-1108) (-1108) (-1108)) (T -894)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-895 *5 *7)) (-5 *1 (-894 *5 *6 *7))))) -(-10 -7 (-15 -1346 ((-895 |#1| |#3|) (-1 |#3| |#2|) (-895 |#1| |#2|)))) -((-2417 (((-112) $ $) NIL)) (-3969 (($ $ $) 40)) (-3612 (((-3 (-112) "failed") $ (-898 |#1|)) 37)) (-4300 (($) 12)) (-3435 (((-1167) $) NIL)) (-3191 (($ (-898 |#1|) |#2| $) 20)) (-3547 (((-1128) $) NIL)) (-1629 (((-3 |#2| "failed") (-898 |#1|) $) 51)) (-3042 (((-112) $) 15)) (-2495 (($) 13)) (-3881 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))) $) 25)) (-3809 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|)))) 23)) (-3796 (((-867) $) 45)) (-1520 (((-112) $ $) NIL)) (-1398 (($ (-898 |#1|) |#2| $ |#2|) 49)) (-1823 (($ (-898 |#1|) |#2| $) 48)) (-2920 (((-112) $ $) 42))) -(((-895 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -3969 ($ $ $)) (-15 -1629 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -1823 ($ (-898 |#1|) |#2| $)) (-15 -3191 ($ (-898 |#1|) |#2| $)) (-15 -1398 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3881 ((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))))) (-15 -3612 ((-3 (-112) "failed") $ (-898 |#1|))))) (-1108) (-1108)) (T -895)) -((-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2495 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-4300 (*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-3969 (*1 *1 *1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-1629 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-4 *2 (-1108)) (-5 *1 (-895 *4 *2)))) (-1823 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1108)))) (-3191 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1108)))) (-1398 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) (-4 *3 (-1108)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4)))) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4)))) (-4 *4 (-1108)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)))) (-3612 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-895 *4 *5)) (-4 *5 (-1108))))) -(-13 (-1108) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2495 ($)) (-15 -4300 ($)) (-15 -3969 ($ $ $)) (-15 -1629 ((-3 |#2| "failed") (-898 |#1|) $)) (-15 -1823 ($ (-898 |#1|) |#2| $)) (-15 -3191 ($ (-898 |#1|) |#2| $)) (-15 -1398 ($ (-898 |#1|) |#2| $ |#2|)) (-15 -3881 ((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))) $)) (-15 -3809 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 |#2|))))) (-15 -3612 ((-3 (-112) "failed") $ (-898 |#1|))))) -((-4274 (((-898 |#1|) (-898 |#1|) (-649 (-1185)) (-1 (-112) (-649 |#2|))) 32) (((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|))) 46) (((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|)) 35)) (-3612 (((-112) (-649 |#2|) (-898 |#1|)) 42) (((-112) |#2| (-898 |#1|)) 36)) (-3727 (((-1 (-112) |#2|) (-898 |#1|)) 16)) (-1443 (((-649 |#2|) (-898 |#1|)) 24)) (-1901 (((-898 |#1|) (-898 |#1|) |#2|) 20))) -(((-896 |#1| |#2|) (-10 -7 (-15 -4274 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1185)) (-1 (-112) (-649 |#2|)))) (-15 -3727 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -3612 ((-112) |#2| (-898 |#1|))) (-15 -3612 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -1901 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -1443 ((-649 |#2|) (-898 |#1|)))) (-1108) (-1225)) (T -896)) -((-1443 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-649 *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1225)))) (-1901 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1225)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6)))) (-3612 (*1 *2 *3 *4) (-12 (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-896 *5 *3)) (-4 *3 (-1225)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1225)))) (-4274 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1185))) (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *1 (-896 *5 *6)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1108)) (-4 *5 (-1225)) (-5 *1 (-896 *4 *5)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1108)) (-4 *5 (-1225)) (-5 *1 (-896 *4 *5))))) -(-10 -7 (-15 -4274 ((-898 |#1|) (-898 |#1|) (-1 (-112) |#2|))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1 (-112) |#2|)))) (-15 -4274 ((-898 |#1|) (-898 |#1|) (-649 (-1185)) (-1 (-112) (-649 |#2|)))) (-15 -3727 ((-1 (-112) |#2|) (-898 |#1|))) (-15 -3612 ((-112) |#2| (-898 |#1|))) (-15 -3612 ((-112) (-649 |#2|) (-898 |#1|))) (-15 -1901 ((-898 |#1|) (-898 |#1|) |#2|)) (-15 -1443 ((-649 |#2|) (-898 |#1|)))) -((-1346 (((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)) 19))) -(((-897 |#1| |#2|) (-10 -7 (-15 -1346 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) (-1108) (-1108)) (T -897)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6))))) -(-10 -7 (-15 -1346 ((-898 |#2|) (-1 |#2| |#1|) (-898 |#1|)))) -((-2417 (((-112) $ $) NIL)) (-3436 (($ $ (-649 (-52))) 74)) (-1712 (((-649 $) $) 138)) (-3375 (((-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))) $) 30)) (-3179 (((-112) $) 35)) (-2989 (($ $ (-649 (-1185)) (-52)) 31)) (-2034 (($ $ (-649 (-52))) 73)) (-4381 (((-3 |#1| "failed") $) 71) (((-3 (-1185) "failed") $) 162)) (-3150 ((|#1| $) 68) (((-1185) $) NIL)) (-2163 (($ $) 126)) (-1716 (((-112) $) 55)) (-1826 (((-649 (-52)) $) 50)) (-3839 (($ (-1185) (-112) (-112) (-112)) 75)) (-4076 (((-3 (-649 $) "failed") (-649 $)) 82)) (-2011 (((-112) $) 58)) (-3455 (((-112) $) 57)) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) 41)) (-1361 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2605 (((-3 (-2 (|:| |val| $) (|:| -1993 $)) "failed") $) 97)) (-2427 (((-3 (-649 $) "failed") $) 40)) (-2593 (((-3 (-649 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 $))) "failed") $) 107)) (-3073 (((-3 (-649 $) "failed") $) 42)) (-2850 (((-3 (-2 (|:| |val| $) (|:| -1993 (-776))) "failed") $) 45)) (-3354 (((-112) $) 34)) (-3547 (((-1128) $) NIL)) (-1858 (((-112) $) 28)) (-3489 (((-112) $) 52)) (-3781 (((-649 (-52)) $) 130)) (-1946 (((-112) $) 56)) (-1869 (($ (-114) (-649 $)) 104)) (-2804 (((-776) $) 33)) (-3962 (($ $) 72)) (-1410 (($ (-649 $)) 69)) (-4041 (((-112) $) 32)) (-3796 (((-867) $) 63) (($ |#1|) 23) (($ (-1185)) 76)) (-1520 (((-112) $ $) NIL)) (-1901 (($ $ (-52)) 129)) (-1804 (($) 103 T CONST)) (-1815 (($) 83 T CONST)) (-2920 (((-112) $ $) 93)) (-3035 (($ $ $) 117)) (-3012 (($ $ $) 121)) (** (($ $ (-776)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-898 |#1|) (-13 (-1108) (-1046 |#1|) (-1046 (-1185)) (-10 -8 (-15 0 ($) -3709) (-15 1 ($) -3709) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2593 ((-3 (-649 $) "failed") $ (-114))) (-15 -2593 ((-3 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |val| $) (|:| -1993 (-776))) "failed") $)) (-15 -1361 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3073 ((-3 (-649 $) "failed") $)) (-15 -2605 ((-3 (-2 (|:| |val| $) (|:| -1993 $)) "failed") $)) (-15 -1869 ($ (-114) (-649 $))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -3035 ($ $ $)) (-15 -2804 ((-776) $)) (-15 -1410 ($ (-649 $))) (-15 -3962 ($ $)) (-15 -3354 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -4041 ((-112) $)) (-15 -1946 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -3489 ((-112) $)) (-15 -1826 ((-649 (-52)) $)) (-15 -2034 ($ $ (-649 (-52)))) (-15 -3436 ($ $ (-649 (-52)))) (-15 -3839 ($ (-1185) (-112) (-112) (-112))) (-15 -2989 ($ $ (-649 (-1185)) (-52))) (-15 -3375 ((-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))) $)) (-15 -1858 ((-112) $)) (-15 -2163 ($ $)) (-15 -1901 ($ $ (-52))) (-15 -3781 ((-649 (-52)) $)) (-15 -1712 ((-649 $) $)) (-15 -4076 ((-3 (-649 $) "failed") (-649 $))))) (-1108)) (T -898)) -((-1804 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-1815 (*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-2427 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-4250 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2593 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-2593 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 (-898 *3))))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2850 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-776)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1361 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3073 (*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2605 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-898 *3)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1869 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-3012 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-3035 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2034 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3436 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3839 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-112)) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-2989 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-52)) (-5 *1 (-898 *4)) (-4 *4 (-1108)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52)))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) (-1901 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-3781 (*1 *2 *1) (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) (-4076 (*1 *2 *2) (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(-13 (-1108) (-1046 |#1|) (-1046 (-1185)) (-10 -8 (-15 (-1804) ($) -3709) (-15 (-1815) ($) -3709) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2593 ((-3 (-649 $) "failed") $ (-114))) (-15 -2593 ((-3 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 $))) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |val| $) (|:| -1993 (-776))) "failed") $)) (-15 -1361 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3073 ((-3 (-649 $) "failed") $)) (-15 -2605 ((-3 (-2 (|:| |val| $) (|:| -1993 $)) "failed") $)) (-15 -1869 ($ (-114) (-649 $))) (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776))) (-15 ** ($ $ $)) (-15 -3035 ($ $ $)) (-15 -2804 ((-776) $)) (-15 -1410 ($ (-649 $))) (-15 -3962 ($ $)) (-15 -3354 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -4041 ((-112) $)) (-15 -1946 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -2011 ((-112) $)) (-15 -3489 ((-112) $)) (-15 -1826 ((-649 (-52)) $)) (-15 -2034 ($ $ (-649 (-52)))) (-15 -3436 ($ $ (-649 (-52)))) (-15 -3839 ($ (-1185) (-112) (-112) (-112))) (-15 -2989 ($ $ (-649 (-1185)) (-52))) (-15 -3375 ((-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52))) $)) (-15 -1858 ((-112) $)) (-15 -2163 ($ $)) (-15 -1901 ($ $ (-52))) (-15 -3781 ((-649 (-52)) $)) (-15 -1712 ((-649 $) $)) (-15 -4076 ((-3 (-649 $) "failed") (-649 $))))) -((-2417 (((-112) $ $) NIL)) (-3105 (((-649 |#1|) $) 19)) (-4132 (((-112) $) 49)) (-4381 (((-3 (-677 |#1|) "failed") $) 56)) (-3150 (((-677 |#1|) $) 54)) (-3525 (($ $) 23)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3845 (((-776) $) 61)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-677 |#1|) $) 21)) (-3796 (((-867) $) 47) (($ (-677 |#1|)) 26) (((-824 |#1|) $) 36) (($ |#1|) 25)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 9 T CONST)) (-3717 (((-649 (-677 |#1|)) $) 28)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 12)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 67))) -(((-899 |#1|) (-13 (-855) (-1046 (-677 |#1|)) (-10 -8 (-15 1 ($) -3709) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ($ |#1|)) (-15 -3513 ((-677 |#1|) $)) (-15 -3845 ((-776) $)) (-15 -3717 ((-649 (-677 |#1|)) $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -3105 ((-649 |#1|) $)))) (-855)) (T -899)) -((-1815 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3796 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-3513 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) (-3105 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855))))) -(-13 (-855) (-1046 (-677 |#1|)) (-10 -8 (-15 (-1815) ($) -3709) (-15 -3796 ((-824 |#1|) $)) (-15 -3796 ($ |#1|)) (-15 -3513 ((-677 |#1|) $)) (-15 -3845 ((-776) $)) (-15 -3717 ((-649 (-677 |#1|)) $)) (-15 -3525 ($ $)) (-15 -4132 ((-112) $)) (-15 -3105 ((-649 |#1|) $)))) -((-2383 ((|#1| |#1| |#1|) 19))) -(((-900 |#1| |#2|) (-10 -7 (-15 -2383 (|#1| |#1| |#1|))) (-1251 |#2|) (-1057)) (T -900)) -((-2383 (*1 *2 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1251 *3))))) -(-10 -7 (-15 -2383 (|#1| |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-1813 (((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2035 (((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 14)) (-2920 (((-112) $ $) 6))) -(((-901) (-140)) (T -901)) -((-1813 (*1 *2 *3 *4) (-12 (-4 *1 (-901)) (-5 *3 (-1071)) (-5 *4 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) (-2035 (*1 *2 *3) (-12 (-4 *1 (-901)) (-5 *3 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *2 (-1043))))) -(-13 (-1108) (-10 -7 (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| |explanations| (-1167))) (-1071) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))) (-15 -2035 ((-1043) (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2398 ((|#1| |#1| (-776)) 29)) (-1596 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2316 (((-3 (-2 (|:| -4398 |#1|) (|:| -4410 |#1|)) "failed") |#1| (-776) (-776)) 32) (((-649 |#1|) |#1|) 39))) -(((-902 |#1| |#2|) (-10 -7 (-15 -2316 ((-649 |#1|) |#1|)) (-15 -2316 ((-3 (-2 (|:| -4398 |#1|) (|:| -4410 |#1|)) "failed") |#1| (-776) (-776))) (-15 -1596 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2398 (|#1| |#1| (-776)))) (-1251 |#2|) (-367)) (T -902)) -((-2398 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) (-4 *2 (-1251 *4)))) (-1596 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) (-4 *2 (-1251 *3)))) (-2316 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-776)) (-4 *5 (-367)) (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-902 *3 *5)) (-4 *3 (-1251 *5)))) (-2316 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -2316 ((-649 |#1|) |#1|)) (-15 -2316 ((-3 (-2 (|:| -4398 |#1|) (|:| -4410 |#1|)) "failed") |#1| (-776) (-776))) (-15 -1596 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2398 (|#1| |#1| (-776)))) -((-3218 (((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167)) 106) (((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167) (-226)) 102) (((-1043) (-904) (-1071)) 94) (((-1043) (-904)) 95)) (-1813 (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904) (-1071)) 65) (((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904)) 67))) -(((-903) (-10 -7 (-15 -3218 ((-1043) (-904))) (-15 -3218 ((-1043) (-904) (-1071))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167) (-226))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904) (-1071))))) (T -903)) -((-1813 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1071)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-903)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167))))) (-5 *1 (-903)))) (-3218 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1043)) (-5 *1 (-903)))) (-3218 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167)) (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1043)) (-5 *1 (-903)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-904)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-903)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1043)) (-5 *1 (-903))))) -(-10 -7 (-15 -3218 ((-1043) (-904))) (-15 -3218 ((-1043) (-904) (-1071))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167) (-226))) (-15 -3218 ((-1043) (-383) (-383) (-383) (-383) (-776) (-776) (-649 (-319 (-383))) (-649 (-649 (-319 (-383)))) (-1167))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904))) (-15 -1813 ((-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) (|:| |explanations| (-649 (-1167)))) (-904) (-1071)))) -((-2417 (((-112) $ $) NIL)) (-3150 (((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))) $) 19)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 21) (($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) 18)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-904) (-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))) (-15 -3150 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))) $))))) (T -904)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *1 (-904)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226)))) (-5 *1 (-904))))) -(-13 (-1108) (-10 -8 (-15 -3796 ($ (-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))))) (-15 -3150 ((-2 (|:| |pde| (-649 (-319 (-226)))) (|:| |constraints| (-649 (-2 (|:| |start| (-226)) (|:| |finish| (-226)) (|:| |grid| (-776)) (|:| |boundaryType| (-569)) (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) (|:| |tol| (-226))) $)))) -((-3517 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) 10) (($ $ |#2| (-776)) 15) (($ $ (-649 |#2|) (-649 (-776))) 18)) (-2832 (($ $ |#2|) 19) (($ $ (-649 |#2|)) 21) (($ $ |#2| (-776)) 22) (($ $ (-649 |#2|) (-649 (-776))) 24))) -(((-905 |#1| |#2|) (-10 -8 (-15 -2832 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2832 (|#1| |#1| |#2| (-776))) (-15 -2832 (|#1| |#1| (-649 |#2|))) (-15 -2832 (|#1| |#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#2| (-776))) (-15 -3517 (|#1| |#1| (-649 |#2|))) (-15 -3517 (|#1| |#1| |#2|))) (-906 |#2|) (-1108)) (T -905)) -NIL -(-10 -8 (-15 -2832 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -2832 (|#1| |#1| |#2| (-776))) (-15 -2832 (|#1| |#1| (-649 |#2|))) (-15 -2832 (|#1| |#1| |#2|)) (-15 -3517 (|#1| |#1| (-649 |#2|) (-649 (-776)))) (-15 -3517 (|#1| |#1| |#2| (-776))) (-15 -3517 (|#1| |#1| (-649 |#2|))) (-15 -3517 (|#1| |#1| |#2|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3517 (($ $ |#1|) 46) (($ $ (-649 |#1|)) 45) (($ $ |#1| (-776)) 44) (($ $ (-649 |#1|) (-649 (-776))) 43)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#1|) 42) (($ $ (-649 |#1|)) 41) (($ $ |#1| (-776)) 40) (($ $ (-649 |#1|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-906 |#1|) (-140) (-1108)) (T -906)) -((-3517 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-3517 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1108)))) (-2832 (*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108)))) (-2832 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108)))) (-2832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) (-4 *4 (-1108))))) -(-13 (-1057) (-10 -8 (-15 -3517 ($ $ |t#1|)) (-15 -3517 ($ $ (-649 |t#1|))) (-15 -3517 ($ $ |t#1| (-776))) (-15 -3517 ($ $ (-649 |t#1|) (-649 (-776)))) (-15 -2832 ($ $ |t#1|)) (-15 -2832 ($ $ (-649 |t#1|))) (-15 -2832 ($ $ |t#1| (-776))) (-15 -2832 ($ $ (-649 |t#1|) (-649 (-776)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 26)) (-3914 (((-112) $ (-776)) NIL)) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-4416 (($ $ $) NIL (|has| $ (-6 -4448)))) (-1718 (($ $ $) NIL (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) (($ $ "left" $) NIL (|has| $ (-6 -4448))) (($ $ "right" $) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4410 (($ $) 25)) (-3872 (($ |#1|) 12) (($ $ $) 17)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-4398 (($ $) 23)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) 20)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1211 |#1|) $) 9) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 21 (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-907 |#1|) (-13 (-119 |#1|) (-618 (-1211 |#1|)) (-10 -8 (-15 -3872 ($ |#1|)) (-15 -3872 ($ $ $)))) (-1108)) (T -907)) -((-3872 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108)))) (-3872 (*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108))))) -(-13 (-119 |#1|) (-618 (-1211 |#1|)) (-10 -8 (-15 -3872 ($ |#1|)) (-15 -3872 ($ $ $)))) -((-3858 ((|#2| (-1150 |#1| |#2|)) 50))) -(((-908 |#1| |#2|) (-10 -7 (-15 -3858 (|#2| (-1150 |#1| |#2|)))) (-927) (-13 (-1057) (-10 -7 (-6 (-4449 "*"))))) (T -908)) -((-3858 (*1 *2 *3) (-12 (-5 *3 (-1150 *4 *2)) (-14 *4 (-927)) (-4 *2 (-13 (-1057) (-10 -7 (-6 (-4449 "*"))))) (-5 *1 (-908 *4 *2))))) -(-10 -7 (-15 -3858 (|#2| (-1150 |#1| |#2|)))) -((-2417 (((-112) $ $) 7)) (-4427 (($) 19 T CONST)) (-3086 (((-3 $ "failed") $) 16)) (-2097 (((-1110 |#1|) $ |#1|) 33)) (-2349 (((-112) $) 18)) (-3380 (($ $ $) 31 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2839 (($ $ $) 30 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 25)) (-3547 (((-1128) $) 11)) (-1725 ((|#1| $ |#1|) 35)) (-1869 ((|#1| $ |#1|) 34)) (-3365 (($ (-649 (-649 |#1|))) 36)) (-1940 (($ (-649 |#1|)) 37)) (-3476 (($ $ $) 22)) (-2180 (($ $ $) 21)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1815 (($) 20 T CONST)) (-2978 (((-112) $ $) 28 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2956 (((-112) $ $) 27 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 29 (-2776 (|has| |#1| (-855)) (|has| |#1| (-372))))) (-2944 (((-112) $ $) 32)) (-3035 (($ $ $) 24)) (** (($ $ (-927)) 14) (($ $ (-776)) 17) (($ $ (-569)) 23)) (* (($ $ $) 15))) -(((-909 |#1|) (-140) (-1108)) (T -909)) -((-1940 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-909 *3)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-4 *1 (-909 *3)))) (-1725 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108)))) (-1869 (*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-1110 *3)))) (-2944 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(-13 (-478) (-10 -8 (-15 -1940 ($ (-649 |t#1|))) (-15 -3365 ($ (-649 (-649 |t#1|)))) (-15 -1725 (|t#1| $ |t#1|)) (-15 -1869 (|t#1| $ |t#1|)) (-15 -2097 ((-1110 |t#1|) $ |t#1|)) (-15 -2944 ((-112) $ $)) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-372)) (-6 (-855)) |%noBranch|))) -(((-102) . T) ((-618 (-867)) . T) ((-478) . T) ((-731) . T) ((-855) -2776 (|has| |#1| (-855)) (|has| |#1| (-372))) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-1375 (((-649 (-649 (-776))) $) 164)) (-3502 (((-649 (-776)) (-911 |#1|) $) 192)) (-3773 (((-649 (-776)) (-911 |#1|) $) 193)) (-3205 (((-649 (-911 |#1|)) $) 153)) (-3406 (((-911 |#1|) $ (-569)) 158) (((-911 |#1|) $) 159)) (-4291 (($ (-649 (-911 |#1|))) 166)) (-1466 (((-776) $) 160)) (-1892 (((-1110 (-1110 |#1|)) $) 190)) (-2097 (((-1110 |#1|) $ |#1|) 181) (((-1110 (-1110 |#1|)) $ (-1110 |#1|)) 201) (((-1110 (-649 |#1|)) $ (-649 |#1|)) 204)) (-2236 (((-1110 |#1|) $) 156)) (-2004 (((-112) (-911 |#1|) $) 141)) (-3435 (((-1167) $) NIL)) (-2441 (((-1280) $) 146) (((-1280) $ (-569) (-569)) 205)) (-3547 (((-1128) $) NIL)) (-2322 (((-649 (-911 |#1|)) $) 147)) (-1869 (((-911 |#1|) $ (-776)) 154)) (-4339 (((-776) $) 161)) (-3796 (((-867) $) 178) (((-649 (-911 |#1|)) $) 28) (($ (-649 (-911 |#1|))) 165)) (-1520 (((-112) $ $) NIL)) (-4363 (((-649 |#1|) $) 163)) (-2920 (((-112) $ $) 198)) (-2966 (((-112) $ $) 196)) (-2944 (((-112) $ $) 195))) -(((-910 |#1|) (-13 (-1108) (-10 -8 (-15 -3796 ((-649 (-911 |#1|)) $)) (-15 -2322 ((-649 (-911 |#1|)) $)) (-15 -1869 ((-911 |#1|) $ (-776))) (-15 -3406 ((-911 |#1|) $ (-569))) (-15 -3406 ((-911 |#1|) $)) (-15 -1466 ((-776) $)) (-15 -4339 ((-776) $)) (-15 -4363 ((-649 |#1|) $)) (-15 -3205 ((-649 (-911 |#1|)) $)) (-15 -1375 ((-649 (-649 (-776))) $)) (-15 -3796 ($ (-649 (-911 |#1|)))) (-15 -4291 ($ (-649 (-911 |#1|)))) (-15 -2097 ((-1110 |#1|) $ |#1|)) (-15 -1892 ((-1110 (-1110 |#1|)) $)) (-15 -2097 ((-1110 (-1110 |#1|)) $ (-1110 |#1|))) (-15 -2097 ((-1110 (-649 |#1|)) $ (-649 |#1|))) (-15 -2004 ((-112) (-911 |#1|) $)) (-15 -3502 ((-649 (-776)) (-911 |#1|) $)) (-15 -3773 ((-649 (-776)) (-911 |#1|) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2944 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -2441 ((-1280) $)) (-15 -2441 ((-1280) $ (-569) (-569))))) (-1108)) (T -910)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1108)))) (-3406 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) (-4 *4 (-1108)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3)))) (-4291 (*1 *1 *2) (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-1892 (*1 *2 *1) (-12 (-5 *2 (-1110 (-1110 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-1110 *4))) (-5 *1 (-910 *4)) (-5 *3 (-1110 *4)))) (-2097 (*1 *2 *1 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-649 *4))) (-5 *1 (-910 *4)) (-5 *3 (-649 *4)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-910 *4)))) (-3502 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-3773 (*1 *2 *3 *1) (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776))) (-5 *1 (-910 *4)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2944 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) (-2441 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-910 *4)) (-4 *4 (-1108))))) -(-13 (-1108) (-10 -8 (-15 -3796 ((-649 (-911 |#1|)) $)) (-15 -2322 ((-649 (-911 |#1|)) $)) (-15 -1869 ((-911 |#1|) $ (-776))) (-15 -3406 ((-911 |#1|) $ (-569))) (-15 -3406 ((-911 |#1|) $)) (-15 -1466 ((-776) $)) (-15 -4339 ((-776) $)) (-15 -4363 ((-649 |#1|) $)) (-15 -3205 ((-649 (-911 |#1|)) $)) (-15 -1375 ((-649 (-649 (-776))) $)) (-15 -3796 ($ (-649 (-911 |#1|)))) (-15 -4291 ($ (-649 (-911 |#1|)))) (-15 -2097 ((-1110 |#1|) $ |#1|)) (-15 -1892 ((-1110 (-1110 |#1|)) $)) (-15 -2097 ((-1110 (-1110 |#1|)) $ (-1110 |#1|))) (-15 -2097 ((-1110 (-649 |#1|)) $ (-649 |#1|))) (-15 -2004 ((-112) (-911 |#1|) $)) (-15 -3502 ((-649 (-776)) (-911 |#1|) $)) (-15 -3773 ((-649 (-776)) (-911 |#1|) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2944 ((-112) $ $)) (-15 -2966 ((-112) $ $)) (-15 -2441 ((-1280) $)) (-15 -2441 ((-1280) $ (-569) (-569))))) -((-2417 (((-112) $ $) NIL)) (-3358 (((-649 $) (-649 $)) 103)) (-2919 (((-569) $) 84)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-1466 (((-776) $) 81)) (-2097 (((-1110 |#1|) $ |#1|) 72)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) 88)) (-3696 (((-776) $) 85)) (-2236 (((-1110 |#1|) $) 61)) (-3380 (($ $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2839 (($ $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2652 (((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $) 56)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 131)) (-3547 (((-1128) $) NIL)) (-3160 (((-1110 |#1|) $) 139 (|has| |#1| (-372)))) (-4024 (((-112) $) 82)) (-1725 ((|#1| $ |#1|) 70)) (-1869 ((|#1| $ |#1|) 133)) (-4339 (((-776) $) 63)) (-3365 (($ (-649 (-649 |#1|))) 118)) (-2095 (((-979) $) 76)) (-1940 (($ (-649 |#1|)) 33)) (-3476 (($ $ $) NIL)) (-2180 (($ $ $) NIL)) (-4283 (($ (-649 (-649 |#1|))) 58)) (-1571 (($ (-649 (-649 |#1|))) 123)) (-1464 (($ (-649 |#1|)) 135)) (-3796 (((-867) $) 117) (($ (-649 (-649 |#1|))) 91) (($ (-649 |#1|)) 92)) (-1520 (((-112) $ $) NIL)) (-1815 (($) 24 T CONST)) (-2978 (((-112) $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2920 (((-112) $ $) 68)) (-2966 (((-112) $ $) NIL (-2776 (|has| |#1| (-372)) (|has| |#1| (-855))))) (-2944 (((-112) $ $) 90)) (-3035 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ $ $) 34))) -(((-911 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -2652 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -4283 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 |#1|))) (-15 -1571 ($ (-649 (-649 |#1|)))) (-15 -4339 ((-776) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2095 ((-979) $)) (-15 -1466 ((-776) $)) (-15 -3696 ((-776) $)) (-15 -2919 ((-569) $)) (-15 -4024 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -3358 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -3160 ((-1110 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1464 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -1464 ($ (-649 |#1|))) |%noBranch|)))) (-1108)) (T -911)) -((-2652 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3)))) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-979)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-3696 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2919 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-3358 (*1 *2 *2) (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372)) (-4 *3 (-1108)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3))))) -(-13 (-909 |#1|) (-10 -8 (-15 -2652 ((-2 (|:| |preimage| (-649 |#1|)) (|:| |image| (-649 |#1|))) $)) (-15 -4283 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 (-649 |#1|)))) (-15 -3796 ($ (-649 |#1|))) (-15 -1571 ($ (-649 (-649 |#1|)))) (-15 -4339 ((-776) $)) (-15 -2236 ((-1110 |#1|) $)) (-15 -2095 ((-979) $)) (-15 -1466 ((-776) $)) (-15 -3696 ((-776) $)) (-15 -2919 ((-569) $)) (-15 -4024 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -3358 ((-649 $) (-649 $))) (IF (|has| |#1| (-372)) (-15 -3160 ((-1110 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-550)) (-15 -1464 ($ (-649 |#1|))) (IF (|has| |#1| (-372)) (-15 -1464 ($ (-649 |#1|))) |%noBranch|)))) -((-3911 (((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|)) 159)) (-4231 ((|#1|) 97)) (-1468 (((-423 (-1181 |#4|)) (-1181 |#4|)) 168)) (-2544 (((-423 (-1181 |#4|)) (-649 |#3|) (-1181 |#4|)) 84)) (-2488 (((-423 (-1181 |#4|)) (-1181 |#4|)) 178)) (-1930 (((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|) |#3|) 113))) -(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|))) (-15 -2488 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -1468 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -4231 (|#1|)) (-15 -1930 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|) |#3|)) (-15 -2544 ((-423 (-1181 |#4|)) (-649 |#3|) (-1181 |#4|)))) (-915) (-798) (-855) (-955 |#1| |#2| |#3|)) (T -912)) -((-2544 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1181 *8))) (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1181 *8)))) (-1930 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7)) (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798)) (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7)))) (-4231 (*1 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) (-1468 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7))) (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) (-3911 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7))))) -(-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|))) (-15 -2488 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -1468 ((-423 (-1181 |#4|)) (-1181 |#4|))) (-15 -4231 (|#1|)) (-15 -1930 ((-3 (-649 (-1181 |#4|)) "failed") (-649 (-1181 |#4|)) (-1181 |#4|) |#3|)) (-15 -2544 ((-423 (-1181 |#4|)) (-649 |#3|) (-1181 |#4|)))) -((-3911 (((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|)) 41)) (-4231 ((|#1|) 75)) (-1468 (((-423 (-1181 |#2|)) (-1181 |#2|)) 124)) (-2544 (((-423 (-1181 |#2|)) (-1181 |#2|)) 108)) (-2488 (((-423 (-1181 |#2|)) (-1181 |#2|)) 135))) -(((-913 |#1| |#2|) (-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|))) (-15 -2488 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -1468 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -4231 (|#1|)) (-15 -2544 ((-423 (-1181 |#2|)) (-1181 |#2|)))) (-915) (-1251 |#1|)) (T -913)) -((-2544 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))) (-4231 (*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1251 *2)))) (-1468 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))) (-2488 (*1 *2 *3) (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5)))) (-3911 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5))))) -(-10 -7 (-15 -3911 ((-3 (-649 (-1181 |#2|)) "failed") (-649 (-1181 |#2|)) (-1181 |#2|))) (-15 -2488 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -1468 ((-423 (-1181 |#2|)) (-1181 |#2|))) (-15 -4231 (|#1|)) (-15 -2544 ((-423 (-1181 |#2|)) (-1181 |#2|)))) -((-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 42)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 18)) (-2239 (((-3 $ "failed") $) 36))) -(((-914 |#1|) (-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)))) (-915)) (T -914)) -NIL -(-10 -8 (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 66)) (-1830 (($ $) 57)) (-3764 (((-423 $) $) 58)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 63)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-1473 (((-112) $) 59)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2156 (((-423 (-1181 $)) (-1181 $)) 64)) (-3814 (((-423 (-1181 $)) (-1181 $)) 65)) (-3800 (((-423 $) $) 56)) (-2407 (((-3 $ "failed") $ $) 48)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 62 (|has| $ (-145)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2239 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-915) (-140)) (T -915)) -((-2219 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-915)))) (-3534 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))) (-3814 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))) (-2156 (*1 *2 *3) (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1)))) (-3466 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-649 (-1181 *1))) (-5 *3 (-1181 *1)) (-4 *1 (-915)))) (-1924 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915)) (-5 *2 (-1275 *1)))) (-2239 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915))))) -(-13 (-1229) (-10 -8 (-15 -3534 ((-423 (-1181 $)) (-1181 $))) (-15 -3814 ((-423 (-1181 $)) (-1181 $))) (-15 -2156 ((-423 (-1181 $)) (-1181 $))) (-15 -2219 ((-1181 $) (-1181 $) (-1181 $))) (-15 -3466 ((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $))) (IF (|has| $ (-145)) (PROGN (-15 -1924 ((-3 (-1275 $) "failed") (-694 $))) (-15 -2239 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-1476 (((-112) $) NIL)) (-3322 (((-776)) NIL)) (-3140 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 $ "failed") $) NIL)) (-3150 (($ $) NIL)) (-2247 (($ (-1275 $)) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1616 (($) NIL)) (-2807 (((-112) $) NIL)) (-3701 (($ $) NIL) (($ $ (-776)) NIL)) (-1473 (((-112) $) NIL)) (-1466 (((-838 (-927)) $) NIL) (((-927) $) NIL)) (-2349 (((-112) $) NIL)) (-2155 (($) NIL (|has| $ (-372)))) (-2483 (((-112) $) NIL (|has| $ (-372)))) (-3829 (($ $ (-927)) NIL (|has| $ (-372))) (($ $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3859 (((-1181 $) $ (-927)) NIL (|has| $ (-372))) (((-1181 $) $) NIL)) (-2731 (((-927) $) NIL)) (-3775 (((-1181 $) $) NIL (|has| $ (-372)))) (-4119 (((-3 (-1181 $) "failed") $ $) NIL (|has| $ (-372))) (((-1181 $) $) NIL (|has| $ (-372)))) (-4384 (($ $ (-1181 $)) NIL (|has| $ (-372)))) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL T CONST)) (-2150 (($ (-927)) NIL)) (-3020 (((-112) $) NIL)) (-3547 (((-1128) $) NIL)) (-2332 (($) NIL (|has| $ (-372)))) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL)) (-3800 (((-423 $) $) NIL)) (-1898 (((-927)) NIL) (((-838 (-927))) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2166 (((-3 (-776) "failed") $ $) NIL) (((-776) $) NIL)) (-2377 (((-134)) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-4339 (((-927) $) NIL) (((-838 (-927)) $) NIL)) (-4061 (((-1181 $)) NIL)) (-4234 (($) NIL)) (-4110 (($) NIL (|has| $ (-372)))) (-2415 (((-694 $) (-1275 $)) NIL) (((-1275 $) $) NIL)) (-1410 (((-569) $) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $) (-927)) NIL) (((-1275 $)) NIL)) (-2664 (((-112) $ $) NIL)) (-4269 (((-112) $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-1679 (($ $ (-776)) NIL (|has| $ (-372))) (($ $) NIL (|has| $ (-372)))) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-916 |#1|) (-13 (-353) (-332 $) (-619 (-569))) (-927)) (T -916)) -NIL -(-13 (-353) (-332 $) (-619 (-569))) -((-2629 (((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)) 77)) (-4019 (((-112) (-340 |#2| |#3| |#4| |#5|)) 17)) (-1466 (((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|)) 15))) -(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -4019 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)))) (-13 (-561) (-1046 (-569))) (-435 |#1|) (-1251 |#2|) (-1251 (-412 |#3|)) (-346 |#2| |#3| |#4|)) (T -917)) -((-2629 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *8))) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) (-1466 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 |#2| |#3| |#4| |#5|))) (-15 -4019 ((-112) (-340 |#2| |#3| |#4| |#5|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#5|)) "failed") (-340 |#2| |#3| |#4| |#5|)))) -((-2629 (((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 64)) (-4019 (((-112) (-340 (-412 (-569)) |#1| |#2| |#3|)) 16)) (-1466 (((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)) 14))) -(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -4019 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)))) (-1251 (-412 (-569))) (-1251 (-412 |#1|)) (-346 (-412 (-569)) |#1| |#2|)) (T -918)) -((-2629 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *6))) (-5 *1 (-918 *4 *5 *6)))) (-4019 (*1 *2 *3) (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6)))) (-1466 (*1 *2 *3) (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776)) (-5 *1 (-918 *4 *5 *6))))) -(-10 -7 (-15 -1466 ((-3 (-776) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -4019 ((-112) (-340 (-412 (-569)) |#1| |#2| |#3|))) (-15 -2629 ((-3 (-2 (|:| -1466 (-776)) (|:| -1699 |#3|)) "failed") (-340 (-412 (-569)) |#1| |#2| |#3|)))) -((-3176 ((|#2| |#2|) 26)) (-1810 (((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) 15)) (-4306 (((-927) (-569)) 38)) (-3460 (((-569) |#2|) 45)) (-2997 (((-569) |#2|) 21) (((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|) 20))) -(((-919 |#1| |#2|) (-10 -7 (-15 -4306 ((-927) (-569))) (-15 -2997 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -2997 ((-569) |#2|)) (-15 -1810 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -3460 ((-569) |#2|)) (-15 -3176 (|#2| |#2|))) (-1251 (-412 (-569))) (-1251 (-412 |#1|))) (T -919)) -((-3176 (*1 *2 *2) (-12 (-4 *3 (-1251 (-412 (-569)))) (-5 *1 (-919 *3 *2)) (-4 *2 (-1251 (-412 *3))))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1251 (-412 *4))))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1251 (-412 *4))))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1251 (-412 *4))))) (-2997 (*1 *2 *3) (-12 (-4 *3 (-1251 (-412 (-569)))) (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))) (-5 *1 (-919 *3 *4)) (-4 *4 (-1251 (-412 *3))))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-569)) (-4 *4 (-1251 (-412 *3))) (-5 *2 (-927)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1251 (-412 *4)))))) -(-10 -7 (-15 -4306 ((-927) (-569))) (-15 -2997 ((-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))) |#1|)) (-15 -2997 ((-569) |#2|)) (-15 -1810 ((-569) (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))))) (-15 -3460 ((-569) |#2|)) (-15 -3176 (|#2| |#2|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 ((|#1| $) 100)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-2368 (($ $ $) NIL)) (-3086 (((-3 $ "failed") $) 94)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-1976 (($ |#1| (-423 |#1|)) 92)) (-2871 (((-1181 |#1|) |#1| |#1|) 53)) (-3154 (($ $) 61)) (-2349 (((-112) $) NIL)) (-1431 (((-569) $) 97)) (-4309 (($ $ (-569)) 99)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-2814 ((|#1| $) 96)) (-1373 (((-423 |#1|) $) 95)) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) 93)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2380 (($ $) 50)) (-3796 (((-867) $) 124) (($ (-569)) 73) (($ $) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 41) (((-412 |#1|) $) 78) (($ (-412 (-423 |#1|))) 86)) (-2721 (((-776)) 71 T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) 26 T CONST)) (-1815 (($) 15 T CONST)) (-2920 (((-112) $ $) 87)) (-3035 (($ $ $) NIL)) (-3024 (($ $) 108) (($ $ $) NIL)) (-3012 (($ $ $) 49)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 110) (($ $ $) 48) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-920 |#1|) (-13 (-367) (-38 |#1|) (-10 -8 (-15 -3796 ((-412 |#1|) $)) (-15 -3796 ($ (-412 (-423 |#1|)))) (-15 -2380 ($ $)) (-15 -1373 ((-423 |#1|) $)) (-15 -2814 (|#1| $)) (-15 -4309 ($ $ (-569))) (-15 -1431 ((-569) $)) (-15 -2871 ((-1181 |#1|) |#1| |#1|)) (-15 -3154 ($ $)) (-15 -1976 ($ |#1| (-423 |#1|))) (-15 -1938 (|#1| $)))) (-310)) (T -920)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2814 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-4309 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-2871 (*1 *2 *3 *3) (-12 (-5 *2 (-1181 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) (-3154 (*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) (-1976 (*1 *1 *2 *3) (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2)))) (-1938 (*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))) -(-13 (-367) (-38 |#1|) (-10 -8 (-15 -3796 ((-412 |#1|) $)) (-15 -3796 ($ (-412 (-423 |#1|)))) (-15 -2380 ($ $)) (-15 -1373 ((-423 |#1|) $)) (-15 -2814 (|#1| $)) (-15 -4309 ($ $ (-569))) (-15 -1431 ((-569) $)) (-15 -2871 ((-1181 |#1|) |#1| |#1|)) (-15 -3154 ($ $)) (-15 -1976 ($ |#1| (-423 |#1|))) (-15 -1938 (|#1| $)))) -((-1976 (((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1185)) 17) (((-52) (-412 (-958 |#1|)) (-1185)) 18))) -(((-921 |#1|) (-10 -7 (-15 -1976 ((-52) (-412 (-958 |#1|)) (-1185))) (-15 -1976 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1185)))) (-13 (-310) (-147))) (T -921)) -((-1976 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1185)) (-5 *3 (-958 *6)) (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6)))) (-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5))))) -(-10 -7 (-15 -1976 ((-52) (-412 (-958 |#1|)) (-1185))) (-15 -1976 ((-52) (-958 |#1|) (-423 (-958 |#1|)) (-1185)))) -((-3975 ((|#4| (-649 |#4|)) 149) (((-1181 |#4|) (-1181 |#4|) (-1181 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1870 (((-1181 |#4|) (-649 (-1181 |#4|))) 142) (((-1181 |#4|) (-1181 |#4|) (-1181 |#4|)) 63) ((|#4| (-649 |#4|)) 71) ((|#4| |#4| |#4|) 109))) -(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 (|#4| |#4| |#4|)) (-15 -1870 (|#4| (-649 |#4|))) (-15 -1870 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -1870 ((-1181 |#4|) (-649 (-1181 |#4|)))) (-15 -3975 (|#4| |#4| |#4|)) (-15 -3975 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -3975 (|#4| (-649 |#4|)))) (-798) (-855) (-310) (-955 |#3| |#1| |#2|)) (T -922)) -((-3975 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-3975 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-3975 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-649 (-1181 *7))) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-1181 *7)) (-5 *1 (-922 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) (-1870 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4))))) -(-10 -7 (-15 -1870 (|#4| |#4| |#4|)) (-15 -1870 (|#4| (-649 |#4|))) (-15 -1870 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -1870 ((-1181 |#4|) (-649 (-1181 |#4|)))) (-15 -3975 (|#4| |#4| |#4|)) (-15 -3975 ((-1181 |#4|) (-1181 |#4|) (-1181 |#4|))) (-15 -3975 (|#4| (-649 |#4|)))) -((-4006 (((-910 (-569)) (-979)) 38) (((-910 (-569)) (-649 (-569))) 35)) (-2564 (((-910 (-569)) (-649 (-569))) 70) (((-910 (-569)) (-927)) 71)) (-2203 (((-910 (-569))) 39)) (-2545 (((-910 (-569))) 55) (((-910 (-569)) (-649 (-569))) 54)) (-2688 (((-910 (-569))) 53) (((-910 (-569)) (-649 (-569))) 52)) (-4176 (((-910 (-569))) 51) (((-910 (-569)) (-649 (-569))) 50)) (-1374 (((-910 (-569))) 49) (((-910 (-569)) (-649 (-569))) 48)) (-2914 (((-910 (-569))) 47) (((-910 (-569)) (-649 (-569))) 46)) (-1338 (((-910 (-569))) 57) (((-910 (-569)) (-649 (-569))) 56)) (-3369 (((-910 (-569)) (-649 (-569))) 75) (((-910 (-569)) (-927)) 77)) (-1842 (((-910 (-569)) (-649 (-569))) 72) (((-910 (-569)) (-927)) 73)) (-2342 (((-910 (-569)) (-649 (-569))) 68) (((-910 (-569)) (-927)) 69)) (-2225 (((-910 (-569)) (-649 (-927))) 60))) -(((-923) (-10 -7 (-15 -2564 ((-910 (-569)) (-927))) (-15 -2564 ((-910 (-569)) (-649 (-569)))) (-15 -2342 ((-910 (-569)) (-927))) (-15 -2342 ((-910 (-569)) (-649 (-569)))) (-15 -2225 ((-910 (-569)) (-649 (-927)))) (-15 -1842 ((-910 (-569)) (-927))) (-15 -1842 ((-910 (-569)) (-649 (-569)))) (-15 -3369 ((-910 (-569)) (-927))) (-15 -3369 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)))) (-15 -1374 ((-910 (-569)) (-649 (-569)))) (-15 -1374 ((-910 (-569)))) (-15 -4176 ((-910 (-569)) (-649 (-569)))) (-15 -4176 ((-910 (-569)))) (-15 -2688 ((-910 (-569)) (-649 (-569)))) (-15 -2688 ((-910 (-569)))) (-15 -2545 ((-910 (-569)) (-649 (-569)))) (-15 -2545 ((-910 (-569)))) (-15 -1338 ((-910 (-569)) (-649 (-569)))) (-15 -1338 ((-910 (-569)))) (-15 -2203 ((-910 (-569)))) (-15 -4006 ((-910 (-569)) (-649 (-569)))) (-15 -4006 ((-910 (-569)) (-979))))) (T -923)) -((-4006 (*1 *2 *3) (-12 (-5 *3 (-979)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2203 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1338 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1338 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2545 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2688 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4176 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1374 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2914 (*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2914 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(-10 -7 (-15 -2564 ((-910 (-569)) (-927))) (-15 -2564 ((-910 (-569)) (-649 (-569)))) (-15 -2342 ((-910 (-569)) (-927))) (-15 -2342 ((-910 (-569)) (-649 (-569)))) (-15 -2225 ((-910 (-569)) (-649 (-927)))) (-15 -1842 ((-910 (-569)) (-927))) (-15 -1842 ((-910 (-569)) (-649 (-569)))) (-15 -3369 ((-910 (-569)) (-927))) (-15 -3369 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)) (-649 (-569)))) (-15 -2914 ((-910 (-569)))) (-15 -1374 ((-910 (-569)) (-649 (-569)))) (-15 -1374 ((-910 (-569)))) (-15 -4176 ((-910 (-569)) (-649 (-569)))) (-15 -4176 ((-910 (-569)))) (-15 -2688 ((-910 (-569)) (-649 (-569)))) (-15 -2688 ((-910 (-569)))) (-15 -2545 ((-910 (-569)) (-649 (-569)))) (-15 -2545 ((-910 (-569)))) (-15 -1338 ((-910 (-569)) (-649 (-569)))) (-15 -1338 ((-910 (-569)))) (-15 -2203 ((-910 (-569)))) (-15 -4006 ((-910 (-569)) (-649 (-569)))) (-15 -4006 ((-910 (-569)) (-979)))) -((-4371 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))) 14)) (-2576 (((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))) 13))) -(((-924 |#1|) (-10 -7 (-15 -2576 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -4371 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))))) (-457)) (T -924)) -((-4371 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457)) (-5 *1 (-924 *4)))) (-2576 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457)) (-5 *1 (-924 *4))))) -(-10 -7 (-15 -2576 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -4371 ((-649 (-958 |#1|)) (-649 (-958 |#1|)) (-649 (-1185))))) -((-3796 (((-319 |#1|) (-482)) 16))) -(((-925 |#1|) (-10 -7 (-15 -3796 ((-319 |#1|) (-482)))) (-561)) (T -925)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4)) (-4 *4 (-561))))) -(-10 -7 (-15 -3796 ((-319 |#1|) (-482)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-926) (-140)) (T -926)) -((-1865 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1435 (-649 *1)) (|:| -2332 *1))) (-5 *3 (-649 *1)))) (-4020 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926))))) -(-13 (-457) (-10 -8 (-15 -1865 ((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $))) (-15 -4020 ((-3 (-649 $) "failed") (-649 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1870 (($ $ $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1815 (($) NIL T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ $ $) NIL))) -(((-927) (-13 (-799) (-731) (-10 -8 (-15 -1870 ($ $ $)) (-6 (-4449 "*"))))) (T -927)) -((-1870 (*1 *1 *1 *1) (-5 *1 (-927)))) -(-13 (-799) (-731) (-10 -8 (-15 -1870 ($ $ $)) (-6 (-4449 "*")))) +((-3884 (((-3 |#2| "failed") |#2| |#2| (-115) (-1186)) 37))) +(((-778 |#1| |#2|) (-10 -7 (-15 -3884 ((-3 |#2| "failed") |#2| |#2| (-115) (-1186)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1211) (-966))) (T -778)) +((-3884 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-778 *5 *2)) (-4 *2 (-13 (-29 *5) (-1211) (-966)))))) +(-10 -7 (-15 -3884 ((-3 |#2| "failed") |#2| |#2| (-115) (-1186)))) +((-3798 (((-780) |#1|) 8))) +(((-779 |#1|) (-10 -7 (-15 -3798 ((-780) |#1|))) (-1226)) (T -779)) +((-3798 (*1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-779 *3)) (-4 *3 (-1226))))) +(-10 -7 (-15 -3798 ((-780) |#1|))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 7)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9))) +(((-780) (-1109)) (T -780)) +NIL +(-1109) +((-2233 ((|#2| |#4|) 35))) +(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2233 (|#2| |#4|))) (-458) (-1252 |#1|) (-730 |#1| |#2|) (-1252 |#3|)) (T -781)) +((-2233 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-730 *4 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-781 *4 *2 *5 *3)) (-4 *3 (-1252 *5))))) +(-10 -7 (-15 -2233 (|#2| |#4|))) +((-2229 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2813 (((-1281) (-1168) (-1168) |#4| |#5|) 33)) (-4192 ((|#4| |#4| |#5|) 74)) (-2495 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|) 79)) (-3647 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|) 16))) +(((-782 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2229 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4192 (|#4| |#4| |#5|)) (-15 -2495 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -2813 ((-1281) (-1168) (-1168) |#4| |#5|)) (-15 -3647 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -782)) +((-3647 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2813 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1168)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *4 (-1074 *6 *7 *8)) (-5 *2 (-1281)) (-5 *1 (-782 *6 *7 *8 *4 *5)) (-4 *5 (-1080 *6 *7 *8 *4)))) (-2495 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-4192 (*1 *2 *2 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *2 (-1074 *4 *5 *6)) (-5 *1 (-782 *4 *5 *6 *2 *3)) (-4 *3 (-1080 *4 *5 *6 *2)))) (-2229 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(-10 -7 (-15 -2229 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -4192 (|#4| |#4| |#5|)) (-15 -2495 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -2813 ((-1281) (-1168) (-1168) |#4| |#5|)) (-15 -3647 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|))) +((-4382 (((-3 (-1182 (-1182 |#1|)) "failed") |#4|) 53)) (-3133 (((-650 |#4|) |#4|) 24)) (-2663 ((|#4| |#4|) 19))) +(((-783 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3133 ((-650 |#4|) |#4|)) (-15 -4382 ((-3 (-1182 (-1182 |#1|)) "failed") |#4|)) (-15 -2663 (|#4| |#4|))) (-354) (-333 |#1|) (-1252 |#2|) (-1252 |#3|) (-928)) (T -783)) +((-2663 (*1 *2 *2) (-12 (-4 *3 (-354)) (-4 *4 (-333 *3)) (-4 *5 (-1252 *4)) (-5 *1 (-783 *3 *4 *5 *2 *6)) (-4 *2 (-1252 *5)) (-14 *6 (-928)))) (-4382 (*1 *2 *3) (|partial| -12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1252 *5)) (-5 *2 (-1182 (-1182 *4))) (-5 *1 (-783 *4 *5 *6 *3 *7)) (-4 *3 (-1252 *6)) (-14 *7 (-928)))) (-3133 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1252 *5)) (-5 *2 (-650 *3)) (-5 *1 (-783 *4 *5 *6 *3 *7)) (-4 *3 (-1252 *6)) (-14 *7 (-928))))) +(-10 -7 (-15 -3133 ((-650 |#4|) |#4|)) (-15 -4382 ((-3 (-1182 (-1182 |#1|)) "failed") |#4|)) (-15 -2663 (|#4| |#4|))) +((-3229 (((-2 (|:| |deter| (-650 (-1182 |#5|))) (|:| |dterm| (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-650 |#1|)) (|:| |nlead| (-650 |#5|))) (-1182 |#5|) (-650 |#1|) (-650 |#5|)) 75)) (-4100 (((-650 (-777)) |#1|) 20))) +(((-784 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3229 ((-2 (|:| |deter| (-650 (-1182 |#5|))) (|:| |dterm| (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-650 |#1|)) (|:| |nlead| (-650 |#5|))) (-1182 |#5|) (-650 |#1|) (-650 |#5|))) (-15 -4100 ((-650 (-777)) |#1|))) (-1252 |#4|) (-799) (-856) (-311) (-956 |#4| |#2| |#3|)) (T -784)) +((-4100 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-650 (-777))) (-5 *1 (-784 *3 *4 *5 *6 *7)) (-4 *3 (-1252 *6)) (-4 *7 (-956 *6 *4 *5)))) (-3229 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1252 *9)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-311)) (-4 *10 (-956 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-650 (-1182 *10))) (|:| |dterm| (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| *10))))) (|:| |nfacts| (-650 *6)) (|:| |nlead| (-650 *10)))) (-5 *1 (-784 *6 *7 *8 *9 *10)) (-5 *3 (-1182 *10)) (-5 *4 (-650 *6)) (-5 *5 (-650 *10))))) +(-10 -7 (-15 -3229 ((-2 (|:| |deter| (-650 (-1182 |#5|))) (|:| |dterm| (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-650 |#1|)) (|:| |nlead| (-650 |#5|))) (-1182 |#5|) (-650 |#1|) (-650 |#5|))) (-15 -4100 ((-650 (-777)) |#1|))) +((-3250 (((-650 (-2 (|:| |outval| |#1|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#1|))))) (-695 (-413 (-570))) |#1|) 31)) (-2980 (((-650 |#1|) (-695 (-413 (-570))) |#1|) 21)) (-4042 (((-959 (-413 (-570))) (-695 (-413 (-570))) (-1186)) 18) (((-959 (-413 (-570))) (-695 (-413 (-570)))) 17))) +(((-785 |#1|) (-10 -7 (-15 -4042 ((-959 (-413 (-570))) (-695 (-413 (-570))))) (-15 -4042 ((-959 (-413 (-570))) (-695 (-413 (-570))) (-1186))) (-15 -2980 ((-650 |#1|) (-695 (-413 (-570))) |#1|)) (-15 -3250 ((-650 (-2 (|:| |outval| |#1|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#1|))))) (-695 (-413 (-570))) |#1|))) (-13 (-368) (-854))) (T -785)) +((-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-650 (-2 (|:| |outval| *4) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 *4)))))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))) (-2980 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))) (-4042 (*1 *2 *3 *4) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *4 (-1186)) (-5 *2 (-959 (-413 (-570)))) (-5 *1 (-785 *5)) (-4 *5 (-13 (-368) (-854))))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-959 (-413 (-570)))) (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854)))))) +(-10 -7 (-15 -4042 ((-959 (-413 (-570))) (-695 (-413 (-570))))) (-15 -4042 ((-959 (-413 (-570))) (-695 (-413 (-570))) (-1186))) (-15 -2980 ((-650 |#1|) (-695 (-413 (-570))) |#1|)) (-15 -3250 ((-650 (-2 (|:| |outval| |#1|) (|:| |outmult| (-570)) (|:| |outvect| (-650 (-695 |#1|))))) (-695 (-413 (-570))) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 36)) (-1709 (((-650 |#2|) $) NIL)) (-3768 (((-1182 $) $ |#2|) NIL) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 |#2|)) NIL)) (-1568 (($ $) 30)) (-2333 (((-112) $ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-1485 (($ $ $) 110 (|has| |#1| (-562)))) (-3094 (((-650 $) $ $) 123 (|has| |#1| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-959 (-413 (-570)))) NIL (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))))) (((-3 $ "failed") (-959 (-570))) NIL (-2779 (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570)))))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186)))))) (((-3 $ "failed") (-959 |#1|)) NIL (-2779 (-12 (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570))))) (-1748 (|has| |#1| (-38 (-570))))) (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570))))) (-1748 (|has| |#1| (-551)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-1001 (-570))))))) (((-3 (-1134 |#1| |#2|) "failed") $) 21)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) ((|#2| $) NIL) (($ (-959 (-413 (-570)))) NIL (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))))) (($ (-959 (-570))) NIL (-2779 (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570)))))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186)))))) (($ (-959 |#1|)) NIL (-2779 (-12 (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570))))) (-1748 (|has| |#1| (-38 (-570))))) (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570))))) (-1748 (|has| |#1| (-551)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-1001 (-570))))))) (((-1134 |#1| |#2|) $) NIL)) (-2865 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-562)))) (-1885 (($ $) NIL) (($ $ |#2|) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-3153 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2740 (((-112) $) NIL)) (-1874 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 81)) (-2147 (($ $) 136 (|has| |#1| (-458)))) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ |#2|) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-1348 (($ $) NIL (|has| |#1| (-562)))) (-3630 (($ $) NIL (|has| |#1| (-562)))) (-3314 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3018 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3155 (($ $ |#1| (-537 |#2|) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2481 (((-112) $) 57)) (-1700 (((-777) $) NIL)) (-4347 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-4383 (($ $ $ $ $) 107 (|has| |#1| (-562)))) (-4211 ((|#2| $) 22)) (-1699 (($ (-1182 |#1|) |#2|) NIL) (($ (-1182 $) |#2|) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-537 |#2|)) NIL) (($ $ |#2| (-777)) 38) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3912 (($ $ $) 63)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-3189 (((-112) $) NIL)) (-2302 (((-537 |#2|) $) NIL) (((-777) $ |#2|) NIL) (((-650 (-777)) $ (-650 |#2|)) NIL)) (-3629 (((-777) $) 23)) (-2550 (($ (-1 (-537 |#2|) (-537 |#2|)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (((-3 |#2| "failed") $) NIL)) (-2124 (($ $) NIL (|has| |#1| (-458)))) (-3906 (($ $) NIL (|has| |#1| (-458)))) (-2045 (((-650 $) $) NIL)) (-1489 (($ $) 39)) (-2067 (($ $) NIL (|has| |#1| (-458)))) (-1535 (((-650 $) $) 43)) (-1990 (($ $) 41)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3915 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2271 (-777))) $ $) 96)) (-1879 (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $) 78) (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-4118 (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $) NIL) (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $ |#2|) NIL)) (-2345 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2171 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-4122 (((-1168) $) NIL)) (-3064 (($ $ $) 125 (|has| |#1| (-562)))) (-1615 (((-650 $) $) 32)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-777))) "failed") $) NIL)) (-1560 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-2458 (($ $ $) NIL)) (-2310 (($ $) 24)) (-4181 (((-112) $ $) NIL)) (-1871 (((-112) $ $) NIL) (((-112) $ (-650 $)) NIL)) (-2962 (($ $ $) NIL)) (-4188 (($ $) 26)) (-3551 (((-1129) $) NIL)) (-2261 (((-2 (|:| -1869 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-562)))) (-3447 (((-2 (|:| -1869 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-562)))) (-1830 (((-112) $) 56)) (-1838 ((|#1| $) 58)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 ((|#1| |#1| $) 133 (|has| |#1| (-458))) (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-3102 (((-2 (|:| -1869 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-562)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-562)))) (-1545 (($ $ |#1|) 129 (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-1577 (($ $ |#1|) 128 (|has| |#1| (-562))) (($ $ $) NIL (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-650 |#2|) (-650 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-650 |#2|) (-650 $)) NIL)) (-3511 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3519 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3324 (((-537 |#2|) $) NIL) (((-777) $ |#2|) 45) (((-650 (-777)) $ (-650 |#2|)) NIL)) (-2790 (($ $) NIL)) (-3655 (($ $) 35)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542))))) (($ (-959 (-413 (-570)))) NIL (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186))))) (($ (-959 (-570))) NIL (-2779 (-12 (|has| |#1| (-38 (-570))) (|has| |#2| (-620 (-1186))) (-1748 (|has| |#1| (-38 (-413 (-570)))))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#2| (-620 (-1186)))))) (($ (-959 |#1|)) NIL (|has| |#2| (-620 (-1186)))) (((-1168) $) NIL (-12 (|has| |#1| (-1047 (-570))) (|has| |#2| (-620 (-1186))))) (((-959 |#1|) $) NIL (|has| |#2| (-620 (-1186))))) (-1427 ((|#1| $) 132 (|has| |#1| (-458))) (($ $ |#2|) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-959 |#1|) $) NIL (|has| |#2| (-620 (-1186)))) (((-1134 |#1| |#2|) $) 18) (($ (-1134 |#1| |#2|)) 19) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-537 |#2|)) NIL) (($ $ |#2| (-777)) 47) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) 13 T CONST)) (-3036 (((-3 (-112) "failed") $ $) NIL)) (-1817 (($) 37 T CONST)) (-2480 (($ $ $ $ (-777)) 105 (|has| |#1| (-562)))) (-2425 (($ $ $ (-777)) 104 (|has| |#1| (-562)))) (-2835 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) 75)) (-3014 (($ $ $) 85)) (** (($ $ (-928)) NIL) (($ $ (-777)) 70)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 62) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +(((-786 |#1| |#2|) (-13 (-1074 |#1| (-537 |#2|) |#2|) (-619 (-1134 |#1| |#2|)) (-1047 (-1134 |#1| |#2|))) (-1058) (-856)) (T -786)) +NIL +(-13 (-1074 |#1| (-537 |#2|) |#2|) (-619 (-1134 |#1| |#2|)) (-1047 (-1134 |#1| |#2|))) +((-1347 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 13))) +(((-787 |#1| |#2|) (-10 -7 (-15 -1347 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1058) (-1058)) (T -787)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))) +(-10 -7 (-15 -1347 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 12)) (-2012 (((-1276 |#1|) $ (-777)) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-3832 (($ (-1182 |#1|)) NIL)) (-3768 (((-1182 $) $ (-1091)) NIL) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4286 (((-650 $) $ $) 54 (|has| |#1| (-562)))) (-1485 (($ $ $) 50 (|has| |#1| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3100 (($ $ (-777)) NIL)) (-4146 (($ $ (-777)) NIL)) (-2651 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-458)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL) (((-3 (-1182 |#1|) "failed") $) 10)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1091) $) NIL) (((-1182 |#1|) $) NIL)) (-2865 (($ $ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-3770 (($ $ $) NIL)) (-3858 (($ $ $) 87 (|has| |#1| (-562)))) (-1874 (((-2 (|:| -1436 |#1|) (|:| -1310 $) (|:| -2423 $)) $ $) 86 (|has| |#1| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-777) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4202 (((-777) $ $) NIL (|has| |#1| (-562)))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-1699 (($ (-1182 |#1|) (-1091)) NIL) (($ (-1182 $) (-1091)) NIL)) (-2964 (($ $ (-777)) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-3912 (($ $ $) 27)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1091)) NIL) (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2302 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2550 (($ (-1 (-777) (-777)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-3713 (((-1182 |#1|) $) NIL)) (-4372 (((-3 (-1091) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3915 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2271 (-777))) $ $) 37)) (-2777 (($ $ $) 41)) (-4280 (($ $ $) 47)) (-1879 (((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $) 46)) (-4122 (((-1168) $) NIL)) (-3064 (($ $ $) 56 (|has| |#1| (-562)))) (-3627 (((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777)) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-1091)) (|:| -3283 (-777))) "failed") $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2310 (($) NIL (|has| |#1| (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-2261 (((-2 (|:| -1869 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-562)))) (-3447 (((-2 (|:| -1869 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-562)))) (-3004 (((-2 (|:| -2865 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-562)))) (-1350 (((-2 (|:| -2865 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-562)))) (-1830 (((-112) $) 13)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3750 (($ $ (-777) |#1| $) 26)) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-3102 (((-2 (|:| -1869 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-562)))) (-1402 (((-2 (|:| -2865 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-562)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-650 (-1091)) (-650 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) NIL (|has| |#1| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#1| (-562)))) (-2575 (((-3 $ "failed") $ (-777)) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3511 (($ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3519 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3324 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#1| (-562)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1091)) NIL) (((-1182 |#1|) $) 7) (($ (-1182 |#1|)) 8) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) 28 T CONST)) (-1817 (($) 32 T CONST)) (-2835 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) 40) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-788 |#1|) (-13 (-1252 |#1|) (-619 (-1182 |#1|)) (-1047 (-1182 |#1|)) (-10 -8 (-15 -3750 ($ $ (-777) |#1| $)) (-15 -3912 ($ $ $)) (-15 -3915 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2271 (-777))) $ $)) (-15 -2777 ($ $ $)) (-15 -1879 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -4280 ($ $ $)) (IF (|has| |#1| (-562)) (PROGN (-15 -4286 ((-650 $) $ $)) (-15 -3064 ($ $ $)) (-15 -3102 ((-2 (|:| -1869 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3447 ((-2 (|:| -1869 $) (|:| |coef1| $)) $ $)) (-15 -2261 ((-2 (|:| -1869 $) (|:| |coef2| $)) $ $)) (-15 -1402 ((-2 (|:| -2865 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1350 ((-2 (|:| -2865 |#1|) (|:| |coef1| $)) $ $)) (-15 -3004 ((-2 (|:| -2865 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1058)) (T -788)) +((-3750 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-777)) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) (-3912 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) (-3915 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-788 *3)) (|:| |polden| *3) (|:| -2271 (-777)))) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) (-2777 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) (-1879 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1436 *3) (|:| |gap| (-777)) (|:| -1310 (-788 *3)) (|:| -2423 (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) (-4280 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) (-4286 (*1 *2 *1 *1) (-12 (-5 *2 (-650 (-788 *3))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-3064 (*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-562)) (-4 *2 (-1058)))) (-3102 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1869 (-788 *3)) (|:| |coef1| (-788 *3)) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-3447 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1869 (-788 *3)) (|:| |coef1| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-2261 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1869 (-788 *3)) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-1402 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2865 *3) (|:| |coef1| (-788 *3)) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-1350 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2865 *3) (|:| |coef1| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) (-3004 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2865 *3) (|:| |coef2| (-788 *3)))) (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))) +(-13 (-1252 |#1|) (-619 (-1182 |#1|)) (-1047 (-1182 |#1|)) (-10 -8 (-15 -3750 ($ $ (-777) |#1| $)) (-15 -3912 ($ $ $)) (-15 -3915 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2271 (-777))) $ $)) (-15 -2777 ($ $ $)) (-15 -1879 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -4280 ($ $ $)) (IF (|has| |#1| (-562)) (PROGN (-15 -4286 ((-650 $) $ $)) (-15 -3064 ($ $ $)) (-15 -3102 ((-2 (|:| -1869 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3447 ((-2 (|:| -1869 $) (|:| |coef1| $)) $ $)) (-15 -2261 ((-2 (|:| -1869 $) (|:| |coef2| $)) $ $)) (-15 -1402 ((-2 (|:| -2865 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1350 ((-2 (|:| -2865 |#1|) (|:| |coef1| $)) $ $)) (-15 -3004 ((-2 (|:| -2865 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4349 ((|#1| (-777) |#1|) 33 (|has| |#1| (-38 (-413 (-570)))))) (-1973 ((|#1| (-777) |#1|) 23)) (-1490 ((|#1| (-777) |#1|) 35 (|has| |#1| (-38 (-413 (-570))))))) +(((-789 |#1|) (-10 -7 (-15 -1973 (|#1| (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1490 (|#1| (-777) |#1|)) (-15 -4349 (|#1| (-777) |#1|))) |%noBranch|)) (-174)) (T -789)) +((-4349 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-174)))) (-1490 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-174)))) (-1973 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -1973 (|#1| (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1490 (|#1| (-777) |#1|)) (-15 -4349 (|#1| (-777) |#1|))) |%noBranch|)) +((-2419 (((-112) $ $) 7)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) 86)) (-2242 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1709 (((-650 |#3|) $) 34)) (-4006 (((-112) $) 27)) (-1797 (((-112) $) 18 (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) 102) (((-112) $) 98)) (-2530 ((|#4| |#4| $) 93)) (-3696 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| $) 127)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) 28)) (-3636 (((-112) $ (-777)) 45)) (-1418 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 80)) (-3734 (($) 46 T CONST)) (-2262 (((-112) $) 23 (|has| |#1| (-562)))) (-2082 (((-112) $ $) 25 (|has| |#1| (-562)))) (-4427 (((-112) $ $) 24 (|has| |#1| (-562)))) (-2418 (((-112) $) 26 (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3572 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 37)) (-3152 (($ (-650 |#4|)) 36)) (-3527 (((-3 $ "failed") $) 83)) (-3099 ((|#4| |#4| $) 90)) (-3552 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2295 ((|#4| |#4| $) 88)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) 106)) (-1413 (((-112) |#4| $) 137)) (-2992 (((-112) |#4| $) 134)) (-2176 (((-112) |#4| $) 138) (((-112) $) 135)) (-2885 (((-650 |#4|) $) 53 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) 105) (((-112) $) 104)) (-4211 ((|#3| $) 35)) (-3846 (((-112) $ (-777)) 44)) (-2282 (((-650 |#4|) $) 54 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 48)) (-3952 (((-650 |#3|) $) 33)) (-2875 (((-112) |#3| $) 32)) (-2063 (((-112) $ (-777)) 43)) (-4122 (((-1168) $) 10)) (-3383 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3064 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| |#4| $) 128)) (-1723 (((-3 |#4| "failed") $) 84)) (-1559 (((-650 $) |#4| $) 130)) (-3633 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2842 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-2745 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-2500 (((-650 |#4|) $) 108)) (-1560 (((-112) |#4| $) 100) (((-112) $) 96)) (-2458 ((|#4| |#4| $) 91)) (-4181 (((-112) $ $) 111)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) 101) (((-112) $) 97)) (-2962 ((|#4| |#4| $) 92)) (-3551 (((-1129) $) 11)) (-3515 (((-3 |#4| "failed") $) 85)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2730 (((-3 $ "failed") $ |#4|) 79)) (-3500 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-3116 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) 39)) (-4303 (((-112) $) 42)) (-4359 (($) 41)) (-3324 (((-777) $) 107)) (-3562 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4448)))) (-3964 (($ $) 40)) (-1411 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 61)) (-3677 (($ $ |#3|) 29)) (-3158 (($ $ |#3|) 31)) (-4381 (($ $) 89)) (-4074 (($ $ |#3|) 30)) (-3798 (((-868) $) 12) (((-650 |#4|) $) 38)) (-2136 (((-777) $) 77 (|has| |#3| (-373)))) (-1319 (((-112) $ $) 9)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-4296 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-1431 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) 82)) (-4428 (((-112) |#4| $) 136)) (-4059 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-790 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -790)) +NIL +(-13 (-1080 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1219 |#1| |#2| |#3| |#4|) . T) ((-1226) . T)) +((-4020 (((-3 (-384) "failed") (-320 |#1|) (-928)) 62 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-384) "failed") (-320 |#1|)) 54 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-384) "failed") (-413 (-959 |#1|)) (-928)) 41 (|has| |#1| (-562))) (((-3 (-384) "failed") (-413 (-959 |#1|))) 40 (|has| |#1| (-562))) (((-3 (-384) "failed") (-959 |#1|) (-928)) 31 (|has| |#1| (-1058))) (((-3 (-384) "failed") (-959 |#1|)) 30 (|has| |#1| (-1058)))) (-3481 (((-384) (-320 |#1|) (-928)) 99 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-384) (-320 |#1|)) 94 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-384) (-413 (-959 |#1|)) (-928)) 91 (|has| |#1| (-562))) (((-384) (-413 (-959 |#1|))) 90 (|has| |#1| (-562))) (((-384) (-959 |#1|) (-928)) 86 (|has| |#1| (-1058))) (((-384) (-959 |#1|)) 85 (|has| |#1| (-1058))) (((-384) |#1| (-928)) 76) (((-384) |#1|) 22)) (-2030 (((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)) (-928)) 71 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-320 (-171 |#1|))) 70 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-320 |#1|) (-928)) 63 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-320 |#1|)) 61 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))) (-928)) 46 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|)))) 45 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)) (-928)) 39 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-413 (-959 |#1|))) 38 (|has| |#1| (-562))) (((-3 (-171 (-384)) "failed") (-959 |#1|) (-928)) 28 (|has| |#1| (-1058))) (((-3 (-171 (-384)) "failed") (-959 |#1|)) 26 (|has| |#1| (-1058))) (((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)) (-928)) 18 (|has| |#1| (-174))) (((-3 (-171 (-384)) "failed") (-959 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-3716 (((-171 (-384)) (-320 (-171 |#1|)) (-928)) 102 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-320 (-171 |#1|))) 101 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-320 |#1|) (-928)) 100 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-320 |#1|)) 98 (-12 (|has| |#1| (-562)) (|has| |#1| (-856)))) (((-171 (-384)) (-413 (-959 (-171 |#1|))) (-928)) 93 (|has| |#1| (-562))) (((-171 (-384)) (-413 (-959 (-171 |#1|)))) 92 (|has| |#1| (-562))) (((-171 (-384)) (-413 (-959 |#1|)) (-928)) 89 (|has| |#1| (-562))) (((-171 (-384)) (-413 (-959 |#1|))) 88 (|has| |#1| (-562))) (((-171 (-384)) (-959 |#1|) (-928)) 84 (|has| |#1| (-1058))) (((-171 (-384)) (-959 |#1|)) 83 (|has| |#1| (-1058))) (((-171 (-384)) (-959 (-171 |#1|)) (-928)) 78 (|has| |#1| (-174))) (((-171 (-384)) (-959 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-384)) (-171 |#1|) (-928)) 80 (|has| |#1| (-174))) (((-171 (-384)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-384)) |#1| (-928)) 27) (((-171 (-384)) |#1|) 25))) +(((-791 |#1|) (-10 -7 (-15 -3481 ((-384) |#1|)) (-15 -3481 ((-384) |#1| (-928))) (-15 -3716 ((-171 (-384)) |#1|)) (-15 -3716 ((-171 (-384)) |#1| (-928))) (IF (|has| |#1| (-174)) (PROGN (-15 -3716 ((-171 (-384)) (-171 |#1|))) (-15 -3716 ((-171 (-384)) (-171 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-959 (-171 |#1|)))) (-15 -3716 ((-171 (-384)) (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -3481 ((-384) (-959 |#1|))) (-15 -3481 ((-384) (-959 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-959 |#1|))) (-15 -3716 ((-171 (-384)) (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -3481 ((-384) (-413 (-959 |#1|)))) (-15 -3481 ((-384) (-413 (-959 |#1|)) (-928))) (-15 -3716 ((-171 (-384)) (-413 (-959 |#1|)))) (-15 -3716 ((-171 (-384)) (-413 (-959 |#1|)) (-928))) (-15 -3716 ((-171 (-384)) (-413 (-959 (-171 |#1|))))) (-15 -3716 ((-171 (-384)) (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -3481 ((-384) (-320 |#1|))) (-15 -3481 ((-384) (-320 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-320 |#1|))) (-15 -3716 ((-171 (-384)) (-320 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-320 (-171 |#1|)))) (-15 -3716 ((-171 (-384)) (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -4020 ((-3 (-384) "failed") (-959 |#1|))) (-15 -4020 ((-3 (-384) "failed") (-959 |#1|) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 |#1|))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -4020 ((-3 (-384) "failed") (-413 (-959 |#1|)))) (-15 -4020 ((-3 (-384) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -4020 ((-3 (-384) "failed") (-320 |#1|))) (-15 -4020 ((-3 (-384) "failed") (-320 |#1|) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 |#1|))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 |#1|) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|)) (-620 (-384))) (T -791)) +((-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2030 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2030 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-4020 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-4020 (*1 *2 *3) (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2030 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2030 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-4020 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-4020 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2030 (*1 *2 *3) (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-4020 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-4020 (*1 *2 *3) (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-2030 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-2030 (*1 *2 *3) (|partial| -12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3481 (*1 *2 *3 *4) (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) (-3481 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-928)) (-4 *5 (-174)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) (-3716 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) (-4 *3 (-620 (-384))))) (-3716 (*1 *2 *3) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) (-4 *3 (-620 (-384))))) (-3481 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-384)) (-5 *1 (-791 *3)) (-4 *3 (-620 *2)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-384)) (-5 *1 (-791 *3)) (-4 *3 (-620 *2))))) +(-10 -7 (-15 -3481 ((-384) |#1|)) (-15 -3481 ((-384) |#1| (-928))) (-15 -3716 ((-171 (-384)) |#1|)) (-15 -3716 ((-171 (-384)) |#1| (-928))) (IF (|has| |#1| (-174)) (PROGN (-15 -3716 ((-171 (-384)) (-171 |#1|))) (-15 -3716 ((-171 (-384)) (-171 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-959 (-171 |#1|)))) (-15 -3716 ((-171 (-384)) (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -3481 ((-384) (-959 |#1|))) (-15 -3481 ((-384) (-959 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-959 |#1|))) (-15 -3716 ((-171 (-384)) (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -3481 ((-384) (-413 (-959 |#1|)))) (-15 -3481 ((-384) (-413 (-959 |#1|)) (-928))) (-15 -3716 ((-171 (-384)) (-413 (-959 |#1|)))) (-15 -3716 ((-171 (-384)) (-413 (-959 |#1|)) (-928))) (-15 -3716 ((-171 (-384)) (-413 (-959 (-171 |#1|))))) (-15 -3716 ((-171 (-384)) (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -3481 ((-384) (-320 |#1|))) (-15 -3481 ((-384) (-320 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-320 |#1|))) (-15 -3716 ((-171 (-384)) (-320 |#1|) (-928))) (-15 -3716 ((-171 (-384)) (-320 (-171 |#1|)))) (-15 -3716 ((-171 (-384)) (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 (-171 |#1|)) (-928)))) |%noBranch|) (IF (|has| |#1| (-1058)) (PROGN (-15 -4020 ((-3 (-384) "failed") (-959 |#1|))) (-15 -4020 ((-3 (-384) "failed") (-959 |#1|) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 |#1|))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-959 |#1|) (-928)))) |%noBranch|) (IF (|has| |#1| (-562)) (PROGN (-15 -4020 ((-3 (-384) "failed") (-413 (-959 |#1|)))) (-15 -4020 ((-3 (-384) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 |#1|)) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-413 (-959 (-171 |#1|))) (-928))) (IF (|has| |#1| (-856)) (PROGN (-15 -4020 ((-3 (-384) "failed") (-320 |#1|))) (-15 -4020 ((-3 (-384) "failed") (-320 |#1|) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 |#1|))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 |#1|) (-928))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)))) (-15 -2030 ((-3 (-171 (-384)) "failed") (-320 (-171 |#1|)) (-928)))) |%noBranch|)) |%noBranch|)) +((-2670 (((-928) (-1168)) 92)) (-3233 (((-3 (-384) "failed") (-1168)) 36)) (-3032 (((-384) (-1168)) 34)) (-2683 (((-928) (-1168)) 63)) (-3031 (((-1168) (-928)) 75)) (-1315 (((-1168) (-928)) 62))) +(((-792) (-10 -7 (-15 -1315 ((-1168) (-928))) (-15 -2683 ((-928) (-1168))) (-15 -3031 ((-1168) (-928))) (-15 -2670 ((-928) (-1168))) (-15 -3032 ((-384) (-1168))) (-15 -3233 ((-3 (-384) "failed") (-1168))))) (T -792)) +((-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792)))) (-2683 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792))))) +(-10 -7 (-15 -1315 ((-1168) (-928))) (-15 -2683 ((-928) (-1168))) (-15 -3031 ((-1168) (-928))) (-15 -2670 ((-928) (-1168))) (-15 -3032 ((-384) (-1168))) (-15 -3233 ((-3 (-384) "failed") (-1168)))) +((-2419 (((-112) $ $) 7)) (-2043 (((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 16) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044)) 14)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-793) (-141)) (T -793)) +((-1643 (*1 *2 *3 *4) (-12 (-4 *1 (-793)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044)))))) (-2043 (*1 *2 *3 *2) (-12 (-4 *1 (-793)) (-5 *2 (-1044)) (-5 *3 (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-1643 (*1 *2 *3 *4) (-12 (-4 *1 (-793)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044)))))) (-2043 (*1 *2 *3 *2) (-12 (-4 *1 (-793)) (-5 *2 (-1044)) (-5 *3 (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1109) (-10 -7 (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2043 ((-1044) (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) (|:| |extra| (-1044))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2043 ((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1044))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-4267 (((-1281) (-1276 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384))) (-384) (-1276 (-384)) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384))) 55) (((-1281) (-1276 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384))) (-384) (-1276 (-384)) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384))) 52)) (-4408 (((-1281) (-1276 (-384)) (-570) (-384) (-384) (-570) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384))) 61)) (-4324 (((-1281) (-1276 (-384)) (-570) (-384) (-384) (-384) (-384) (-570) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384))) 50)) (-2686 (((-1281) (-1276 (-384)) (-570) (-384) (-384) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384))) 63) (((-1281) (-1276 (-384)) (-570) (-384) (-384) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384))) 62))) +(((-794) (-10 -7 (-15 -2686 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))) (-15 -2686 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)))) (-15 -4324 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-384) (-384) (-570) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))) (-15 -4267 ((-1281) (-1276 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384))) (-384) (-1276 (-384)) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))) (-15 -4267 ((-1281) (-1276 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384))) (-384) (-1276 (-384)) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)))) (-15 -4408 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-570) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))))) (T -794)) +((-4408 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) (-5 *1 (-794)))) (-4267 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-570)) (-5 *6 (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384)))) (-5 *7 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) (-5 *1 (-794)))) (-4267 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-570)) (-5 *6 (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384)))) (-5 *7 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) (-5 *1 (-794)))) (-4324 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) (-5 *1 (-794)))) (-2686 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) (-5 *1 (-794)))) (-2686 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) (-5 *1 (-794))))) +(-10 -7 (-15 -2686 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))) (-15 -2686 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)))) (-15 -4324 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-384) (-384) (-570) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))) (-15 -4267 ((-1281) (-1276 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384))) (-384) (-1276 (-384)) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)))) (-15 -4267 ((-1281) (-1276 (-384)) (-570) (-384) (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384))) (-384) (-1276 (-384)) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)) (-1276 (-384)))) (-15 -4408 ((-1281) (-1276 (-384)) (-570) (-384) (-384) (-570) (-1 (-1281) (-1276 (-384)) (-1276 (-384)) (-384))))) +((-1747 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 66)) (-3315 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 42)) (-4287 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 65)) (-4255 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 40)) (-3190 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 64)) (-2362 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)) 26)) (-3096 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570)) 43)) (-2954 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570)) 41)) (-4131 (((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570)) 39))) +(((-795) (-10 -7 (-15 -4131 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2954 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -3096 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2362 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -4255 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -3315 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -3190 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -4287 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -1747 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))))) (T -795)) +((-1747 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-4287 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-3190 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-3315 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-4255 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2362 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-3096 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-2954 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570)))) (-4131 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) (|:| |success| (-112)))) (-5 *1 (-795)) (-5 *5 (-570))))) +(-10 -7 (-15 -4131 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2954 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -3096 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570) (-570))) (-15 -2362 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -4255 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -3315 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -3190 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -4287 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570))) (-15 -1747 ((-2 (|:| -2190 (-384)) (|:| -3650 (-384)) (|:| |totalpts| (-570)) (|:| |success| (-112))) (-1 (-384) (-384)) (-384) (-384) (-384) (-384) (-570) (-570)))) +((-2695 (((-1221 |#1|) |#1| (-227) (-570)) 69))) +(((-796 |#1|) (-10 -7 (-15 -2695 ((-1221 |#1|) |#1| (-227) (-570)))) (-983)) (T -796)) +((-2695 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-570)) (-5 *2 (-1221 *3)) (-5 *1 (-796 *3)) (-4 *3 (-983))))) +(-10 -7 (-15 -2695 ((-1221 |#1|) |#1| (-227) (-570)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 25)) (-2620 (((-3 $ "failed") $ $) 27)) (-3734 (($) 24 T CONST)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 23 T CONST)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-3026 (($ $ $) 31) (($ $) 30)) (-3014 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26) (($ (-570) $) 29))) +(((-797) (-141)) (T -797)) +NIL +(-13 (-801) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-856) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 25)) (-3734 (($) 24 T CONST)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 23 T CONST)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-3014 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26))) +(((-798) (-141)) (T -798)) +NIL +(-13 (-800) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-800) . T) ((-856) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 25)) (-1647 (($ $ $) 28)) (-2620 (((-3 $ "failed") $ $) 27)) (-3734 (($) 24 T CONST)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 23 T CONST)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-3014 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26))) +(((-799) (-141)) (T -799)) +((-1647 (*1 *1 *1 *1) (-4 *1 (-799)))) +(-13 (-801) (-10 -8 (-15 -1647 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-856) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-3014 (($ $ $) 21)) (* (($ (-928) $) 22))) +(((-800) (-141)) (T -800)) +NIL +(-13 (-856) (-25)) +(((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-856) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 25)) (-2620 (((-3 $ "failed") $ $) 27)) (-3734 (($) 24 T CONST)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 23 T CONST)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-3014 (($ $ $) 21)) (* (($ (-928) $) 22) (($ (-777) $) 26))) +(((-801) (-141)) (T -801)) +NIL +(-13 (-798) (-132)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-798) . T) ((-800) . T) ((-856) . T) ((-1109) . T)) +((-1359 (((-112) $) 42)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3152 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 43)) (-3369 (((-3 (-413 (-570)) "failed") $) 78)) (-3108 (((-112) $) 72)) (-3875 (((-413 (-570)) $) 76)) (-2233 ((|#2| $) 26)) (-1347 (($ (-1 |#2| |#2|) $) 23)) (-1820 (($ $) 58)) (-1411 (((-542) $) 67)) (-3897 (($ $) 21)) (-3798 (((-868) $) 53) (($ (-570)) 40) (($ |#2|) 38) (($ (-413 (-570))) NIL)) (-2862 (((-777)) 10)) (-2216 ((|#2| $) 71)) (-2923 (((-112) $ $) 30)) (-2948 (((-112) $ $) 69)) (-3026 (($ $) 32) (($ $ $) NIL)) (-3014 (($ $ $) 31)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-802 |#1| |#2|) (-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-803 |#2|) (-174)) (T -802)) +((-2862 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-802 *3 *4)) (-4 *3 (-803 *4))))) +(-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3475 (((-777)) 58 (|has| |#1| (-373)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 100 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 97 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 94)) (-3152 (((-570) $) 99 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 96 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 95)) (-2229 (((-3 $ "failed") $) 37)) (-3827 ((|#1| $) 84)) (-3369 (((-3 (-413 (-570)) "failed") $) 71 (|has| |#1| (-551)))) (-3108 (((-112) $) 73 (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) 72 (|has| |#1| (-551)))) (-3408 (($) 61 (|has| |#1| (-373)))) (-2481 (((-112) $) 35)) (-1710 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-2233 ((|#1| $) 76)) (-3382 (($ $ $) 67 (|has| |#1| (-856)))) (-2876 (($ $ $) 66 (|has| |#1| (-856)))) (-1347 (($ (-1 |#1| |#1|) $) 86)) (-2484 (((-928) $) 60 (|has| |#1| (-373)))) (-4122 (((-1168) $) 10)) (-1820 (($ $) 70 (|has| |#1| (-368)))) (-2155 (($ (-928)) 59 (|has| |#1| (-373)))) (-4172 ((|#1| $) 81)) (-1416 ((|#1| $) 82)) (-3872 ((|#1| $) 83)) (-1635 ((|#1| $) 77)) (-2420 ((|#1| $) 78)) (-2156 ((|#1| $) 79)) (-3148 ((|#1| $) 80)) (-3551 (((-1129) $) 11)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) 92 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 90 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 89 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 88 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 87 (|has| |#1| (-520 (-1186) |#1|)))) (-1872 (($ $ |#1|) 93 (|has| |#1| (-290 |#1| |#1|)))) (-1411 (((-542) $) 68 (|has| |#1| (-620 (-542))))) (-3897 (($ $) 85)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ (-413 (-570))) 98 (|has| |#1| (-1047 (-413 (-570)))))) (-2917 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-2216 ((|#1| $) 74 (|has| |#1| (-1069)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 64 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 63 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 65 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 62 (|has| |#1| (-856)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-803 |#1|) (-141) (-174)) (T -803)) +((-3897 (*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-1710 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-3369 (*1 *2 *1) (|partial| -12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-1820 (*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-368))))) +(-13 (-38 |t#1|) (-417 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3897 ($ $)) (-15 -3827 (|t#1| $)) (-15 -3872 (|t#1| $)) (-15 -1416 (|t#1| $)) (-15 -4172 (|t#1| $)) (-15 -3148 (|t#1| $)) (-15 -2156 (|t#1| $)) (-15 -2420 (|t#1| $)) (-15 -1635 (|t#1| $)) (-15 -2233 (|t#1| $)) (-15 -1710 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-373)) (-6 (-373)) |%noBranch|) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -2216 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -1820 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-373) |has| |#1| (-373)) ((-343 |#1|) . T) ((-417 |#1|) . T) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-732) . T) ((-856) |has| |#1| (-856)) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-1347 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#3| (-1 |#4| |#2|) |#1|))) (-803 |#2|) (-174) (-803 |#4|) (-174)) (T -804)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-803 *6)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *4 (-803 *5))))) +(-10 -7 (-15 -1347 (|#3| (-1 |#4| |#2|) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-1008 |#1|) "failed") $) 35) (((-3 (-570) "failed") $) NIL (-2779 (|has| (-1008 |#1|) (-1047 (-570))) (|has| |#1| (-1047 (-570))))) (((-3 (-413 (-570)) "failed") $) NIL (-2779 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-3152 ((|#1| $) NIL) (((-1008 |#1|) $) 33) (((-570) $) NIL (-2779 (|has| (-1008 |#1|) (-1047 (-570))) (|has| |#1| (-1047 (-570))))) (((-413 (-570)) $) NIL (-2779 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2229 (((-3 $ "failed") $) NIL)) (-3827 ((|#1| $) 16)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-551)))) (-3108 (((-112) $) NIL (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) NIL (|has| |#1| (-551)))) (-3408 (($) NIL (|has| |#1| (-373)))) (-2481 (((-112) $) NIL)) (-1710 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1008 |#1|) (-1008 |#1|)) 29)) (-2233 ((|#1| $) NIL)) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-4172 ((|#1| $) 22)) (-1416 ((|#1| $) 20)) (-3872 ((|#1| $) 18)) (-1635 ((|#1| $) 26)) (-2420 ((|#1| $) 25)) (-2156 ((|#1| $) 24)) (-3148 ((|#1| $) 23)) (-3551 (((-1129) $) NIL)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-1872 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3897 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1008 |#1|)) 30) (($ (-413 (-570))) NIL (-2779 (|has| (-1008 |#1|) (-1047 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-1069)))) (-1809 (($) 8 T CONST)) (-1817 (($) 12 T CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-805 |#1|) (-13 (-803 |#1|) (-417 (-1008 |#1|)) (-10 -8 (-15 -1710 ($ (-1008 |#1|) (-1008 |#1|))))) (-174)) (T -805)) +((-1710 (*1 *1 *2 *2) (-12 (-5 *2 (-1008 *3)) (-4 *3 (-174)) (-5 *1 (-805 *3))))) +(-13 (-803 |#1|) (-417 (-1008 |#1|)) (-10 -8 (-15 -1710 ($ (-1008 |#1|) (-1008 |#1|))))) +((-2419 (((-112) $ $) 7)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3196 (((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2923 (((-112) $ $) 6))) +(((-806) (-141)) (T -806)) +((-1643 (*1 *2 *3 *4) (-12 (-4 *1 (-806)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) (-3196 (*1 *2 *3) (-12 (-4 *1 (-806)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1044))))) +(-13 (-1109) (-10 -7 (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3196 ((-1044) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-1314 (((-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#3| |#2| (-1186)) 19))) +(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -1314 ((-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#3| |#2| (-1186)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1211) (-966)) (-662 |#2|)) (T -807)) +((-1314 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1186)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-4 *4 (-13 (-29 *6) (-1211) (-966))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2077 (-650 *4)))) (-5 *1 (-807 *6 *4 *3)) (-4 *3 (-662 *4))))) +(-10 -7 (-15 -1314 ((-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#3| |#2| (-1186)))) +((-3884 (((-3 |#2| "failed") |#2| (-115) (-298 |#2|) (-650 |#2|)) 28) (((-3 |#2| "failed") (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#2| "failed") |#2| (-115) (-1186)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#2| "failed") (-298 |#2|) (-115) (-1186)) 18) (((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-650 |#2|) (-650 (-115)) (-1186)) 24) (((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-650 (-298 |#2|)) (-650 (-115)) (-1186)) 26) (((-3 (-650 (-1276 |#2|)) "failed") (-695 |#2|) (-1186)) 37) (((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-695 |#2|) (-1276 |#2|) (-1186)) 35))) +(((-808 |#1| |#2|) (-10 -7 (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-695 |#2|) (-1276 |#2|) (-1186))) (-15 -3884 ((-3 (-650 (-1276 |#2|)) "failed") (-695 |#2|) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-650 (-298 |#2|)) (-650 (-115)) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-650 |#2|) (-650 (-115)) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#2| "failed") (-298 |#2|) (-115) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#2| "failed") |#2| (-115) (-1186))) (-15 -3884 ((-3 |#2| "failed") (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -3884 ((-3 |#2| "failed") |#2| (-115) (-298 |#2|) (-650 |#2|)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1211) (-966))) (T -808)) +((-3884 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-298 *2)) (-5 *5 (-650 *2)) (-4 *2 (-13 (-29 *6) (-1211) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-808 *6 *2)))) (-3884 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-298 *2)) (-5 *4 (-115)) (-5 *5 (-650 *2)) (-4 *2 (-13 (-29 *6) (-1211) (-966))) (-5 *1 (-808 *6 *2)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))))) (-3884 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1186)) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2077 (-650 *3))) *3 "failed")) (-5 *1 (-808 *6 *3)) (-4 *3 (-13 (-29 *6) (-1211) (-966))))) (-3884 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1211) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2077 (-650 *7))) *7 "failed")) (-5 *1 (-808 *6 *7)))) (-3884 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1211) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-2 (|:| |particular| (-1276 *7)) (|:| -2077 (-650 (-1276 *7))))) (-5 *1 (-808 *6 *7)))) (-3884 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1211) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-2 (|:| |particular| (-1276 *7)) (|:| -2077 (-650 (-1276 *7))))) (-5 *1 (-808 *6 *7)))) (-3884 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-695 *6)) (-5 *4 (-1186)) (-4 *6 (-13 (-29 *5) (-1211) (-966))) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-1276 *6))) (-5 *1 (-808 *5 *6)))) (-3884 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695 *7)) (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1211) (-966))) (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-2 (|:| |particular| (-1276 *7)) (|:| -2077 (-650 (-1276 *7))))) (-5 *1 (-808 *6 *7)) (-5 *4 (-1276 *7))))) +(-10 -7 (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-695 |#2|) (-1276 |#2|) (-1186))) (-15 -3884 ((-3 (-650 (-1276 |#2|)) "failed") (-695 |#2|) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-650 (-298 |#2|)) (-650 (-115)) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#2|)) (|:| -2077 (-650 (-1276 |#2|)))) "failed") (-650 |#2|) (-650 (-115)) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#2| "failed") (-298 |#2|) (-115) (-1186))) (-15 -3884 ((-3 (-2 (|:| |particular| |#2|) (|:| -2077 (-650 |#2|))) |#2| "failed") |#2| (-115) (-1186))) (-15 -3884 ((-3 |#2| "failed") (-298 |#2|) (-115) (-298 |#2|) (-650 |#2|))) (-15 -3884 ((-3 |#2| "failed") |#2| (-115) (-298 |#2|) (-650 |#2|)))) +((-4099 (($) 9)) (-3828 (((-3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2799 (((-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2213 (($ (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))) 24)) (-3911 (($ (-650 (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) 22)) (-2036 (((-1281)) 11))) +(((-809) (-10 -8 (-15 -4099 ($)) (-15 -2036 ((-1281))) (-15 -2799 ((-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3911 ($ (-650 (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))))) (-15 -2213 ($ (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) (-15 -3828 ((-3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -809)) +((-3828 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))) (-5 *1 (-809)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))) (-5 *1 (-809)))) (-3911 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) (-5 *1 (-809)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-809)))) (-2036 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-809)))) (-4099 (*1 *1) (-5 *1 (-809)))) +(-10 -8 (-15 -4099 ($)) (-15 -2036 ((-1281))) (-15 -2799 ((-650 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3911 ($ (-650 (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384)))))))) (-15 -2213 ($ (-2 (|:| -2009 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2219 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))))))) (-15 -3828 ((-3 (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) (|:| |expense| (-384)) (|:| |accuracy| (-384)) (|:| |intermediateResults| (-384))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3807 ((|#2| |#2| (-1186)) 17)) (-2202 ((|#2| |#2| (-1186)) 56)) (-2901 (((-1 |#2| |#2|) (-1186)) 11))) +(((-810 |#1| |#2|) (-10 -7 (-15 -3807 (|#2| |#2| (-1186))) (-15 -2202 (|#2| |#2| (-1186))) (-15 -2901 ((-1 |#2| |#2|) (-1186)))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148)) (-13 (-29 |#1|) (-1211) (-966))) (T -810)) +((-2901 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-810 *4 *5)) (-4 *5 (-13 (-29 *4) (-1211) (-966))))) (-2202 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1211) (-966))))) (-3807 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1211) (-966)))))) +(-10 -7 (-15 -3807 (|#2| |#2| (-1186))) (-15 -2202 (|#2| |#2| (-1186))) (-15 -2901 ((-1 |#2| |#2|) (-1186)))) +((-3884 (((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384) (-384)) 131) (((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384)) 132) (((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-650 (-384)) (-384)) 134) (((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-384)) 136) (((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-384)) 137) (((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384))) 139) (((-1044) (-814) (-1072)) 123) (((-1044) (-814)) 124)) (-1643 (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814) (-1072)) 83) (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814)) 85))) +(((-811) (-10 -7 (-15 -3884 ((-1044) (-814))) (-15 -3884 ((-1044) (-814) (-1072))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-650 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384) (-384))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814) (-1072))))) (T -811)) +((-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-811)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1276 (-320 *4))) (-5 *5 (-650 (-384))) (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1276 (-320 *4))) (-5 *5 (-650 (-384))) (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1276 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1276 (-320 *4))) (-5 *5 (-650 (-384))) (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1276 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1276 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-814)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-811)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1044)) (-5 *1 (-811))))) +(-10 -7 (-15 -3884 ((-1044) (-814))) (-15 -3884 ((-1044) (-814) (-1072))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-650 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384))) (-15 -3884 ((-1044) (-1276 (-320 (-384))) (-384) (-384) (-650 (-384)) (-320 (-384)) (-650 (-384)) (-384) (-384))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-814) (-1072)))) +((-2890 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2077 (-650 |#4|))) (-659 |#4|) |#4|) 33))) +(((-812 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2890 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2077 (-650 |#4|))) (-659 |#4|) |#4|))) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|)) (T -812)) +((-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-659 *4)) (-4 *4 (-347 *5 *6 *7)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-812 *5 *6 *7 *4))))) +(-10 -7 (-15 -2890 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2077 (-650 |#4|))) (-659 |#4|) |#4|))) +((-2899 (((-2 (|:| -4313 |#3|) (|:| |rh| (-650 (-413 |#2|)))) |#4| (-650 (-413 |#2|))) 53)) (-2182 (((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#4| |#2|) 62) (((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#4|) 61) (((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#3| |#2|) 20) (((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#3|) 21)) (-1609 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3685 ((|#2| |#3| (-650 (-413 |#2|))) 111) (((-3 |#2| "failed") |#3| (-413 |#2|)) 107))) +(((-813 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3685 ((-3 |#2| "failed") |#3| (-413 |#2|))) (-15 -3685 (|#2| |#3| (-650 (-413 |#2|)))) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#3|)) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#3| |#2|)) (-15 -1609 (|#2| |#3| |#1|)) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#4|)) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#4| |#2|)) (-15 -1609 (|#2| |#4| |#1|)) (-15 -2899 ((-2 (|:| -4313 |#3|) (|:| |rh| (-650 (-413 |#2|)))) |#4| (-650 (-413 |#2|))))) (-13 (-368) (-148) (-1047 (-413 (-570)))) (-1252 |#1|) (-662 |#2|) (-662 (-413 |#2|))) (T -813)) +((-2899 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-2 (|:| -4313 *7) (|:| |rh| (-650 (-413 *6))))) (-5 *1 (-813 *5 *6 *7 *3)) (-5 *4 (-650 (-413 *6))) (-4 *7 (-662 *6)) (-4 *3 (-662 (-413 *6))))) (-1609 (*1 *2 *3 *4) (-12 (-4 *2 (-1252 *4)) (-5 *1 (-813 *4 *2 *5 *3)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-662 *2)) (-4 *3 (-662 (-413 *2))))) (-2182 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *4 (-1252 *5)) (-5 *2 (-650 (-2 (|:| -2172 *4) (|:| -3499 *4)))) (-5 *1 (-813 *5 *4 *6 *3)) (-4 *6 (-662 *4)) (-4 *3 (-662 (-413 *4))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *2 (-650 (-2 (|:| -2172 *5) (|:| -3499 *5)))) (-5 *1 (-813 *4 *5 *6 *3)) (-4 *6 (-662 *5)) (-4 *3 (-662 (-413 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-4 *2 (-1252 *4)) (-5 *1 (-813 *4 *2 *3 *5)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *5 (-662 (-413 *2))))) (-2182 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *4 (-1252 *5)) (-5 *2 (-650 (-2 (|:| -2172 *4) (|:| -3499 *4)))) (-5 *1 (-813 *5 *4 *3 *6)) (-4 *3 (-662 *4)) (-4 *6 (-662 (-413 *4))))) (-2182 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *2 (-650 (-2 (|:| -2172 *5) (|:| -3499 *5)))) (-5 *1 (-813 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-662 (-413 *5))))) (-3685 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-413 *2))) (-4 *2 (-1252 *5)) (-5 *1 (-813 *5 *2 *3 *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *6 (-662 (-413 *2))))) (-3685 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-413 *2)) (-4 *2 (-1252 *5)) (-5 *1 (-813 *5 *2 *3 *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *6 (-662 *4))))) +(-10 -7 (-15 -3685 ((-3 |#2| "failed") |#3| (-413 |#2|))) (-15 -3685 (|#2| |#3| (-650 (-413 |#2|)))) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#3|)) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#3| |#2|)) (-15 -1609 (|#2| |#3| |#1|)) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#4|)) (-15 -2182 ((-650 (-2 (|:| -2172 |#2|) (|:| -3499 |#2|))) |#4| |#2|)) (-15 -1609 (|#2| |#4| |#1|)) (-15 -2899 ((-2 (|:| -4313 |#3|) (|:| |rh| (-650 (-413 |#2|)))) |#4| (-650 (-413 |#2|))))) +((-2419 (((-112) $ $) NIL)) (-3152 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-814) (-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3152 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -814)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-814)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-814))))) +(-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3152 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-2015 (((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -4313 |#3|))) |#3| (-1 (-650 |#2|) |#2| (-1182 |#2|)) (-1 (-424 |#2|) |#2|)) 157)) (-3895 (((-650 (-2 (|:| |poly| |#2|) (|:| -4313 |#3|))) |#3| (-1 (-650 |#1|) |#2|)) 54)) (-1876 (((-650 (-2 (|:| |deg| (-777)) (|:| -4313 |#2|))) |#3|) 126)) (-3909 ((|#2| |#3|) 45)) (-4130 (((-650 (-2 (|:| -3711 |#1|) (|:| -4313 |#3|))) |#3| (-1 (-650 |#1|) |#2|)) 103)) (-4167 ((|#3| |#3| (-413 |#2|)) 74) ((|#3| |#3| |#2|) 100))) +(((-815 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3909 (|#2| |#3|)) (-15 -1876 ((-650 (-2 (|:| |deg| (-777)) (|:| -4313 |#2|))) |#3|)) (-15 -4130 ((-650 (-2 (|:| -3711 |#1|) (|:| -4313 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -3895 ((-650 (-2 (|:| |poly| |#2|) (|:| -4313 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -2015 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -4313 |#3|))) |#3| (-1 (-650 |#2|) |#2| (-1182 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -4167 (|#3| |#3| |#2|)) (-15 -4167 (|#3| |#3| (-413 |#2|)))) (-13 (-368) (-148) (-1047 (-413 (-570)))) (-1252 |#1|) (-662 |#2|) (-662 (-413 |#2|))) (T -815)) +((-4167 (*1 *2 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *1 (-815 *4 *5 *2 *6)) (-4 *2 (-662 *5)) (-4 *6 (-662 *3)))) (-4167 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-1252 *4)) (-5 *1 (-815 *4 *3 *2 *5)) (-4 *2 (-662 *3)) (-4 *5 (-662 (-413 *3))))) (-2015 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-650 *7) *7 (-1182 *7))) (-5 *5 (-1 (-424 *7) *7)) (-4 *7 (-1252 *6)) (-4 *6 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-5 *2 (-650 (-2 (|:| |frac| (-413 *7)) (|:| -4313 *3)))) (-5 *1 (-815 *6 *7 *3 *8)) (-4 *3 (-662 *7)) (-4 *8 (-662 (-413 *7))))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -4313 *3)))) (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6)) (-4 *7 (-662 (-413 *6))))) (-4130 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-2 (|:| -3711 *5) (|:| -4313 *3)))) (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6)) (-4 *7 (-662 (-413 *6))))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -4313 *5)))) (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-662 (-413 *5))))) (-3909 (*1 *2 *3) (-12 (-4 *2 (-1252 *4)) (-5 *1 (-815 *4 *2 *3 *5)) (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) (-4 *5 (-662 (-413 *2)))))) +(-10 -7 (-15 -3909 (|#2| |#3|)) (-15 -1876 ((-650 (-2 (|:| |deg| (-777)) (|:| -4313 |#2|))) |#3|)) (-15 -4130 ((-650 (-2 (|:| -3711 |#1|) (|:| -4313 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -3895 ((-650 (-2 (|:| |poly| |#2|) (|:| -4313 |#3|))) |#3| (-1 (-650 |#1|) |#2|))) (-15 -2015 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -4313 |#3|))) |#3| (-1 (-650 |#2|) |#2| (-1182 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -4167 (|#3| |#3| |#2|)) (-15 -4167 (|#3| |#3| (-413 |#2|)))) +((-1795 (((-2 (|:| -2077 (-650 (-413 |#2|))) (|:| -2568 (-695 |#1|))) (-660 |#2| (-413 |#2|)) (-650 (-413 |#2|))) 149) (((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2077 (-650 (-413 |#2|)))) (-660 |#2| (-413 |#2|)) (-413 |#2|)) 148) (((-2 (|:| -2077 (-650 (-413 |#2|))) (|:| -2568 (-695 |#1|))) (-659 (-413 |#2|)) (-650 (-413 |#2|))) 143) (((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2077 (-650 (-413 |#2|)))) (-659 (-413 |#2|)) (-413 |#2|)) 141)) (-2314 ((|#2| (-660 |#2| (-413 |#2|))) 89) ((|#2| (-659 (-413 |#2|))) 92))) +(((-816 |#1| |#2|) (-10 -7 (-15 -1795 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2077 (-650 (-413 |#2|)))) (-659 (-413 |#2|)) (-413 |#2|))) (-15 -1795 ((-2 (|:| -2077 (-650 (-413 |#2|))) (|:| -2568 (-695 |#1|))) (-659 (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -1795 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2077 (-650 (-413 |#2|)))) (-660 |#2| (-413 |#2|)) (-413 |#2|))) (-15 -1795 ((-2 (|:| -2077 (-650 (-413 |#2|))) (|:| -2568 (-695 |#1|))) (-660 |#2| (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -2314 (|#2| (-659 (-413 |#2|)))) (-15 -2314 (|#2| (-660 |#2| (-413 |#2|))))) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1252 |#1|)) (T -816)) +((-2314 (*1 *2 *3) (-12 (-5 *3 (-660 *2 (-413 *2))) (-4 *2 (-1252 *4)) (-5 *1 (-816 *4 *2)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-659 (-413 *2))) (-4 *2 (-1252 *4)) (-5 *1 (-816 *4 *2)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| -2077 (-650 (-413 *6))) (|:| -2568 (-695 *5)))) (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6))))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-816 *5 *6)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| -2077 (-650 (-413 *6))) (|:| -2568 (-695 *5)))) (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6))))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-816 *5 *6))))) +(-10 -7 (-15 -1795 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2077 (-650 (-413 |#2|)))) (-659 (-413 |#2|)) (-413 |#2|))) (-15 -1795 ((-2 (|:| -2077 (-650 (-413 |#2|))) (|:| -2568 (-695 |#1|))) (-659 (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -1795 ((-2 (|:| |particular| (-3 (-413 |#2|) "failed")) (|:| -2077 (-650 (-413 |#2|)))) (-660 |#2| (-413 |#2|)) (-413 |#2|))) (-15 -1795 ((-2 (|:| -2077 (-650 (-413 |#2|))) (|:| -2568 (-695 |#1|))) (-660 |#2| (-413 |#2|)) (-650 (-413 |#2|)))) (-15 -2314 (|#2| (-659 (-413 |#2|)))) (-15 -2314 (|#2| (-660 |#2| (-413 |#2|))))) +((-4285 (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#1|))) |#5| |#4|) 52))) +(((-817 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4285 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#1|))) |#5| |#4|))) (-368) (-662 |#1|) (-1252 |#1|) (-730 |#1| |#3|) (-662 |#4|)) (T -817)) +((-4285 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *7 (-1252 *5)) (-4 *4 (-730 *5 *7)) (-5 *2 (-2 (|:| -2568 (-695 *6)) (|:| |vec| (-1276 *5)))) (-5 *1 (-817 *5 *6 *7 *4 *3)) (-4 *6 (-662 *5)) (-4 *3 (-662 *4))))) +(-10 -7 (-15 -4285 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#1|))) |#5| |#4|))) +((-2015 (((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -4313 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)) 47)) (-3225 (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|))) 168 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-424 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-659 (-413 |#2|))) 170 (|has| |#1| (-27))) (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|)) 38) (((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 39) (((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|)) 36) (((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 37)) (-3895 (((-650 (-2 (|:| |poly| |#2|) (|:| -4313 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|)) 99))) +(((-818 |#1| |#2|) (-10 -7 (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -2015 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -4313 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -3895 ((-650 (-2 (|:| |poly| |#2|) (|:| -4313 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)))) (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)))) |%noBranch|)) (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))) (-1252 |#1|)) (T -818)) +((-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-660 *5 (-413 *5))) (-4 *5 (-1252 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-659 (-413 *5))) (-4 *5 (-1252 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -4313 (-660 *6 (-413 *6)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6))))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 (-650 (-2 (|:| |frac| (-413 *6)) (|:| -4313 (-660 *6 (-413 *6)))))) (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6))))) (-3225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *7 (-413 *7))) (-5 *4 (-1 (-650 *6) *7)) (-5 *5 (-1 (-424 *7) *7)) (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *7 (-1252 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) (-3225 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-659 (-413 *7))) (-5 *4 (-1 (-650 *6) *7)) (-5 *5 (-1 (-424 *7) *7)) (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *7 (-1252 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-650 *5) *6)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6))))) +(-10 -7 (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|) (-1 (-424 |#2|) |#2|))) (-15 -2015 ((-650 (-2 (|:| |frac| (-413 |#2|)) (|:| -4313 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -3895 ((-650 (-2 (|:| |poly| |#2|) (|:| -4313 (-660 |#2| (-413 |#2|))))) (-660 |#2| (-413 |#2|)) (-1 (-650 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)))) (-15 -3225 ((-650 (-413 |#2|)) (-659 (-413 |#2|)) (-1 (-424 |#2|) |#2|))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)))) (-15 -3225 ((-650 (-413 |#2|)) (-660 |#2| (-413 |#2|)) (-1 (-424 |#2|) |#2|)))) |%noBranch|)) +((-2140 (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#1|))) (-695 |#2|) (-1276 |#1|)) 110) (((-2 (|:| A (-695 |#1|)) (|:| |eqs| (-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1276 |#1|)) (|:| -4313 |#2|) (|:| |rh| |#1|))))) (-695 |#1|) (-1276 |#1|)) 15)) (-3777 (((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-695 |#2|) (-1276 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2077 (-650 |#1|))) |#2| |#1|)) 116)) (-3884 (((-3 (-2 (|:| |particular| (-1276 |#1|)) (|:| -2077 (-695 |#1|))) "failed") (-695 |#1|) (-1276 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed") |#2| |#1|)) 52))) +(((-819 |#1| |#2|) (-10 -7 (-15 -2140 ((-2 (|:| A (-695 |#1|)) (|:| |eqs| (-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1276 |#1|)) (|:| -4313 |#2|) (|:| |rh| |#1|))))) (-695 |#1|) (-1276 |#1|))) (-15 -2140 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#1|))) (-695 |#2|) (-1276 |#1|))) (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#1|)) (|:| -2077 (-695 |#1|))) "failed") (-695 |#1|) (-1276 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed") |#2| |#1|))) (-15 -3777 ((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-695 |#2|) (-1276 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2077 (-650 |#1|))) |#2| |#1|)))) (-368) (-662 |#1|)) (T -819)) +((-3777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2077 (-650 *6))) *7 *6)) (-4 *6 (-368)) (-4 *7 (-662 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1276 *6) "failed")) (|:| -2077 (-650 (-1276 *6))))) (-5 *1 (-819 *6 *7)) (-5 *4 (-1276 *6)))) (-3884 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2077 (-650 *6))) "failed") *7 *6)) (-4 *6 (-368)) (-4 *7 (-662 *6)) (-5 *2 (-2 (|:| |particular| (-1276 *6)) (|:| -2077 (-695 *6)))) (-5 *1 (-819 *6 *7)) (-5 *3 (-695 *6)) (-5 *4 (-1276 *6)))) (-2140 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-4 *6 (-662 *5)) (-5 *2 (-2 (|:| -2568 (-695 *6)) (|:| |vec| (-1276 *5)))) (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *6)) (-5 *4 (-1276 *5)))) (-2140 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-5 *2 (-2 (|:| A (-695 *5)) (|:| |eqs| (-650 (-2 (|:| C (-695 *5)) (|:| |g| (-1276 *5)) (|:| -4313 *6) (|:| |rh| *5)))))) (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)) (-4 *6 (-662 *5))))) +(-10 -7 (-15 -2140 ((-2 (|:| A (-695 |#1|)) (|:| |eqs| (-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1276 |#1|)) (|:| -4313 |#2|) (|:| |rh| |#1|))))) (-695 |#1|) (-1276 |#1|))) (-15 -2140 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#1|))) (-695 |#2|) (-1276 |#1|))) (-15 -3884 ((-3 (-2 (|:| |particular| (-1276 |#1|)) (|:| -2077 (-695 |#1|))) "failed") (-695 |#1|) (-1276 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2077 (-650 |#1|))) "failed") |#2| |#1|))) (-15 -3777 ((-2 (|:| |particular| (-3 (-1276 |#1|) "failed")) (|:| -2077 (-650 (-1276 |#1|)))) (-695 |#2|) (-1276 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2077 (-650 |#1|))) |#2| |#1|)))) +((-2359 (((-695 |#1|) (-650 |#1|) (-777)) 14) (((-695 |#1|) (-650 |#1|)) 15)) (-1922 (((-3 (-1276 |#1|) "failed") |#2| |#1| (-650 |#1|)) 39)) (-3643 (((-3 |#1| "failed") |#2| |#1| (-650 |#1|) (-1 |#1| |#1|)) 46))) +(((-820 |#1| |#2|) (-10 -7 (-15 -2359 ((-695 |#1|) (-650 |#1|))) (-15 -2359 ((-695 |#1|) (-650 |#1|) (-777))) (-15 -1922 ((-3 (-1276 |#1|) "failed") |#2| |#1| (-650 |#1|))) (-15 -3643 ((-3 |#1| "failed") |#2| |#1| (-650 |#1|) (-1 |#1| |#1|)))) (-368) (-662 |#1|)) (T -820)) +((-3643 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-650 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-368)) (-5 *1 (-820 *2 *3)) (-4 *3 (-662 *2)))) (-1922 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-1276 *4)) (-5 *1 (-820 *4 *3)) (-4 *3 (-662 *4)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-368)) (-5 *2 (-695 *5)) (-5 *1 (-820 *5 *6)) (-4 *6 (-662 *5)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-695 *4)) (-5 *1 (-820 *4 *5)) (-4 *5 (-662 *4))))) +(-10 -7 (-15 -2359 ((-695 |#1|) (-650 |#1|))) (-15 -2359 ((-695 |#1|) (-650 |#1|) (-777))) (-15 -1922 ((-3 (-1276 |#1|) "failed") |#2| |#1| (-650 |#1|))) (-15 -3643 ((-3 |#1| "failed") |#2| |#1| (-650 |#1|) (-1 |#1| |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-1359 (((-112) $) NIL (|has| |#2| (-132)))) (-3241 (($ (-928)) NIL (|has| |#2| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-1647 (($ $ $) NIL (|has| |#2| (-799)))) (-2620 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| |#2| (-373)))) (-2579 (((-570) $) NIL (|has| |#2| (-854)))) (-3945 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1109)))) (-3152 (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) ((|#2| $) NIL (|has| |#2| (-1109)))) (-2004 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#2| (-1058)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL (|has| |#2| (-1058))) (((-695 |#2|) (-695 $)) NIL (|has| |#2| (-1058)))) (-2229 (((-3 $ "failed") $) NIL (|has| |#2| (-732)))) (-3408 (($) NIL (|has| |#2| (-373)))) (-3849 ((|#2| $ (-570) |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ (-570)) NIL)) (-2135 (((-112) $) NIL (|has| |#2| (-854)))) (-2885 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL (|has| |#2| (-732)))) (-3367 (((-112) $) NIL (|has| |#2| (-854)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2282 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3837 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#2| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#2| (-1109)))) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-2155 (($ (-928)) NIL (|has| |#2| (-373)))) (-3551 (((-1129) $) NIL (|has| |#2| (-1109)))) (-3515 ((|#2| $) NIL (|has| (-570) (-856)))) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ (-570) |#2|) NIL) ((|#2| $ (-570)) NIL)) (-2331 ((|#2| $ $) NIL (|has| |#2| (-1058)))) (-3850 (($ (-1276 |#2|)) NIL)) (-3374 (((-135)) NIL (|has| |#2| (-368)))) (-3519 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-3562 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1276 |#2|) $) NIL) (($ (-570)) NIL (-2779 (-12 (|has| |#2| (-1047 (-570))) (|has| |#2| (-1109))) (|has| |#2| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#2| (-1047 (-413 (-570)))) (|has| |#2| (-1109)))) (($ |#2|) NIL (|has| |#2| (-1109))) (((-868) $) NIL (|has| |#2| (-619 (-868))))) (-2862 (((-777)) NIL (|has| |#2| (-1058)) CONST)) (-1319 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-1431 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2216 (($ $) NIL (|has| |#2| (-854)))) (-1809 (($) NIL (|has| |#2| (-132)) CONST)) (-1817 (($) NIL (|has| |#2| (-732)) CONST)) (-2835 (($ $) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#2| (-235)) (|has| |#2| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#2| (-907 (-1186))) (|has| |#2| (-1058)))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#2| (-1058))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1058)))) (-2981 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2923 (((-112) $ $) NIL (|has| |#2| (-1109)))) (-2969 (((-112) $ $) NIL (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-2948 (((-112) $ $) 11 (-2779 (|has| |#2| (-799)) (|has| |#2| (-854))))) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $ $) NIL (|has| |#2| (-1058))) (($ $) NIL (|has| |#2| (-1058)))) (-3014 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-777)) NIL (|has| |#2| (-732))) (($ $ (-928)) NIL (|has| |#2| (-732)))) (* (($ (-570) $) NIL (|has| |#2| (-1058))) (($ $ $) NIL (|has| |#2| (-732))) (($ $ |#2|) NIL (|has| |#2| (-732))) (($ |#2| $) NIL (|has| |#2| (-732))) (($ (-777) $) NIL (|has| |#2| (-132))) (($ (-928) $) NIL (|has| |#2| (-25)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-821 |#1| |#2| |#3|) (-240 |#1| |#2|) (-777) (-799) (-1 (-112) (-1276 |#2|) (-1276 |#2|))) (T -821)) +NIL +(-240 |#1| |#2|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2194 (((-650 (-777)) $) NIL) (((-650 (-777)) $ (-1186)) NIL)) (-2793 (((-777) $) NIL) (((-777) $ (-1186)) NIL)) (-1709 (((-650 (-824 (-1186))) $) NIL)) (-3768 (((-1182 $) $ (-824 (-1186))) NIL) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-824 (-1186)))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2836 (($ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-824 (-1186)) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL) (((-3 (-1134 |#1| (-1186)) "failed") $) NIL)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-824 (-1186)) $) NIL) (((-1186) $) NIL) (((-1134 |#1| (-1186)) $) NIL)) (-2865 (($ $ $ (-824 (-1186))) NIL (|has| |#1| (-174)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ (-824 (-1186))) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-537 (-824 (-1186))) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-824 (-1186)) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-824 (-1186)) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4202 (((-777) $ (-1186)) NIL) (((-777) $) NIL)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#1|) (-824 (-1186))) NIL) (($ (-1182 $) (-824 (-1186))) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-537 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-824 (-1186))) NIL)) (-2302 (((-537 (-824 (-1186))) $) NIL) (((-777) $ (-824 (-1186))) NIL) (((-650 (-777)) $ (-650 (-824 (-1186)))) NIL)) (-2550 (($ (-1 (-537 (-824 (-1186))) (-537 (-824 (-1186)))) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2994 (((-1 $ (-777)) (-1186)) NIL) (((-1 $ (-777)) $) NIL (|has| |#1| (-235)))) (-4372 (((-3 (-824 (-1186)) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-3154 (((-824 (-1186)) $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-2916 (((-112) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-824 (-1186))) (|:| -3283 (-777))) "failed") $) NIL)) (-1511 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-824 (-1186)) |#1|) NIL) (($ $ (-650 (-824 (-1186))) (-650 |#1|)) NIL) (($ $ (-824 (-1186)) $) NIL) (($ $ (-650 (-824 (-1186))) (-650 $)) NIL) (($ $ (-1186) $) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 $)) NIL (|has| |#1| (-235))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-235)))) (-3511 (($ $ (-824 (-1186))) NIL (|has| |#1| (-174)))) (-3519 (($ $ (-824 (-1186))) NIL) (($ $ (-650 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3803 (((-650 (-1186)) $) NIL)) (-3324 (((-537 (-824 (-1186))) $) NIL) (((-777) $ (-824 (-1186))) NIL) (((-650 (-777)) $ (-650 (-824 (-1186)))) NIL) (((-777) $ (-1186)) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-824 (-1186)) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-824 (-1186)) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-824 (-1186)) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-824 (-1186))) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-824 (-1186))) NIL) (($ (-1186)) NIL) (($ (-1134 |#1| (-1186))) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-537 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-824 (-1186))) NIL) (($ $ (-650 (-824 (-1186)))) NIL) (($ $ (-824 (-1186)) (-777)) NIL) (($ $ (-650 (-824 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-822 |#1|) (-13 (-256 |#1| (-1186) (-824 (-1186)) (-537 (-824 (-1186)))) (-1047 (-1134 |#1| (-1186)))) (-1058)) (T -822)) +NIL +(-13 (-256 |#1| (-1186) (-824 (-1186)) (-537 (-824 (-1186)))) (-1047 (-1134 |#1| (-1186)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#2| (-368)))) (-2318 (($ $) NIL (|has| |#2| (-368)))) (-2234 (((-112) $) NIL (|has| |#2| (-368)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#2| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#2| (-368)))) (-4073 (((-112) $ $) NIL (|has| |#2| (-368)))) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL (|has| |#2| (-368)))) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL (|has| |#2| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#2| (-368)))) (-3701 (((-112) $) NIL (|has| |#2| (-368)))) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-1841 (($ (-650 $)) NIL (|has| |#2| (-368))) (($ $ $) NIL (|has| |#2| (-368)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 20 (|has| |#2| (-368)))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#2| (-368))) (($ $ $) NIL (|has| |#2| (-368)))) (-3801 (((-424 $) $) NIL (|has| |#2| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-368)))) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#2| (-368)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-3788 (((-777) $) NIL (|has| |#2| (-368)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-368)))) (-3519 (($ $ (-777)) NIL) (($ $) 13)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-413 (-570))) NIL (|has| |#2| (-368))) (($ $) NIL (|has| |#2| (-368)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#2| (-368)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) 15 (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL) (($ $ (-570)) 18 (|has| |#2| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-413 (-570)) $) NIL (|has| |#2| (-368))) (($ $ (-413 (-570))) NIL (|has| |#2| (-368))))) +(((-823 |#1| |#2| |#3|) (-13 (-111 $ $) (-235) (-496 |#2|) (-10 -7 (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|))) (-1109) (-907 |#1|) |#1|) (T -823)) +NIL +(-13 (-111 $ $) (-235) (-496 |#2|) (-10 -7 (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-2793 (((-777) $) NIL)) (-2676 ((|#1| $) 10)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-4202 (((-777) $) 11)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-2994 (($ |#1| (-777)) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3519 (($ $) NIL) (($ $ (-777)) NIL)) (-3798 (((-868) $) NIL) (($ |#1|) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-824 |#1|) (-269 |#1|) (-856)) (T -824)) +NIL +(-269 |#1|) +((-2419 (((-112) $ $) NIL)) (-3107 (((-650 |#1|) $) 38)) (-3475 (((-777) $) NIL)) (-3734 (($) NIL T CONST)) (-2276 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-3527 (($ $) 42)) (-2229 (((-3 $ "failed") $) NIL)) (-2952 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2481 (((-112) $) NIL)) (-4308 ((|#1| $ (-570)) NIL)) (-1598 (((-777) $ (-570)) NIL)) (-1660 (($ $) 54)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-3213 (($ (-1 |#1| |#1|) $) NIL)) (-1432 (($ (-1 (-777) (-777)) $) NIL)) (-2223 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3682 (((-112) $ $) 51)) (-3847 (((-777) $) 34)) (-4122 (((-1168) $) NIL)) (-2556 (($ $ $) NIL)) (-1980 (($ $ $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 ((|#1| $) 41)) (-1629 (((-650 (-2 (|:| |gen| |#1|) (|:| -4390 (-777)))) $) NIL)) (-1854 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2399 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3798 (((-868) $) NIL) (($ |#1|) NIL)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 20 T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 53)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ |#1| (-777)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-825 |#1|) (-13 (-391 |#1|) (-852) (-10 -8 (-15 -3515 (|#1| $)) (-15 -3527 ($ $)) (-15 -1660 ($ $)) (-15 -3682 ((-112) $ $)) (-15 -2223 ((-3 $ "failed") $ |#1|)) (-15 -2276 ((-3 $ "failed") $ |#1|)) (-15 -2399 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3847 ((-777) $)) (-15 -3107 ((-650 |#1|) $)))) (-856)) (T -825)) +((-3515 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-3527 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-3682 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825 *3)) (-4 *3 (-856)))) (-2223 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-2276 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) (-2399 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-825 *3)) (|:| |rm| (-825 *3)))) (-5 *1 (-825 *3)) (-4 *3 (-856)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-825 *3)) (-4 *3 (-856)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-825 *3)) (-4 *3 (-856))))) +(-13 (-391 |#1|) (-852) (-10 -8 (-15 -3515 (|#1| $)) (-15 -3527 ($ $)) (-15 -1660 ($ $)) (-15 -3682 ((-112) $ $)) (-15 -2223 ((-3 $ "failed") $ |#1|)) (-15 -2276 ((-3 $ "failed") $ |#1|)) (-15 -2399 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3847 ((-777) $)) (-15 -3107 ((-650 |#1|) $)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-2579 (((-570) $) 59)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2135 (((-112) $) 57)) (-2481 (((-112) $) 35)) (-3367 (((-112) $) 58)) (-3382 (($ $ $) 56)) (-2876 (($ $ $) 55)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ $) 48)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-2216 (($ $) 60)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 53)) (-2959 (((-112) $ $) 52)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 54)) (-2948 (((-112) $ $) 51)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-826) (-141)) (T -826)) +NIL +(-13 (-562) (-854)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2703 (($ (-1129)) 7)) (-2226 (((-112) $ (-1168) (-1129)) 15)) (-2960 (((-828) $) 12)) (-3841 (((-828) $) 11)) (-2734 (((-1281) $) 9)) (-1730 (((-112) $ (-1129)) 16))) +(((-827) (-10 -8 (-15 -2703 ($ (-1129))) (-15 -2734 ((-1281) $)) (-15 -3841 ((-828) $)) (-15 -2960 ((-828) $)) (-15 -2226 ((-112) $ (-1168) (-1129))) (-15 -1730 ((-112) $ (-1129))))) (T -827)) +((-1730 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-827)))) (-2226 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-1129)) (-5 *2 (-112)) (-5 *1 (-827)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-827)))) (-2703 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-827))))) +(-10 -8 (-15 -2703 ($ (-1129))) (-15 -2734 ((-1281) $)) (-15 -3841 ((-828) $)) (-15 -2960 ((-828) $)) (-15 -2226 ((-112) $ (-1168) (-1129))) (-15 -1730 ((-112) $ (-1129)))) +((-3435 (((-1281) $ (-829)) 12)) (-3191 (((-1281) $ (-1186)) 32)) (-4043 (((-1281) $ (-1168) (-1168)) 34)) (-2258 (((-1281) $ (-1168)) 33)) (-2192 (((-1281) $) 19)) (-3703 (((-1281) $ (-570)) 28)) (-2363 (((-1281) $ (-227)) 30)) (-4178 (((-1281) $) 18)) (-4368 (((-1281) $) 26)) (-1767 (((-1281) $) 25)) (-2644 (((-1281) $) 23)) (-4351 (((-1281) $) 24)) (-2107 (((-1281) $) 22)) (-1928 (((-1281) $) 21)) (-1576 (((-1281) $) 20)) (-3697 (((-1281) $) 16)) (-4336 (((-1281) $) 17)) (-2577 (((-1281) $) 15)) (-2778 (((-1281) $) 14)) (-3278 (((-1281) $) 13)) (-4204 (($ (-1168) (-829)) 9)) (-2263 (($ (-1168) (-1168) (-829)) 8)) (-3426 (((-1186) $) 51)) (-2257 (((-1186) $) 55)) (-1862 (((-2 (|:| |cd| (-1168)) (|:| -3574 (-1168))) $) 54)) (-3300 (((-1168) $) 52)) (-3585 (((-1281) $) 41)) (-4189 (((-570) $) 49)) (-4102 (((-227) $) 50)) (-3867 (((-1281) $) 40)) (-2373 (((-1281) $) 48)) (-2700 (((-1281) $) 47)) (-1890 (((-1281) $) 45)) (-1831 (((-1281) $) 46)) (-1543 (((-1281) $) 44)) (-3332 (((-1281) $) 43)) (-3285 (((-1281) $) 42)) (-2287 (((-1281) $) 38)) (-4277 (((-1281) $) 39)) (-4326 (((-1281) $) 37)) (-2741 (((-1281) $) 36)) (-1662 (((-1281) $) 35)) (-3237 (((-1281) $) 11))) +(((-828) (-10 -8 (-15 -2263 ($ (-1168) (-1168) (-829))) (-15 -4204 ($ (-1168) (-829))) (-15 -3237 ((-1281) $)) (-15 -3435 ((-1281) $ (-829))) (-15 -3278 ((-1281) $)) (-15 -2778 ((-1281) $)) (-15 -2577 ((-1281) $)) (-15 -3697 ((-1281) $)) (-15 -4336 ((-1281) $)) (-15 -4178 ((-1281) $)) (-15 -2192 ((-1281) $)) (-15 -1576 ((-1281) $)) (-15 -1928 ((-1281) $)) (-15 -2107 ((-1281) $)) (-15 -2644 ((-1281) $)) (-15 -4351 ((-1281) $)) (-15 -1767 ((-1281) $)) (-15 -4368 ((-1281) $)) (-15 -3703 ((-1281) $ (-570))) (-15 -2363 ((-1281) $ (-227))) (-15 -3191 ((-1281) $ (-1186))) (-15 -2258 ((-1281) $ (-1168))) (-15 -4043 ((-1281) $ (-1168) (-1168))) (-15 -1662 ((-1281) $)) (-15 -2741 ((-1281) $)) (-15 -4326 ((-1281) $)) (-15 -2287 ((-1281) $)) (-15 -4277 ((-1281) $)) (-15 -3867 ((-1281) $)) (-15 -3585 ((-1281) $)) (-15 -3285 ((-1281) $)) (-15 -3332 ((-1281) $)) (-15 -1543 ((-1281) $)) (-15 -1890 ((-1281) $)) (-15 -1831 ((-1281) $)) (-15 -2700 ((-1281) $)) (-15 -2373 ((-1281) $)) (-15 -4189 ((-570) $)) (-15 -4102 ((-227) $)) (-15 -3426 ((-1186) $)) (-15 -3300 ((-1168) $)) (-15 -1862 ((-2 (|:| |cd| (-1168)) (|:| -3574 (-1168))) $)) (-15 -2257 ((-1186) $)))) (T -828)) +((-2257 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1168)) (|:| -3574 (-1168)))) (-5 *1 (-828)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-828)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-828)))) (-4189 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-828)))) (-2373 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3332 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1662 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4043 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-828)))) (-2258 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-828)))) (-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-828)))) (-2363 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1281)) (-5 *1 (-828)))) (-3703 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-828)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1767 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4351 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3697 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-3435 (*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1281)) (-5 *1 (-828)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828)))) (-4204 (*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828)))) (-2263 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828))))) +(-10 -8 (-15 -2263 ($ (-1168) (-1168) (-829))) (-15 -4204 ($ (-1168) (-829))) (-15 -3237 ((-1281) $)) (-15 -3435 ((-1281) $ (-829))) (-15 -3278 ((-1281) $)) (-15 -2778 ((-1281) $)) (-15 -2577 ((-1281) $)) (-15 -3697 ((-1281) $)) (-15 -4336 ((-1281) $)) (-15 -4178 ((-1281) $)) (-15 -2192 ((-1281) $)) (-15 -1576 ((-1281) $)) (-15 -1928 ((-1281) $)) (-15 -2107 ((-1281) $)) (-15 -2644 ((-1281) $)) (-15 -4351 ((-1281) $)) (-15 -1767 ((-1281) $)) (-15 -4368 ((-1281) $)) (-15 -3703 ((-1281) $ (-570))) (-15 -2363 ((-1281) $ (-227))) (-15 -3191 ((-1281) $ (-1186))) (-15 -2258 ((-1281) $ (-1168))) (-15 -4043 ((-1281) $ (-1168) (-1168))) (-15 -1662 ((-1281) $)) (-15 -2741 ((-1281) $)) (-15 -4326 ((-1281) $)) (-15 -2287 ((-1281) $)) (-15 -4277 ((-1281) $)) (-15 -3867 ((-1281) $)) (-15 -3585 ((-1281) $)) (-15 -3285 ((-1281) $)) (-15 -3332 ((-1281) $)) (-15 -1543 ((-1281) $)) (-15 -1890 ((-1281) $)) (-15 -1831 ((-1281) $)) (-15 -2700 ((-1281) $)) (-15 -2373 ((-1281) $)) (-15 -4189 ((-570) $)) (-15 -4102 ((-227) $)) (-15 -3426 ((-1186) $)) (-15 -3300 ((-1168) $)) (-15 -1862 ((-2 (|:| |cd| (-1168)) (|:| -3574 (-1168))) $)) (-15 -2257 ((-1186) $))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 13)) (-1319 (((-112) $ $) NIL)) (-4113 (($) 16)) (-1472 (($) 14)) (-1628 (($) 17)) (-1420 (($) 15)) (-2923 (((-112) $ $) 9))) +(((-829) (-13 (-1109) (-10 -8 (-15 -1472 ($)) (-15 -4113 ($)) (-15 -1628 ($)) (-15 -1420 ($))))) (T -829)) +((-1472 (*1 *1) (-5 *1 (-829))) (-4113 (*1 *1) (-5 *1 (-829))) (-1628 (*1 *1) (-5 *1 (-829))) (-1420 (*1 *1) (-5 *1 (-829)))) +(-13 (-1109) (-10 -8 (-15 -1472 ($)) (-15 -4113 ($)) (-15 -1628 ($)) (-15 -1420 ($)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 23) (($ (-1186)) 19)) (-1319 (((-112) $ $) NIL)) (-3885 (((-112) $) 10)) (-2285 (((-112) $) 9)) (-1961 (((-112) $) 11)) (-3361 (((-112) $) 8)) (-2923 (((-112) $ $) 21))) +(((-830) (-13 (-1109) (-10 -8 (-15 -3798 ($ (-1186))) (-15 -3361 ((-112) $)) (-15 -2285 ((-112) $)) (-15 -3885 ((-112) $)) (-15 -1961 ((-112) $))))) (T -830)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-830)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830))))) +(-13 (-1109) (-10 -8 (-15 -3798 ($ (-1186))) (-15 -3361 ((-112) $)) (-15 -2285 ((-112) $)) (-15 -3885 ((-112) $)) (-15 -1961 ((-112) $)))) +((-2419 (((-112) $ $) NIL)) (-1963 (($ (-830) (-650 (-1186))) 32)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1372 (((-830) $) 33)) (-1602 (((-650 (-1186)) $) 34)) (-3798 (((-868) $) 31)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-831) (-13 (-1109) (-10 -8 (-15 -1372 ((-830) $)) (-15 -1602 ((-650 (-1186)) $)) (-15 -1963 ($ (-830) (-650 (-1186))))))) (T -831)) +((-1372 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-831)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-831)))) (-1963 (*1 *1 *2 *3) (-12 (-5 *2 (-830)) (-5 *3 (-650 (-1186))) (-5 *1 (-831))))) +(-13 (-1109) (-10 -8 (-15 -1372 ((-830) $)) (-15 -1602 ((-650 (-1186)) $)) (-15 -1963 ($ (-830) (-650 (-1186)))))) +((-1985 (((-1281) (-828) (-320 |#1|) (-112)) 23) (((-1281) (-828) (-320 |#1|)) 89) (((-1168) (-320 |#1|) (-112)) 88) (((-1168) (-320 |#1|)) 87))) +(((-832 |#1|) (-10 -7 (-15 -1985 ((-1168) (-320 |#1|))) (-15 -1985 ((-1168) (-320 |#1|) (-112))) (-15 -1985 ((-1281) (-828) (-320 |#1|))) (-15 -1985 ((-1281) (-828) (-320 |#1|) (-112)))) (-13 (-834) (-1058))) (T -832)) +((-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-828)) (-5 *4 (-320 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-834) (-1058))) (-5 *2 (-1281)) (-5 *1 (-832 *6)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-828)) (-5 *4 (-320 *5)) (-4 *5 (-13 (-834) (-1058))) (-5 *2 (-1281)) (-5 *1 (-832 *5)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-320 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-1058))) (-5 *2 (-1168)) (-5 *1 (-832 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-320 *4)) (-4 *4 (-13 (-834) (-1058))) (-5 *2 (-1168)) (-5 *1 (-832 *4))))) +(-10 -7 (-15 -1985 ((-1168) (-320 |#1|))) (-15 -1985 ((-1168) (-320 |#1|) (-112))) (-15 -1985 ((-1281) (-828) (-320 |#1|))) (-15 -1985 ((-1281) (-828) (-320 |#1|) (-112)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2033 ((|#1| $) 10)) (-3908 (($ |#1|) 9)) (-2481 (((-112) $) NIL)) (-3925 (($ |#2| (-777)) NIL)) (-2302 (((-777) $) NIL)) (-1860 ((|#2| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3519 (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-3324 (((-777) $) NIL)) (-3798 (((-868) $) 17) (($ (-570)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-3326 ((|#2| $ (-777)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $) NIL (|has| |#1| (-235)))) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-833 |#1| |#2|) (-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-235)) (-6 (-235)) |%noBranch|) (-15 -3908 ($ |#1|)) (-15 -2033 (|#1| $)))) (-714 |#2|) (-1058)) (T -833)) +((-3908 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-833 *2 *3)) (-4 *2 (-714 *3)))) (-2033 (*1 *2 *1) (-12 (-4 *2 (-714 *3)) (-5 *1 (-833 *2 *3)) (-4 *3 (-1058))))) +(-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-235)) (-6 (-235)) |%noBranch|) (-15 -3908 ($ |#1|)) (-15 -2033 (|#1| $)))) +((-1985 (((-1281) (-828) $ (-112)) 9) (((-1281) (-828) $) 8) (((-1168) $ (-112)) 7) (((-1168) $) 6))) +(((-834) (-141)) (T -834)) +((-1985 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *4 (-112)) (-5 *2 (-1281)))) (-1985 (*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *2 (-1281)))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-112)) (-5 *2 (-1168)))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-1168))))) +(-13 (-10 -8 (-15 -1985 ((-1168) $)) (-15 -1985 ((-1168) $ (-112))) (-15 -1985 ((-1281) (-828) $)) (-15 -1985 ((-1281) (-828) $ (-112))))) +((-2422 (((-316) (-1168) (-1168)) 12)) (-3516 (((-112) (-1168) (-1168)) 34)) (-1403 (((-112) (-1168)) 33)) (-3894 (((-52) (-1168)) 25)) (-3845 (((-52) (-1168)) 23)) (-2081 (((-52) (-828)) 17)) (-3782 (((-650 (-1168)) (-1168)) 28)) (-1967 (((-650 (-1168))) 27))) +(((-835) (-10 -7 (-15 -2081 ((-52) (-828))) (-15 -3845 ((-52) (-1168))) (-15 -3894 ((-52) (-1168))) (-15 -1967 ((-650 (-1168)))) (-15 -3782 ((-650 (-1168)) (-1168))) (-15 -1403 ((-112) (-1168))) (-15 -3516 ((-112) (-1168) (-1168))) (-15 -2422 ((-316) (-1168) (-1168))))) (T -835)) +((-2422 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-835)))) (-3516 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835)))) (-3782 (*1 *2 *3) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)) (-5 *3 (-1168)))) (-1967 (*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-52)) (-5 *1 (-835))))) +(-10 -7 (-15 -2081 ((-52) (-828))) (-15 -3845 ((-52) (-1168))) (-15 -3894 ((-52) (-1168))) (-15 -1967 ((-650 (-1168)))) (-15 -3782 ((-650 (-1168)) (-1168))) (-15 -1403 ((-112) (-1168))) (-15 -3516 ((-112) (-1168) (-1168))) (-15 -2422 ((-316) (-1168) (-1168)))) +((-2419 (((-112) $ $) 19)) (-3971 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3612 (($ $ $) 73)) (-2220 (((-112) $ $) 74)) (-3636 (((-112) $ (-777)) 8)) (-4259 (($ (-650 |#1|)) 69) (($) 68)) (-2660 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-3786 (($ $) 63)) (-3552 (($ $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ |#1| $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) 65)) (-3846 (((-112) $ (-777)) 9)) (-3382 ((|#1| $) 79)) (-3583 (($ $ $) 82)) (-2735 (($ $ $) 81)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2876 ((|#1| $) 80)) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22)) (-2842 (($ $ $) 70)) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41) (($ |#1| $ (-777)) 64)) (-3551 (((-1129) $) 21)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2718 (((-650 (-2 (|:| -2219 |#1|) (|:| -3562 (-777)))) $) 62)) (-2688 (($ $ |#1|) 72) (($ $ $) 71)) (-2709 (($) 50) (($ (-650 |#1|)) 49)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 51)) (-3798 (((-868) $) 18)) (-3871 (($ (-650 |#1|)) 67) (($) 66)) (-1319 (((-112) $ $) 23)) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20)) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-836 |#1|) (-141) (-856)) (T -836)) +((-3382 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-856))))) +(-13 (-742 |t#1|) (-977 |t#1|) (-10 -8 (-15 -3382 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-237 |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-701 |#1|) . T) ((-742 |#1|) . T) ((-977 |#1|) . T) ((-1107 |#1|) . T) ((-1109) . T) ((-1226) . T)) +((-3347 (((-1281) (-1129) (-1129)) 48)) (-1711 (((-1281) (-827) (-52)) 45)) (-3504 (((-52) (-827)) 16))) +(((-837) (-10 -7 (-15 -3504 ((-52) (-827))) (-15 -1711 ((-1281) (-827) (-52))) (-15 -3347 ((-1281) (-1129) (-1129))))) (T -837)) +((-3347 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1281)) (-5 *1 (-837)))) (-1711 (*1 *2 *3 *4) (-12 (-5 *3 (-827)) (-5 *4 (-52)) (-5 *2 (-1281)) (-5 *1 (-837)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-837))))) +(-10 -7 (-15 -3504 ((-52) (-827))) (-15 -1711 ((-1281) (-827) (-52))) (-15 -3347 ((-1281) (-1129) (-1129)))) +((-1347 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|)) 12) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 13))) +(((-838 |#1| |#2|) (-10 -7 (-15 -1347 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -1347 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|)))) (-1109) (-1109)) (T -838)) +((-1347 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-838 *5 *6)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))) +(-10 -7 (-15 -1347 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -1347 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL (|has| |#1| (-21)))) (-2620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2579 (((-570) $) NIL (|has| |#1| (-854)))) (-3734 (($) NIL (|has| |#1| (-21)) CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 15)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 9)) (-2229 (((-3 $ "failed") $) 42 (|has| |#1| (-854)))) (-3369 (((-3 (-413 (-570)) "failed") $) 52 (|has| |#1| (-551)))) (-3108 (((-112) $) 46 (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) 49 (|has| |#1| (-551)))) (-2135 (((-112) $) NIL (|has| |#1| (-854)))) (-2481 (((-112) $) NIL (|has| |#1| (-854)))) (-3367 (((-112) $) NIL (|has| |#1| (-854)))) (-3382 (($ $ $) NIL (|has| |#1| (-854)))) (-2876 (($ $ $) NIL (|has| |#1| (-854)))) (-4122 (((-1168) $) NIL)) (-1322 (($) 13)) (-3255 (((-112) $) 12)) (-3551 (((-1129) $) NIL)) (-1530 (((-112) $) 11)) (-3798 (((-868) $) 18) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 8) (($ (-570)) NIL (-2779 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))))) (-2862 (((-777)) 36 (|has| |#1| (-854)) CONST)) (-1319 (((-112) $ $) 54)) (-2216 (($ $) NIL (|has| |#1| (-854)))) (-1809 (($) 23 (|has| |#1| (-21)) CONST)) (-1817 (($) 33 (|has| |#1| (-854)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2923 (((-112) $ $) 21)) (-2969 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2948 (((-112) $ $) 45 (|has| |#1| (-854)))) (-3026 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3014 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-928)) NIL (|has| |#1| (-854))) (($ $ (-777)) NIL (|has| |#1| (-854)))) (* (($ $ $) 39 (|has| |#1| (-854))) (($ (-570) $) 27 (|has| |#1| (-21))) (($ (-777) $) NIL (|has| |#1| (-21))) (($ (-928) $) NIL (|has| |#1| (-21))))) +(((-839 |#1|) (-13 (-1109) (-417 |#1|) (-10 -8 (-15 -1322 ($)) (-15 -1530 ((-112) $)) (-15 -3255 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) (-1109)) (T -839)) +((-1322 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1109)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-3369 (*1 *2 *1) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109))))) +(-13 (-1109) (-417 |#1|) (-10 -8 (-15 -1322 ($)) (-15 -1530 ((-112) $)) (-15 -3255 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) +((-3257 (((-112) $ |#2|) 14)) (-3798 (((-868) $) 11))) +(((-840 |#1| |#2|) (-10 -8 (-15 -3257 ((-112) |#1| |#2|)) (-15 -3798 ((-868) |#1|))) (-841 |#2|) (-1109)) (T -840)) +NIL +(-10 -8 (-15 -3257 ((-112) |#1| |#2|)) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-3574 ((|#1| $) 16)) (-4122 (((-1168) $) 10)) (-3257 (((-112) $ |#1|) 14)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3385 (((-55) $) 15)) (-2923 (((-112) $ $) 6))) +(((-841 |#1|) (-141) (-1109)) (T -841)) +((-3574 (*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1109)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-55)))) (-3257 (*1 *2 *1 *3) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(-13 (-1109) (-10 -8 (-15 -3574 (|t#1| $)) (-15 -3385 ((-55) $)) (-15 -3257 ((-112) $ |t#1|)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-3152 ((|#1| $) NIL) (((-115) $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1659 ((|#1| (-115) |#1|) NIL)) (-2481 (((-112) $) NIL)) (-2021 (($ |#1| (-366 (-115))) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2274 (($ $ (-1 |#1| |#1|)) NIL)) (-1926 (($ $ (-1 |#1| |#1|)) NIL)) (-1872 ((|#1| $ |#1|) NIL)) (-3436 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3323 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ (-115) (-570)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-842 |#1|) (-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3323 ($ $)) (-15 -3323 ($ $ $)) (-15 -3436 (|#1| |#1|))) |%noBranch|) (-15 -1926 ($ $ (-1 |#1| |#1|))) (-15 -2274 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -1659 (|#1| (-115) |#1|)) (-15 -2021 ($ |#1| (-366 (-115)))))) (-1058)) (T -842)) +((-3323 (*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) (-3323 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) (-3436 (*1 *2 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) (-1926 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-5 *1 (-842 *4)) (-4 *4 (-1058)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-842 *3)) (-4 *3 (-1058)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-842 *2)) (-4 *2 (-1058)))) (-2021 (*1 *1 *2 *3) (-12 (-5 *3 (-366 (-115))) (-5 *1 (-842 *2)) (-4 *2 (-1058))))) +(-13 (-1058) (-1047 |#1|) (-1047 (-115)) (-290 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3323 ($ $)) (-15 -3323 ($ $ $)) (-15 -3436 (|#1| |#1|))) |%noBranch|) (-15 -1926 ($ $ (-1 |#1| |#1|))) (-15 -2274 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-570))) (-15 ** ($ $ (-570))) (-15 -1659 (|#1| (-115) |#1|)) (-15 -2021 ($ |#1| (-366 (-115)))))) +((-2920 (((-216 (-508)) (-1168)) 9))) +(((-843) (-10 -7 (-15 -2920 ((-216 (-508)) (-1168))))) (T -843)) +((-2920 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-216 (-508))) (-5 *1 (-843))))) +(-10 -7 (-15 -2920 ((-216 (-508)) (-1168)))) +((-2419 (((-112) $ $) NIL)) (-4332 (((-1127) $) 10)) (-3574 (((-512) $) 9)) (-4122 (((-1168) $) NIL)) (-3257 (((-112) $ (-512)) NIL)) (-3551 (((-1129) $) NIL)) (-3811 (($ (-512) (-1127)) 8)) (-3798 (((-868) $) 25)) (-1319 (((-112) $ $) NIL)) (-3385 (((-55) $) 20)) (-2923 (((-112) $ $) 12))) +(((-844) (-13 (-841 (-512)) (-10 -8 (-15 -4332 ((-1127) $)) (-15 -3811 ($ (-512) (-1127)))))) (T -844)) +((-4332 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-844)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-844))))) +(-13 (-841 (-512)) (-10 -8 (-15 -4332 ((-1127) $)) (-15 -3811 ($ (-512) (-1127))))) +((-2419 (((-112) $ $) 7)) (-1553 (((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 15) (((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 14)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 17) (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 16)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-845) (-141)) (T -845)) +((-1643 (*1 *2 *3 *4) (-12 (-4 *1 (-845)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) (-1643 (*1 *2 *3 *4) (-12 (-4 *1 (-845)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) (-1553 (*1 *2 *3) (-12 (-4 *1 (-845)) (-5 *3 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) (-5 *2 (-1044)))) (-1553 (*1 *2 *3) (-12 (-4 *1 (-845)) (-5 *3 (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *2 (-1044))))) +(-13 (-1109) (-10 -7 (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -1553 ((-1044) (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -1553 ((-1044) (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2909 (((-1044) (-650 (-320 (-384))) (-650 (-384))) 169) (((-1044) (-320 (-384)) (-650 (-384))) 167) (((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-849 (-384)))) 165) (((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-320 (-384))) (-650 (-849 (-384)))) 163) (((-1044) (-847)) 128) (((-1044) (-847) (-1072)) 127)) (-1643 (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847) (-1072)) 88) (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847)) 90)) (-3752 (((-1044) (-650 (-320 (-384))) (-650 (-384))) 170) (((-1044) (-847)) 153))) +(((-846) (-10 -7 (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847) (-1072))) (-15 -2909 ((-1044) (-847) (-1072))) (-15 -2909 ((-1044) (-847))) (-15 -3752 ((-1044) (-847))) (-15 -2909 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-320 (-384))) (-650 (-849 (-384))))) (-15 -2909 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-849 (-384))))) (-15 -2909 ((-1044) (-320 (-384)) (-650 (-384)))) (-15 -2909 ((-1044) (-650 (-320 (-384))) (-650 (-384)))) (-15 -3752 ((-1044) (-650 (-320 (-384))) (-650 (-384)))))) (T -846)) +((-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2909 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) (-5 *5 (-650 (-849 (-384)))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2909 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-650 (-384))) (-5 *5 (-650 (-849 (-384)))) (-5 *6 (-650 (-320 (-384)))) (-5 *3 (-320 (-384))) (-5 *2 (-1044)) (-5 *1 (-846)))) (-3752 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846)))) (-2909 (*1 *2 *3 *4) (-12 (-5 *3 (-847)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-846)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-847)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-846)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-846))))) +(-10 -7 (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-847) (-1072))) (-15 -2909 ((-1044) (-847) (-1072))) (-15 -2909 ((-1044) (-847))) (-15 -3752 ((-1044) (-847))) (-15 -2909 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-320 (-384))) (-650 (-849 (-384))))) (-15 -2909 ((-1044) (-320 (-384)) (-650 (-384)) (-650 (-849 (-384))) (-650 (-849 (-384))))) (-15 -2909 ((-1044) (-320 (-384)) (-650 (-384)))) (-15 -2909 ((-1044) (-650 (-320 (-384))) (-650 (-384)))) (-15 -3752 ((-1044) (-650 (-320 (-384))) (-650 (-384))))) +((-2419 (((-112) $ $) NIL)) (-3152 (((-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) $) 21)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 20) (($ (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) 14) (($ (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))))) 18)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-847) (-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -3798 ($ (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -3798 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))))) (-15 -3152 ((-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) $))))) (T -847)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (-5 *1 (-847)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) (-5 *1 (-847)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))))) (-5 *1 (-847)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))))) (-5 *1 (-847))))) +(-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227))))))) (-15 -3798 ($ (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) (-15 -3798 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))))) (-15 -3152 ((-3 (|:| |noa| (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227)))))) $)))) +((-1347 (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|) (-849 |#2|)) 13) (((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|)) 14))) +(((-848 |#1| |#2|) (-10 -7 (-15 -1347 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -1347 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|) (-849 |#2|)))) (-1109) (-1109)) (T -848)) +((-1347 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-848 *5 *6)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6))))) +(-10 -7 (-15 -1347 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|))) (-15 -1347 ((-849 |#2|) (-1 |#2| |#1|) (-849 |#1|) (-849 |#2|) (-849 |#2|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL (|has| |#1| (-21)))) (-3956 (((-1129) $) 31)) (-2620 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2579 (((-570) $) NIL (|has| |#1| (-854)))) (-3734 (($) NIL (|has| |#1| (-21)) CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 18)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 9)) (-2229 (((-3 $ "failed") $) 58 (|has| |#1| (-854)))) (-3369 (((-3 (-413 (-570)) "failed") $) 65 (|has| |#1| (-551)))) (-3108 (((-112) $) 60 (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) 63 (|has| |#1| (-551)))) (-2135 (((-112) $) NIL (|has| |#1| (-854)))) (-1977 (($) 14)) (-2481 (((-112) $) NIL (|has| |#1| (-854)))) (-3367 (((-112) $) NIL (|has| |#1| (-854)))) (-1987 (($) 16)) (-3382 (($ $ $) NIL (|has| |#1| (-854)))) (-2876 (($ $ $) NIL (|has| |#1| (-854)))) (-4122 (((-1168) $) NIL)) (-3255 (((-112) $) 12)) (-3551 (((-1129) $) NIL)) (-1530 (((-112) $) 11)) (-3798 (((-868) $) 24) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 8) (($ (-570)) NIL (-2779 (|has| |#1| (-854)) (|has| |#1| (-1047 (-570)))))) (-2862 (((-777)) 51 (|has| |#1| (-854)) CONST)) (-1319 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| |#1| (-854)))) (-1809 (($) 37 (|has| |#1| (-21)) CONST)) (-1817 (($) 48 (|has| |#1| (-854)) CONST)) (-2981 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2923 (((-112) $ $) 35)) (-2969 (((-112) $ $) NIL (|has| |#1| (-854)))) (-2948 (((-112) $ $) 59 (|has| |#1| (-854)))) (-3026 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3014 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-928)) NIL (|has| |#1| (-854))) (($ $ (-777)) NIL (|has| |#1| (-854)))) (* (($ $ $) 55 (|has| |#1| (-854))) (($ (-570) $) 42 (|has| |#1| (-21))) (($ (-777) $) NIL (|has| |#1| (-21))) (($ (-928) $) NIL (|has| |#1| (-21))))) +(((-849 |#1|) (-13 (-1109) (-417 |#1|) (-10 -8 (-15 -1977 ($)) (-15 -1987 ($)) (-15 -1530 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -3956 ((-1129) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) (-1109)) (T -849)) +((-1977 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109)))) (-1987 (*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109)))) (-1530 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))) (-3255 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-849 *3)) (-4 *3 (-1109)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) (-3369 (*1 *2 *1) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109))))) +(-13 (-1109) (-417 |#1|) (-10 -8 (-15 -1977 ($)) (-15 -1987 ($)) (-15 -1530 ((-112) $)) (-15 -3255 ((-112) $)) (-15 -3956 ((-1129) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-854)) |%noBranch|) (IF (|has| |#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) +((-2419 (((-112) $ $) 7)) (-3475 (((-777)) 23)) (-3408 (($) 26)) (-3382 (($ $ $) 14) (($) 22 T CONST)) (-2876 (($ $ $) 15) (($) 21 T CONST)) (-2484 (((-928) $) 25)) (-4122 (((-1168) $) 10)) (-2155 (($ (-928)) 24)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19))) +(((-850) (-141)) (T -850)) +((-3382 (*1 *1) (-4 *1 (-850))) (-2876 (*1 *1) (-4 *1 (-850)))) +(-13 (-856) (-373) (-10 -8 (-15 -3382 ($) -3711) (-15 -2876 ($) -3711))) +(((-102) . T) ((-619 (-868)) . T) ((-373) . T) ((-856) . T) ((-1109) . T)) +((-3854 (((-112) (-1276 |#2|) (-1276 |#2|)) 23)) (-3864 (((-112) (-1276 |#2|) (-1276 |#2|)) 24)) (-3765 (((-112) (-1276 |#2|) (-1276 |#2|)) 20))) +(((-851 |#1| |#2|) (-10 -7 (-15 -3765 ((-112) (-1276 |#2|) (-1276 |#2|))) (-15 -3854 ((-112) (-1276 |#2|) (-1276 |#2|))) (-15 -3864 ((-112) (-1276 |#2|) (-1276 |#2|)))) (-777) (-798)) (T -851)) +((-3864 (*1 *2 *3 *3) (-12 (-5 *3 (-1276 *5)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))) (-3854 (*1 *2 *3 *3) (-12 (-5 *3 (-1276 *5)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-851 *4 *5)) (-14 *4 (-777)))) (-3765 (*1 *2 *3 *3) (-12 (-5 *3 (-1276 *5)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-851 *4 *5)) (-14 *4 (-777))))) +(-10 -7 (-15 -3765 ((-112) (-1276 |#2|) (-1276 |#2|))) (-15 -3854 ((-112) (-1276 |#2|) (-1276 |#2|))) (-15 -3864 ((-112) (-1276 |#2|) (-1276 |#2|)))) +((-2419 (((-112) $ $) 7)) (-3734 (($) 24 T CONST)) (-2229 (((-3 $ "failed") $) 27)) (-2481 (((-112) $) 25)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1817 (($) 23 T CONST)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (** (($ $ (-928)) 22) (($ $ (-777)) 26)) (* (($ $ $) 21))) +(((-852) (-141)) (T -852)) +NIL +(-13 (-863) (-732)) +(((-102) . T) ((-619 (-868)) . T) ((-732) . T) ((-863) . T) ((-856) . T) ((-1121) . T) ((-1109) . T)) +((-2579 (((-570) $) 21)) (-2135 (((-112) $) 10)) (-3367 (((-112) $) 12)) (-2216 (($ $) 23))) +(((-853 |#1|) (-10 -8 (-15 -2216 (|#1| |#1|)) (-15 -2579 ((-570) |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -2135 ((-112) |#1|))) (-854)) (T -853)) +NIL +(-10 -8 (-15 -2216 (|#1| |#1|)) (-15 -2579 ((-570) |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -2135 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 25)) (-2620 (((-3 $ "failed") $ $) 27)) (-2579 (((-570) $) 37)) (-3734 (($) 24 T CONST)) (-2229 (((-3 $ "failed") $) 42)) (-2135 (((-112) $) 39)) (-2481 (((-112) $) 44)) (-3367 (((-112) $) 38)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 46)) (-2862 (((-777)) 47 T CONST)) (-1319 (((-112) $ $) 9)) (-2216 (($ $) 36)) (-1809 (($) 23 T CONST)) (-1817 (($) 45 T CONST)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (-3026 (($ $ $) 31) (($ $) 30)) (-3014 (($ $ $) 21)) (** (($ $ (-777)) 43) (($ $ (-928)) 40)) (* (($ (-928) $) 22) (($ (-777) $) 26) (($ (-570) $) 29) (($ $ $) 41))) +(((-854) (-141)) (T -854)) +((-2135 (*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112)))) (-2579 (*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-570)))) (-2216 (*1 *1 *1) (-4 *1 (-854)))) +(-13 (-797) (-1058) (-732) (-10 -8 (-15 -2135 ((-112) $)) (-15 -3367 ((-112) $)) (-15 -2579 ((-570) $)) (-15 -2216 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-856) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3382 (($ $ $) 12)) (-2876 (($ $ $) 11)) (-1319 (((-112) $ $) 9)) (-2981 (((-112) $ $) 15)) (-2959 (((-112) $ $) 13)) (-2969 (((-112) $ $) 16))) +(((-855 |#1|) (-10 -8 (-15 -3382 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2959 ((-112) |#1| |#1|)) (-15 -1319 ((-112) |#1| |#1|))) (-856)) (T -855)) +NIL +(-10 -8 (-15 -3382 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|)) (-15 -2969 ((-112) |#1| |#1|)) (-15 -2981 ((-112) |#1| |#1|)) (-15 -2959 ((-112) |#1| |#1|)) (-15 -1319 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19))) +(((-856) (-141)) (T -856)) +((-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-2959 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-2981 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-2969 (*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) (-2876 (*1 *1 *1 *1) (-4 *1 (-856))) (-3382 (*1 *1 *1 *1) (-4 *1 (-856)))) +(-13 (-1109) (-10 -8 (-15 -2948 ((-112) $ $)) (-15 -2959 ((-112) $ $)) (-15 -2981 ((-112) $ $)) (-15 -2969 ((-112) $ $)) (-15 -2876 ($ $ $)) (-15 -3382 ($ $ $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-3039 (($ $ $) 49)) (-1821 (($ $ $) 48)) (-3575 (($ $ $) 46)) (-3125 (($ $ $) 55)) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 50)) (-2322 (((-3 $ "failed") $ $) 53)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1908 (($ $) 39)) (-3498 (($ $ $) 43)) (-2955 (($ $ $) 42)) (-2913 (($ $ $) 51)) (-3773 (($ $ $) 57)) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 45)) (-2371 (((-3 $ "failed") $ $) 52)) (-2410 (((-3 $ "failed") $ |#2|) 32)) (-1427 ((|#2| $) 36)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ |#2|) 13)) (-2479 (((-650 |#2|) $) 21)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-857 |#1| |#2|) (-10 -8 (-15 -2913 (|#1| |#1| |#1|)) (-15 -2996 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -3125 (|#1| |#1| |#1|)) (-15 -2322 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -1821 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -3592 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2479 ((-650 |#2|) |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3798 ((-868) |#1|))) (-858 |#2|) (-1058)) (T -857)) +NIL +(-10 -8 (-15 -2913 (|#1| |#1| |#1|)) (-15 -2996 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -3125 (|#1| |#1| |#1|)) (-15 -2322 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -1821 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -3592 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2335 |#1|)) |#1| |#1|)) (-15 -3773 (|#1| |#1| |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -2955 (|#1| |#1| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -2410 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2479 ((-650 |#2|) |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-3039 (($ $ $) 50 (|has| |#1| (-368)))) (-1821 (($ $ $) 51 (|has| |#1| (-368)))) (-3575 (($ $ $) 53 (|has| |#1| (-368)))) (-3125 (($ $ $) 48 (|has| |#1| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 47 (|has| |#1| (-368)))) (-2322 (((-3 $ "failed") $ $) 49 (|has| |#1| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 52 (|has| |#1| (-368)))) (-4382 (((-3 (-570) "failed") $) 80 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 77 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 74)) (-3152 (((-570) $) 79 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 76 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 75)) (-1885 (($ $) 69)) (-2229 (((-3 $ "failed") $) 37)) (-1908 (($ $) 60 (|has| |#1| (-458)))) (-2481 (((-112) $) 35)) (-3925 (($ |#1| (-777)) 67)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 62 (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63 (|has| |#1| (-562)))) (-2302 (((-777) $) 71)) (-3498 (($ $ $) 57 (|has| |#1| (-368)))) (-2955 (($ $ $) 58 (|has| |#1| (-368)))) (-2913 (($ $ $) 46 (|has| |#1| (-368)))) (-3773 (($ $ $) 55 (|has| |#1| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 54 (|has| |#1| (-368)))) (-2371 (((-3 $ "failed") $ $) 56 (|has| |#1| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 59 (|has| |#1| (-368)))) (-1860 ((|#1| $) 70)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-562)))) (-3324 (((-777) $) 72)) (-1427 ((|#1| $) 61 (|has| |#1| (-458)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 78 (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) 73)) (-2479 (((-650 |#1|) $) 66)) (-3326 ((|#1| $ (-777)) 68)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3453 ((|#1| $ |#1| |#1|) 65)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(((-858 |#1|) (-141) (-1058)) (T -858)) +((-3324 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-1885 (*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-3925 (*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-650 *3)))) (-3453 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) (-2410 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-2325 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) (-1471 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458)))) (-1908 (*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458)))) (-1909 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) (-2955 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3498 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2371 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3773 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3592 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) (-4 *1 (-858 *3)))) (-3575 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1696 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) (-1821 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3039 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2322 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-3125 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) (-4 *1 (-858 *3)))) (-2913 (*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(-13 (-1058) (-111 |t#1| |t#1|) (-417 |t#1|) (-10 -8 (-15 -3324 ((-777) $)) (-15 -2302 ((-777) $)) (-15 -1860 (|t#1| $)) (-15 -1885 ($ $)) (-15 -3326 (|t#1| $ (-777))) (-15 -3925 ($ |t#1| (-777))) (-15 -2479 ((-650 |t#1|) $)) (-15 -3453 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -2410 ((-3 $ "failed") $ |t#1|)) (-15 -2325 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -1471 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-15 -1427 (|t#1| $)) (-15 -1908 ($ $))) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-15 -1909 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -2955 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -2371 ((-3 $ "failed") $ $)) (-15 -3773 ($ $ $)) (-15 -3592 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $)) (-15 -3575 ($ $ $)) (-15 -1696 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -1821 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -2322 ((-3 $ "failed") $ $)) (-15 -3125 ($ $ $)) (-15 -2996 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $)) (-15 -2913 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 #0=(-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-417 |#1|) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1047 #0#) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3292 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-1696 (((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-368)))) (-1471 (((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-562)))) (-1909 (((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-368)))) (-3453 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-859 |#1| |#2|) (-10 -7 (-15 -3292 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3453 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-562)) (PROGN (-15 -2325 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1471 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -1909 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1696 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1058) (-858 |#1|)) (T -859)) +((-1696 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-1909 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-1471 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-2325 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) (-4 *3 (-858 *5)))) (-3453 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1058)) (-5 *1 (-859 *2 *3)) (-4 *3 (-858 *2)))) (-3292 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1058)) (-5 *1 (-859 *5 *2)) (-4 *2 (-858 *5))))) +(-10 -7 (-15 -3292 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3453 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-562)) (PROGN (-15 -2325 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1471 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -1909 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1696 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3039 (($ $ $) NIL (|has| |#1| (-368)))) (-1821 (($ $ $) NIL (|has| |#1| (-368)))) (-3575 (($ $ $) NIL (|has| |#1| (-368)))) (-3125 (($ $ $) NIL (|has| |#1| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 34 (|has| |#1| (-368)))) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458)))) (-3949 (((-868) $ (-868)) NIL)) (-2481 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) NIL)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 30 (|has| |#1| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 28 (|has| |#1| (-562)))) (-2302 (((-777) $) NIL)) (-3498 (($ $ $) NIL (|has| |#1| (-368)))) (-2955 (($ $ $) NIL (|has| |#1| (-368)))) (-2913 (($ $ $) NIL (|has| |#1| (-368)))) (-3773 (($ $ $) NIL (|has| |#1| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2371 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 32 (|has| |#1| (-368)))) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-3324 (((-777) $) NIL)) (-1427 ((|#1| $) NIL (|has| |#1| (-458)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-1047 (-413 (-570))))) (($ |#1|) NIL)) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3453 ((|#1| $ |#1| |#1|) 15)) (-1809 (($) NIL T CONST)) (-1817 (($) 23 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) 19) (($ $ (-777)) 24)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-860 |#1| |#2| |#3|) (-13 (-858 |#1|) (-10 -8 (-15 -3949 ((-868) $ (-868))))) (-1058) (-99 |#1|) (-1 |#1| |#1|)) (T -860)) +((-3949 (*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-858 |#1|) (-10 -8 (-15 -3949 ((-868) $ (-868))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3039 (($ $ $) NIL (|has| |#2| (-368)))) (-1821 (($ $ $) NIL (|has| |#2| (-368)))) (-3575 (($ $ $) NIL (|has| |#2| (-368)))) (-3125 (($ $ $) NIL (|has| |#2| (-368)))) (-2996 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-368)))) (-2322 (((-3 $ "failed") $ $) NIL (|has| |#2| (-368)))) (-1696 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-368)))) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#2| (-458)))) (-2481 (((-112) $) NIL)) (-3925 (($ |#2| (-777)) 17)) (-1471 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-562)))) (-2325 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-562)))) (-2302 (((-777) $) NIL)) (-3498 (($ $ $) NIL (|has| |#2| (-368)))) (-2955 (($ $ $) NIL (|has| |#2| (-368)))) (-2913 (($ $ $) NIL (|has| |#2| (-368)))) (-3773 (($ $ $) NIL (|has| |#2| (-368)))) (-3592 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-368)))) (-2371 (((-3 $ "failed") $ $) NIL (|has| |#2| (-368)))) (-1909 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-368)))) (-1860 ((|#2| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-3324 (((-777) $) NIL)) (-1427 ((|#2| $) NIL (|has| |#2| (-458)))) (-3798 (((-868) $) 24) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) NIL) (($ (-1272 |#1|)) 19)) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-777)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3453 ((|#2| $ |#2| |#2|) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) 13 T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-861 |#1| |#2| |#3| |#4|) (-13 (-858 |#2|) (-622 (-1272 |#1|))) (-1186) (-1058) (-99 |#2|) (-1 |#2| |#2|)) (T -861)) +NIL +(-13 (-858 |#2|) (-622 (-1272 |#1|))) +((-2637 ((|#1| (-777) |#1|) 48 (|has| |#1| (-38 (-413 (-570)))))) (-3461 ((|#1| (-777) (-777) |#1|) 39) ((|#1| (-777) |#1|) 27)) (-4144 ((|#1| (-777) |#1|) 43)) (-1785 ((|#1| (-777) |#1|) 41)) (-2096 ((|#1| (-777) |#1|) 40))) +(((-862 |#1|) (-10 -7 (-15 -2096 (|#1| (-777) |#1|)) (-15 -1785 (|#1| (-777) |#1|)) (-15 -4144 (|#1| (-777) |#1|)) (-15 -3461 (|#1| (-777) |#1|)) (-15 -3461 (|#1| (-777) (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -2637 (|#1| (-777) |#1|)) |%noBranch|)) (-174)) (T -862)) +((-2637 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-174)))) (-3461 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-3461 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-4144 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-1785 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) (-2096 (*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -2096 (|#1| (-777) |#1|)) (-15 -1785 (|#1| (-777) |#1|)) (-15 -4144 (|#1| (-777) |#1|)) (-15 -3461 (|#1| (-777) |#1|)) (-15 -3461 (|#1| (-777) (-777) |#1|)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -2637 (|#1| (-777) |#1|)) |%noBranch|)) +((-2419 (((-112) $ $) 7)) (-3382 (($ $ $) 14)) (-2876 (($ $ $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2981 (((-112) $ $) 17)) (-2959 (((-112) $ $) 18)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 16)) (-2948 (((-112) $ $) 19)) (** (($ $ (-928)) 22)) (* (($ $ $) 21))) +(((-863) (-141)) (T -863)) +NIL +(-13 (-856) (-1121)) +(((-102) . T) ((-619 (-868)) . T) ((-856) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-2190 (((-570) $) 14)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 20) (($ (-570)) 13)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 9)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 11))) +(((-864) (-13 (-856) (-10 -8 (-15 -3798 ($ (-570))) (-15 -2190 ((-570) $))))) (T -864)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-864)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-864))))) +(-13 (-856) (-10 -8 (-15 -3798 ($ (-570))) (-15 -2190 ((-570) $)))) +((-1816 (((-697 (-1234)) $ (-1234)) 15)) (-3927 (((-697 (-555)) $ (-555)) 12)) (-4024 (((-777) $ (-129)) 30))) +(((-865 |#1|) (-10 -8 (-15 -4024 ((-777) |#1| (-129))) (-15 -1816 ((-697 (-1234)) |#1| (-1234))) (-15 -3927 ((-697 (-555)) |#1| (-555)))) (-866)) (T -865)) +NIL +(-10 -8 (-15 -4024 ((-777) |#1| (-129))) (-15 -1816 ((-697 (-1234)) |#1| (-1234))) (-15 -3927 ((-697 (-555)) |#1| (-555)))) +((-1816 (((-697 (-1234)) $ (-1234)) 8)) (-3927 (((-697 (-555)) $ (-555)) 9)) (-4024 (((-777) $ (-129)) 7)) (-1678 (((-697 (-130)) $ (-130)) 10)) (-2514 (($ $) 6))) +(((-866) (-141)) (T -866)) +((-1678 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-697 (-130))) (-5 *3 (-130)))) (-3927 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-697 (-555))) (-5 *3 (-555)))) (-1816 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *2 (-697 (-1234))) (-5 *3 (-1234)))) (-4024 (*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *3 (-129)) (-5 *2 (-777))))) +(-13 (-175) (-10 -8 (-15 -1678 ((-697 (-130)) $ (-130))) (-15 -3927 ((-697 (-555)) $ (-555))) (-15 -1816 ((-697 (-1234)) $ (-1234))) (-15 -4024 ((-777) $ (-129))))) +(((-175) . T)) +((-1816 (((-697 (-1234)) $ (-1234)) NIL)) (-3927 (((-697 (-555)) $ (-555)) NIL)) (-4024 (((-777) $ (-129)) NIL)) (-1678 (((-697 (-130)) $ (-130)) 22)) (-2578 (($ (-394)) 12) (($ (-1168)) 14)) (-2046 (((-112) $) 19)) (-3798 (((-868) $) 26)) (-2514 (($ $) 23))) +(((-867) (-13 (-866) (-619 (-868)) (-10 -8 (-15 -2578 ($ (-394))) (-15 -2578 ($ (-1168))) (-15 -2046 ((-112) $))))) (T -867)) +((-2578 (*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-867)))) (-2578 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-867)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867))))) +(-13 (-866) (-619 (-868)) (-10 -8 (-15 -2578 ($ (-394))) (-15 -2578 ($ (-1168))) (-15 -2046 ((-112) $)))) +((-2419 (((-112) $ $) NIL) (($ $ $) 85)) (-2103 (($ $ $) 125)) (-3485 (((-570) $) 31) (((-570)) 36)) (-1495 (($ (-570)) 53)) (-3414 (($ $ $) 54) (($ (-650 $)) 84)) (-1527 (($ $ (-650 $)) 82)) (-4105 (((-570) $) 34)) (-3573 (($ $ $) 73)) (-3274 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-1519 (((-570) $) 33)) (-3209 (($ $ $) 72)) (-3391 (($ $) 114)) (-2339 (($ $ $) 129)) (-1878 (($ (-650 $)) 61)) (-3859 (($ $ (-650 $)) 79)) (-1749 (($ (-570) (-570)) 55)) (-4346 (($ $) 126) (($ $ $) 127)) (-4411 (($ $ (-570)) 43) (($ $) 46)) (-2372 (($ $ $) 97)) (-2050 (($ $ $) 132)) (-1813 (($ $) 115)) (-2380 (($ $ $) 98)) (-1566 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2932 (((-1281) $) 10)) (-3009 (($ $) 118) (($ $ (-777)) 122)) (-3731 (($ $ $) 75)) (-4161 (($ $ $) 74)) (-4315 (($ $ (-650 $)) 110)) (-2131 (($ $ $) 113)) (-3345 (($ (-650 $)) 59)) (-1594 (($ $) 70) (($ (-650 $)) 71)) (-1901 (($ $ $) 123)) (-2452 (($ $) 116)) (-1426 (($ $ $) 128)) (-3949 (($ (-570)) 21) (($ (-1186)) 23) (($ (-1168)) 30) (($ (-227)) 25)) (-1773 (($ $ $) 101)) (-1748 (($ $) 102)) (-3114 (((-1281) (-1168)) 15)) (-1796 (($ (-1168)) 14)) (-2433 (($ (-650 (-650 $))) 58)) (-4399 (($ $ (-570)) 42) (($ $) 45)) (-4122 (((-1168) $) NIL)) (-1506 (($ $ $) 131)) (-3807 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2598 (((-112) $) 108)) (-2971 (($ $ (-650 $)) 111) (($ $ $ $) 112)) (-3135 (($ (-570)) 39)) (-1428 (((-570) $) 32) (((-570)) 35)) (-2844 (($ $ $) 40) (($ (-650 $)) 83)) (-3551 (((-1129) $) NIL)) (-2410 (($ $ $) 99)) (-4359 (($) 13)) (-1872 (($ $ (-650 $)) 109)) (-2085 (((-1168) (-1168)) 8)) (-2331 (($ $) 117) (($ $ (-777)) 121)) (-2399 (($ $ $) 96)) (-3519 (($ $ (-777)) 139)) (-3959 (($ (-650 $)) 60)) (-3798 (((-868) $) 19)) (-2172 (($ $ (-570)) 41) (($ $) 44)) (-3193 (($ $) 68) (($ (-650 $)) 69)) (-3871 (($ $) 66) (($ (-650 $)) 67)) (-4215 (($ $) 124)) (-1704 (($ (-650 $)) 65)) (-3755 (($ $ $) 105)) (-1319 (((-112) $ $) NIL)) (-2162 (($ $ $) 130)) (-1760 (($ $ $) 100)) (-3648 (($ $ $) 103) (($ $) 104)) (-2981 (($ $ $) 89)) (-2959 (($ $ $) 87)) (-2923 (((-112) $ $) 16) (($ $ $) 17)) (-2969 (($ $ $) 88)) (-2948 (($ $ $) 86)) (-3037 (($ $ $) 94)) (-3026 (($ $ $) 91) (($ $) 92)) (-3014 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-868) (-13 (-1109) (-10 -8 (-15 -2932 ((-1281) $)) (-15 -1796 ($ (-1168))) (-15 -3114 ((-1281) (-1168))) (-15 -3949 ($ (-570))) (-15 -3949 ($ (-1186))) (-15 -3949 ($ (-1168))) (-15 -3949 ($ (-227))) (-15 -4359 ($)) (-15 -2085 ((-1168) (-1168))) (-15 -3485 ((-570) $)) (-15 -1428 ((-570) $)) (-15 -3485 ((-570))) (-15 -1428 ((-570))) (-15 -1519 ((-570) $)) (-15 -4105 ((-570) $)) (-15 -3135 ($ (-570))) (-15 -1495 ($ (-570))) (-15 -1749 ($ (-570) (-570))) (-15 -4399 ($ $ (-570))) (-15 -4411 ($ $ (-570))) (-15 -2172 ($ $ (-570))) (-15 -4399 ($ $)) (-15 -4411 ($ $)) (-15 -2172 ($ $)) (-15 -2844 ($ $ $)) (-15 -3414 ($ $ $)) (-15 -2844 ($ (-650 $))) (-15 -3414 ($ (-650 $))) (-15 -4315 ($ $ (-650 $))) (-15 -2971 ($ $ (-650 $))) (-15 -2971 ($ $ $ $)) (-15 -2131 ($ $ $)) (-15 -2598 ((-112) $)) (-15 -1872 ($ $ (-650 $))) (-15 -3391 ($ $)) (-15 -1506 ($ $ $)) (-15 -4215 ($ $)) (-15 -2433 ($ (-650 (-650 $)))) (-15 -2103 ($ $ $)) (-15 -4346 ($ $)) (-15 -4346 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2162 ($ $ $)) (-15 -2050 ($ $ $)) (-15 -3519 ($ $ (-777))) (-15 -3755 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -3573 ($ $ $)) (-15 -4161 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3859 ($ $ (-650 $))) (-15 -1527 ($ $ (-650 $))) (-15 -1813 ($ $)) (-15 -2331 ($ $)) (-15 -2331 ($ $ (-777))) (-15 -3009 ($ $)) (-15 -3009 ($ $ (-777))) (-15 -2452 ($ $)) (-15 -1901 ($ $ $)) (-15 -3274 ($ $)) (-15 -3274 ($ $ $)) (-15 -3274 ($ $ $ $)) (-15 -1566 ($ $)) (-15 -1566 ($ $ $)) (-15 -1566 ($ $ $ $)) (-15 -3807 ($ $)) (-15 -3807 ($ $ $)) (-15 -3807 ($ $ $ $)) (-15 -3871 ($ $)) (-15 -3871 ($ (-650 $))) (-15 -3193 ($ $)) (-15 -3193 ($ (-650 $))) (-15 -1594 ($ $)) (-15 -1594 ($ (-650 $))) (-15 -3345 ($ (-650 $))) (-15 -3959 ($ (-650 $))) (-15 -1878 ($ (-650 $))) (-15 -1704 ($ (-650 $))) (-15 -2923 ($ $ $)) (-15 -2419 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -2959 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -3026 ($ $)) (-15 * ($ $ $)) (-15 -3037 ($ $ $)) (-15 ** ($ $ $)) (-15 -2399 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -1760 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1748 ($ $)) (-15 -3648 ($ $ $)) (-15 -3648 ($ $))))) (T -868)) +((-2932 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-868)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-868)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-868)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-868)))) (-4359 (*1 *1) (-5 *1 (-868))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3485 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-1428 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-4105 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-3135 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-1749 (*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-4399 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-4411 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-2172 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) (-4399 (*1 *1 *1) (-5 *1 (-868))) (-4411 (*1 *1 *1) (-5 *1 (-868))) (-2172 (*1 *1 *1) (-5 *1 (-868))) (-2844 (*1 *1 *1 *1) (-5 *1 (-868))) (-3414 (*1 *1 *1 *1) (-5 *1 (-868))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-4315 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2971 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2971 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-2131 (*1 *1 *1 *1) (-5 *1 (-868))) (-2598 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3391 (*1 *1 *1) (-5 *1 (-868))) (-1506 (*1 *1 *1 *1) (-5 *1 (-868))) (-4215 (*1 *1 *1) (-5 *1 (-868))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-868)))) (-2103 (*1 *1 *1 *1) (-5 *1 (-868))) (-4346 (*1 *1 *1) (-5 *1 (-868))) (-4346 (*1 *1 *1 *1) (-5 *1 (-868))) (-1426 (*1 *1 *1 *1) (-5 *1 (-868))) (-2339 (*1 *1 *1 *1) (-5 *1 (-868))) (-2162 (*1 *1 *1 *1) (-5 *1 (-868))) (-2050 (*1 *1 *1 *1) (-5 *1 (-868))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) (-3755 (*1 *1 *1 *1) (-5 *1 (-868))) (-3209 (*1 *1 *1 *1) (-5 *1 (-868))) (-3573 (*1 *1 *1 *1) (-5 *1 (-868))) (-4161 (*1 *1 *1 *1) (-5 *1 (-868))) (-3731 (*1 *1 *1 *1) (-5 *1 (-868))) (-3859 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-1527 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-1813 (*1 *1 *1) (-5 *1 (-868))) (-2331 (*1 *1 *1) (-5 *1 (-868))) (-2331 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) (-3009 (*1 *1 *1) (-5 *1 (-868))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) (-2452 (*1 *1 *1) (-5 *1 (-868))) (-1901 (*1 *1 *1 *1) (-5 *1 (-868))) (-3274 (*1 *1 *1) (-5 *1 (-868))) (-3274 (*1 *1 *1 *1) (-5 *1 (-868))) (-3274 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-1566 (*1 *1 *1) (-5 *1 (-868))) (-1566 (*1 *1 *1 *1) (-5 *1 (-868))) (-1566 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-3807 (*1 *1 *1) (-5 *1 (-868))) (-3807 (*1 *1 *1 *1) (-5 *1 (-868))) (-3807 (*1 *1 *1 *1 *1) (-5 *1 (-868))) (-3871 (*1 *1 *1) (-5 *1 (-868))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3193 (*1 *1 *1) (-5 *1 (-868))) (-3193 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-1594 (*1 *1 *1) (-5 *1 (-868))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3345 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-1878 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-1704 (*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) (-2923 (*1 *1 *1 *1) (-5 *1 (-868))) (-2419 (*1 *1 *1 *1) (-5 *1 (-868))) (-2948 (*1 *1 *1 *1) (-5 *1 (-868))) (-2959 (*1 *1 *1 *1) (-5 *1 (-868))) (-2969 (*1 *1 *1 *1) (-5 *1 (-868))) (-2981 (*1 *1 *1 *1) (-5 *1 (-868))) (-3014 (*1 *1 *1 *1) (-5 *1 (-868))) (-3026 (*1 *1 *1 *1) (-5 *1 (-868))) (-3026 (*1 *1 *1) (-5 *1 (-868))) (* (*1 *1 *1 *1) (-5 *1 (-868))) (-3037 (*1 *1 *1 *1) (-5 *1 (-868))) (** (*1 *1 *1 *1) (-5 *1 (-868))) (-2399 (*1 *1 *1 *1) (-5 *1 (-868))) (-2372 (*1 *1 *1 *1) (-5 *1 (-868))) (-2380 (*1 *1 *1 *1) (-5 *1 (-868))) (-2410 (*1 *1 *1 *1) (-5 *1 (-868))) (-1760 (*1 *1 *1 *1) (-5 *1 (-868))) (-1773 (*1 *1 *1 *1) (-5 *1 (-868))) (-1748 (*1 *1 *1) (-5 *1 (-868))) (-3648 (*1 *1 *1 *1) (-5 *1 (-868))) (-3648 (*1 *1 *1) (-5 *1 (-868)))) +(-13 (-1109) (-10 -8 (-15 -2932 ((-1281) $)) (-15 -1796 ($ (-1168))) (-15 -3114 ((-1281) (-1168))) (-15 -3949 ($ (-570))) (-15 -3949 ($ (-1186))) (-15 -3949 ($ (-1168))) (-15 -3949 ($ (-227))) (-15 -4359 ($)) (-15 -2085 ((-1168) (-1168))) (-15 -3485 ((-570) $)) (-15 -1428 ((-570) $)) (-15 -3485 ((-570))) (-15 -1428 ((-570))) (-15 -1519 ((-570) $)) (-15 -4105 ((-570) $)) (-15 -3135 ($ (-570))) (-15 -1495 ($ (-570))) (-15 -1749 ($ (-570) (-570))) (-15 -4399 ($ $ (-570))) (-15 -4411 ($ $ (-570))) (-15 -2172 ($ $ (-570))) (-15 -4399 ($ $)) (-15 -4411 ($ $)) (-15 -2172 ($ $)) (-15 -2844 ($ $ $)) (-15 -3414 ($ $ $)) (-15 -2844 ($ (-650 $))) (-15 -3414 ($ (-650 $))) (-15 -4315 ($ $ (-650 $))) (-15 -2971 ($ $ (-650 $))) (-15 -2971 ($ $ $ $)) (-15 -2131 ($ $ $)) (-15 -2598 ((-112) $)) (-15 -1872 ($ $ (-650 $))) (-15 -3391 ($ $)) (-15 -1506 ($ $ $)) (-15 -4215 ($ $)) (-15 -2433 ($ (-650 (-650 $)))) (-15 -2103 ($ $ $)) (-15 -4346 ($ $)) (-15 -4346 ($ $ $)) (-15 -1426 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2162 ($ $ $)) (-15 -2050 ($ $ $)) (-15 -3519 ($ $ (-777))) (-15 -3755 ($ $ $)) (-15 -3209 ($ $ $)) (-15 -3573 ($ $ $)) (-15 -4161 ($ $ $)) (-15 -3731 ($ $ $)) (-15 -3859 ($ $ (-650 $))) (-15 -1527 ($ $ (-650 $))) (-15 -1813 ($ $)) (-15 -2331 ($ $)) (-15 -2331 ($ $ (-777))) (-15 -3009 ($ $)) (-15 -3009 ($ $ (-777))) (-15 -2452 ($ $)) (-15 -1901 ($ $ $)) (-15 -3274 ($ $)) (-15 -3274 ($ $ $)) (-15 -3274 ($ $ $ $)) (-15 -1566 ($ $)) (-15 -1566 ($ $ $)) (-15 -1566 ($ $ $ $)) (-15 -3807 ($ $)) (-15 -3807 ($ $ $)) (-15 -3807 ($ $ $ $)) (-15 -3871 ($ $)) (-15 -3871 ($ (-650 $))) (-15 -3193 ($ $)) (-15 -3193 ($ (-650 $))) (-15 -1594 ($ $)) (-15 -1594 ($ (-650 $))) (-15 -3345 ($ (-650 $))) (-15 -3959 ($ (-650 $))) (-15 -1878 ($ (-650 $))) (-15 -1704 ($ (-650 $))) (-15 -2923 ($ $ $)) (-15 -2419 ($ $ $)) (-15 -2948 ($ $ $)) (-15 -2959 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -3014 ($ $ $)) (-15 -3026 ($ $ $)) (-15 -3026 ($ $)) (-15 * ($ $ $)) (-15 -3037 ($ $ $)) (-15 ** ($ $ $)) (-15 -2399 ($ $ $)) (-15 -2372 ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2410 ($ $ $)) (-15 -1760 ($ $ $)) (-15 -1773 ($ $ $)) (-15 -1748 ($ $)) (-15 -3648 ($ $ $)) (-15 -3648 ($ $)))) +((-4412 (((-1281) (-650 (-52))) 23)) (-1873 (((-1281) (-1168) (-868)) 13) (((-1281) (-868)) 8) (((-1281) (-1168)) 10))) +(((-869) (-10 -7 (-15 -1873 ((-1281) (-1168))) (-15 -1873 ((-1281) (-868))) (-15 -1873 ((-1281) (-1168) (-868))) (-15 -4412 ((-1281) (-650 (-52)))))) (T -869)) +((-4412 (*1 *2 *3) (-12 (-5 *3 (-650 (-52))) (-5 *2 (-1281)) (-5 *1 (-869)))) (-1873 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1281)) (-5 *1 (-869)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-869)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-869))))) +(-10 -7 (-15 -1873 ((-1281) (-1168))) (-15 -1873 ((-1281) (-868))) (-15 -1873 ((-1281) (-1168) (-868))) (-15 -4412 ((-1281) (-650 (-52))))) +((-2419 (((-112) $ $) NIL)) (-2676 (((-3 $ "failed") (-1186)) 39)) (-3475 (((-777)) 32)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) 29)) (-4122 (((-1168) $) 46)) (-2155 (($ (-928)) 28)) (-3551 (((-1129) $) NIL)) (-1411 (((-1186) $) 13) (((-542) $) 19) (((-899 (-384)) $) 26) (((-899 (-570)) $) 22)) (-3798 (((-868) $) 16)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 43)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 41))) +(((-870 |#1|) (-13 (-850) (-620 (-1186)) (-620 (-542)) (-620 (-899 (-384))) (-620 (-899 (-570))) (-10 -8 (-15 -2676 ((-3 $ "failed") (-1186))))) (-650 (-1186))) (T -870)) +((-2676 (*1 *1 *2) (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-870 *3)) (-14 *3 (-650 *2))))) +(-13 (-850) (-620 (-1186)) (-620 (-542)) (-620 (-899 (-384))) (-620 (-899 (-570))) (-10 -8 (-15 -2676 ((-3 $ "failed") (-1186))))) +((-2419 (((-112) $ $) NIL)) (-3574 (((-512) $) 9)) (-2282 (((-650 (-445)) $) 13)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 21)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 16))) +(((-871) (-13 (-1109) (-10 -8 (-15 -3574 ((-512) $)) (-15 -2282 ((-650 (-445)) $))))) (T -871)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-871)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-650 (-445))) (-5 *1 (-871))))) +(-13 (-1109) (-10 -8 (-15 -3574 ((-512) $)) (-15 -2282 ((-650 (-445)) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-959 |#1|)) NIL) (((-959 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2862 (((-777)) NIL T CONST)) (-2754 (((-1281) (-777)) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-872 |#1| |#2| |#3| |#4|) (-13 (-1058) (-496 (-959 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -3037 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2754 ((-1281) (-777))))) (-1058) (-650 (-1186)) (-650 (-777)) (-777)) (T -872)) +((-3037 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-872 *2 *3 *4 *5)) (-4 *2 (-368)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-777))) (-14 *5 (-777)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-872 *4 *5 *6 *7)) (-4 *4 (-1058)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 *3)) (-14 *7 *3)))) +(-13 (-1058) (-496 (-959 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -3037 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2754 ((-1281) (-777))))) +((-4409 (((-3 (-176 |#3|) "failed") (-777) (-777) |#2| |#2|) 43)) (-3040 (((-3 (-413 |#3|) "failed") (-777) (-777) |#2| |#2|) 34))) +(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -3040 ((-3 (-413 |#3|) "failed") (-777) (-777) |#2| |#2|)) (-15 -4409 ((-3 (-176 |#3|) "failed") (-777) (-777) |#2| |#2|))) (-368) (-1267 |#1|) (-1252 |#1|)) (T -873)) +((-4409 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-176 *6)) (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1267 *5)) (-4 *6 (-1252 *5)))) (-3040 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-413 *6)) (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1267 *5)) (-4 *6 (-1252 *5))))) +(-10 -7 (-15 -3040 ((-3 (-413 |#3|) "failed") (-777) (-777) |#2| |#2|)) (-15 -4409 ((-3 (-176 |#3|) "failed") (-777) (-777) |#2| |#2|))) +((-3040 (((-3 (-413 (-1249 |#2| |#1|)) "failed") (-777) (-777) (-1268 |#1| |#2| |#3|)) 30) (((-3 (-413 (-1249 |#2| |#1|)) "failed") (-777) (-777) (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|)) 28))) +(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -3040 ((-3 (-413 (-1249 |#2| |#1|)) "failed") (-777) (-777) (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|))) (-15 -3040 ((-3 (-413 (-1249 |#2| |#1|)) "failed") (-777) (-777) (-1268 |#1| |#2| |#3|)))) (-368) (-1186) |#1|) (T -874)) +((-3040 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1268 *5 *6 *7)) (-4 *5 (-368)) (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1249 *6 *5))) (-5 *1 (-874 *5 *6 *7)))) (-3040 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1268 *5 *6 *7)) (-4 *5 (-368)) (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1249 *6 *5))) (-5 *1 (-874 *5 *6 *7))))) +(-10 -7 (-15 -3040 ((-3 (-413 (-1249 |#2| |#1|)) "failed") (-777) (-777) (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|))) (-15 -3040 ((-3 (-413 (-1249 |#2| |#1|)) "failed") (-777) (-777) (-1268 |#1| |#2| |#3|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3815 (($ $ (-570)) 68)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-4346 (($ (-1182 (-570)) (-570)) 67)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-3119 (($ $) 70)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-4202 (((-777) $) 75)) (-2481 (((-112) $) 35)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-2132 (((-570)) 72)) (-4133 (((-570) $) 71)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3500 (($ $ (-570)) 74)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-1410 (((-1166 (-570)) $) 76)) (-2115 (($ $) 73)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-3093 (((-570) $ (-570)) 69)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-875 |#1|) (-141) (-570)) (T -875)) +((-1410 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-1166 (-570))))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-777)))) (-3500 (*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-2115 (*1 *1 *1) (-4 *1 (-875 *2))) (-2132 (*1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-3119 (*1 *1 *1) (-4 *1 (-875 *2))) (-3093 (*1 *2 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-3815 (*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) (-4346 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *3 (-570)) (-4 *1 (-875 *4))))) +(-13 (-311) (-148) (-10 -8 (-15 -1410 ((-1166 (-570)) $)) (-15 -4202 ((-777) $)) (-15 -3500 ($ $ (-570))) (-15 -2115 ($ $)) (-15 -2132 ((-570))) (-15 -4133 ((-570) $)) (-15 -3119 ($ $)) (-15 -3093 ((-570) $ (-570))) (-15 -3815 ($ $ (-570))) (-15 -4346 ($ (-1182 (-570)) (-570))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-311) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $ (-570)) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-4346 (($ (-1182 (-570)) (-570)) NIL)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3119 (($ $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-4202 (((-777) $) NIL)) (-2481 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2132 (((-570)) NIL)) (-4133 (((-570) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3500 (($ $ (-570)) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-1410 (((-1166 (-570)) $) NIL)) (-2115 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-570) $ (-570)) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL))) +(((-876 |#1|) (-875 |#1|) (-570)) (T -876)) +NIL +(-875 |#1|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-876 |#1|) $) NIL (|has| (-876 |#1|) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-876 |#1|) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-876 |#1|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| (-876 |#1|) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-876 |#1|) (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| (-876 |#1|) (-1047 (-570))))) (-3152 (((-876 |#1|) $) NIL) (((-1186) $) NIL (|has| (-876 |#1|) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-876 |#1|) (-1047 (-570)))) (((-570) $) NIL (|has| (-876 |#1|) (-1047 (-570))))) (-1962 (($ $) NIL) (($ (-570) $) NIL)) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-876 |#1|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-876 |#1|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-876 |#1|))) (|:| |vec| (-1276 (-876 |#1|)))) (-695 $) (-1276 $)) NIL) (((-695 (-876 |#1|)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-876 |#1|) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| (-876 |#1|) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-876 |#1|) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-876 |#1|) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-876 |#1|) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| (-876 |#1|) (-1161)))) (-3367 (((-112) $) NIL (|has| (-876 |#1|) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-876 |#1|) (-856)))) (-2876 (($ $ $) NIL (|has| (-876 |#1|) (-856)))) (-1347 (($ (-1 (-876 |#1|) (-876 |#1|)) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-876 |#1|) (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-876 |#1|) (-311)))) (-4140 (((-876 |#1|) $) NIL (|has| (-876 |#1|) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-876 |#1|) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-876 |#1|)) (-650 (-876 |#1|))) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-876 |#1|) (-876 |#1|)) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-298 (-876 |#1|))) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-650 (-298 (-876 |#1|)))) NIL (|has| (-876 |#1|) (-313 (-876 |#1|)))) (($ $ (-650 (-1186)) (-650 (-876 |#1|))) NIL (|has| (-876 |#1|) (-520 (-1186) (-876 |#1|)))) (($ $ (-1186) (-876 |#1|)) NIL (|has| (-876 |#1|) (-520 (-1186) (-876 |#1|))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-876 |#1|)) NIL (|has| (-876 |#1|) (-290 (-876 |#1|) (-876 |#1|))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| (-876 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-876 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1 (-876 |#1|) (-876 |#1|)) (-777)) NIL) (($ $ (-1 (-876 |#1|) (-876 |#1|))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-876 |#1|) $) NIL)) (-1411 (((-899 (-570)) $) NIL (|has| (-876 |#1|) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-876 |#1|) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-876 |#1|) (-620 (-542)))) (((-384) $) NIL (|has| (-876 |#1|) (-1031))) (((-227) $) NIL (|has| (-876 |#1|) (-1031)))) (-4322 (((-176 (-413 (-570))) $) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-876 |#1|) (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL) (($ (-876 |#1|)) NIL) (($ (-1186)) NIL (|has| (-876 |#1|) (-1047 (-1186))))) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-876 |#1|) (-916))) (|has| (-876 |#1|) (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 (((-876 |#1|) $) NIL (|has| (-876 |#1|) (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-413 (-570)) $ (-570)) NIL)) (-2216 (($ $) NIL (|has| (-876 |#1|) (-826)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $) NIL (|has| (-876 |#1|) (-235))) (($ $ (-777)) NIL (|has| (-876 |#1|) (-235))) (($ $ (-1186)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-876 |#1|) (-907 (-1186)))) (($ $ (-1 (-876 |#1|) (-876 |#1|)) (-777)) NIL) (($ $ (-1 (-876 |#1|) (-876 |#1|))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-876 |#1|) (-856)))) (-3037 (($ $ $) NIL) (($ (-876 |#1|) (-876 |#1|)) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-876 |#1|) $) NIL) (($ $ (-876 |#1|)) NIL))) +(((-877 |#1|) (-13 (-1001 (-876 |#1|)) (-10 -8 (-15 -3093 ((-413 (-570)) $ (-570))) (-15 -4322 ((-176 (-413 (-570))) $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)))) (-570)) (T -877)) +((-3093 (*1 *2 *1 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-877 *4)) (-14 *4 *3) (-5 *3 (-570)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-877 *3)) (-14 *3 (-570)))) (-1962 (*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-14 *2 (-570)))) (-1962 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-877 *3)) (-14 *3 *2)))) +(-13 (-1001 (-876 |#1|)) (-10 -8 (-15 -3093 ((-413 (-570)) $ (-570))) (-15 -4322 ((-176 (-413 (-570))) $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 ((|#2| $) NIL (|has| |#2| (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| |#2| (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (|has| |#2| (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570))))) (-3152 ((|#2| $) NIL) (((-1186) $) NIL (|has| |#2| (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-570)))) (((-570) $) NIL (|has| |#2| (-1047 (-570))))) (-1962 (($ $) 35) (($ (-570) $) 38)) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) 64)) (-3408 (($) NIL (|has| |#2| (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) NIL (|has| |#2| (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| |#2| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| |#2| (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 ((|#2| $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#2| (-1161)))) (-3367 (((-112) $) NIL (|has| |#2| (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| |#2| (-856)))) (-2876 (($ $ $) NIL (|has| |#2| (-856)))) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 60)) (-2310 (($) NIL (|has| |#2| (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| |#2| (-311)))) (-4140 ((|#2| $) NIL (|has| |#2| (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 |#2|) (-650 |#2|)) NIL (|has| |#2| (-313 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-313 |#2|))) (($ $ (-298 |#2|)) NIL (|has| |#2| (-313 |#2|))) (($ $ (-650 (-298 |#2|))) NIL (|has| |#2| (-313 |#2|))) (($ $ (-650 (-1186)) (-650 |#2|)) NIL (|has| |#2| (-520 (-1186) |#2|))) (($ $ (-1186) |#2|) NIL (|has| |#2| (-520 (-1186) |#2|)))) (-3788 (((-777) $) NIL)) (-1872 (($ $ |#2|) NIL (|has| |#2| (-290 |#2| |#2|)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) NIL (|has| |#2| (-235))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2397 (($ $) NIL)) (-4413 ((|#2| $) NIL)) (-1411 (((-899 (-570)) $) NIL (|has| |#2| (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| |#2| (-620 (-899 (-384))))) (((-542) $) NIL (|has| |#2| (-620 (-542)))) (((-384) $) NIL (|has| |#2| (-1031))) (((-227) $) NIL (|has| |#2| (-1031)))) (-4322 (((-176 (-413 (-570))) $) 78)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3798 (((-868) $) 108) (($ (-570)) 20) (($ $) NIL) (($ (-413 (-570))) 25) (($ |#2|) 19) (($ (-1186)) NIL (|has| |#2| (-1047 (-1186))))) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1442 ((|#2| $) NIL (|has| |#2| (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-413 (-570)) $ (-570)) 71)) (-2216 (($ $) NIL (|has| |#2| (-826)))) (-1809 (($) 15 T CONST)) (-1817 (($) 17 T CONST)) (-2835 (($ $) NIL (|has| |#2| (-235))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2981 (((-112) $ $) NIL (|has| |#2| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#2| (-856)))) (-2923 (((-112) $ $) 46)) (-2969 (((-112) $ $) NIL (|has| |#2| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#2| (-856)))) (-3037 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3026 (($ $) 50) (($ $ $) 52)) (-3014 (($ $ $) 48)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) 61)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 53) (($ $ $) 55) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-878 |#1| |#2|) (-13 (-1001 |#2|) (-10 -8 (-15 -3093 ((-413 (-570)) $ (-570))) (-15 -4322 ((-176 (-413 (-570))) $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)))) (-570) (-875 |#1|)) (T -878)) +((-3093 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-413 (-570))) (-5 *1 (-878 *4 *5)) (-5 *3 (-570)) (-4 *5 (-875 *4)))) (-4322 (*1 *2 *1) (-12 (-14 *3 (-570)) (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-878 *3 *4)) (-4 *4 (-875 *3)))) (-1962 (*1 *1 *1) (-12 (-14 *2 (-570)) (-5 *1 (-878 *2 *3)) (-4 *3 (-875 *2)))) (-1962 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-14 *3 *2) (-5 *1 (-878 *3 *4)) (-4 *4 (-875 *3))))) +(-13 (-1001 |#2|) (-10 -8 (-15 -3093 ((-413 (-570)) $ (-570))) (-15 -4322 ((-176 (-413 (-570))) $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)))) +((-2419 (((-112) $ $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-2553 ((|#2| $) 12)) (-2184 (($ |#1| |#2|) 9)) (-4122 (((-1168) $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-3551 (((-1129) $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#1| $) 11)) (-3811 (($ |#1| |#2|) 10)) (-3798 (((-868) $) 18 (-2779 (-12 (|has| |#1| (-619 (-868))) (|has| |#2| (-619 (-868)))) (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109)))))) (-1319 (((-112) $ $) NIL (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109))))) (-2923 (((-112) $ $) 23 (-12 (|has| |#1| (-1109)) (|has| |#2| (-1109)))))) +(((-879 |#1| |#2|) (-13 (-1226) (-10 -8 (IF (|has| |#1| (-619 (-868))) (IF (|has| |#2| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1109)) (IF (|has| |#2| (-1109)) (-6 (-1109)) |%noBranch|) |%noBranch|) (-15 -2184 ($ |#1| |#2|)) (-15 -3811 ($ |#1| |#2|)) (-15 -3515 (|#1| $)) (-15 -2553 (|#2| $)))) (-1226) (-1226)) (T -879)) +((-2184 (*1 *1 *2 *3) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1226)) (-4 *3 (-1226)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1226)) (-4 *3 (-1226)))) (-3515 (*1 *2 *1) (-12 (-4 *2 (-1226)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1226)))) (-2553 (*1 *2 *1) (-12 (-4 *2 (-1226)) (-5 *1 (-879 *3 *2)) (-4 *3 (-1226))))) +(-13 (-1226) (-10 -8 (IF (|has| |#1| (-619 (-868))) (IF (|has| |#2| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1109)) (IF (|has| |#2| (-1109)) (-6 (-1109)) |%noBranch|) |%noBranch|) (-15 -2184 ($ |#1| |#2|)) (-15 -3811 ($ |#1| |#2|)) (-15 -3515 (|#1| $)) (-15 -2553 (|#2| $)))) +((-2419 (((-112) $ $) NIL)) (-2027 (((-570) $) 16)) (-3615 (($ (-158)) 13)) (-3868 (($ (-158)) 14)) (-4122 (((-1168) $) NIL)) (-2950 (((-158) $) 15)) (-3551 (((-1129) $) NIL)) (-2411 (($ (-158)) 11)) (-3557 (($ (-158)) 10)) (-3798 (((-868) $) 24) (($ (-158)) 17)) (-4162 (($ (-158)) 12)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-880) (-13 (-1109) (-10 -8 (-15 -3557 ($ (-158))) (-15 -2411 ($ (-158))) (-15 -4162 ($ (-158))) (-15 -3615 ($ (-158))) (-15 -3868 ($ (-158))) (-15 -2950 ((-158) $)) (-15 -2027 ((-570) $)) (-15 -3798 ($ (-158)))))) (T -880)) +((-3557 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-880)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))) +(-13 (-1109) (-10 -8 (-15 -3557 ($ (-158))) (-15 -2411 ($ (-158))) (-15 -4162 ($ (-158))) (-15 -3615 ($ (-158))) (-15 -3868 ($ (-158))) (-15 -2950 ((-158) $)) (-15 -2027 ((-570) $)) (-15 -3798 ($ (-158))))) +((-3798 (((-320 (-570)) (-413 (-959 (-48)))) 23) (((-320 (-570)) (-959 (-48))) 18))) +(((-881) (-10 -7 (-15 -3798 ((-320 (-570)) (-959 (-48)))) (-15 -3798 ((-320 (-570)) (-413 (-959 (-48))))))) (T -881)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 (-48)))) (-5 *2 (-320 (-570))) (-5 *1 (-881)))) (-3798 (*1 *2 *3) (-12 (-5 *3 (-959 (-48))) (-5 *2 (-320 (-570))) (-5 *1 (-881))))) +(-10 -7 (-15 -3798 ((-320 (-570)) (-959 (-48)))) (-15 -3798 ((-320 (-570)) (-413 (-959 (-48)))))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 18) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1798 (((-112) $ (|[\|\|]| (-512))) 9) (((-112) $ (|[\|\|]| (-1168))) 13)) (-1319 (((-112) $ $) NIL)) (-3994 (((-512) $) 10) (((-1168) $) 14)) (-2923 (((-112) $ $) 15))) +(((-882) (-13 (-1092) (-1271) (-10 -8 (-15 -1798 ((-112) $ (|[\|\|]| (-512)))) (-15 -3994 ((-512) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3994 ((-1168) $))))) (T -882)) +((-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-882)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-882)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-882)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-882))))) +(-13 (-1092) (-1271) (-10 -8 (-15 -1798 ((-112) $ (|[\|\|]| (-512)))) (-15 -3994 ((-512) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3994 ((-1168) $)))) +((-1347 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 15))) +(((-883 |#1| |#2|) (-10 -7 (-15 -1347 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-1226) (-1226)) (T -883)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6))))) +(-10 -7 (-15 -1347 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) +((-2519 (($ |#1| |#1|) 8)) (-3109 ((|#1| $ (-777)) 15))) +(((-884 |#1|) (-10 -8 (-15 -2519 ($ |#1| |#1|)) (-15 -3109 (|#1| $ (-777)))) (-1226)) (T -884)) +((-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-884 *2)) (-4 *2 (-1226)))) (-2519 (*1 *1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1226))))) +(-10 -8 (-15 -2519 ($ |#1| |#1|)) (-15 -3109 (|#1| $ (-777)))) +((-1347 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 15))) +(((-885 |#1| |#2|) (-10 -7 (-15 -1347 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-1226) (-1226)) (T -885)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6))))) +(-10 -7 (-15 -1347 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) +((-2519 (($ |#1| |#1| |#1|) 8)) (-3109 ((|#1| $ (-777)) 15))) +(((-886 |#1|) (-10 -8 (-15 -2519 ($ |#1| |#1| |#1|)) (-15 -3109 (|#1| $ (-777)))) (-1226)) (T -886)) +((-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-886 *2)) (-4 *2 (-1226)))) (-2519 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1226))))) +(-10 -8 (-15 -2519 ($ |#1| |#1| |#1|)) (-15 -3109 (|#1| $ (-777)))) +((-2113 (((-650 (-1191)) (-1168)) 9))) +(((-887) (-10 -7 (-15 -2113 ((-650 (-1191)) (-1168))))) (T -887)) +((-2113 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-887))))) +(-10 -7 (-15 -2113 ((-650 (-1191)) (-1168)))) +((-1347 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 15))) +(((-888 |#1| |#2|) (-10 -7 (-15 -1347 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1226) (-1226)) (T -888)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))) +(-10 -7 (-15 -1347 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) +((-1557 (($ |#1| |#1| |#1|) 8)) (-3109 ((|#1| $ (-777)) 15))) +(((-889 |#1|) (-10 -8 (-15 -1557 ($ |#1| |#1| |#1|)) (-15 -3109 (|#1| $ (-777)))) (-1226)) (T -889)) +((-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-889 *2)) (-4 *2 (-1226)))) (-1557 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1226))))) +(-10 -8 (-15 -1557 ($ |#1| |#1| |#1|)) (-15 -3109 (|#1| $ (-777)))) +((-3418 (((-1166 (-650 (-570))) (-650 (-570)) (-1166 (-650 (-570)))) 48)) (-3780 (((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570))) 44)) (-3437 (((-1166 (-650 (-570))) (-650 (-570))) 58) (((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570))) 56)) (-1477 (((-1166 (-650 (-570))) (-570)) 59)) (-2804 (((-1166 (-650 (-570))) (-570) (-570)) 34) (((-1166 (-650 (-570))) (-570)) 23) (((-1166 (-650 (-570))) (-570) (-570) (-570)) 19)) (-2088 (((-1166 (-650 (-570))) (-1166 (-650 (-570)))) 42)) (-3897 (((-650 (-570)) (-650 (-570))) 41))) +(((-890) (-10 -7 (-15 -2804 ((-1166 (-650 (-570))) (-570) (-570) (-570))) (-15 -2804 ((-1166 (-650 (-570))) (-570))) (-15 -2804 ((-1166 (-650 (-570))) (-570) (-570))) (-15 -3897 ((-650 (-570)) (-650 (-570)))) (-15 -2088 ((-1166 (-650 (-570))) (-1166 (-650 (-570))))) (-15 -3780 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -3418 ((-1166 (-650 (-570))) (-650 (-570)) (-1166 (-650 (-570))))) (-15 -3437 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -3437 ((-1166 (-650 (-570))) (-650 (-570)))) (-15 -1477 ((-1166 (-650 (-570))) (-570))))) (T -890)) +((-1477 (*1 *2 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-650 (-570))))) (-3437 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-650 (-570))))) (-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *3 (-650 (-570))) (-5 *1 (-890)))) (-3780 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-650 (-570))))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-890)))) (-2804 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))) (-2804 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570))))) +(-10 -7 (-15 -2804 ((-1166 (-650 (-570))) (-570) (-570) (-570))) (-15 -2804 ((-1166 (-650 (-570))) (-570))) (-15 -2804 ((-1166 (-650 (-570))) (-570) (-570))) (-15 -3897 ((-650 (-570)) (-650 (-570)))) (-15 -2088 ((-1166 (-650 (-570))) (-1166 (-650 (-570))))) (-15 -3780 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -3418 ((-1166 (-650 (-570))) (-650 (-570)) (-1166 (-650 (-570))))) (-15 -3437 ((-1166 (-650 (-570))) (-650 (-570)) (-650 (-570)))) (-15 -3437 ((-1166 (-650 (-570))) (-650 (-570)))) (-15 -1477 ((-1166 (-650 (-570))) (-570)))) +((-1411 (((-899 (-384)) $) 9 (|has| |#1| (-620 (-899 (-384))))) (((-899 (-570)) $) 8 (|has| |#1| (-620 (-899 (-570))))))) +(((-891 |#1|) (-141) (-1226)) (T -891)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-620 (-899 (-570)))) (-6 (-620 (-899 (-570)))) |%noBranch|) (IF (|has| |t#1| (-620 (-899 (-384)))) (-6 (-620 (-899 (-384)))) |%noBranch|))) +(((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570))))) +((-2419 (((-112) $ $) NIL)) (-4300 (($) 14)) (-2116 (($ (-896 |#1| |#2|) (-896 |#1| |#3|)) 28)) (-4050 (((-896 |#1| |#3|) $) 16)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1329 (((-112) $) 22)) (-2498 (($) 19)) (-3798 (((-868) $) 31)) (-1319 (((-112) $ $) NIL)) (-3455 (((-896 |#1| |#2|) $) 15)) (-2923 (((-112) $ $) 26))) +(((-892 |#1| |#2| |#3|) (-13 (-1109) (-10 -8 (-15 -1329 ((-112) $)) (-15 -2498 ($)) (-15 -4300 ($)) (-15 -2116 ($ (-896 |#1| |#2|) (-896 |#1| |#3|))) (-15 -3455 ((-896 |#1| |#2|) $)) (-15 -4050 ((-896 |#1| |#3|) $)))) (-1109) (-1109) (-672 |#2|)) (T -892)) +((-1329 (*1 *2 *1) (-12 (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-892 *3 *4 *5)) (-4 *3 (-1109)) (-4 *5 (-672 *4)))) (-2498 (*1 *1) (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109)) (-4 *4 (-672 *3)))) (-4300 (*1 *1) (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109)) (-4 *4 (-672 *3)))) (-2116 (*1 *1 *2 *3) (-12 (-5 *2 (-896 *4 *5)) (-5 *3 (-896 *4 *6)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-672 *5)) (-5 *1 (-892 *4 *5 *6)))) (-3455 (*1 *2 *1) (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *4)) (-5 *1 (-892 *3 *4 *5)) (-4 *3 (-1109)) (-4 *5 (-672 *4)))) (-4050 (*1 *2 *1) (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *5)) (-5 *1 (-892 *3 *4 *5)) (-4 *3 (-1109)) (-4 *5 (-672 *4))))) +(-13 (-1109) (-10 -8 (-15 -1329 ((-112) $)) (-15 -2498 ($)) (-15 -4300 ($)) (-15 -2116 ($ (-896 |#1| |#2|) (-896 |#1| |#3|))) (-15 -3455 ((-896 |#1| |#2|) $)) (-15 -4050 ((-896 |#1| |#3|) $)))) +((-2419 (((-112) $ $) 7)) (-2125 (((-896 |#1| $) $ (-899 |#1|) (-896 |#1| $)) 14)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-893 |#1|) (-141) (-1109)) (T -893)) +((-2125 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-896 *4 *1)) (-5 *3 (-899 *4)) (-4 *1 (-893 *4)) (-4 *4 (-1109))))) +(-13 (-1109) (-10 -8 (-15 -2125 ((-896 |t#1| $) $ (-899 |t#1|) (-896 |t#1| $))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-3257 (((-112) (-650 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3021 (((-896 |#1| |#2|) |#2| |#3|) 45 (-12 (-1748 (|has| |#2| (-1047 (-1186)))) (-1748 (|has| |#2| (-1058))))) (((-650 (-298 (-959 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1058)) (-1748 (|has| |#2| (-1047 (-1186)))))) (((-650 (-298 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1047 (-1186)))) (((-892 |#1| |#2| (-650 |#2|)) (-650 |#2|) |#3|) 21))) +(((-894 |#1| |#2| |#3|) (-10 -7 (-15 -3257 ((-112) |#2| |#3|)) (-15 -3257 ((-112) (-650 |#2|) |#3|)) (-15 -3021 ((-892 |#1| |#2| (-650 |#2|)) (-650 |#2|) |#3|)) (IF (|has| |#2| (-1047 (-1186))) (-15 -3021 ((-650 (-298 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1058)) (-15 -3021 ((-650 (-298 (-959 |#2|))) |#2| |#3|)) (-15 -3021 ((-896 |#1| |#2|) |#2| |#3|))))) (-1109) (-893 |#1|) (-620 (-899 |#1|))) (T -894)) +((-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-896 *5 *3)) (-5 *1 (-894 *5 *3 *4)) (-1748 (-4 *3 (-1047 (-1186)))) (-1748 (-4 *3 (-1058))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) (-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 (-959 *3)))) (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-1058)) (-1748 (-4 *3 (-1047 (-1186)))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) (-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 *3))) (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-1047 (-1186))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) (-3021 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-4 *6 (-893 *5)) (-5 *2 (-892 *5 *6 (-650 *6))) (-5 *1 (-894 *5 *6 *4)) (-5 *3 (-650 *6)) (-4 *4 (-620 (-899 *5))))) (-3257 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-4 *6 (-893 *5)) (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-894 *5 *6 *4)) (-4 *4 (-620 (-899 *5))))) (-3257 (*1 *2 *3 *4) (-12 (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5)))))) +(-10 -7 (-15 -3257 ((-112) |#2| |#3|)) (-15 -3257 ((-112) (-650 |#2|) |#3|)) (-15 -3021 ((-892 |#1| |#2| (-650 |#2|)) (-650 |#2|) |#3|)) (IF (|has| |#2| (-1047 (-1186))) (-15 -3021 ((-650 (-298 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1058)) (-15 -3021 ((-650 (-298 (-959 |#2|))) |#2| |#3|)) (-15 -3021 ((-896 |#1| |#2|) |#2| |#3|))))) +((-1347 (((-896 |#1| |#3|) (-1 |#3| |#2|) (-896 |#1| |#2|)) 22))) +(((-895 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-896 |#1| |#3|) (-1 |#3| |#2|) (-896 |#1| |#2|)))) (-1109) (-1109) (-1109)) (T -895)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-896 *5 *6)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-896 *5 *7)) (-5 *1 (-895 *5 *6 *7))))) +(-10 -7 (-15 -1347 ((-896 |#1| |#3|) (-1 |#3| |#2|) (-896 |#1| |#2|)))) +((-2419 (((-112) $ $) NIL)) (-3971 (($ $ $) 40)) (-3683 (((-3 (-112) "failed") $ (-899 |#1|)) 37)) (-4300 (($) 12)) (-4122 (((-1168) $) NIL)) (-4091 (($ (-899 |#1|) |#2| $) 20)) (-3551 (((-1129) $) NIL)) (-3604 (((-3 |#2| "failed") (-899 |#1|) $) 51)) (-1329 (((-112) $) 15)) (-2498 (($) 13)) (-3883 (((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 |#2|))) $) 25)) (-3811 (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 |#2|)))) 23)) (-3798 (((-868) $) 45)) (-1319 (((-112) $ $) NIL)) (-3262 (($ (-899 |#1|) |#2| $ |#2|) 49)) (-4319 (($ (-899 |#1|) |#2| $) 48)) (-2923 (((-112) $ $) 42))) +(((-896 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -1329 ((-112) $)) (-15 -2498 ($)) (-15 -4300 ($)) (-15 -3971 ($ $ $)) (-15 -3604 ((-3 |#2| "failed") (-899 |#1|) $)) (-15 -4319 ($ (-899 |#1|) |#2| $)) (-15 -4091 ($ (-899 |#1|) |#2| $)) (-15 -3262 ($ (-899 |#1|) |#2| $ |#2|)) (-15 -3883 ((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 |#2|))) $)) (-15 -3811 ($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 |#2|))))) (-15 -3683 ((-3 (-112) "failed") $ (-899 |#1|))))) (-1109) (-1109)) (T -896)) +((-1329 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2498 (*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-4300 (*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-3971 (*1 *1 *1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-3604 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-4 *2 (-1109)) (-5 *1 (-896 *4 *2)))) (-4319 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1109)))) (-4091 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1109)))) (-3262 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) (-4 *3 (-1109)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 *4)))) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 *4)))) (-4 *4 (-1109)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)))) (-3683 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-896 *4 *5)) (-4 *5 (-1109))))) +(-13 (-1109) (-10 -8 (-15 -1329 ((-112) $)) (-15 -2498 ($)) (-15 -4300 ($)) (-15 -3971 ($ $ $)) (-15 -3604 ((-3 |#2| "failed") (-899 |#1|) $)) (-15 -4319 ($ (-899 |#1|) |#2| $)) (-15 -4091 ($ (-899 |#1|) |#2| $)) (-15 -3262 ($ (-899 |#1|) |#2| $ |#2|)) (-15 -3883 ((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 |#2|))) $)) (-15 -3811 ($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 |#2|))))) (-15 -3683 ((-3 (-112) "failed") $ (-899 |#1|))))) +((-4276 (((-899 |#1|) (-899 |#1|) (-650 (-1186)) (-1 (-112) (-650 |#2|))) 32) (((-899 |#1|) (-899 |#1|) (-650 (-1 (-112) |#2|))) 46) (((-899 |#1|) (-899 |#1|) (-1 (-112) |#2|)) 35)) (-3683 (((-112) (-650 |#2|) (-899 |#1|)) 42) (((-112) |#2| (-899 |#1|)) 36)) (-3729 (((-1 (-112) |#2|) (-899 |#1|)) 16)) (-3337 (((-650 |#2|) (-899 |#1|)) 24)) (-2013 (((-899 |#1|) (-899 |#1|) |#2|) 20))) +(((-897 |#1| |#2|) (-10 -7 (-15 -4276 ((-899 |#1|) (-899 |#1|) (-1 (-112) |#2|))) (-15 -4276 ((-899 |#1|) (-899 |#1|) (-650 (-1 (-112) |#2|)))) (-15 -4276 ((-899 |#1|) (-899 |#1|) (-650 (-1186)) (-1 (-112) (-650 |#2|)))) (-15 -3729 ((-1 (-112) |#2|) (-899 |#1|))) (-15 -3683 ((-112) |#2| (-899 |#1|))) (-15 -3683 ((-112) (-650 |#2|) (-899 |#1|))) (-15 -2013 ((-899 |#1|) (-899 |#1|) |#2|)) (-15 -3337 ((-650 |#2|) (-899 |#1|)))) (-1109) (-1226)) (T -897)) +((-3337 (*1 *2 *3) (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-650 *5)) (-5 *1 (-897 *4 *5)) (-4 *5 (-1226)))) (-2013 (*1 *2 *2 *3) (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-897 *4 *3)) (-4 *3 (-1226)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-1226)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-897 *5 *3)) (-4 *3 (-1226)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-897 *4 *5)) (-4 *5 (-1226)))) (-4276 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-899 *5)) (-5 *3 (-650 (-1186))) (-5 *4 (-1 (-112) (-650 *6))) (-4 *5 (-1109)) (-4 *6 (-1226)) (-5 *1 (-897 *5 *6)))) (-4276 (*1 *2 *2 *3) (-12 (-5 *2 (-899 *4)) (-5 *3 (-650 (-1 (-112) *5))) (-4 *4 (-1109)) (-4 *5 (-1226)) (-5 *1 (-897 *4 *5)))) (-4276 (*1 *2 *2 *3) (-12 (-5 *2 (-899 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1109)) (-4 *5 (-1226)) (-5 *1 (-897 *4 *5))))) +(-10 -7 (-15 -4276 ((-899 |#1|) (-899 |#1|) (-1 (-112) |#2|))) (-15 -4276 ((-899 |#1|) (-899 |#1|) (-650 (-1 (-112) |#2|)))) (-15 -4276 ((-899 |#1|) (-899 |#1|) (-650 (-1186)) (-1 (-112) (-650 |#2|)))) (-15 -3729 ((-1 (-112) |#2|) (-899 |#1|))) (-15 -3683 ((-112) |#2| (-899 |#1|))) (-15 -3683 ((-112) (-650 |#2|) (-899 |#1|))) (-15 -2013 ((-899 |#1|) (-899 |#1|) |#2|)) (-15 -3337 ((-650 |#2|) (-899 |#1|)))) +((-1347 (((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)) 19))) +(((-898 |#1| |#2|) (-10 -7 (-15 -1347 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) (-1109) (-1109)) (T -898)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6))))) +(-10 -7 (-15 -1347 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) +((-2419 (((-112) $ $) NIL)) (-4221 (($ $ (-650 (-52))) 74)) (-1709 (((-650 $) $) 138)) (-3140 (((-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))) $) 30)) (-2311 (((-112) $) 35)) (-3929 (($ $ (-650 (-1186)) (-52)) 31)) (-1979 (($ $ (-650 (-52))) 73)) (-4382 (((-3 |#1| "failed") $) 71) (((-3 (-1186) "failed") $) 162)) (-3152 ((|#1| $) 68) (((-1186) $) NIL)) (-3050 (($ $) 126)) (-1933 (((-112) $) 55)) (-3389 (((-650 (-52)) $) 50)) (-1842 (($ (-1186) (-112) (-112) (-112)) 75)) (-4239 (((-3 (-650 $) "failed") (-650 $)) 82)) (-4403 (((-112) $) 58)) (-4333 (((-112) $) 57)) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) 41)) (-1362 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2536 (((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $) 97)) (-3607 (((-3 (-650 $) "failed") $) 40)) (-4075 (((-3 (-650 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -3908 (-115)) (|:| |arg| (-650 $))) "failed") $) 107)) (-2290 (((-3 (-650 $) "failed") $) 42)) (-1657 (((-3 (-2 (|:| |val| $) (|:| -3283 (-777))) "failed") $) 45)) (-2130 (((-112) $) 34)) (-3551 (((-1129) $) NIL)) (-3295 (((-112) $) 28)) (-3774 (((-112) $) 52)) (-1695 (((-650 (-52)) $) 130)) (-2953 (((-112) $) 56)) (-1872 (($ (-115) (-650 $)) 104)) (-2806 (((-777) $) 33)) (-3964 (($ $) 72)) (-1411 (($ (-650 $)) 69)) (-1473 (((-112) $) 32)) (-3798 (((-868) $) 63) (($ |#1|) 23) (($ (-1186)) 76)) (-1319 (((-112) $ $) NIL)) (-2013 (($ $ (-52)) 129)) (-1809 (($) 103 T CONST)) (-1817 (($) 83 T CONST)) (-2923 (((-112) $ $) 93)) (-3037 (($ $ $) 117)) (-3014 (($ $ $) 121)) (** (($ $ (-777)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-899 |#1|) (-13 (-1109) (-1047 |#1|) (-1047 (-1186)) (-10 -8 (-15 0 ($) -3711) (-15 1 ($) -3711) (-15 -3607 ((-3 (-650 $) "failed") $)) (-15 -4193 ((-3 (-650 $) "failed") $)) (-15 -4075 ((-3 (-650 $) "failed") $ (-115))) (-15 -4075 ((-3 (-2 (|:| -3908 (-115)) (|:| |arg| (-650 $))) "failed") $)) (-15 -1657 ((-3 (-2 (|:| |val| $) (|:| -3283 (-777))) "failed") $)) (-15 -1362 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2290 ((-3 (-650 $) "failed") $)) (-15 -2536 ((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $)) (-15 -1872 ($ (-115) (-650 $))) (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ $)) (-15 -3037 ($ $ $)) (-15 -2806 ((-777) $)) (-15 -1411 ($ (-650 $))) (-15 -3964 ($ $)) (-15 -2130 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -2311 ((-112) $)) (-15 -1473 ((-112) $)) (-15 -2953 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -4403 ((-112) $)) (-15 -3774 ((-112) $)) (-15 -3389 ((-650 (-52)) $)) (-15 -1979 ($ $ (-650 (-52)))) (-15 -4221 ($ $ (-650 (-52)))) (-15 -1842 ($ (-1186) (-112) (-112) (-112))) (-15 -3929 ($ $ (-650 (-1186)) (-52))) (-15 -3140 ((-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))) $)) (-15 -3295 ((-112) $)) (-15 -3050 ($ $)) (-15 -2013 ($ $ (-52))) (-15 -1695 ((-650 (-52)) $)) (-15 -1709 ((-650 $) $)) (-15 -4239 ((-3 (-650 $) "failed") (-650 $))))) (-1109)) (T -899)) +((-1809 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-1817 (*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-3607 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4193 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4075 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-899 *4))) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-4075 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3908 (-115)) (|:| |arg| (-650 (-899 *3))))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -3283 (-777)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1362 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-899 *3)) (|:| |den| (-899 *3)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2290 (*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2536 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -3283 (-899 *3)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1872 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 (-899 *4))) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-3014 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-3037 (*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3964 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4333 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4403 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1979 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4221 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1842 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-112)) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-3929 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-52)) (-5 *1 (-899 *4)) (-4 *4 (-1109)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52)))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) (-2013 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) (-4239 (*1 *2 *2) (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(-13 (-1109) (-1047 |#1|) (-1047 (-1186)) (-10 -8 (-15 (-1809) ($) -3711) (-15 (-1817) ($) -3711) (-15 -3607 ((-3 (-650 $) "failed") $)) (-15 -4193 ((-3 (-650 $) "failed") $)) (-15 -4075 ((-3 (-650 $) "failed") $ (-115))) (-15 -4075 ((-3 (-2 (|:| -3908 (-115)) (|:| |arg| (-650 $))) "failed") $)) (-15 -1657 ((-3 (-2 (|:| |val| $) (|:| -3283 (-777))) "failed") $)) (-15 -1362 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2290 ((-3 (-650 $) "failed") $)) (-15 -2536 ((-3 (-2 (|:| |val| $) (|:| -3283 $)) "failed") $)) (-15 -1872 ($ (-115) (-650 $))) (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777))) (-15 ** ($ $ $)) (-15 -3037 ($ $ $)) (-15 -2806 ((-777) $)) (-15 -1411 ($ (-650 $))) (-15 -3964 ($ $)) (-15 -2130 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -2311 ((-112) $)) (-15 -1473 ((-112) $)) (-15 -2953 ((-112) $)) (-15 -4333 ((-112) $)) (-15 -4403 ((-112) $)) (-15 -3774 ((-112) $)) (-15 -3389 ((-650 (-52)) $)) (-15 -1979 ($ $ (-650 (-52)))) (-15 -4221 ($ $ (-650 (-52)))) (-15 -1842 ($ (-1186) (-112) (-112) (-112))) (-15 -3929 ($ $ (-650 (-1186)) (-52))) (-15 -3140 ((-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52))) $)) (-15 -3295 ((-112) $)) (-15 -3050 ($ $)) (-15 -2013 ($ $ (-52))) (-15 -1695 ((-650 (-52)) $)) (-15 -1709 ((-650 $) $)) (-15 -4239 ((-3 (-650 $) "failed") (-650 $))))) +((-2419 (((-112) $ $) NIL)) (-3107 (((-650 |#1|) $) 19)) (-3007 (((-112) $) 49)) (-4382 (((-3 (-678 |#1|) "failed") $) 56)) (-3152 (((-678 |#1|) $) 54)) (-3527 (($ $) 23)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-3847 (((-777) $) 61)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-678 |#1|) $) 21)) (-3798 (((-868) $) 47) (($ (-678 |#1|)) 26) (((-825 |#1|) $) 36) (($ |#1|) 25)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 9 T CONST)) (-4425 (((-650 (-678 |#1|)) $) 28)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 12)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 67))) +(((-900 |#1|) (-13 (-856) (-1047 (-678 |#1|)) (-10 -8 (-15 1 ($) -3711) (-15 -3798 ((-825 |#1|) $)) (-15 -3798 ($ |#1|)) (-15 -3515 ((-678 |#1|) $)) (-15 -3847 ((-777) $)) (-15 -4425 ((-650 (-678 |#1|)) $)) (-15 -3527 ($ $)) (-15 -3007 ((-112) $)) (-15 -3107 ((-650 |#1|) $)))) (-856)) (T -900)) +((-1817 (*1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-3798 (*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-4425 (*1 *2 *1) (-12 (-5 *2 (-650 (-678 *3))) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-3527 (*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856))))) +(-13 (-856) (-1047 (-678 |#1|)) (-10 -8 (-15 (-1817) ($) -3711) (-15 -3798 ((-825 |#1|) $)) (-15 -3798 ($ |#1|)) (-15 -3515 ((-678 |#1|) $)) (-15 -3847 ((-777) $)) (-15 -4425 ((-650 (-678 |#1|)) $)) (-15 -3527 ($ $)) (-15 -3007 ((-112) $)) (-15 -3107 ((-650 |#1|) $)))) +((-3980 ((|#1| |#1| |#1|) 19))) +(((-901 |#1| |#2|) (-10 -7 (-15 -3980 (|#1| |#1| |#1|))) (-1252 |#2|) (-1058)) (T -901)) +((-3980 (*1 *2 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-901 *2 *3)) (-4 *2 (-1252 *3))))) +(-10 -7 (-15 -3980 (|#1| |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1643 (((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3359 (((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 14)) (-2923 (((-112) $ $) 6))) +(((-902) (-141)) (T -902)) +((-1643 (*1 *2 *3 *4) (-12 (-4 *1 (-902)) (-5 *3 (-1072)) (-5 *4 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) (-3359 (*1 *2 *3) (-12 (-4 *1 (-902)) (-5 *3 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *2 (-1044))))) +(-13 (-1109) (-10 -7 (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| |explanations| (-1168))) (-1072) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))) (-15 -3359 ((-1044) (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2781 ((|#1| |#1| (-777)) 29)) (-2180 (((-3 |#1| "failed") |#1| |#1|) 26)) (-4022 (((-3 (-2 (|:| -4399 |#1|) (|:| -4411 |#1|)) "failed") |#1| (-777) (-777)) 32) (((-650 |#1|) |#1|) 39))) +(((-903 |#1| |#2|) (-10 -7 (-15 -4022 ((-650 |#1|) |#1|)) (-15 -4022 ((-3 (-2 (|:| -4399 |#1|) (|:| -4411 |#1|)) "failed") |#1| (-777) (-777))) (-15 -2180 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2781 (|#1| |#1| (-777)))) (-1252 |#2|) (-368)) (T -903)) +((-2781 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-5 *1 (-903 *2 *4)) (-4 *2 (-1252 *4)))) (-2180 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-368)) (-5 *1 (-903 *2 *3)) (-4 *2 (-1252 *3)))) (-4022 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-777)) (-4 *5 (-368)) (-5 *2 (-2 (|:| -4399 *3) (|:| -4411 *3))) (-5 *1 (-903 *3 *5)) (-4 *3 (-1252 *5)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -4022 ((-650 |#1|) |#1|)) (-15 -4022 ((-3 (-2 (|:| -4399 |#1|) (|:| -4411 |#1|)) "failed") |#1| (-777) (-777))) (-15 -2180 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2781 (|#1| |#1| (-777)))) +((-3884 (((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168)) 106) (((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168) (-227)) 102) (((-1044) (-905) (-1072)) 94) (((-1044) (-905)) 95)) (-1643 (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905) (-1072)) 65) (((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905)) 67))) +(((-904) (-10 -7 (-15 -3884 ((-1044) (-905))) (-15 -3884 ((-1044) (-905) (-1072))) (-15 -3884 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168) (-227))) (-15 -3884 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905) (-1072))))) (T -904)) +((-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-905)) (-5 *4 (-1072)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-904)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-905)) (-5 *2 (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168))))) (-5 *1 (-904)))) (-3884 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168)) (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) (-5 *2 (-1044)) (-5 *1 (-904)))) (-3884 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168)) (-5 *8 (-227)) (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) (-5 *2 (-1044)) (-5 *1 (-904)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-905)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-904)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-905)) (-5 *2 (-1044)) (-5 *1 (-904))))) +(-10 -7 (-15 -3884 ((-1044) (-905))) (-15 -3884 ((-1044) (-905) (-1072))) (-15 -3884 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168) (-227))) (-15 -3884 ((-1044) (-384) (-384) (-384) (-384) (-777) (-777) (-650 (-320 (-384))) (-650 (-650 (-320 (-384)))) (-1168))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905))) (-15 -1643 ((-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) (|:| |explanations| (-650 (-1168)))) (-905) (-1072)))) +((-2419 (((-112) $ $) NIL)) (-3152 (((-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))) $) 19)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 21) (($ (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) 18)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-905) (-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))) (-15 -3152 ((-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))) $))))) (T -905)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *1 (-905)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227)))) (-5 *1 (-905))))) +(-13 (-1109) (-10 -8 (-15 -3798 ($ (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))))) (-15 -3152 ((-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| (-650 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-777)) (|:| |boundaryType| (-570)) (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) (|:| |tol| (-227))) $)))) +((-3519 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) 10) (($ $ |#2| (-777)) 15) (($ $ (-650 |#2|) (-650 (-777))) 18)) (-2835 (($ $ |#2|) 19) (($ $ (-650 |#2|)) 21) (($ $ |#2| (-777)) 22) (($ $ (-650 |#2|) (-650 (-777))) 24))) +(((-906 |#1| |#2|) (-10 -8 (-15 -2835 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -2835 (|#1| |#1| |#2| (-777))) (-15 -2835 (|#1| |#1| (-650 |#2|))) (-15 -2835 (|#1| |#1| |#2|)) (-15 -3519 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -3519 (|#1| |#1| |#2| (-777))) (-15 -3519 (|#1| |#1| (-650 |#2|))) (-15 -3519 (|#1| |#1| |#2|))) (-907 |#2|) (-1109)) (T -906)) +NIL +(-10 -8 (-15 -2835 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -2835 (|#1| |#1| |#2| (-777))) (-15 -2835 (|#1| |#1| (-650 |#2|))) (-15 -2835 (|#1| |#1| |#2|)) (-15 -3519 (|#1| |#1| (-650 |#2|) (-650 (-777)))) (-15 -3519 (|#1| |#1| |#2| (-777))) (-15 -3519 (|#1| |#1| (-650 |#2|))) (-15 -3519 (|#1| |#1| |#2|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3519 (($ $ |#1|) 46) (($ $ (-650 |#1|)) 45) (($ $ |#1| (-777)) 44) (($ $ (-650 |#1|) (-650 (-777))) 43)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ |#1|) 42) (($ $ (-650 |#1|)) 41) (($ $ |#1| (-777)) 40) (($ $ (-650 |#1|) (-650 (-777))) 39)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-907 |#1|) (-141) (-1109)) (T -907)) +((-3519 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4)) (-4 *4 (-1109)))) (-2835 (*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-2835 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109)))) (-2835 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109)))) (-2835 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4)) (-4 *4 (-1109))))) +(-13 (-1058) (-10 -8 (-15 -3519 ($ $ |t#1|)) (-15 -3519 ($ $ (-650 |t#1|))) (-15 -3519 ($ $ |t#1| (-777))) (-15 -3519 ($ $ (-650 |t#1|) (-650 (-777)))) (-15 -2835 ($ $ |t#1|)) (-15 -2835 ($ $ (-650 |t#1|))) (-15 -2835 ($ $ |t#1| (-777))) (-15 -2835 ($ $ (-650 |t#1|) (-650 (-777)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) 26)) (-3636 (((-112) $ (-777)) NIL)) (-3470 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-1959 (($ $ $) NIL (|has| $ (-6 -4449)))) (-3717 (($ $ $) NIL (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) (($ $ "left" $) NIL (|has| $ (-6 -4449))) (($ $ "right" $) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4411 (($ $) 25)) (-3874 (($ |#1|) 12) (($ $ $) 17)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4399 (($ $) 23)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) 20)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3536 (((-570) $ $) NIL)) (-3680 (((-112) $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1212 |#1|) $) 9) (((-868) $) 29 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 21 (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-908 |#1|) (-13 (-120 |#1|) (-619 (-1212 |#1|)) (-10 -8 (-15 -3874 ($ |#1|)) (-15 -3874 ($ $ $)))) (-1109)) (T -908)) +((-3874 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109)))) (-3874 (*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109))))) +(-13 (-120 |#1|) (-619 (-1212 |#1|)) (-10 -8 (-15 -3874 ($ |#1|)) (-15 -3874 ($ $ $)))) +((-2658 ((|#2| (-1151 |#1| |#2|)) 50))) +(((-909 |#1| |#2|) (-10 -7 (-15 -2658 (|#2| (-1151 |#1| |#2|)))) (-928) (-13 (-1058) (-10 -7 (-6 (-4450 "*"))))) (T -909)) +((-2658 (*1 *2 *3) (-12 (-5 *3 (-1151 *4 *2)) (-14 *4 (-928)) (-4 *2 (-13 (-1058) (-10 -7 (-6 (-4450 "*"))))) (-5 *1 (-909 *4 *2))))) +(-10 -7 (-15 -2658 (|#2| (-1151 |#1| |#2|)))) +((-2419 (((-112) $ $) 7)) (-3734 (($) 19 T CONST)) (-2229 (((-3 $ "failed") $) 16)) (-3708 (((-1111 |#1|) $ |#1|) 33)) (-2481 (((-112) $) 18)) (-3382 (($ $ $) 31 (-2779 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-2876 (($ $ $) 30 (-2779 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-4122 (((-1168) $) 10)) (-1820 (($ $) 25)) (-3551 (((-1129) $) 11)) (-1725 ((|#1| $ |#1|) 35)) (-1872 ((|#1| $ |#1|) 34)) (-1600 (($ (-650 (-650 |#1|))) 36)) (-3576 (($ (-650 |#1|)) 37)) (-3897 (($ $ $) 22)) (-4307 (($ $ $) 21)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1817 (($) 20 T CONST)) (-2981 (((-112) $ $) 28 (-2779 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-2959 (((-112) $ $) 27 (-2779 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 29 (-2779 (|has| |#1| (-856)) (|has| |#1| (-373))))) (-2948 (((-112) $ $) 32)) (-3037 (($ $ $) 24)) (** (($ $ (-928)) 14) (($ $ (-777)) 17) (($ $ (-570)) 23)) (* (($ $ $) 15))) +(((-910 |#1|) (-141) (-1109)) (T -910)) +((-3576 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-910 *3)))) (-1600 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-4 *1 (-910 *3)))) (-1725 (*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1109)))) (-1872 (*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1109)))) (-3708 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-1111 *3)))) (-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(-13 (-479) (-10 -8 (-15 -3576 ($ (-650 |t#1|))) (-15 -1600 ($ (-650 (-650 |t#1|)))) (-15 -1725 (|t#1| $ |t#1|)) (-15 -1872 (|t#1| $ |t#1|)) (-15 -3708 ((-1111 |t#1|) $ |t#1|)) (-15 -2948 ((-112) $ $)) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-373)) (-6 (-856)) |%noBranch|))) +(((-102) . T) ((-619 (-868)) . T) ((-479) . T) ((-732) . T) ((-856) -2779 (|has| |#1| (-856)) (|has| |#1| (-373))) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-2764 (((-650 (-650 (-777))) $) 164)) (-2166 (((-650 (-777)) (-912 |#1|) $) 192)) (-2230 (((-650 (-777)) (-912 |#1|) $) 193)) (-2848 (((-650 (-912 |#1|)) $) 153)) (-3408 (((-912 |#1|) $ (-570)) 158) (((-912 |#1|) $) 159)) (-2407 (($ (-650 (-912 |#1|))) 166)) (-4202 (((-777) $) 160)) (-3456 (((-1111 (-1111 |#1|)) $) 190)) (-3708 (((-1111 |#1|) $ |#1|) 181) (((-1111 (-1111 |#1|)) $ (-1111 |#1|)) 201) (((-1111 (-650 |#1|)) $ (-650 |#1|)) 204)) (-2570 (((-1111 |#1|) $) 156)) (-1935 (((-112) (-912 |#1|) $) 141)) (-4122 (((-1168) $) NIL)) (-2054 (((-1281) $) 146) (((-1281) $ (-570) (-570)) 205)) (-3551 (((-1129) $) NIL)) (-1547 (((-650 (-912 |#1|)) $) 147)) (-1872 (((-912 |#1|) $ (-777)) 154)) (-3324 (((-777) $) 161)) (-3798 (((-868) $) 178) (((-650 (-912 |#1|)) $) 28) (($ (-650 (-912 |#1|))) 165)) (-1319 (((-112) $ $) NIL)) (-4364 (((-650 |#1|) $) 163)) (-2923 (((-112) $ $) 198)) (-2969 (((-112) $ $) 196)) (-2948 (((-112) $ $) 195))) +(((-911 |#1|) (-13 (-1109) (-10 -8 (-15 -3798 ((-650 (-912 |#1|)) $)) (-15 -1547 ((-650 (-912 |#1|)) $)) (-15 -1872 ((-912 |#1|) $ (-777))) (-15 -3408 ((-912 |#1|) $ (-570))) (-15 -3408 ((-912 |#1|) $)) (-15 -4202 ((-777) $)) (-15 -3324 ((-777) $)) (-15 -4364 ((-650 |#1|) $)) (-15 -2848 ((-650 (-912 |#1|)) $)) (-15 -2764 ((-650 (-650 (-777))) $)) (-15 -3798 ($ (-650 (-912 |#1|)))) (-15 -2407 ($ (-650 (-912 |#1|)))) (-15 -3708 ((-1111 |#1|) $ |#1|)) (-15 -3456 ((-1111 (-1111 |#1|)) $)) (-15 -3708 ((-1111 (-1111 |#1|)) $ (-1111 |#1|))) (-15 -3708 ((-1111 (-650 |#1|)) $ (-650 |#1|))) (-15 -1935 ((-112) (-912 |#1|) $)) (-15 -2166 ((-650 (-777)) (-912 |#1|) $)) (-15 -2230 ((-650 (-777)) (-912 |#1|) $)) (-15 -2570 ((-1111 |#1|) $)) (-15 -2948 ((-112) $ $)) (-15 -2969 ((-112) $ $)) (-15 -2054 ((-1281) $)) (-15 -2054 ((-1281) $ (-570) (-570))))) (-1109)) (T -911)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-1547 (*1 *2 *1) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1109)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4)) (-4 *4 (-1109)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-912 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-777)))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3)))) (-2407 (*1 *1 *2) (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3)))) (-3708 (*1 *2 *1 *3) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-1111 (-1111 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-3708 (*1 *2 *1 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-911 *4)) (-5 *3 (-1111 *4)))) (-3708 (*1 *2 *1 *3) (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-650 *4))) (-5 *1 (-911 *4)) (-5 *3 (-650 *4)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-911 *4)))) (-2166 (*1 *2 *3 *1) (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777))) (-5 *1 (-911 *4)))) (-2230 (*1 *2 *3 *1) (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777))) (-5 *1 (-911 *4)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2948 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2969 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) (-2054 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-911 *4)) (-4 *4 (-1109))))) +(-13 (-1109) (-10 -8 (-15 -3798 ((-650 (-912 |#1|)) $)) (-15 -1547 ((-650 (-912 |#1|)) $)) (-15 -1872 ((-912 |#1|) $ (-777))) (-15 -3408 ((-912 |#1|) $ (-570))) (-15 -3408 ((-912 |#1|) $)) (-15 -4202 ((-777) $)) (-15 -3324 ((-777) $)) (-15 -4364 ((-650 |#1|) $)) (-15 -2848 ((-650 (-912 |#1|)) $)) (-15 -2764 ((-650 (-650 (-777))) $)) (-15 -3798 ($ (-650 (-912 |#1|)))) (-15 -2407 ($ (-650 (-912 |#1|)))) (-15 -3708 ((-1111 |#1|) $ |#1|)) (-15 -3456 ((-1111 (-1111 |#1|)) $)) (-15 -3708 ((-1111 (-1111 |#1|)) $ (-1111 |#1|))) (-15 -3708 ((-1111 (-650 |#1|)) $ (-650 |#1|))) (-15 -1935 ((-112) (-912 |#1|) $)) (-15 -2166 ((-650 (-777)) (-912 |#1|) $)) (-15 -2230 ((-650 (-777)) (-912 |#1|) $)) (-15 -2570 ((-1111 |#1|) $)) (-15 -2948 ((-112) $ $)) (-15 -2969 ((-112) $ $)) (-15 -2054 ((-1281) $)) (-15 -2054 ((-1281) $ (-570) (-570))))) +((-2419 (((-112) $ $) NIL)) (-3360 (((-650 $) (-650 $)) 103)) (-2579 (((-570) $) 84)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-4202 (((-777) $) 81)) (-3708 (((-1111 |#1|) $ |#1|) 72)) (-2481 (((-112) $) NIL)) (-2639 (((-112) $) 88)) (-3110 (((-777) $) 85)) (-2570 (((-1111 |#1|) $) 61)) (-3382 (($ $ $) NIL (-2779 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-2876 (($ $ $) NIL (-2779 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-1573 (((-2 (|:| |preimage| (-650 |#1|)) (|:| |image| (-650 |#1|))) $) 56)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 131)) (-3551 (((-1129) $) NIL)) (-4115 (((-1111 |#1|) $) 139 (|has| |#1| (-373)))) (-3699 (((-112) $) 82)) (-1725 ((|#1| $ |#1|) 70)) (-1872 ((|#1| $ |#1|) 133)) (-3324 (((-777) $) 63)) (-1600 (($ (-650 (-650 |#1|))) 118)) (-3486 (((-980) $) 76)) (-3576 (($ (-650 |#1|)) 33)) (-3897 (($ $ $) NIL)) (-4307 (($ $ $) NIL)) (-2997 (($ (-650 (-650 |#1|))) 58)) (-3835 (($ (-650 (-650 |#1|))) 123)) (-4019 (($ (-650 |#1|)) 135)) (-3798 (((-868) $) 117) (($ (-650 (-650 |#1|))) 91) (($ (-650 |#1|)) 92)) (-1319 (((-112) $ $) NIL)) (-1817 (($) 24 T CONST)) (-2981 (((-112) $ $) NIL (-2779 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-2923 (((-112) $ $) 68)) (-2969 (((-112) $ $) NIL (-2779 (|has| |#1| (-373)) (|has| |#1| (-856))))) (-2948 (((-112) $ $) 90)) (-3037 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ $ $) 34))) +(((-912 |#1|) (-13 (-910 |#1|) (-10 -8 (-15 -1573 ((-2 (|:| |preimage| (-650 |#1|)) (|:| |image| (-650 |#1|))) $)) (-15 -2997 ($ (-650 (-650 |#1|)))) (-15 -3798 ($ (-650 (-650 |#1|)))) (-15 -3798 ($ (-650 |#1|))) (-15 -3835 ($ (-650 (-650 |#1|)))) (-15 -3324 ((-777) $)) (-15 -2570 ((-1111 |#1|) $)) (-15 -3486 ((-980) $)) (-15 -4202 ((-777) $)) (-15 -3110 ((-777) $)) (-15 -2579 ((-570) $)) (-15 -3699 ((-112) $)) (-15 -2639 ((-112) $)) (-15 -3360 ((-650 $) (-650 $))) (IF (|has| |#1| (-373)) (-15 -4115 ((-1111 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-551)) (-15 -4019 ($ (-650 |#1|))) (IF (|has| |#1| (-373)) (-15 -4019 ($ (-650 |#1|))) |%noBranch|)))) (-1109)) (T -912)) +((-1573 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-650 *3)) (|:| |image| (-650 *3)))) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-3835 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-980)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-2639 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-3360 (*1 *2 *2) (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1111 *3)) (-5 *1 (-912 *3)) (-4 *3 (-373)) (-4 *3 (-1109)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3))))) +(-13 (-910 |#1|) (-10 -8 (-15 -1573 ((-2 (|:| |preimage| (-650 |#1|)) (|:| |image| (-650 |#1|))) $)) (-15 -2997 ($ (-650 (-650 |#1|)))) (-15 -3798 ($ (-650 (-650 |#1|)))) (-15 -3798 ($ (-650 |#1|))) (-15 -3835 ($ (-650 (-650 |#1|)))) (-15 -3324 ((-777) $)) (-15 -2570 ((-1111 |#1|) $)) (-15 -3486 ((-980) $)) (-15 -4202 ((-777) $)) (-15 -3110 ((-777) $)) (-15 -2579 ((-570) $)) (-15 -3699 ((-112) $)) (-15 -2639 ((-112) $)) (-15 -3360 ((-650 $) (-650 $))) (IF (|has| |#1| (-373)) (-15 -4115 ((-1111 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-551)) (-15 -4019 ($ (-650 |#1|))) (IF (|has| |#1| (-373)) (-15 -4019 ($ (-650 |#1|))) |%noBranch|)))) +((-3301 (((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|)) 159)) (-2911 ((|#1|) 97)) (-4389 (((-424 (-1182 |#4|)) (-1182 |#4|)) 168)) (-2640 (((-424 (-1182 |#4|)) (-650 |#3|) (-1182 |#4|)) 84)) (-3491 (((-424 (-1182 |#4|)) (-1182 |#4|)) 178)) (-1914 (((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|) |#3|) 113))) +(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3301 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|))) (-15 -3491 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -4389 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -2911 (|#1|)) (-15 -1914 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|) |#3|)) (-15 -2640 ((-424 (-1182 |#4|)) (-650 |#3|) (-1182 |#4|)))) (-916) (-799) (-856) (-956 |#1| |#2| |#3|)) (T -913)) +((-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *7)) (-4 *7 (-856)) (-4 *5 (-916)) (-4 *6 (-799)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-424 (-1182 *8))) (-5 *1 (-913 *5 *6 *7 *8)) (-5 *4 (-1182 *8)))) (-1914 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7)) (-4 *7 (-956 *5 *6 *4)) (-4 *5 (-916)) (-4 *6 (-799)) (-4 *4 (-856)) (-5 *1 (-913 *5 *6 *4 *7)))) (-2911 (*1 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916)) (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) (-4389 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7))) (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) (-3301 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-913 *4 *5 *6 *7))))) +(-10 -7 (-15 -3301 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|))) (-15 -3491 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -4389 ((-424 (-1182 |#4|)) (-1182 |#4|))) (-15 -2911 (|#1|)) (-15 -1914 ((-3 (-650 (-1182 |#4|)) "failed") (-650 (-1182 |#4|)) (-1182 |#4|) |#3|)) (-15 -2640 ((-424 (-1182 |#4|)) (-650 |#3|) (-1182 |#4|)))) +((-3301 (((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|)) 41)) (-2911 ((|#1|) 75)) (-4389 (((-424 (-1182 |#2|)) (-1182 |#2|)) 124)) (-2640 (((-424 (-1182 |#2|)) (-1182 |#2|)) 108)) (-3491 (((-424 (-1182 |#2|)) (-1182 |#2|)) 135))) +(((-914 |#1| |#2|) (-10 -7 (-15 -3301 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|))) (-15 -3491 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -4389 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -2911 (|#1|)) (-15 -2640 ((-424 (-1182 |#2|)) (-1182 |#2|)))) (-916) (-1252 |#1|)) (T -914)) +((-2640 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1252 *4)) (-5 *2 (-424 (-1182 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))) (-2911 (*1 *2) (-12 (-4 *2 (-916)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1252 *2)))) (-4389 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1252 *4)) (-5 *2 (-424 (-1182 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))) (-3491 (*1 *2 *3) (-12 (-4 *4 (-916)) (-4 *5 (-1252 *4)) (-5 *2 (-424 (-1182 *5))) (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5)))) (-3301 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-916)) (-5 *1 (-914 *4 *5))))) +(-10 -7 (-15 -3301 ((-3 (-650 (-1182 |#2|)) "failed") (-650 (-1182 |#2|)) (-1182 |#2|))) (-15 -3491 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -4389 ((-424 (-1182 |#2|)) (-1182 |#2|))) (-15 -2911 (|#1|)) (-15 -2640 ((-424 (-1182 |#2|)) (-1182 |#2|)))) +((-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 42)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 18)) (-2917 (((-3 $ "failed") $) 36))) +(((-915 |#1|) (-10 -8 (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)))) (-916)) (T -915)) +NIL +(-10 -8 (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-2900 (((-424 (-1182 $)) (-1182 $)) 66)) (-3696 (($ $) 57)) (-2555 (((-424 $) $) 58)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 63)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-3701 (((-112) $) 59)) (-2481 (((-112) $) 35)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3484 (((-424 (-1182 $)) (-1182 $)) 64)) (-3623 (((-424 (-1182 $)) (-1182 $)) 65)) (-3801 (((-424 $) $) 56)) (-2410 (((-3 $ "failed") $ $) 48)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 62 (|has| $ (-146)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2917 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-916) (-141)) (T -916)) +((-1311 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-916)))) (-2900 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))) (-3623 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))) (-3484 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1)))) (-4226 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-650 (-1182 *1))) (-5 *3 (-1182 *1)) (-4 *1 (-916)))) (-2409 (*1 *2 *3) (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-146)) (-4 *1 (-916)) (-5 *2 (-1276 *1)))) (-2917 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-916))))) +(-13 (-1230) (-10 -8 (-15 -2900 ((-424 (-1182 $)) (-1182 $))) (-15 -3623 ((-424 (-1182 $)) (-1182 $))) (-15 -3484 ((-424 (-1182 $)) (-1182 $))) (-15 -1311 ((-1182 $) (-1182 $) (-1182 $))) (-15 -4226 ((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $))) (IF (|has| $ (-146)) (PROGN (-15 -2409 ((-3 (-1276 $) "failed") (-695 $))) (-15 -2917 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2714 (((-112) $) NIL)) (-3254 (((-777)) NIL)) (-3142 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-2299 (((-1199 (-928) (-777)) (-570)) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 $ "failed") $) NIL)) (-3152 (($ $) NIL)) (-2427 (($ (-1276 $)) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3740 (($) NIL)) (-4316 (((-112) $) NIL)) (-3640 (($ $) NIL) (($ $ (-777)) NIL)) (-3701 (((-112) $) NIL)) (-4202 (((-839 (-928)) $) NIL) (((-928) $) NIL)) (-2481 (((-112) $) NIL)) (-3379 (($) NIL (|has| $ (-373)))) (-4246 (((-112) $) NIL (|has| $ (-373)))) (-2233 (($ $ (-928)) NIL (|has| $ (-373))) (($ $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2780 (((-1182 $) $ (-928)) NIL (|has| $ (-373))) (((-1182 $) $) NIL)) (-2484 (((-928) $) NIL)) (-2326 (((-1182 $) $) NIL (|has| $ (-373)))) (-2874 (((-3 (-1182 $) "failed") $ $) NIL (|has| $ (-373))) (((-1182 $) $) NIL (|has| $ (-373)))) (-3097 (($ $ (-1182 $)) NIL (|has| $ (-373)))) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL T CONST)) (-2155 (($ (-928)) NIL)) (-3288 (((-112) $) NIL)) (-3551 (((-1129) $) NIL)) (-2335 (($) NIL (|has| $ (-373)))) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL)) (-3801 (((-424 $) $) NIL)) (-2877 (((-928)) NIL) (((-839 (-928))) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2174 (((-3 (-777) "failed") $ $) NIL) (((-777) $) NIL)) (-3374 (((-135)) NIL)) (-3519 (($ $ (-777)) NIL) (($ $) NIL)) (-3324 (((-928) $) NIL) (((-839 (-928)) $) NIL)) (-1881 (((-1182 $)) NIL)) (-2042 (($) NIL)) (-3476 (($) NIL (|has| $ (-373)))) (-1861 (((-695 $) (-1276 $)) NIL) (((-1276 $) $) NIL)) (-1411 (((-570) $) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL)) (-2917 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $) (-928)) NIL) (((-1276 $)) NIL)) (-3258 (((-112) $ $) NIL)) (-4059 (((-112) $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2663 (($ $ (-777)) NIL (|has| $ (-373))) (($ $) NIL (|has| $ (-373)))) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-917 |#1|) (-13 (-354) (-333 $) (-620 (-570))) (-928)) (T -917)) +NIL +(-13 (-354) (-333 $) (-620 (-570))) +((-3983 (((-3 (-2 (|:| -4202 (-777)) (|:| -1694 |#5|)) "failed") (-341 |#2| |#3| |#4| |#5|)) 77)) (-3164 (((-112) (-341 |#2| |#3| |#4| |#5|)) 17)) (-4202 (((-3 (-777) "failed") (-341 |#2| |#3| |#4| |#5|)) 15))) +(((-918 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-3 (-777) "failed") (-341 |#2| |#3| |#4| |#5|))) (-15 -3164 ((-112) (-341 |#2| |#3| |#4| |#5|))) (-15 -3983 ((-3 (-2 (|:| -4202 (-777)) (|:| -1694 |#5|)) "failed") (-341 |#2| |#3| |#4| |#5|)))) (-13 (-562) (-1047 (-570))) (-436 |#1|) (-1252 |#2|) (-1252 (-413 |#3|)) (-347 |#2| |#3| |#4|)) (T -918)) +((-3983 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-2 (|:| -4202 (-777)) (|:| -1694 *8))) (-5 *1 (-918 *4 *5 *6 *7 *8)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112)) (-5 *1 (-918 *4 *5 *6 *7 *8)))) (-4202 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-777)) (-5 *1 (-918 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4202 ((-3 (-777) "failed") (-341 |#2| |#3| |#4| |#5|))) (-15 -3164 ((-112) (-341 |#2| |#3| |#4| |#5|))) (-15 -3983 ((-3 (-2 (|:| -4202 (-777)) (|:| -1694 |#5|)) "failed") (-341 |#2| |#3| |#4| |#5|)))) +((-3983 (((-3 (-2 (|:| -4202 (-777)) (|:| -1694 |#3|)) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)) 64)) (-3164 (((-112) (-341 (-413 (-570)) |#1| |#2| |#3|)) 16)) (-4202 (((-3 (-777) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)) 14))) +(((-919 |#1| |#2| |#3|) (-10 -7 (-15 -4202 ((-3 (-777) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -3164 ((-112) (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -3983 ((-3 (-2 (|:| -4202 (-777)) (|:| -1694 |#3|)) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)))) (-1252 (-413 (-570))) (-1252 (-413 |#1|)) (-347 (-413 (-570)) |#1| |#2|)) (T -919)) +((-3983 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-2 (|:| -4202 (-777)) (|:| -1694 *6))) (-5 *1 (-919 *4 *5 *6)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-919 *4 *5 *6)))) (-4202 (*1 *2 *3) (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-777)) (-5 *1 (-919 *4 *5 *6))))) +(-10 -7 (-15 -4202 ((-3 (-777) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -3164 ((-112) (-341 (-413 (-570)) |#1| |#2| |#3|))) (-15 -3983 ((-3 (-2 (|:| -4202 (-777)) (|:| -1694 |#3|)) "failed") (-341 (-413 (-570)) |#1| |#2| |#3|)))) +((-2039 ((|#2| |#2|) 26)) (-1441 (((-570) (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))))) 15)) (-2370 (((-928) (-570)) 38)) (-1772 (((-570) |#2|) 45)) (-3588 (((-570) |#2|) 21) (((-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))) |#1|) 20))) +(((-920 |#1| |#2|) (-10 -7 (-15 -2370 ((-928) (-570))) (-15 -3588 ((-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))) |#1|)) (-15 -3588 ((-570) |#2|)) (-15 -1441 ((-570) (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))))) (-15 -1772 ((-570) |#2|)) (-15 -2039 (|#2| |#2|))) (-1252 (-413 (-570))) (-1252 (-413 |#1|))) (T -920)) +((-2039 (*1 *2 *2) (-12 (-4 *3 (-1252 (-413 (-570)))) (-5 *1 (-920 *3 *2)) (-4 *2 (-1252 (-413 *3))))) (-1772 (*1 *2 *3) (-12 (-4 *4 (-1252 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3)) (-4 *3 (-1252 (-413 *4))))) (-1441 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))))) (-4 *4 (-1252 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *5)) (-4 *5 (-1252 (-413 *4))))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-1252 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3)) (-4 *3 (-1252 (-413 *4))))) (-3588 (*1 *2 *3) (-12 (-4 *3 (-1252 (-413 (-570)))) (-5 *2 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))) (-5 *1 (-920 *3 *4)) (-4 *4 (-1252 (-413 *3))))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-570)) (-4 *4 (-1252 (-413 *3))) (-5 *2 (-928)) (-5 *1 (-920 *4 *5)) (-4 *5 (-1252 (-413 *4)))))) +(-10 -7 (-15 -2370 ((-928) (-570))) (-15 -3588 ((-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))) |#1|)) (-15 -3588 ((-570) |#2|)) (-15 -1441 ((-570) (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))))) (-15 -1772 ((-570) |#2|)) (-15 -2039 (|#2| |#2|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 ((|#1| $) 100)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2372 (($ $ $) NIL)) (-2229 (((-3 $ "failed") $) 94)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2243 (($ |#1| (-424 |#1|)) 92)) (-3275 (((-1182 |#1|) |#1| |#1|) 53)) (-1846 (($ $) 61)) (-2481 (((-112) $) NIL)) (-1387 (((-570) $) 97)) (-1533 (($ $ (-570)) 99)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2621 ((|#1| $) 96)) (-2441 (((-424 |#1|) $) 95)) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) 93)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-1814 (($ $) 50)) (-3798 (((-868) $) 124) (($ (-570)) 73) (($ $) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 41) (((-413 |#1|) $) 78) (($ (-413 (-424 |#1|))) 86)) (-2862 (((-777)) 71 T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) 26 T CONST)) (-1817 (($) 15 T CONST)) (-2923 (((-112) $ $) 87)) (-3037 (($ $ $) NIL)) (-3026 (($ $) 108) (($ $ $) NIL)) (-3014 (($ $ $) 49)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 110) (($ $ $) 48) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-921 |#1|) (-13 (-368) (-38 |#1|) (-10 -8 (-15 -3798 ((-413 |#1|) $)) (-15 -3798 ($ (-413 (-424 |#1|)))) (-15 -1814 ($ $)) (-15 -2441 ((-424 |#1|) $)) (-15 -2621 (|#1| $)) (-15 -1533 ($ $ (-570))) (-15 -1387 ((-570) $)) (-15 -3275 ((-1182 |#1|) |#1| |#1|)) (-15 -1846 ($ $)) (-15 -2243 ($ |#1| (-424 |#1|))) (-15 -3356 (|#1| $)))) (-311)) (T -921)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-413 (-424 *3))) (-4 *3 (-311)) (-5 *1 (-921 *3)))) (-1814 (*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-424 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-2621 (*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) (-1533 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *2 (-1182 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) (-1846 (*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) (-2243 (*1 *1 *2 *3) (-12 (-5 *3 (-424 *2)) (-4 *2 (-311)) (-5 *1 (-921 *2)))) (-3356 (*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311))))) +(-13 (-368) (-38 |#1|) (-10 -8 (-15 -3798 ((-413 |#1|) $)) (-15 -3798 ($ (-413 (-424 |#1|)))) (-15 -1814 ($ $)) (-15 -2441 ((-424 |#1|) $)) (-15 -2621 (|#1| $)) (-15 -1533 ($ $ (-570))) (-15 -1387 ((-570) $)) (-15 -3275 ((-1182 |#1|) |#1| |#1|)) (-15 -1846 ($ $)) (-15 -2243 ($ |#1| (-424 |#1|))) (-15 -3356 (|#1| $)))) +((-2243 (((-52) (-959 |#1|) (-424 (-959 |#1|)) (-1186)) 17) (((-52) (-413 (-959 |#1|)) (-1186)) 18))) +(((-922 |#1|) (-10 -7 (-15 -2243 ((-52) (-413 (-959 |#1|)) (-1186))) (-15 -2243 ((-52) (-959 |#1|) (-424 (-959 |#1|)) (-1186)))) (-13 (-311) (-148))) (T -922)) +((-2243 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-424 (-959 *6))) (-5 *5 (-1186)) (-5 *3 (-959 *6)) (-4 *6 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *6)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *5))))) +(-10 -7 (-15 -2243 ((-52) (-413 (-959 |#1|)) (-1186))) (-15 -2243 ((-52) (-959 |#1|) (-424 (-959 |#1|)) (-1186)))) +((-3168 ((|#4| (-650 |#4|)) 149) (((-1182 |#4|) (-1182 |#4|) (-1182 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1869 (((-1182 |#4|) (-650 (-1182 |#4|))) 142) (((-1182 |#4|) (-1182 |#4|) (-1182 |#4|)) 63) ((|#4| (-650 |#4|)) 71) ((|#4| |#4| |#4|) 109))) +(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1869 (|#4| |#4| |#4|)) (-15 -1869 (|#4| (-650 |#4|))) (-15 -1869 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -1869 ((-1182 |#4|) (-650 (-1182 |#4|)))) (-15 -3168 (|#4| |#4| |#4|)) (-15 -3168 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -3168 (|#4| (-650 |#4|)))) (-799) (-856) (-311) (-956 |#3| |#1| |#2|)) (T -923)) +((-3168 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)))) (-3168 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6)))) (-3168 (*1 *2 *2 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-650 (-1182 *7))) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-1182 *7)) (-5 *1 (-923 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) (-1869 (*1 *2 *2 *2) (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5)) (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)))) (-1869 (*1 *2 *2 *2) (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4))))) +(-10 -7 (-15 -1869 (|#4| |#4| |#4|)) (-15 -1869 (|#4| (-650 |#4|))) (-15 -1869 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -1869 ((-1182 |#4|) (-650 (-1182 |#4|)))) (-15 -3168 (|#4| |#4| |#4|)) (-15 -3168 ((-1182 |#4|) (-1182 |#4|) (-1182 |#4|))) (-15 -3168 (|#4| (-650 |#4|)))) +((-4337 (((-911 (-570)) (-980)) 38) (((-911 (-570)) (-650 (-570))) 35)) (-1904 (((-911 (-570)) (-650 (-570))) 70) (((-911 (-570)) (-928)) 71)) (-3413 (((-911 (-570))) 39)) (-2760 (((-911 (-570))) 55) (((-911 (-570)) (-650 (-570))) 54)) (-1708 (((-911 (-570))) 53) (((-911 (-570)) (-650 (-570))) 52)) (-1996 (((-911 (-570))) 51) (((-911 (-570)) (-650 (-570))) 50)) (-2642 (((-911 (-570))) 49) (((-911 (-570)) (-650 (-570))) 48)) (-3427 (((-911 (-570))) 47) (((-911 (-570)) (-650 (-570))) 46)) (-3578 (((-911 (-570))) 57) (((-911 (-570)) (-650 (-570))) 56)) (-3938 (((-911 (-570)) (-650 (-570))) 75) (((-911 (-570)) (-928)) 77)) (-4385 (((-911 (-570)) (-650 (-570))) 72) (((-911 (-570)) (-928)) 73)) (-4230 (((-911 (-570)) (-650 (-570))) 68) (((-911 (-570)) (-928)) 69)) (-3896 (((-911 (-570)) (-650 (-928))) 60))) +(((-924) (-10 -7 (-15 -1904 ((-911 (-570)) (-928))) (-15 -1904 ((-911 (-570)) (-650 (-570)))) (-15 -4230 ((-911 (-570)) (-928))) (-15 -4230 ((-911 (-570)) (-650 (-570)))) (-15 -3896 ((-911 (-570)) (-650 (-928)))) (-15 -4385 ((-911 (-570)) (-928))) (-15 -4385 ((-911 (-570)) (-650 (-570)))) (-15 -3938 ((-911 (-570)) (-928))) (-15 -3938 ((-911 (-570)) (-650 (-570)))) (-15 -3427 ((-911 (-570)) (-650 (-570)))) (-15 -3427 ((-911 (-570)))) (-15 -2642 ((-911 (-570)) (-650 (-570)))) (-15 -2642 ((-911 (-570)))) (-15 -1996 ((-911 (-570)) (-650 (-570)))) (-15 -1996 ((-911 (-570)))) (-15 -1708 ((-911 (-570)) (-650 (-570)))) (-15 -1708 ((-911 (-570)))) (-15 -2760 ((-911 (-570)) (-650 (-570)))) (-15 -2760 ((-911 (-570)))) (-15 -3578 ((-911 (-570)) (-650 (-570)))) (-15 -3578 ((-911 (-570)))) (-15 -3413 ((-911 (-570)))) (-15 -4337 ((-911 (-570)) (-650 (-570)))) (-15 -4337 ((-911 (-570)) (-980))))) (T -924)) +((-4337 (*1 *2 *3) (-12 (-5 *3 (-980)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4337 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3413 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3578 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2760 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1708 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1996 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2642 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3427 (*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-650 (-928))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-4230 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(-10 -7 (-15 -1904 ((-911 (-570)) (-928))) (-15 -1904 ((-911 (-570)) (-650 (-570)))) (-15 -4230 ((-911 (-570)) (-928))) (-15 -4230 ((-911 (-570)) (-650 (-570)))) (-15 -3896 ((-911 (-570)) (-650 (-928)))) (-15 -4385 ((-911 (-570)) (-928))) (-15 -4385 ((-911 (-570)) (-650 (-570)))) (-15 -3938 ((-911 (-570)) (-928))) (-15 -3938 ((-911 (-570)) (-650 (-570)))) (-15 -3427 ((-911 (-570)) (-650 (-570)))) (-15 -3427 ((-911 (-570)))) (-15 -2642 ((-911 (-570)) (-650 (-570)))) (-15 -2642 ((-911 (-570)))) (-15 -1996 ((-911 (-570)) (-650 (-570)))) (-15 -1996 ((-911 (-570)))) (-15 -1708 ((-911 (-570)) (-650 (-570)))) (-15 -1708 ((-911 (-570)))) (-15 -2760 ((-911 (-570)) (-650 (-570)))) (-15 -2760 ((-911 (-570)))) (-15 -3578 ((-911 (-570)) (-650 (-570)))) (-15 -3578 ((-911 (-570)))) (-15 -3413 ((-911 (-570)))) (-15 -4337 ((-911 (-570)) (-650 (-570)))) (-15 -4337 ((-911 (-570)) (-980)))) +((-4265 (((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))) 14)) (-1929 (((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))) 13))) +(((-925 |#1|) (-10 -7 (-15 -1929 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -4265 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))))) (-458)) (T -925)) +((-4265 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458)) (-5 *1 (-925 *4)))) (-1929 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458)) (-5 *1 (-925 *4))))) +(-10 -7 (-15 -1929 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -4265 ((-650 (-959 |#1|)) (-650 (-959 |#1|)) (-650 (-1186))))) +((-3798 (((-320 |#1|) (-483)) 16))) +(((-926 |#1|) (-10 -7 (-15 -3798 ((-320 |#1|) (-483)))) (-562)) (T -926)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-483)) (-5 *2 (-320 *4)) (-5 *1 (-926 *4)) (-4 *4 (-562))))) +(-10 -7 (-15 -3798 ((-320 |#1|) (-483)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-2481 (((-112) $) 35)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-927) (-141)) (T -927)) +((-2851 (*1 *2 *3) (-12 (-4 *1 (-927)) (-5 *2 (-2 (|:| -1436 (-650 *1)) (|:| -2335 *1))) (-5 *3 (-650 *1)))) (-3260 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-927))))) +(-13 (-458) (-10 -8 (-15 -2851 ((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $))) (-15 -3260 ((-3 (-650 $) "failed") (-650 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1869 (($ $ $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1817 (($) NIL T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ $ $) NIL))) +(((-928) (-13 (-800) (-732) (-10 -8 (-15 -1869 ($ $ $)) (-6 (-4450 "*"))))) (T -928)) +((-1869 (*1 *1 *1 *1) (-5 *1 (-928)))) +(-13 (-800) (-732) (-10 -8 (-15 -1869 ($ $ $)) (-6 (-4450 "*")))) ((|NonNegativeInteger|) (> |#1| 0)) -((-3954 ((|#2| (-649 |#1|) (-649 |#1|)) 29))) -(((-928 |#1| |#2|) (-10 -7 (-15 -3954 (|#2| (-649 |#1|) (-649 |#1|)))) (-367) (-1251 |#1|)) (T -928)) -((-3954 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1251 *4)) (-5 *1 (-928 *4 *2))))) -(-10 -7 (-15 -3954 (|#2| (-649 |#1|) (-649 |#1|)))) -((-3213 (((-1181 |#2|) (-649 |#2|) (-649 |#2|)) 17) (((-1248 |#1| |#2|) (-1248 |#1| |#2|) (-649 |#2|) (-649 |#2|)) 13))) -(((-929 |#1| |#2|) (-10 -7 (-15 -3213 ((-1248 |#1| |#2|) (-1248 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -3213 ((-1181 |#2|) (-649 |#2|) (-649 |#2|)))) (-1185) (-367)) (T -929)) -((-3213 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1181 *5)) (-5 *1 (-929 *4 *5)) (-14 *4 (-1185)))) (-3213 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1248 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1185)) (-4 *5 (-367)) (-5 *1 (-929 *4 *5))))) -(-10 -7 (-15 -3213 ((-1248 |#1| |#2|) (-1248 |#1| |#2|) (-649 |#2|) (-649 |#2|))) (-15 -3213 ((-1181 |#2|) (-649 |#2|) (-649 |#2|)))) -((-1557 (((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167)) 177)) (-3638 ((|#4| |#4|) 196)) (-1774 (((-649 (-412 (-958 |#1|))) (-649 (-1185))) 149)) (-3769 (((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569)) 88)) (-1958 (((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-649 |#4|)) 69)) (-1999 (((-694 |#4|) (-694 |#4|) (-649 |#4|)) 65)) (-3240 (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167)) 189)) (-2657 (((-569) (-694 |#4|) (-927) (-1167)) 169) (((-569) (-694 |#4|) (-649 (-1185)) (-927) (-1167)) 168) (((-569) (-694 |#4|) (-649 |#4|) (-927) (-1167)) 167) (((-569) (-694 |#4|) (-1167)) 157) (((-569) (-694 |#4|) (-649 (-1185)) (-1167)) 156) (((-569) (-694 |#4|) (-649 |#4|) (-1167)) 155) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927)) 154) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)) (-927)) 153) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927)) 152) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|)) 151) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185))) 150) (((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|)) 146)) (-3518 ((|#4| (-958 |#1|)) 80)) (-3462 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 193)) (-3620 (((-649 (-649 (-569))) (-569) (-569)) 162)) (-1614 (((-649 (-649 |#4|)) (-649 (-649 |#4|))) 107)) (-2809 (((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 102)) (-2406 (((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|))))) 101)) (-2220 (((-112) (-649 (-958 |#1|))) 19) (((-112) (-649 |#4|)) 15)) (-2041 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|)) 84)) (-3753 (((-649 |#4|) |#4|) 57)) (-3109 (((-649 (-412 (-958 |#1|))) (-649 |#4|)) 145) (((-694 (-412 (-958 |#1|))) (-694 |#4|)) 66) (((-412 (-958 |#1|)) |#4|) 142)) (-3216 (((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1167) (-569)) 113)) (-4249 (((-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776)) 100)) (-2087 (((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776)) 124)) (-3844 (((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| -1863 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) 56))) -(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-927) (-1167))) (-15 -1557 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3240 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3216 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1167) (-569))) (-15 -3109 ((-412 (-958 |#1|)) |#4|)) (-15 -3109 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3109 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -1774 ((-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3518 (|#4| (-958 |#1|))) (-15 -2041 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -4249 ((-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -1958 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3844 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| -1863 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3753 ((-649 |#4|) |#4|)) (-15 -2406 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2809 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -1614 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -3620 ((-649 (-649 (-569))) (-569) (-569))) (-15 -3462 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2087 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -1999 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -3769 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -3638 (|#4| |#4|)) (-15 -2220 ((-112) (-649 |#4|))) (-15 -2220 ((-112) (-649 (-958 |#1|))))) (-13 (-310) (-147)) (-13 (-855) (-619 (-1185))) (-798) (-955 |#1| |#3| |#2|)) (T -930)) -((-2220 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4)))) (-3769 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9)))) (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569)) (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10)) (-4 *10 (-13 (-855) (-619 (-1185)))) (-4 *11 (-798)) (-5 *2 (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12)) (|:| |wcond| (-649 (-958 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *9)))) (|:| -2403 (-649 (-1275 (-412 (-958 *9))))))))) (-5 *1 (-930 *9 *10 *11 *12)))) (-1999 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *5 *6 *7 *8)))) (-3620 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4)) (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185)))) (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *7))))) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776)) (-5 *1 (-930 *4 *5 *6 *7)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1863 (-694 (-412 (-958 *4)))) (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-1958 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))) (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147))) (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 *8))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776)))) (-2041 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7)))) (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147))) (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2)) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3)) (-4 *3 (-955 *4 *6 *5)))) (-3216 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8)))) (-5 *5 (-776)) (-5 *6 (-1167)) (-4 *8 (-13 (-310) (-147))) (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1185)))) (-4 *10 (-798)) (-5 *2 (-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11)) (|:| |wcond| (-649 (-958 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *8)))) (|:| -2403 (-649 (-1275 (-412 (-958 *8)))))))))) (|:| |rgsz| (-569)))) (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5)))) (-1557 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *4 (-1167)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6)) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1167)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1185))) (-5 *5 (-927)) (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-2657 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927)) (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *7 *8 *9 *10)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-1167)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-1167)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1167)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *6)))) (|:| -2403 (-649 (-1275 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) (|:| |wcond| (-649 (-958 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *6)))) (|:| -2403 (-649 (-1275 (-412 (-958 *6)))))))))) (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9)))) (-2657 (*1 *2 *3) (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) (|:| |wcond| (-649 (-958 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))))) (-5 *1 (-930 *4 *5 *6 *7)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1185))) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-649 (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) (|:| |wcond| (-649 (-958 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8))))) -(-10 -7 (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 |#4|) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-649 (-1185)) (-927))) (-15 -2657 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-694 |#4|) (-927))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 |#4|) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-649 (-1185)) (-927) (-1167))) (-15 -2657 ((-569) (-694 |#4|) (-927) (-1167))) (-15 -1557 ((-569) (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3240 ((-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|))))))))) (-1167))) (-15 -3216 ((-2 (|:| |rgl| (-649 (-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))))) (|:| |rgsz| (-569))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-776) (-1167) (-569))) (-15 -3109 ((-412 (-958 |#1|)) |#4|)) (-15 -3109 ((-694 (-412 (-958 |#1|))) (-694 |#4|))) (-15 -3109 ((-649 (-412 (-958 |#1|))) (-649 |#4|))) (-15 -1774 ((-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3518 (|#4| (-958 |#1|))) (-15 -2041 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-649 |#4|)) (|:| |n0| (-649 |#4|))) (-649 |#4|) (-649 |#4|))) (-15 -4249 ((-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))) (-694 |#4|) (-776))) (-15 -1958 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-649 |#4|))) (-15 -3844 ((-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))) (-2 (|:| -1863 (-694 (-412 (-958 |#1|)))) (|:| |vec| (-649 (-412 (-958 |#1|)))) (|:| -3978 (-776)) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (-15 -3753 ((-649 |#4|) |#4|)) (-15 -2406 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -2809 ((-776) (-649 (-2 (|:| -3978 (-776)) (|:| |eqns| (-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))))) (|:| |fgb| (-649 |#4|)))))) (-15 -1614 ((-649 (-649 |#4|)) (-649 (-649 |#4|)))) (-15 -3620 ((-649 (-649 (-569))) (-569) (-569))) (-15 -3462 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -2087 ((-649 (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) (-694 |#4|) (-776))) (-15 -1999 ((-694 |#4|) (-694 |#4|) (-649 |#4|))) (-15 -3769 ((-2 (|:| |eqzro| (-649 |#4|)) (|:| |neqzro| (-649 |#4|)) (|:| |wcond| (-649 (-958 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1275 (-412 (-958 |#1|)))) (|:| -2403 (-649 (-1275 (-412 (-958 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569)))) (-694 |#4|) (-649 (-412 (-958 |#1|))) (-649 (-649 |#4|)) (-776) (-776) (-569))) (-15 -3638 (|#4| |#4|)) (-15 -2220 ((-112) (-649 |#4|))) (-15 -2220 ((-112) (-649 (-958 |#1|))))) -((-3672 (((-933) |#1| (-1185)) 17) (((-933) |#1| (-1185) (-1102 (-226))) 21)) (-1808 (((-933) |#1| |#1| (-1185) (-1102 (-226))) 19) (((-933) |#1| (-1185) (-1102 (-226))) 15))) -(((-931 |#1|) (-10 -7 (-15 -1808 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -1808 ((-933) |#1| |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185)))) (-619 (-541))) (T -931)) -((-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-3672 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-1808 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) (-1808 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) (-5 *1 (-931 *3)) (-4 *3 (-619 (-541)))))) -(-10 -7 (-15 -1808 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -1808 ((-933) |#1| |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185) (-1102 (-226)))) (-15 -3672 ((-933) |#1| (-1185)))) -((-1432 (($ $ (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 123)) (-3822 (((-1102 (-226)) $) 64)) (-3812 (((-1102 (-226)) $) 63)) (-3798 (((-1102 (-226)) $) 62)) (-3527 (((-649 (-649 (-226))) $) 69)) (-2146 (((-1102 (-226)) $) 65)) (-3314 (((-569) (-569)) 57)) (-4103 (((-569) (-569)) 52)) (-1766 (((-569) (-569)) 55)) (-2827 (((-112) (-112)) 59)) (-2089 (((-569)) 56)) (-3442 (($ $ (-1102 (-226))) 126) (($ $) 127)) (-2187 (($ (-1 (-949 (-226)) (-226)) (-1102 (-226))) 133) (($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 134)) (-1808 (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226))) 136) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 137) (($ $ (-1102 (-226))) 129)) (-4197 (((-569)) 60)) (-2829 (((-569)) 50)) (-2206 (((-569)) 53)) (-4417 (((-649 (-649 (-949 (-226)))) $) 153)) (-2092 (((-112) (-112)) 61)) (-3796 (((-867) $) 151)) (-1559 (((-112)) 58))) -(((-932) (-13 (-982) (-10 -8 (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -3527 ((-649 (-649 (-226))) $)) (-15 -2829 ((-569))) (-15 -4103 ((-569) (-569))) (-15 -2206 ((-569))) (-15 -1766 ((-569) (-569))) (-15 -2089 ((-569))) (-15 -3314 ((-569) (-569))) (-15 -1559 ((-112))) (-15 -2827 ((-112) (-112))) (-15 -4197 ((-569))) (-15 -2092 ((-112) (-112)))))) (T -932)) -((-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-2187 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-1808 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-1808 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-932)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-1432 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-3442 (*1 *1 *1) (-5 *1 (-932))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932)))) (-2829 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2206 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-1766 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2089 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-3314 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-1559 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932)))) (-4197 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932)))) (-2092 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932))))) -(-13 (-982) (-10 -8 (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -3527 ((-649 (-649 (-226))) $)) (-15 -2829 ((-569))) (-15 -4103 ((-569) (-569))) (-15 -2206 ((-569))) (-15 -1766 ((-569) (-569))) (-15 -2089 ((-569))) (-15 -3314 ((-569) (-569))) (-15 -1559 ((-112))) (-15 -2827 ((-112) (-112))) (-15 -4197 ((-569))) (-15 -2092 ((-112) (-112))))) -((-1432 (($ $ (-1102 (-226))) 124) (($ $ (-1102 (-226)) (-1102 (-226))) 125)) (-3812 (((-1102 (-226)) $) 73)) (-3798 (((-1102 (-226)) $) 72)) (-2146 (((-1102 (-226)) $) 74)) (-2478 (((-569) (-569)) 66)) (-2535 (((-569) (-569)) 61)) (-4086 (((-569) (-569)) 64)) (-1845 (((-112) (-112)) 68)) (-4314 (((-569)) 65)) (-3442 (($ $ (-1102 (-226))) 128) (($ $) 129)) (-2187 (($ (-1 (-949 (-226)) (-226)) (-1102 (-226))) 143) (($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 144)) (-3672 (($ (-1 (-226) (-226)) (-1102 (-226))) 151) (($ (-1 (-226) (-226))) 155)) (-1808 (($ (-1 (-226) (-226)) (-1102 (-226))) 139) (($ (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226))) 140) (($ (-649 (-1 (-226) (-226))) (-1102 (-226))) 148) (($ (-649 (-1 (-226) (-226))) (-1102 (-226)) (-1102 (-226))) 149) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226))) 141) (($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226))) 142) (($ $ (-1102 (-226))) 130)) (-3920 (((-112) $) 69)) (-3981 (((-569)) 70)) (-2221 (((-569)) 59)) (-2514 (((-569)) 62)) (-4417 (((-649 (-649 (-949 (-226)))) $) 35)) (-2820 (((-112) (-112)) 71)) (-3796 (((-867) $) 169)) (-3901 (((-112)) 67))) -(((-933) (-13 (-961) (-10 -8 (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -3920 ((-112) $)) (-15 -1432 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -2221 ((-569))) (-15 -2535 ((-569) (-569))) (-15 -2514 ((-569))) (-15 -4086 ((-569) (-569))) (-15 -4314 ((-569))) (-15 -2478 ((-569) (-569))) (-15 -3901 ((-112))) (-15 -1845 ((-112) (-112))) (-15 -3981 ((-569))) (-15 -2820 ((-112) (-112)))))) (T -933)) -((-1808 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-2187 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-3672 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) (-5 *1 (-933)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-1432 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-1432 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-3442 (*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-3442 (*1 *1 *1) (-5 *1 (-933))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) (-2221 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2514 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-4314 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-3901 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-3981 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933)))) (-2820 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) -(-13 (-961) (-10 -8 (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)))) (-15 -1808 ($ (-649 (-1 (-226) (-226))) (-1102 (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)))) (-15 -1808 ($ (-1 (-226) (-226)) (-1 (-226) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)))) (-15 -2187 ($ (-1 (-949 (-226)) (-226)) (-1102 (-226)) (-1102 (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)) (-1102 (-226)))) (-15 -3672 ($ (-1 (-226) (-226)))) (-15 -1808 ($ $ (-1102 (-226)))) (-15 -3920 ((-112) $)) (-15 -1432 ($ $ (-1102 (-226)))) (-15 -1432 ($ $ (-1102 (-226)) (-1102 (-226)))) (-15 -3442 ($ $ (-1102 (-226)))) (-15 -3442 ($ $)) (-15 -2146 ((-1102 (-226)) $)) (-15 -2221 ((-569))) (-15 -2535 ((-569) (-569))) (-15 -2514 ((-569))) (-15 -4086 ((-569) (-569))) (-15 -4314 ((-569))) (-15 -2478 ((-569) (-569))) (-15 -3901 ((-112))) (-15 -1845 ((-112) (-112))) (-15 -3981 ((-569))) (-15 -2820 ((-112) (-112))))) -((-3873 (((-649 (-1102 (-226))) (-649 (-649 (-949 (-226))))) 34))) -(((-934) (-10 -7 (-15 -3873 ((-649 (-1102 (-226))) (-649 (-649 (-949 (-226)))))))) (T -934)) -((-3873 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-1102 (-226)))) (-5 *1 (-934))))) -(-10 -7 (-15 -3873 ((-649 (-1102 (-226))) (-649 (-649 (-949 (-226))))))) -((-3574 ((|#2| |#2|) 28)) (-4201 ((|#2| |#2|) 29)) (-3709 ((|#2| |#2|) 27)) (-3661 ((|#2| |#2| (-511)) 26))) -(((-935 |#1| |#2|) (-10 -7 (-15 -3661 (|#2| |#2| (-511))) (-15 -3709 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -4201 (|#2| |#2|))) (-1108) (-435 |#1|)) (T -935)) -((-4201 (*1 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) (-3661 (*1 *2 *2 *3) (-12 (-5 *3 (-511)) (-4 *4 (-1108)) (-5 *1 (-935 *4 *2)) (-4 *2 (-435 *4))))) -(-10 -7 (-15 -3661 (|#2| |#2| (-511))) (-15 -3709 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -4201 (|#2| |#2|))) -((-3574 (((-319 (-569)) (-1185)) 16)) (-4201 (((-319 (-569)) (-1185)) 14)) (-3709 (((-319 (-569)) (-1185)) 12)) (-3661 (((-319 (-569)) (-1185) (-511)) 19))) -(((-936) (-10 -7 (-15 -3661 ((-319 (-569)) (-1185) (-511))) (-15 -3709 ((-319 (-569)) (-1185))) (-15 -3574 ((-319 (-569)) (-1185))) (-15 -4201 ((-319 (-569)) (-1185))))) (T -936)) -((-4201 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-511)) (-5 *2 (-319 (-569))) (-5 *1 (-936))))) -(-10 -7 (-15 -3661 ((-319 (-569)) (-1185) (-511))) (-15 -3709 ((-319 (-569)) (-1185))) (-15 -3574 ((-319 (-569)) (-1185))) (-15 -4201 ((-319 (-569)) (-1185)))) -((-3131 (((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)) 25)) (-3641 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -3641 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3131 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)))) (-1108) (-892 |#1|) (-13 (-1108) (-1046 |#2|))) (T -937)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-13 (-1108) (-1046 *3))) (-4 *3 (-892 *5)) (-5 *1 (-937 *5 *3 *6)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1108) (-1046 *5))) (-4 *5 (-892 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-937 *4 *5 *6))))) -(-10 -7 (-15 -3641 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3131 ((-895 |#1| |#3|) |#2| (-898 |#1|) (-895 |#1| |#3|)))) -((-3131 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 30))) -(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1108) (-13 (-561) (-892 |#1|)) (-13 (-435 |#2|) (-619 (-898 |#1|)) (-892 |#1|) (-1046 (-617 $)))) (T -938)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1046 (-617 $)))) (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5))) (-5 *1 (-938 *5 *6 *3))))) -(-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) -((-3131 (((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)) 13))) -(((-939 |#1|) (-10 -7 (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)))) (-550)) (T -939)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550)) (-5 *1 (-939 *3))))) -(-10 -7 (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|)))) -((-3131 (((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)) 57))) -(((-940 |#1| |#2|) (-10 -7 (-15 -3131 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)))) (-1108) (-13 (-1108) (-1046 (-617 $)) (-619 (-898 |#1|)) (-892 |#1|))) (T -940)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1108)) (-4 *6 (-13 (-1108) (-1046 (-617 $)) (-619 *4) (-892 *5))) (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6))))) -(-10 -7 (-15 -3131 ((-895 |#1| |#2|) (-617 |#2|) (-898 |#1|) (-895 |#1| |#2|)))) -((-3131 (((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)) 17))) -(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)))) (-1108) (-892 |#1|) (-671 |#2|)) (T -941)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3))))) -(-10 -7 (-15 -3131 ((-891 |#1| |#2| |#3|) |#3| (-898 |#1|) (-891 |#1| |#2| |#3|)))) -((-3131 (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|)) 17 (|has| |#3| (-892 |#1|))) (((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|))) 16))) -(((-942 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|)) (-1108) (-798) (-855) (-13 (-1057) (-892 |#1|)) (-13 (-955 |#4| |#2| |#3|) (-619 (-898 |#1|)))) (T -942)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5)) (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-13 (-1057) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3)))) (-3131 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3))) (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6)) (-4 *6 (-1108)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4))) (-4 *7 (-798)) (-4 *9 (-13 (-1057) (-892 *6))) (-5 *1 (-942 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|) (-1 (-895 |#1| |#5|) |#3| (-898 |#1|) (-895 |#1| |#5|)))) (IF (|has| |#3| (-892 |#1|)) (-15 -3131 ((-895 |#1| |#5|) |#5| (-898 |#1|) (-895 |#1| |#5|))) |%noBranch|)) -((-4274 ((|#2| |#2| (-649 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-943 |#1| |#2| |#3|) (-10 -7 (-15 -4274 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4274 (|#2| |#2| (-649 (-1 (-112) |#3|))))) (-1108) (-435 |#1|) (-1225)) (T -943)) -((-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) (-4 *4 (-1108)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))) (-4274 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1225)) (-4 *4 (-1108)) (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4))))) -(-10 -7 (-15 -4274 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4274 (|#2| |#2| (-649 (-1 (-112) |#3|))))) -((-4274 (((-319 (-569)) (-1185) (-649 (-1 (-112) |#1|))) 18) (((-319 (-569)) (-1185) (-1 (-112) |#1|)) 15))) -(((-944 |#1|) (-10 -7 (-15 -4274 ((-319 (-569)) (-1185) (-1 (-112) |#1|))) (-15 -4274 ((-319 (-569)) (-1185) (-649 (-1 (-112) |#1|))))) (-1225)) (T -944)) -((-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1225)) (-5 *2 (-319 (-569))) (-5 *1 (-944 *5))))) -(-10 -7 (-15 -4274 ((-319 (-569)) (-1185) (-1 (-112) |#1|))) (-15 -4274 ((-319 (-569)) (-1185) (-649 (-1 (-112) |#1|))))) -((-3131 (((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)) 25))) -(((-945 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-1108) (-13 (-561) (-892 |#1|) (-619 (-898 |#1|))) (-1000 |#2|)) (T -945)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-1000 *6)) (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5)) (-5 *1 (-945 *5 *6 *3))))) -(-10 -7 (-15 -3131 ((-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) -((-3131 (((-895 |#1| (-1185)) (-1185) (-898 |#1|) (-895 |#1| (-1185))) 18))) -(((-946 |#1|) (-10 -7 (-15 -3131 ((-895 |#1| (-1185)) (-1185) (-898 |#1|) (-895 |#1| (-1185))))) (-1108)) (T -946)) -((-3131 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-895 *5 (-1185))) (-5 *3 (-1185)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-5 *1 (-946 *5))))) -(-10 -7 (-15 -3131 ((-895 |#1| (-1185)) (-1185) (-898 |#1|) (-895 |#1| (-1185))))) -((-2762 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 34)) (-3131 (((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))) 33))) -(((-947 |#1| |#2| |#3|) (-10 -7 (-15 -3131 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -2762 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))) (-1108) (-1057) (-13 (-1057) (-619 (-898 |#1|)) (-1046 |#2|))) (T -947)) -((-2762 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6))) (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1108)) (-4 *8 (-13 (-1057) (-619 (-898 *6)) (-1046 *7))) (-5 *2 (-895 *6 *8)) (-4 *7 (-1057)) (-5 *1 (-947 *6 *7 *8)))) (-3131 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9))) (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1108)) (-4 *9 (-13 (-1057) (-619 (-898 *7)) (-1046 *8))) (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1057)) (-5 *1 (-947 *7 *8 *9))))) -(-10 -7 (-15 -3131 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-1 |#3| (-649 |#3|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|)))) (-15 -2762 ((-895 |#1| |#3|) (-649 |#3|) (-649 (-898 |#1|)) (-895 |#1| |#3|) (-1 (-895 |#1| |#3|) |#3| (-898 |#1|) (-895 |#1| |#3|))))) -((-4393 (((-1181 (-412 (-569))) (-569)) 81)) (-1660 (((-1181 (-569)) (-569)) 84)) (-3397 (((-1181 (-569)) (-569)) 78)) (-1837 (((-569) (-1181 (-569))) 74)) (-2153 (((-1181 (-412 (-569))) (-569)) 65)) (-3665 (((-1181 (-569)) (-569)) 49)) (-3902 (((-1181 (-569)) (-569)) 86)) (-2356 (((-1181 (-569)) (-569)) 85)) (-2616 (((-1181 (-412 (-569))) (-569)) 67))) -(((-948) (-10 -7 (-15 -2616 ((-1181 (-412 (-569))) (-569))) (-15 -2356 ((-1181 (-569)) (-569))) (-15 -3902 ((-1181 (-569)) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -2153 ((-1181 (-412 (-569))) (-569))) (-15 -1837 ((-569) (-1181 (-569)))) (-15 -3397 ((-1181 (-569)) (-569))) (-15 -1660 ((-1181 (-569)) (-569))) (-15 -4393 ((-1181 (-412 (-569))) (-569))))) (T -948)) -((-4393 (*1 *2 *3) (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1660 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3397 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-569)) (-5 *1 (-948)))) (-2153 (*1 *2 *3) (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3665 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-3902 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2356 (*1 *2 *3) (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) (-2616 (*1 *2 *3) (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569))))) -(-10 -7 (-15 -2616 ((-1181 (-412 (-569))) (-569))) (-15 -2356 ((-1181 (-569)) (-569))) (-15 -3902 ((-1181 (-569)) (-569))) (-15 -3665 ((-1181 (-569)) (-569))) (-15 -2153 ((-1181 (-412 (-569))) (-569))) (-15 -1837 ((-569) (-1181 (-569)))) (-15 -3397 ((-1181 (-569)) (-569))) (-15 -1660 ((-1181 (-569)) (-569))) (-15 -4393 ((-1181 (-412 (-569))) (-569)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776)) NIL (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-3283 (($ (-649 |#1|)) 9)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) NIL (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3420 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-4254 (((-112) $ (-776)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3166 (($ $ (-649 |#1|)) 25)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 18) (($ $ (-1242 (-569))) NIL)) (-3040 ((|#1| $ $) NIL (|has| |#1| (-1057)))) (-2377 (((-927) $) 13)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3260 (($ $ $) 23)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 14)) (-3809 (($ (-649 |#1|)) NIL)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2428 (((-776) $) 11 (|has| $ (-6 -4447))))) -(((-949 |#1|) (-988 |#1|) (-1057)) (T -949)) -NIL -(-988 |#1|) -((-3941 (((-486 |#1| |#2|) (-958 |#2|)) 22)) (-2074 (((-248 |#1| |#2|) (-958 |#2|)) 35)) (-1801 (((-958 |#2|) (-486 |#1| |#2|)) 27)) (-1994 (((-248 |#1| |#2|) (-486 |#1| |#2|)) 57)) (-3427 (((-958 |#2|) (-248 |#1| |#2|)) 32)) (-3201 (((-486 |#1| |#2|) (-248 |#1| |#2|)) 48))) -(((-950 |#1| |#2|) (-10 -7 (-15 -3201 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -1994 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3941 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -1801 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3427 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -2074 ((-248 |#1| |#2|) (-958 |#2|)))) (-649 (-1185)) (-1057)) (T -950)) -((-2074 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185))))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185))))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5))))) -(-10 -7 (-15 -3201 ((-486 |#1| |#2|) (-248 |#1| |#2|))) (-15 -1994 ((-248 |#1| |#2|) (-486 |#1| |#2|))) (-15 -3941 ((-486 |#1| |#2|) (-958 |#2|))) (-15 -1801 ((-958 |#2|) (-486 |#1| |#2|))) (-15 -3427 ((-958 |#2|) (-248 |#1| |#2|))) (-15 -2074 ((-248 |#1| |#2|) (-958 |#2|)))) -((-3944 (((-649 |#2|) |#2| |#2|) 10)) (-3304 (((-776) (-649 |#1|)) 48 (|has| |#1| (-853)))) (-3797 (((-649 |#2|) |#2|) 11)) (-2044 (((-776) (-649 |#1|) (-569) (-569)) 52 (|has| |#1| (-853)))) (-1488 ((|#1| |#2|) 38 (|has| |#1| (-853))))) -(((-951 |#1| |#2|) (-10 -7 (-15 -3944 ((-649 |#2|) |#2| |#2|)) (-15 -3797 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -1488 (|#1| |#2|)) (-15 -3304 ((-776) (-649 |#1|))) (-15 -2044 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|)) (-367) (-1251 |#1|)) (T -951)) -((-2044 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1251 *5)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-951 *4 *5)) (-4 *5 (-1251 *4)))) (-1488 (*1 *2 *3) (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) (-4 *3 (-1251 *2)))) (-3797 (*1 *2 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1251 *4)))) (-3944 (*1 *2 *3 *3) (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -3944 ((-649 |#2|) |#2| |#2|)) (-15 -3797 ((-649 |#2|) |#2|)) (IF (|has| |#1| (-853)) (PROGN (-15 -1488 (|#1| |#2|)) (-15 -3304 ((-776) (-649 |#1|))) (-15 -2044 ((-776) (-649 |#1|) (-569) (-569)))) |%noBranch|)) -((-1346 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 19))) -(((-952 |#1| |#2|) (-10 -7 (-15 -1346 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1057) (-1057)) (T -952)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6))))) -(-10 -7 (-15 -1346 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) -((-3767 (((-1248 |#1| (-958 |#2|)) (-958 |#2|) (-1271 |#1|)) 18))) -(((-953 |#1| |#2|) (-10 -7 (-15 -3767 ((-1248 |#1| (-958 |#2|)) (-958 |#2|) (-1271 |#1|)))) (-1185) (-1057)) (T -953)) -((-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1271 *5)) (-14 *5 (-1185)) (-4 *6 (-1057)) (-5 *2 (-1248 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6))))) -(-10 -7 (-15 -3767 ((-1248 |#1| (-958 |#2|)) (-958 |#2|) (-1271 |#1|)))) -((-3722 (((-776) $) 88) (((-776) $ (-649 |#4|)) 93)) (-1830 (($ $) 203)) (-3764 (((-423 $) $) 195)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 141)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) 73)) (-3346 (($ $ $ |#4|) 95)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 131) (((-694 |#2|) (-694 $)) 121)) (-2642 (($ $) 210) (($ $ |#4|) 213)) (-1867 (((-649 $) $) 77)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 229) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 222)) (-2572 (((-649 $) $) 34)) (-3923 (($ |#2| |#3|) NIL) (($ $ |#4| (-776)) NIL) (($ $ (-649 |#4|) (-649 (-776))) 71)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#4|) 192)) (-4250 (((-3 (-649 $) "failed") $) 52)) (-2427 (((-3 (-649 $) "failed") $) 39)) (-2850 (((-3 (-2 (|:| |var| |#4|) (|:| -1993 (-776))) "failed") $) 57)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 134)) (-2156 (((-423 (-1181 $)) (-1181 $)) 147)) (-3814 (((-423 (-1181 $)) (-1181 $)) 145)) (-3800 (((-423 $) $) 165)) (-1725 (($ $ (-649 (-297 $))) 24) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-649 |#4|) (-649 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-649 |#4|) (-649 $)) NIL)) (-3059 (($ $ |#4|) 97)) (-1410 (((-898 (-383)) $) 243) (((-898 (-569)) $) 236) (((-541) $) 251)) (-3833 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 184)) (-4383 ((|#2| $ |#3|) NIL) (($ $ |#4| (-776)) 62) (($ $ (-649 |#4|) (-649 (-776))) 69)) (-2239 (((-3 $ "failed") $) 186)) (-1520 (((-112) $ $) 216))) -(((-954 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2642 (|#1| |#1| |#4|)) (-15 -3833 (|#1| |#1| |#4|)) (-15 -3059 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1| |#1| |#4|)) (-15 -1867 ((-649 |#1|) |#1|)) (-15 -3722 ((-776) |#1| (-649 |#4|))) (-15 -3722 ((-776) |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| |#4|) (|:| -1993 (-776))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3923 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3923 (|#1| |#1| |#4| (-776))) (-15 -2976 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2572 ((-649 |#1|) |#1|)) (-15 -4383 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -4383 (|#1| |#1| |#4| (-776))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4383 (|#2| |#1| |#3|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|))) (-955 |#2| |#3| |#4|) (-1057) (-798) (-855)) (T -954)) -NIL -(-10 -8 (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -2239 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -1924 ((-3 (-1275 |#1|) "failed") (-694 |#1|))) (-15 -2642 (|#1| |#1| |#4|)) (-15 -3833 (|#1| |#1| |#4|)) (-15 -3059 (|#1| |#1| |#4|)) (-15 -3346 (|#1| |#1| |#1| |#4|)) (-15 -1867 ((-649 |#1|) |#1|)) (-15 -3722 ((-776) |#1| (-649 |#4|))) (-15 -3722 ((-776) |#1|)) (-15 -2850 ((-3 (-2 (|:| |var| |#4|) (|:| -1993 (-776))) "failed") |#1|)) (-15 -4250 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -2427 ((-3 (-649 |#1|) "failed") |#1|)) (-15 -3923 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -3923 (|#1| |#1| |#4| (-776))) (-15 -2976 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2572 ((-649 |#1|) |#1|)) (-15 -4383 (|#1| |#1| (-649 |#4|) (-649 (-776)))) (-15 -4383 (|#1| |#1| |#4| (-776))) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-649 |#4|) (-649 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4383 (|#2| |#1| |#3|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -1520 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#3|) $) 112)) (-3767 (((-1181 $) $ |#3|) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) 138)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) ((|#3| $) 139)) (-3346 (($ $ $ |#3|) 110 (|has| |#1| (-173)))) (-1883 (($ $) 156)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3086 (((-3 $ "failed") $) 37)) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-2870 (($ $ |#1| |#2| $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-1700 (($ (-1181 |#1|) |#3|) 119) (($ (-1181 $) |#3|) 118)) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 122)) (-2272 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-2492 (($ (-1 |#2| |#2|) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-2306 (((-3 |#3| "failed") $) 125)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3435 (((-1167) $) 10)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) 115)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-3059 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3517 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-4339 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-561))) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-955 |#1| |#2| |#3|) (-140) (-1057) (-798) (-855)) (T -955)) -((-2642 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-4339 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-4339 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-4383 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *2 (-855)))) (-4383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)))) (-2572 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3767 (*1 *2 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1181 *1)) (-4 *1 (-955 *4 *5 *3)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-1181 *3)))) (-2306 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2272 (*1 *2 *1 *3) (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-776)))) (-2272 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) (-2976 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-955 *4 *5 *3)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *2 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1057)) (-4 *1 (-955 *4 *5 *3)) (-4 *5 (-798)) (-4 *3 (-855)))) (-1700 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-4250 (*1 *2 *1) (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-2850 (*1 *2 *1) (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-776)))))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-3722 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-1867 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) (-3346 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3059 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-173)))) (-3833 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-2642 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *3 (-457)))) (-1830 (*1 *1 *1) (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-3764 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5))))) -(-13 (-906 |t#3|) (-329 |t#1| |t#2|) (-312 $) (-519 |t#3| |t#1|) (-519 |t#3| $) (-1046 |t#3|) (-381 |t#1|) (-10 -8 (-15 -4339 ((-776) $ |t#3|)) (-15 -4339 ((-649 (-776)) $ (-649 |t#3|))) (-15 -4383 ($ $ |t#3| (-776))) (-15 -4383 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -2572 ((-649 $) $)) (-15 -3767 ((-1181 $) $ |t#3|)) (-15 -3767 ((-1181 |t#1|) $)) (-15 -2306 ((-3 |t#3| "failed") $)) (-15 -2272 ((-776) $ |t#3|)) (-15 -2272 ((-649 (-776)) $ (-649 |t#3|))) (-15 -2976 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |t#3|)) (-15 -3923 ($ $ |t#3| (-776))) (-15 -3923 ($ $ (-649 |t#3|) (-649 (-776)))) (-15 -1700 ($ (-1181 |t#1|) |t#3|)) (-15 -1700 ($ (-1181 $) |t#3|)) (-15 -2427 ((-3 (-649 $) "failed") $)) (-15 -4250 ((-3 (-649 $) "failed") $)) (-15 -2850 ((-3 (-2 (|:| |var| |t#3|) (|:| -1993 (-776))) "failed") $)) (-15 -3722 ((-776) $)) (-15 -3722 ((-776) $ (-649 |t#3|))) (-15 -1712 ((-649 |t#3|) $)) (-15 -1867 ((-649 $) $)) (IF (|has| |t#1| (-619 (-541))) (IF (|has| |t#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-569)))) (IF (|has| |t#3| (-619 (-898 (-569)))) (-6 (-619 (-898 (-569)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-619 (-898 (-383)))) (IF (|has| |t#3| (-619 (-898 (-383)))) (-6 (-619 (-898 (-383)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-569))) (IF (|has| |t#3| (-892 (-569))) (-6 (-892 (-569))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-892 (-383))) (IF (|has| |t#3| (-892 (-383))) (-6 (-892 (-383))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -3346 ($ $ $ |t#3|)) (-15 -3059 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-6 (-457)) (-15 -3833 ($ $ |t#3|)) (-15 -2642 ($ $)) (-15 -2642 ($ $ |t#3|)) (-15 -3764 ((-423 $) $)) (-15 -1830 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-915) |has| |#1| (-915)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1046 |#3|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) |has| |#1| (-915))) -((-1712 (((-649 |#2|) |#5|) 40)) (-3767 (((-1181 |#5|) |#5| |#2| (-1181 |#5|)) 23) (((-412 (-1181 |#5|)) |#5| |#2|) 16)) (-1700 ((|#5| (-412 (-1181 |#5|)) |#2|) 30)) (-2306 (((-3 |#2| "failed") |#5|) 71)) (-4250 (((-3 (-649 |#5|) "failed") |#5|) 65)) (-2605 (((-3 (-2 (|:| |val| |#5|) (|:| -1993 (-569))) "failed") |#5|) 53)) (-2427 (((-3 (-649 |#5|) "failed") |#5|) 67)) (-2850 (((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-569))) "failed") |#5|) 57))) -(((-956 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1712 ((-649 |#2|) |#5|)) (-15 -2306 ((-3 |#2| "failed") |#5|)) (-15 -3767 ((-412 (-1181 |#5|)) |#5| |#2|)) (-15 -1700 (|#5| (-412 (-1181 |#5|)) |#2|)) (-15 -3767 ((-1181 |#5|) |#5| |#2| (-1181 |#5|))) (-15 -2427 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -4250 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2850 ((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-569))) "failed") |#5|)) (-15 -2605 ((-3 (-2 (|:| |val| |#5|) (|:| -1993 (-569))) "failed") |#5|))) (-798) (-855) (-1057) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3796 ($ |#4|)) (-15 -4399 (|#4| $)) (-15 -4412 (|#4| $))))) (T -956)) -((-2605 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1993 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-2850 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-569)))) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-4250 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-2427 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-3767 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))) (-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) (-5 *1 (-956 *5 *4 *6 *7 *3)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1181 *2))) (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) (-4 *2 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))) (-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4)))) (-3767 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1181 *3))) (-5 *1 (-956 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) (-2306 (*1 *2 *3) (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1057)) (-4 *6 (-955 *5 *4 *2)) (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *6)) (-15 -4399 (*6 $)) (-15 -4412 (*6 $))))))) (-1712 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5)) (-5 *1 (-956 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))))) -(-10 -7 (-15 -1712 ((-649 |#2|) |#5|)) (-15 -2306 ((-3 |#2| "failed") |#5|)) (-15 -3767 ((-412 (-1181 |#5|)) |#5| |#2|)) (-15 -1700 (|#5| (-412 (-1181 |#5|)) |#2|)) (-15 -3767 ((-1181 |#5|) |#5| |#2| (-1181 |#5|))) (-15 -2427 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -4250 ((-3 (-649 |#5|) "failed") |#5|)) (-15 -2850 ((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-569))) "failed") |#5|)) (-15 -2605 ((-3 (-2 (|:| |val| |#5|) (|:| -1993 (-569))) "failed") |#5|))) -((-1346 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1346 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-798) (-855) (-1057) (-955 |#3| |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (T -957)) -((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) (-4 *8 (-1057)) (-4 *6 (-798)) (-4 *2 (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) (-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7))))) -(-10 -7 (-15 -1346 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1185)) $) 16)) (-3767 (((-1181 $) $ (-1185)) 21) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1185))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 8) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1185) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1185) $) NIL)) (-3346 (($ $ $ (-1185)) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1185)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 (-1185)) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1185) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1185) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) (-1185)) NIL) (($ (-1181 $) (-1185)) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1185)) NIL)) (-2272 (((-536 (-1185)) $) NIL) (((-776) $ (-1185)) NIL) (((-649 (-776)) $ (-649 (-1185))) NIL)) (-2492 (($ (-1 (-536 (-1185)) (-536 (-1185))) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2306 (((-3 (-1185) "failed") $) 19)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1185)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $ (-1185)) 29 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1185) |#1|) NIL) (($ $ (-649 (-1185)) (-649 |#1|)) NIL) (($ $ (-1185) $) NIL) (($ $ (-649 (-1185)) (-649 $)) NIL)) (-3059 (($ $ (-1185)) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-4339 (((-536 (-1185)) $) NIL) (((-776) $ (-1185)) NIL) (((-649 (-776)) $ (-649 (-1185))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1185) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1185) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1185) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1185)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 25) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1185)) 27) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-958 |#1|) (-13 (-955 |#1| (-536 (-1185)) (-1185)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1185))) |%noBranch|))) (-1057)) (T -958)) -((-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057))))) -(-13 (-955 |#1| (-536 (-1185)) (-1185)) (-10 -8 (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1185))) |%noBranch|))) -((-2580 (((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#3| (-776)) 49)) (-2319 (((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776)) 44)) (-3728 (((-2 (|:| -1993 (-776)) (|:| -1435 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)) 65)) (-3947 (((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#5| (-776)) 74 (|has| |#3| (-457))))) -(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2580 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -2319 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -3947 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3728 ((-2 (|:| -1993 (-776)) (|:| -1435 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)))) (-798) (-855) (-561) (-955 |#3| |#1| |#2|) (-13 (-367) (-10 -8 (-15 -3796 ($ |#4|)) (-15 -4399 (|#4| $)) (-15 -4412 (|#4| $))))) (T -959)) -((-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *3 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| (-649 *3)))) (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -3796 ($ *3)) (-15 -4399 (*3 $)) (-15 -4412 (*3 $))))))) (-3947 (*1 *2 *3 *4) (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *3))) (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776)) (-4 *3 (-13 (-367) (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $))))))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *9) (|:| |radicand| *9))) (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776)) (-4 *9 (-13 (-367) (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $))))))) (-2580 (*1 *2 *3 *4) (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561)) (-4 *7 (-955 *3 *5 *6)) (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *8) (|:| |radicand| *8))) (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776)) (-4 *8 (-13 (-367) (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))))) -(-10 -7 (-15 -2580 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#3| (-776))) (-15 -2319 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) (-412 (-569)) (-776))) (IF (|has| |#3| (-457)) (-15 -3947 ((-2 (|:| -1993 (-776)) (|:| -1435 |#5|) (|:| |radicand| |#5|)) |#5| (-776))) |%noBranch|) (-15 -3728 ((-2 (|:| -1993 (-776)) (|:| -1435 |#4|) (|:| |radicand| (-649 |#4|))) |#4| (-776)))) -((-2417 (((-112) $ $) NIL)) (-3653 (($ (-1128)) 8)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (((-1128) $) 12)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 11))) -(((-960) (-13 (-1108) (-618 (-1128)) (-10 -8 (-15 -3653 ($ (-1128)))))) (T -960)) -((-3653 (*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-960))))) -(-13 (-1108) (-618 (-1128)) (-10 -8 (-15 -3653 ($ (-1128))))) -((-3812 (((-1102 (-226)) $) 8)) (-3798 (((-1102 (-226)) $) 9)) (-4417 (((-649 (-649 (-949 (-226)))) $) 10)) (-3796 (((-867) $) 6))) -(((-961) (-140)) (T -961)) -((-4417 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226))))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226)))))) -(-13 (-618 (-867)) (-10 -8 (-15 -4417 ((-649 (-649 (-949 (-226)))) $)) (-15 -3798 ((-1102 (-226)) $)) (-15 -3812 ((-1102 (-226)) $)))) -(((-618 (-867)) . T)) -((-2201 (((-3 (-694 |#1|) "failed") |#2| (-927)) 18))) -(((-962 |#1| |#2|) (-10 -7 (-15 -2201 ((-3 (-694 |#1|) "failed") |#2| (-927)))) (-561) (-661 |#1|)) (T -962)) -((-2201 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5)) (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5))))) -(-10 -7 (-15 -2201 ((-3 (-694 |#1|) "failed") |#2| (-927)))) -((-1610 (((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 16)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|) 18)) (-1346 (((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)) 13))) -(((-963 |#1| |#2|) (-10 -7 (-15 -1610 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1346 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) (-1225) (-1225)) (T -963)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-963 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5))))) -(-10 -7 (-15 -1610 ((-964 |#2|) (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-964 |#1|) |#2|)) (-15 -1346 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) 19 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 18 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 16)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) |#1|) 15)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) 11 (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) 20 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) 17) (($ $ (-1242 (-569))) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) 21)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 14)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2428 (((-776) $) 8 (|has| $ (-6 -4447))))) -(((-964 |#1|) (-19 |#1|) (-1225)) (T -964)) +((-1792 ((|#2| (-650 |#1|) (-650 |#1|)) 29))) +(((-929 |#1| |#2|) (-10 -7 (-15 -1792 (|#2| (-650 |#1|) (-650 |#1|)))) (-368) (-1252 |#1|)) (T -929)) +((-1792 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-4 *2 (-1252 *4)) (-5 *1 (-929 *4 *2))))) +(-10 -7 (-15 -1792 (|#2| (-650 |#1|) (-650 |#1|)))) +((-1466 (((-1182 |#2|) (-650 |#2|) (-650 |#2|)) 17) (((-1249 |#1| |#2|) (-1249 |#1| |#2|) (-650 |#2|) (-650 |#2|)) 13))) +(((-930 |#1| |#2|) (-10 -7 (-15 -1466 ((-1249 |#1| |#2|) (-1249 |#1| |#2|) (-650 |#2|) (-650 |#2|))) (-15 -1466 ((-1182 |#2|) (-650 |#2|) (-650 |#2|)))) (-1186) (-368)) (T -930)) +((-1466 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *5)) (-4 *5 (-368)) (-5 *2 (-1182 *5)) (-5 *1 (-930 *4 *5)) (-14 *4 (-1186)))) (-1466 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1249 *4 *5)) (-5 *3 (-650 *5)) (-14 *4 (-1186)) (-4 *5 (-368)) (-5 *1 (-930 *4 *5))))) +(-10 -7 (-15 -1466 ((-1249 |#1| |#2|) (-1249 |#1| |#2|) (-650 |#2|) (-650 |#2|))) (-15 -1466 ((-1182 |#2|) (-650 |#2|) (-650 |#2|)))) +((-4177 (((-570) (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-1168)) 177)) (-3487 ((|#4| |#4|) 196)) (-1479 (((-650 (-413 (-959 |#1|))) (-650 (-1186))) 149)) (-1836 (((-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-650 (-650 |#4|)) (-777) (-777) (-570)) 88)) (-2943 (((-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-650 |#4|)) 69)) (-2614 (((-695 |#4|) (-695 |#4|) (-650 |#4|)) 65)) (-2291 (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-1168)) 189)) (-4064 (((-570) (-695 |#4|) (-928) (-1168)) 169) (((-570) (-695 |#4|) (-650 (-1186)) (-928) (-1168)) 168) (((-570) (-695 |#4|) (-650 |#4|) (-928) (-1168)) 167) (((-570) (-695 |#4|) (-1168)) 157) (((-570) (-695 |#4|) (-650 (-1186)) (-1168)) 156) (((-570) (-695 |#4|) (-650 |#4|) (-1168)) 155) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-928)) 154) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)) (-928)) 153) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|) (-928)) 152) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|)) 151) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186))) 150) (((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|)) 146)) (-4054 ((|#4| (-959 |#1|)) 80)) (-3865 (((-112) (-650 |#4|) (-650 (-650 |#4|))) 193)) (-2053 (((-650 (-650 (-570))) (-570) (-570)) 162)) (-3526 (((-650 (-650 |#4|)) (-650 (-650 |#4|))) 107)) (-3316 (((-777) (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|))))) 102)) (-2348 (((-777) (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|))))) 101)) (-1433 (((-112) (-650 (-959 |#1|))) 19) (((-112) (-650 |#4|)) 15)) (-1552 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-650 |#4|)) (|:| |n0| (-650 |#4|))) (-650 |#4|) (-650 |#4|)) 84)) (-3987 (((-650 |#4|) |#4|) 57)) (-3747 (((-650 (-413 (-959 |#1|))) (-650 |#4|)) 145) (((-695 (-413 (-959 |#1|))) (-695 |#4|)) 66) (((-413 (-959 |#1|)) |#4|) 142)) (-1789 (((-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))))))) (|:| |rgsz| (-570))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-777) (-1168) (-570)) 113)) (-4096 (((-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))) (-695 |#4|) (-777)) 100)) (-4027 (((-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-695 |#4|) (-777)) 124)) (-4207 (((-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-2 (|:| -2568 (-695 (-413 (-959 |#1|)))) (|:| |vec| (-650 (-413 (-959 |#1|)))) (|:| -3979 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) 56))) +(((-931 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|) (-928))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)) (-928))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-928))) (-15 -4064 ((-570) (-695 |#4|) (-650 |#4|) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-650 (-1186)) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-650 |#4|) (-928) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-650 (-1186)) (-928) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-928) (-1168))) (-15 -4177 ((-570) (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-1168))) (-15 -2291 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-1168))) (-15 -1789 ((-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))))))) (|:| |rgsz| (-570))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-777) (-1168) (-570))) (-15 -3747 ((-413 (-959 |#1|)) |#4|)) (-15 -3747 ((-695 (-413 (-959 |#1|))) (-695 |#4|))) (-15 -3747 ((-650 (-413 (-959 |#1|))) (-650 |#4|))) (-15 -1479 ((-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -4054 (|#4| (-959 |#1|))) (-15 -1552 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-650 |#4|)) (|:| |n0| (-650 |#4|))) (-650 |#4|) (-650 |#4|))) (-15 -4096 ((-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))) (-695 |#4|) (-777))) (-15 -2943 ((-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-650 |#4|))) (-15 -4207 ((-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-2 (|:| -2568 (-695 (-413 (-959 |#1|)))) (|:| |vec| (-650 (-413 (-959 |#1|)))) (|:| -3979 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (-15 -3987 ((-650 |#4|) |#4|)) (-15 -2348 ((-777) (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -3316 ((-777) (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -3526 ((-650 (-650 |#4|)) (-650 (-650 |#4|)))) (-15 -2053 ((-650 (-650 (-570))) (-570) (-570))) (-15 -3865 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -4027 ((-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-695 |#4|) (-777))) (-15 -2614 ((-695 |#4|) (-695 |#4|) (-650 |#4|))) (-15 -1836 ((-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-650 (-650 |#4|)) (-777) (-777) (-570))) (-15 -3487 (|#4| |#4|)) (-15 -1433 ((-112) (-650 |#4|))) (-15 -1433 ((-112) (-650 (-959 |#1|))))) (-13 (-311) (-148)) (-13 (-856) (-620 (-1186))) (-799) (-956 |#1| |#3| |#2|)) (T -931)) +((-1433 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186)))) (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-956 *3 *5 *4)))) (-1836 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-5 *4 (-695 *12)) (-5 *5 (-650 (-413 (-959 *9)))) (-5 *6 (-650 (-650 *12))) (-5 *7 (-777)) (-5 *8 (-570)) (-4 *9 (-13 (-311) (-148))) (-4 *12 (-956 *9 *11 *10)) (-4 *10 (-13 (-856) (-620 (-1186)))) (-4 *11 (-799)) (-5 *2 (-2 (|:| |eqzro| (-650 *12)) (|:| |neqzro| (-650 *12)) (|:| |wcond| (-650 (-959 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *9)))) (|:| -2077 (-650 (-1276 (-413 (-959 *9))))))))) (-5 *1 (-931 *9 *10 *11 *12)))) (-2614 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *7)) (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7)))) (-4027 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-777)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |det| *8) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (-5 *1 (-931 *5 *6 *7 *8)))) (-3865 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *5 *6 *7 *8)))) (-2053 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-650 (-570)))) (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *6 *5)))) (-3526 (*1 *2 *2) (-12 (-5 *2 (-650 (-650 *6))) (-4 *6 (-956 *3 *5 *4)) (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186)))) (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *6)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| *7) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 *7))))) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777)) (-5 *1 (-931 *4 *5 *6 *7)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| *7) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 *7))))) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777)) (-5 *1 (-931 *4 *5 *6 *7)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 *3)) (-5 *1 (-931 *4 *5 *6 *3)) (-4 *3 (-956 *4 *6 *5)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2568 (-695 (-413 (-959 *4)))) (|:| |vec| (-650 (-413 (-959 *4)))) (|:| -3979 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) (|:| -2077 (-650 (-1276 (-413 (-959 *4))))))) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-2943 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) (|:| -2077 (-650 (-1276 (-413 (-959 *4))))))) (-5 *3 (-650 *7)) (-4 *4 (-13 (-311) (-148))) (-4 *7 (-956 *4 *6 *5)) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| *8) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 *8))))) (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-777)))) (-1552 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-4 *7 (-956 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-650 *7)) (|:| |n0| (-650 *7)))) (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-311) (-148))) (-4 *2 (-956 *4 *6 *5)) (-5 *1 (-931 *4 *5 *6 *2)) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-695 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-413 (-959 *4))) (-5 *1 (-931 *4 *5 *6 *3)) (-4 *3 (-956 *4 *6 *5)))) (-1789 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-695 *11)) (-5 *4 (-650 (-413 (-959 *8)))) (-5 *5 (-777)) (-5 *6 (-1168)) (-4 *8 (-13 (-311) (-148))) (-4 *11 (-956 *8 *10 *9)) (-4 *9 (-13 (-856) (-620 (-1186)))) (-4 *10 (-799)) (-5 *2 (-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 *11)) (|:| |neqzro| (-650 *11)) (|:| |wcond| (-650 (-959 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *8)))) (|:| -2077 (-650 (-1276 (-413 (-959 *8)))))))))) (|:| |rgsz| (-570)))) (-5 *1 (-931 *8 *9 *10 *11)) (-5 *7 (-570)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7)) (|:| |wcond| (-650 (-959 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) (|:| -2077 (-650 (-1276 (-413 (-959 *4)))))))))) (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5)))) (-4177 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) (-5 *4 (-1168)) (-4 *5 (-13 (-311) (-148))) (-4 *8 (-956 *5 *7 *6)) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *5 *6 *7 *8)))) (-4064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-928)) (-5 *5 (-1168)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *6 *7 *8 *9)))) (-4064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 (-1186))) (-5 *5 (-928)) (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148))) (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *7 *8 *9 *10)))) (-4064 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 *10)) (-5 *5 (-928)) (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148))) (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *7 *8 *9 *10)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-1168)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *5 *6 *7 *8)))) (-4064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-1168)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *6 *7 *8 *9)))) (-4064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 *9)) (-5 *5 (-1168)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *6 *7 *8 *9)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-928)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) (-5 *1 (-931 *5 *6 *7 *8)))) (-4064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-928)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9)) (|:| |wcond| (-650 (-959 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *6)))) (|:| -2077 (-650 (-1276 (-413 (-959 *6)))))))))) (-5 *1 (-931 *6 *7 *8 *9)))) (-4064 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695 *9)) (-5 *5 (-928)) (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9)) (|:| |wcond| (-650 (-959 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *6)))) (|:| -2077 (-650 (-1276 (-413 (-959 *6)))))))))) (-5 *1 (-931 *6 *7 *8 *9)) (-5 *4 (-650 *9)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7)) (|:| |wcond| (-650 (-959 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) (|:| -2077 (-650 (-1276 (-413 (-959 *4)))))))))) (-5 *1 (-931 *4 *5 *6 *7)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-5 *4 (-650 (-1186))) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) (-5 *1 (-931 *5 *6 *7 *8)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-650 (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) (|:| |wcond| (-650 (-959 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-650 *8))))) +(-10 -7 (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 |#4|) (-928))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-650 (-1186)) (-928))) (-15 -4064 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-695 |#4|) (-928))) (-15 -4064 ((-570) (-695 |#4|) (-650 |#4|) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-650 (-1186)) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-650 |#4|) (-928) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-650 (-1186)) (-928) (-1168))) (-15 -4064 ((-570) (-695 |#4|) (-928) (-1168))) (-15 -4177 ((-570) (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-1168))) (-15 -2291 ((-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|))))))))) (-1168))) (-15 -1789 ((-2 (|:| |rgl| (-650 (-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))))))) (|:| |rgsz| (-570))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-777) (-1168) (-570))) (-15 -3747 ((-413 (-959 |#1|)) |#4|)) (-15 -3747 ((-695 (-413 (-959 |#1|))) (-695 |#4|))) (-15 -3747 ((-650 (-413 (-959 |#1|))) (-650 |#4|))) (-15 -1479 ((-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -4054 (|#4| (-959 |#1|))) (-15 -1552 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-650 |#4|)) (|:| |n0| (-650 |#4|))) (-650 |#4|) (-650 |#4|))) (-15 -4096 ((-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))) (-695 |#4|) (-777))) (-15 -2943 ((-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-650 |#4|))) (-15 -4207 ((-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))) (-2 (|:| -2568 (-695 (-413 (-959 |#1|)))) (|:| |vec| (-650 (-413 (-959 |#1|)))) (|:| -3979 (-777)) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (-15 -3987 ((-650 |#4|) |#4|)) (-15 -2348 ((-777) (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -3316 ((-777) (-650 (-2 (|:| -3979 (-777)) (|:| |eqns| (-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))))) (|:| |fgb| (-650 |#4|)))))) (-15 -3526 ((-650 (-650 |#4|)) (-650 (-650 |#4|)))) (-15 -2053 ((-650 (-650 (-570))) (-570) (-570))) (-15 -3865 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -4027 ((-650 (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) (-695 |#4|) (-777))) (-15 -2614 ((-695 |#4|) (-695 |#4|) (-650 |#4|))) (-15 -1836 ((-2 (|:| |eqzro| (-650 |#4|)) (|:| |neqzro| (-650 |#4|)) (|:| |wcond| (-650 (-959 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1276 (-413 (-959 |#1|)))) (|:| -2077 (-650 (-1276 (-413 (-959 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570)))) (-695 |#4|) (-650 (-413 (-959 |#1|))) (-650 (-650 |#4|)) (-777) (-777) (-570))) (-15 -3487 (|#4| |#4|)) (-15 -1433 ((-112) (-650 |#4|))) (-15 -1433 ((-112) (-650 (-959 |#1|))))) +((-2706 (((-934) |#1| (-1186)) 17) (((-934) |#1| (-1186) (-1103 (-227))) 21)) (-2416 (((-934) |#1| |#1| (-1186) (-1103 (-227))) 19) (((-934) |#1| (-1186) (-1103 (-227))) 15))) +(((-932 |#1|) (-10 -7 (-15 -2416 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2416 ((-934) |#1| |#1| (-1186) (-1103 (-227)))) (-15 -2706 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2706 ((-934) |#1| (-1186)))) (-620 (-542))) (T -932)) +((-2706 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) (-2706 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) (-2416 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) (-2416 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) (-5 *1 (-932 *3)) (-4 *3 (-620 (-542)))))) +(-10 -7 (-15 -2416 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2416 ((-934) |#1| |#1| (-1186) (-1103 (-227)))) (-15 -2706 ((-934) |#1| (-1186) (-1103 (-227)))) (-15 -2706 ((-934) |#1| (-1186)))) +((-1531 (($ $ (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 123)) (-3825 (((-1103 (-227)) $) 64)) (-3814 (((-1103 (-227)) $) 63)) (-3800 (((-1103 (-227)) $) 62)) (-3507 (((-650 (-650 (-227))) $) 69)) (-3790 (((-1103 (-227)) $) 65)) (-2677 (((-570) (-570)) 57)) (-4151 (((-570) (-570)) 52)) (-4051 (((-570) (-570)) 55)) (-2451 (((-112) (-112)) 59)) (-4225 (((-570)) 56)) (-3547 (($ $ (-1103 (-227))) 126) (($ $) 127)) (-2488 (($ (-1 (-950 (-227)) (-227)) (-1103 (-227))) 133) (($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 134)) (-2416 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227))) 136) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 137) (($ $ (-1103 (-227))) 129)) (-2615 (((-570)) 60)) (-1469 (((-570)) 50)) (-3724 (((-570)) 53)) (-2055 (((-650 (-650 (-950 (-227)))) $) 153)) (-4378 (((-112) (-112)) 61)) (-3798 (((-868) $) 151)) (-3170 (((-112)) 58))) +(((-933) (-13 (-983) (-10 -8 (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ $ (-1103 (-227)))) (-15 -1531 ($ $ (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -3547 ($ $ (-1103 (-227)))) (-15 -3547 ($ $)) (-15 -3790 ((-1103 (-227)) $)) (-15 -3507 ((-650 (-650 (-227))) $)) (-15 -1469 ((-570))) (-15 -4151 ((-570) (-570))) (-15 -3724 ((-570))) (-15 -4051 ((-570) (-570))) (-15 -4225 ((-570))) (-15 -2677 ((-570) (-570))) (-15 -3170 ((-112))) (-15 -2451 ((-112) (-112))) (-15 -2615 ((-570))) (-15 -4378 ((-112) (-112)))))) (T -933)) +((-2488 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2488 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2416 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2416 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-933)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-1531 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-3547 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-3547 (*1 *1 *1) (-5 *1 (-933))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-933)))) (-1469 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-3724 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-4225 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-3170 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933)))) (-2615 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933)))) (-4378 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) +(-13 (-983) (-10 -8 (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ $ (-1103 (-227)))) (-15 -1531 ($ $ (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -3547 ($ $ (-1103 (-227)))) (-15 -3547 ($ $)) (-15 -3790 ((-1103 (-227)) $)) (-15 -3507 ((-650 (-650 (-227))) $)) (-15 -1469 ((-570))) (-15 -4151 ((-570) (-570))) (-15 -3724 ((-570))) (-15 -4051 ((-570) (-570))) (-15 -4225 ((-570))) (-15 -2677 ((-570) (-570))) (-15 -3170 ((-112))) (-15 -2451 ((-112) (-112))) (-15 -2615 ((-570))) (-15 -4378 ((-112) (-112))))) +((-1531 (($ $ (-1103 (-227))) 124) (($ $ (-1103 (-227)) (-1103 (-227))) 125)) (-3814 (((-1103 (-227)) $) 73)) (-3800 (((-1103 (-227)) $) 72)) (-3790 (((-1103 (-227)) $) 74)) (-1829 (((-570) (-570)) 66)) (-4137 (((-570) (-570)) 61)) (-2869 (((-570) (-570)) 64)) (-1587 (((-112) (-112)) 68)) (-3758 (((-570)) 65)) (-3547 (($ $ (-1103 (-227))) 128) (($ $) 129)) (-2488 (($ (-1 (-950 (-227)) (-227)) (-1103 (-227))) 143) (($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 144)) (-2706 (($ (-1 (-227) (-227)) (-1103 (-227))) 151) (($ (-1 (-227) (-227))) 155)) (-2416 (($ (-1 (-227) (-227)) (-1103 (-227))) 139) (($ (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227))) 140) (($ (-650 (-1 (-227) (-227))) (-1103 (-227))) 148) (($ (-650 (-1 (-227) (-227))) (-1103 (-227)) (-1103 (-227))) 149) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227))) 141) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227))) 142) (($ $ (-1103 (-227))) 130)) (-3079 (((-112) $) 69)) (-2457 (((-570)) 70)) (-1556 (((-570)) 59)) (-2696 (((-570)) 62)) (-2055 (((-650 (-650 (-950 (-227)))) $) 35)) (-2823 (((-112) (-112)) 71)) (-3798 (((-868) $) 169)) (-1663 (((-112)) 67))) +(((-934) (-13 (-962) (-10 -8 (-15 -2416 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)))) (-15 -2416 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2706 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2706 ($ (-1 (-227) (-227)))) (-15 -2416 ($ $ (-1103 (-227)))) (-15 -3079 ((-112) $)) (-15 -1531 ($ $ (-1103 (-227)))) (-15 -1531 ($ $ (-1103 (-227)) (-1103 (-227)))) (-15 -3547 ($ $ (-1103 (-227)))) (-15 -3547 ($ $)) (-15 -3790 ((-1103 (-227)) $)) (-15 -1556 ((-570))) (-15 -4137 ((-570) (-570))) (-15 -2696 ((-570))) (-15 -2869 ((-570) (-570))) (-15 -3758 ((-570))) (-15 -1829 ((-570) (-570))) (-15 -1663 ((-112))) (-15 -1587 ((-112) (-112))) (-15 -2457 ((-570))) (-15 -2823 ((-112) (-112)))))) (T -934)) +((-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2416 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2416 (*1 *1 *2 *3) (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2416 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2416 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2416 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2488 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2488 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2706 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) (-5 *1 (-934)))) (-2706 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-934)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934)))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-1531 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-3547 (*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-3547 (*1 *1 *1) (-5 *1 (-934))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) (-1556 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-2696 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-2869 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-3758 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-1829 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-1663 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))) (-1587 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934)))) (-2457 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934))))) +(-13 (-962) (-10 -8 (-15 -2416 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)))) (-15 -2416 ($ (-650 (-1 (-227) (-227))) (-1103 (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2416 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)))) (-15 -2488 ($ (-1 (-950 (-227)) (-227)) (-1103 (-227)) (-1103 (-227)) (-1103 (-227)))) (-15 -2706 ($ (-1 (-227) (-227)) (-1103 (-227)))) (-15 -2706 ($ (-1 (-227) (-227)))) (-15 -2416 ($ $ (-1103 (-227)))) (-15 -3079 ((-112) $)) (-15 -1531 ($ $ (-1103 (-227)))) (-15 -1531 ($ $ (-1103 (-227)) (-1103 (-227)))) (-15 -3547 ($ $ (-1103 (-227)))) (-15 -3547 ($ $)) (-15 -3790 ((-1103 (-227)) $)) (-15 -1556 ((-570))) (-15 -4137 ((-570) (-570))) (-15 -2696 ((-570))) (-15 -2869 ((-570) (-570))) (-15 -3758 ((-570))) (-15 -1829 ((-570) (-570))) (-15 -1663 ((-112))) (-15 -1587 ((-112) (-112))) (-15 -2457 ((-570))) (-15 -2823 ((-112) (-112))))) +((-2490 (((-650 (-1103 (-227))) (-650 (-650 (-950 (-227))))) 34))) +(((-935) (-10 -7 (-15 -2490 ((-650 (-1103 (-227))) (-650 (-650 (-950 (-227)))))))) (T -935)) +((-2490 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-650 (-1103 (-227)))) (-5 *1 (-935))))) +(-10 -7 (-15 -2490 ((-650 (-1103 (-227))) (-650 (-650 (-950 (-227))))))) +((-3577 ((|#2| |#2|) 28)) (-4206 ((|#2| |#2|) 29)) (-3711 ((|#2| |#2|) 27)) (-3663 ((|#2| |#2| (-512)) 26))) +(((-936 |#1| |#2|) (-10 -7 (-15 -3663 (|#2| |#2| (-512))) (-15 -3711 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -4206 (|#2| |#2|))) (-1109) (-436 |#1|)) (T -936)) +((-4206 (*1 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) (-3577 (*1 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) (-3663 (*1 *2 *2 *3) (-12 (-5 *3 (-512)) (-4 *4 (-1109)) (-5 *1 (-936 *4 *2)) (-4 *2 (-436 *4))))) +(-10 -7 (-15 -3663 (|#2| |#2| (-512))) (-15 -3711 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -4206 (|#2| |#2|))) +((-3577 (((-320 (-570)) (-1186)) 16)) (-4206 (((-320 (-570)) (-1186)) 14)) (-3711 (((-320 (-570)) (-1186)) 12)) (-3663 (((-320 (-570)) (-1186) (-512)) 19))) +(((-937) (-10 -7 (-15 -3663 ((-320 (-570)) (-1186) (-512))) (-15 -3711 ((-320 (-570)) (-1186))) (-15 -3577 ((-320 (-570)) (-1186))) (-15 -4206 ((-320 (-570)) (-1186))))) (T -937)) +((-4206 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) (-3711 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) (-3663 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-512)) (-5 *2 (-320 (-570))) (-5 *1 (-937))))) +(-10 -7 (-15 -3663 ((-320 (-570)) (-1186) (-512))) (-15 -3711 ((-320 (-570)) (-1186))) (-15 -3577 ((-320 (-570)) (-1186))) (-15 -4206 ((-320 (-570)) (-1186)))) +((-2125 (((-896 |#1| |#3|) |#2| (-899 |#1|) (-896 |#1| |#3|)) 25)) (-2524 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -2524 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2125 ((-896 |#1| |#3|) |#2| (-899 |#1|) (-896 |#1| |#3|)))) (-1109) (-893 |#1|) (-13 (-1109) (-1047 |#2|))) (T -938)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-13 (-1109) (-1047 *3))) (-4 *3 (-893 *5)) (-5 *1 (-938 *5 *3 *6)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1109) (-1047 *5))) (-4 *5 (-893 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-938 *4 *5 *6))))) +(-10 -7 (-15 -2524 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2125 ((-896 |#1| |#3|) |#2| (-899 |#1|) (-896 |#1| |#3|)))) +((-2125 (((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)) 30))) +(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2125 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-1109) (-13 (-562) (-893 |#1|)) (-13 (-436 |#2|) (-620 (-899 |#1|)) (-893 |#1|) (-1047 (-618 $)))) (T -939)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-13 (-436 *6) (-620 *4) (-893 *5) (-1047 (-618 $)))) (-5 *4 (-899 *5)) (-4 *6 (-13 (-562) (-893 *5))) (-5 *1 (-939 *5 *6 *3))))) +(-10 -7 (-15 -2125 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) +((-2125 (((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|)) 13))) +(((-940 |#1|) (-10 -7 (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|)))) (-551)) (T -940)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 (-570) *3)) (-5 *4 (-899 (-570))) (-4 *3 (-551)) (-5 *1 (-940 *3))))) +(-10 -7 (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|)))) +((-2125 (((-896 |#1| |#2|) (-618 |#2|) (-899 |#1|) (-896 |#1| |#2|)) 57))) +(((-941 |#1| |#2|) (-10 -7 (-15 -2125 ((-896 |#1| |#2|) (-618 |#2|) (-899 |#1|) (-896 |#1| |#2|)))) (-1109) (-13 (-1109) (-1047 (-618 $)) (-620 (-899 |#1|)) (-893 |#1|))) (T -941)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *6)) (-5 *3 (-618 *6)) (-4 *5 (-1109)) (-4 *6 (-13 (-1109) (-1047 (-618 $)) (-620 *4) (-893 *5))) (-5 *4 (-899 *5)) (-5 *1 (-941 *5 *6))))) +(-10 -7 (-15 -2125 ((-896 |#1| |#2|) (-618 |#2|) (-899 |#1|) (-896 |#1| |#2|)))) +((-2125 (((-892 |#1| |#2| |#3|) |#3| (-899 |#1|) (-892 |#1| |#2| |#3|)) 17))) +(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -2125 ((-892 |#1| |#2| |#3|) |#3| (-899 |#1|) (-892 |#1| |#2| |#3|)))) (-1109) (-893 |#1|) (-672 |#2|)) (T -942)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-892 *5 *6 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-4 *6 (-893 *5)) (-4 *3 (-672 *6)) (-5 *1 (-942 *5 *6 *3))))) +(-10 -7 (-15 -2125 ((-892 |#1| |#2| |#3|) |#3| (-899 |#1|) (-892 |#1| |#2| |#3|)))) +((-2125 (((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|)) 17 (|has| |#3| (-893 |#1|))) (((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|) (-1 (-896 |#1| |#5|) |#3| (-899 |#1|) (-896 |#1| |#5|))) 16))) +(((-943 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2125 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|) (-1 (-896 |#1| |#5|) |#3| (-899 |#1|) (-896 |#1| |#5|)))) (IF (|has| |#3| (-893 |#1|)) (-15 -2125 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|))) |%noBranch|)) (-1109) (-799) (-856) (-13 (-1058) (-893 |#1|)) (-13 (-956 |#4| |#2| |#3|) (-620 (-899 |#1|)))) (T -943)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-13 (-956 *8 *6 *7) (-620 *4))) (-5 *4 (-899 *5)) (-4 *7 (-893 *5)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-13 (-1058) (-893 *5))) (-5 *1 (-943 *5 *6 *7 *8 *3)))) (-2125 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-896 *6 *3) *8 (-899 *6) (-896 *6 *3))) (-4 *8 (-856)) (-5 *2 (-896 *6 *3)) (-5 *4 (-899 *6)) (-4 *6 (-1109)) (-4 *3 (-13 (-956 *9 *7 *8) (-620 *4))) (-4 *7 (-799)) (-4 *9 (-13 (-1058) (-893 *6))) (-5 *1 (-943 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -2125 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|) (-1 (-896 |#1| |#5|) |#3| (-899 |#1|) (-896 |#1| |#5|)))) (IF (|has| |#3| (-893 |#1|)) (-15 -2125 ((-896 |#1| |#5|) |#5| (-899 |#1|) (-896 |#1| |#5|))) |%noBranch|)) +((-4276 ((|#2| |#2| (-650 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-944 |#1| |#2| |#3|) (-10 -7 (-15 -4276 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4276 (|#2| |#2| (-650 (-1 (-112) |#3|))))) (-1109) (-436 |#1|) (-1226)) (T -944)) +((-4276 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-1 (-112) *5))) (-4 *5 (-1226)) (-4 *4 (-1109)) (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4)))) (-4276 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1226)) (-4 *4 (-1109)) (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4))))) +(-10 -7 (-15 -4276 (|#2| |#2| (-1 (-112) |#3|))) (-15 -4276 (|#2| |#2| (-650 (-1 (-112) |#3|))))) +((-4276 (((-320 (-570)) (-1186) (-650 (-1 (-112) |#1|))) 18) (((-320 (-570)) (-1186) (-1 (-112) |#1|)) 15))) +(((-945 |#1|) (-10 -7 (-15 -4276 ((-320 (-570)) (-1186) (-1 (-112) |#1|))) (-15 -4276 ((-320 (-570)) (-1186) (-650 (-1 (-112) |#1|))))) (-1226)) (T -945)) +((-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-650 (-1 (-112) *5))) (-4 *5 (-1226)) (-5 *2 (-320 (-570))) (-5 *1 (-945 *5)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1226)) (-5 *2 (-320 (-570))) (-5 *1 (-945 *5))))) +(-10 -7 (-15 -4276 ((-320 (-570)) (-1186) (-1 (-112) |#1|))) (-15 -4276 ((-320 (-570)) (-1186) (-650 (-1 (-112) |#1|))))) +((-2125 (((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)) 25))) +(((-946 |#1| |#2| |#3|) (-10 -7 (-15 -2125 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-1109) (-13 (-562) (-893 |#1|) (-620 (-899 |#1|))) (-1001 |#2|)) (T -946)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-1001 *6)) (-4 *6 (-13 (-562) (-893 *5) (-620 *4))) (-5 *4 (-899 *5)) (-5 *1 (-946 *5 *6 *3))))) +(-10 -7 (-15 -2125 ((-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) +((-2125 (((-896 |#1| (-1186)) (-1186) (-899 |#1|) (-896 |#1| (-1186))) 18))) +(((-947 |#1|) (-10 -7 (-15 -2125 ((-896 |#1| (-1186)) (-1186) (-899 |#1|) (-896 |#1| (-1186))))) (-1109)) (T -947)) +((-2125 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-896 *5 (-1186))) (-5 *3 (-1186)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-5 *1 (-947 *5))))) +(-10 -7 (-15 -2125 ((-896 |#1| (-1186)) (-1186) (-899 |#1|) (-896 |#1| (-1186))))) +((-2095 (((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) 34)) (-2125 (((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-1 |#3| (-650 |#3|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))) 33))) +(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -2125 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-1 |#3| (-650 |#3|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-15 -2095 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))))) (-1109) (-1058) (-13 (-1058) (-620 (-899 |#1|)) (-1047 |#2|))) (T -948)) +((-2095 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-899 *6))) (-5 *5 (-1 (-896 *6 *8) *8 (-899 *6) (-896 *6 *8))) (-4 *6 (-1109)) (-4 *8 (-13 (-1058) (-620 (-899 *6)) (-1047 *7))) (-5 *2 (-896 *6 *8)) (-4 *7 (-1058)) (-5 *1 (-948 *6 *7 *8)))) (-2125 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-650 (-899 *7))) (-5 *5 (-1 *9 (-650 *9))) (-5 *6 (-1 (-896 *7 *9) *9 (-899 *7) (-896 *7 *9))) (-4 *7 (-1109)) (-4 *9 (-13 (-1058) (-620 (-899 *7)) (-1047 *8))) (-5 *2 (-896 *7 *9)) (-5 *3 (-650 *9)) (-4 *8 (-1058)) (-5 *1 (-948 *7 *8 *9))))) +(-10 -7 (-15 -2125 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-1 |#3| (-650 |#3|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|)))) (-15 -2095 ((-896 |#1| |#3|) (-650 |#3|) (-650 (-899 |#1|)) (-896 |#1| |#3|) (-1 (-896 |#1| |#3|) |#3| (-899 |#1|) (-896 |#1| |#3|))))) +((-3893 (((-1182 (-413 (-570))) (-570)) 81)) (-1588 (((-1182 (-570)) (-570)) 84)) (-2346 (((-1182 (-570)) (-570)) 78)) (-2051 (((-570) (-1182 (-570))) 74)) (-3141 (((-1182 (-413 (-570))) (-570)) 65)) (-1973 (((-1182 (-570)) (-570)) 49)) (-1785 (((-1182 (-570)) (-570)) 86)) (-2096 (((-1182 (-570)) (-570)) 85)) (-2212 (((-1182 (-413 (-570))) (-570)) 67))) +(((-949) (-10 -7 (-15 -2212 ((-1182 (-413 (-570))) (-570))) (-15 -2096 ((-1182 (-570)) (-570))) (-15 -1785 ((-1182 (-570)) (-570))) (-15 -1973 ((-1182 (-570)) (-570))) (-15 -3141 ((-1182 (-413 (-570))) (-570))) (-15 -2051 ((-570) (-1182 (-570)))) (-15 -2346 ((-1182 (-570)) (-570))) (-15 -1588 ((-1182 (-570)) (-570))) (-15 -3893 ((-1182 (-413 (-570))) (-570))))) (T -949)) +((-3893 (*1 *2 *3) (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))) (-1588 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-570)) (-5 *1 (-949)))) (-3141 (*1 *2 *3) (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-1785 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-2096 (*1 *2 *3) (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) (-2212 (*1 *2 *3) (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570))))) +(-10 -7 (-15 -2212 ((-1182 (-413 (-570))) (-570))) (-15 -2096 ((-1182 (-570)) (-570))) (-15 -1785 ((-1182 (-570)) (-570))) (-15 -1973 ((-1182 (-570)) (-570))) (-15 -3141 ((-1182 (-413 (-570))) (-570))) (-15 -2051 ((-570) (-1182 (-570)))) (-15 -2346 ((-1182 (-570)) (-570))) (-15 -1588 ((-1182 (-570)) (-570))) (-15 -3893 ((-1182 (-413 (-570))) (-570)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3469 (($ (-777)) NIL (|has| |#1| (-23)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-3286 (($ (-650 |#1|)) 9)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1368 (((-695 |#1|) $ $) NIL (|has| |#1| (-1058)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1757 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-2063 (((-112) $ (-777)) NIL)) (-3847 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-3500 (($ $ (-650 |#1|)) 25)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 18) (($ $ (-1243 (-570))) NIL)) (-2331 ((|#1| $ $) NIL (|has| |#1| (-1058)))) (-3374 (((-928) $) 13)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-2597 (($ $ $) 23)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542)))) (($ (-650 |#1|)) 14)) (-3811 (($ (-650 |#1|)) NIL)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3026 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3014 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-570) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-732))) (($ $ |#1|) NIL (|has| |#1| (-732)))) (-2431 (((-777) $) 11 (|has| $ (-6 -4448))))) +(((-950 |#1|) (-989 |#1|) (-1058)) (T -950)) +NIL +(-989 |#1|) +((-2867 (((-487 |#1| |#2|) (-959 |#2|)) 22)) (-4002 (((-249 |#1| |#2|) (-959 |#2|)) 35)) (-3087 (((-959 |#2|) (-487 |#1| |#2|)) 27)) (-3394 (((-249 |#1| |#2|) (-487 |#1| |#2|)) 57)) (-4361 (((-959 |#2|) (-249 |#1| |#2|)) 32)) (-3756 (((-487 |#1| |#2|) (-249 |#1| |#2|)) 48))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3756 ((-487 |#1| |#2|) (-249 |#1| |#2|))) (-15 -3394 ((-249 |#1| |#2|) (-487 |#1| |#2|))) (-15 -2867 ((-487 |#1| |#2|) (-959 |#2|))) (-15 -3087 ((-959 |#2|) (-487 |#1| |#2|))) (-15 -4361 ((-959 |#2|) (-249 |#1| |#2|))) (-15 -4002 ((-249 |#1| |#2|) (-959 |#2|)))) (-650 (-1186)) (-1058)) (T -951)) +((-4002 (*1 *2 *3) (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-249 *4 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186))))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-487 *4 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186))))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-249 *4 *5)) (-5 *1 (-951 *4 *5)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) (-5 *2 (-487 *4 *5)) (-5 *1 (-951 *4 *5))))) +(-10 -7 (-15 -3756 ((-487 |#1| |#2|) (-249 |#1| |#2|))) (-15 -3394 ((-249 |#1| |#2|) (-487 |#1| |#2|))) (-15 -2867 ((-487 |#1| |#2|) (-959 |#2|))) (-15 -3087 ((-959 |#2|) (-487 |#1| |#2|))) (-15 -4361 ((-959 |#2|) (-249 |#1| |#2|))) (-15 -4002 ((-249 |#1| |#2|) (-959 |#2|)))) +((-3105 (((-650 |#2|) |#2| |#2|) 10)) (-4201 (((-777) (-650 |#1|)) 48 (|has| |#1| (-854)))) (-3635 (((-650 |#2|) |#2|) 11)) (-3966 (((-777) (-650 |#1|) (-570) (-570)) 52 (|has| |#1| (-854)))) (-2456 ((|#1| |#2|) 38 (|has| |#1| (-854))))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3105 ((-650 |#2|) |#2| |#2|)) (-15 -3635 ((-650 |#2|) |#2|)) (IF (|has| |#1| (-854)) (PROGN (-15 -2456 (|#1| |#2|)) (-15 -4201 ((-777) (-650 |#1|))) (-15 -3966 ((-777) (-650 |#1|) (-570) (-570)))) |%noBranch|)) (-368) (-1252 |#1|)) (T -952)) +((-3966 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-570)) (-4 *5 (-854)) (-4 *5 (-368)) (-5 *2 (-777)) (-5 *1 (-952 *5 *6)) (-4 *6 (-1252 *5)))) (-4201 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-854)) (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-952 *4 *5)) (-4 *5 (-1252 *4)))) (-2456 (*1 *2 *3) (-12 (-4 *2 (-368)) (-4 *2 (-854)) (-5 *1 (-952 *2 *3)) (-4 *3 (-1252 *2)))) (-3635 (*1 *2 *3) (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3)) (-4 *3 (-1252 *4)))) (-3105 (*1 *2 *3 *3) (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -3105 ((-650 |#2|) |#2| |#2|)) (-15 -3635 ((-650 |#2|) |#2|)) (IF (|has| |#1| (-854)) (PROGN (-15 -2456 (|#1| |#2|)) (-15 -4201 ((-777) (-650 |#1|))) (-15 -3966 ((-777) (-650 |#1|) (-570) (-570)))) |%noBranch|)) +((-1347 (((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)) 19))) +(((-953 |#1| |#2|) (-10 -7 (-15 -1347 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) (-1058) (-1058)) (T -953)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-959 *6)) (-5 *1 (-953 *5 *6))))) +(-10 -7 (-15 -1347 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) +((-3768 (((-1249 |#1| (-959 |#2|)) (-959 |#2|) (-1272 |#1|)) 18))) +(((-954 |#1| |#2|) (-10 -7 (-15 -3768 ((-1249 |#1| (-959 |#2|)) (-959 |#2|) (-1272 |#1|)))) (-1186) (-1058)) (T -954)) +((-3768 (*1 *2 *3 *4) (-12 (-5 *4 (-1272 *5)) (-14 *5 (-1186)) (-4 *6 (-1058)) (-5 *2 (-1249 *5 (-959 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-959 *6))))) +(-10 -7 (-15 -3768 ((-1249 |#1| (-959 |#2|)) (-959 |#2|) (-1272 |#1|)))) +((-1818 (((-777) $) 88) (((-777) $ (-650 |#4|)) 93)) (-3696 (($ $) 203)) (-2555 (((-424 $) $) 195)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 141)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) NIL) (((-570) $) NIL) ((|#4| $) 73)) (-2865 (($ $ $ |#4|) 95)) (-2004 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) 131) (((-695 |#2|) (-695 $)) 121)) (-1908 (($ $) 210) (($ $ |#4|) 213)) (-1867 (((-650 $) $) 77)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 229) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 222)) (-2717 (((-650 $) $) 34)) (-3925 (($ |#2| |#3|) NIL) (($ $ |#4| (-777)) NIL) (($ $ (-650 |#4|) (-650 (-777))) 71)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#4|) 192)) (-4193 (((-3 (-650 $) "failed") $) 52)) (-3607 (((-3 (-650 $) "failed") $) 39)) (-1657 (((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-777))) "failed") $) 57)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 134)) (-3484 (((-424 (-1182 $)) (-1182 $)) 147)) (-3623 (((-424 (-1182 $)) (-1182 $)) 145)) (-3801 (((-424 $) $) 165)) (-1725 (($ $ (-650 (-298 $))) 24) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-650 |#4|) (-650 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-650 |#4|) (-650 $)) NIL)) (-3511 (($ $ |#4|) 97)) (-1411 (((-899 (-384)) $) 243) (((-899 (-570)) $) 236) (((-542) $) 251)) (-1427 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 184)) (-3326 ((|#2| $ |#3|) NIL) (($ $ |#4| (-777)) 62) (($ $ (-650 |#4|) (-650 (-777))) 69)) (-2917 (((-3 $ "failed") $) 186)) (-1319 (((-112) $ $) 216))) +(((-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -3623 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3484 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2409 ((-3 (-1276 |#1|) "failed") (-695 |#1|))) (-15 -1908 (|#1| |#1| |#4|)) (-15 -1427 (|#1| |#1| |#4|)) (-15 -3511 (|#1| |#1| |#4|)) (-15 -2865 (|#1| |#1| |#1| |#4|)) (-15 -1867 ((-650 |#1|) |#1|)) (-15 -1818 ((-777) |#1| (-650 |#4|))) (-15 -1818 ((-777) |#1|)) (-15 -1657 ((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-777))) "failed") |#1|)) (-15 -4193 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3607 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3925 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3925 (|#1| |#1| |#4| (-777))) (-15 -1941 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -2717 ((-650 |#1|) |#1|)) (-15 -3326 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3326 (|#1| |#1| |#4| (-777))) (-15 -2004 ((-695 |#2|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -4382 ((-3 |#4| "failed") |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3925 (|#1| |#2| |#3|)) (-15 -3326 (|#2| |#1| |#3|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1319 ((-112) |#1| |#1|))) (-956 |#2| |#3| |#4|) (-1058) (-799) (-856)) (T -955)) +NIL +(-10 -8 (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -2917 ((-3 |#1| "failed") |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -3623 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3484 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -2409 ((-3 (-1276 |#1|) "failed") (-695 |#1|))) (-15 -1908 (|#1| |#1| |#4|)) (-15 -1427 (|#1| |#1| |#4|)) (-15 -3511 (|#1| |#1| |#4|)) (-15 -2865 (|#1| |#1| |#1| |#4|)) (-15 -1867 ((-650 |#1|) |#1|)) (-15 -1818 ((-777) |#1| (-650 |#4|))) (-15 -1818 ((-777) |#1|)) (-15 -1657 ((-3 (-2 (|:| |var| |#4|) (|:| -3283 (-777))) "failed") |#1|)) (-15 -4193 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3607 ((-3 (-650 |#1|) "failed") |#1|)) (-15 -3925 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3925 (|#1| |#1| |#4| (-777))) (-15 -1941 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -2717 ((-650 |#1|) |#1|)) (-15 -3326 (|#1| |#1| (-650 |#4|) (-650 (-777)))) (-15 -3326 (|#1| |#1| |#4| (-777))) (-15 -2004 ((-695 |#2|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -4382 ((-3 |#4| "failed") |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#4| |#1|)) (-15 -1725 (|#1| |#1| (-650 |#4|) (-650 |#2|))) (-15 -1725 (|#1| |#1| |#4| |#2|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3925 (|#1| |#2| |#3|)) (-15 -3326 (|#2| |#1| |#3|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 -1319 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 |#3|) $) 112)) (-3768 (((-1182 $) $ |#3|) 127) (((-1182 |#1|) $) 126)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2318 (($ $) 90 (|has| |#1| (-562)))) (-2234 (((-112) $) 92 (|has| |#1| (-562)))) (-1818 (((-777) $) 114) (((-777) $ (-650 |#3|)) 113)) (-2620 (((-3 $ "failed") $ $) 20)) (-2900 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3696 (($ $) 100 (|has| |#1| (-458)))) (-2555 (((-424 $) $) 99 (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) 138)) (-3152 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) ((|#3| $) 139)) (-2865 (($ $ $ |#3|) 110 (|has| |#1| (-174)))) (-1885 (($ $) 156)) (-2004 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-2229 (((-3 $ "failed") $) 37)) (-1908 (($ $) 178 (|has| |#1| (-458))) (($ $ |#3|) 107 (|has| |#1| (-458)))) (-1867 (((-650 $) $) 111)) (-3701 (((-112) $) 98 (|has| |#1| (-916)))) (-3155 (($ $ |#1| |#2| $) 174)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| |#3| (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| |#3| (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-2481 (((-112) $) 35)) (-1700 (((-777) $) 171)) (-1699 (($ (-1182 |#1|) |#3|) 119) (($ (-1182 $) |#3|) 118)) (-2717 (((-650 $) $) 128)) (-2343 (((-112) $) 154)) (-3925 (($ |#1| |#2|) 155) (($ $ |#3| (-777)) 121) (($ $ (-650 |#3|) (-650 (-777))) 120)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#3|) 122)) (-2302 ((|#2| $) 172) (((-777) $ |#3|) 124) (((-650 (-777)) $ (-650 |#3|)) 123)) (-2550 (($ (-1 |#2| |#2|) $) 173)) (-1347 (($ (-1 |#1| |#1|) $) 153)) (-4372 (((-3 |#3| "failed") $) 125)) (-1851 (($ $) 151)) (-1860 ((|#1| $) 150)) (-1841 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-4122 (((-1168) $) 10)) (-4193 (((-3 (-650 $) "failed") $) 116)) (-3607 (((-3 (-650 $) "failed") $) 117)) (-1657 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-777))) "failed") $) 115)) (-3551 (((-1129) $) 11)) (-1830 (((-112) $) 168)) (-1838 ((|#1| $) 169)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-1869 (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-3801 (((-424 $) $) 101 (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-650 |#3|) (-650 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-650 |#3|) (-650 $)) 140)) (-3511 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3519 (($ $ |#3|) 46) (($ $ (-650 |#3|)) 45) (($ $ |#3| (-777)) 44) (($ $ (-650 |#3|) (-650 (-777))) 43)) (-3324 ((|#2| $) 152) (((-777) $ |#3|) 132) (((-650 (-777)) $ (-650 |#3|)) 131)) (-1411 (((-899 (-384)) $) 84 (-12 (|has| |#3| (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| |#3| (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| |#3| (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ |#3|) 108 (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 106 (-1760 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-562))) (($ (-413 (-570))) 80 (-2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))))) (-2479 (((-650 |#1|) $) 170)) (-3326 ((|#1| $ |#2|) 157) (($ $ |#3| (-777)) 130) (($ $ (-650 |#3|) (-650 (-777))) 129)) (-2917 (((-3 $ "failed") $) 81 (-2779 (-1760 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) 32 T CONST)) (-1484 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ |#3|) 42) (($ $ (-650 |#3|)) 41) (($ $ |#3| (-777)) 40) (($ $ (-650 |#3|) (-650 (-777))) 39)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-956 |#1| |#2| |#3|) (-141) (-1058) (-799) (-856)) (T -956)) +((-1908 (*1 *1 *1) (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-3324 (*1 *2 *1 *3) (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-777)))) (-3324 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777))))) (-3326 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *2 (-856)))) (-3326 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)))) (-2717 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-3768 (*1 *2 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-1182 *1)) (-4 *1 (-956 *4 *5 *3)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-1182 *3)))) (-4372 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-2302 (*1 *2 *1 *3) (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-777)))) (-2302 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777))))) (-1941 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-956 *4 *5 *3)))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *2 (-856)))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *4)) (-4 *4 (-1058)) (-4 *1 (-956 *4 *5 *3)) (-4 *5 (-799)) (-4 *3 (-856)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)))) (-3607 (*1 *2 *1) (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-4193 (*1 *2 *1) (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-1657 (*1 *2 *1) (|partial| -12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-777)))))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-777)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *5)))) (-1867 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) (-2865 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-174)))) (-3511 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-174)))) (-1427 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-458)))) (-1908 (*1 *1 *1 *2) (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *3 (-458)))) (-3696 (*1 *1 *1) (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2555 (*1 *2 *1) (-12 (-4 *3 (-458)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-424 *1)) (-4 *1 (-956 *3 *4 *5))))) +(-13 (-907 |t#3|) (-330 |t#1| |t#2|) (-313 $) (-520 |t#3| |t#1|) (-520 |t#3| $) (-1047 |t#3|) (-382 |t#1|) (-10 -8 (-15 -3324 ((-777) $ |t#3|)) (-15 -3324 ((-650 (-777)) $ (-650 |t#3|))) (-15 -3326 ($ $ |t#3| (-777))) (-15 -3326 ($ $ (-650 |t#3|) (-650 (-777)))) (-15 -2717 ((-650 $) $)) (-15 -3768 ((-1182 $) $ |t#3|)) (-15 -3768 ((-1182 |t#1|) $)) (-15 -4372 ((-3 |t#3| "failed") $)) (-15 -2302 ((-777) $ |t#3|)) (-15 -2302 ((-650 (-777)) $ (-650 |t#3|))) (-15 -1941 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |t#3|)) (-15 -3925 ($ $ |t#3| (-777))) (-15 -3925 ($ $ (-650 |t#3|) (-650 (-777)))) (-15 -1699 ($ (-1182 |t#1|) |t#3|)) (-15 -1699 ($ (-1182 $) |t#3|)) (-15 -3607 ((-3 (-650 $) "failed") $)) (-15 -4193 ((-3 (-650 $) "failed") $)) (-15 -1657 ((-3 (-2 (|:| |var| |t#3|) (|:| -3283 (-777))) "failed") $)) (-15 -1818 ((-777) $)) (-15 -1818 ((-777) $ (-650 |t#3|))) (-15 -1709 ((-650 |t#3|) $)) (-15 -1867 ((-650 $) $)) (IF (|has| |t#1| (-620 (-542))) (IF (|has| |t#3| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-620 (-899 (-570)))) (IF (|has| |t#3| (-620 (-899 (-570)))) (-6 (-620 (-899 (-570)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-620 (-899 (-384)))) (IF (|has| |t#3| (-620 (-899 (-384)))) (-6 (-620 (-899 (-384)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-893 (-570))) (IF (|has| |t#3| (-893 (-570))) (-6 (-893 (-570))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-893 (-384))) (IF (|has| |t#3| (-893 (-384))) (-6 (-893 (-384))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2865 ($ $ $ |t#3|)) (-15 -3511 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-6 (-458)) (-15 -1427 ($ $ |t#3|)) (-15 -1908 ($ $)) (-15 -1908 ($ $ |t#3|)) (-15 -2555 ((-424 $) $)) (-15 -3696 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4446)) (-6 -4446) |%noBranch|) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 |#3|) . T) ((-622 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) ((-294) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-313 $) . T) ((-330 |#1| |#2|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -2779 (|has| |#1| (-916)) (|has| |#1| (-458))) ((-520 |#3| |#1|) . T) ((-520 |#3| $) . T) ((-520 $ $) . T) ((-562) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-732) . T) ((-907 |#3|) . T) ((-893 (-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) ((-916) |has| |#1| (-916)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1047 |#3|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) |has| |#1| (-916))) +((-1709 (((-650 |#2|) |#5|) 40)) (-3768 (((-1182 |#5|) |#5| |#2| (-1182 |#5|)) 23) (((-413 (-1182 |#5|)) |#5| |#2|) 16)) (-1699 ((|#5| (-413 (-1182 |#5|)) |#2|) 30)) (-4372 (((-3 |#2| "failed") |#5|) 71)) (-4193 (((-3 (-650 |#5|) "failed") |#5|) 65)) (-2536 (((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-570))) "failed") |#5|) 53)) (-3607 (((-3 (-650 |#5|) "failed") |#5|) 67)) (-1657 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-570))) "failed") |#5|) 57))) +(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1709 ((-650 |#2|) |#5|)) (-15 -4372 ((-3 |#2| "failed") |#5|)) (-15 -3768 ((-413 (-1182 |#5|)) |#5| |#2|)) (-15 -1699 (|#5| (-413 (-1182 |#5|)) |#2|)) (-15 -3768 ((-1182 |#5|) |#5| |#2| (-1182 |#5|))) (-15 -3607 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -4193 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -1657 ((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-570))) "failed") |#5|)) (-15 -2536 ((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-570))) "failed") |#5|))) (-799) (-856) (-1058) (-956 |#3| |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3798 ($ |#4|)) (-15 -4400 (|#4| $)) (-15 -4413 (|#4| $))))) (T -957)) +((-2536 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3283 (-570)))) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) (-1657 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-570)))) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) (-4193 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) (-3607 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) (-3768 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))) (-4 *7 (-956 *6 *5 *4)) (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) (-5 *1 (-957 *5 *4 *6 *7 *3)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-1182 *2))) (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) (-4 *2 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))) (-5 *1 (-957 *5 *4 *6 *7 *2)) (-4 *7 (-956 *6 *5 *4)))) (-3768 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-413 (-1182 *3))) (-5 *1 (-957 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) (-4372 (*1 *2 *3) (|partial| -12 (-4 *4 (-799)) (-4 *5 (-1058)) (-4 *6 (-956 *5 *4 *2)) (-4 *2 (-856)) (-5 *1 (-957 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *6)) (-15 -4400 (*6 $)) (-15 -4413 (*6 $))))))) (-1709 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *5)) (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $)))))))) +(-10 -7 (-15 -1709 ((-650 |#2|) |#5|)) (-15 -4372 ((-3 |#2| "failed") |#5|)) (-15 -3768 ((-413 (-1182 |#5|)) |#5| |#2|)) (-15 -1699 (|#5| (-413 (-1182 |#5|)) |#2|)) (-15 -3768 ((-1182 |#5|) |#5| |#2| (-1182 |#5|))) (-15 -3607 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -4193 ((-3 (-650 |#5|) "failed") |#5|)) (-15 -1657 ((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-570))) "failed") |#5|)) (-15 -2536 ((-3 (-2 (|:| |val| |#5|) (|:| -3283 (-570))) "failed") |#5|))) +((-1347 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-958 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1347 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-799) (-856) (-1058) (-956 |#3| |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777)))))) (T -958)) +((-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-856)) (-4 *8 (-1058)) (-4 *6 (-799)) (-4 *2 (-13 (-1109) (-10 -8 (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777)))))) (-5 *1 (-958 *6 *7 *8 *5 *2)) (-4 *5 (-956 *8 *6 *7))))) +(-10 -7 (-15 -1347 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1186)) $) 16)) (-3768 (((-1182 $) $ (-1186)) 21) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1186))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 8) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1186) "failed") $) NIL)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1186) $) NIL)) (-2865 (($ $ $ (-1186)) NIL (|has| |#1| (-174)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1186)) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-537 (-1186)) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1186) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1186) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#1|) (-1186)) NIL) (($ (-1182 $) (-1186)) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1186)) NIL)) (-2302 (((-537 (-1186)) $) NIL) (((-777) $ (-1186)) NIL) (((-650 (-777)) $ (-650 (-1186))) NIL)) (-2550 (($ (-1 (-537 (-1186)) (-537 (-1186))) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-4372 (((-3 (-1186) "failed") $) 19)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-1186)) (|:| -3283 (-777))) "failed") $) NIL)) (-1840 (($ $ (-1186)) 29 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1186) |#1|) NIL) (($ $ (-650 (-1186)) (-650 |#1|)) NIL) (($ $ (-1186) $) NIL) (($ $ (-650 (-1186)) (-650 $)) NIL)) (-3511 (($ $ (-1186)) NIL (|has| |#1| (-174)))) (-3519 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-3324 (((-537 (-1186)) $) NIL) (((-777) $ (-1186)) NIL) (((-650 (-777)) $ (-650 (-1186))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-1186) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1186) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1186) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1186)) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) 25) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1186)) 27) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-959 |#1|) (-13 (-956 |#1| (-537 (-1186)) (-1186)) (-10 -8 (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1186))) |%noBranch|))) (-1058)) (T -959)) +((-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-959 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058))))) +(-13 (-956 |#1| (-537 (-1186)) (-1186)) (-10 -8 (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1186))) |%noBranch|))) +((-2168 (((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) |#3| (-777)) 49)) (-2442 (((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) (-413 (-570)) (-777)) 44)) (-4062 (((-2 (|:| -3283 (-777)) (|:| -1436 |#4|) (|:| |radicand| (-650 |#4|))) |#4| (-777)) 65)) (-2200 (((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) |#5| (-777)) 74 (|has| |#3| (-458))))) +(((-960 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2168 ((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) |#3| (-777))) (-15 -2442 ((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) (-413 (-570)) (-777))) (IF (|has| |#3| (-458)) (-15 -2200 ((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) |#5| (-777))) |%noBranch|) (-15 -4062 ((-2 (|:| -3283 (-777)) (|:| -1436 |#4|) (|:| |radicand| (-650 |#4|))) |#4| (-777)))) (-799) (-856) (-562) (-956 |#3| |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3798 ($ |#4|)) (-15 -4400 (|#4| $)) (-15 -4413 (|#4| $))))) (T -960)) +((-4062 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) (-4 *3 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *3) (|:| |radicand| (-650 *3)))) (-5 *1 (-960 *5 *6 *7 *3 *8)) (-5 *4 (-777)) (-4 *8 (-13 (-368) (-10 -8 (-15 -3798 ($ *3)) (-15 -4400 (*3 $)) (-15 -4413 (*3 $))))))) (-2200 (*1 *2 *3 *4) (-12 (-4 *7 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *3) (|:| |radicand| *3))) (-5 *1 (-960 *5 *6 *7 *8 *3)) (-5 *4 (-777)) (-4 *3 (-13 (-368) (-10 -8 (-15 -3798 ($ *8)) (-15 -4400 (*8 $)) (-15 -4413 (*8 $))))))) (-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-570))) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *9) (|:| |radicand| *9))) (-5 *1 (-960 *5 *6 *7 *8 *9)) (-5 *4 (-777)) (-4 *9 (-13 (-368) (-10 -8 (-15 -3798 ($ *8)) (-15 -4400 (*8 $)) (-15 -4413 (*8 $))))))) (-2168 (*1 *2 *3 *4) (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-562)) (-4 *7 (-956 *3 *5 *6)) (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *8) (|:| |radicand| *8))) (-5 *1 (-960 *5 *6 *3 *7 *8)) (-5 *4 (-777)) (-4 *8 (-13 (-368) (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $)))))))) +(-10 -7 (-15 -2168 ((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) |#3| (-777))) (-15 -2442 ((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) (-413 (-570)) (-777))) (IF (|has| |#3| (-458)) (-15 -2200 ((-2 (|:| -3283 (-777)) (|:| -1436 |#5|) (|:| |radicand| |#5|)) |#5| (-777))) |%noBranch|) (-15 -4062 ((-2 (|:| -3283 (-777)) (|:| -1436 |#4|) (|:| |radicand| (-650 |#4|))) |#4| (-777)))) +((-2419 (((-112) $ $) NIL)) (-3654 (($ (-1129)) 8)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 15) (((-1129) $) 12)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 11))) +(((-961) (-13 (-1109) (-619 (-1129)) (-10 -8 (-15 -3654 ($ (-1129)))))) (T -961)) +((-3654 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-961))))) +(-13 (-1109) (-619 (-1129)) (-10 -8 (-15 -3654 ($ (-1129))))) +((-3814 (((-1103 (-227)) $) 8)) (-3800 (((-1103 (-227)) $) 9)) (-2055 (((-650 (-650 (-950 (-227)))) $) 10)) (-3798 (((-868) $) 6))) +(((-962) (-141)) (T -962)) +((-2055 (*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-650 (-650 (-950 (-227))))))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227))))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227)))))) +(-13 (-619 (-868)) (-10 -8 (-15 -2055 ((-650 (-650 (-950 (-227)))) $)) (-15 -3800 ((-1103 (-227)) $)) (-15 -3814 ((-1103 (-227)) $)))) +(((-619 (-868)) . T)) +((-3221 (((-3 (-695 |#1|) "failed") |#2| (-928)) 18))) +(((-963 |#1| |#2|) (-10 -7 (-15 -3221 ((-3 (-695 |#1|) "failed") |#2| (-928)))) (-562) (-662 |#1|)) (T -963)) +((-3221 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-928)) (-4 *5 (-562)) (-5 *2 (-695 *5)) (-5 *1 (-963 *5 *3)) (-4 *3 (-662 *5))))) +(-10 -7 (-15 -3221 ((-3 (-695 |#1|) "failed") |#2| (-928)))) +((-4292 (((-965 |#2|) (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|) 16)) (-3600 ((|#2| (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|) 18)) (-1347 (((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)) 13))) +(((-964 |#1| |#2|) (-10 -7 (-15 -4292 ((-965 |#2|) (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -1347 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) (-1226) (-1226)) (T -964)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-965 *6)) (-5 *1 (-964 *5 *6)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-965 *5)) (-4 *5 (-1226)) (-4 *2 (-1226)) (-5 *1 (-964 *5 *2)))) (-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-965 *6)) (-4 *6 (-1226)) (-4 *5 (-1226)) (-5 *2 (-965 *5)) (-5 *1 (-964 *6 *5))))) +(-10 -7 (-15 -4292 ((-965 |#2|) (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-965 |#1|) |#2|)) (-15 -1347 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) |#1|) 19 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 18 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 16)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) |#1|) 15)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) 11 (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) 20 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) 17) (($ $ (-1243 (-570))) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) 21)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 14)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2431 (((-777) $) 8 (|has| $ (-6 -4448))))) +(((-965 |#1|) (-19 |#1|) (-1226)) (T -965)) NIL (-19 |#1|) -((-3898 (($ $ (-1100 $)) 7) (($ $ (-1185)) 6))) -(((-965) (-140)) (T -965)) -((-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-965)))) (-3898 (*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1185))))) -(-13 (-10 -8 (-15 -3898 ($ $ (-1185))) (-15 -3898 ($ $ (-1100 $))))) -((-1616 (((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)) (-1185)) 30) (((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185))) 31) (((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 |#1|))) (-958 |#1|) (-1185) (-958 |#1|) (-1185)) 49))) -(((-966 |#1|) (-10 -7 (-15 -1616 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 |#1|))) (-958 |#1|) (-1185) (-958 |#1|) (-1185))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)) (-1185)))) (-13 (-367) (-147))) (T -966)) -((-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-5 *5 (-1185)) (-4 *6 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *6))) (|:| |prim| (-1181 *6)))) (-5 *1 (-966 *6)))) (-1616 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *5))) (|:| |prim| (-1181 *5)))) (-5 *1 (-966 *5)))) (-1616 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-958 *5)) (-5 *4 (-1185)) (-4 *5 (-13 (-367) (-147))) (-5 *2 (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 *5)))) (-5 *1 (-966 *5))))) -(-10 -7 (-15 -1616 ((-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) (|:| |prim| (-1181 |#1|))) (-958 |#1|) (-1185) (-958 |#1|) (-1185))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)))) (-15 -1616 ((-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 |#1|))) (|:| |prim| (-1181 |#1|))) (-649 (-958 |#1|)) (-649 (-1185)) (-1185)))) -((-2160 (((-649 |#1|) |#1| |#1|) 47)) (-1473 (((-112) |#1|) 44)) (-3401 ((|#1| |#1|) 80)) (-1474 ((|#1| |#1|) 79))) -(((-967 |#1|) (-10 -7 (-15 -1473 ((-112) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -2160 ((-649 |#1|) |#1| |#1|))) (-550)) (T -967)) -((-2160 (*1 *2 *3 *3) (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550)))) (-3401 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-1474 (*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550))))) -(-10 -7 (-15 -1473 ((-112) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -2160 ((-649 |#1|) |#1| |#1|))) -((-2929 (((-1280) (-867)) 9))) -(((-968) (-10 -7 (-15 -2929 ((-1280) (-867))))) (T -968)) -((-2929 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-968))))) -(-10 -7 (-15 -2929 ((-1280) (-867)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 78 (|has| |#1| (-561)))) (-4355 (($ $) 79 (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 34)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) 31)) (-3086 (((-3 $ "failed") $) 42)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2870 (($ $ |#1| |#2| $) 62)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 17)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| |#2|) NIL)) (-2272 ((|#2| $) 24)) (-2492 (($ (-1 |#2| |#2|) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1849 (($ $) 28)) (-1857 ((|#1| $) 26)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 51)) (-1835 ((|#1| $) NIL)) (-2448 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-561))))) (-2407 (((-3 $ "failed") $ $) 91 (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-561)))) (-4339 ((|#2| $) 22)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) 46) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 41) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ |#2|) 37)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 15 T CONST)) (-3184 (($ $ $ (-776)) 74 (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) 84 (|has| |#1| (-561)))) (-1804 (($) 27 T CONST)) (-1815 (($) 12 T CONST)) (-2920 (((-112) $ $) 83)) (-3035 (($ $ |#1|) 92 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) 69) (($ $ (-776)) 67)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-969 |#1| |#2|) (-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -2448 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) (-1057) (-797)) (T -969)) -((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *2 (-797))))) -(-13 (-329 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| |#2| (-131)) (-15 -2448 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3151 (($ $ $) 65 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (-2208 (((-3 $ "failed") $ $) 52 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (-3473 (((-776)) 36 (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-4000 ((|#2| $) 22)) (-3840 ((|#1| $) 21)) (-4427 (($) NIL (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-3086 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3406 (($) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-2349 (((-112) $) NIL (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (-3380 (($ $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2839 (($ $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3621 (($ |#1| |#2|) 20)) (-2731 (((-927) $) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 39 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2150 (($ (-927)) NIL (-12 (|has| |#1| (-372)) (|has| |#2| (-372))))) (-3547 (((-1128) $) NIL)) (-3476 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-2180 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-3796 (((-867) $) 14)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 42 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))) CONST)) (-1815 (($) 25 (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))) CONST)) (-2978 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2956 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2920 (((-112) $ $) 19)) (-2966 (((-112) $ $) NIL (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-2944 (((-112) $ $) 69 (-2776 (-12 (|has| |#1| (-798)) (|has| |#2| (-798))) (-12 (|has| |#1| (-855)) (|has| |#2| (-855)))))) (-3035 (($ $ $) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478))))) (-3024 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3012 (($ $ $) 45 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798)))))) (** (($ $ (-569)) NIL (-12 (|has| |#1| (-478)) (|has| |#2| (-478)))) (($ $ (-776)) 32 (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))) (($ $ (-927)) NIL (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731)))))) (* (($ (-569) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-776) $) 48 (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ (-927) $) NIL (-2776 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-798)) (|has| |#2| (-798))))) (($ $ $) 28 (-2776 (-12 (|has| |#1| (-478)) (|has| |#2| (-478))) (-12 (|has| |#1| (-731)) (|has| |#2| (-731))))))) -(((-970 |#1| |#2|) (-13 (-1108) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3621 ($ |#1| |#2|)) (-15 -3840 (|#1| $)) (-15 -4000 (|#2| $)))) (-1108) (-1108)) (T -970)) -((-3621 (*1 *1 *2 *3) (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-3840 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1108)))) (-4000 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1108))))) -(-13 (-1108) (-10 -8 (IF (|has| |#1| (-372)) (IF (|has| |#2| (-372)) (-6 (-372)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-731)) (IF (|has| |#2| (-731)) (-6 (-731)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-478)) (IF (|has| |#2| (-478)) (-6 (-478)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-798)) (IF (|has| |#2| (-798)) (-6 (-798)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-855)) (IF (|has| |#2| (-855)) (-6 (-855)) |%noBranch|) |%noBranch|) (-15 -3621 ($ |#1| |#2|)) (-15 -3840 (|#1| $)) (-15 -4000 (|#2| $)))) -((-2188 (((-1112) $) 12)) (-3125 (($ (-511) (-1112)) 14)) (-3573 (((-511) $) 9)) (-3796 (((-867) $) 24))) -(((-971) (-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2188 ((-1112) $)) (-15 -3125 ($ (-511) (-1112)))))) (T -971)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-971)))) (-3125 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-971))))) -(-13 (-618 (-867)) (-10 -8 (-15 -3573 ((-511) $)) (-15 -2188 ((-1112) $)) (-15 -3125 ($ (-511) (-1112))))) -((-2417 (((-112) $ $) NIL)) (-3018 (($) NIL T CONST)) (-1771 (($ $ $) 30)) (-1749 (($ $) 24)) (-3435 (((-1167) $) NIL)) (-3540 (((-696 |#1|) $) 36)) (-4278 (((-696 (-878 $ $)) $) 55)) (-1653 (((-696 $) $) 45)) (-2255 (((-696 (-878 $ $)) $) 56)) (-3754 (((-696 (-878 $ $)) $) 57)) (-2947 (((-696 (-878 $ $)) $) 54)) (-3625 (($ $ $) 31)) (-3547 (((-1128) $) NIL)) (-1882 (($) NIL T CONST)) (-2069 (($ $ $) 32)) (-2125 (($ $ $) 29)) (-1908 (($ $ $) 27)) (-3796 (((-867) $) 59) (($ |#1|) 12)) (-1520 (((-112) $ $) NIL)) (-1759 (($ $ $) 28)) (-2920 (((-112) $ $) NIL))) -(((-972 |#1|) (-13 (-975) (-621 |#1|) (-10 -8 (-15 -3540 ((-696 |#1|) $)) (-15 -1653 ((-696 $) $)) (-15 -2947 ((-696 (-878 $ $)) $)) (-15 -4278 ((-696 (-878 $ $)) $)) (-15 -2255 ((-696 (-878 $ $)) $)) (-15 -3754 ((-696 (-878 $ $)) $)) (-15 -1908 ($ $ $)) (-15 -2125 ($ $ $)))) (-1108)) (T -972)) -((-3540 (*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-4278 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) (-4 *3 (-1108)))) (-1908 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108)))) (-2125 (*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108))))) -(-13 (-975) (-621 |#1|) (-10 -8 (-15 -3540 ((-696 |#1|) $)) (-15 -1653 ((-696 $) $)) (-15 -2947 ((-696 (-878 $ $)) $)) (-15 -4278 ((-696 (-878 $ $)) $)) (-15 -2255 ((-696 (-878 $ $)) $)) (-15 -3754 ((-696 (-878 $ $)) $)) (-15 -1908 ($ $ $)) (-15 -2125 ($ $ $)))) -((-2300 (((-1110 |#1|) (-972 |#1|)) 41)) (-3001 (((-972 |#1|) (-972 |#1|)) 22))) -(((-973 |#1|) (-13 (-1225) (-10 -7 (-15 -3001 ((-972 |#1|) (-972 |#1|))) (-15 -2300 ((-1110 |#1|) (-972 |#1|))))) (-1108)) (T -973)) -((-3001 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1108)) (-5 *1 (-973 *3)))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-972 *4)) (-4 *4 (-1108)) (-5 *2 (-1110 *4)) (-5 *1 (-973 *4))))) -(-13 (-1225) (-10 -7 (-15 -3001 ((-972 |#1|) (-972 |#1|))) (-15 -2300 ((-1110 |#1|) (-972 |#1|))))) -((-1346 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 29))) -(((-974 |#1| |#2|) (-13 (-1225) (-10 -7 (-15 -1346 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|))))) (-1108) (-1108)) (T -974)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-972 *6)) (-5 *1 (-974 *5 *6))))) -(-13 (-1225) (-10 -7 (-15 -1346 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|))))) -((-2417 (((-112) $ $) 7)) (-3018 (($) 20 T CONST)) (-1771 (($ $ $) 16)) (-1749 (($ $) 18)) (-3435 (((-1167) $) 10)) (-3625 (($ $ $) 15)) (-3547 (((-1128) $) 11)) (-1882 (($) 19 T CONST)) (-2069 (($ $ $) 14)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1759 (($ $ $) 17)) (-2920 (((-112) $ $) 6))) -(((-975) (-140)) (T -975)) -((-3018 (*1 *1) (-4 *1 (-975))) (-1882 (*1 *1) (-4 *1 (-975))) (-1749 (*1 *1 *1) (-4 *1 (-975))) (-1759 (*1 *1 *1 *1) (-4 *1 (-975))) (-1771 (*1 *1 *1 *1) (-4 *1 (-975))) (-3625 (*1 *1 *1 *1) (-4 *1 (-975))) (-2069 (*1 *1 *1 *1) (-4 *1 (-975)))) -(-13 (-1108) (-10 -8 (-15 -3018 ($) -3709) (-15 -1882 ($) -3709) (-15 -1749 ($ $)) (-15 -1759 ($ $ $)) (-15 -1771 ($ $ $)) (-15 -3625 ($ $ $)) (-15 -2069 ($ $ $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2292 (($ $ $) 44)) (-4198 (($ $ $) 45)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2839 ((|#1| $) 46)) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-976 |#1|) (-140) (-855)) (T -976)) -((-2839 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))) (-2292 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4447) (-15 -2839 (|t#1| $)) (-15 -4198 ($ $ $)) (-15 -2292 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3528 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 105)) (-1726 ((|#2| |#2| |#2|) 103)) (-1992 (((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 107)) (-1778 (((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|) 109)) (-3675 (((-2 (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|) 131 (|has| |#1| (-457)))) (-1332 (((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 56)) (-3994 (((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 80)) (-3315 (((-2 (|:| |coef1| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 82)) (-2080 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-4289 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 89)) (-3043 (((-2 (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|) 121)) (-3899 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 92)) (-1350 (((-649 (-776)) |#2| |#2|) 102)) (-4120 ((|#1| |#2| |#2|) 50)) (-4101 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|) 129 (|has| |#1| (-457)))) (-2290 ((|#1| |#2| |#2|) 127 (|has| |#1| (-457)))) (-2779 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 54)) (-2472 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|) 79)) (-3346 ((|#1| |#2| |#2|) 76)) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|) 41)) (-2760 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3554 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-1384 ((|#2| |#2| |#2|) 93)) (-1563 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 87)) (-2845 ((|#2| |#2| |#2| (-776)) 85)) (-1870 ((|#2| |#2| |#2|) 135 (|has| |#1| (-457)))) (-2407 (((-1275 |#2|) (-1275 |#2|) |#1|) 22)) (-2084 (((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|) 46)) (-3428 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|) 119)) (-3059 ((|#1| |#2|) 116)) (-2297 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776)) 91)) (-2532 ((|#2| |#2| |#2| (-776)) 90)) (-2786 (((-649 |#2|) |#2| |#2|) 99)) (-3220 ((|#2| |#2| |#1| |#1| (-776)) 62)) (-1760 ((|#1| |#1| |#1| (-776)) 61)) (* (((-1275 |#2|) |#1| (-1275 |#2|)) 17))) -(((-977 |#1| |#2|) (-10 -7 (-15 -3346 (|#1| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3994 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3315 ((-2 (|:| |coef1| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -2845 (|#2| |#2| |#2| (-776))) (-15 -1563 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -4289 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2532 (|#2| |#2| |#2| (-776))) (-15 -2297 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3899 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -1384 (|#2| |#2| |#2|)) (-15 -3554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2080 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1726 (|#2| |#2| |#2|)) (-15 -3528 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1778 ((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -3059 (|#1| |#2|)) (-15 -3428 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -3043 ((-2 (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -2786 ((-649 |#2|) |#2| |#2|)) (-15 -1350 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2290 (|#1| |#2| |#2|)) (-15 -4101 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -3675 ((-2 (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1275 |#2|) |#1| (-1275 |#2|))) (-15 -2407 ((-1275 |#2|) (-1275 |#2|) |#1|)) (-15 -3514 ((-2 (|:| -1435 |#1|) (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -2084 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-776))) (-15 -3220 (|#2| |#2| |#1| |#1| (-776))) (-15 -2760 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4120 (|#1| |#2| |#2|)) (-15 -2779 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -1332 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|))) (-561) (-1251 |#1|)) (T -977)) -((-1332 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2779 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-4120 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) (-2760 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-3220 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-1760 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-977 *2 *4)) (-4 *4 (-1251 *2)))) (-2084 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3514 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -1435 *4) (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2407 (*1 *2 *2 *3) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561)) (-5 *1 (-977 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561)) (-5 *1 (-977 *3 *4)))) (-1870 (*1 *2 *2 *2) (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-3675 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2290 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-4101 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2290 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2290 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) (-1350 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2786 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3043 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3059 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3428 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3059 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3059 (*1 *2 *3) (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) (-1778 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1870 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-1992 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1870 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3528 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1870 *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-1726 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-2080 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3554 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-1384 (*1 *2 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) (-3899 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-2297 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-2532 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2)) (-4 *2 (-1251 *4)))) (-4289 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-1563 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5)))) (-2845 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2)) (-4 *2 (-1251 *4)))) (-3315 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3994 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-2472 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4))) (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) (-3346 (*1 *2 *3 *3) (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2))))) -(-10 -7 (-15 -3346 (|#1| |#2| |#2|)) (-15 -2472 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3994 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -3315 ((-2 (|:| |coef1| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -2845 (|#2| |#2| |#2| (-776))) (-15 -1563 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -4289 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -2532 (|#2| |#2| |#2| (-776))) (-15 -2297 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -3899 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-776))) (-15 -1384 (|#2| |#2| |#2|)) (-15 -3554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2080 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1726 (|#2| |#2| |#2|)) (-15 -3528 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef2| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -1778 ((-2 (|:| |coef1| |#2|) (|:| -1870 |#2|)) |#2| |#2|)) (-15 -3059 (|#1| |#2|)) (-15 -3428 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -3043 ((-2 (|:| |coef2| |#2|) (|:| -3059 |#1|)) |#2|)) (-15 -2786 ((-649 |#2|) |#2| |#2|)) (-15 -1350 ((-649 (-776)) |#2| |#2|)) (IF (|has| |#1| (-457)) (PROGN (-15 -2290 (|#1| |#2| |#2|)) (-15 -4101 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -3675 ((-2 (|:| |coef2| |#2|) (|:| -2290 |#1|)) |#2| |#2|)) (-15 -1870 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1275 |#2|) |#1| (-1275 |#2|))) (-15 -2407 ((-1275 |#2|) (-1275 |#2|) |#1|)) (-15 -3514 ((-2 (|:| -1435 |#1|) (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -2084 ((-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) |#2| |#2|)) (-15 -1760 (|#1| |#1| |#1| (-776))) (-15 -3220 (|#2| |#2| |#1| |#1| (-776))) (-15 -2760 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4120 (|#1| |#2| |#2|)) (-15 -2779 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|)) (-15 -1332 ((-2 (|:| |coef2| |#2|) (|:| -3346 |#1|)) |#2| |#2|))) -((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 10)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-978) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))) (T -978)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-978)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-978))))) -(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) 39)) (-4427 (($) NIL T CONST)) (-2466 (((-649 (-649 (-569))) (-649 (-569))) 48)) (-4126 (((-569) $) 72)) (-3575 (($ (-649 (-569))) 18)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1410 (((-649 (-569)) $) 13)) (-3476 (($ $) 52)) (-3796 (((-867) $) 68) (((-649 (-569)) $) 11)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 8 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 26)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 25)) (-3012 (($ $ $) 28)) (* (($ (-927) $) NIL) (($ (-776) $) 37))) -(((-979) (-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -3575 ($ (-649 (-569)))) (-15 -2466 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -4126 ((-569) $)) (-15 -3476 ($ $))))) (T -979)) -((-3575 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-979)))) (-2466 (*1 *2 *3) (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-979)) (-5 *3 (-649 (-569))))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-979)))) (-3476 (*1 *1 *1) (-5 *1 (-979)))) -(-13 (-800) (-619 (-649 (-569))) (-618 (-649 (-569))) (-10 -8 (-15 -3575 ($ (-649 (-569)))) (-15 -2466 ((-649 (-649 (-569))) (-649 (-569)))) (-15 -4126 ((-569) $)) (-15 -3476 ($ $)))) -((-3035 (($ $ |#2|) 31)) (-3024 (($ $) 23) (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-412 (-569)) $) 27) (($ $ (-412 (-569))) 29))) -(((-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3035 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) (-981 |#2| |#3| |#4|) (-1057) (-797) (-855)) (T -980)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-412 (-569)))) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 -3035 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 * (|#1| (-927) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#3|) $) 86)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-1677 (((-112) $) 85)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-649 |#3|) (-649 |#2|)) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4339 ((|#2| $) 76)) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-981 |#1| |#2| |#3|) (-140) (-1057) (-797) (-855)) (T -981)) -((-1857 (*1 *2 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) (-4 *2 (-1057)))) (-1849 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *4 (-855)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *2 *4)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *2 (-797)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-981 *4 *3 *2)) (-4 *4 (-1057)) (-4 *3 (-797)) (-4 *2 (-855)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-981 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-797)) (-4 *6 (-855)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-649 *5)))) (-1677 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2007 (*1 *1 *1) (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797)) (-4 *4 (-855))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3923 ($ $ |t#3| |t#2|)) (-15 -3923 ($ $ (-649 |t#3|) (-649 |t#2|))) (-15 -1849 ($ $)) (-15 -1857 (|t#1| $)) (-15 -4339 (|t#2| $)) (-15 -1712 ((-649 |t#3|) $)) (-15 -1677 ((-112) $)) (-15 -2007 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3822 (((-1102 (-226)) $) 8)) (-3812 (((-1102 (-226)) $) 9)) (-3798 (((-1102 (-226)) $) 10)) (-4417 (((-649 (-649 (-949 (-226)))) $) 11)) (-3796 (((-867) $) 6))) -(((-982) (-140)) (T -982)) -((-4417 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-649 (-649 (-949 (-226))))))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226))))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226)))))) -(-13 (-618 (-867)) (-10 -8 (-15 -4417 ((-649 (-649 (-949 (-226)))) $)) (-15 -3798 ((-1102 (-226)) $)) (-15 -3812 ((-1102 (-226)) $)) (-15 -3822 ((-1102 (-226)) $)))) -(((-618 (-867)) . T)) -((-1712 (((-649 |#4|) $) 23)) (-1731 (((-112) $) 55)) (-2800 (((-112) $) 54)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#4|) 42)) (-3503 (((-112) $) 56)) (-1717 (((-112) $ $) 62)) (-2039 (((-112) $ $) 65)) (-1964 (((-112) $) 60)) (-2459 (((-649 |#5|) (-649 |#5|) $) 98)) (-3459 (((-649 |#5|) (-649 |#5|) $) 95)) (-2054 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-1328 (((-649 |#4|) $) 27)) (-1512 (((-112) |#4| $) 34)) (-1846 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3381 (($ $ |#4|) 39)) (-2963 (($ $ |#4|) 38)) (-3112 (($ $ |#4|) 40)) (-2920 (((-112) $ $) 46))) -(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2800 ((-112) |#1|)) (-15 -2459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2054 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1846 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3503 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|)) (-15 -1717 ((-112) |#1| |#1|)) (-15 -1964 ((-112) |#1|)) (-15 -1731 ((-112) |#1|)) (-15 -3358 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -3112 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -1512 ((-112) |#4| |#1|)) (-15 -1328 ((-649 |#4|) |#1|)) (-15 -1712 ((-649 |#4|) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-984 |#2| |#3| |#4| |#5|) (-1057) (-798) (-855) (-1073 |#2| |#3| |#4|)) (T -983)) -NIL -(-10 -8 (-15 -2800 ((-112) |#1|)) (-15 -2459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -3459 ((-649 |#5|) (-649 |#5|) |#1|)) (-15 -2054 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1846 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3503 ((-112) |#1|)) (-15 -2039 ((-112) |#1| |#1|)) (-15 -1717 ((-112) |#1| |#1|)) (-15 -1964 ((-112) |#1|)) (-15 -1731 ((-112) |#1|)) (-15 -3358 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -3112 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -1512 ((-112) |#4| |#1|)) (-15 -1328 ((-649 |#4|) |#1|)) (-15 -1712 ((-649 |#4|) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447)))) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447)))) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-3547 (((-1128) $) 11)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-984 |#1| |#2| |#3| |#4|) (-140) (-1057) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -984)) -((-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-984 *3 *4 *5 *6)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-984 *3 *4 *5 *6)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-1073 *3 *4 *2)) (-4 *2 (-855)))) (-1712 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) (-1512 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *3 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112)))) (-2963 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))) (-3112 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))) (-3381 (*1 *1 *1 *2) (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2)))) (-3358 (*1 *2 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1))) (-4 *1 (-984 *4 *5 *3 *6)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-1717 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-2039 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-3503 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112)))) (-1846 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2054 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3459 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)))) (-2459 (*1 *2 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-5 *2 (-112))))) -(-13 (-1108) (-151 |t#4|) (-618 (-649 |t#4|)) (-10 -8 (-6 -4447) (-15 -4381 ((-3 $ "failed") (-649 |t#4|))) (-15 -3150 ($ (-649 |t#4|))) (-15 -3372 (|t#3| $)) (-15 -1712 ((-649 |t#3|) $)) (-15 -1328 ((-649 |t#3|) $)) (-15 -1512 ((-112) |t#3| $)) (-15 -2963 ($ $ |t#3|)) (-15 -3112 ($ $ |t#3|)) (-15 -3381 ($ $ |t#3|)) (-15 -3358 ((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |t#3|)) (-15 -1731 ((-112) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -1964 ((-112) $)) (-15 -1717 ((-112) $ $)) (-15 -2039 ((-112) $ $)) (-15 -3503 ((-112) $)) (-15 -1846 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2054 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3459 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -2459 ((-649 |t#4|) (-649 |t#4|) $)) (-15 -2800 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-1108) . T) ((-1225) . T)) -((-2646 (((-649 |#4|) |#4| |#4|) 136)) (-4033 (((-649 |#4|) (-649 |#4|) (-112)) 125 (|has| |#1| (-457))) (((-649 |#4|) (-649 |#4|)) 126 (|has| |#1| (-457)))) (-2262 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 44)) (-2496 (((-112) |#4|) 43)) (-3329 (((-649 |#4|) |#4|) 121 (|has| |#1| (-457)))) (-1518 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|)) 24)) (-3167 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 30)) (-2810 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|)) 31)) (-3305 (((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|)) 90)) (-1527 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2517 (((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4168 (((-649 |#4|) (-649 |#4|)) 128)) (-2445 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112)) 59) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 61)) (-2088 ((|#4| |#4| (-649 |#4|)) 60)) (-2633 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 132 (|has| |#1| (-457)))) (-4027 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 135 (|has| |#1| (-457)))) (-4332 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 134 (|has| |#1| (-457)))) (-1409 (((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|))) 105) (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 107) (((-649 |#4|) (-649 |#4|) |#4|) 140) (((-649 |#4|) |#4| |#4|) 137) (((-649 |#4|) (-649 |#4|)) 106)) (-3085 (((-649 |#4|) (-649 |#4|) (-649 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-4185 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 52)) (-4245 (((-112) (-649 |#4|)) 79)) (-2705 (((-112) (-649 |#4|) (-649 (-649 |#4|))) 67)) (-3654 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 37)) (-3968 (((-112) |#4|) 36)) (-3439 (((-649 |#4|) (-649 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1893 (((-649 |#4|) (-649 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1809 (((-649 |#4|) (-649 |#4|)) 83)) (-2959 (((-649 |#4|) (-649 |#4|)) 97)) (-4184 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2774 (((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|)) 50)) (-3123 (((-112) |#4|) 45))) -(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1409 ((-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) |#4| |#4|)) (-15 -4168 ((-649 |#4|) (-649 |#4|))) (-15 -2646 ((-649 |#4|) |#4| |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -4184 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2705 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -4245 ((-112) (-649 |#4|))) (-15 -1518 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -3167 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -2810 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -4185 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2262 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3968 ((-112) |#4|)) (-15 -3654 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3123 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -2088 (|#4| |#4| (-649 |#4|))) (-15 -1809 ((-649 |#4|) (-649 |#4|))) (-15 -3305 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2959 ((-649 |#4|) (-649 |#4|))) (-15 -1527 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2517 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3329 ((-649 |#4|) |#4|)) (-15 -4033 ((-649 |#4|) (-649 |#4|))) (-15 -4033 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -2633 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4332 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4027 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -1893 ((-649 |#4|) (-649 |#4|))) (-15 -3439 ((-649 |#4|) (-649 |#4|))) (-15 -3085 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|)) (-561) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -985)) -((-3085 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-3439 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-1893 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-4027 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-4332 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-2633 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-4033 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))) (-4033 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-2517 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-985 *5 *6 *7 *8)))) (-1527 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *1 (-985 *6 *7 *8 *9)))) (-2959 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-3305 (*1 *2 *3) (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3310 (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-1809 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-2088 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *2)))) (-2445 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))) (-2445 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-2774 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-2262 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8)))) (-4184 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7)))) (-1409 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7)))) (-1409 (*1 *2 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *3)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-4168 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) (-1409 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))) -(-10 -7 (-15 -1409 ((-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) |#4| |#4|)) (-15 -4168 ((-649 |#4|) (-649 |#4|))) (-15 -2646 ((-649 |#4|) |#4| |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) |#4|)) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -1409 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-1 (-649 |#4|) (-649 |#4|)))) (-15 -4184 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2705 ((-112) (-649 |#4|) (-649 (-649 |#4|)))) (-15 -4245 ((-112) (-649 |#4|))) (-15 -1518 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-1 (-112) |#4|) (-649 |#4|))) (-15 -3167 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -2810 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 (-1 (-112) |#4|)) (-649 |#4|))) (-15 -4185 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2496 ((-112) |#4|)) (-15 -2262 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3968 ((-112) |#4|)) (-15 -3654 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -3123 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-649 |#4|)) (|:| |badPols| (-649 |#4|))) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -2445 ((-649 |#4|) (-649 |#4|) (-649 |#4|) (-112))) (-15 -2088 (|#4| |#4| (-649 |#4|))) (-15 -1809 ((-649 |#4|) (-649 |#4|))) (-15 -3305 ((-3 (-2 (|:| |bas| (-481 |#1| |#2| |#3| |#4|)) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|))) (-15 -2959 ((-649 |#4|) (-649 |#4|))) (-15 -1527 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2517 ((-649 |#4|) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-457)) (PROGN (-15 -3329 ((-649 |#4|) |#4|)) (-15 -4033 ((-649 |#4|) (-649 |#4|))) (-15 -4033 ((-649 |#4|) (-649 |#4|) (-112))) (-15 -2633 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4332 ((-649 |#4|) (-649 |#4|) (-649 |#4|))) (-15 -4027 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (PROGN (-15 -1893 ((-649 |#4|) (-649 |#4|))) (-15 -3439 ((-649 |#4|) (-649 |#4|))) (-15 -3085 ((-649 |#4|) (-649 |#4|) (-649 |#4|)))) |%noBranch|) |%noBranch|)) -((-1540 (((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2681 (((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)) 44)) (-4318 (((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-986 |#1|) (-10 -7 (-15 -1540 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4318 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2681 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)))) (-367)) (T -986)) -((-2681 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5))))) (-5 *1 (-986 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)))) (-4318 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) (-5 *1 (-986 *5)))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367)) (-5 *2 (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6)))) (-5 *1 (-986 *6)) (-5 *3 (-694 *6))))) -(-10 -7 (-15 -1540 ((-2 (|:| R (-694 |#1|)) (|:| A (-694 |#1|)) (|:| |Ainv| (-694 |#1|))) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4318 ((-694 |#1|) (-694 |#1|) (-694 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2681 ((-649 (-2 (|:| C (-694 |#1|)) (|:| |g| (-1275 |#1|)))) (-694 |#1|) (-1275 |#1|)))) -((-3764 (((-423 |#4|) |#4|) 56))) -(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3764 ((-423 |#4|) |#4|))) (-855) (-798) (-457) (-955 |#3| |#2| |#1|)) (T -987)) -((-3764 (*1 *2 *3) (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3)) (-5 *1 (-987 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4))))) -(-10 -7 (-15 -3764 ((-423 |#4|) |#4|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3467 (($ (-776)) 113 (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-3283 (($ (-649 |#1|)) 119)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) 106 (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3420 ((|#1| $) 103 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-4254 (((-112) $ (-776)) 10)) (-3845 ((|#1| $) 104 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3166 (($ $ (-649 |#1|)) 117)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-3040 ((|#1| $ $) 107 (|has| |#1| (-1057)))) (-2377 (((-927) $) 118)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3260 (($ $ $) 105)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541)))) (($ (-649 |#1|)) 120)) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-3024 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3012 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-988 |#1|) (-140) (-1057)) (T -988)) -((-3283 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-988 *3)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1057)) (-5 *2 (-927)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1057)))) (-3166 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-988 *3)) (-4 *3 (-1057))))) -(-13 (-1273 |t#1|) (-623 (-649 |t#1|)) (-10 -8 (-15 -3283 ($ (-649 |t#1|))) (-15 -2377 ((-927) $)) (-15 -3260 ($ $ $)) (-15 -3166 ($ $ (-649 |t#1|))))) -(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-623 (-649 |#1|)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T) ((-1273 |#1|) . T)) -((-1346 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 17))) -(((-989 |#1| |#2|) (-10 -7 (-15 -1346 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1057) (-1057)) (T -989)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-949 *6)) (-5 *1 (-989 *5 *6))))) -(-10 -7 (-15 -1346 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) -((-2858 ((|#1| (-949 |#1|)) 14)) (-3081 ((|#1| (-949 |#1|)) 13)) (-1499 ((|#1| (-949 |#1|)) 12)) (-3124 ((|#1| (-949 |#1|)) 16)) (-1366 ((|#1| (-949 |#1|)) 24)) (-1472 ((|#1| (-949 |#1|)) 15)) (-2885 ((|#1| (-949 |#1|)) 17)) (-2787 ((|#1| (-949 |#1|)) 23)) (-3168 ((|#1| (-949 |#1|)) 22))) -(((-990 |#1|) (-10 -7 (-15 -1499 (|#1| (-949 |#1|))) (-15 -3081 (|#1| (-949 |#1|))) (-15 -2858 (|#1| (-949 |#1|))) (-15 -1472 (|#1| (-949 |#1|))) (-15 -3124 (|#1| (-949 |#1|))) (-15 -2885 (|#1| (-949 |#1|))) (-15 -3168 (|#1| (-949 |#1|))) (-15 -2787 (|#1| (-949 |#1|))) (-15 -1366 (|#1| (-949 |#1|)))) (-1057)) (T -990)) -((-1366 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-3124 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057)))) (-1499 (*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(-10 -7 (-15 -1499 (|#1| (-949 |#1|))) (-15 -3081 (|#1| (-949 |#1|))) (-15 -2858 (|#1| (-949 |#1|))) (-15 -1472 (|#1| (-949 |#1|))) (-15 -3124 (|#1| (-949 |#1|))) (-15 -2885 (|#1| (-949 |#1|))) (-15 -3168 (|#1| (-949 |#1|))) (-15 -2787 (|#1| (-949 |#1|))) (-15 -1366 (|#1| (-949 |#1|)))) -((-4162 (((-3 |#1| "failed") |#1|) 18)) (-2327 (((-3 |#1| "failed") |#1|) 6)) (-2071 (((-3 |#1| "failed") |#1|) 16)) (-1962 (((-3 |#1| "failed") |#1|) 4)) (-3942 (((-3 |#1| "failed") |#1|) 20)) (-3392 (((-3 |#1| "failed") |#1|) 8)) (-4260 (((-3 |#1| "failed") |#1| (-776)) 1)) (-3552 (((-3 |#1| "failed") |#1|) 3)) (-2745 (((-3 |#1| "failed") |#1|) 2)) (-3541 (((-3 |#1| "failed") |#1|) 21)) (-2935 (((-3 |#1| "failed") |#1|) 9)) (-3853 (((-3 |#1| "failed") |#1|) 19)) (-3869 (((-3 |#1| "failed") |#1|) 7)) (-1505 (((-3 |#1| "failed") |#1|) 17)) (-2796 (((-3 |#1| "failed") |#1|) 5)) (-2670 (((-3 |#1| "failed") |#1|) 24)) (-1705 (((-3 |#1| "failed") |#1|) 12)) (-4403 (((-3 |#1| "failed") |#1|) 22)) (-4415 (((-3 |#1| "failed") |#1|) 10)) (-1853 (((-3 |#1| "failed") |#1|) 26)) (-3995 (((-3 |#1| "failed") |#1|) 14)) (-1470 (((-3 |#1| "failed") |#1|) 27)) (-3637 (((-3 |#1| "failed") |#1|) 15)) (-4359 (((-3 |#1| "failed") |#1|) 25)) (-3082 (((-3 |#1| "failed") |#1|) 13)) (-4166 (((-3 |#1| "failed") |#1|) 23)) (-3972 (((-3 |#1| "failed") |#1|) 11))) -(((-991 |#1|) (-140) (-1210)) (T -991)) -((-1470 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1853 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4359 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2670 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4166 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4403 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3541 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3942 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3853 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4162 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1505 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2071 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3637 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3995 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3082 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1705 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3972 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4415 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2935 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3869 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2327 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2796 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-1962 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-3552 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-2745 (*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210)))) (-4260 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(-13 (-10 -7 (-15 -4260 ((-3 |t#1| "failed") |t#1| (-776))) (-15 -2745 ((-3 |t#1| "failed") |t#1|)) (-15 -3552 ((-3 |t#1| "failed") |t#1|)) (-15 -1962 ((-3 |t#1| "failed") |t#1|)) (-15 -2796 ((-3 |t#1| "failed") |t#1|)) (-15 -2327 ((-3 |t#1| "failed") |t#1|)) (-15 -3869 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)) (-15 -2935 ((-3 |t#1| "failed") |t#1|)) (-15 -4415 ((-3 |t#1| "failed") |t#1|)) (-15 -3972 ((-3 |t#1| "failed") |t#1|)) (-15 -1705 ((-3 |t#1| "failed") |t#1|)) (-15 -3082 ((-3 |t#1| "failed") |t#1|)) (-15 -3995 ((-3 |t#1| "failed") |t#1|)) (-15 -3637 ((-3 |t#1| "failed") |t#1|)) (-15 -2071 ((-3 |t#1| "failed") |t#1|)) (-15 -1505 ((-3 |t#1| "failed") |t#1|)) (-15 -4162 ((-3 |t#1| "failed") |t#1|)) (-15 -3853 ((-3 |t#1| "failed") |t#1|)) (-15 -3942 ((-3 |t#1| "failed") |t#1|)) (-15 -3541 ((-3 |t#1| "failed") |t#1|)) (-15 -4403 ((-3 |t#1| "failed") |t#1|)) (-15 -4166 ((-3 |t#1| "failed") |t#1|)) (-15 -2670 ((-3 |t#1| "failed") |t#1|)) (-15 -4359 ((-3 |t#1| "failed") |t#1|)) (-15 -1853 ((-3 |t#1| "failed") |t#1|)) (-15 -1470 ((-3 |t#1| "failed") |t#1|)))) -((-2559 ((|#4| |#4| (-649 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-4243 ((|#4| |#4| (-649 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1346 ((|#4| (-1 |#4| (-958 |#1|)) |#4|) 31))) -(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4243 (|#4| |#4| |#3|)) (-15 -4243 (|#4| |#4| (-649 |#3|))) (-15 -2559 (|#4| |#4| |#3|)) (-15 -2559 (|#4| |#4| (-649 |#3|))) (-15 -1346 (|#4| (-1 |#4| (-958 |#1|)) |#4|))) (-1057) (-798) (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185))))) (-955 (-958 |#1|) |#2| |#3|)) (T -992)) -((-1346 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1057)) (-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-5 *1 (-992 *4 *5 *6 *2)))) (-2559 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-2559 (*1 *2 *2 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))) (-4243 (*1 *2 *2 *3) (-12 (-5 *3 (-649 *6)) (-4 *6 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2)) (-4 *2 (-955 (-958 *4) *5 *6)))) (-4243 (*1 *2 *2 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)) (-15 -2672 ((-3 $ "failed") (-1185)))))) (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3))))) -(-10 -7 (-15 -4243 (|#4| |#4| |#3|)) (-15 -4243 (|#4| |#4| (-649 |#3|))) (-15 -2559 (|#4| |#4| |#3|)) (-15 -2559 (|#4| |#4| (-649 |#3|))) (-15 -1346 (|#4| (-1 |#4| (-958 |#1|)) |#4|))) -((-1820 ((|#2| |#3|) 35)) (-3615 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 79)) (-4002 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 100))) -(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -1820 (|#2| |#3|))) (-353) (-1251 |#1|) (-1251 |#2|) (-729 |#2| |#3|)) (T -993)) -((-1820 (*1 *2 *3) (-12 (-4 *3 (-1251 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-993 *4 *2 *3 *5)) (-4 *4 (-353)) (-4 *5 (-729 *2 *3)))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-993 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5)))) (-4002 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5))))) -(-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|)) (-15 -1820 (|#2| |#3|))) -((-4352 (((-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))) 82))) -(((-994 |#1| |#2|) (-10 -7 (-15 -4352 ((-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))))) (-649 (-1185)) (-776)) (T -994)) -((-4352 (*1 *2 *2) (-12 (-5 *2 (-995 (-412 (-569)) (-869 *3) (-241 *4 (-776)) (-248 *3 (-412 (-569))))) (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-994 *3 *4))))) -(-10 -7 (-15 -4352 ((-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569)))) (-995 (-412 (-569)) (-869 |#1|) (-241 |#2| (-776)) (-248 |#1| (-412 (-569))))))) -((-2417 (((-112) $ $) NIL)) (-2529 (((-3 (-112) "failed") $) 71)) (-2469 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-310))))) (-1440 (($ $ (-3 (-112) "failed")) 72)) (-1615 (($ (-649 |#4|) |#4|) 25)) (-3435 (((-1167) $) NIL)) (-2889 (($ $) 69)) (-3547 (((-1128) $) NIL)) (-3162 (((-112) $) 70)) (-3635 (($) 30)) (-2338 ((|#4| $) 74)) (-4008 (((-649 |#4|) $) 73)) (-3796 (((-867) $) 68)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-995 |#1| |#2| |#3| |#4|) (-13 (-1108) (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -1615 ($ (-649 |#4|) |#4|)) (-15 -2529 ((-3 (-112) "failed") $)) (-15 -1440 ($ $ (-3 (-112) "failed"))) (-15 -3162 ((-112) $)) (-15 -4008 ((-649 |#4|) $)) (-15 -2338 (|#4| $)) (-15 -2889 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -2469 ($ $)) |%noBranch|) |%noBranch|))) (-457) (-855) (-798) (-955 |#1| |#3| |#2|)) (T -995)) -((-3635 (*1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-1615 (*1 *1 *2 *3) (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457)) (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-995 *4 *5 *6 *3)))) (-2529 (*1 *2 *1) (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-1440 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-3162 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-4008 (*1 *2 *1) (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) (-2338 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-995 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)))) (-2889 (*1 *1 *1) (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) (-2469 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))) -(-13 (-1108) (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -1615 ($ (-649 |#4|) |#4|)) (-15 -2529 ((-3 (-112) "failed") $)) (-15 -1440 ($ $ (-3 (-112) "failed"))) (-15 -3162 ((-112) $)) (-15 -4008 ((-649 |#4|) $)) (-15 -2338 (|#4| $)) (-15 -2889 ($ $)) (IF (|has| |#1| (-310)) (IF (|has| |#1| (-147)) (-15 -2469 ($ $)) |%noBranch|) |%noBranch|))) -((-2137 (((-112) |#5| |#5|) 44)) (-3197 (((-112) |#5| |#5|) 59)) (-3083 (((-112) |#5| (-649 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-2831 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2210 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 70)) (-3681 (((-1280)) 32)) (-2197 (((-1280) (-1167) (-1167) (-1167)) 28)) (-2611 (((-649 |#5|) (-649 |#5|)) 100)) (-1805 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) 92)) (-1419 (((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 122)) (-3599 (((-112) |#5| |#5|) 53)) (-1647 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2503 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-2066 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-2151 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-3543 (((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3841 (((-649 |#5|) (-649 |#5|)) 49))) -(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -996)) -((-3543 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-996 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1079 *6 *7 *8 *9)))) (-1419 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-996 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7)))) (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-1647 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3599 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3681 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2197 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2672 (((-1185) $) 15)) (-2188 (((-1167) $) 16)) (-3497 (($ (-1185) (-1167)) 14)) (-3796 (((-867) $) 13))) -(((-997) (-13 (-618 (-867)) (-10 -8 (-15 -3497 ($ (-1185) (-1167))) (-15 -2672 ((-1185) $)) (-15 -2188 ((-1167) $))))) (T -997)) -((-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-997)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-997)))) (-2188 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-997))))) -(-13 (-618 (-867)) (-10 -8 (-15 -3497 ($ (-1185) (-1167))) (-15 -2672 ((-1185) $)) (-15 -2188 ((-1167) $)))) -((-1346 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|))) (-561) (-561) (-1000 |#1|) (-1000 |#2|)) (T -998)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) (-4 *2 (-1000 *6)) (-5 *1 (-998 *5 *6 *4 *2)) (-4 *4 (-1000 *5))))) -(-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|))) -((-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-1185) "failed") $) 66) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) 96)) (-3150 ((|#2| $) NIL) (((-1185) $) 61) (((-412 (-569)) $) NIL) (((-569) $) 93)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 115) (((-694 |#2|) (-694 $)) 28)) (-3406 (($) 99)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 76) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 85)) (-2177 (($ $) 10)) (-3885 (((-3 $ "failed") $) 20)) (-1346 (($ (-1 |#2| |#2|) $) 22)) (-2307 (($) 16)) (-3231 (($ $) 55)) (-3517 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3181 (($ $) 12)) (-1410 (((-898 (-569)) $) 71) (((-898 (-383)) $) 80) (((-541) $) 40) (((-383) $) 44) (((-226) $) 48)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 91) (($ |#2|) NIL) (($ (-1185)) 58)) (-2721 (((-776)) 31)) (-2944 (((-112) $ $) 51))) -(((-999 |#1| |#2|) (-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -3406 (|#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1000 |#2|) (-561)) (T -999)) -((-2721 (*1 *2) (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-999 *3 *4)) (-4 *3 (-1000 *4))))) -(-10 -8 (-15 -2944 ((-112) |#1| |#1|)) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3796 (|#1| (-1185))) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -3406 (|#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3181 (|#1| |#1|)) (-15 -2177 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -3131 ((-895 (-569) |#1|) |#1| (-898 (-569)) (-895 (-569) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -2957 ((-694 |#2|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 ((|#1| $) 147 (|has| |#1| (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 138 (|has| |#1| (-915)))) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 141 (|has| |#1| (-915)))) (-2227 (((-112) $ $) 65)) (-2919 (((-569) $) 128 (|has| |#1| (-825)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 185) (((-3 (-1185) "failed") $) 136 (|has| |#1| (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) 119 (|has| |#1| (-1046 (-569)))) (((-3 (-569) "failed") $) 117 (|has| |#1| (-1046 (-569))))) (-3150 ((|#1| $) 186) (((-1185) $) 137 (|has| |#1| (-1046 (-1185)))) (((-412 (-569)) $) 120 (|has| |#1| (-1046 (-569)))) (((-569) $) 118 (|has| |#1| (-1046 (-569))))) (-2368 (($ $ $) 61)) (-2957 (((-694 (-569)) (-694 $)) 160 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 159 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 158) (((-694 |#1|) (-694 $)) 157)) (-3086 (((-3 $ "failed") $) 37)) (-3406 (($) 145 (|has| |#1| (-550)))) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3712 (((-112) $) 130 (|has| |#1| (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 154 (|has| |#1| (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 153 (|has| |#1| (-892 (-383))))) (-2349 (((-112) $) 35)) (-2177 (($ $) 149)) (-4399 ((|#1| $) 151)) (-3885 (((-3 $ "failed") $) 116 (|has| |#1| (-1160)))) (-2051 (((-112) $) 129 (|has| |#1| (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3380 (($ $ $) 126 (|has| |#1| (-855)))) (-2839 (($ $ $) 125 (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) 177)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-2307 (($) 115 (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3231 (($ $) 146 (|has| |#1| (-310)))) (-3465 ((|#1| $) 143 (|has| |#1| (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 140 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 139 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 183 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 181 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 180 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 179 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 178 (|has| |#1| (-519 (-1185) |#1|)))) (-2431 (((-776) $) 64)) (-1869 (($ $ |#1|) 184 (|has| |#1| (-289 |#1| |#1|)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-3517 (($ $) 176 (|has| |#1| (-234))) (($ $ (-776)) 174 (|has| |#1| (-234))) (($ $ (-1185)) 172 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 171 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 170 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 169 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3181 (($ $) 148)) (-4412 ((|#1| $) 150)) (-1410 (((-898 (-569)) $) 156 (|has| |#1| (-619 (-898 (-569))))) (((-898 (-383)) $) 155 (|has| |#1| (-619 (-898 (-383))))) (((-541) $) 133 (|has| |#1| (-619 (-541)))) (((-383) $) 132 (|has| |#1| (-1030))) (((-226) $) 131 (|has| |#1| (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 142 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 189) (($ (-1185)) 135 (|has| |#1| (-1046 (-1185))))) (-2239 (((-3 $ "failed") $) 134 (-2776 (|has| |#1| (-145)) (-1759 (|has| $ (-145)) (|has| |#1| (-915)))))) (-2721 (((-776)) 32 T CONST)) (-2040 ((|#1| $) 144 (|has| |#1| (-550)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 127 (|has| |#1| (-825)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 175 (|has| |#1| (-234))) (($ $ (-776)) 173 (|has| |#1| (-234))) (($ $ (-1185)) 168 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 167 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 166 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 165 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2978 (((-112) $ $) 123 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 122 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 124 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 121 (|has| |#1| (-855)))) (-3035 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) -(((-1000 |#1|) (-140) (-561)) (T -1000)) -((-3035 (*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-4399 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-2177 (*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-3181 (*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3231 (*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) (-3406 (*1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-550)) (-4 *2 (-561)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550))))) -(-13 (-367) (-38 |t#1|) (-1046 |t#1|) (-342 |t#1|) (-232 |t#1|) (-381 |t#1|) (-890 |t#1|) (-405 |t#1|) (-10 -8 (-15 -3035 ($ |t#1| |t#1|)) (-15 -4399 (|t#1| $)) (-15 -4412 (|t#1| $)) (-15 -2177 ($ $)) (-15 -3181 ($ $)) (IF (|has| |t#1| (-1160)) (-6 (-1160)) |%noBranch|) (IF (|has| |t#1| (-1046 (-569))) (PROGN (-6 (-1046 (-569))) (-6 (-1046 (-412 (-569))))) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1046 (-1185))) (-6 (-1046 (-1185))) |%noBranch|) (IF (|has| |t#1| (-310)) (PROGN (-15 -1938 (|t#1| $)) (-15 -3231 ($ $))) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -3406 ($)) (-15 -2040 (|t#1| $)) (-15 -3465 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 #1=(-1185)) |has| |#1| (-1046 (-1185))) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) |has| |#1| (-1030)) ((-619 (-383)) |has| |#1| (-1030)) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-619 (-898 (-383))) |has| |#1| (-619 (-898 (-383)))) ((-619 (-898 (-569))) |has| |#1| (-619 (-898 (-569)))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) . T) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) . T) ((-310) . T) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-367) . T) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-405 |#1|) . T) ((-457) . T) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-796) |has| |#1| (-825)) ((-797) |has| |#1| (-825)) ((-799) |has| |#1| (-825)) ((-800) |has| |#1| (-825)) ((-825) |has| |#1| (-825)) ((-853) |has| |#1| (-825)) ((-855) -2776 (|has| |#1| (-855)) (|has| |#1| (-825))) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-892 (-383)) |has| |#1| (-892 (-383))) ((-892 (-569)) |has| |#1| (-892 (-569))) ((-890 |#1|) . T) ((-915) |has| |#1| (-915)) ((-926) . T) ((-1030) |has| |#1| (-1030)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-569))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #1#) |has| |#1| (-1046 (-1185))) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-1160)) ((-1225) . T) ((-1229) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-1875 (($ (-1150 |#1| |#2|)) 11)) (-2430 (((-1150 |#1| |#2|) $) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 ((|#2| $ (-241 |#1| |#2|)) 16)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL))) -(((-1001 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1875 ($ (-1150 |#1| |#2|))) (-15 -2430 ((-1150 |#1| |#2|) $)) (-15 -1869 (|#2| $ (-241 |#1| |#2|))))) (-927) (-367)) (T -1001)) -((-1875 (*1 *1 *2) (-12 (-5 *2 (-1150 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)) (-5 *1 (-1001 *3 *4)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-1150 *3 *4)) (-5 *1 (-1001 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367)) (-5 *1 (-1001 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -1875 ($ (-1150 |#1| |#2|))) (-15 -2430 ((-1150 |#1| |#2|) $)) (-15 -1869 (|#2| $ (-241 |#1| |#2|))))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 9)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1002) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $))))) (T -1002)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1002))))) -(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-1529 (($ $) 47)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3845 (((-776) $) 46)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3064 ((|#1| $) 45)) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-2928 ((|#1| |#1| $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-4295 ((|#1| $) 48)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-3417 ((|#1| $) 44)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1003 |#1|) (-140) (-1225)) (T -1003)) -((-2928 (*1 *2 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-1529 (*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4447) (-15 -2928 (|t#1| |t#1| $)) (-15 -4295 (|t#1| $)) (-15 -1529 ($ $)) (-15 -3845 ((-776) $)) (-15 -3064 (|t#1| $)) (-15 -3417 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-4143 (((-112) $) 43)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#2| $) 44)) (-3377 (((-3 (-412 (-569)) "failed") $) 78)) (-1441 (((-112) $) 72)) (-1606 (((-412 (-569)) $) 76)) (-2349 (((-112) $) 42)) (-3829 ((|#2| $) 22)) (-1346 (($ (-1 |#2| |#2|) $) 19)) (-1817 (($ $) 58)) (-3517 (($ $) NIL) (($ $ (-776)) NIL) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1410 (((-541) $) 67)) (-3476 (($ $) 17)) (-3796 (((-867) $) 53) (($ (-569)) 39) (($ |#2|) 37) (($ (-412 (-569))) NIL)) (-2721 (((-776)) 10)) (-2271 ((|#2| $) 71)) (-2920 (((-112) $ $) 26)) (-2944 (((-112) $ $) 69)) (-3024 (($ $) 30) (($ $ $) 29)) (-3012 (($ $ $) 27)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL))) -(((-1004 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -2944 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1817 (|#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -2349 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-1005 |#2|) (-173)) (T -1004)) -((-2721 (*1 *2) (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1004 *3 *4)) (-4 *3 (-1005 *4))))) -(-10 -8 (-15 -3796 (|#1| (-412 (-569)))) (-15 -2944 ((-112) |#1| |#1|)) (-15 * (|#1| (-412 (-569)) |#1|)) (-15 * (|#1| |#1| (-412 (-569)))) (-15 -1817 (|#1| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -2271 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3476 (|#1| |#1|)) (-15 -1346 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -2349 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 * (|#1| (-776) |#1|)) (-15 -4143 ((-112) |#1|)) (-15 * (|#1| (-927) |#1|)) (-15 -3012 (|#1| |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-4381 (((-3 (-569) "failed") $) 127 (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 125 (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) 122)) (-3150 (((-569) $) 126 (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) 124 (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) 123)) (-2957 (((-694 (-569)) (-694 $)) 97 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 96 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 95) (((-694 |#1|) (-694 $)) 94)) (-3086 (((-3 $ "failed") $) 37)) (-3824 ((|#1| $) 87)) (-3377 (((-3 (-412 (-569)) "failed") $) 83 (|has| |#1| (-550)))) (-1441 (((-112) $) 85 (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) 84 (|has| |#1| (-550)))) (-1475 (($ |#1| |#1| |#1| |#1|) 88)) (-2349 (((-112) $) 35)) (-3829 ((|#1| $) 89)) (-3380 (($ $ $) 76 (|has| |#1| (-855)))) (-2839 (($ $ $) 75 (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) 98)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 80 (|has| |#1| (-367)))) (-4310 ((|#1| $) 90)) (-2982 ((|#1| $) 91)) (-1686 ((|#1| $) 92)) (-3547 (((-1128) $) 11)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 104 (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) 102 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) 101 (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) 100 (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) 99 (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) 105 (|has| |#1| (-289 |#1| |#1|)))) (-3517 (($ $) 121 (|has| |#1| (-234))) (($ $ (-776)) 119 (|has| |#1| (-234))) (($ $ (-1185)) 117 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 116 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 115 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 114 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1410 (((-541) $) 81 (|has| |#1| (-619 (-541))))) (-3476 (($ $) 93)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 44) (($ (-412 (-569))) 70 (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2271 ((|#1| $) 86 (|has| |#1| (-1068)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $) 120 (|has| |#1| (-234))) (($ $ (-776)) 118 (|has| |#1| (-234))) (($ $ (-1185)) 113 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 112 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 111 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 110 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2978 (((-112) $ $) 73 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 72 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 74 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 71 (|has| |#1| (-855)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 79 (|has| |#1| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-412 (-569))) 78 (|has| |#1| (-367))) (($ (-412 (-569)) $) 77 (|has| |#1| (-367))))) -(((-1005 |#1|) (-140) (-173)) (T -1005)) -((-3476 (*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-1475 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) (-1441 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569))))) (-3377 (*1 *2 *1) (|partial| -12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-412 (-569)))))) -(-13 (-38 |t#1|) (-416 |t#1|) (-232 |t#1|) (-342 |t#1|) (-381 |t#1|) (-10 -8 (-15 -3476 ($ $)) (-15 -1686 (|t#1| $)) (-15 -2982 (|t#1| $)) (-15 -4310 (|t#1| $)) (-15 -3829 (|t#1| $)) (-15 -1475 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3824 (|t#1| $)) (IF (|has| |t#1| (-293)) (-6 (-293)) |%noBranch|) (IF (|has| |t#1| (-855)) (-6 (-855)) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-244)) |%noBranch|) (IF (|has| |t#1| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1068)) (-15 -2271 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-550)) (PROGN (-15 -1441 ((-112) $)) (-15 -1606 ((-412 (-569)) $)) (-15 -3377 ((-3 (-412 (-569)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-367)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-367)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-367))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-232 |#1|) . T) ((-234) |has| |#1| (-234)) ((-244) |has| |#1| (-367)) ((-289 |#1| $) |has| |#1| (-289 |#1| |#1|)) ((-293) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-312 |#1|) |has| |#1| (-312 |#1|)) ((-342 |#1|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-519 (-1185) |#1|) |has| |#1| (-519 (-1185) |#1|)) ((-519 |#1| |#1|) |has| |#1| (-312 |#1|)) ((-651 #0#) |has| |#1| (-367)) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-367)) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-367)) ((-645 |#1|) . T) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-367)) ((-722 |#1|) . T) ((-731) . T) ((-855) |has| |#1| (-855)) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1059 #0#) |has| |#1| (-367)) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1064 #0#) |has| |#1| (-367)) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-367)) (|has| |#1| (-293))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1346 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) (-1005 |#2|) (-173) (-1005 |#4|) (-173)) (T -1006)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) (-4 *2 (-1005 *6)) (-5 *1 (-1006 *4 *5 *2 *6)) (-4 *4 (-1005 *5))))) -(-10 -7 (-15 -1346 (|#3| (-1 |#4| |#2|) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3824 ((|#1| $) 12)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-550)))) (-1441 (((-112) $) NIL (|has| |#1| (-550)))) (-1606 (((-412 (-569)) $) NIL (|has| |#1| (-550)))) (-1475 (($ |#1| |#1| |#1| |#1|) 16)) (-2349 (((-112) $) NIL)) (-3829 ((|#1| $) NIL)) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-4310 ((|#1| $) 15)) (-2982 ((|#1| $) 14)) (-1686 ((|#1| $) 13)) (-3547 (((-1128) $) NIL)) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-312 |#1|))) (($ $ (-297 |#1|)) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-297 |#1|))) NIL (|has| |#1| (-312 |#1|))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-519 (-1185) |#1|))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-519 (-1185) |#1|)))) (-1869 (($ $ |#1|) NIL (|has| |#1| (-289 |#1| |#1|)))) (-3517 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3476 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2271 ((|#1| $) NIL (|has| |#1| (-1068)))) (-1804 (($) 8 T CONST)) (-1815 (($) 10 T CONST)) (-2832 (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))))) -(((-1007 |#1|) (-1005 |#1|) (-173)) (T -1007)) -NIL -(-1005 |#1|) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-1529 (($ $) 23)) (-3951 (($ (-649 |#1|)) 33)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3845 (((-776) $) 26)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 28)) (-3894 (($ |#1| $) 17)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3064 ((|#1| $) 27)) (-1781 ((|#1| $) 22)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-2928 ((|#1| |#1| $) 16)) (-3162 (((-112) $) 18)) (-3635 (($) NIL)) (-4295 ((|#1| $) 21)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-3417 ((|#1| $) 30)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1008 |#1|) (-13 (-1003 |#1|) (-10 -8 (-15 -3951 ($ (-649 |#1|))))) (-1108)) (T -1008)) -((-3951 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1008 *3))))) -(-13 (-1003 |#1|) (-10 -8 (-15 -3951 ($ (-649 |#1|))))) -((-3813 (($ $) 12)) (-3742 (($ $ (-569)) 13))) -(((-1009 |#1|) (-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-569)))) (-1010)) (T -1009)) -NIL -(-10 -8 (-15 -3813 (|#1| |#1|)) (-15 -3742 (|#1| |#1| (-569)))) -((-3813 (($ $) 6)) (-3742 (($ $ (-569)) 7)) (** (($ $ (-412 (-569))) 8))) -(((-1010) (-140)) (T -1010)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-412 (-569))))) (-3742 (*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-569)))) (-3813 (*1 *1 *1) (-4 *1 (-1010)))) -(-13 (-10 -8 (-15 -3813 ($ $)) (-15 -3742 ($ $ (-569))) (-15 ** ($ $ (-412 (-569)))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2877 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| (-412 |#2|) (-367)))) (-4355 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3039 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1547 (((-694 (-412 |#2|)) (-1275 $)) NIL) (((-694 (-412 |#2|))) NIL)) (-3140 (((-412 |#2|) $) NIL)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| (-412 |#2|) (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-3764 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2227 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3473 (((-776)) NIL (|has| (-412 |#2|) (-372)))) (-2123 (((-112)) NIL)) (-3317 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-3 (-412 |#2|) "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| (-412 |#2|) (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| (-412 |#2|) (-1046 (-412 (-569))))) (((-412 |#2|) $) NIL)) (-2247 (($ (-1275 (-412 |#2|)) (-1275 $)) NIL) (($ (-1275 (-412 |#2|))) 81) (($ (-1275 |#2|) |#2|) NIL)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-412 |#2|) (-353)))) (-2368 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1833 (((-694 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-412 |#2|) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-412 |#2|))) (|:| |vec| (-1275 (-412 |#2|)))) (-694 $) (-1275 $)) NIL) (((-694 (-412 |#2|)) (-694 $)) NIL)) (-2980 (((-1275 $) (-1275 $)) NIL)) (-3598 (($ |#3|) 75) (((-3 $ "failed") (-412 |#3|)) NIL (|has| (-412 |#2|) (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-2603 (((-649 (-649 |#1|))) NIL (|has| |#1| (-372)))) (-1523 (((-112) |#1| |#1|) NIL)) (-3978 (((-927)) NIL)) (-3406 (($) NIL (|has| (-412 |#2|) (-372)))) (-2303 (((-112)) NIL)) (-3811 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2379 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| (-412 |#2|) (-367)))) (-2642 (($ $) NIL)) (-1616 (($) NIL (|has| (-412 |#2|) (-353)))) (-2807 (((-112) $) NIL (|has| (-412 |#2|) (-353)))) (-3701 (($ $ (-776)) NIL (|has| (-412 |#2|) (-353))) (($ $) NIL (|has| (-412 |#2|) (-353)))) (-1473 (((-112) $) NIL (|has| (-412 |#2|) (-367)))) (-1466 (((-927) $) NIL (|has| (-412 |#2|) (-353))) (((-838 (-927)) $) NIL (|has| (-412 |#2|) (-353)))) (-2349 (((-112) $) NIL)) (-3045 (((-776)) NIL)) (-3751 (((-1275 $) (-1275 $)) NIL)) (-3829 (((-412 |#2|) $) NIL)) (-1388 (((-649 (-958 |#1|)) (-1185)) NIL (|has| |#1| (-367)))) (-3885 (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3859 ((|#3| $) NIL (|has| (-412 |#2|) (-367)))) (-2731 (((-927) $) NIL (|has| (-412 |#2|) (-372)))) (-3585 ((|#3| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3435 (((-1167) $) NIL)) (-1334 (((-694 (-412 |#2|))) 57)) (-2979 (((-694 (-412 |#2|))) 56)) (-1817 (($ $) NIL (|has| (-412 |#2|) (-367)))) (-4397 (($ (-1275 |#2|) |#2|) 82)) (-4272 (((-694 (-412 |#2|))) 55)) (-4247 (((-694 (-412 |#2|))) 54)) (-2841 (((-2 (|:| |num| (-694 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-4277 (((-2 (|:| |num| (-1275 |#2|)) (|:| |den| |#2|)) $) 88)) (-3963 (((-1275 $)) 51)) (-4002 (((-1275 $)) 50)) (-2173 (((-112) $) NIL)) (-3557 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2307 (($) NIL (|has| (-412 |#2|) (-353)) CONST)) (-2150 (($ (-927)) NIL (|has| (-412 |#2|) (-372)))) (-3015 (((-3 |#2| "failed")) 70)) (-3547 (((-1128) $) NIL)) (-3926 (((-776)) NIL)) (-2332 (($) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| (-412 |#2|) (-367)))) (-1870 (($ (-649 $)) NIL (|has| (-412 |#2|) (-367))) (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| (-412 |#2|) (-353)))) (-3800 (((-423 $) $) NIL (|has| (-412 |#2|) (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-412 |#2|) (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| (-412 |#2|) (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| (-412 |#2|) (-367)))) (-2431 (((-776) $) NIL (|has| (-412 |#2|) (-367)))) (-1869 ((|#1| $ |#1| |#1|) NIL)) (-2893 (((-3 |#2| "failed")) 68)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| (-412 |#2|) (-367)))) (-3059 (((-412 |#2|) (-1275 $)) NIL) (((-412 |#2|)) 47)) (-2166 (((-776) $) NIL (|has| (-412 |#2|) (-353))) (((-3 (-776) "failed") $ $) NIL (|has| (-412 |#2|) (-353)))) (-3517 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2594 (((-694 (-412 |#2|)) (-1275 $) (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367)))) (-4061 ((|#3|) 58)) (-4234 (($) NIL (|has| (-412 |#2|) (-353)))) (-2415 (((-1275 (-412 |#2|)) $ (-1275 $)) NIL) (((-694 (-412 |#2|)) (-1275 $) (-1275 $)) NIL) (((-1275 (-412 |#2|)) $) 83) (((-694 (-412 |#2|)) (-1275 $)) NIL)) (-1410 (((-1275 (-412 |#2|)) $) NIL) (($ (-1275 (-412 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| (-412 |#2|) (-353)))) (-3562 (((-1275 $) (-1275 $)) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 |#2|)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| (-412 |#2|) (-1046 (-412 (-569)))) (|has| (-412 |#2|) (-367)))) (($ $) NIL (|has| (-412 |#2|) (-367)))) (-2239 (($ $) NIL (|has| (-412 |#2|) (-353))) (((-3 $ "failed") $) NIL (|has| (-412 |#2|) (-145)))) (-1886 ((|#3| $) NIL)) (-2721 (((-776)) NIL T CONST)) (-2784 (((-112)) 65)) (-4050 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) NIL)) (-2664 (((-112) $ $) NIL (|has| (-412 |#2|) (-367)))) (-4279 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1954 (((-112)) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1 (-412 |#2|) (-412 |#2|)) (-776)) NIL (|has| (-412 |#2|) (-367))) (($ $ (-1 (-412 |#2|) (-412 |#2|))) NIL (|has| (-412 |#2|) (-367))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| (-412 |#2|) (-367)) (|has| (-412 |#2|) (-906 (-1185))))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353)))) (($ $) NIL (-2776 (-12 (|has| (-412 |#2|) (-234)) (|has| (-412 |#2|) (-367))) (|has| (-412 |#2|) (-353))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ $) NIL (|has| (-412 |#2|) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| (-412 |#2|) (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 |#2|)) NIL) (($ (-412 |#2|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-412 |#2|) (-367))) (($ $ (-412 (-569))) NIL (|has| (-412 |#2|) (-367))))) -(((-1011 |#1| |#2| |#3| |#4| |#5|) (-346 |#1| |#2| |#3|) (-1229) (-1251 |#1|) (-1251 (-412 |#2|)) (-412 |#2|) (-776)) (T -1011)) -NIL -(-346 |#1| |#2| |#3|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2231 (((-649 (-569)) $) 73)) (-4232 (($ (-649 (-569))) 81)) (-1938 (((-569) $) 48 (|has| (-569) (-310)))) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL (|has| (-569) (-825)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) 60) (((-3 (-1185) "failed") $) NIL (|has| (-569) (-1046 (-1185)))) (((-3 (-412 (-569)) "failed") $) 57 (|has| (-569) (-1046 (-569)))) (((-3 (-569) "failed") $) 60 (|has| (-569) (-1046 (-569))))) (-3150 (((-569) $) NIL) (((-1185) $) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) NIL (|has| (-569) (-1046 (-569)))) (((-569) $) NIL (|has| (-569) (-1046 (-569))))) (-2368 (($ $ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| (-569) (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3406 (($) NIL (|has| (-569) (-550)))) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-2581 (((-649 (-569)) $) 79)) (-3712 (((-112) $) NIL (|has| (-569) (-825)))) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (|has| (-569) (-892 (-569)))) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (|has| (-569) (-892 (-383))))) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL)) (-4399 (((-569) $) 45)) (-3885 (((-3 $ "failed") $) NIL (|has| (-569) (-1160)))) (-2051 (((-112) $) NIL (|has| (-569) (-825)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-569) (-855)))) (-1346 (($ (-1 (-569) (-569)) $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL)) (-2307 (($) NIL (|has| (-569) (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3231 (($ $) NIL (|has| (-569) (-310))) (((-412 (-569)) $) 50)) (-2484 (((-1165 (-569)) $) 78)) (-2418 (($ (-649 (-569)) (-649 (-569))) 82)) (-3465 (((-569) $) 64 (|has| (-569) (-550)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| (-569) (-915)))) (-3800 (((-423 $) $) NIL)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-1725 (($ $ (-649 (-569)) (-649 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-569) (-569)) NIL (|has| (-569) (-312 (-569)))) (($ $ (-297 (-569))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-297 (-569)))) NIL (|has| (-569) (-312 (-569)))) (($ $ (-649 (-1185)) (-649 (-569))) NIL (|has| (-569) (-519 (-1185) (-569)))) (($ $ (-1185) (-569)) NIL (|has| (-569) (-519 (-1185) (-569))))) (-2431 (((-776) $) NIL)) (-1869 (($ $ (-569)) NIL (|has| (-569) (-289 (-569) (-569))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $) 15 (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-3181 (($ $) NIL)) (-4412 (((-569) $) 47)) (-2840 (((-649 (-569)) $) 80)) (-1410 (((-898 (-569)) $) NIL (|has| (-569) (-619 (-898 (-569))))) (((-898 (-383)) $) NIL (|has| (-569) (-619 (-898 (-383))))) (((-541) $) NIL (|has| (-569) (-619 (-541)))) (((-383) $) NIL (|has| (-569) (-1030))) (((-226) $) NIL (|has| (-569) (-1030)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-569) (-915))))) (-3796 (((-867) $) 107) (($ (-569)) 51) (($ $) NIL) (($ (-412 (-569))) 27) (($ (-569)) 51) (($ (-1185)) NIL (|has| (-569) (-1046 (-1185)))) (((-412 (-569)) $) 25)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-569) (-915))) (|has| (-569) (-145))))) (-2721 (((-776)) 13 T CONST)) (-2040 (((-569) $) 62 (|has| (-569) (-550)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-2271 (($ $) NIL (|has| (-569) (-825)))) (-1804 (($) 14 T CONST)) (-1815 (($) 17 T CONST)) (-2832 (($ $) NIL (|has| (-569) (-234))) (($ $ (-776)) NIL (|has| (-569) (-234))) (($ $ (-1185)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| (-569) (-906 (-1185)))) (($ $ (-1 (-569) (-569)) (-776)) NIL) (($ $ (-1 (-569) (-569))) NIL)) (-2978 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2920 (((-112) $ $) 21)) (-2966 (((-112) $ $) NIL (|has| (-569) (-855)))) (-2944 (((-112) $ $) 40 (|has| (-569) (-855)))) (-3035 (($ $ $) 36) (($ (-569) (-569)) 38)) (-3024 (($ $) 23) (($ $ $) 30)) (-3012 (($ $ $) 28)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 32) (($ $ $) 34) (($ $ (-412 (-569))) NIL) (($ (-412 (-569)) $) NIL) (($ (-569) $) 32) (($ $ (-569)) NIL))) -(((-1012 |#1|) (-13 (-1000 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -2231 ((-649 (-569)) $)) (-15 -2484 ((-1165 (-569)) $)) (-15 -2581 ((-649 (-569)) $)) (-15 -2840 ((-649 (-569)) $)) (-15 -4232 ($ (-649 (-569)))) (-15 -2418 ($ (-649 (-569)) (-649 (-569)))))) (-569)) (T -1012)) -((-3231 (*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2840 (*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) (-2418 (*1 *1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) -(-13 (-1000 (-569)) (-618 (-412 (-569))) (-10 -8 (-15 -3231 ((-412 (-569)) $)) (-15 -2231 ((-649 (-569)) $)) (-15 -2484 ((-1165 (-569)) $)) (-15 -2581 ((-649 (-569)) $)) (-15 -2840 ((-649 (-569)) $)) (-15 -4232 ($ (-649 (-569)))) (-15 -2418 ($ (-649 (-569)) (-649 (-569)))))) -((-3955 (((-52) (-412 (-569)) (-569)) 9))) -(((-1013) (-10 -7 (-15 -3955 ((-52) (-412 (-569)) (-569))))) (T -1013)) -((-3955 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52)) (-5 *1 (-1013))))) -(-10 -7 (-15 -3955 ((-52) (-412 (-569)) (-569)))) -((-3473 (((-569)) 23)) (-2061 (((-569)) 28)) (-2192 (((-1280) (-569)) 26)) (-3705 (((-569) (-569)) 29) (((-569)) 22))) -(((-1014) (-10 -7 (-15 -3705 ((-569))) (-15 -3473 ((-569))) (-15 -3705 ((-569) (-569))) (-15 -2192 ((-1280) (-569))) (-15 -2061 ((-569))))) (T -1014)) -((-2061 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) (-2192 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1014)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) (-3473 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) (-3705 (*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014))))) -(-10 -7 (-15 -3705 ((-569))) (-15 -3473 ((-569))) (-15 -3705 ((-569) (-569))) (-15 -2192 ((-1280) (-569))) (-15 -2061 ((-569)))) -((-3386 (((-423 |#1|) |#1|) 43)) (-3800 (((-423 |#1|) |#1|) 41))) -(((-1015 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|))) (-1251 (-412 (-569)))) (T -1015)) -((-3386 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3)) (-4 *3 (-1251 (-412 (-569)))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3)) (-4 *3 (-1251 (-412 (-569))))))) -(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|))) -((-3377 (((-3 (-412 (-569)) "failed") |#1|) 15)) (-1441 (((-112) |#1|) 14)) (-1606 (((-412 (-569)) |#1|) 10))) -(((-1016 |#1|) (-10 -7 (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|))) (-1046 (-412 (-569)))) (T -1016)) -((-3377 (*1 *2 *3) (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) (-4 *3 (-1046 *2)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1046 (-412 (-569)))))) (-1606 (*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) (-4 *3 (-1046 *2))))) -(-10 -7 (-15 -1606 ((-412 (-569)) |#1|)) (-15 -1441 ((-112) |#1|)) (-15 -3377 ((-3 (-412 (-569)) "failed") |#1|))) -((-3943 ((|#2| $ "value" |#2|) 12)) (-1869 ((|#2| $ "value") 10)) (-4280 (((-112) $ $) 18))) -(((-1017 |#1| |#2|) (-10 -8 (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -1869 (|#2| |#1| "value"))) (-1018 |#2|) (-1225)) (T -1017)) -NIL -(-10 -8 (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -4280 ((-112) |#1| |#1|)) (-15 -1869 (|#2| |#1| "value"))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-4427 (($) 7 T CONST)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1018 |#1|) (-140) (-1225)) (T -1018)) -((-4001 (*1 *2 *1) (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3)))) (-2280 (*1 *2 *1) (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2188 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2275 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3)))) (-2602 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-569)))) (-4280 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-1534 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4448)) (-4 *1 (-1018 *3)) (-4 *3 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) (-2052 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) (-4 *2 (-1225))))) -(-13 (-494 |t#1|) (-10 -8 (-15 -4001 ((-649 $) $)) (-15 -2280 ((-649 $) $)) (-15 -1887 ((-112) $)) (-15 -2188 (|t#1| $)) (-15 -1869 (|t#1| $ "value")) (-15 -3966 ((-112) $)) (-15 -2275 ((-649 |t#1|) $)) (-15 -2602 ((-569) $ $)) (IF (|has| |t#1| (-1108)) (PROGN (-15 -4280 ((-112) $ $)) (-15 -1534 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4448)) (PROGN (-15 -1803 ($ $ (-649 $))) (-15 -3943 (|t#1| $ "value" |t#1|)) (-15 -2052 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3813 (($ $) 9) (($ $ (-927)) 49) (($ (-412 (-569))) 13) (($ (-569)) 15)) (-2793 (((-3 $ "failed") (-1181 $) (-927) (-867)) 24) (((-3 $ "failed") (-1181 $) (-927)) 32)) (-3742 (($ $ (-569)) 58)) (-2721 (((-776)) 18)) (-2444 (((-649 $) (-1181 $)) NIL) (((-649 $) (-1181 (-412 (-569)))) 63) (((-649 $) (-1181 (-569))) 68) (((-649 $) (-958 $)) 72) (((-649 $) (-958 (-412 (-569)))) 76) (((-649 $) (-958 (-569))) 80)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) 53))) -(((-1019 |#1|) (-10 -8 (-15 -3813 (|#1| (-569))) (-15 -3813 (|#1| (-412 (-569)))) (-15 -3813 (|#1| |#1| (-927))) (-15 -2444 ((-649 |#1|) (-958 (-569)))) (-15 -2444 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-958 |#1|))) (-15 -2444 ((-649 |#1|) (-1181 (-569)))) (-15 -2444 ((-649 |#1|) (-1181 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-1181 |#1|))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3742 (|#1| |#1| (-569))) (-15 -3813 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2721 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) (-1020)) (T -1019)) -((-2721 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1019 *3)) (-4 *3 (-1020))))) -(-10 -8 (-15 -3813 (|#1| (-569))) (-15 -3813 (|#1| (-412 (-569)))) (-15 -3813 (|#1| |#1| (-927))) (-15 -2444 ((-649 |#1|) (-958 (-569)))) (-15 -2444 ((-649 |#1|) (-958 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-958 |#1|))) (-15 -2444 ((-649 |#1|) (-1181 (-569)))) (-15 -2444 ((-649 |#1|) (-1181 (-412 (-569))))) (-15 -2444 ((-649 |#1|) (-1181 |#1|))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927))) (-15 -2793 ((-3 |#1| "failed") (-1181 |#1|) (-927) (-867))) (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -3742 (|#1| |#1| (-569))) (-15 -3813 (|#1| |#1|)) (-15 ** (|#1| |#1| (-569))) (-15 -2721 ((-776))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 102)) (-4355 (($ $) 103)) (-3039 (((-112) $) 105)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 122)) (-3764 (((-423 $) $) 123)) (-3813 (($ $) 86) (($ $ (-927)) 72) (($ (-412 (-569))) 71) (($ (-569)) 70)) (-2227 (((-112) $ $) 113)) (-2919 (((-569) $) 139)) (-4427 (($) 18 T CONST)) (-2793 (((-3 $ "failed") (-1181 $) (-927) (-867)) 80) (((-3 $ "failed") (-1181 $) (-927)) 79)) (-4381 (((-3 (-569) "failed") $) 99 (|has| (-412 (-569)) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 97 (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) 94)) (-3150 (((-569) $) 98 (|has| (-412 (-569)) (-1046 (-569)))) (((-412 (-569)) $) 96 (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-412 (-569)) $) 95)) (-3531 (($ $ (-867)) 69)) (-3900 (($ $ (-867)) 68)) (-2368 (($ $ $) 117)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 116)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 111)) (-1473 (((-112) $) 124)) (-3712 (((-112) $) 137)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 85)) (-2051 (((-112) $) 138)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 120)) (-3380 (($ $ $) 136)) (-2839 (($ $ $) 135)) (-2118 (((-3 (-1181 $) "failed") $) 81)) (-3470 (((-3 (-867) "failed") $) 83)) (-3747 (((-3 (-1181 $) "failed") $) 82)) (-1839 (($ (-649 $)) 109) (($ $ $) 108)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 125)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 110)) (-1870 (($ (-649 $)) 107) (($ $ $) 106)) (-3800 (((-423 $) $) 121)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 118)) (-2407 (((-3 $ "failed") $ $) 101)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 112)) (-2431 (((-776) $) 114)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 115)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 129) (($ $) 100) (($ (-412 (-569))) 93) (($ (-569)) 92) (($ (-412 (-569))) 89)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 104)) (-3091 (((-412 (-569)) $ $) 67)) (-2444 (((-649 $) (-1181 $)) 78) (((-649 $) (-1181 (-412 (-569)))) 77) (((-649 $) (-1181 (-569))) 76) (((-649 $) (-958 $)) 75) (((-649 $) (-958 (-412 (-569)))) 74) (((-649 $) (-958 (-569))) 73)) (-2271 (($ $) 140)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 133)) (-2956 (((-112) $ $) 132)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 134)) (-2944 (((-112) $ $) 131)) (-3035 (($ $ $) 130)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 126) (($ $ (-412 (-569))) 84)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ (-412 (-569)) $) 128) (($ $ (-412 (-569))) 127) (($ (-569) $) 91) (($ $ (-569)) 90) (($ (-412 (-569)) $) 88) (($ $ (-412 (-569))) 87))) -(((-1020) (-140)) (T -1020)) -((-3813 (*1 *1 *1) (-4 *1 (-1020))) (-3470 (*1 *2 *1) (|partial| -12 (-4 *1 (-1020)) (-5 *2 (-867)))) (-3747 (*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020)))) (-2118 (*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020)))) (-2793 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-5 *4 (-867)) (-4 *1 (-1020)))) (-2793 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1181 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-927)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1020)))) (-3813 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1020)))) (-3531 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867)))) (-3900 (*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867)))) (-3091 (*1 *2 *1 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-412 (-569)))))) -(-13 (-147) (-853) (-173) (-367) (-416 (-412 (-569))) (-38 (-569)) (-38 (-412 (-569))) (-1010) (-10 -8 (-15 -3470 ((-3 (-867) "failed") $)) (-15 -3747 ((-3 (-1181 $) "failed") $)) (-15 -2118 ((-3 (-1181 $) "failed") $)) (-15 -2793 ((-3 $ "failed") (-1181 $) (-927) (-867))) (-15 -2793 ((-3 $ "failed") (-1181 $) (-927))) (-15 -2444 ((-649 $) (-1181 $))) (-15 -2444 ((-649 $) (-1181 (-412 (-569))))) (-15 -2444 ((-649 $) (-1181 (-569)))) (-15 -2444 ((-649 $) (-958 $))) (-15 -2444 ((-649 $) (-958 (-412 (-569))))) (-15 -2444 ((-649 $) (-958 (-569)))) (-15 -3813 ($ $ (-927))) (-15 -3813 ($ $)) (-15 -3813 ($ (-412 (-569)))) (-15 -3813 ($ (-569))) (-15 -3531 ($ $ (-867))) (-15 -3900 ($ $ (-867))) (-15 -3091 ((-412 (-569)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 #1=(-569)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-416 (-412 (-569))) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 #1#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 #1#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 #1#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-926) . T) ((-1010) . T) ((-1046 (-412 (-569))) . T) ((-1046 (-569)) |has| (-412 (-569)) (-1046 (-569))) ((-1059 #0#) . T) ((-1059 #1#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 #1#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-1588 (((-2 (|:| |ans| |#2|) (|:| -4410 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1021 |#1| |#2|) (-10 -7 (-15 -1588 ((-2 (|:| |ans| |#2|) (|:| -4410 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-27) (-435 |#1|))) (T -1021)) -((-1588 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1185)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1210) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112)))) (-5 *1 (-1021 *8 *4))))) -(-10 -7 (-15 -1588 ((-2 (|:| |ans| |#2|) (|:| -4410 |#2|) (|:| |sol?| (-112))) (-569) |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3337 (((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1022 |#1| |#2|) (-10 -7 (-15 -3337 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-457) (-147) (-1046 (-569)) (-644 (-569))) (-13 (-1210) (-27) (-435 |#1|))) (T -1022)) -((-3337 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1185)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-649 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1210) (-27) (-435 *8))) (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569)) (-5 *2 (-649 *4)) (-5 *1 (-1022 *8 *4))))) -(-10 -7 (-15 -3337 ((-3 (-649 |#2|) "failed") (-569) |#2| |#2| |#2| (-1185) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-649 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-649 |#2|)) (-1 (-3 (-2 (|:| -2679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1556 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)) 38)) (-1995 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 69)) (-1663 (((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|)) 74))) -(((-1023 |#1| |#2|) (-10 -7 (-15 -1995 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1663 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -1556 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)))) (-13 (-367) (-147) (-1046 (-569))) (-1251 |#1|)) (T -1023)) -((-1556 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1251 *6)) (-4 *6 (-13 (-367) (-147) (-1046 *4))) (-5 *4 (-569)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1023 *6 *3)))) (-1663 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1023 *4 *5)) (-5 *3 (-412 *5)))) (-1995 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) (|:| -3676 *6))) (-5 *1 (-1023 *5 *6)) (-5 *3 (-412 *6))))) -(-10 -7 (-15 -1995 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |c| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -1663 ((-2 (|:| |ans| (-412 |#2|)) (|:| |nosol| (-112))) (-412 |#2|) (-412 |#2|))) (-15 -1556 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4312 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-569)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-569) (-1 |#2| |#2|)))) -((-4382 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|)) 22)) (-3349 (((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)) 34))) -(((-1024 |#1| |#2|) (-10 -7 (-15 -4382 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3349 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)))) (-13 (-367) (-147) (-1046 (-569))) (-1251 |#1|)) (T -1024)) -((-3349 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1024 *4 *5)) (-5 *3 (-412 *5)))) (-4382 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3676 *6))) (-5 *1 (-1024 *5 *6)) (-5 *3 (-412 *6))))) -(-10 -7 (-15 -4382 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-412 |#2|)) (|:| |h| |#2|) (|:| |c1| (-412 |#2|)) (|:| |c2| (-412 |#2|)) (|:| -3676 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|) (-1 |#2| |#2|))) (-15 -3349 ((-3 (-649 (-412 |#2|)) "failed") (-412 |#2|) (-412 |#2|) (-412 |#2|)))) -((-2113 (((-1 |#1|) (-649 (-2 (|:| -2188 |#1|) (|:| -3766 (-569))))) 37)) (-2900 (((-1 |#1|) (-1110 |#1|)) 44)) (-4049 (((-1 |#1|) (-1275 |#1|) (-1275 (-569)) (-569)) 34))) -(((-1025 |#1|) (-10 -7 (-15 -2900 ((-1 |#1|) (-1110 |#1|))) (-15 -2113 ((-1 |#1|) (-649 (-2 (|:| -2188 |#1|) (|:| -3766 (-569)))))) (-15 -4049 ((-1 |#1|) (-1275 |#1|) (-1275 (-569)) (-569)))) (-1108)) (T -1025)) -((-4049 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1275 *6)) (-5 *4 (-1275 (-569))) (-5 *5 (-569)) (-4 *6 (-1108)) (-5 *2 (-1 *6)) (-5 *1 (-1025 *6)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -2188 *4) (|:| -3766 (-569))))) (-4 *4 (-1108)) (-5 *2 (-1 *4)) (-5 *1 (-1025 *4)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-1110 *4)) (-4 *4 (-1108)) (-5 *2 (-1 *4)) (-5 *1 (-1025 *4))))) -(-10 -7 (-15 -2900 ((-1 |#1|) (-1110 |#1|))) (-15 -2113 ((-1 |#1|) (-649 (-2 (|:| -2188 |#1|) (|:| -3766 (-569)))))) (-15 -4049 ((-1 |#1|) (-1275 |#1|) (-1275 (-569)) (-569)))) -((-1466 (((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-367) (-1251 |#1|) (-1251 (-412 |#2|)) (-346 |#1| |#2| |#3|) (-13 (-372) (-367))) (T -1026)) -((-1466 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367)) (-4 *7 (-1251 *6)) (-4 *4 (-1251 (-412 *7))) (-4 *8 (-346 *6 *7 *4)) (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) (-5 *1 (-1026 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -1466 ((-776) (-340 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2417 (((-112) $ $) NIL)) (-3746 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1027) (-13 (-1091) (-10 -8 (-15 -3746 ((-1143) $)) (-15 -3586 ((-1143) $))))) (T -1027)) -((-3746 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027))))) -(-13 (-1091) (-10 -8 (-15 -3746 ((-1143) $)) (-15 -3586 ((-1143) $)))) -((-3442 (((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 32) (((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 29)) (-2433 (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 34) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569))) 30) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 33) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|) 28)) (-2590 (((-649 (-412 (-569))) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) 20)) (-3988 (((-412 (-569)) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 17))) -(((-1028 |#1|) (-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -3988 ((-412 (-569)) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2590 ((-649 (-412 (-569))) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))))) (-1251 (-569))) (T -1028)) -((-2590 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1028 *4)) (-4 *4 (-1251 (-569))))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *2 (-412 (-569))) (-5 *1 (-1028 *4)) (-4 *4 (-1251 (-569))))) (-3442 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) (-3442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-412 (-569))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569)))))) -(-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -3988 ((-412 (-569)) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2590 ((-649 (-412 (-569))) (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))))) -((-3442 (((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 35) (((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 32)) (-2433 (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569))) 30) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569))) 26) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) 28) (((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|) 24))) -(((-1029 |#1|) (-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-1251 (-412 (-569)))) (T -1029)) -((-3442 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))))) (-3442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) (-5 *4 (-412 (-569))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *4)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *5)) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5))))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-412 (-569))) (-5 *2 (-649 (-2 (|:| -4398 *4) (|:| -4410 *4)))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *4)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))) (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569))))))) -(-10 -7 (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1|)) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-412 (-569)))) (-15 -2433 ((-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-412 (-569)))) (-15 -3442 ((-3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) "failed") |#1| (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))) (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) -((-1410 (((-226) $) 6) (((-383) $) 9))) -(((-1030) (-140)) (T -1030)) -NIL -(-13 (-619 (-226)) (-619 (-383))) -(((-619 (-226)) . T) ((-619 (-383)) . T)) -((-3218 (((-649 (-383)) (-958 (-569)) (-383)) 28) (((-649 (-383)) (-958 (-412 (-569))) (-383)) 27)) (-2539 (((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1185)) (-383)) 37))) -(((-1031) (-10 -7 (-15 -3218 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -3218 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -2539 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1185)) (-383))))) (T -1031)) -((-2539 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1031)) (-5 *5 (-383)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1031)) (-5 *4 (-383)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383))) (-5 *1 (-1031)) (-5 *4 (-383))))) -(-10 -7 (-15 -3218 ((-649 (-383)) (-958 (-412 (-569))) (-383))) (-15 -3218 ((-649 (-383)) (-958 (-569)) (-383))) (-15 -2539 ((-649 (-649 (-383))) (-649 (-958 (-569))) (-649 (-1185)) (-383)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 75)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-3813 (($ $) NIL) (($ $ (-927)) NIL) (($ (-412 (-569))) NIL) (($ (-569)) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) 70)) (-4427 (($) NIL T CONST)) (-2793 (((-3 $ "failed") (-1181 $) (-927) (-867)) NIL) (((-3 $ "failed") (-1181 $) (-927)) 55)) (-4381 (((-3 (-412 (-569)) "failed") $) NIL (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-569) "failed") $) NIL (-2776 (|has| (-412 (-569)) (-1046 (-569))) (|has| |#1| (-1046 (-569)))))) (-3150 (((-412 (-569)) $) 17 (|has| (-412 (-569)) (-1046 (-412 (-569))))) (((-412 (-569)) $) 17) ((|#1| $) 117) (((-569) $) NIL (-2776 (|has| (-412 (-569)) (-1046 (-569))) (|has| |#1| (-1046 (-569)))))) (-3531 (($ $ (-867)) 47)) (-3900 (($ $ (-867)) 48)) (-2368 (($ $ $) NIL)) (-4358 (((-412 (-569)) $ $) 21)) (-3086 (((-3 $ "failed") $) 88)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3712 (((-112) $) 66)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL)) (-2051 (((-112) $) 69)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2118 (((-3 (-1181 $) "failed") $) 83)) (-3470 (((-3 (-867) "failed") $) 82)) (-3747 (((-3 (-1181 $) "failed") $) 80)) (-4246 (((-3 (-1069 $ (-1181 $)) "failed") $) 78)) (-1839 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 89)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ (-649 $)) NIL) (($ $ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3796 (((-867) $) 87) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) 63) (($ (-412 (-569))) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#1|) 119)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-3091 (((-412 (-569)) $ $) 27)) (-2444 (((-649 $) (-1181 $)) 61) (((-649 $) (-1181 (-412 (-569)))) NIL) (((-649 $) (-1181 (-569))) NIL) (((-649 $) (-958 $)) NIL) (((-649 $) (-958 (-412 (-569)))) NIL) (((-649 $) (-958 (-569))) NIL)) (-2811 (($ (-1069 $ (-1181 $)) (-867)) 46)) (-2271 (($ $) 22)) (-1804 (($) 32 T CONST)) (-1815 (($) 39 T CONST)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 76)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 24)) (-3035 (($ $ $) 37)) (-3024 (($ $) 38) (($ $ $) 74)) (-3012 (($ $ $) 112)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL) (($ $ (-412 (-569))) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 98) (($ $ $) 104) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ (-569) $) 98) (($ $ (-569)) NIL) (($ (-412 (-569)) $) NIL) (($ $ (-412 (-569))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1032 |#1|) (-13 (-1020) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -2811 ($ (-1069 $ (-1181 $)) (-867))) (-15 -4246 ((-3 (-1069 $ (-1181 $)) "failed") $)) (-15 -4358 ((-412 (-569)) $ $)))) (-13 (-853) (-367) (-1030))) (T -1032)) -((-2811 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-1032 *4) (-1181 (-1032 *4)))) (-5 *3 (-867)) (-5 *1 (-1032 *4)) (-4 *4 (-13 (-853) (-367) (-1030))))) (-4246 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 (-1032 *3) (-1181 (-1032 *3)))) (-5 *1 (-1032 *3)) (-4 *3 (-13 (-853) (-367) (-1030))))) (-4358 (*1 *2 *1 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1032 *3)) (-4 *3 (-13 (-853) (-367) (-1030)))))) -(-13 (-1020) (-416 |#1|) (-38 |#1|) (-10 -8 (-15 -2811 ($ (-1069 $ (-1181 $)) (-867))) (-15 -4246 ((-3 (-1069 $ (-1181 $)) "failed") $)) (-15 -4358 ((-412 (-569)) $ $)))) -((-1369 (((-2 (|:| -4312 |#2|) (|:| -3906 (-649 |#1|))) |#2| (-649 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -1369 (|#2| |#2| |#1|)) (-15 -1369 ((-2 (|:| -4312 |#2|) (|:| -3906 (-649 |#1|))) |#2| (-649 |#1|)))) (-367) (-661 |#1|)) (T -1033)) -((-1369 (*1 *2 *3 *4) (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4312 *3) (|:| -3906 (-649 *5)))) (-5 *1 (-1033 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5)))) (-1369 (*1 *2 *2 *3) (-12 (-4 *3 (-367)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-661 *3))))) -(-10 -7 (-15 -1369 (|#2| |#2| |#1|)) (-15 -1369 ((-2 (|:| -4312 |#2|) (|:| -3906 (-649 |#1|))) |#2| (-649 |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3697 ((|#1| $ |#1|) 14)) (-3943 ((|#1| $ |#1|) 12)) (-3135 (($ |#1|) 10)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1869 ((|#1| $) 11)) (-4392 ((|#1| $) 13)) (-3796 (((-867) $) 21 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2920 (((-112) $ $) 9))) -(((-1034 |#1|) (-13 (-1225) (-10 -8 (-15 -3135 ($ |#1|)) (-15 -1869 (|#1| $)) (-15 -3943 (|#1| $ |#1|)) (-15 -4392 (|#1| $)) (-15 -3697 (|#1| $ |#1|)) (-15 -2920 ((-112) $ $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) (-1225)) (T -1034)) -((-3135 (*1 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-4392 (*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-3697 (*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) (-2920 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1034 *3)) (-4 *3 (-1225))))) -(-13 (-1225) (-10 -8 (-15 -3135 ($ |#1|)) (-15 -1869 (|#1| $)) (-15 -3943 (|#1| $ |#1|)) (-15 -4392 (|#1| $)) (-15 -3697 (|#1| $ |#1|)) (-15 -2920 ((-112) $ $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) 118) (((-649 $) (-649 |#4|) (-112)) 119) (((-649 $) (-649 |#4|) (-112) (-112)) 117) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 112)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 66)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) 29 (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 45)) (-2548 ((|#4| |#4| $) 69)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2648 (((-112) |#4| $) NIL)) (-2438 (((-112) |#4| $) NIL)) (-2404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1661 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 133)) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 19 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 23)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 110)) (-1724 (((-3 |#4| "failed") $) 42)) (-2798 (((-649 $) |#4| $) 93)) (-2716 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2101 (((-649 $) |#4| $) 115) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 116) (((-649 $) |#4| (-649 $)) NIL)) (-1530 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 128)) (-3446 (($ |#4| $) 82) (($ (-649 |#4|) $) 83) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-1586 (((-649 |#4|) $) NIL)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 40)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) 59)) (-3166 (($ $ |#4|) NIL) (((-649 $) |#4| $) 95) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 89)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 14)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 22)) (-3381 (($ $ |#3|) 52)) (-2963 (($ $ |#3|) 54)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-2744 (((-649 $) |#4| $) 92) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4159 (((-112) |#4| $) NIL)) (-4269 (((-112) |#3| $) 65)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1035 |#1| |#2| |#3| |#4|) (-13 (-1079 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -1035)) -((-3446 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *3))) (-5 *1 (-1035 *5 *6 *7 *3)) (-4 *3 (-1073 *5 *6 *7)))) (-1806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) (-1530 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) (-1661 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1035 *5 *6 *7 *8))))) (-5 *1 (-1035 *5 *6 *7 *8)) (-5 *3 (-649 *8))))) -(-13 (-1079 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) -((-1619 (((-649 (-694 |#1|)) (-649 (-694 |#1|))) 73) (((-694 |#1|) (-694 |#1|)) 72) (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 71) (((-694 |#1|) (-694 |#1|) (-694 |#1|)) 68)) (-2948 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 66) (((-694 |#1|) (-694 |#1|) (-927)) 65)) (-3276 (((-649 (-694 (-569))) (-649 (-649 (-569)))) 84) (((-649 (-694 (-569))) (-649 (-911 (-569))) (-569)) 83) (((-694 (-569)) (-649 (-569))) 80) (((-694 (-569)) (-911 (-569)) (-569)) 78)) (-3095 (((-694 (-958 |#1|)) (-776)) 98)) (-1339 (((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927)) 52 (|has| |#1| (-6 (-4449 "*")))) (((-694 |#1|) (-694 |#1|) (-927)) 50 (|has| |#1| (-6 (-4449 "*")))))) -(((-1036 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -3095 ((-694 (-958 |#1|)) (-776))) (-15 -2948 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -2948 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -1619 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1619 ((-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3276 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -3276 ((-694 (-569)) (-649 (-569)))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-649 (-569)))))) (-1057)) (T -1036)) -((-3276 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1036 *4)) (-4 *4 (-1057)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569)) (-5 *2 (-649 (-694 *4))) (-5 *1 (-1036 *5)) (-4 *5 (-1057)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1036 *4)) (-4 *4 (-1057)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4)) (-5 *1 (-1036 *5)) (-4 *5 (-1057)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-1619 (*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-1619 (*1 *2 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) (-2948 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) (-2948 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) (-3095 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1036 *4)) (-4 *4 (-1057)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (|has| *4 (-6 (-4449 "*"))) (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4449 "*"))) (-4 *4 (-1057)) (-5 *1 (-1036 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-694 |#1|) (-694 |#1|) (-927))) |%noBranch|) (IF (|has| |#1| (-6 (-4449 "*"))) (-15 -1339 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) |%noBranch|) (-15 -3095 ((-694 (-958 |#1|)) (-776))) (-15 -2948 ((-694 |#1|) (-694 |#1|) (-927))) (-15 -2948 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-927))) (-15 -1619 ((-694 |#1|) (-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -1619 ((-694 |#1|) (-694 |#1|))) (-15 -1619 ((-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3276 ((-694 (-569)) (-911 (-569)) (-569))) (-15 -3276 ((-694 (-569)) (-649 (-569)))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-911 (-569))) (-569))) (-15 -3276 ((-649 (-694 (-569))) (-649 (-649 (-569)))))) -((-3720 (((-694 |#1|) (-649 (-694 |#1|)) (-1275 |#1|)) 71 (|has| |#1| (-310)))) (-2241 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 (-1275 |#1|))) 111 (|has| |#1| (-367))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 |#1|)) 118 (|has| |#1| (-367)))) (-1620 (((-1275 |#1|) (-649 (-1275 |#1|)) (-569)) 136 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3051 (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927)) 124 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112)) 123 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|))) 122 (-12 (|has| |#1| (-367)) (|has| |#1| (-372)))) (((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569)) 121 (-12 (|has| |#1| (-367)) (|has| |#1| (-372))))) (-3271 (((-112) (-649 (-694 |#1|))) 104 (|has| |#1| (-367))) (((-112) (-649 (-694 |#1|)) (-569)) 107 (|has| |#1| (-367)))) (-1985 (((-1275 (-1275 |#1|)) (-649 (-694 |#1|)) (-1275 |#1|)) 68 (|has| |#1| (-310)))) (-3291 (((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|)) 48)) (-4342 (((-694 |#1|) (-1275 (-1275 |#1|))) 41)) (-3431 (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569)) 95 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|))) 94 (|has| |#1| (-367))) (((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569)) 102 (|has| |#1| (-367))))) -(((-1037 |#1|) (-10 -7 (-15 -4342 ((-694 |#1|) (-1275 (-1275 |#1|)))) (-15 -3291 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -1985 ((-1275 (-1275 |#1|)) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -3720 ((-694 |#1|) (-649 (-694 |#1|)) (-1275 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 (-1275 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -1620 ((-1275 |#1|) (-649 (-1275 |#1|)) (-569)))) |%noBranch|) |%noBranch|)) (-1057)) (T -1037)) -((-1620 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1275 *5))) (-5 *4 (-569)) (-5 *2 (-1275 *5)) (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1057)) (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1037 *4)) (-5 *3 (-649 (-694 *4))))) (-3051 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372)) (-4 *6 (-1057)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1037 *6)) (-5 *3 (-649 (-694 *6))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1275 (-1275 *5))) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) (-5 *3 (-649 (-694 *5))))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1057)) (-5 *2 (-112)) (-5 *1 (-1037 *4)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367)) (-4 *5 (-1057)) (-5 *2 (-112)) (-5 *1 (-1037 *5)))) (-3431 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5)) (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-1057)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1037 *4)) (-4 *4 (-367)) (-4 *4 (-1057)))) (-3431 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569)) (-5 *2 (-694 *6)) (-5 *1 (-1037 *6)) (-4 *6 (-367)) (-4 *6 (-1057)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1275 *5)) (-4 *5 (-310)) (-4 *5 (-1057)) (-5 *2 (-694 *5)) (-5 *1 (-1037 *5)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1057)) (-5 *2 (-1275 (-1275 *5))) (-5 *1 (-1037 *5)) (-5 *4 (-1275 *5)))) (-3291 (*1 *2 *3 *2) (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1057)) (-5 *1 (-1037 *4)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-1275 (-1275 *4))) (-4 *4 (-1057)) (-5 *2 (-694 *4)) (-5 *1 (-1037 *4))))) -(-10 -7 (-15 -4342 ((-694 |#1|) (-1275 (-1275 |#1|)))) (-15 -3291 ((-694 |#1|) (-649 (-694 |#1|)) (-694 |#1|))) (IF (|has| |#1| (-310)) (PROGN (-15 -1985 ((-1275 (-1275 |#1|)) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -3720 ((-694 |#1|) (-649 (-694 |#1|)) (-1275 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-112) (-569))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -3431 ((-694 |#1|) (-649 (-694 |#1|)) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)) (-569))) (-15 -3271 ((-112) (-649 (-694 |#1|)))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 |#1|))) (-15 -2241 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-1275 (-1275 |#1|))))) |%noBranch|) (IF (|has| |#1| (-372)) (IF (|has| |#1| (-367)) (PROGN (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112) (-569) (-569))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-112))) (-15 -3051 ((-649 (-649 (-694 |#1|))) (-649 (-694 |#1|)) (-927))) (-15 -1620 ((-1275 |#1|) (-649 (-1275 |#1|)) (-569)))) |%noBranch|) |%noBranch|)) -((-2653 ((|#1| (-927) |#1|) 18))) -(((-1038 |#1|) (-10 -7 (-15 -2653 (|#1| (-927) |#1|))) (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $))))) (T -1038)) -((-2653 (*1 *2 *3 *2) (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2)) (-4 *2 (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)))))))) -(-10 -7 (-15 -2653 (|#1| (-927) |#1|))) -((-1947 (((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569))))) 67)) (-1811 (((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569))))) 52)) (-2253 (((-649 (-319 (-569))) (-694 (-412 (-958 (-569))))) 45)) (-1522 (((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569))))) 87)) (-2880 (((-694 (-319 (-569))) (-694 (-319 (-569)))) 38)) (-2748 (((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569))))) 76)) (-4240 (((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569))))) 84))) -(((-1039) (-10 -7 (-15 -1947 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -1811 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -2253 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -4240 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -2880 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -2748 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -1522 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569)))))))) (T -1039)) -((-1522 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)))) (-2748 (*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)))) (-2880 (*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039)))) (-4240 (*1 *2 *3) (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569)))) (-5 *1 (-1039)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)) (-5 *3 (-319 (-569))))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569)))))))) (-5 *1 (-1039))))) -(-10 -7 (-15 -1947 ((-649 (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) (|:| |radvect| (-649 (-694 (-319 (-569))))))) (-694 (-412 (-958 (-569)))))) (-15 -1811 ((-649 (-694 (-319 (-569)))) (-319 (-569)) (-694 (-412 (-958 (-569)))))) (-15 -2253 ((-649 (-319 (-569))) (-694 (-412 (-958 (-569)))))) (-15 -4240 ((-3 (-694 (-319 (-569))) "failed") (-694 (-412 (-958 (-569)))))) (-15 -2880 ((-694 (-319 (-569))) (-694 (-319 (-569))))) (-15 -2748 ((-649 (-694 (-319 (-569)))) (-649 (-694 (-319 (-569)))))) (-15 -1522 ((-649 (-694 (-319 (-569)))) (-694 (-412 (-958 (-569))))))) -((-3233 ((|#1| |#1| (-927)) 18))) -(((-1040 |#1|) (-10 -7 (-15 -3233 (|#1| |#1| (-927)))) (-13 (-1108) (-10 -8 (-15 * ($ $ $))))) (T -1040)) -((-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-927)) (-5 *1 (-1040 *2)) (-4 *2 (-13 (-1108) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3233 (|#1| |#1| (-927)))) -((-3796 ((|#1| (-315)) 11) (((-1280) |#1|) 9))) -(((-1041 |#1|) (-10 -7 (-15 -3796 ((-1280) |#1|)) (-15 -3796 (|#1| (-315)))) (-1225)) (T -1041)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1041 *2)) (-4 *2 (-1225)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1280)) (-5 *1 (-1041 *3)) (-4 *3 (-1225))))) -(-10 -7 (-15 -3796 ((-1280) |#1|)) (-15 -3796 (|#1| (-315)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3598 (($ |#4|) 25)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3585 ((|#4| $) 27)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 46) (($ (-569)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2721 (((-776)) 43 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 21 T CONST)) (-1815 (($) 23 T CONST)) (-2920 (((-112) $ $) 40)) (-3024 (($ $) 31) (($ $ $) NIL)) (-3012 (($ $ $) 29)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1042 |#1| |#2| |#3| |#4| |#5|) (-13 (-173) (-38 |#1|) (-10 -8 (-15 -3598 ($ |#4|)) (-15 -3796 ($ |#4|)) (-15 -3585 (|#4| $)))) (-367) (-798) (-855) (-955 |#1| |#2| |#3|) (-649 |#4|)) (T -1042)) -((-3598 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) (-14 *6 (-649 *2)))) (-3585 (*1 *2 *1) (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2))))) -(-13 (-173) (-38 |#1|) (-10 -8 (-15 -3598 ($ |#4|)) (-15 -3796 ($ |#4|)) (-15 -3585 (|#4| $)))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-2002 (((-1280) $ (-1185) (-1185)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-1447 (((-112) (-112)) 43)) (-2967 (((-112) (-112)) 42)) (-3943 (((-52) $ (-1185) (-52)) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 (-52) "failed") (-1185) $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-3 (-52) "failed") (-1185) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-52) $ (-1185) (-52)) NIL (|has| $ (-6 -4448)))) (-3776 (((-52) $ (-1185)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1185) $) NIL (|has| (-1185) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-3256 (((-1185) $) NIL (|has| (-1185) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2795 (((-649 (-1185)) $) 37)) (-3804 (((-112) (-1185) $) NIL)) (-1877 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-1696 (((-649 (-1185)) $) NIL)) (-1414 (((-112) (-1185) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-3513 (((-52) $) NIL (|has| (-1185) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) "failed") (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL)) (-1682 (($ $ (-52)) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-4199 (((-649 (-52)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-52) $ (-1185)) 39) (((-52) $ (-1185) (-52)) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-3796 (((-867) $) 41 (-2776 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1043) (-13 (-1201 (-1185) (-52)) (-10 -7 (-15 -1447 ((-112) (-112))) (-15 -2967 ((-112) (-112))) (-6 -4447)))) (T -1043)) -((-1447 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043))))) -(-13 (-1201 (-1185) (-52)) (-10 -7 (-15 -1447 ((-112) (-112))) (-15 -2967 ((-112) (-112))) (-6 -4447))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 9)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1044) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $))))) (T -1044)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1044))))) -(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)))) -((-3150 ((|#2| $) 10))) -(((-1045 |#1| |#2|) (-10 -8 (-15 -3150 (|#2| |#1|))) (-1046 |#2|) (-1225)) (T -1045)) -NIL -(-10 -8 (-15 -3150 (|#2| |#1|))) -((-4381 (((-3 |#1| "failed") $) 9)) (-3150 ((|#1| $) 8)) (-3796 (($ |#1|) 6))) -(((-1046 |#1|) (-140) (-1225)) (T -1046)) -((-4381 (*1 *2 *1) (|partial| -12 (-4 *1 (-1046 *2)) (-4 *2 (-1225)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1225))))) -(-13 (-621 |t#1|) (-10 -8 (-15 -4381 ((-3 |t#1| "failed") $)) (-15 -3150 (|t#1| $)))) -(((-621 |#1|) . T)) -((-3639 (((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1185))) 38))) -(((-1047 |#1| |#2|) (-10 -7 (-15 -3639 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1185))))) (-561) (-13 (-561) (-1046 |#1|))) (T -1047)) -((-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-4 *6 (-13 (-561) (-1046 *5))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1047 *5 *6))))) -(-10 -7 (-15 -3639 ((-649 (-649 (-297 (-412 (-958 |#2|))))) (-649 (-958 |#2|)) (-649 (-1185))))) -((-4106 (((-383)) 17)) (-2900 (((-1 (-383)) (-383) (-383)) 22)) (-3676 (((-1 (-383)) (-776)) 50)) (-2738 (((-383)) 37)) (-3364 (((-1 (-383)) (-383) (-383)) 38)) (-1457 (((-383)) 29)) (-1671 (((-1 (-383)) (-383)) 30)) (-2873 (((-383) (-776)) 45)) (-3561 (((-1 (-383)) (-776)) 46)) (-1668 (((-1 (-383)) (-776) (-776)) 49)) (-2165 (((-1 (-383)) (-776) (-776)) 47))) -(((-1048) (-10 -7 (-15 -4106 ((-383))) (-15 -2738 ((-383))) (-15 -1457 ((-383))) (-15 -2873 ((-383) (-776))) (-15 -2900 ((-1 (-383)) (-383) (-383))) (-15 -3364 ((-1 (-383)) (-383) (-383))) (-15 -1671 ((-1 (-383)) (-383))) (-15 -3561 ((-1 (-383)) (-776))) (-15 -2165 ((-1 (-383)) (-776) (-776))) (-15 -1668 ((-1 (-383)) (-776) (-776))) (-15 -3676 ((-1 (-383)) (-776))))) (T -1048)) -((-3676 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-1668 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-2165 (*1 *2 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) (-1671 (*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) (-3364 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) (-2900 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) (-2873 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1048)))) (-1457 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))) (-2738 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048)))) (-4106 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048))))) -(-10 -7 (-15 -4106 ((-383))) (-15 -2738 ((-383))) (-15 -1457 ((-383))) (-15 -2873 ((-383) (-776))) (-15 -2900 ((-1 (-383)) (-383) (-383))) (-15 -3364 ((-1 (-383)) (-383) (-383))) (-15 -1671 ((-1 (-383)) (-383))) (-15 -3561 ((-1 (-383)) (-776))) (-15 -2165 ((-1 (-383)) (-776) (-776))) (-15 -1668 ((-1 (-383)) (-776) (-776))) (-15 -3676 ((-1 (-383)) (-776)))) -((-3800 (((-423 |#1|) |#1|) 33))) -(((-1049 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|))) (-1251 (-412 (-958 (-569))))) (T -1049)) -((-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1049 *3)) (-4 *3 (-1251 (-412 (-958 (-569)))))))) -(-10 -7 (-15 -3800 ((-423 |#1|) |#1|))) -((-3055 (((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))) 14))) -(((-1050 |#1|) (-10 -7 (-15 -3055 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))))) (-310)) (T -1050)) -((-3055 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310)) (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1050 *4))))) -(-10 -7 (-15 -3055 ((-412 (-423 (-958 |#1|))) (-412 (-958 |#1|))))) -((-1712 (((-649 (-1185)) (-412 (-958 |#1|))) 17)) (-3767 (((-412 (-1181 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185)) 24)) (-1700 (((-412 (-958 |#1|)) (-412 (-1181 (-412 (-958 |#1|)))) (-1185)) 26)) (-2306 (((-3 (-1185) "failed") (-412 (-958 |#1|))) 20)) (-1725 (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|))))) 32) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|)))) 33) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1185)) (-649 (-412 (-958 |#1|)))) 28) (((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|))) 29)) (-3796 (((-412 (-958 |#1|)) |#1|) 11))) -(((-1051 |#1|) (-10 -7 (-15 -1712 ((-649 (-1185)) (-412 (-958 |#1|)))) (-15 -2306 ((-3 (-1185) "failed") (-412 (-958 |#1|)))) (-15 -3767 ((-412 (-1181 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -1700 ((-412 (-958 |#1|)) (-412 (-1181 (-412 (-958 |#1|)))) (-1185))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1185)) (-649 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3796 ((-412 (-958 |#1|)) |#1|))) (-561)) (T -1051)) -((-3796 (*1 *2 *3) (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1051 *3)) (-4 *3 (-561)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1051 *4)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *1 (-1051 *4)))) (-1725 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-649 (-1185))) (-5 *4 (-649 (-412 (-958 *5)))) (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1051 *5)))) (-1725 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-1051 *4)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-1181 (-412 (-958 *5))))) (-5 *4 (-1185)) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1051 *5)) (-4 *5 (-561)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-561)) (-5 *2 (-412 (-1181 (-412 (-958 *5))))) (-5 *1 (-1051 *5)) (-5 *3 (-412 (-958 *5))))) (-2306 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-1185)) (-5 *1 (-1051 *4)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1185))) (-5 *1 (-1051 *4))))) -(-10 -7 (-15 -1712 ((-649 (-1185)) (-412 (-958 |#1|)))) (-15 -2306 ((-3 (-1185) "failed") (-412 (-958 |#1|)))) (-15 -3767 ((-412 (-1181 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -1700 ((-412 (-958 |#1|)) (-412 (-1181 (-412 (-958 |#1|)))) (-1185))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-1185)) (-649 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-297 (-412 (-958 |#1|))))) (-15 -1725 ((-412 (-958 |#1|)) (-412 (-958 |#1|)) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3796 ((-412 (-958 |#1|)) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-4427 (($) 18 T CONST)) (-1715 ((|#1| $) 23)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2212 ((|#1| $) 22)) (-2808 ((|#1|) 20 T CONST)) (-3796 (((-867) $) 12)) (-1364 ((|#1| $) 21)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16))) -(((-1052 |#1|) (-140) (-23)) (T -1052)) -((-1715 (*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23)))) (-2808 (*1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -1715 (|t#1| $)) (-15 -2212 (|t#1| $)) (-15 -1364 (|t#1| $)) (-15 -2808 (|t#1|) -3709))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3248 (($) 25 T CONST)) (-4427 (($) 18 T CONST)) (-1715 ((|#1| $) 23)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2212 ((|#1| $) 22)) (-2808 ((|#1|) 20 T CONST)) (-3796 (((-867) $) 12)) (-1364 ((|#1| $) 21)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16))) -(((-1053 |#1|) (-140) (-23)) (T -1053)) -((-3248 (*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) -(-13 (-1052 |t#1|) (-10 -8 (-15 -3248 ($) -3709))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-618 (-867)) . T) ((-1052 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 (-785 |#1| (-869 |#2|)))))) (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-1806 (((-649 $) (-649 (-785 |#1| (-869 |#2|)))) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112)) NIL)) (-1712 (((-649 (-869 |#2|)) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2950 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1830 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3663 $))) (-785 |#1| (-869 |#2|)) $) NIL)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ (-869 |#2|)) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 (-785 |#1| (-869 |#2|)) "failed") $ (-869 |#2|)) NIL)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) NIL (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-2459 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3150 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3525 (((-3 $ "failed") $) NIL)) (-2548 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108))))) (-1698 (($ (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-2288 (((-112) (-785 |#1| (-869 |#2|)) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-3604 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3598 (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $ (-785 |#1| (-869 |#2|))) NIL (|has| $ (-6 -4447))) (((-785 |#1| (-869 |#2|)) (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-1694 (((-2 (|:| -4133 (-649 (-785 |#1| (-869 |#2|)))) (|:| -1721 (-649 (-785 |#1| (-869 |#2|))))) $) NIL)) (-2648 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2438 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2404 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-2882 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2140 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-3372 (((-869 |#2|) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108))))) (-3834 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) $) NIL)) (-1328 (((-649 (-869 |#2|)) $) NIL)) (-1512 (((-112) (-869 |#2|) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4275 (((-3 (-785 |#1| (-869 |#2|)) (-649 $)) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1384 (((-649 (-2 (|:| |val| (-785 |#1| (-869 |#2|))) (|:| -3663 $))) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-1724 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-2798 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL)) (-2716 (((-3 (-112) (-649 $)) (-785 |#1| (-869 |#2|)) $) NIL)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-2101 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL)) (-3446 (($ (-785 |#1| (-869 |#2|)) $) NIL) (($ (-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1586 (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-2310 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-1341 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| (-785 |#1| (-869 |#2|))) (|:| |den| |#1|)) (-785 |#1| (-869 |#2|)) $) NIL (|has| |#1| (-561)))) (-4046 (((-112) (-785 |#1| (-869 |#2|)) $) NIL) (((-112) $) NIL)) (-4348 (((-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 (-785 |#1| (-869 |#2|)) "failed") $) NIL)) (-1574 (((-3 (-785 |#1| (-869 |#2|)) "failed") (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL)) (-1589 (((-3 $ "failed") $ (-785 |#1| (-869 |#2|))) NIL)) (-3166 (($ $ (-785 |#1| (-869 |#2|))) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-3208 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-785 |#1| (-869 |#2|))) (-649 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ $ (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ $ (-297 (-785 |#1| (-869 |#2|)))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (($ $ (-649 (-297 (-785 |#1| (-869 |#2|))))) NIL (-12 (|has| (-785 |#1| (-869 |#2|)) (-312 (-785 |#1| (-869 |#2|)))) (|has| (-785 |#1| (-869 |#2|)) (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-4339 (((-776) $) NIL)) (-3560 (((-776) (-785 |#1| (-869 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-785 |#1| (-869 |#2|)) (-1108)))) (((-776) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-785 |#1| (-869 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-785 |#1| (-869 |#2|)))) NIL)) (-3381 (($ $ (-869 |#2|)) NIL)) (-2963 (($ $ (-869 |#2|)) NIL)) (-4039 (($ $) NIL)) (-3112 (($ $ (-869 |#2|)) NIL)) (-3796 (((-867) $) NIL) (((-649 (-785 |#1| (-869 |#2|))) $) NIL)) (-1873 (((-776) $) NIL (|has| (-869 |#2|) (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 (-785 |#1| (-869 |#2|))))) "failed") (-649 (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|))) (-1 (-112) (-785 |#1| (-869 |#2|)) (-785 |#1| (-869 |#2|)))) NIL)) (-2546 (((-112) $ (-1 (-112) (-785 |#1| (-869 |#2|)) (-649 (-785 |#1| (-869 |#2|))))) NIL)) (-2744 (((-649 $) (-785 |#1| (-869 |#2|)) $) NIL) (((-649 $) (-785 |#1| (-869 |#2|)) (-649 $)) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) $) NIL) (((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-649 $)) NIL)) (-1980 (((-112) (-1 (-112) (-785 |#1| (-869 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 (-869 |#2|)) $) NIL)) (-4159 (((-112) (-785 |#1| (-869 |#2|)) $) NIL)) (-4269 (((-112) (-869 |#2|) $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1054 |#1| |#2|) (-13 (-1079 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -1806 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112))))) (-457) (-649 (-1185))) (T -1054)) -((-1806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1054 *5 *6))))) -(-13 (-1079 |#1| (-536 (-869 |#2|)) (-869 |#2|) (-785 |#1| (-869 |#2|))) (-10 -8 (-15 -1806 ((-649 $) (-649 (-785 |#1| (-869 |#2|))) (-112) (-112))))) -((-2900 (((-1 (-569)) (-1102 (-569))) 32)) (-1577 (((-569) (-569) (-569) (-569) (-569)) 29)) (-3539 (((-1 (-569)) |RationalNumber|) NIL)) (-2018 (((-1 (-569)) |RationalNumber|) NIL)) (-3613 (((-1 (-569)) (-569) |RationalNumber|) NIL))) -(((-1055) (-10 -7 (-15 -2900 ((-1 (-569)) (-1102 (-569)))) (-15 -3613 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -3539 ((-1 (-569)) |RationalNumber|)) (-15 -2018 ((-1 (-569)) |RationalNumber|)) (-15 -1577 ((-569) (-569) (-569) (-569) (-569))))) (T -1055)) -((-1577 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1055)))) (-2018 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))) (-3539 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)) (-5 *3 (-569)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-1102 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1055))))) -(-10 -7 (-15 -2900 ((-1 (-569)) (-1102 (-569)))) (-15 -3613 ((-1 (-569)) (-569) |RationalNumber|)) (-15 -3539 ((-1 (-569)) |RationalNumber|)) (-15 -2018 ((-1 (-569)) |RationalNumber|)) (-15 -1577 ((-569) (-569) (-569) (-569) (-569)))) -((-3796 (((-867) $) NIL) (($ (-569)) 10))) -(((-1056 |#1|) (-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1057)) (T -1056)) -NIL -(-10 -8 (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-1057) (-140)) (T -1057)) -((-2721 (*1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-776))))) -(-13 (-1066) (-731) (-653 $) (-621 (-569)) (-10 -7 (-15 -2721 ((-776)) -3709) (-6 -4444))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-621 (-569)) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-731) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-3213 (((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)) 60))) -(((-1058 |#1| |#2|) (-10 -7 (-15 -3213 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)))) (-1185) (-367)) (T -1058)) -((-3213 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367)) (-5 *2 (-412 (-958 *6))) (-5 *1 (-1058 *5 *6)) (-14 *5 (-1185))))) -(-10 -7 (-15 -3213 ((-412 (-958 |#2|)) (-649 |#2|) (-649 |#2|) (-776) (-776)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 15)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) -(((-1059 |#1|) (-140) (-1066)) (T -1059)) -((-1804 (*1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066))))) -(-13 (-1108) (-10 -8 (-15 (-1804) ($) -3709) (-15 -4143 ((-112) $)) (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-1551 (((-112) $) 40)) (-3169 (((-112) $) 17)) (-3225 (((-776) $) 13)) (-3236 (((-776) $) 14)) (-3387 (((-112) $) 30)) (-2768 (((-112) $) 42))) -(((-1060 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3236 ((-776) |#1|)) (-15 -3225 ((-776) |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|))) (-1061 |#2| |#3| |#4| |#5| |#6|) (-776) (-776) (-1057) (-239 |#3| |#4|) (-239 |#2| |#4|)) (T -1060)) -NIL -(-10 -8 (-15 -3236 ((-776) |#1|)) (-15 -3225 ((-776) |#1|)) (-15 -2768 ((-112) |#1|)) (-15 -1551 ((-112) |#1|)) (-15 -3387 ((-112) |#1|)) (-15 -3169 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1551 (((-112) $) 56)) (-2208 (((-3 $ "failed") $ $) 20)) (-3169 (((-112) $) 58)) (-3914 (((-112) $ (-776)) 66)) (-4427 (($) 18 T CONST)) (-2439 (($ $) 39 (|has| |#3| (-310)))) (-4044 ((|#4| $ (-569)) 44)) (-3978 (((-776) $) 38 (|has| |#3| (-561)))) (-3776 ((|#3| $ (-569) (-569)) 46)) (-2882 (((-649 |#3|) $) 73 (|has| $ (-6 -4447)))) (-1539 (((-776) $) 37 (|has| |#3| (-561)))) (-2970 (((-649 |#5|) $) 36 (|has| |#3| (-561)))) (-3225 (((-776) $) 50)) (-3236 (((-776) $) 49)) (-2314 (((-112) $ (-776)) 65)) (-4241 (((-569) $) 54)) (-1537 (((-569) $) 52)) (-2009 (((-649 |#3|) $) 74 (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 53)) (-2742 (((-569) $) 51)) (-2430 (($ (-649 (-649 |#3|))) 59)) (-3834 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2884 (((-649 (-649 |#3|)) $) 48)) (-4254 (((-112) $ (-776)) 64)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-561)))) (-3208 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#3|) (-649 |#3|)) 80 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) 78 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 (-297 |#3|))) 77 (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) 60)) (-3162 (((-112) $) 63)) (-3635 (($) 62)) (-1869 ((|#3| $ (-569) (-569)) 47) ((|#3| $ (-569) (-569) |#3|) 45)) (-3387 (((-112) $) 57)) (-3560 (((-776) |#3| $) 75 (-12 (|has| |#3| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4447)))) (-3962 (($ $) 61)) (-3041 ((|#5| $ (-569)) 43)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4447)))) (-2768 (((-112) $) 55)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#3|) 40 (|has| |#3| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2428 (((-776) $) 67 (|has| $ (-6 -4447))))) -(((-1061 |#1| |#2| |#3| |#4| |#5|) (-140) (-776) (-776) (-1057) (-239 |t#2| |t#3|) (-239 |t#1| |t#3|)) (T -1061)) -((-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1057)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-1551 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-2768 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112)))) (-4241 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-2742 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5))))) (-1869 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057)))) (-3776 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057)))) (-1869 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *2 (-1057)) (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) (-4044 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *2 *7)) (-4 *6 (-1057)) (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6)))) (-3041 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *7 *2)) (-4 *6 (-1057)) (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) (-2407 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057)) (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367)))) (-2439 (*1 *1 *1) (-12 (-4 *1 (-1061 *2 *3 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310)))) (-3978 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-776)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) (-5 *2 (-649 *7))))) -(-13 (-111 |t#3| |t#3|) (-494 |t#3|) (-10 -8 (-6 -4447) (IF (|has| |t#3| (-173)) (-6 (-722 |t#3|)) |%noBranch|) (-15 -2430 ($ (-649 (-649 |t#3|)))) (-15 -3169 ((-112) $)) (-15 -3387 ((-112) $)) (-15 -1551 ((-112) $)) (-15 -2768 ((-112) $)) (-15 -4241 ((-569) $)) (-15 -1378 ((-569) $)) (-15 -1537 ((-569) $)) (-15 -2742 ((-569) $)) (-15 -3225 ((-776) $)) (-15 -3236 ((-776) $)) (-15 -2884 ((-649 (-649 |t#3|)) $)) (-15 -1869 (|t#3| $ (-569) (-569))) (-15 -3776 (|t#3| $ (-569) (-569))) (-15 -1869 (|t#3| $ (-569) (-569) |t#3|)) (-15 -4044 (|t#4| $ (-569))) (-15 -3041 (|t#5| $ (-569))) (-15 -1346 ($ (-1 |t#3| |t#3|) $)) (-15 -1346 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-561)) (-15 -2407 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-367)) (-15 -3035 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-310)) (-15 -2439 ($ $)) |%noBranch|) (IF (|has| |t#3| (-561)) (PROGN (-15 -3978 ((-776) $)) (-15 -1539 ((-776) $)) (-15 -2970 ((-649 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-618 (-867)) . T) ((-312 |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))) ((-494 |#3|) . T) ((-519 |#3| |#3|) -12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))) ((-651 (-569)) . T) ((-651 |#3|) . T) ((-653 |#3|) . T) ((-645 |#3|) |has| |#3| (-173)) ((-722 |#3|) |has| |#3| (-173)) ((-1059 |#3|) . T) ((-1064 |#3|) . T) ((-1108) . T) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1551 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 47 (|has| |#3| (-310)))) (-4044 (((-241 |#2| |#3|) $ (-569)) 36)) (-4122 (($ (-694 |#3|)) 45)) (-3978 (((-776) $) 49 (|has| |#3| (-561)))) (-3776 ((|#3| $ (-569) (-569)) NIL)) (-2882 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-1539 (((-776) $) 51 (|has| |#3| (-561)))) (-2970 (((-649 (-241 |#1| |#3|)) $) 55 (|has| |#3| (-561)))) (-3225 (((-776) $) NIL)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#3|))) 31)) (-3834 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2884 (((-649 (-649 |#3|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-561)))) (-3208 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#3| $ (-569) (-569)) NIL) ((|#3| $ (-569) (-569) |#3|) NIL)) (-2377 (((-134)) 59 (|has| |#3| (-367)))) (-3387 (((-112) $) NIL)) (-3560 (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108)))) (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 65 (|has| |#3| (-619 (-541))))) (-3041 (((-241 |#1| |#3|) $ (-569)) 40)) (-3796 (((-867) $) 19) (((-694 |#3|) $) 42)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-1804 (($) 16 T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1062 |#1| |#2| |#3|) (-13 (-1061 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1282 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -4122 ($ (-694 |#3|))))) (-776) (-776) (-1057)) (T -1062)) -((-4122 (*1 *1 *2) (-12 (-5 *2 (-694 *5)) (-4 *5 (-1057)) (-5 *1 (-1062 *3 *4 *5)) (-14 *3 (-776)) (-14 *4 (-776))))) -(-13 (-1061 |#1| |#2| |#3| (-241 |#2| |#3|) (-241 |#1| |#3|)) (-618 (-694 |#3|)) (-10 -8 (IF (|has| |#3| (-367)) (-6 (-1282 |#3|)) |%noBranch|) (IF (|has| |#3| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|) (-15 -4122 ($ (-694 |#3|))))) -((-3598 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1346 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1063 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1346 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3598 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-776) (-776) (-1057) (-239 |#2| |#3|) (-239 |#1| |#3|) (-1061 |#1| |#2| |#3| |#4| |#5|) (-1057) (-239 |#2| |#7|) (-239 |#1| |#7|) (-1061 |#1| |#2| |#7| |#8| |#9|)) (T -1063)) -((-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1057)) (-4 *2 (-1057)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *12 (-1061 *5 *6 *2 *10 *11)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1057)) (-4 *10 (-1057)) (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) (-4 *9 (-239 *5 *7)) (-4 *2 (-1061 *5 *6 *10 *11 *12)) (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) (-4 *12 (-239 *5 *10))))) -(-10 -7 (-15 -1346 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3598 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ |#1|) 27))) -(((-1064 |#1|) (-140) (-1066)) (T -1064)) -NIL -(-13 (-21) (-1059 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1059 |#1|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2672 (((-1185) $) 11)) (-2821 ((|#1| $) 12)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3497 (($ (-1185) |#1|) 10)) (-3796 (((-867) $) 22 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2920 (((-112) $ $) 17 (|has| |#1| (-1108))))) -(((-1065 |#1| |#2|) (-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) |#1|)) (-15 -2672 ((-1185) $)) (-15 -2821 (|#1| $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) (-1101 |#2|) (-1225)) (T -1065)) -((-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-4 *4 (-1225)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-1101 *4)))) (-2672 (*1 *2 *1) (-12 (-4 *4 (-1225)) (-5 *2 (-1185)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-1101 *4)))) (-2821 (*1 *2 *1) (-12 (-4 *2 (-1101 *3)) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1225))))) -(-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) |#1|)) (-15 -2672 ((-1185) $)) (-15 -2821 (|#1| $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-1066) (-140)) (T -1066)) -NIL -(-13 (-21) (-1120)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-1120) . T) ((-1108) . T)) -((-2917 (($ $) 17)) (-1482 (($ $) 25)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 55)) (-3829 (($ $) 27)) (-3231 (($ $) 12)) (-3465 (($ $) 43)) (-1410 (((-383) $) NIL) (((-226) $) NIL) (((-898 (-383)) $) 36)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL) (($ (-412 (-569))) 31) (($ (-569)) NIL) (($ (-412 (-569))) 31)) (-2721 (((-776)) 9)) (-2040 (($ $) 45))) -(((-1067 |#1|) (-10 -8 (-15 -1482 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1068)) (T -1067)) -((-2721 (*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1067 *3)) (-4 *3 (-1068))))) -(-10 -8 (-15 -1482 (|#1| |#1|)) (-15 -2917 (|#1| |#1|)) (-15 -3231 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -2040 (|#1| |#1|)) (-15 -3829 (|#1| |#1|)) (-15 -3131 ((-895 (-383) |#1|) |#1| (-898 (-383)) (-895 (-383) |#1|))) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 -1410 ((-226) |#1|)) (-15 -1410 ((-383) |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| |#1|)) (-15 -2721 ((-776))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 (((-569) $) 97)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2917 (($ $) 95)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-3813 (($ $) 105)) (-2227 (((-112) $ $) 65)) (-2919 (((-569) $) 122)) (-4427 (($) 18 T CONST)) (-1482 (($ $) 94)) (-4381 (((-3 (-569) "failed") $) 110) (((-3 (-412 (-569)) "failed") $) 107)) (-3150 (((-569) $) 111) (((-412 (-569)) $) 108)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-1473 (((-112) $) 79)) (-3712 (((-112) $) 120)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 101)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 104)) (-3829 (($ $) 100)) (-2051 (((-112) $) 121)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-3380 (($ $ $) 119)) (-2839 (($ $ $) 118)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3231 (($ $) 96)) (-3465 (($ $) 98)) (-3800 (((-423 $) $) 82)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-1410 (((-383) $) 113) (((-226) $) 112) (((-898 (-383)) $) 102)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ (-569)) 109) (($ (-412 (-569))) 106)) (-2721 (((-776)) 32 T CONST)) (-2040 (($ $) 99)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-2271 (($ $) 123)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2978 (((-112) $ $) 116)) (-2956 (((-112) $ $) 115)) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 117)) (-2944 (((-112) $ $) 114)) (-3035 (($ $ $) 73)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77) (($ $ (-412 (-569))) 103)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75))) -(((-1068) (-140)) (T -1068)) -((-2271 (*1 *1 *1) (-4 *1 (-1068))) (-3829 (*1 *1 *1) (-4 *1 (-1068))) (-2040 (*1 *1 *1) (-4 *1 (-1068))) (-3465 (*1 *1 *1) (-4 *1 (-1068))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-569)))) (-3231 (*1 *1 *1) (-4 *1 (-1068))) (-2917 (*1 *1 *1) (-4 *1 (-1068))) (-1482 (*1 *1 *1) (-4 *1 (-1068)))) -(-13 (-367) (-853) (-1030) (-1046 (-569)) (-1046 (-412 (-569))) (-1010) (-619 (-898 (-383))) (-892 (-383)) (-147) (-10 -8 (-15 -3829 ($ $)) (-15 -2040 ($ $)) (-15 -3465 ($ $)) (-15 -1938 ((-569) $)) (-15 -3231 ($ $)) (-15 -2917 ($ $)) (-15 -1482 ($ $)) (-15 -2271 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-619 (-226)) . T) ((-619 (-383)) . T) ((-619 (-898 (-383))) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 $) . T) ((-731) . T) ((-796) . T) ((-797) . T) ((-799) . T) ((-800) . T) ((-853) . T) ((-855) . T) ((-892 (-383)) . T) ((-926) . T) ((-1010) . T) ((-1030) . T) ((-1046 (-412 (-569))) . T) ((-1046 (-569)) . T) ((-1059 #0#) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) |#2| $) 26)) (-3473 ((|#1| $) 10)) (-2919 (((-569) |#2| $) 116)) (-2793 (((-3 $ "failed") |#2| (-927)) 75)) (-4410 ((|#1| $) 31)) (-4358 ((|#1| |#2| $ |#1|) 40)) (-3442 (($ $) 28)) (-3086 (((-3 |#2| "failed") |#2| $) 111)) (-3712 (((-112) |#2| $) NIL)) (-2051 (((-112) |#2| $) NIL)) (-3699 (((-112) |#2| $) 27)) (-2058 ((|#1| $) 117)) (-4398 ((|#1| $) 30)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4061 ((|#2| $) 102)) (-3796 (((-867) $) 92)) (-1520 (((-112) $ $) NIL)) (-3091 ((|#1| |#2| $ |#1|) 41)) (-2444 (((-649 $) |#2|) 77)) (-2920 (((-112) $ $) 97))) -(((-1069 |#1| |#2|) (-13 (-1076 |#1| |#2|) (-10 -8 (-15 -4398 (|#1| $)) (-15 -4410 (|#1| $)) (-15 -3473 (|#1| $)) (-15 -2058 (|#1| $)) (-15 -3442 ($ $)) (-15 -3699 ((-112) |#2| $)) (-15 -4358 (|#1| |#2| $ |#1|)))) (-13 (-853) (-367)) (-1251 |#1|)) (T -1069)) -((-4358 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-4398 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-4410 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-3473 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-2058 (*1 *2 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-3442 (*1 *1 *1) (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) (-4 *3 (-1251 *2)))) (-3699 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1069 *4 *3)) (-4 *3 (-1251 *4))))) -(-13 (-1076 |#1| |#2|) (-10 -8 (-15 -4398 (|#1| $)) (-15 -4410 (|#1| $)) (-15 -3473 (|#1| $)) (-15 -2058 (|#1| $)) (-15 -3442 ($ $)) (-15 -3699 ((-112) |#2| $)) (-15 -4358 (|#1| |#2| $ |#1|)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) NIL)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) NIL)) (-4427 (($) NIL T CONST)) (-1909 (($ (-1185)) 10) (($ (-569)) 7)) (-4381 (((-3 (-569) "failed") $) NIL)) (-3150 (((-569) $) NIL)) (-2368 (($ $ $) NIL)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-694 (-569)) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($) NIL) (($ $) NIL)) (-2379 (($ $ $) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) NIL)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) NIL)) (-2719 (((-112) $) NIL)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) NIL)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-2606 (($ $) NIL)) (-3845 (($ $) NIL)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-3593 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) NIL) (($ (-649 $)) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-2432 (($ $) NIL)) (-3962 (($ $) NIL)) (-1410 (((-569) $) 16) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL) (($ (-1185)) 9)) (-3796 (((-867) $) 23) (($ (-569)) 6) (($ $) NIL) (($ (-569)) 6)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) NIL)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) NIL)) (-2271 (($ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL)) (-3024 (($ $) 22) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL))) -(((-1070) (-13 (-550) (-623 (-1185)) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1909 ($ (-1185))) (-15 -1909 ($ (-569)))))) (T -1070)) -((-1909 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1070)))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1070))))) -(-13 (-550) (-623 (-1185)) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1909 ($ (-1185))) (-15 -1909 ($ (-569))))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-2002 (((-1280) $ (-1185) (-1185)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3282 (($) 9)) (-3943 (((-52) $ (-1185) (-52)) NIL)) (-3286 (($ $) 32)) (-1509 (($ $) 30)) (-3221 (($ $) 29)) (-2936 (($ $) 31)) (-1595 (($ $) 35)) (-2836 (($ $) 36)) (-3046 (($ $) 28)) (-4388 (($ $) 33)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) 27 (|has| $ (-6 -4447)))) (-2359 (((-3 (-52) "failed") (-1185) $) 43)) (-4427 (($) NIL T CONST)) (-3987 (($) 7)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) 53 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-3 (-52) "failed") (-1185) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447)))) (-1635 (((-3 (-1167) "failed") $ (-1167) (-569)) 74)) (-3846 (((-52) $ (-1185) (-52)) NIL (|has| $ (-6 -4448)))) (-3776 (((-52) $ (-1185)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1185) $) NIL (|has| (-1185) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) 38 (|has| $ (-6 -4447))) (((-649 (-52)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-3256 (((-1185) $) NIL (|has| (-1185) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2795 (((-649 (-1185)) $) NIL)) (-3804 (((-112) (-1185) $) NIL)) (-1877 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) 46)) (-1696 (((-649 (-1185)) $) NIL)) (-1414 (((-112) (-1185) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-1405 (((-383) $ (-1185)) 52)) (-1609 (((-649 (-1167)) $ (-1167)) 76)) (-3513 (((-52) $) NIL (|has| (-1185) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) "failed") (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL)) (-1682 (($ $ (-52)) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL (-12 (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-312 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (($ $ (-649 (-52)) (-649 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-297 (-52))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108)))) (($ $ (-649 (-297 (-52)))) NIL (-12 (|has| (-52) (-312 (-52))) (|has| (-52) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108))))) (-4199 (((-649 (-52)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-52) $ (-1185)) NIL) (((-52) $ (-1185) (-52)) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-3028 (($ $ (-1185)) 54)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108)))) (((-776) (-52) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-52) (-1108)))) (((-776) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) 40)) (-2443 (($ $ $) 41)) (-3796 (((-867) $) NIL (-2776 (|has| (-52) (-618 (-867))) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-618 (-867)))))) (-4196 (($ $ (-1185) (-383)) 50)) (-3096 (($ $ (-1185) (-383)) 51)) (-1520 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1185)) (|:| -2216 (-52)))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-52) (-1108)) (|has| (-2 (|:| -2006 (-1185)) (|:| -2216 (-52))) (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1071) (-13 (-1201 (-1185) (-52)) (-10 -8 (-15 -2443 ($ $ $)) (-15 -3987 ($)) (-15 -3046 ($ $)) (-15 -3221 ($ $)) (-15 -1509 ($ $)) (-15 -2936 ($ $)) (-15 -4388 ($ $)) (-15 -3286 ($ $)) (-15 -1595 ($ $)) (-15 -2836 ($ $)) (-15 -4196 ($ $ (-1185) (-383))) (-15 -3096 ($ $ (-1185) (-383))) (-15 -1405 ((-383) $ (-1185))) (-15 -1609 ((-649 (-1167)) $ (-1167))) (-15 -3028 ($ $ (-1185))) (-15 -3282 ($)) (-15 -1635 ((-3 (-1167) "failed") $ (-1167) (-569))) (-6 -4447)))) (T -1071)) -((-2443 (*1 *1 *1 *1) (-5 *1 (-1071))) (-3987 (*1 *1) (-5 *1 (-1071))) (-3046 (*1 *1 *1) (-5 *1 (-1071))) (-3221 (*1 *1 *1) (-5 *1 (-1071))) (-1509 (*1 *1 *1) (-5 *1 (-1071))) (-2936 (*1 *1 *1) (-5 *1 (-1071))) (-4388 (*1 *1 *1) (-5 *1 (-1071))) (-3286 (*1 *1 *1) (-5 *1 (-1071))) (-1595 (*1 *1 *1) (-5 *1 (-1071))) (-2836 (*1 *1 *1) (-5 *1 (-1071))) (-4196 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071)))) (-3096 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071)))) (-1405 (*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-383)) (-5 *1 (-1071)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1071)) (-5 *3 (-1167)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1071)))) (-3282 (*1 *1) (-5 *1 (-1071))) (-1635 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-1071))))) -(-13 (-1201 (-1185) (-52)) (-10 -8 (-15 -2443 ($ $ $)) (-15 -3987 ($)) (-15 -3046 ($ $)) (-15 -3221 ($ $)) (-15 -1509 ($ $)) (-15 -2936 ($ $)) (-15 -4388 ($ $)) (-15 -3286 ($ $)) (-15 -1595 ($ $)) (-15 -2836 ($ $)) (-15 -4196 ($ $ (-1185) (-383))) (-15 -3096 ($ $ (-1185) (-383))) (-15 -1405 ((-383) $ (-1185))) (-15 -1609 ((-649 (-1167)) $ (-1167))) (-15 -3028 ($ $ (-1185))) (-15 -3282 ($)) (-15 -1635 ((-3 (-1167) "failed") $ (-1167) (-569))) (-6 -4447))) -((-1568 (($ $) 46)) (-3623 (((-112) $ $) 82)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-958 (-412 (-569)))) 253) (((-3 $ "failed") (-958 (-569))) 252) (((-3 $ "failed") (-958 |#2|)) 255)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL) ((|#4| $) NIL) (($ (-958 (-412 (-569)))) 241) (($ (-958 (-569))) 237) (($ (-958 |#2|)) 257)) (-1883 (($ $) NIL) (($ $ |#4|) 44)) (-2288 (((-112) $ $) 131) (((-112) $ (-649 $)) 135)) (-1345 (((-112) $) 60)) (-3514 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 125)) (-2727 (($ $) 160)) (-3508 (($ $) 156)) (-1996 (($ $) 155)) (-2700 (($ $ $) 87) (($ $ $ |#4|) 92)) (-4200 (($ $ $) 90) (($ $ $ |#4|) 94)) (-2140 (((-112) $ $) 143) (((-112) $ (-649 $)) 144)) (-3372 ((|#4| $) 32)) (-3189 (($ $ $) 128)) (-4107 (((-112) $) 59)) (-3762 (((-776) $) 35)) (-2442 (($ $) 174)) (-2382 (($ $) 171)) (-1872 (((-649 $) $) 72)) (-2890 (($ $) 62)) (-4203 (($ $) 167)) (-1602 (((-649 $) $) 69)) (-3237 (($ $) 64)) (-1857 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $) 130)) (-2834 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 126) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |#4|) 127)) (-1330 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $) 121) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |#4|) 123)) (-4421 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2763 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3737 (((-649 $) $) 54)) (-2310 (((-112) $ $) 140) (((-112) $ (-649 $)) 141)) (-1341 (($ $ $) 116)) (-2307 (($ $) 37)) (-2151 (((-112) $ $) 80)) (-4046 (((-112) $ $) 136) (((-112) $ (-649 $)) 138)) (-4348 (($ $ $) 112)) (-2122 (($ $) 41)) (-1870 ((|#2| |#2| $) 164) (($ (-649 $)) NIL) (($ $ $) NIL)) (-2081 (($ $ |#2|) NIL) (($ $ $) 153)) (-3997 (($ $ |#2|) 148) (($ $ $) 151)) (-3596 (($ $) 49)) (-1791 (($ $) 55)) (-1410 (((-898 (-383)) $) NIL) (((-898 (-569)) $) NIL) (((-541) $) NIL) (($ (-958 (-412 (-569)))) 243) (($ (-958 (-569))) 239) (($ (-958 |#2|)) 254) (((-1167) $) 281) (((-958 |#2|) $) 184)) (-3796 (((-867) $) 29) (($ (-569)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-958 |#2|) $) 185) (($ (-412 (-569))) NIL) (($ $) NIL)) (-2136 (((-3 (-112) "failed") $ $) 79))) -(((-1072 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -1870 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 ((-958 |#2|) |#1|)) (-15 -1410 ((-958 |#2|) |#1|)) (-15 -1410 ((-1167) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2727 (|#1| |#1|)) (-15 -1870 (|#2| |#2| |#1|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1| |#2|)) (-15 -3997 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1410 (|#1| (-958 |#2|))) (-15 -3150 (|#1| (-958 |#2|))) (-15 -4381 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1410 (|#1| (-958 (-569)))) (-15 -3150 (|#1| (-958 (-569)))) (-15 -4381 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1410 (|#1| (-958 (-412 (-569))))) (-15 -3150 (|#1| (-958 (-412 (-569))))) (-15 -4381 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -1341 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1| |#1|)) (-15 -1664 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4037 (-776))) |#1| |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3514 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1| |#4|)) (-15 -4421 (|#1| |#1| |#1| |#4|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -4421 (|#1| |#1| |#1|)) (-15 -4200 (|#1| |#1| |#1| |#4|)) (-15 -2700 (|#1| |#1| |#1| |#4|)) (-15 -4200 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -2140 ((-112) |#1| (-649 |#1|))) (-15 -2140 ((-112) |#1| |#1|)) (-15 -2310 ((-112) |#1| (-649 |#1|))) (-15 -2310 ((-112) |#1| |#1|)) (-15 -4046 ((-112) |#1| (-649 |#1|))) (-15 -4046 ((-112) |#1| |#1|)) (-15 -2288 ((-112) |#1| (-649 |#1|))) (-15 -2288 ((-112) |#1| |#1|)) (-15 -3623 ((-112) |#1| |#1|)) (-15 -2151 ((-112) |#1| |#1|)) (-15 -2136 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1872 ((-649 |#1|) |#1|)) (-15 -1602 ((-649 |#1|) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -4107 ((-112) |#1|)) (-15 -1883 (|#1| |#1| |#4|)) (-15 -1857 (|#1| |#1| |#4|)) (-15 -1791 (|#1| |#1|)) (-15 -3737 ((-649 |#1|) |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -3762 ((-776) |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1857 (|#2| |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1073 |#2| |#3| |#4|) (-1057) (-798) (-855)) (T -1072)) -NIL -(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -1870 (|#1| |#1| |#1|)) (-15 -1870 (|#1| (-649 |#1|))) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 ((-958 |#2|) |#1|)) (-15 -1410 ((-958 |#2|) |#1|)) (-15 -1410 ((-1167) |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -4203 (|#1| |#1|)) (-15 -2727 (|#1| |#1|)) (-15 -1870 (|#2| |#2| |#1|)) (-15 -2081 (|#1| |#1| |#1|)) (-15 -3997 (|#1| |#1| |#1|)) (-15 -2081 (|#1| |#1| |#2|)) (-15 -3997 (|#1| |#1| |#2|)) (-15 -3508 (|#1| |#1|)) (-15 -1996 (|#1| |#1|)) (-15 -1410 (|#1| (-958 |#2|))) (-15 -3150 (|#1| (-958 |#2|))) (-15 -4381 ((-3 |#1| "failed") (-958 |#2|))) (-15 -1410 (|#1| (-958 (-569)))) (-15 -3150 (|#1| (-958 (-569)))) (-15 -4381 ((-3 |#1| "failed") (-958 (-569)))) (-15 -1410 (|#1| (-958 (-412 (-569))))) (-15 -3150 (|#1| (-958 (-412 (-569))))) (-15 -4381 ((-3 |#1| "failed") (-958 (-412 (-569))))) (-15 -1341 (|#1| |#1| |#1|)) (-15 -4348 (|#1| |#1| |#1|)) (-15 -1664 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4037 (-776))) |#1| |#1|)) (-15 -3189 (|#1| |#1| |#1|)) (-15 -3514 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -2834 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1| |#4|)) (-15 -1330 ((-2 (|:| -1435 |#1|) (|:| |gap| (-776)) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -2763 (|#1| |#1| |#1| |#4|)) (-15 -4421 (|#1| |#1| |#1| |#4|)) (-15 -2763 (|#1| |#1| |#1|)) (-15 -4421 (|#1| |#1| |#1|)) (-15 -4200 (|#1| |#1| |#1| |#4|)) (-15 -2700 (|#1| |#1| |#1| |#4|)) (-15 -4200 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -2140 ((-112) |#1| (-649 |#1|))) (-15 -2140 ((-112) |#1| |#1|)) (-15 -2310 ((-112) |#1| (-649 |#1|))) (-15 -2310 ((-112) |#1| |#1|)) (-15 -4046 ((-112) |#1| (-649 |#1|))) (-15 -4046 ((-112) |#1| |#1|)) (-15 -2288 ((-112) |#1| (-649 |#1|))) (-15 -2288 ((-112) |#1| |#1|)) (-15 -3623 ((-112) |#1| |#1|)) (-15 -2151 ((-112) |#1| |#1|)) (-15 -2136 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1872 ((-649 |#1|) |#1|)) (-15 -1602 ((-649 |#1|) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -2890 (|#1| |#1|)) (-15 -1345 ((-112) |#1|)) (-15 -4107 ((-112) |#1|)) (-15 -1883 (|#1| |#1| |#4|)) (-15 -1857 (|#1| |#1| |#4|)) (-15 -1791 (|#1| |#1|)) (-15 -3737 ((-649 |#1|) |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -2122 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -3762 ((-776) |#1|)) (-15 -3372 (|#4| |#1|)) (-15 -1410 ((-541) |#1|)) (-15 -1410 ((-898 (-569)) |#1|)) (-15 -1410 ((-898 (-383)) |#1|)) (-15 -3796 (|#1| |#4|)) (-15 -4381 ((-3 |#4| "failed") |#1|)) (-15 -3150 (|#4| |#1|)) (-15 -1857 (|#2| |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 |#3|) $) 112)) (-3767 (((-1181 $) $ |#3|) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 |#3|)) 113)) (-1568 (($ $) 273)) (-3623 (((-112) $ $) 259)) (-2208 (((-3 $ "failed") $ $) 20)) (-1726 (($ $ $) 218 (|has| |#1| (-561)))) (-3536 (((-649 $) $ $) 213 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-958 (-412 (-569)))) 233 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))) (((-3 $ "failed") (-958 (-569))) 230 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185)))))) (((-3 $ "failed") (-958 |#1|)) 227 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-550))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-1000 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))))) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) ((|#3| $) 139) (($ (-958 (-412 (-569)))) 232 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))) (($ (-958 (-569))) 229 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185)))))) (($ (-958 |#1|)) 226 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (-1749 (|has| |#1| (-38 (-569)))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-550))) (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (-1749 (|has| |#1| (-1000 (-569)))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))))) (-3346 (($ $ $ |#3|) 110 (|has| |#1| (-173))) (($ $ $) 214 (|has| |#1| (-561)))) (-1883 (($ $) 156) (($ $ |#3|) 268)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-2288 (((-112) $ $) 258) (((-112) $ (-649 $)) 257)) (-3086 (((-3 $ "failed") $) 37)) (-1345 (((-112) $) 266)) (-3514 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 238)) (-2727 (($ $) 207 (|has| |#1| (-457)))) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ |#3|) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-3508 (($ $) 223 (|has| |#1| (-561)))) (-1996 (($ $) 224 (|has| |#1| (-561)))) (-2700 (($ $ $) 250) (($ $ $ |#3|) 248)) (-4200 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2870 (($ $ |#1| |#2| $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| |#3| (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| |#3| (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-2140 (((-112) $ $) 252) (((-112) $ (-649 $)) 251)) (-1430 (($ $ $ $ $) 209 (|has| |#1| (-561)))) (-3372 ((|#3| $) 277)) (-1700 (($ (-1181 |#1|) |#3|) 119) (($ (-1181 $) |#3|) 118)) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| |#2|) 155) (($ $ |#3| (-776)) 121) (($ $ (-649 |#3|) (-649 (-776))) 120)) (-3189 (($ $ $) 237)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 122)) (-4107 (((-112) $) 267)) (-2272 ((|#2| $) 172) (((-776) $ |#3|) 124) (((-649 (-776)) $ (-649 |#3|)) 123)) (-3762 (((-776) $) 276)) (-2492 (($ (-1 |#2| |#2|) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-2306 (((-3 |#3| "failed") $) 125)) (-2442 (($ $) 204 (|has| |#1| (-457)))) (-2382 (($ $) 205 (|has| |#1| (-457)))) (-1872 (((-649 $) $) 262)) (-2890 (($ $) 265)) (-4203 (($ $) 206 (|has| |#1| (-457)))) (-1602 (((-649 $) $) 263)) (-3237 (($ $) 264)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150) (($ $ |#3|) 269)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-1664 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $) 236)) (-2834 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $) 240) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |#3|) 239)) (-1330 (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $) 242) (((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |#3|) 241)) (-4421 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2763 (($ $ $) 245) (($ $ $ |#3|) 243)) (-3435 (((-1167) $) 10)) (-1384 (($ $ $) 212 (|has| |#1| (-561)))) (-3737 (((-649 $) $) 271)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| |#3|) (|:| -1993 (-776))) "failed") $) 115)) (-2310 (((-112) $ $) 254) (((-112) $ (-649 $)) 253)) (-1341 (($ $ $) 234)) (-2307 (($ $) 275)) (-2151 (((-112) $ $) 260)) (-4046 (((-112) $ $) 256) (((-112) $ (-649 $)) 255)) (-4348 (($ $ $) 235)) (-2122 (($ $) 274)) (-3547 (((-1128) $) 11)) (-3396 (((-2 (|:| -1870 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-561)))) (-2127 (((-2 (|:| -1870 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-561)))) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 ((|#1| |#1| $) 208 (|has| |#1| (-457))) (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-2549 (((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-561)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-2081 (($ $ |#1|) 221 (|has| |#1| (-561))) (($ $ $) 219 (|has| |#1| (-561)))) (-3997 (($ $ |#1|) 222 (|has| |#1| (-561))) (($ $ $) 220 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-649 |#3|) (-649 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-649 |#3|) (-649 $)) 140)) (-3059 (($ $ |#3|) 109 (|has| |#1| (-173)))) (-3517 (($ $ |#3|) 46) (($ $ (-649 |#3|)) 45) (($ $ |#3| (-776)) 44) (($ $ (-649 |#3|) (-649 (-776))) 43)) (-4339 ((|#2| $) 152) (((-776) $ |#3|) 132) (((-649 (-776)) $ (-649 |#3|)) 131)) (-3596 (($ $) 272)) (-1791 (($ $) 270)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| |#3| (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| |#3| (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| |#3| (-619 (-541))) (|has| |#1| (-619 (-541))))) (($ (-958 (-412 (-569)))) 231 (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185))))) (($ (-958 (-569))) 228 (-2776 (-12 (-1749 (|has| |#1| (-38 (-412 (-569))))) (|has| |#1| (-38 (-569))) (|has| |#3| (-619 (-1185)))) (-12 (|has| |#1| (-38 (-412 (-569)))) (|has| |#3| (-619 (-1185)))))) (($ (-958 |#1|)) 225 (|has| |#3| (-619 (-1185)))) (((-1167) $) 203 (-12 (|has| |#1| (-1046 (-569))) (|has| |#3| (-619 (-1185))))) (((-958 |#1|) $) 202 (|has| |#3| (-619 (-1185))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ |#3|) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-958 |#1|) $) 201 (|has| |#3| (-619 (-1185)))) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ |#2|) 157) (($ $ |#3| (-776)) 130) (($ $ (-649 |#3|) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-2136 (((-3 (-112) "failed") $ $) 261)) (-1815 (($) 34 T CONST)) (-3089 (($ $ $ $ (-776)) 210 (|has| |#1| (-561)))) (-1876 (($ $ $ (-776)) 211 (|has| |#1| (-561)))) (-2832 (($ $ |#3|) 42) (($ $ (-649 |#3|)) 41) (($ $ |#3| (-776)) 40) (($ $ (-649 |#3|) (-649 (-776))) 39)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1073 |#1| |#2| |#3|) (-140) (-1057) (-798) (-855)) (T -1073)) -((-3372 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-776)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2122 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3737 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-1791 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1857 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1883 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-1345 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1602 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-1872 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-2136 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2151 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-3623 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2288 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2288 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-4046 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-4046 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2310 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2140 (*1 *2 *1 *1) (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)))) (-2140 (*1 *2 *1 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) (-2700 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4200 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2700 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4200 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-4421 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-2763 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4421 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-2763 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *2 (-855)))) (-1330 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) (-1330 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1))) (-4 *1 (-1073 *4 *5 *3)))) (-2834 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) (-2834 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *4 *5 *3)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) (-3189 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1664 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4037 (-776)))) (-4 *1 (-1073 *3 *4 *5)))) (-4348 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-1341 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)))) (-4381 (*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)))) (-4381 (*1 *1 *2) (|partial| -2776 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3150 (*1 *1 *2) (-2776 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1410 (*1 *1 *2) (-2776 (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) (-4381 (*1 *1 *2) (|partial| -2776 (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-3150 (*1 *1 *2) (-2776 (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))) (-12 (-5 *2 (-958 *3)) (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) (-4 *5 (-855))))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *5 (-619 (-1185))) (-4 *4 (-798)) (-4 *5 (-855)))) (-1996 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3508 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3997 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2081 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3997 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2081 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1726 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1073 *3 *4 *5)))) (-2127 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1))) (-4 *1 (-1073 *3 *4 *5)))) (-3396 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-2 (|:| -1870 *1) (|:| |coef2| *1))) (-4 *1 (-1073 *3 *4 *5)))) (-3346 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5)))) (-1384 (*1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1876 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-3089 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561)))) (-1430 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-561)))) (-1870 (*1 *2 *2 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2727 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-4203 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2382 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457)))) (-2442 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-457))))) -(-13 (-955 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3372 (|t#3| $)) (-15 -3762 ((-776) $)) (-15 -2307 ($ $)) (-15 -2122 ($ $)) (-15 -1568 ($ $)) (-15 -3596 ($ $)) (-15 -3737 ((-649 $) $)) (-15 -1791 ($ $)) (-15 -1857 ($ $ |t#3|)) (-15 -1883 ($ $ |t#3|)) (-15 -4107 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -2890 ($ $)) (-15 -3237 ($ $)) (-15 -1602 ((-649 $) $)) (-15 -1872 ((-649 $) $)) (-15 -2136 ((-3 (-112) "failed") $ $)) (-15 -2151 ((-112) $ $)) (-15 -3623 ((-112) $ $)) (-15 -2288 ((-112) $ $)) (-15 -2288 ((-112) $ (-649 $))) (-15 -4046 ((-112) $ $)) (-15 -4046 ((-112) $ (-649 $))) (-15 -2310 ((-112) $ $)) (-15 -2310 ((-112) $ (-649 $))) (-15 -2140 ((-112) $ $)) (-15 -2140 ((-112) $ (-649 $))) (-15 -2700 ($ $ $)) (-15 -4200 ($ $ $)) (-15 -2700 ($ $ $ |t#3|)) (-15 -4200 ($ $ $ |t#3|)) (-15 -4421 ($ $ $)) (-15 -2763 ($ $ $)) (-15 -4421 ($ $ $ |t#3|)) (-15 -2763 ($ $ $ |t#3|)) (-15 -1330 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $)) (-15 -1330 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -2054 $)) $ $ |t#3|)) (-15 -2834 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -2834 ((-2 (|:| -1435 $) (|:| |gap| (-776)) (|:| -4007 $) (|:| -2054 $)) $ $ |t#3|)) (-15 -3514 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -3189 ($ $ $)) (-15 -1664 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4037 (-776))) $ $)) (-15 -4348 ($ $ $)) (-15 -1341 ($ $ $)) (IF (|has| |t#3| (-619 (-1185))) (PROGN (-6 (-618 (-958 |t#1|))) (-6 (-619 (-958 |t#1|))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -4381 ((-3 $ "failed") (-958 (-412 (-569))))) (-15 -3150 ($ (-958 (-412 (-569))))) (-15 -1410 ($ (-958 (-412 (-569))))) (-15 -4381 ((-3 $ "failed") (-958 (-569)))) (-15 -3150 ($ (-958 (-569)))) (-15 -1410 ($ (-958 (-569)))) (IF (|has| |t#1| (-1000 (-569))) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 |t#1|))) (-15 -3150 ($ (-958 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 (-569)))) (-15 -3150 ($ (-958 (-569)))) (-15 -1410 ($ (-958 (-569)))) (IF (|has| |t#1| (-550)) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 |t#1|))) (-15 -3150 ($ (-958 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-569))) |%noBranch| (IF (|has| |t#1| (-38 (-412 (-569)))) |%noBranch| (PROGN (-15 -4381 ((-3 $ "failed") (-958 |t#1|))) (-15 -3150 ($ (-958 |t#1|)))))) (-15 -1410 ($ (-958 |t#1|))) (IF (|has| |t#1| (-1046 (-569))) (-6 (-619 (-1167))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-15 -1996 ($ $)) (-15 -3508 ($ $)) (-15 -3997 ($ $ |t#1|)) (-15 -2081 ($ $ |t#1|)) (-15 -3997 ($ $ $)) (-15 -2081 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -2549 ((-2 (|:| -1870 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2127 ((-2 (|:| -1870 $) (|:| |coef1| $)) $ $)) (-15 -3396 ((-2 (|:| -1870 $) (|:| |coef2| $)) $ $)) (-15 -3346 ($ $ $)) (-15 -3536 ((-649 $) $ $)) (-15 -1384 ($ $ $)) (-15 -1876 ($ $ $ (-776))) (-15 -3089 ($ $ $ $ (-776))) (-15 -1430 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (PROGN (-15 -1870 (|t#1| |t#1| $)) (-15 -2727 ($ $)) (-15 -4203 ($ $)) (-15 -2382 ($ $)) (-15 -2442 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 |#3|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-618 (-867)) . T) ((-618 (-958 |#1|)) |has| |#3| (-619 (-1185))) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| |#1| (-619 (-541))) (|has| |#3| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#3| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#3| (-619 (-898 (-569))))) ((-619 (-958 |#1|)) |has| |#3| (-619 (-1185))) ((-619 (-1167)) -12 (|has| |#1| (-1046 (-569))) (|has| |#3| (-619 (-1185)))) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-312 $) . T) ((-329 |#1| |#2|) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457))) ((-519 |#3| |#1|) . T) ((-519 |#3| $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457))) ((-731) . T) ((-906 |#3|) . T) ((-892 (-383)) -12 (|has| |#1| (-892 (-383))) (|has| |#3| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-892 (-569))) (|has| |#3| (-892 (-569)))) ((-955 |#1| |#2| |#3|) . T) ((-915) |has| |#1| (-915)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 |#1|) . T) ((-1046 |#3|) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) |has| |#1| (-915))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-2685 (((-649 (-1143)) $) 18)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 27) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-1143) $) 20)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1074) (-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $))))) (T -1074)) -((-2685 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1074)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1074))))) -(-13 (-1091) (-10 -8 (-15 -2685 ((-649 (-1143)) $)) (-15 -3586 ((-1143) $)))) -((-4143 (((-112) |#3| $) 15)) (-2793 (((-3 $ "failed") |#3| (-927)) 29)) (-3086 (((-3 |#3| "failed") |#3| $) 45)) (-3712 (((-112) |#3| $) 19)) (-2051 (((-112) |#3| $) 17))) -(((-1075 |#1| |#2| |#3|) (-10 -8 (-15 -2793 ((-3 |#1| "failed") |#3| (-927))) (-15 -3086 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3712 ((-112) |#3| |#1|)) (-15 -2051 ((-112) |#3| |#1|)) (-15 -4143 ((-112) |#3| |#1|))) (-1076 |#2| |#3|) (-13 (-853) (-367)) (-1251 |#2|)) (T -1075)) -NIL -(-10 -8 (-15 -2793 ((-3 |#1| "failed") |#3| (-927))) (-15 -3086 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3712 ((-112) |#3| |#1|)) (-15 -2051 ((-112) |#3| |#1|)) (-15 -4143 ((-112) |#3| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) |#2| $) 22)) (-2919 (((-569) |#2| $) 23)) (-2793 (((-3 $ "failed") |#2| (-927)) 16)) (-4358 ((|#1| |#2| $ |#1|) 14)) (-3086 (((-3 |#2| "failed") |#2| $) 19)) (-3712 (((-112) |#2| $) 20)) (-2051 (((-112) |#2| $) 21)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4061 ((|#2| $) 18)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-3091 ((|#1| |#2| $ |#1|) 15)) (-2444 (((-649 $) |#2|) 17)) (-2920 (((-112) $ $) 6))) -(((-1076 |#1| |#2|) (-140) (-13 (-853) (-367)) (-1251 |t#1|)) (T -1076)) -((-2919 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-569)))) (-4143 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-112)))) (-2051 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-112)))) (-3712 (*1 *2 *3 *1) (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-112)))) (-3086 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1251 *3)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367))) (-4 *2 (-1251 *3)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-649 *1)) (-4 *1 (-1076 *4 *3)))) (-2793 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367))) (-4 *1 (-1076 *4 *2)) (-4 *2 (-1251 *4)))) (-3091 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1251 *2)))) (-4358 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367))) (-4 *3 (-1251 *2))))) -(-13 (-1108) (-10 -8 (-15 -2919 ((-569) |t#2| $)) (-15 -4143 ((-112) |t#2| $)) (-15 -2051 ((-112) |t#2| $)) (-15 -3712 ((-112) |t#2| $)) (-15 -3086 ((-3 |t#2| "failed") |t#2| $)) (-15 -4061 (|t#2| $)) (-15 -2444 ((-649 $) |t#2|)) (-15 -2793 ((-3 $ "failed") |t#2| (-927))) (-15 -3091 (|t#1| |t#2| $ |t#1|)) (-15 -4358 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2111 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776)) 114)) (-4083 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 63)) (-2458 (((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)) 99)) (-3232 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-2554 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 65) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112)) 67)) (-2316 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 87)) (-1410 (((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 92)) (-3760 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-112)) 62)) (-1772 (((-776) (-649 |#4|) (-649 |#5|)) 21))) -(((-1077 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-112))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1077)) -((-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167)) (-5 *1 (-1077 *4 *5 *6 *7 *8)))) (-2111 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9)) (-4 *11 (-1079 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1077 *7 *8 *9 *10 *11)))) (-2316 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-2316 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-2554 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2554 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-2554 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *7 *8 *9 *3 *4)) (-4 *4 (-1079 *7 *8 *9 *3)))) (-4083 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-3760 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-112))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)))) -((-2648 (((-112) |#5| $) 26)) (-2438 (((-112) |#5| $) 29)) (-2404 (((-112) |#5| $) 18) (((-112) $) 52)) (-2101 (((-649 $) |#5| $) NIL) (((-649 $) (-649 |#5|) $) 94) (((-649 $) (-649 |#5|) (-649 $)) 92) (((-649 $) |#5| (-649 $)) 95)) (-3166 (($ $ |#5|) NIL) (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 73) (((-649 $) (-649 |#5|) $) 75) (((-649 $) (-649 |#5|) (-649 $)) 77)) (-2744 (((-649 $) |#5| $) NIL) (((-649 $) |#5| (-649 $)) 64) (((-649 $) (-649 |#5|) $) 69) (((-649 $) (-649 |#5|) (-649 $)) 71)) (-4159 (((-112) |#5| $) 32))) -(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3166 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -3166 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -3166 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -3166 ((-649 |#1|) |#5| |#1|)) (-15 -2744 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2744 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2744 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2744 ((-649 |#1|) |#5| |#1|)) (-15 -2101 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2101 ((-649 |#1|) |#5| |#1|)) (-15 -2438 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#1|)) (-15 -4159 ((-112) |#5| |#1|)) (-15 -2648 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#5| |#1|)) (-15 -3166 (|#1| |#1| |#5|))) (-1079 |#2| |#3| |#4| |#5|) (-457) (-798) (-855) (-1073 |#2| |#3| |#4|)) (T -1078)) -NIL -(-10 -8 (-15 -3166 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -3166 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -3166 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -3166 ((-649 |#1|) |#5| |#1|)) (-15 -2744 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2744 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2744 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2744 ((-649 |#1|) |#5| |#1|)) (-15 -2101 ((-649 |#1|) |#5| (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) (-649 |#1|))) (-15 -2101 ((-649 |#1|) (-649 |#5|) |#1|)) (-15 -2101 ((-649 |#1|) |#5| |#1|)) (-15 -2438 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#1|)) (-15 -4159 ((-112) |#5| |#1|)) (-15 -2648 ((-112) |#5| |#1|)) (-15 -2404 ((-112) |#5| |#1|)) (-15 -3166 (|#1| |#1| |#5|))) -((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-1079 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1079)) -((-2404 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-4159 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2404 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-2438 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2716 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-4422 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *1)))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-4422 (*1 *2 *3 *1) (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2798 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-4275 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-1384 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1)))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-1830 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1)))) (-4 *1 (-1079 *4 *5 *6 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *7)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)))) (-2101 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) (-2744 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-2744 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) (-2744 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)))) (-3446 (*1 *1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-3446 (*1 *1 *2 *1) (-12 (-5 *2 (-649 *6)) (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)))) (-3166 (*1 *2 *3 *1) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)))) (-3166 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) (-3166 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *7)))) (-3166 (*1 *2 *3 *2) (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1079 *5 *6 *7 *8))))) -(-13 (-1218 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2404 ((-112) |t#4| $)) (-15 -2648 ((-112) |t#4| $)) (-15 -4159 ((-112) |t#4| $)) (-15 -2404 ((-112) $)) (-15 -2438 ((-112) |t#4| $)) (-15 -2716 ((-3 (-112) (-649 $)) |t#4| $)) (-15 -4422 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |t#4| $)) (-15 -4422 ((-112) |t#4| $)) (-15 -2798 ((-649 $) |t#4| $)) (-15 -4275 ((-3 |t#4| (-649 $)) |t#4| |t#4| $)) (-15 -1384 ((-649 (-2 (|:| |val| |t#4|) (|:| -3663 $))) |t#4| |t#4| $)) (-15 -1830 ((-649 (-2 (|:| |val| |t#4|) (|:| -3663 $))) |t#4| $)) (-15 -2101 ((-649 $) |t#4| $)) (-15 -2101 ((-649 $) (-649 |t#4|) $)) (-15 -2101 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -2101 ((-649 $) |t#4| (-649 $))) (-15 -2744 ((-649 $) |t#4| $)) (-15 -2744 ((-649 $) |t#4| (-649 $))) (-15 -2744 ((-649 $) (-649 |t#4|) $)) (-15 -2744 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -3446 ($ |t#4| $)) (-15 -3446 ($ (-649 |t#4|) $)) (-15 -3166 ((-649 $) |t#4| $)) (-15 -3166 ((-649 $) |t#4| (-649 $))) (-15 -3166 ((-649 $) (-649 |t#4|) $)) (-15 -3166 ((-649 $) (-649 |t#4|) (-649 $))) (-15 -1806 ((-649 $) (-649 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T)) -((-3529 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|) 86)) (-3483 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 127)) (-1868 (((-649 |#5|) |#4| |#5|) 74)) (-2182 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2351 (((-1280)) 36)) (-3280 (((-1280)) 25)) (-2933 (((-1280) (-1167) (-1167) (-1167)) 32)) (-3673 (((-1280) (-1167) (-1167) (-1167)) 21)) (-2261 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|) 107)) (-2204 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112)) 118) (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3757 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 113))) -(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -2261 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -3757 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3483 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2182 ((-112) |#4| |#5|)) (-15 -2182 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1868 ((-649 |#5|) |#4| |#5|)) (-15 -3529 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1080)) -((-3529 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-1868 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2182 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2182 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3483 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3757 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9)))) (-5 *1 (-1080 *6 *7 *4 *8 *9)))) (-2204 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-2261 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))) (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2351 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2933 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3280 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-3673 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -2261 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2204 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -3757 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3483 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2182 ((-112) |#4| |#5|)) (-15 -2182 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1868 ((-649 |#5|) |#4| |#5|)) (-15 -3529 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|))) -((-2417 (((-112) $ $) NIL)) (-3870 (((-1224) $) 13)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1418 (((-1143) $) 10)) (-3796 (((-867) $) 20) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1081) (-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $))))) (T -1081)) -((-1418 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1081)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1081))))) -(-13 (-1091) (-10 -8 (-15 -1418 ((-1143) $)) (-15 -3870 ((-1224) $)))) -((-4312 (((-112) $ $) 7))) -(((-1082) (-13 (-1225) (-10 -8 (-15 -4312 ((-112) $ $))))) (T -1082)) -((-4312 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1082))))) -(-13 (-1225) (-10 -8 (-15 -4312 ((-112) $ $)))) -((-2417 (((-112) $ $) NIL)) (-3573 (((-1185) $) 8)) (-3435 (((-1167) $) 17)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 14))) -(((-1083 |#1|) (-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $)))) (-1185)) (T -1083)) -((-3573 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1083 *3)) (-14 *3 *2)))) -(-13 (-1108) (-10 -8 (-15 -3573 ((-1185) $)))) -((-2417 (((-112) $ $) NIL)) (-4274 (($ $ (-649 (-1185)) (-1 (-112) (-649 |#3|))) 34)) (-2139 (($ |#3| |#3|) 23) (($ |#3| |#3| (-649 (-1185))) 21)) (-2115 ((|#3| $) 13)) (-4381 (((-3 (-297 |#3|) "failed") $) 60)) (-3150 (((-297 |#3|) $) NIL)) (-2059 (((-649 (-1185)) $) 16)) (-1746 (((-898 |#1|) $) 11)) (-2105 ((|#3| $) 12)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-927)) 41)) (-3796 (((-867) $) 89) (($ (-297 |#3|)) 22)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 38))) -(((-1084 |#1| |#2| |#3|) (-13 (-1108) (-289 |#3| |#3|) (-1046 (-297 |#3|)) (-10 -8 (-15 -2139 ($ |#3| |#3|)) (-15 -2139 ($ |#3| |#3| (-649 (-1185)))) (-15 -4274 ($ $ (-649 (-1185)) (-1 (-112) (-649 |#3|)))) (-15 -1746 ((-898 |#1|) $)) (-15 -2105 (|#3| $)) (-15 -2115 (|#3| $)) (-15 -1869 (|#3| $ |#3| (-927))) (-15 -2059 ((-649 (-1185)) $)))) (-1108) (-13 (-1057) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1084)) -((-2139 (*1 *1 *2 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1084 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-2139 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1084 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-4274 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1 (-112) (-649 *6))) (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1084 *4 *5 *6)))) (-1746 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 *2))) (-5 *2 (-898 *3)) (-5 *1 (-1084 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2))))) (-2105 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1084 *3 *4 *2)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))))) (-2115 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1084 *3 *4 *2)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))))) (-1869 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1084 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) (-2059 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1185))) (-5 *1 (-1084 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))))) -(-13 (-1108) (-289 |#3| |#3|) (-1046 (-297 |#3|)) (-10 -8 (-15 -2139 ($ |#3| |#3|)) (-15 -2139 ($ |#3| |#3| (-649 (-1185)))) (-15 -4274 ($ $ (-649 (-1185)) (-1 (-112) (-649 |#3|)))) (-15 -1746 ((-898 |#1|) $)) (-15 -2105 (|#3| $)) (-15 -2115 (|#3| $)) (-15 -1869 (|#3| $ |#3| (-927))) (-15 -2059 ((-649 (-1185)) $)))) -((-2417 (((-112) $ $) NIL)) (-4244 (($ (-649 (-1084 |#1| |#2| |#3|))) 14)) (-1575 (((-649 (-1084 |#1| |#2| |#3|)) $) 21)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1869 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-927)) 27)) (-3796 (((-867) $) 17)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 20))) -(((-1085 |#1| |#2| |#3|) (-13 (-1108) (-289 |#3| |#3|) (-10 -8 (-15 -4244 ($ (-649 (-1084 |#1| |#2| |#3|)))) (-15 -1575 ((-649 (-1084 |#1| |#2| |#3|)) $)) (-15 -1869 (|#3| $ |#3| (-927))))) (-1108) (-13 (-1057) (-892 |#1|) (-619 (-898 |#1|))) (-13 (-435 |#2|) (-892 |#1|) (-619 (-898 |#1|)))) (T -1085)) -((-4244 (*1 *1 *2) (-12 (-5 *2 (-649 (-1084 *3 *4 *5))) (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) (-5 *1 (-1085 *3 *4 *5)))) (-1575 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) (-5 *2 (-649 (-1084 *3 *4 *5))) (-5 *1 (-1085 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))))) (-1869 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-927)) (-4 *4 (-1108)) (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) (-5 *1 (-1085 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))) -(-13 (-1108) (-289 |#3| |#3|) (-10 -8 (-15 -4244 ($ (-649 (-1084 |#1| |#2| |#3|)))) (-15 -1575 ((-649 (-1084 |#1| |#2| |#3|)) $)) (-15 -1869 (|#3| $ |#3| (-927))))) -((-3516 (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 88) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 92) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 90))) -(((-1086 |#1| |#2|) (-10 -7 (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)))) (-13 (-310) (-147)) (-649 (-1185))) (T -1086)) -((-3516 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))))) (-3516 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) (-5 *1 (-1086 *4 *5)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1185))))) (-3516 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185)))))) -(-10 -7 (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -3516 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)))) -((-3800 (((-423 |#3|) |#3|) 18))) -(((-1087 |#1| |#2| |#3|) (-10 -7 (-15 -3800 ((-423 |#3|) |#3|))) (-1251 (-412 (-569))) (-13 (-367) (-147) (-729 (-412 (-569)) |#1|)) (-1251 |#2|)) (T -1087)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1251 *5))))) -(-10 -7 (-15 -3800 ((-423 |#3|) |#3|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 139)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-367)))) (-4355 (($ $) NIL (|has| |#1| (-367)))) (-3039 (((-112) $) NIL (|has| |#1| (-367)))) (-1547 (((-694 |#1|) (-1275 $)) NIL) (((-694 |#1|)) 123)) (-3140 ((|#1| $) 128)) (-3715 (((-1198 (-927) (-776)) (-569)) NIL (|has| |#1| (-353)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-3473 (((-776)) 46 (|has| |#1| (-372)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-2247 (($ (-1275 |#1|) (-1275 $)) NIL) (($ (-1275 |#1|)) 49)) (-4424 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-353)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1833 (((-694 |#1|) $ (-1275 $)) NIL) (((-694 |#1|) $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 115) (((-694 |#1|) (-694 $)) 110)) (-3598 (($ |#2|) 67) (((-3 $ "failed") (-412 |#2|)) NIL (|has| |#1| (-367)))) (-3086 (((-3 $ "failed") $) NIL)) (-3978 (((-927)) 84)) (-3406 (($) 50 (|has| |#1| (-372)))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1616 (($) NIL (|has| |#1| (-353)))) (-2807 (((-112) $) NIL (|has| |#1| (-353)))) (-3701 (($ $ (-776)) NIL (|has| |#1| (-353))) (($ $) NIL (|has| |#1| (-353)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1466 (((-927) $) NIL (|has| |#1| (-353))) (((-838 (-927)) $) NIL (|has| |#1| (-353)))) (-2349 (((-112) $) NIL)) (-3829 ((|#1| $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-353)))) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-3859 ((|#2| $) 91 (|has| |#1| (-367)))) (-2731 (((-927) $) 148 (|has| |#1| (-372)))) (-3585 ((|#2| $) 64)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-2307 (($) NIL (|has| |#1| (-353)) CONST)) (-2150 (($ (-927)) 138 (|has| |#1| (-372)))) (-3547 (((-1128) $) NIL)) (-2332 (($) 130)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4218 (((-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569))))) NIL (|has| |#1| (-353)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3059 ((|#1| (-1275 $)) NIL) ((|#1|) 119)) (-2166 (((-776) $) NIL (|has| |#1| (-353))) (((-3 (-776) "failed") $ $) NIL (|has| |#1| (-353)))) (-3517 (($ $) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2594 (((-694 |#1|) (-1275 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-4061 ((|#2|) 80)) (-4234 (($) NIL (|has| |#1| (-353)))) (-2415 (((-1275 |#1|) $ (-1275 $)) 96) (((-694 |#1|) (-1275 $) (-1275 $)) NIL) (((-1275 |#1|) $) 77) (((-694 |#1|) (-1275 $)) 92)) (-1410 (((-1275 |#1|) $) NIL) (($ (-1275 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (|has| |#1| (-353)))) (-3796 (((-867) $) 63) (($ (-569)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-367))) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-367)) (|has| |#1| (-1046 (-412 (-569))))))) (-2239 (($ $) NIL (|has| |#1| (-353))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1886 ((|#2| $) 89)) (-2721 (((-776)) 82 T CONST)) (-1520 (((-112) $ $) NIL)) (-2403 (((-1275 $)) 88)) (-2664 (((-112) $ $) NIL (|has| |#1| (-367)))) (-1804 (($) 32 T CONST)) (-1815 (($) 19 T CONST)) (-2832 (($ $) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#1| (-234)) (|has| |#1| (-367))) (|has| |#1| (-353)))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-367)) (|has| |#1| (-906 (-1185))))) (($ $ (-1 |#1| |#1|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-367)))) (-2920 (((-112) $ $) 69)) (-3035 (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) 73) (($ $ $) NIL)) (-3012 (($ $ $) 71)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-412 (-569)) $) NIL (|has| |#1| (-367))) (($ $ (-412 (-569))) NIL (|has| |#1| (-367))))) -(((-1088 |#1| |#2| |#3|) (-729 |#1| |#2|) (-173) (-1251 |#1|) |#2|) (T -1088)) -NIL -(-729 |#1| |#2|) -((-3800 (((-423 |#3|) |#3|) 19))) -(((-1089 |#1| |#2| |#3|) (-10 -7 (-15 -3800 ((-423 |#3|) |#3|))) (-1251 (-412 (-958 (-569)))) (-13 (-367) (-147) (-729 (-412 (-958 (-569))) |#1|)) (-1251 |#2|)) (T -1089)) -((-3800 (*1 *2 *3) (-12 (-4 *4 (-1251 (-412 (-958 (-569))))) (-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4))) (-5 *2 (-423 *3)) (-5 *1 (-1089 *4 *5 *3)) (-4 *3 (-1251 *5))))) -(-10 -7 (-15 -3800 ((-423 |#3|) |#3|))) -((-2417 (((-112) $ $) NIL)) (-3380 (($ $ $) 16)) (-2839 (($ $ $) 17)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2954 (($) 6)) (-1410 (((-1185) $) 20)) (-3796 (((-867) $) 13)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 15)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 9))) -(((-1090) (-13 (-855) (-619 (-1185)) (-10 -8 (-15 -2954 ($))))) (T -1090)) -((-2954 (*1 *1) (-5 *1 (-1090)))) -(-13 (-855) (-619 (-1185)) (-10 -8 (-15 -2954 ($)))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-1190)) 17) (((-1190) $) 16)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-1091) (-140)) (T -1091)) +((-1316 (($ $ (-1101 $)) 7) (($ $ (-1186)) 6))) +(((-966) (-141)) (T -966)) +((-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-966)))) (-1316 (*1 *1 *1 *2) (-12 (-4 *1 (-966)) (-5 *2 (-1186))))) +(-13 (-10 -8 (-15 -1316 ($ $ (-1186))) (-15 -1316 ($ $ (-1101 $))))) +((-3740 (((-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)) (-1186)) 30) (((-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186))) 31) (((-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 |#1|))) (-959 |#1|) (-1186) (-959 |#1|) (-1186)) 49))) +(((-967 |#1|) (-10 -7 (-15 -3740 ((-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 |#1|))) (-959 |#1|) (-1186) (-959 |#1|) (-1186))) (-15 -3740 ((-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3740 ((-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)) (-1186)))) (-13 (-368) (-148))) (T -967)) +((-3740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-5 *5 (-1186)) (-4 *6 (-13 (-368) (-148))) (-5 *2 (-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 *6))) (|:| |prim| (-1182 *6)))) (-5 *1 (-967 *6)))) (-3740 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-368) (-148))) (-5 *2 (-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 *5))) (|:| |prim| (-1182 *5)))) (-5 *1 (-967 *5)))) (-3740 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-959 *5)) (-5 *4 (-1186)) (-4 *5 (-13 (-368) (-148))) (-5 *2 (-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 *5)))) (-5 *1 (-967 *5))))) +(-10 -7 (-15 -3740 ((-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) (|:| |prim| (-1182 |#1|))) (-959 |#1|) (-1186) (-959 |#1|) (-1186))) (-15 -3740 ((-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)))) (-15 -3740 ((-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 |#1|))) (|:| |prim| (-1182 |#1|))) (-650 (-959 |#1|)) (-650 (-1186)) (-1186)))) +((-2638 (((-650 |#1|) |#1| |#1|) 47)) (-3701 (((-112) |#1|) 44)) (-1549 ((|#1| |#1|) 80)) (-2515 ((|#1| |#1|) 79))) +(((-968 |#1|) (-10 -7 (-15 -3701 ((-112) |#1|)) (-15 -2515 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -2638 ((-650 |#1|) |#1| |#1|))) (-551)) (T -968)) +((-2638 (*1 *2 *3 *3) (-12 (-5 *2 (-650 *3)) (-5 *1 (-968 *3)) (-4 *3 (-551)))) (-1549 (*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551)))) (-2515 (*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551)))) (-3701 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-968 *3)) (-4 *3 (-551))))) +(-10 -7 (-15 -3701 ((-112) |#1|)) (-15 -2515 (|#1| |#1|)) (-15 -1549 (|#1| |#1|)) (-15 -2638 ((-650 |#1|) |#1| |#1|))) +((-2932 (((-1281) (-868)) 9))) +(((-969) (-10 -7 (-15 -2932 ((-1281) (-868))))) (T -969)) +((-2932 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-969))))) +(-10 -7 (-15 -2932 ((-1281) (-868)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 78 (|has| |#1| (-562)))) (-2318 (($ $) 79 (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 34)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-1885 (($ $) 31)) (-2229 (((-3 $ "failed") $) 42)) (-1908 (($ $) NIL (|has| |#1| (-458)))) (-3155 (($ $ |#1| |#2| $) 62)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) 17)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| |#2|) NIL)) (-2302 ((|#2| $) 24)) (-2550 (($ (-1 |#2| |#2|) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1851 (($ $) 28)) (-1860 ((|#1| $) 26)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) 51)) (-1838 ((|#1| $) NIL)) (-3750 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-562))))) (-2410 (((-3 $ "failed") $ $) 91 (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-562)))) (-3324 ((|#2| $) 22)) (-1427 ((|#1| $) NIL (|has| |#1| (-458)))) (-3798 (((-868) $) NIL) (($ (-570)) 46) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 41) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ |#2|) 37)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) 15 T CONST)) (-1484 (($ $ $ (-777)) 74 (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) 84 (|has| |#1| (-562)))) (-1809 (($) 27 T CONST)) (-1817 (($) 12 T CONST)) (-2923 (((-112) $ $) 83)) (-3037 (($ $ |#1|) 92 (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) 69) (($ $ (-777)) 67)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-970 |#1| |#2|) (-13 (-330 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| |#2| (-132)) (-15 -3750 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|))) (-1058) (-798)) (T -970)) +((-3750 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-970 *3 *2)) (-4 *2 (-132)) (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *2 (-798))))) +(-13 (-330 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| |#2| (-132)) (-15 -3750 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))))) (-1647 (($ $ $) 65 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))) (-2620 (((-3 $ "failed") $ $) 52 (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))))) (-3475 (((-777)) 36 (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-1895 ((|#2| $) 22)) (-1920 ((|#1| $) 21)) (-3734 (($) NIL (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) CONST)) (-2229 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-3408 (($) NIL (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-2481 (((-112) $) NIL (-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (-3382 (($ $ $) NIL (-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-2876 (($ $ $) NIL (-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-2151 (($ |#1| |#2|) 20)) (-2484 (((-928) $) NIL (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 39 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-2155 (($ (-928)) NIL (-12 (|has| |#1| (-373)) (|has| |#2| (-373))))) (-3551 (((-1129) $) NIL)) (-3897 (($ $ $) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-4307 (($ $ $) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-3798 (((-868) $) 14)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 42 (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))) CONST)) (-1817 (($) 25 (-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))) CONST)) (-2981 (((-112) $ $) NIL (-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-2959 (((-112) $ $) NIL (-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-2923 (((-112) $ $) 19)) (-2969 (((-112) $ $) NIL (-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-2948 (((-112) $ $) 69 (-2779 (-12 (|has| |#1| (-799)) (|has| |#2| (-799))) (-12 (|has| |#1| (-856)) (|has| |#2| (-856)))))) (-3037 (($ $ $) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479))))) (-3026 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3014 (($ $ $) 45 (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799)))))) (** (($ $ (-570)) NIL (-12 (|has| |#1| (-479)) (|has| |#2| (-479)))) (($ $ (-777)) 32 (-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))) (($ $ (-928)) NIL (-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732)))))) (* (($ (-570) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-777) $) 48 (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))) (($ (-928) $) NIL (-2779 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-799)) (|has| |#2| (-799))))) (($ $ $) 28 (-2779 (-12 (|has| |#1| (-479)) (|has| |#2| (-479))) (-12 (|has| |#1| (-732)) (|has| |#2| (-732))))))) +(((-971 |#1| |#2|) (-13 (-1109) (-10 -8 (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-479)) (IF (|has| |#2| (-479)) (-6 (-479)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-799)) (IF (|has| |#2| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-856)) (IF (|has| |#2| (-856)) (-6 (-856)) |%noBranch|) |%noBranch|) (-15 -2151 ($ |#1| |#2|)) (-15 -1920 (|#1| $)) (-15 -1895 (|#2| $)))) (-1109) (-1109)) (T -971)) +((-2151 (*1 *1 *2 *3) (-12 (-5 *1 (-971 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-1920 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1109)))) (-1895 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-971 *3 *2)) (-4 *3 (-1109))))) +(-13 (-1109) (-10 -8 (IF (|has| |#1| (-373)) (IF (|has| |#2| (-373)) (-6 (-373)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-732)) (IF (|has| |#2| (-732)) (-6 (-732)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-479)) (IF (|has| |#2| (-479)) (-6 (-479)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-799)) (IF (|has| |#2| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-856)) (IF (|has| |#2| (-856)) (-6 (-856)) |%noBranch|) |%noBranch|) (-15 -2151 ($ |#1| |#2|)) (-15 -1920 (|#1| $)) (-15 -1895 (|#2| $)))) +((-2190 (((-1113) $) 12)) (-3127 (($ (-512) (-1113)) 14)) (-3574 (((-512) $) 9)) (-3798 (((-868) $) 24))) +(((-972) (-13 (-619 (-868)) (-10 -8 (-15 -3574 ((-512) $)) (-15 -2190 ((-1113) $)) (-15 -3127 ($ (-512) (-1113)))))) (T -972)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-972)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-972)))) (-3127 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-972))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3574 ((-512) $)) (-15 -2190 ((-1113) $)) (-15 -3127 ($ (-512) (-1113))))) +((-2419 (((-112) $ $) NIL)) (-3020 (($) NIL T CONST)) (-1773 (($ $ $) 30)) (-1748 (($ $) 24)) (-4122 (((-1168) $) NIL)) (-2114 (((-697 |#1|) $) 36)) (-3733 (((-697 (-879 $ $)) $) 55)) (-2111 (((-697 $) $) 45)) (-1938 (((-697 (-879 $ $)) $) 56)) (-4083 (((-697 (-879 $ $)) $) 57)) (-3467 (((-697 (-879 $ $)) $) 54)) (-1365 (($ $ $) 31)) (-3551 (((-1129) $) NIL)) (-1883 (($) NIL T CONST)) (-1569 (($ $ $) 32)) (-3223 (($ $ $) 29)) (-3256 (($ $ $) 27)) (-3798 (((-868) $) 59) (($ |#1|) 12)) (-1319 (((-112) $ $) NIL)) (-1760 (($ $ $) 28)) (-2923 (((-112) $ $) NIL))) +(((-973 |#1|) (-13 (-976) (-622 |#1|) (-10 -8 (-15 -2114 ((-697 |#1|) $)) (-15 -2111 ((-697 $) $)) (-15 -3467 ((-697 (-879 $ $)) $)) (-15 -3733 ((-697 (-879 $ $)) $)) (-15 -1938 ((-697 (-879 $ $)) $)) (-15 -4083 ((-697 (-879 $ $)) $)) (-15 -3256 ($ $ $)) (-15 -3223 ($ $ $)))) (-1109)) (T -973)) +((-2114 (*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-697 (-973 *3))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) (-4 *3 (-1109)))) (-3256 (*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109)))) (-3223 (*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109))))) +(-13 (-976) (-622 |#1|) (-10 -8 (-15 -2114 ((-697 |#1|) $)) (-15 -2111 ((-697 $) $)) (-15 -3467 ((-697 (-879 $ $)) $)) (-15 -3733 ((-697 (-879 $ $)) $)) (-15 -1938 ((-697 (-879 $ $)) $)) (-15 -4083 ((-697 (-879 $ $)) $)) (-15 -3256 ($ $ $)) (-15 -3223 ($ $ $)))) +((-1919 (((-1111 |#1|) (-973 |#1|)) 41)) (-2733 (((-973 |#1|) (-973 |#1|)) 22))) +(((-974 |#1|) (-13 (-1226) (-10 -7 (-15 -2733 ((-973 |#1|) (-973 |#1|))) (-15 -1919 ((-1111 |#1|) (-973 |#1|))))) (-1109)) (T -974)) +((-2733 (*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1109)) (-5 *1 (-974 *3)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-973 *4)) (-4 *4 (-1109)) (-5 *2 (-1111 *4)) (-5 *1 (-974 *4))))) +(-13 (-1226) (-10 -7 (-15 -2733 ((-973 |#1|) (-973 |#1|))) (-15 -1919 ((-1111 |#1|) (-973 |#1|))))) +((-1347 (((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|)) 29))) +(((-975 |#1| |#2|) (-13 (-1226) (-10 -7 (-15 -1347 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|))))) (-1109) (-1109)) (T -975)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *2 (-973 *6)) (-5 *1 (-975 *5 *6))))) +(-13 (-1226) (-10 -7 (-15 -1347 ((-973 |#2|) (-1 |#2| |#1|) (-973 |#1|))))) +((-2419 (((-112) $ $) 15)) (-3020 (($) 14 T CONST)) (-1773 (($ $ $) 6)) (-1748 (($ $) 8)) (-4122 (((-1168) $) 19)) (-1365 (($ $ $) 12)) (-3551 (((-1129) $) 18)) (-1883 (($) 13 T CONST)) (-1569 (($ $ $) 11)) (-3798 (((-868) $) 17)) (-1319 (((-112) $ $) 20)) (-1760 (($ $ $) 7)) (-2923 (((-112) $ $) 16))) +(((-976) (-141)) (T -976)) +((-3020 (*1 *1) (-4 *1 (-976))) (-1883 (*1 *1) (-4 *1 (-976))) (-1365 (*1 *1 *1 *1) (-4 *1 (-976))) (-1569 (*1 *1 *1 *1) (-4 *1 (-976)))) +(-13 (-113) (-1109) (-10 -8 (-15 -3020 ($) -3711) (-15 -1883 ($) -3711) (-15 -1365 ($ $ $)) (-15 -1569 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-619 (-868)) . T) ((-1109) . T) ((-1226) . T)) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-3583 (($ $ $) 44)) (-2735 (($ $ $) 45)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2876 ((|#1| $) 46)) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-977 |#1|) (-141) (-856)) (T -977)) +((-2876 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))) (-2735 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4448) (-15 -2876 (|t#1| $)) (-15 -2735 ($ $ $)) (-15 -3583 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3618 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1869 |#2|)) |#2| |#2|) 105)) (-1485 ((|#2| |#2| |#2|) 103)) (-3174 (((-2 (|:| |coef2| |#2|) (|:| -1869 |#2|)) |#2| |#2|) 107)) (-1896 (((-2 (|:| |coef1| |#2|) (|:| -1869 |#2|)) |#2| |#2|) 109)) (-3010 (((-2 (|:| |coef2| |#2|) (|:| -3354 |#1|)) |#2| |#2|) 131 (|has| |#1| (-458)))) (-4216 (((-2 (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|) 56)) (-4356 (((-2 (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|) 80)) (-2796 (((-2 (|:| |coef1| |#2|) (|:| -2865 |#1|)) |#2| |#2|) 82)) (-1446 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-3464 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 89)) (-1445 (((-2 (|:| |coef2| |#2|) (|:| -3511 |#1|)) |#2|) 121)) (-1440 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 92)) (-1948 (((-650 (-777)) |#2| |#2|) 102)) (-4358 ((|#1| |#2| |#2|) 50)) (-3982 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3354 |#1|)) |#2| |#2|) 129 (|has| |#1| (-458)))) (-3354 ((|#1| |#2| |#2|) 127 (|has| |#1| (-458)))) (-3404 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|) 54)) (-2338 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|) 79)) (-2865 ((|#1| |#2| |#2|) 76)) (-1874 (((-2 (|:| -1436 |#1|) (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2|) 41)) (-3128 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3064 ((|#2| |#2| |#2|) 93)) (-3662 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 87)) (-2305 ((|#2| |#2| |#2| (-777)) 85)) (-1869 ((|#2| |#2| |#2|) 135 (|has| |#1| (-458)))) (-2410 (((-1276 |#2|) (-1276 |#2|) |#1|) 22)) (-1854 (((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2|) 46)) (-1349 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3511 |#1|)) |#2|) 119)) (-3511 ((|#1| |#2|) 116)) (-2783 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777)) 91)) (-3842 ((|#2| |#2| |#2| (-777)) 90)) (-2794 (((-650 |#2|) |#2| |#2|) 99)) (-4085 ((|#2| |#2| |#1| |#1| (-777)) 62)) (-1640 ((|#1| |#1| |#1| (-777)) 61)) (* (((-1276 |#2|) |#1| (-1276 |#2|)) 17))) +(((-978 |#1| |#2|) (-10 -7 (-15 -2865 (|#1| |#2| |#2|)) (-15 -2338 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -4356 ((-2 (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -2796 ((-2 (|:| |coef1| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -2305 (|#2| |#2| |#2| (-777))) (-15 -3662 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3464 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3842 (|#2| |#2| |#2| (-777))) (-15 -2783 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -1440 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3064 (|#2| |#2| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1485 (|#2| |#2| |#2|)) (-15 -3618 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1869 |#2|)) |#2| |#2|)) (-15 -3174 ((-2 (|:| |coef2| |#2|) (|:| -1869 |#2|)) |#2| |#2|)) (-15 -1896 ((-2 (|:| |coef1| |#2|) (|:| -1869 |#2|)) |#2| |#2|)) (-15 -3511 (|#1| |#2|)) (-15 -1349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3511 |#1|)) |#2|)) (-15 -1445 ((-2 (|:| |coef2| |#2|) (|:| -3511 |#1|)) |#2|)) (-15 -2794 ((-650 |#2|) |#2| |#2|)) (-15 -1948 ((-650 (-777)) |#2| |#2|)) (IF (|has| |#1| (-458)) (PROGN (-15 -3354 (|#1| |#2| |#2|)) (-15 -3982 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3354 |#1|)) |#2| |#2|)) (-15 -3010 ((-2 (|:| |coef2| |#2|) (|:| -3354 |#1|)) |#2| |#2|)) (-15 -1869 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1276 |#2|) |#1| (-1276 |#2|))) (-15 -2410 ((-1276 |#2|) (-1276 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1436 |#1|) (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -1854 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -1640 (|#1| |#1| |#1| (-777))) (-15 -4085 (|#2| |#2| |#1| |#1| (-777))) (-15 -3128 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4358 (|#1| |#2| |#2|)) (-15 -3404 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -4216 ((-2 (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|))) (-562) (-1252 |#1|)) (T -978)) +((-4216 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2865 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3404 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2865 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-4358 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2)))) (-3128 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) (-4085 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) (-1640 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *2 (-562)) (-5 *1 (-978 *2 *4)) (-4 *4 (-1252 *2)))) (-1854 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1436 *4) (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-2410 (*1 *2 *2 *3) (-12 (-5 *2 (-1276 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-562)) (-5 *1 (-978 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1276 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-562)) (-5 *1 (-978 *3 *4)))) (-1869 (*1 *2 *2 *2) (-12 (-4 *3 (-458)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) (-3010 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3354 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3982 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3354 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3354 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-4 *2 (-458)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2)))) (-1948 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-777))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-2794 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-1445 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3511 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3511 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3511 (*1 *2 *3) (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2)))) (-1896 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1869 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3174 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1869 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1869 *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-1485 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) (-1446 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3195 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-3064 (*1 *2 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) (-1440 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5)))) (-2783 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5)))) (-3842 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2)) (-4 *2 (-1252 *4)))) (-3464 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5)))) (-3662 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5)))) (-2305 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2)) (-4 *2 (-1252 *4)))) (-2796 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2865 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-4356 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2865 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-2338 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2865 *4))) (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) (-2865 (*1 *2 *3 *3) (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2))))) +(-10 -7 (-15 -2865 (|#1| |#2| |#2|)) (-15 -2338 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -4356 ((-2 (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -2796 ((-2 (|:| |coef1| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -2305 (|#2| |#2| |#2| (-777))) (-15 -3662 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3464 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3842 (|#2| |#2| |#2| (-777))) (-15 -2783 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -1440 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-777))) (-15 -3064 (|#2| |#2| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1485 (|#2| |#2| |#2|)) (-15 -3618 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1869 |#2|)) |#2| |#2|)) (-15 -3174 ((-2 (|:| |coef2| |#2|) (|:| -1869 |#2|)) |#2| |#2|)) (-15 -1896 ((-2 (|:| |coef1| |#2|) (|:| -1869 |#2|)) |#2| |#2|)) (-15 -3511 (|#1| |#2|)) (-15 -1349 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3511 |#1|)) |#2|)) (-15 -1445 ((-2 (|:| |coef2| |#2|) (|:| -3511 |#1|)) |#2|)) (-15 -2794 ((-650 |#2|) |#2| |#2|)) (-15 -1948 ((-650 (-777)) |#2| |#2|)) (IF (|has| |#1| (-458)) (PROGN (-15 -3354 (|#1| |#2| |#2|)) (-15 -3982 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3354 |#1|)) |#2| |#2|)) (-15 -3010 ((-2 (|:| |coef2| |#2|) (|:| -3354 |#1|)) |#2| |#2|)) (-15 -1869 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1276 |#2|) |#1| (-1276 |#2|))) (-15 -2410 ((-1276 |#2|) (-1276 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1436 |#1|) (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -1854 ((-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) |#2| |#2|)) (-15 -1640 (|#1| |#1| |#1| (-777))) (-15 -4085 (|#2| |#2| |#1| |#1| (-777))) (-15 -3128 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4358 (|#1| |#2| |#2|)) (-15 -3404 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|)) (-15 -4216 ((-2 (|:| |coef2| |#2|) (|:| -2865 |#1|)) |#2| |#2|))) +((-2419 (((-112) $ $) NIL)) (-3873 (((-1225) $) 13)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1419 (((-1144) $) 10)) (-3798 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-979) (-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -3873 ((-1225) $))))) (T -979)) +((-1419 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-979)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-979))))) +(-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -3873 ((-1225) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) 39)) (-3734 (($) NIL T CONST)) (-2995 (((-650 (-650 (-570))) (-650 (-570))) 48)) (-3793 (((-570) $) 72)) (-1374 (($ (-650 (-570))) 18)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1411 (((-650 (-570)) $) 13)) (-3897 (($ $) 52)) (-3798 (((-868) $) 68) (((-650 (-570)) $) 11)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 8 T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 26)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 25)) (-3014 (($ $ $) 28)) (* (($ (-928) $) NIL) (($ (-777) $) 37))) +(((-980) (-13 (-801) (-620 (-650 (-570))) (-619 (-650 (-570))) (-10 -8 (-15 -1374 ($ (-650 (-570)))) (-15 -2995 ((-650 (-650 (-570))) (-650 (-570)))) (-15 -3793 ((-570) $)) (-15 -3897 ($ $))))) (T -980)) +((-1374 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-980)))) (-2995 (*1 *2 *3) (-12 (-5 *2 (-650 (-650 (-570)))) (-5 *1 (-980)) (-5 *3 (-650 (-570))))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-980)))) (-3897 (*1 *1 *1) (-5 *1 (-980)))) +(-13 (-801) (-620 (-650 (-570))) (-619 (-650 (-570))) (-10 -8 (-15 -1374 ($ (-650 (-570)))) (-15 -2995 ((-650 (-650 (-570))) (-650 (-570)))) (-15 -3793 ((-570) $)) (-15 -3897 ($ $)))) +((-3037 (($ $ |#2|) 31)) (-3026 (($ $) 23) (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-413 (-570)) $) 27) (($ $ (-413 (-570))) 29))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -3037 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) (-982 |#2| |#3| |#4|) (-1058) (-798) (-856)) (T -981)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-413 (-570)))) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 -3037 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 * (|#1| (-928) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 |#3|) $) 86)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-2465 (((-112) $) 85)) (-2481 (((-112) $) 35)) (-2343 (((-112) $) 74)) (-3925 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-650 |#3|) (-650 |#2|)) 87)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3324 ((|#2| $) 76)) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3326 ((|#1| $ |#2|) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-982 |#1| |#2| |#3|) (-141) (-1058) (-798) (-856)) (T -982)) +((-1860 (*1 *2 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *3 (-798)) (-4 *4 (-856)) (-4 *2 (-1058)))) (-1851 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *4 (-856)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *2 *4)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *2 (-798)))) (-3925 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-982 *4 *3 *2)) (-4 *4 (-1058)) (-4 *3 (-798)) (-4 *2 (-856)))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 *5)) (-4 *1 (-982 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-798)) (-4 *6 (-856)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798)) (-4 *5 (-856)) (-5 *2 (-650 *5)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798)) (-4 *5 (-856)) (-5 *2 (-112)))) (-2115 (*1 *1 *1) (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798)) (-4 *4 (-856))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3925 ($ $ |t#3| |t#2|)) (-15 -3925 ($ $ (-650 |t#3|) (-650 |t#2|))) (-15 -1851 ($ $)) (-15 -1860 (|t#1| $)) (-15 -3324 (|t#2| $)) (-15 -1709 ((-650 |t#3|) $)) (-15 -2465 ((-112) $)) (-15 -2115 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-294) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3825 (((-1103 (-227)) $) 8)) (-3814 (((-1103 (-227)) $) 9)) (-3800 (((-1103 (-227)) $) 10)) (-2055 (((-650 (-650 (-950 (-227)))) $) 11)) (-3798 (((-868) $) 6))) +(((-983) (-141)) (T -983)) +((-2055 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-650 (-650 (-950 (-227))))))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227))))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227)))))) +(-13 (-619 (-868)) (-10 -8 (-15 -2055 ((-650 (-650 (-950 (-227)))) $)) (-15 -3800 ((-1103 (-227)) $)) (-15 -3814 ((-1103 (-227)) $)) (-15 -3825 ((-1103 (-227)) $)))) +(((-619 (-868)) . T)) +((-1709 (((-650 |#4|) $) 23)) (-4006 (((-112) $) 55)) (-1797 (((-112) $) 54)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#4|) 42)) (-2262 (((-112) $) 56)) (-2082 (((-112) $ $) 62)) (-4427 (((-112) $ $) 65)) (-2418 (((-112) $) 60)) (-3572 (((-650 |#5|) (-650 |#5|) $) 98)) (-1651 (((-650 |#5|) (-650 |#5|) $) 95)) (-2423 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-3952 (((-650 |#4|) $) 27)) (-2875 (((-112) |#4| $) 34)) (-1701 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3677 (($ $ |#4|) 39)) (-3158 (($ $ |#4|) 38)) (-4074 (($ $ |#4|) 40)) (-2923 (((-112) $ $) 46))) +(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1797 ((-112) |#1|)) (-15 -3572 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -1651 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -2423 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1701 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2262 ((-112) |#1|)) (-15 -4427 ((-112) |#1| |#1|)) (-15 -2082 ((-112) |#1| |#1|)) (-15 -2418 ((-112) |#1|)) (-15 -4006 ((-112) |#1|)) (-15 -3360 ((-2 (|:| |under| |#1|) (|:| -4140 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3677 (|#1| |#1| |#4|)) (-15 -4074 (|#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#4|)) (-15 -2875 ((-112) |#4| |#1|)) (-15 -3952 ((-650 |#4|) |#1|)) (-15 -1709 ((-650 |#4|) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-985 |#2| |#3| |#4| |#5|) (-1058) (-799) (-856) (-1074 |#2| |#3| |#4|)) (T -984)) +NIL +(-10 -8 (-15 -1797 ((-112) |#1|)) (-15 -3572 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -1651 ((-650 |#5|) (-650 |#5|) |#1|)) (-15 -2423 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1701 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2262 ((-112) |#1|)) (-15 -4427 ((-112) |#1| |#1|)) (-15 -2082 ((-112) |#1| |#1|)) (-15 -2418 ((-112) |#1|)) (-15 -4006 ((-112) |#1|)) (-15 -3360 ((-2 (|:| |under| |#1|) (|:| -4140 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3677 (|#1| |#1| |#4|)) (-15 -4074 (|#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#4|)) (-15 -2875 ((-112) |#4| |#1|)) (-15 -3952 ((-650 |#4|) |#1|)) (-15 -1709 ((-650 |#4|) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1709 (((-650 |#3|) $) 34)) (-4006 (((-112) $) 27)) (-1797 (((-112) $) 18 (|has| |#1| (-562)))) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) 28)) (-3636 (((-112) $ (-777)) 45)) (-1418 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4448)))) (-3734 (($) 46 T CONST)) (-2262 (((-112) $) 23 (|has| |#1| (-562)))) (-2082 (((-112) $ $) 25 (|has| |#1| (-562)))) (-4427 (((-112) $ $) 24 (|has| |#1| (-562)))) (-2418 (((-112) $) 26 (|has| |#1| (-562)))) (-3572 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 37)) (-3152 (($ (-650 |#4|)) 36)) (-3552 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4448)))) (-2885 (((-650 |#4|) $) 53 (|has| $ (-6 -4448)))) (-4211 ((|#3| $) 35)) (-3846 (((-112) $ (-777)) 44)) (-2282 (((-650 |#4|) $) 54 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 48)) (-3952 (((-650 |#3|) $) 33)) (-2875 (((-112) |#3| $) 32)) (-2063 (((-112) $ (-777)) 43)) (-4122 (((-1168) $) 10)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-3551 (((-1129) $) 11)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3116 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) 39)) (-4303 (((-112) $) 42)) (-4359 (($) 41)) (-3562 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4448)))) (-3964 (($ $) 40)) (-1411 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 61)) (-3677 (($ $ |#3|) 29)) (-3158 (($ $ |#3|) 31)) (-4074 (($ $ |#3|) 30)) (-3798 (((-868) $) 12) (((-650 |#4|) $) 38)) (-1319 (((-112) $ $) 9)) (-1431 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-985 |#1| |#2| |#3| |#4|) (-141) (-1058) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -985)) +((-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *1 (-985 *3 *4 *5 *6)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *1 (-985 *3 *4 *5 *6)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-1074 *3 *4 *2)) (-4 *2 (-856)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) (-2875 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *3 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112)))) (-3158 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))) (-4074 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))) (-3677 (*1 *1 *1 *2) (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2)))) (-3360 (*1 *2 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4140 *1) (|:| |upper| *1))) (-4 *1 (-985 *4 *5 *3 *6)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-2082 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-4427 (*1 *2 *1 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112)))) (-1701 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2423 (*1 *2 *3 *1) (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1651 (*1 *2 *2 *1) (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)))) (-3572 (*1 *2 *2 *1) (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-5 *2 (-112))))) +(-13 (-1109) (-152 |t#4|) (-619 (-650 |t#4|)) (-10 -8 (-6 -4448) (-15 -4382 ((-3 $ "failed") (-650 |t#4|))) (-15 -3152 ($ (-650 |t#4|))) (-15 -4211 (|t#3| $)) (-15 -1709 ((-650 |t#3|) $)) (-15 -3952 ((-650 |t#3|) $)) (-15 -2875 ((-112) |t#3| $)) (-15 -3158 ($ $ |t#3|)) (-15 -4074 ($ $ |t#3|)) (-15 -3677 ($ $ |t#3|)) (-15 -3360 ((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |t#3|)) (-15 -4006 ((-112) $)) (IF (|has| |t#1| (-562)) (PROGN (-15 -2418 ((-112) $)) (-15 -2082 ((-112) $ $)) (-15 -4427 ((-112) $ $)) (-15 -2262 ((-112) $)) (-15 -1701 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2423 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1651 ((-650 |t#4|) (-650 |t#4|) $)) (-15 -3572 ((-650 |t#4|) (-650 |t#4|) $)) (-15 -1797 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-1109) . T) ((-1226) . T)) +((-3918 (((-650 |#4|) |#4| |#4|) 136)) (-2007 (((-650 |#4|) (-650 |#4|) (-112)) 125 (|has| |#1| (-458))) (((-650 |#4|) (-650 |#4|)) 126 (|has| |#1| (-458)))) (-2655 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 44)) (-2888 (((-112) |#4|) 43)) (-2529 (((-650 |#4|) |#4|) 121 (|has| |#1| (-458)))) (-2303 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-1 (-112) |#4|) (-650 |#4|)) 24)) (-3601 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|)) 30)) (-3445 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|)) 31)) (-4302 (((-3 (-2 (|:| |bas| (-482 |#1| |#2| |#3| |#4|)) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|)) 90)) (-3967 (((-650 |#4|) (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3034 (((-650 |#4|) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2622 (((-650 |#4|) (-650 |#4|)) 128)) (-2297 (((-650 |#4|) (-650 |#4|) (-650 |#4|) (-112)) 59) (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 61)) (-4126 ((|#4| |#4| (-650 |#4|)) 60)) (-4318 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 132 (|has| |#1| (-458)))) (-2702 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 135 (|has| |#1| (-458)))) (-3904 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 134 (|has| |#1| (-458)))) (-2288 (((-650 |#4|) (-650 |#4|) (-650 |#4|) (-1 (-650 |#4|) (-650 |#4|))) 105) (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 107) (((-650 |#4|) (-650 |#4|) |#4|) 140) (((-650 |#4|) |#4| |#4|) 137) (((-650 |#4|) (-650 |#4|)) 106)) (-2152 (((-650 |#4|) (-650 |#4|) (-650 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-1492 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 52)) (-1825 (((-112) (-650 |#4|)) 79)) (-2438 (((-112) (-650 |#4|) (-650 (-650 |#4|))) 67)) (-3565 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 37)) (-2580 (((-112) |#4|) 36)) (-3305 (((-650 |#4|) (-650 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-3581 (((-650 |#4|) (-650 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-1327 (((-650 |#4|) (-650 |#4|)) 83)) (-4053 (((-650 |#4|) (-650 |#4|)) 97)) (-1382 (((-112) (-650 |#4|) (-650 |#4|)) 65)) (-4190 (((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|)) 50)) (-2534 (((-112) |#4|) 45))) +(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2288 ((-650 |#4|) (-650 |#4|))) (-15 -2288 ((-650 |#4|) |#4| |#4|)) (-15 -2622 ((-650 |#4|) (-650 |#4|))) (-15 -3918 ((-650 |#4|) |#4| |#4|)) (-15 -2288 ((-650 |#4|) (-650 |#4|) |#4|)) (-15 -2288 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2288 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-1 (-650 |#4|) (-650 |#4|)))) (-15 -1382 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2438 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -1825 ((-112) (-650 |#4|))) (-15 -2303 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-1 (-112) |#4|) (-650 |#4|))) (-15 -3601 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -3445 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -1492 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2888 ((-112) |#4|)) (-15 -2655 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2580 ((-112) |#4|)) (-15 -3565 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2534 ((-112) |#4|)) (-15 -4190 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2297 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2297 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-112))) (-15 -4126 (|#4| |#4| (-650 |#4|))) (-15 -1327 ((-650 |#4|) (-650 |#4|))) (-15 -4302 ((-3 (-2 (|:| |bas| (-482 |#1| |#2| |#3| |#4|)) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|))) (-15 -4053 ((-650 |#4|) (-650 |#4|))) (-15 -3967 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3034 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-458)) (PROGN (-15 -2529 ((-650 |#4|) |#4|)) (-15 -2007 ((-650 |#4|) (-650 |#4|))) (-15 -2007 ((-650 |#4|) (-650 |#4|) (-112))) (-15 -4318 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -3904 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2702 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (PROGN (-15 -3581 ((-650 |#4|) (-650 |#4|))) (-15 -3305 ((-650 |#4|) (-650 |#4|))) (-15 -2152 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) |%noBranch|)) (-562) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -986)) +((-2152 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2702 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-3904 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-4318 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2007 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2529 (*1 *2 *3) (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-3034 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-986 *5 *6 *7 *8)))) (-3967 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-650 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *1 (-986 *6 *7 *8 *9)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-4302 (*1 *2 *3) (|partial| -12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-482 *4 *5 *6 *7)) (|:| -3312 (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-4126 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *2)))) (-2297 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2297 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-4190 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-3565 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-2580 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-2655 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-2888 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-1492 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) (-3445 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) (-1825 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2438 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8)))) (-1382 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2288 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-650 *7) (-650 *7))) (-5 *2 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7)))) (-2288 (*1 *2 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2288 (*1 *2 *2 *3) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *3)))) (-3918 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) (-2288 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) (-2288 (*1 *2 *2) (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))) +(-10 -7 (-15 -2288 ((-650 |#4|) (-650 |#4|))) (-15 -2288 ((-650 |#4|) |#4| |#4|)) (-15 -2622 ((-650 |#4|) (-650 |#4|))) (-15 -3918 ((-650 |#4|) |#4| |#4|)) (-15 -2288 ((-650 |#4|) (-650 |#4|) |#4|)) (-15 -2288 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2288 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-1 (-650 |#4|) (-650 |#4|)))) (-15 -1382 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2438 ((-112) (-650 |#4|) (-650 (-650 |#4|)))) (-15 -1825 ((-112) (-650 |#4|))) (-15 -2303 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-1 (-112) |#4|) (-650 |#4|))) (-15 -3601 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -3445 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 (-1 (-112) |#4|)) (-650 |#4|))) (-15 -1492 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2888 ((-112) |#4|)) (-15 -2655 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2580 ((-112) |#4|)) (-15 -3565 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2534 ((-112) |#4|)) (-15 -4190 ((-2 (|:| |goodPols| (-650 |#4|)) (|:| |badPols| (-650 |#4|))) (-650 |#4|))) (-15 -2297 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2297 ((-650 |#4|) (-650 |#4|) (-650 |#4|) (-112))) (-15 -4126 (|#4| |#4| (-650 |#4|))) (-15 -1327 ((-650 |#4|) (-650 |#4|))) (-15 -4302 ((-3 (-2 (|:| |bas| (-482 |#1| |#2| |#3| |#4|)) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|))) (-15 -4053 ((-650 |#4|) (-650 |#4|))) (-15 -3967 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3034 ((-650 |#4|) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-458)) (PROGN (-15 -2529 ((-650 |#4|) |#4|)) (-15 -2007 ((-650 |#4|) (-650 |#4|))) (-15 -2007 ((-650 |#4|) (-650 |#4|) (-112))) (-15 -4318 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -3904 ((-650 |#4|) (-650 |#4|) (-650 |#4|))) (-15 -2702 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (PROGN (-15 -3581 ((-650 |#4|) (-650 |#4|))) (-15 -3305 ((-650 |#4|) (-650 |#4|))) (-15 -2152 ((-650 |#4|) (-650 |#4|) (-650 |#4|)))) |%noBranch|) |%noBranch|)) +((-2915 (((-2 (|:| R (-695 |#1|)) (|:| A (-695 |#1|)) (|:| |Ainv| (-695 |#1|))) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2336 (((-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1276 |#1|)))) (-695 |#1|) (-1276 |#1|)) 44)) (-4056 (((-695 |#1|) (-695 |#1|) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-987 |#1|) (-10 -7 (-15 -2915 ((-2 (|:| R (-695 |#1|)) (|:| A (-695 |#1|)) (|:| |Ainv| (-695 |#1|))) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4056 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2336 ((-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1276 |#1|)))) (-695 |#1|) (-1276 |#1|)))) (-368)) (T -987)) +((-2336 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-5 *2 (-650 (-2 (|:| C (-695 *5)) (|:| |g| (-1276 *5))))) (-5 *1 (-987 *5)) (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)))) (-4056 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-695 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) (-5 *1 (-987 *5)))) (-2915 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-368)) (-5 *2 (-2 (|:| R (-695 *6)) (|:| A (-695 *6)) (|:| |Ainv| (-695 *6)))) (-5 *1 (-987 *6)) (-5 *3 (-695 *6))))) +(-10 -7 (-15 -2915 ((-2 (|:| R (-695 |#1|)) (|:| A (-695 |#1|)) (|:| |Ainv| (-695 |#1|))) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4056 ((-695 |#1|) (-695 |#1|) (-695 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2336 ((-650 (-2 (|:| C (-695 |#1|)) (|:| |g| (-1276 |#1|)))) (-695 |#1|) (-1276 |#1|)))) +((-2555 (((-424 |#4|) |#4|) 56))) +(((-988 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2555 ((-424 |#4|) |#4|))) (-856) (-799) (-458) (-956 |#3| |#2| |#1|)) (T -988)) +((-2555 (*1 *2 *3) (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-458)) (-5 *2 (-424 *3)) (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4))))) +(-10 -7 (-15 -2555 ((-424 |#4|) |#4|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3469 (($ (-777)) 113 (|has| |#1| (-23)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4449))) (($ $) 89 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-1500 (($ $) 91 (|has| $ (-6 -4449)))) (-2256 (($ $) 101)) (-3552 (($ $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 52)) (-4039 (((-570) (-1 (-112) |#1|) $) 98) (((-570) |#1| $) 97 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 96 (|has| |#1| (-1109)))) (-3286 (($ (-650 |#1|)) 119)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1368 (((-695 |#1|) $ $) 106 (|has| |#1| (-1058)))) (-4300 (($ (-777) |#1|) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 88 (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 87 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1757 ((|#1| $) 103 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-2063 (((-112) $ (-777)) 10)) (-3847 ((|#1| $) 104 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 43 (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2973 (($ $ |#1|) 42 (|has| $ (-6 -4449)))) (-3500 (($ $ (-650 |#1|)) 117)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1243 (-570))) 64)) (-2331 ((|#1| $ $) 107 (|has| |#1| (-1058)))) (-3374 (((-928) $) 118)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-2597 (($ $ $) 105)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 92 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542)))) (($ (-650 |#1|)) 120)) (-3811 (($ (-650 |#1|)) 71)) (-2445 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 85 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 84 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2969 (((-112) $ $) 86 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 83 (|has| |#1| (-856)))) (-3026 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3014 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-570) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-732))) (($ $ |#1|) 108 (|has| |#1| (-732)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-989 |#1|) (-141) (-1058)) (T -989)) +((-3286 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-989 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1058)) (-5 *2 (-928)))) (-2597 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1058)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-989 *3)) (-4 *3 (-1058))))) +(-13 (-1274 |t#1|) (-624 (-650 |t#1|)) (-10 -8 (-15 -3286 ($ (-650 |t#1|))) (-15 -3374 ((-928) $)) (-15 -2597 ($ $ $)) (-15 -3500 ($ $ (-650 |t#1|))))) +(((-34) . T) ((-102) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-624 (-650 |#1|)) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-19 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1226) . T) ((-1274 |#1|) . T)) +((-1347 (((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)) 17))) +(((-990 |#1| |#2|) (-10 -7 (-15 -1347 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) (-1058) (-1058)) (T -990)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-950 *6)) (-5 *1 (-990 *5 *6))))) +(-10 -7 (-15 -1347 ((-950 |#2|) (-1 |#2| |#1|) (-950 |#1|)))) +((-3187 ((|#1| (-950 |#1|)) 14)) (-1808 ((|#1| (-950 |#1|)) 13)) (-4257 ((|#1| (-950 |#1|)) 12)) (-2661 ((|#1| (-950 |#1|)) 16)) (-2027 ((|#1| (-950 |#1|)) 24)) (-3589 ((|#1| (-950 |#1|)) 15)) (-2244 ((|#1| (-950 |#1|)) 17)) (-2950 ((|#1| (-950 |#1|)) 23)) (-3720 ((|#1| (-950 |#1|)) 22))) +(((-991 |#1|) (-10 -7 (-15 -4257 (|#1| (-950 |#1|))) (-15 -1808 (|#1| (-950 |#1|))) (-15 -3187 (|#1| (-950 |#1|))) (-15 -3589 (|#1| (-950 |#1|))) (-15 -2661 (|#1| (-950 |#1|))) (-15 -2244 (|#1| (-950 |#1|))) (-15 -3720 (|#1| (-950 |#1|))) (-15 -2950 (|#1| (-950 |#1|))) (-15 -2027 (|#1| (-950 |#1|)))) (-1058)) (T -991)) +((-2027 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058)))) (-4257 (*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(-10 -7 (-15 -4257 (|#1| (-950 |#1|))) (-15 -1808 (|#1| (-950 |#1|))) (-15 -3187 (|#1| (-950 |#1|))) (-15 -3589 (|#1| (-950 |#1|))) (-15 -2661 (|#1| (-950 |#1|))) (-15 -2244 (|#1| (-950 |#1|))) (-15 -3720 (|#1| (-950 |#1|))) (-15 -2950 (|#1| (-950 |#1|))) (-15 -2027 (|#1| (-950 |#1|)))) +((-3291 (((-3 |#1| "failed") |#1|) 18)) (-1856 (((-3 |#1| "failed") |#1|) 6)) (-1807 (((-3 |#1| "failed") |#1|) 16)) (-3528 (((-3 |#1| "failed") |#1|) 4)) (-2979 (((-3 |#1| "failed") |#1|) 20)) (-1999 (((-3 |#1| "failed") |#1|) 8)) (-1379 (((-3 |#1| "failed") |#1| (-777)) 1)) (-4240 (((-3 |#1| "failed") |#1|) 3)) (-4374 (((-3 |#1| "failed") |#1|) 2)) (-2201 (((-3 |#1| "failed") |#1|) 21)) (-1819 (((-3 |#1| "failed") |#1|) 9)) (-3582 (((-3 |#1| "failed") |#1|) 19)) (-2344 (((-3 |#1| "failed") |#1|) 7)) (-3303 (((-3 |#1| "failed") |#1|) 17)) (-1325 (((-3 |#1| "failed") |#1|) 5)) (-2687 (((-3 |#1| "failed") |#1|) 24)) (-2520 (((-3 |#1| "failed") |#1|) 12)) (-3403 (((-3 |#1| "failed") |#1|) 22)) (-1868 (((-3 |#1| "failed") |#1|) 10)) (-4223 (((-3 |#1| "failed") |#1|) 26)) (-1351 (((-3 |#1| "failed") |#1|) 14)) (-3370 (((-3 |#1| "failed") |#1|) 27)) (-3340 (((-3 |#1| "failed") |#1|) 15)) (-1529 (((-3 |#1| "failed") |#1|) 25)) (-3796 (((-3 |#1| "failed") |#1|) 13)) (-3725 (((-3 |#1| "failed") |#1|) 23)) (-2940 (((-3 |#1| "failed") |#1|) 11))) +(((-992 |#1|) (-141) (-1211)) (T -992)) +((-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-4223 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1529 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-2687 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3725 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3403 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-2201 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3582 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3291 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1807 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3340 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1351 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3796 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-2520 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-2940 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1868 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1819 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1999 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-2344 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1856 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1325 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-3528 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-4240 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-4374 (*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211)))) (-1379 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-777)) (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(-13 (-10 -7 (-15 -1379 ((-3 |t#1| "failed") |t#1| (-777))) (-15 -4374 ((-3 |t#1| "failed") |t#1|)) (-15 -4240 ((-3 |t#1| "failed") |t#1|)) (-15 -3528 ((-3 |t#1| "failed") |t#1|)) (-15 -1325 ((-3 |t#1| "failed") |t#1|)) (-15 -1856 ((-3 |t#1| "failed") |t#1|)) (-15 -2344 ((-3 |t#1| "failed") |t#1|)) (-15 -1999 ((-3 |t#1| "failed") |t#1|)) (-15 -1819 ((-3 |t#1| "failed") |t#1|)) (-15 -1868 ((-3 |t#1| "failed") |t#1|)) (-15 -2940 ((-3 |t#1| "failed") |t#1|)) (-15 -2520 ((-3 |t#1| "failed") |t#1|)) (-15 -3796 ((-3 |t#1| "failed") |t#1|)) (-15 -1351 ((-3 |t#1| "failed") |t#1|)) (-15 -3340 ((-3 |t#1| "failed") |t#1|)) (-15 -1807 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3291 ((-3 |t#1| "failed") |t#1|)) (-15 -3582 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2201 ((-3 |t#1| "failed") |t#1|)) (-15 -3403 ((-3 |t#1| "failed") |t#1|)) (-15 -3725 ((-3 |t#1| "failed") |t#1|)) (-15 -2687 ((-3 |t#1| "failed") |t#1|)) (-15 -1529 ((-3 |t#1| "failed") |t#1|)) (-15 -4223 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)))) +((-2607 ((|#4| |#4| (-650 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1715 ((|#4| |#4| (-650 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1347 ((|#4| (-1 |#4| (-959 |#1|)) |#4|) 31))) +(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1715 (|#4| |#4| |#3|)) (-15 -1715 (|#4| |#4| (-650 |#3|))) (-15 -2607 (|#4| |#4| |#3|)) (-15 -2607 (|#4| |#4| (-650 |#3|))) (-15 -1347 (|#4| (-1 |#4| (-959 |#1|)) |#4|))) (-1058) (-799) (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186))))) (-956 (-959 |#1|) |#2| |#3|)) (T -993)) +((-1347 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-959 *4))) (-4 *4 (-1058)) (-4 *2 (-956 (-959 *4) *5 *6)) (-4 *5 (-799)) (-4 *6 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-5 *1 (-993 *4 *5 *6 *2)))) (-2607 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2)) (-4 *2 (-956 (-959 *4) *5 *6)))) (-2607 (*1 *2 *2 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3)))) (-1715 (*1 *2 *2 *3) (-12 (-5 *3 (-650 *6)) (-4 *6 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2)) (-4 *2 (-956 (-959 *4) *5 *6)))) (-1715 (*1 *2 *2 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)) (-15 -2676 ((-3 $ "failed") (-1186)))))) (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3))))) +(-10 -7 (-15 -1715 (|#4| |#4| |#3|)) (-15 -1715 (|#4| |#4| (-650 |#3|))) (-15 -2607 (|#4| |#4| |#3|)) (-15 -2607 (|#4| |#4| (-650 |#3|))) (-15 -1347 (|#4| (-1 |#4| (-959 |#1|)) |#4|))) +((-4033 ((|#2| |#3|) 35)) (-2708 (((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|) 79)) (-2061 (((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) 100))) +(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2061 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -2708 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|)) (-15 -4033 (|#2| |#3|))) (-354) (-1252 |#1|) (-1252 |#2|) (-730 |#2| |#3|)) (T -994)) +((-4033 (*1 *2 *3) (-12 (-4 *3 (-1252 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-994 *4 *2 *3 *5)) (-4 *4 (-354)) (-4 *5 (-730 *2 *3)))) (-2708 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 *3)) (-5 *2 (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-994 *4 *3 *5 *6)) (-4 *6 (-730 *3 *5)))) (-2061 (*1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| -2077 (-695 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-695 *4)))) (-5 *1 (-994 *3 *4 *5 *6)) (-4 *6 (-730 *4 *5))))) +(-10 -7 (-15 -2061 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -2708 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|)) (-15 -4033 (|#2| |#3|))) +((-2146 (((-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))) (-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570))))) 82))) +(((-995 |#1| |#2|) (-10 -7 (-15 -2146 ((-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))) (-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570))))))) (-650 (-1186)) (-777)) (T -995)) +((-2146 (*1 *2 *2) (-12 (-5 *2 (-996 (-413 (-570)) (-870 *3) (-242 *4 (-777)) (-249 *3 (-413 (-570))))) (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-995 *3 *4))))) +(-10 -7 (-15 -2146 ((-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570)))) (-996 (-413 (-570)) (-870 |#1|) (-242 |#2| (-777)) (-249 |#1| (-413 (-570))))))) +((-2419 (((-112) $ $) NIL)) (-2532 (((-3 (-112) "failed") $) 71)) (-2057 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-311))))) (-4249 (($ $ (-3 (-112) "failed")) 72)) (-3632 (($ (-650 |#4|) |#4|) 25)) (-4122 (((-1168) $) NIL)) (-1366 (($ $) 69)) (-3551 (((-1129) $) NIL)) (-4303 (((-112) $) 70)) (-4359 (($) 30)) (-3816 ((|#4| $) 74)) (-1417 (((-650 |#4|) $) 73)) (-3798 (((-868) $) 68)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-996 |#1| |#2| |#3| |#4|) (-13 (-1109) (-619 (-868)) (-10 -8 (-15 -4359 ($)) (-15 -3632 ($ (-650 |#4|) |#4|)) (-15 -2532 ((-3 (-112) "failed") $)) (-15 -4249 ($ $ (-3 (-112) "failed"))) (-15 -4303 ((-112) $)) (-15 -1417 ((-650 |#4|) $)) (-15 -3816 (|#4| $)) (-15 -1366 ($ $)) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (-15 -2057 ($ $)) |%noBranch|) |%noBranch|))) (-458) (-856) (-799) (-956 |#1| |#3| |#2|)) (T -996)) +((-4359 (*1 *1) (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) (-3632 (*1 *1 *2 *3) (-12 (-5 *2 (-650 *3)) (-4 *3 (-956 *4 *6 *5)) (-4 *4 (-458)) (-4 *5 (-856)) (-4 *6 (-799)) (-5 *1 (-996 *4 *5 *6 *3)))) (-2532 (*1 *2 *1) (|partial| -12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-112)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-4249 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-4303 (*1 *2 *1) (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-112)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-1417 (*1 *2 *1) (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-650 *6)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) (-3816 (*1 *2 *1) (-12 (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)))) (-1366 (*1 *1 *1) (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) (-2057 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-311)) (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3))))) +(-13 (-1109) (-619 (-868)) (-10 -8 (-15 -4359 ($)) (-15 -3632 ($ (-650 |#4|) |#4|)) (-15 -2532 ((-3 (-112) "failed") $)) (-15 -4249 ($ $ (-3 (-112) "failed"))) (-15 -4303 ((-112) $)) (-15 -1417 ((-650 |#4|) $)) (-15 -3816 (|#4| $)) (-15 -1366 ($ $)) (IF (|has| |#1| (-311)) (IF (|has| |#1| (-148)) (-15 -2057 ($ $)) |%noBranch|) |%noBranch|))) +((-3138 (((-112) |#5| |#5|) 44)) (-3335 (((-112) |#5| |#5|) 59)) (-3890 (((-112) |#5| (-650 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-1680 (((-112) (-650 |#4|) (-650 |#4|)) 65)) (-2856 (((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) 70)) (-2264 (((-1281)) 32)) (-2246 (((-1281) (-1168) (-1168) (-1168)) 28)) (-3051 (((-650 |#5|) (-650 |#5|)) 100)) (-2157 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) 92)) (-1768 (((-650 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112)) 122)) (-3012 (((-112) |#5| |#5|) 53)) (-2845 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2391 (((-112) (-650 |#4|) (-650 |#4|)) 64)) (-4350 (((-112) (-650 |#4|) (-650 |#4|)) 66)) (-4181 (((-112) (-650 |#4|) (-650 |#4|)) 67)) (-1610 (((-3 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3934 (((-650 |#5|) (-650 |#5|)) 49))) +(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2246 ((-1281) (-1168) (-1168) (-1168))) (-15 -2264 ((-1281))) (-15 -3138 ((-112) |#5| |#5|)) (-15 -3934 ((-650 |#5|) (-650 |#5|))) (-15 -3012 ((-112) |#5| |#5|)) (-15 -3335 ((-112) |#5| |#5|)) (-15 -1680 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2391 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4350 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4181 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2845 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3890 ((-112) |#5| |#5|)) (-15 -3890 ((-112) |#5| (-650 |#5|))) (-15 -3051 ((-650 |#5|) (-650 |#5|))) (-15 -2856 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2157 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-15 -1768 ((-650 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -1610 ((-3 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -997)) +((-1610 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| -4313 (-650 *9)) (|:| -3665 *4) (|:| |ineq| (-650 *9)))) (-5 *1 (-997 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9)) (-4 *4 (-1080 *6 *7 *8 *9)))) (-1768 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| -4313 (-650 *9)) (|:| -3665 *10) (|:| |ineq| (-650 *9))))) (-5 *1 (-997 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -3665 *7)))) (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) (-2856 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)))) (-3051 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-997 *5 *6 *7 *8 *3)))) (-3890 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-2845 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-4181 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-4350 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3335 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3012 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) (-3138 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-2264 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-2246 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(-10 -7 (-15 -2246 ((-1281) (-1168) (-1168) (-1168))) (-15 -2264 ((-1281))) (-15 -3138 ((-112) |#5| |#5|)) (-15 -3934 ((-650 |#5|) (-650 |#5|))) (-15 -3012 ((-112) |#5| |#5|)) (-15 -3335 ((-112) |#5| |#5|)) (-15 -1680 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2391 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4350 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4181 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2845 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3890 ((-112) |#5| |#5|)) (-15 -3890 ((-112) |#5| (-650 |#5|))) (-15 -3051 ((-650 |#5|) (-650 |#5|))) (-15 -2856 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2157 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-15 -1768 ((-650 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -1610 ((-3 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2676 (((-1186) $) 15)) (-2190 (((-1168) $) 16)) (-3499 (($ (-1186) (-1168)) 14)) (-3798 (((-868) $) 13))) +(((-998) (-13 (-619 (-868)) (-10 -8 (-15 -3499 ($ (-1186) (-1168))) (-15 -2676 ((-1186) $)) (-15 -2190 ((-1168) $))))) (T -998)) +((-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-998)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-998)))) (-2190 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-998))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3499 ($ (-1186) (-1168))) (-15 -2676 ((-1186) $)) (-15 -2190 ((-1168) $)))) +((-1347 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| (-1 |#2| |#1|) |#3|))) (-562) (-562) (-1001 |#1|) (-1001 |#2|)) (T -999)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-562)) (-4 *6 (-562)) (-4 *2 (-1001 *6)) (-5 *1 (-999 *5 *6 *4 *2)) (-4 *4 (-1001 *5))))) +(-10 -7 (-15 -1347 (|#4| (-1 |#2| |#1|) |#3|))) +((-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-1186) "failed") $) 66) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) 96)) (-3152 ((|#2| $) NIL) (((-1186) $) 61) (((-413 (-570)) $) NIL) (((-570) $) 93)) (-2004 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) 115) (((-695 |#2|) (-695 $)) 28)) (-3408 (($) 99)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 76) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 85)) (-4004 (($ $) 10)) (-3641 (((-3 $ "failed") $) 20)) (-1347 (($ (-1 |#2| |#2|) $) 22)) (-2310 (($) 16)) (-2545 (($ $) 55)) (-3519 (($ $) NIL) (($ $ (-777)) NIL) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2397 (($ $) 12)) (-1411 (((-899 (-570)) $) 71) (((-899 (-384)) $) 80) (((-542) $) 40) (((-384) $) 44) (((-227) $) 48)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 91) (($ |#2|) NIL) (($ (-1186)) 58)) (-2862 (((-777)) 31)) (-2948 (((-112) $ $) 51))) +(((-1000 |#1| |#2|) (-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -1411 ((-227) |#1|)) (-15 -1411 ((-384) |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -3798 (|#1| (-1186))) (-15 -4382 ((-3 (-1186) "failed") |#1|)) (-15 -3152 ((-1186) |#1|)) (-15 -3408 (|#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -2004 ((-695 |#2|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| |#1|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-1001 |#2|) (-562)) (T -1000)) +((-2862 (*1 *2) (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-1000 *3 *4)) (-4 *3 (-1001 *4))))) +(-10 -8 (-15 -2948 ((-112) |#1| |#1|)) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -1411 ((-227) |#1|)) (-15 -1411 ((-384) |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -3798 (|#1| (-1186))) (-15 -4382 ((-3 (-1186) "failed") |#1|)) (-15 -3152 ((-1186) |#1|)) (-15 -3408 (|#1|)) (-15 -2545 (|#1| |#1|)) (-15 -2397 (|#1| |#1|)) (-15 -4004 (|#1| |#1|)) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -2125 ((-896 (-570) |#1|) |#1| (-899 (-570)) (-896 (-570) |#1|))) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -2004 ((-695 |#2|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| |#1|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3356 ((|#1| $) 147 (|has| |#1| (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-2900 (((-424 (-1182 $)) (-1182 $)) 138 (|has| |#1| (-916)))) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 141 (|has| |#1| (-916)))) (-4073 (((-112) $ $) 65)) (-2579 (((-570) $) 128 (|has| |#1| (-826)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 185) (((-3 (-1186) "failed") $) 136 (|has| |#1| (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) 119 (|has| |#1| (-1047 (-570)))) (((-3 (-570) "failed") $) 117 (|has| |#1| (-1047 (-570))))) (-3152 ((|#1| $) 186) (((-1186) $) 137 (|has| |#1| (-1047 (-1186)))) (((-413 (-570)) $) 120 (|has| |#1| (-1047 (-570)))) (((-570) $) 118 (|has| |#1| (-1047 (-570))))) (-2372 (($ $ $) 61)) (-2004 (((-695 (-570)) (-695 $)) 160 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 159 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 158) (((-695 |#1|) (-695 $)) 157)) (-2229 (((-3 $ "failed") $) 37)) (-3408 (($) 145 (|has| |#1| (-551)))) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3701 (((-112) $) 79)) (-2135 (((-112) $) 130 (|has| |#1| (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 154 (|has| |#1| (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 153 (|has| |#1| (-893 (-384))))) (-2481 (((-112) $) 35)) (-4004 (($ $) 149)) (-4400 ((|#1| $) 151)) (-3641 (((-3 $ "failed") $) 116 (|has| |#1| (-1161)))) (-3367 (((-112) $) 129 (|has| |#1| (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3382 (($ $ $) 126 (|has| |#1| (-856)))) (-2876 (($ $ $) 125 (|has| |#1| (-856)))) (-1347 (($ (-1 |#1| |#1|) $) 177)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-2310 (($) 115 (|has| |#1| (-1161)) CONST)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-2545 (($ $) 146 (|has| |#1| (-311)))) (-4140 ((|#1| $) 143 (|has| |#1| (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 140 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 139 (|has| |#1| (-916)))) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) 183 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 181 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 180 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 179 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 178 (|has| |#1| (-520 (-1186) |#1|)))) (-3788 (((-777) $) 64)) (-1872 (($ $ |#1|) 184 (|has| |#1| (-290 |#1| |#1|)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-3519 (($ $) 176 (|has| |#1| (-235))) (($ $ (-777)) 174 (|has| |#1| (-235))) (($ $ (-1186)) 172 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 171 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 170 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 169 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-2397 (($ $) 148)) (-4413 ((|#1| $) 150)) (-1411 (((-899 (-570)) $) 156 (|has| |#1| (-620 (-899 (-570))))) (((-899 (-384)) $) 155 (|has| |#1| (-620 (-899 (-384))))) (((-542) $) 133 (|has| |#1| (-620 (-542)))) (((-384) $) 132 (|has| |#1| (-1031))) (((-227) $) 131 (|has| |#1| (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 142 (-1760 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ |#1|) 189) (($ (-1186)) 135 (|has| |#1| (-1047 (-1186))))) (-2917 (((-3 $ "failed") $) 134 (-2779 (|has| |#1| (-146)) (-1760 (|has| $ (-146)) (|has| |#1| (-916)))))) (-2862 (((-777)) 32 T CONST)) (-1442 ((|#1| $) 144 (|has| |#1| (-551)))) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-2216 (($ $) 127 (|has| |#1| (-826)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $) 175 (|has| |#1| (-235))) (($ $ (-777)) 173 (|has| |#1| (-235))) (($ $ (-1186)) 168 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 167 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 166 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 165 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2981 (((-112) $ $) 123 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 122 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 124 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 121 (|has| |#1| (-856)))) (-3037 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187))) +(((-1001 |#1|) (-141) (-562)) (T -1001)) +((-3037 (*1 *1 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-4400 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-4413 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-4004 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-2397 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311)))) (-2545 (*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311)))) (-3408 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-551)) (-4 *2 (-562)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551))))) +(-13 (-368) (-38 |t#1|) (-1047 |t#1|) (-343 |t#1|) (-233 |t#1|) (-382 |t#1|) (-891 |t#1|) (-406 |t#1|) (-10 -8 (-15 -3037 ($ |t#1| |t#1|)) (-15 -4400 (|t#1| $)) (-15 -4413 (|t#1| $)) (-15 -4004 ($ $)) (-15 -2397 ($ $)) (IF (|has| |t#1| (-1161)) (-6 (-1161)) |%noBranch|) (IF (|has| |t#1| (-1047 (-570))) (PROGN (-6 (-1047 (-570))) (-6 (-1047 (-413 (-570))))) |%noBranch|) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-826)) (-6 (-826)) |%noBranch|) (IF (|has| |t#1| (-1031)) (-6 (-1031)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1047 (-1186))) (-6 (-1047 (-1186))) |%noBranch|) (IF (|has| |t#1| (-311)) (PROGN (-15 -3356 (|t#1| $)) (-15 -2545 ($ $))) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3408 ($)) (-15 -1442 (|t#1| $)) (-15 -4140 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 #1=(-1186)) |has| |#1| (-1047 (-1186))) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-227)) |has| |#1| (-1031)) ((-620 (-384)) |has| |#1| (-1031)) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-620 (-899 (-384))) |has| |#1| (-620 (-899 (-384)))) ((-620 (-899 (-570))) |has| |#1| (-620 (-899 (-570)))) ((-233 |#1|) . T) ((-235) |has| |#1| (-235)) ((-245) . T) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-294) . T) ((-311) . T) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-368) . T) ((-343 |#1|) . T) ((-382 |#1|) . T) ((-406 |#1|) . T) ((-458) . T) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) . T) ((-723 |#1|) . T) ((-723 $) . T) ((-732) . T) ((-797) |has| |#1| (-826)) ((-798) |has| |#1| (-826)) ((-800) |has| |#1| (-826)) ((-801) |has| |#1| (-826)) ((-826) |has| |#1| (-826)) ((-854) |has| |#1| (-826)) ((-856) -2779 (|has| |#1| (-856)) (|has| |#1| (-826))) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-893 (-384)) |has| |#1| (-893 (-384))) ((-893 (-570)) |has| |#1| (-893 (-570))) ((-891 |#1|) . T) ((-916) |has| |#1| (-916)) ((-927) . T) ((-1031) |has| |#1| (-1031)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-570))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #1#) |has| |#1| (-1047 (-1186))) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-1161)) ((-1226) . T) ((-1230) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-2319 (($ (-1151 |#1| |#2|)) 11)) (-2433 (((-1151 |#1| |#2|) $) 12)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1872 ((|#2| $ (-242 |#1| |#2|)) 16)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL))) +(((-1002 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2319 ($ (-1151 |#1| |#2|))) (-15 -2433 ((-1151 |#1| |#2|) $)) (-15 -1872 (|#2| $ (-242 |#1| |#2|))))) (-928) (-368)) (T -1002)) +((-2319 (*1 *1 *2) (-12 (-5 *2 (-1151 *3 *4)) (-14 *3 (-928)) (-4 *4 (-368)) (-5 *1 (-1002 *3 *4)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-1151 *3 *4)) (-5 *1 (-1002 *3 *4)) (-14 *3 (-928)) (-4 *4 (-368)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 (-242 *4 *2)) (-14 *4 (-928)) (-4 *2 (-368)) (-5 *1 (-1002 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -2319 ($ (-1151 |#1| |#2|))) (-15 -2433 ((-1151 |#1| |#2|) $)) (-15 -1872 (|#2| $ (-242 |#1| |#2|))))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1419 (((-1144) $) 9)) (-3798 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1003) (-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $))))) (T -1003)) +((-1419 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1003))))) +(-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-4159 (($ $) 47)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-3847 (((-777) $) 46)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-2724 ((|#1| $) 45)) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2328 ((|#1| |#1| $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2864 ((|#1| $) 48)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1756 ((|#1| $) 44)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1004 |#1|) (-141) (-1226)) (T -1004)) +((-2328 (*1 *2 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226)))) (-4159 (*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1226)) (-5 *2 (-777)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4448) (-15 -2328 (|t#1| |t#1| $)) (-15 -2864 (|t#1| $)) (-15 -4159 ($ $)) (-15 -3847 ((-777) $)) (-15 -2724 (|t#1| $)) (-15 -1756 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-1359 (((-112) $) 43)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3152 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#2| $) 44)) (-3369 (((-3 (-413 (-570)) "failed") $) 78)) (-3108 (((-112) $) 72)) (-3875 (((-413 (-570)) $) 76)) (-2481 (((-112) $) 42)) (-2233 ((|#2| $) 22)) (-1347 (($ (-1 |#2| |#2|) $) 19)) (-1820 (($ $) 58)) (-3519 (($ $) NIL) (($ $ (-777)) NIL) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-1411 (((-542) $) 67)) (-3897 (($ $) 17)) (-3798 (((-868) $) 53) (($ (-570)) 39) (($ |#2|) 37) (($ (-413 (-570))) NIL)) (-2862 (((-777)) 10)) (-2216 ((|#2| $) 71)) (-2923 (((-112) $ $) 26)) (-2948 (((-112) $ $) 69)) (-3026 (($ $) 30) (($ $ $) 29)) (-3014 (($ $ $) 27)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL))) +(((-1005 |#1| |#2|) (-10 -8 (-15 -3798 (|#1| (-413 (-570)))) (-15 -2948 ((-112) |#1| |#1|)) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 -1820 (|#1| |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 -2481 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-1006 |#2|) (-174)) (T -1005)) +((-2862 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-1005 *3 *4)) (-4 *3 (-1006 *4))))) +(-10 -8 (-15 -3798 (|#1| (-413 (-570)))) (-15 -2948 ((-112) |#1| |#1|)) (-15 * (|#1| (-413 (-570)) |#1|)) (-15 * (|#1| |#1| (-413 (-570)))) (-15 -1820 (|#1| |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -2216 (|#2| |#1|)) (-15 -2233 (|#2| |#1|)) (-15 -3897 (|#1| |#1|)) (-15 -1347 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 -2481 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 * (|#1| (-777) |#1|)) (-15 -1359 ((-112) |#1|)) (-15 * (|#1| (-928) |#1|)) (-15 -3014 (|#1| |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4382 (((-3 (-570) "failed") $) 127 (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 125 (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) 122)) (-3152 (((-570) $) 126 (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) 124 (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) 123)) (-2004 (((-695 (-570)) (-695 $)) 97 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 96 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 95) (((-695 |#1|) (-695 $)) 94)) (-2229 (((-3 $ "failed") $) 37)) (-3827 ((|#1| $) 87)) (-3369 (((-3 (-413 (-570)) "failed") $) 83 (|has| |#1| (-551)))) (-3108 (((-112) $) 85 (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) 84 (|has| |#1| (-551)))) (-2605 (($ |#1| |#1| |#1| |#1|) 88)) (-2481 (((-112) $) 35)) (-2233 ((|#1| $) 89)) (-3382 (($ $ $) 76 (|has| |#1| (-856)))) (-2876 (($ $ $) 75 (|has| |#1| (-856)))) (-1347 (($ (-1 |#1| |#1|) $) 98)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 80 (|has| |#1| (-368)))) (-1635 ((|#1| $) 90)) (-2420 ((|#1| $) 91)) (-2156 ((|#1| $) 92)) (-3551 (((-1129) $) 11)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) 104 (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) 102 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) 101 (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) 100 (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) 99 (|has| |#1| (-520 (-1186) |#1|)))) (-1872 (($ $ |#1|) 105 (|has| |#1| (-290 |#1| |#1|)))) (-3519 (($ $) 121 (|has| |#1| (-235))) (($ $ (-777)) 119 (|has| |#1| (-235))) (($ $ (-1186)) 117 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 116 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 115 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 114 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-1411 (((-542) $) 81 (|has| |#1| (-620 (-542))))) (-3897 (($ $) 93)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 44) (($ (-413 (-570))) 70 (-2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-2917 (((-3 $ "failed") $) 82 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-2216 ((|#1| $) 86 (|has| |#1| (-1069)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $) 120 (|has| |#1| (-235))) (($ $ (-777)) 118 (|has| |#1| (-235))) (($ $ (-1186)) 113 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 112 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 111 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 110 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2981 (((-112) $ $) 73 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 72 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 74 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 71 (|has| |#1| (-856)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 79 (|has| |#1| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-413 (-570))) 78 (|has| |#1| (-368))) (($ (-413 (-570)) $) 77 (|has| |#1| (-368))))) +(((-1006 |#1|) (-141) (-174)) (T -1006)) +((-3897 (*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-1635 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2605 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570))))) (-3369 (*1 *2 *1) (|partial| -12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-413 (-570)))))) +(-13 (-38 |t#1|) (-417 |t#1|) (-233 |t#1|) (-343 |t#1|) (-382 |t#1|) (-10 -8 (-15 -3897 ($ $)) (-15 -2156 (|t#1| $)) (-15 -2420 (|t#1| $)) (-15 -1635 (|t#1| $)) (-15 -2233 (|t#1| $)) (-15 -2605 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3827 (|t#1| $)) (IF (|has| |t#1| (-294)) (-6 (-294)) |%noBranch|) (IF (|has| |t#1| (-856)) (-6 (-856)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-245)) |%noBranch|) (IF (|has| |t#1| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1069)) (-15 -2216 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-551)) (PROGN (-15 -3108 ((-112) $)) (-15 -3875 ((-413 (-570)) $)) (-15 -3369 ((-3 (-413 (-570)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-368)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-368)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-368))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-233 |#1|) . T) ((-235) |has| |#1| (-235)) ((-245) |has| |#1| (-368)) ((-290 |#1| $) |has| |#1| (-290 |#1| |#1|)) ((-294) -2779 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-313 |#1|) |has| |#1| (-313 |#1|)) ((-343 |#1|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-520 (-1186) |#1|) |has| |#1| (-520 (-1186) |#1|)) ((-520 |#1| |#1|) |has| |#1| (-313 |#1|)) ((-652 #0#) |has| |#1| (-368)) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-368)) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-368)) ((-646 |#1|) . T) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-368)) ((-723 |#1|) . T) ((-732) . T) ((-856) |has| |#1| (-856)) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1060 #0#) |has| |#1| (-368)) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-1065 #0#) |has| |#1| (-368)) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-368)) (|has| |#1| (-294))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-1347 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1007 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#3| (-1 |#4| |#2|) |#1|))) (-1006 |#2|) (-174) (-1006 |#4|) (-174)) (T -1007)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1006 *6)) (-5 *1 (-1007 *4 *5 *2 *6)) (-4 *4 (-1006 *5))))) +(-10 -7 (-15 -1347 (|#3| (-1 |#4| |#2|) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3827 ((|#1| $) 12)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-551)))) (-3108 (((-112) $) NIL (|has| |#1| (-551)))) (-3875 (((-413 (-570)) $) NIL (|has| |#1| (-551)))) (-2605 (($ |#1| |#1| |#1| |#1|) 16)) (-2481 (((-112) $) NIL)) (-2233 ((|#1| $) NIL)) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1635 ((|#1| $) 15)) (-2420 ((|#1| $) 14)) (-2156 ((|#1| $) 13)) (-3551 (((-1129) $) NIL)) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-313 |#1|))) (($ $ (-298 |#1|)) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-298 |#1|))) NIL (|has| |#1| (-313 |#1|))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-520 (-1186) |#1|))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-520 (-1186) |#1|)))) (-1872 (($ $ |#1|) NIL (|has| |#1| (-290 |#1| |#1|)))) (-3519 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3897 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-1069)))) (-1809 (($) 8 T CONST)) (-1817 (($) 10 T CONST)) (-2835 (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-368))))) +(((-1008 |#1|) (-1006 |#1|) (-174)) (T -1008)) +NIL +(-1006 |#1|) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3636 (((-112) $ (-777)) NIL)) (-3734 (($) NIL T CONST)) (-4159 (($ $) 23)) (-1447 (($ (-650 |#1|)) 33)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-3847 (((-777) $) 26)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1334 ((|#1| $) 28)) (-2213 (($ |#1| $) 17)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-2724 ((|#1| $) 27)) (-4067 ((|#1| $) 22)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2328 ((|#1| |#1| $) 16)) (-4303 (((-112) $) 18)) (-4359 (($) NIL)) (-2864 ((|#1| $) 21)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) NIL)) (-1756 ((|#1| $) 30)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1009 |#1|) (-13 (-1004 |#1|) (-10 -8 (-15 -1447 ($ (-650 |#1|))))) (-1109)) (T -1009)) +((-1447 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1009 *3))))) +(-13 (-1004 |#1|) (-10 -8 (-15 -1447 ($ (-650 |#1|))))) +((-3815 (($ $) 12)) (-3309 (($ $ (-570)) 13))) +(((-1010 |#1|) (-10 -8 (-15 -3815 (|#1| |#1|)) (-15 -3309 (|#1| |#1| (-570)))) (-1011)) (T -1010)) +NIL +(-10 -8 (-15 -3815 (|#1| |#1|)) (-15 -3309 (|#1| |#1| (-570)))) +((-3815 (($ $) 6)) (-3309 (($ $ (-570)) 7)) (** (($ $ (-413 (-570))) 8))) +(((-1011) (-141)) (T -1011)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-413 (-570))))) (-3309 (*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-570)))) (-3815 (*1 *1 *1) (-4 *1 (-1011)))) +(-13 (-10 -8 (-15 -3815 ($ $)) (-15 -3309 ($ $ (-570))) (-15 ** ($ $ (-413 (-570)))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2681 (((-2 (|:| |num| (-1276 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| (-413 |#2|) (-368)))) (-2318 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2234 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-2365 (((-695 (-413 |#2|)) (-1276 $)) NIL) (((-695 (-413 |#2|))) NIL)) (-3142 (((-413 |#2|) $) NIL)) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| (-413 |#2|) (-354)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2555 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-4073 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-3475 (((-777)) NIL (|has| (-413 |#2|) (-373)))) (-4278 (((-112)) NIL)) (-2904 (((-112) |#1|) 165) (((-112) |#2|) 169)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-3 (-413 |#2|) "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| (-413 |#2|) (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| (-413 |#2|) (-1047 (-413 (-570))))) (((-413 |#2|) $) NIL)) (-2427 (($ (-1276 (-413 |#2|)) (-1276 $)) NIL) (($ (-1276 (-413 |#2|))) 81) (($ (-1276 |#2|) |#2|) NIL)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-413 |#2|) (-354)))) (-2372 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-2684 (((-695 (-413 |#2|)) $ (-1276 $)) NIL) (((-695 (-413 |#2|)) $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-413 |#2|) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-413 |#2|))) (|:| |vec| (-1276 (-413 |#2|)))) (-695 $) (-1276 $)) NIL) (((-695 (-413 |#2|)) (-695 $)) NIL)) (-2236 (((-1276 $) (-1276 $)) NIL)) (-3600 (($ |#3|) 75) (((-3 $ "failed") (-413 |#3|)) NIL (|has| (-413 |#2|) (-368)))) (-2229 (((-3 $ "failed") $) NIL)) (-3610 (((-650 (-650 |#1|))) NIL (|has| |#1| (-373)))) (-1644 (((-112) |#1| |#1|) NIL)) (-3979 (((-928)) NIL)) (-3408 (($) NIL (|has| (-413 |#2|) (-373)))) (-2164 (((-112)) NIL)) (-3512 (((-112) |#1|) 61) (((-112) |#2|) 167)) (-2380 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| (-413 |#2|) (-368)))) (-1908 (($ $) NIL)) (-3740 (($) NIL (|has| (-413 |#2|) (-354)))) (-4316 (((-112) $) NIL (|has| (-413 |#2|) (-354)))) (-3640 (($ $ (-777)) NIL (|has| (-413 |#2|) (-354))) (($ $) NIL (|has| (-413 |#2|) (-354)))) (-3701 (((-112) $) NIL (|has| (-413 |#2|) (-368)))) (-4202 (((-928) $) NIL (|has| (-413 |#2|) (-354))) (((-839 (-928)) $) NIL (|has| (-413 |#2|) (-354)))) (-2481 (((-112) $) NIL)) (-1646 (((-777)) NIL)) (-3757 (((-1276 $) (-1276 $)) NIL)) (-2233 (((-413 |#2|) $) NIL)) (-1408 (((-650 (-959 |#1|)) (-1186)) NIL (|has| |#1| (-368)))) (-3641 (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-2780 ((|#3| $) NIL (|has| (-413 |#2|) (-368)))) (-2484 (((-928) $) NIL (|has| (-413 |#2|) (-373)))) (-3586 ((|#3| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4122 (((-1168) $) NIL)) (-3145 (((-695 (-413 |#2|))) 57)) (-2122 (((-695 (-413 |#2|))) 56)) (-1820 (($ $) NIL (|has| (-413 |#2|) (-368)))) (-4198 (($ (-1276 |#2|) |#2|) 82)) (-4377 (((-695 (-413 |#2|))) 55)) (-3917 (((-695 (-413 |#2|))) 54)) (-3092 (((-2 (|:| |num| (-695 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3622 (((-2 (|:| |num| (-1276 |#2|)) (|:| |den| |#2|)) $) 88)) (-3306 (((-1276 $)) 51)) (-2061 (((-1276 $)) 50)) (-1653 (((-112) $) NIL)) (-3558 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2310 (($) NIL (|has| (-413 |#2|) (-354)) CONST)) (-2155 (($ (-928)) NIL (|has| (-413 |#2|) (-373)))) (-2716 (((-3 |#2| "failed")) 70)) (-3551 (((-1129) $) NIL)) (-2254 (((-777)) NIL)) (-2335 (($) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| (-413 |#2|) (-368)))) (-1869 (($ (-650 $)) NIL (|has| (-413 |#2|) (-368))) (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| (-413 |#2|) (-354)))) (-3801 (((-424 $) $) NIL (|has| (-413 |#2|) (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-413 |#2|) (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2410 (((-3 $ "failed") $ $) NIL (|has| (-413 |#2|) (-368)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| (-413 |#2|) (-368)))) (-3788 (((-777) $) NIL (|has| (-413 |#2|) (-368)))) (-1872 ((|#1| $ |#1| |#1|) NIL)) (-1801 (((-3 |#2| "failed")) 68)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| (-413 |#2|) (-368)))) (-3511 (((-413 |#2|) (-1276 $)) NIL) (((-413 |#2|)) 47)) (-2174 (((-777) $) NIL (|has| (-413 |#2|) (-354))) (((-3 (-777) "failed") $ $) NIL (|has| (-413 |#2|) (-354)))) (-3519 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-4169 (((-695 (-413 |#2|)) (-1276 $) (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368)))) (-1881 ((|#3|) 58)) (-2042 (($) NIL (|has| (-413 |#2|) (-354)))) (-1861 (((-1276 (-413 |#2|)) $ (-1276 $)) NIL) (((-695 (-413 |#2|)) (-1276 $) (-1276 $)) NIL) (((-1276 (-413 |#2|)) $) 83) (((-695 (-413 |#2|)) (-1276 $)) NIL)) (-1411 (((-1276 (-413 |#2|)) $) NIL) (($ (-1276 (-413 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| (-413 |#2|) (-354)))) (-2699 (((-1276 $) (-1276 $)) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 |#2|)) NIL) (($ (-413 (-570))) NIL (-2779 (|has| (-413 |#2|) (-1047 (-413 (-570)))) (|has| (-413 |#2|) (-368)))) (($ $) NIL (|has| (-413 |#2|) (-368)))) (-2917 (($ $) NIL (|has| (-413 |#2|) (-354))) (((-3 $ "failed") $) NIL (|has| (-413 |#2|) (-146)))) (-4042 ((|#3| $) NIL)) (-2862 (((-777)) NIL T CONST)) (-2535 (((-112)) 65)) (-4030 (((-112) |#1|) 170) (((-112) |#2|) 171)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) NIL)) (-3258 (((-112) $ $) NIL (|has| (-413 |#2|) (-368)))) (-2537 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2468 (((-112)) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-1 (-413 |#2|) (-413 |#2|)) (-777)) NIL (|has| (-413 |#2|) (-368))) (($ $ (-1 (-413 |#2|) (-413 |#2|))) NIL (|has| (-413 |#2|) (-368))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| (-413 |#2|) (-368)) (|has| (-413 |#2|) (-907 (-1186))))) (($ $ (-777)) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354)))) (($ $) NIL (-2779 (-12 (|has| (-413 |#2|) (-235)) (|has| (-413 |#2|) (-368))) (|has| (-413 |#2|) (-354))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ $) NIL (|has| (-413 |#2|) (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| (-413 |#2|) (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 |#2|)) NIL) (($ (-413 |#2|) $) NIL) (($ (-413 (-570)) $) NIL (|has| (-413 |#2|) (-368))) (($ $ (-413 (-570))) NIL (|has| (-413 |#2|) (-368))))) +(((-1012 |#1| |#2| |#3| |#4| |#5|) (-347 |#1| |#2| |#3|) (-1230) (-1252 |#1|) (-1252 (-413 |#2|)) (-413 |#2|) (-777)) (T -1012)) +NIL +(-347 |#1| |#2| |#3|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3297 (((-650 (-570)) $) 73)) (-3035 (($ (-650 (-570))) 81)) (-3356 (((-570) $) 48 (|has| (-570) (-311)))) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL (|has| (-570) (-826)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) 60) (((-3 (-1186) "failed") $) NIL (|has| (-570) (-1047 (-1186)))) (((-3 (-413 (-570)) "failed") $) 57 (|has| (-570) (-1047 (-570)))) (((-3 (-570) "failed") $) 60 (|has| (-570) (-1047 (-570))))) (-3152 (((-570) $) NIL) (((-1186) $) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) NIL (|has| (-570) (-1047 (-570)))) (((-570) $) NIL (|has| (-570) (-1047 (-570))))) (-2372 (($ $ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| (-570) (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3408 (($) NIL (|has| (-570) (-551)))) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2255 (((-650 (-570)) $) 79)) (-2135 (((-112) $) NIL (|has| (-570) (-826)))) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (|has| (-570) (-893 (-570)))) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (|has| (-570) (-893 (-384))))) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL)) (-4400 (((-570) $) 45)) (-3641 (((-3 $ "failed") $) NIL (|has| (-570) (-1161)))) (-3367 (((-112) $) NIL (|has| (-570) (-826)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-570) (-856)))) (-1347 (($ (-1 (-570) (-570)) $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL)) (-2310 (($) NIL (|has| (-570) (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-2545 (($ $) NIL (|has| (-570) (-311))) (((-413 (-570)) $) 50)) (-4352 (((-1166 (-570)) $) 78)) (-3955 (($ (-650 (-570)) (-650 (-570))) 82)) (-4140 (((-570) $) 64 (|has| (-570) (-551)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| (-570) (-916)))) (-3801 (((-424 $) $) NIL)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-1725 (($ $ (-650 (-570)) (-650 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-570) (-570)) NIL (|has| (-570) (-313 (-570)))) (($ $ (-298 (-570))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-298 (-570)))) NIL (|has| (-570) (-313 (-570)))) (($ $ (-650 (-1186)) (-650 (-570))) NIL (|has| (-570) (-520 (-1186) (-570)))) (($ $ (-1186) (-570)) NIL (|has| (-570) (-520 (-1186) (-570))))) (-3788 (((-777) $) NIL)) (-1872 (($ $ (-570)) NIL (|has| (-570) (-290 (-570) (-570))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $) 15 (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2397 (($ $) NIL)) (-4413 (((-570) $) 47)) (-2991 (((-650 (-570)) $) 80)) (-1411 (((-899 (-570)) $) NIL (|has| (-570) (-620 (-899 (-570))))) (((-899 (-384)) $) NIL (|has| (-570) (-620 (-899 (-384))))) (((-542) $) NIL (|has| (-570) (-620 (-542)))) (((-384) $) NIL (|has| (-570) (-1031))) (((-227) $) NIL (|has| (-570) (-1031)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-570) (-916))))) (-3798 (((-868) $) 107) (($ (-570)) 51) (($ $) NIL) (($ (-413 (-570))) 27) (($ (-570)) 51) (($ (-1186)) NIL (|has| (-570) (-1047 (-1186)))) (((-413 (-570)) $) 25)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-570) (-916))) (|has| (-570) (-146))))) (-2862 (((-777)) 13 T CONST)) (-1442 (((-570) $) 62 (|has| (-570) (-551)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-2216 (($ $) NIL (|has| (-570) (-826)))) (-1809 (($) 14 T CONST)) (-1817 (($) 17 T CONST)) (-2835 (($ $) NIL (|has| (-570) (-235))) (($ $ (-777)) NIL (|has| (-570) (-235))) (($ $ (-1186)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| (-570) (-907 (-1186)))) (($ $ (-1 (-570) (-570)) (-777)) NIL) (($ $ (-1 (-570) (-570))) NIL)) (-2981 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2923 (((-112) $ $) 21)) (-2969 (((-112) $ $) NIL (|has| (-570) (-856)))) (-2948 (((-112) $ $) 40 (|has| (-570) (-856)))) (-3037 (($ $ $) 36) (($ (-570) (-570)) 38)) (-3026 (($ $) 23) (($ $ $) 30)) (-3014 (($ $ $) 28)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 32) (($ $ $) 34) (($ $ (-413 (-570))) NIL) (($ (-413 (-570)) $) NIL) (($ (-570) $) 32) (($ $ (-570)) NIL))) +(((-1013 |#1|) (-13 (-1001 (-570)) (-619 (-413 (-570))) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -3297 ((-650 (-570)) $)) (-15 -4352 ((-1166 (-570)) $)) (-15 -2255 ((-650 (-570)) $)) (-15 -2991 ((-650 (-570)) $)) (-15 -3035 ($ (-650 (-570)))) (-15 -3955 ($ (-650 (-570)) (-650 (-570)))))) (-570)) (T -1013)) +((-2545 (*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-3035 (*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) (-3955 (*1 *1 *2 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(-13 (-1001 (-570)) (-619 (-413 (-570))) (-10 -8 (-15 -2545 ((-413 (-570)) $)) (-15 -3297 ((-650 (-570)) $)) (-15 -4352 ((-1166 (-570)) $)) (-15 -2255 ((-650 (-570)) $)) (-15 -2991 ((-650 (-570)) $)) (-15 -3035 ($ (-650 (-570)))) (-15 -3955 ($ (-650 (-570)) (-650 (-570)))))) +((-1897 (((-52) (-413 (-570)) (-570)) 9))) +(((-1014) (-10 -7 (-15 -1897 ((-52) (-413 (-570)) (-570))))) (T -1014)) +((-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-570))) (-5 *4 (-570)) (-5 *2 (-52)) (-5 *1 (-1014))))) +(-10 -7 (-15 -1897 ((-52) (-413 (-570)) (-570)))) +((-3475 (((-570)) 23)) (-1942 (((-570)) 28)) (-2956 (((-1281) (-570)) 26)) (-2747 (((-570) (-570)) 29) (((-570)) 22))) +(((-1015) (-10 -7 (-15 -2747 ((-570))) (-15 -3475 ((-570))) (-15 -2747 ((-570) (-570))) (-15 -2956 ((-1281) (-570))) (-15 -1942 ((-570))))) (T -1015)) +((-1942 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1015)))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) (-3475 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) (-2747 (*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015))))) +(-10 -7 (-15 -2747 ((-570))) (-15 -3475 ((-570))) (-15 -2747 ((-570) (-570))) (-15 -2956 ((-1281) (-570))) (-15 -1942 ((-570)))) +((-2795 (((-424 |#1|) |#1|) 43)) (-3801 (((-424 |#1|) |#1|) 41))) +(((-1016 |#1|) (-10 -7 (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2795 ((-424 |#1|) |#1|))) (-1252 (-413 (-570)))) (T -1016)) +((-2795 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1252 (-413 (-570)))))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1252 (-413 (-570))))))) +(-10 -7 (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2795 ((-424 |#1|) |#1|))) +((-3369 (((-3 (-413 (-570)) "failed") |#1|) 15)) (-3108 (((-112) |#1|) 14)) (-3875 (((-413 (-570)) |#1|) 10))) +(((-1017 |#1|) (-10 -7 (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|))) (-1047 (-413 (-570)))) (T -1017)) +((-3369 (*1 *2 *3) (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) (-4 *3 (-1047 *2)))) (-3108 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1017 *3)) (-4 *3 (-1047 (-413 (-570)))))) (-3875 (*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) (-4 *3 (-1047 *2))))) +(-10 -7 (-15 -3875 ((-413 (-570)) |#1|)) (-15 -3108 ((-112) |#1|)) (-15 -3369 ((-3 (-413 (-570)) "failed") |#1|))) +((-3945 ((|#2| $ "value" |#2|) 12)) (-1872 ((|#2| $ "value") 10)) (-2650 (((-112) $ $) 18))) +(((-1018 |#1| |#2|) (-10 -8 (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -2650 ((-112) |#1| |#1|)) (-15 -1872 (|#2| |#1| "value"))) (-1019 |#2|) (-1226)) (T -1018)) +NIL +(-10 -8 (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -2650 ((-112) |#1| |#1|)) (-15 -1872 (|#2| |#1| "value"))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-3734 (($) 7 T CONST)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48)) (-3536 (((-570) $ $) 45)) (-3680 (((-112) $) 47)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1019 |#1|) (-141) (-1226)) (T -1019)) +((-1974 (*1 *2 *1) (-12 (-4 *3 (-1226)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3)))) (-1713 (*1 *2 *1) (-12 (-4 *3 (-1226)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1226)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1019 *2)) (-4 *2 (-1226)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) (-2278 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-650 *3)))) (-3536 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-570)))) (-2650 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-3471 (*1 *2 *1 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-2068 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *1)) (|has| *1 (-6 -4449)) (-4 *1 (-1019 *3)) (-4 *3 (-1226)))) (-3945 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4449)) (-4 *1 (-1019 *2)) (-4 *2 (-1226)))) (-3470 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1019 *2)) (-4 *2 (-1226))))) +(-13 (-495 |t#1|) (-10 -8 (-15 -1974 ((-650 $) $)) (-15 -1713 ((-650 $) $)) (-15 -4142 ((-112) $)) (-15 -2190 (|t#1| $)) (-15 -1872 (|t#1| $ "value")) (-15 -3680 ((-112) $)) (-15 -2278 ((-650 |t#1|) $)) (-15 -3536 ((-570) $ $)) (IF (|has| |t#1| (-1109)) (PROGN (-15 -2650 ((-112) $ $)) (-15 -3471 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4449)) (PROGN (-15 -2068 ($ $ (-650 $))) (-15 -3945 (|t#1| $ "value" |t#1|)) (-15 -3470 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3815 (($ $) 9) (($ $ (-928)) 49) (($ (-413 (-570))) 13) (($ (-570)) 15)) (-2300 (((-3 $ "failed") (-1182 $) (-928) (-868)) 24) (((-3 $ "failed") (-1182 $) (-928)) 32)) (-3309 (($ $ (-570)) 58)) (-2862 (((-777)) 18)) (-2210 (((-650 $) (-1182 $)) NIL) (((-650 $) (-1182 (-413 (-570)))) 63) (((-650 $) (-1182 (-570))) 68) (((-650 $) (-959 $)) 72) (((-650 $) (-959 (-413 (-570)))) 76) (((-650 $) (-959 (-570))) 80)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ $ (-413 (-570))) 53))) +(((-1020 |#1|) (-10 -8 (-15 -3815 (|#1| (-570))) (-15 -3815 (|#1| (-413 (-570)))) (-15 -3815 (|#1| |#1| (-928))) (-15 -2210 ((-650 |#1|) (-959 (-570)))) (-15 -2210 ((-650 |#1|) (-959 (-413 (-570))))) (-15 -2210 ((-650 |#1|) (-959 |#1|))) (-15 -2210 ((-650 |#1|) (-1182 (-570)))) (-15 -2210 ((-650 |#1|) (-1182 (-413 (-570))))) (-15 -2210 ((-650 |#1|) (-1182 |#1|))) (-15 -2300 ((-3 |#1| "failed") (-1182 |#1|) (-928))) (-15 -2300 ((-3 |#1| "failed") (-1182 |#1|) (-928) (-868))) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3309 (|#1| |#1| (-570))) (-15 -3815 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -2862 ((-777))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928)))) (-1021)) (T -1020)) +((-2862 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1020 *3)) (-4 *3 (-1021))))) +(-10 -8 (-15 -3815 (|#1| (-570))) (-15 -3815 (|#1| (-413 (-570)))) (-15 -3815 (|#1| |#1| (-928))) (-15 -2210 ((-650 |#1|) (-959 (-570)))) (-15 -2210 ((-650 |#1|) (-959 (-413 (-570))))) (-15 -2210 ((-650 |#1|) (-959 |#1|))) (-15 -2210 ((-650 |#1|) (-1182 (-570)))) (-15 -2210 ((-650 |#1|) (-1182 (-413 (-570))))) (-15 -2210 ((-650 |#1|) (-1182 |#1|))) (-15 -2300 ((-3 |#1| "failed") (-1182 |#1|) (-928))) (-15 -2300 ((-3 |#1| "failed") (-1182 |#1|) (-928) (-868))) (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -3309 (|#1| |#1| (-570))) (-15 -3815 (|#1| |#1|)) (-15 ** (|#1| |#1| (-570))) (-15 -2862 ((-777))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 102)) (-2318 (($ $) 103)) (-2234 (((-112) $) 105)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 122)) (-2555 (((-424 $) $) 123)) (-3815 (($ $) 86) (($ $ (-928)) 72) (($ (-413 (-570))) 71) (($ (-570)) 70)) (-4073 (((-112) $ $) 113)) (-2579 (((-570) $) 139)) (-3734 (($) 18 T CONST)) (-2300 (((-3 $ "failed") (-1182 $) (-928) (-868)) 80) (((-3 $ "failed") (-1182 $) (-928)) 79)) (-4382 (((-3 (-570) "failed") $) 99 (|has| (-413 (-570)) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 97 (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-3 (-413 (-570)) "failed") $) 94)) (-3152 (((-570) $) 98 (|has| (-413 (-570)) (-1047 (-570)))) (((-413 (-570)) $) 96 (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-413 (-570)) $) 95)) (-2599 (($ $ (-868)) 69)) (-1550 (($ $ (-868)) 68)) (-2372 (($ $ $) 117)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 116)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 111)) (-3701 (((-112) $) 124)) (-2135 (((-112) $) 137)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 85)) (-3367 (((-112) $) 138)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 120)) (-3382 (($ $ $) 136)) (-2876 (($ $ $) 135)) (-1911 (((-3 (-1182 $) "failed") $) 81)) (-3253 (((-3 (-868) "failed") $) 83)) (-4417 (((-3 (-1182 $) "failed") $) 82)) (-1841 (($ (-650 $)) 109) (($ $ $) 108)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 125)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 110)) (-1869 (($ (-650 $)) 107) (($ $ $) 106)) (-3801 (((-424 $) $) 121)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 118)) (-2410 (((-3 $ "failed") $ $) 101)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 112)) (-3788 (((-777) $) 114)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 115)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 129) (($ $) 100) (($ (-413 (-570))) 93) (($ (-570)) 92) (($ (-413 (-570))) 89)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 104)) (-3093 (((-413 (-570)) $ $) 67)) (-2210 (((-650 $) (-1182 $)) 78) (((-650 $) (-1182 (-413 (-570)))) 77) (((-650 $) (-1182 (-570))) 76) (((-650 $) (-959 $)) 75) (((-650 $) (-959 (-413 (-570)))) 74) (((-650 $) (-959 (-570))) 73)) (-2216 (($ $) 140)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 133)) (-2959 (((-112) $ $) 132)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 134)) (-2948 (((-112) $ $) 131)) (-3037 (($ $ $) 130)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 126) (($ $ (-413 (-570))) 84)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ (-413 (-570)) $) 128) (($ $ (-413 (-570))) 127) (($ (-570) $) 91) (($ $ (-570)) 90) (($ (-413 (-570)) $) 88) (($ $ (-413 (-570))) 87))) +(((-1021) (-141)) (T -1021)) +((-3815 (*1 *1 *1) (-4 *1 (-1021))) (-3253 (*1 *2 *1) (|partial| -12 (-4 *1 (-1021)) (-5 *2 (-868)))) (-4417 (*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021)))) (-1911 (*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021)))) (-2300 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-5 *4 (-868)) (-4 *1 (-1021)))) (-2300 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-4 *1 (-1021)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-1182 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-2210 (*1 *2 *3) (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) (-3815 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-928)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1021)))) (-3815 (*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1021)))) (-2599 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868)))) (-1550 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868)))) (-3093 (*1 *2 *1 *1) (-12 (-4 *1 (-1021)) (-5 *2 (-413 (-570)))))) +(-13 (-148) (-854) (-174) (-368) (-417 (-413 (-570))) (-38 (-570)) (-38 (-413 (-570))) (-1011) (-10 -8 (-15 -3253 ((-3 (-868) "failed") $)) (-15 -4417 ((-3 (-1182 $) "failed") $)) (-15 -1911 ((-3 (-1182 $) "failed") $)) (-15 -2300 ((-3 $ "failed") (-1182 $) (-928) (-868))) (-15 -2300 ((-3 $ "failed") (-1182 $) (-928))) (-15 -2210 ((-650 $) (-1182 $))) (-15 -2210 ((-650 $) (-1182 (-413 (-570))))) (-15 -2210 ((-650 $) (-1182 (-570)))) (-15 -2210 ((-650 $) (-959 $))) (-15 -2210 ((-650 $) (-959 (-413 (-570))))) (-15 -2210 ((-650 $) (-959 (-570)))) (-15 -3815 ($ $ (-928))) (-15 -3815 ($ $)) (-15 -3815 ($ (-413 (-570)))) (-15 -3815 ($ (-570))) (-15 -2599 ($ $ (-868))) (-15 -1550 ($ $ (-868))) (-15 -3093 ((-413 (-570)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 #1=(-570)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-417 (-413 (-570))) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 #1#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 #1#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 #1#) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-927) . T) ((-1011) . T) ((-1047 (-413 (-570))) . T) ((-1047 (-570)) |has| (-413 (-570)) (-1047 (-570))) ((-1060 #0#) . T) ((-1060 #1#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 #1#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-2610 (((-2 (|:| |ans| |#2|) (|:| -4411 |#2|) (|:| |sol?| (-112))) (-570) |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1022 |#1| |#2|) (-10 -7 (-15 -2610 ((-2 (|:| |ans| |#2|) (|:| -4411 |#2|) (|:| |sol?| (-112))) (-570) |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-27) (-436 |#1|))) (T -1022)) +((-2610 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1186)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-650 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1211) (-27) (-436 *8))) (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4411 *4) (|:| |sol?| (-112)))) (-5 *1 (-1022 *8 *4))))) +(-10 -7 (-15 -2610 ((-2 (|:| |ans| |#2|) (|:| -4411 |#2|) (|:| |sol?| (-112))) (-570) |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2011 (((-3 (-650 |#2|) "failed") (-570) |#2| |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1023 |#1| |#2|) (-10 -7 (-15 -2011 ((-3 (-650 |#2|) "failed") (-570) |#2| |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-458) (-148) (-1047 (-570)) (-645 (-570))) (-13 (-1211) (-27) (-436 |#1|))) (T -1023)) +((-2011 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1186)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-650 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1211) (-27) (-436 *8))) (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570)) (-5 *2 (-650 *4)) (-5 *1 (-1023 *8 *4))))) +(-10 -7 (-15 -2011 ((-3 (-650 |#2|) "failed") (-570) |#2| |#2| |#2| (-1186) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-650 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-650 |#2|)) (-1 (-3 (-2 (|:| -2134 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-4070 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4313 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-570)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-570) (-1 |#2| |#2|)) 38)) (-3496 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |c| (-413 |#2|)) (|:| -3678 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|)) 69)) (-3804 (((-2 (|:| |ans| (-413 |#2|)) (|:| |nosol| (-112))) (-413 |#2|) (-413 |#2|)) 74))) +(((-1024 |#1| |#2|) (-10 -7 (-15 -3496 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |c| (-413 |#2|)) (|:| -3678 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -3804 ((-2 (|:| |ans| (-413 |#2|)) (|:| |nosol| (-112))) (-413 |#2|) (-413 |#2|))) (-15 -4070 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4313 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-570)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-570) (-1 |#2| |#2|)))) (-13 (-368) (-148) (-1047 (-570))) (-1252 |#1|)) (T -1024)) +((-4070 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1252 *6)) (-4 *6 (-13 (-368) (-148) (-1047 *4))) (-5 *4 (-570)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4313 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1024 *6 *3)))) (-3804 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| |ans| (-413 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1024 *4 *5)) (-5 *3 (-413 *5)))) (-3496 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |c| (-413 *6)) (|:| -3678 *6))) (-5 *1 (-1024 *5 *6)) (-5 *3 (-413 *6))))) +(-10 -7 (-15 -3496 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |c| (-413 |#2|)) (|:| -3678 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -3804 ((-2 (|:| |ans| (-413 |#2|)) (|:| |nosol| (-112))) (-413 |#2|) (-413 |#2|))) (-15 -4070 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4313 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-570)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-570) (-1 |#2| |#2|)))) +((-2719 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |h| |#2|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| -3678 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|)) 22)) (-2965 (((-3 (-650 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)) 34))) +(((-1025 |#1| |#2|) (-10 -7 (-15 -2719 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |h| |#2|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| -3678 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -2965 ((-3 (-650 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)))) (-13 (-368) (-148) (-1047 (-570))) (-1252 |#1|)) (T -1025)) +((-2965 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1252 *4)) (-5 *2 (-650 (-413 *5))) (-5 *1 (-1025 *4 *5)) (-5 *3 (-413 *5)))) (-2719 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |h| *6) (|:| |c1| (-413 *6)) (|:| |c2| (-413 *6)) (|:| -3678 *6))) (-5 *1 (-1025 *5 *6)) (-5 *3 (-413 *6))))) +(-10 -7 (-15 -2719 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-413 |#2|)) (|:| |h| |#2|) (|:| |c1| (-413 |#2|)) (|:| |c2| (-413 |#2|)) (|:| -3678 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|) (-1 |#2| |#2|))) (-15 -2965 ((-3 (-650 (-413 |#2|)) "failed") (-413 |#2|) (-413 |#2|) (-413 |#2|)))) +((-1510 (((-1 |#1|) (-650 (-2 (|:| -2190 |#1|) (|:| -2793 (-570))))) 37)) (-1513 (((-1 |#1|) (-1111 |#1|)) 44)) (-3963 (((-1 |#1|) (-1276 |#1|) (-1276 (-570)) (-570)) 34))) +(((-1026 |#1|) (-10 -7 (-15 -1513 ((-1 |#1|) (-1111 |#1|))) (-15 -1510 ((-1 |#1|) (-650 (-2 (|:| -2190 |#1|) (|:| -2793 (-570)))))) (-15 -3963 ((-1 |#1|) (-1276 |#1|) (-1276 (-570)) (-570)))) (-1109)) (T -1026)) +((-3963 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1276 *6)) (-5 *4 (-1276 (-570))) (-5 *5 (-570)) (-4 *6 (-1109)) (-5 *2 (-1 *6)) (-5 *1 (-1026 *6)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -2190 *4) (|:| -2793 (-570))))) (-4 *4 (-1109)) (-5 *2 (-1 *4)) (-5 *1 (-1026 *4)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-1111 *4)) (-4 *4 (-1109)) (-5 *2 (-1 *4)) (-5 *1 (-1026 *4))))) +(-10 -7 (-15 -1513 ((-1 |#1|) (-1111 |#1|))) (-15 -1510 ((-1 |#1|) (-650 (-2 (|:| -2190 |#1|) (|:| -2793 (-570)))))) (-15 -3963 ((-1 |#1|) (-1276 |#1|) (-1276 (-570)) (-570)))) +((-4202 (((-777) (-341 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-777) (-341 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-368) (-1252 |#1|) (-1252 (-413 |#2|)) (-347 |#1| |#2| |#3|) (-13 (-373) (-368))) (T -1027)) +((-4202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-341 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-368)) (-4 *7 (-1252 *6)) (-4 *4 (-1252 (-413 *7))) (-4 *8 (-347 *6 *7 *4)) (-4 *9 (-13 (-373) (-368))) (-5 *2 (-777)) (-5 *1 (-1027 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4202 ((-777) (-341 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2419 (((-112) $ $) NIL)) (-3748 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-1144) $) 11)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1028) (-13 (-1092) (-10 -8 (-15 -3748 ((-1144) $)) (-15 -3587 ((-1144) $))))) (T -1028)) +((-3748 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028))))) +(-13 (-1092) (-10 -8 (-15 -3748 ((-1144) $)) (-15 -3587 ((-1144) $)))) +((-3547 (((-3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) "failed") |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) 32) (((-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570))) 29)) (-2611 (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570))) 34) (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-413 (-570))) 30) (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) 33) (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1|) 28)) (-3781 (((-650 (-413 (-570))) (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) 20)) (-2031 (((-413 (-570)) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) 17))) +(((-1029 |#1|) (-10 -7 (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1|)) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) "failed") |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -2031 ((-413 (-570)) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -3781 ((-650 (-413 (-570))) (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))))) (-1252 (-570))) (T -1029)) +((-3781 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *2 (-650 (-413 (-570)))) (-5 *1 (-1029 *4)) (-4 *4 (-1252 (-570))))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) (-5 *2 (-413 (-570))) (-5 *1 (-1029 *4)) (-4 *4 (-1252 (-570))))) (-3547 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))))) (-3547 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) (-5 *4 (-413 (-570))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-413 (-570))) (-5 *2 (-650 (-2 (|:| -4399 *5) (|:| -4411 *5)))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))) (-5 *4 (-2 (|:| -4399 *5) (|:| -4411 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))) (-5 *4 (-413 (-570))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))) (-5 *4 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570)))))) +(-10 -7 (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1|)) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) "failed") |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -2031 ((-413 (-570)) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -3781 ((-650 (-413 (-570))) (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))))) +((-3547 (((-3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) "failed") |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) 35) (((-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570))) 32)) (-2611 (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570))) 30) (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-413 (-570))) 26) (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) 28) (((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1|) 24))) +(((-1030 |#1|) (-10 -7 (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1|)) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) "failed") |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) (-1252 (-413 (-570)))) (T -1030)) +((-3547 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 (-413 (-570)))))) (-3547 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) (-5 *4 (-413 (-570))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 *4)))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-413 (-570))) (-5 *2 (-650 (-2 (|:| -4399 *5) (|:| -4411 *5)))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 *5)) (-5 *4 (-2 (|:| -4399 *5) (|:| -4411 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-413 (-570))) (-5 *2 (-650 (-2 (|:| -4399 *4) (|:| -4411 *4)))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 *4)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *2 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 (-413 (-570)))) (-5 *4 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 (-413 (-570))))))) +(-10 -7 (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1|)) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-413 (-570)))) (-15 -2611 ((-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-413 (-570)))) (-15 -3547 ((-3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) "failed") |#1| (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))) (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) +((-1411 (((-227) $) 6) (((-384) $) 9))) +(((-1031) (-141)) (T -1031)) +NIL +(-13 (-620 (-227)) (-620 (-384))) +(((-620 (-227)) . T) ((-620 (-384)) . T)) +((-3884 (((-650 (-384)) (-959 (-570)) (-384)) 28) (((-650 (-384)) (-959 (-413 (-570))) (-384)) 27)) (-3371 (((-650 (-650 (-384))) (-650 (-959 (-570))) (-650 (-1186)) (-384)) 37))) +(((-1032) (-10 -7 (-15 -3884 ((-650 (-384)) (-959 (-413 (-570))) (-384))) (-15 -3884 ((-650 (-384)) (-959 (-570)) (-384))) (-15 -3371 ((-650 (-650 (-384))) (-650 (-959 (-570))) (-650 (-1186)) (-384))))) (T -1032)) +((-3371 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 (-384)))) (-5 *1 (-1032)) (-5 *5 (-384)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 (-384))) (-5 *1 (-1032)) (-5 *4 (-384)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 (-384))) (-5 *1 (-1032)) (-5 *4 (-384))))) +(-10 -7 (-15 -3884 ((-650 (-384)) (-959 (-413 (-570))) (-384))) (-15 -3884 ((-650 (-384)) (-959 (-570)) (-384))) (-15 -3371 ((-650 (-650 (-384))) (-650 (-959 (-570))) (-650 (-1186)) (-384)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 75)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-3815 (($ $) NIL) (($ $ (-928)) NIL) (($ (-413 (-570))) NIL) (($ (-570)) NIL)) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) 70)) (-3734 (($) NIL T CONST)) (-2300 (((-3 $ "failed") (-1182 $) (-928) (-868)) NIL) (((-3 $ "failed") (-1182 $) (-928)) 55)) (-4382 (((-3 (-413 (-570)) "failed") $) NIL (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-570) "failed") $) NIL (-2779 (|has| (-413 (-570)) (-1047 (-570))) (|has| |#1| (-1047 (-570)))))) (-3152 (((-413 (-570)) $) 17 (|has| (-413 (-570)) (-1047 (-413 (-570))))) (((-413 (-570)) $) 17) ((|#1| $) 117) (((-570) $) NIL (-2779 (|has| (-413 (-570)) (-1047 (-570))) (|has| |#1| (-1047 (-570)))))) (-2599 (($ $ (-868)) 47)) (-1550 (($ $ (-868)) 48)) (-2372 (($ $ $) NIL)) (-1424 (((-413 (-570)) $ $) 21)) (-2229 (((-3 $ "failed") $) 88)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-2135 (((-112) $) 66)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL)) (-3367 (((-112) $) 69)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-1911 (((-3 (-1182 $) "failed") $) 83)) (-3253 (((-3 (-868) "failed") $) 82)) (-4417 (((-3 (-1182 $) "failed") $) 80)) (-1915 (((-3 (-1070 $ (-1182 $)) "failed") $) 78)) (-1841 (($ (-650 $)) NIL) (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 89)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ (-650 $)) NIL) (($ $ $) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3798 (((-868) $) 87) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ $) 63) (($ (-413 (-570))) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ |#1|) 119)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-3093 (((-413 (-570)) $ $) 27)) (-2210 (((-650 $) (-1182 $)) 61) (((-650 $) (-1182 (-413 (-570)))) NIL) (((-650 $) (-1182 (-570))) NIL) (((-650 $) (-959 $)) NIL) (((-650 $) (-959 (-413 (-570)))) NIL) (((-650 $) (-959 (-570))) NIL)) (-3568 (($ (-1070 $ (-1182 $)) (-868)) 46)) (-2216 (($ $) 22)) (-1809 (($) 32 T CONST)) (-1817 (($) 39 T CONST)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 76)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 24)) (-3037 (($ $ $) 37)) (-3026 (($ $) 38) (($ $ $) 74)) (-3014 (($ $ $) 112)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL) (($ $ (-413 (-570))) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 98) (($ $ $) 104) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ (-570) $) 98) (($ $ (-570)) NIL) (($ (-413 (-570)) $) NIL) (($ $ (-413 (-570))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1033 |#1|) (-13 (-1021) (-417 |#1|) (-38 |#1|) (-10 -8 (-15 -3568 ($ (-1070 $ (-1182 $)) (-868))) (-15 -1915 ((-3 (-1070 $ (-1182 $)) "failed") $)) (-15 -1424 ((-413 (-570)) $ $)))) (-13 (-854) (-368) (-1031))) (T -1033)) +((-3568 (*1 *1 *2 *3) (-12 (-5 *2 (-1070 (-1033 *4) (-1182 (-1033 *4)))) (-5 *3 (-868)) (-5 *1 (-1033 *4)) (-4 *4 (-13 (-854) (-368) (-1031))))) (-1915 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070 (-1033 *3) (-1182 (-1033 *3)))) (-5 *1 (-1033 *3)) (-4 *3 (-13 (-854) (-368) (-1031))))) (-1424 (*1 *2 *1 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1033 *3)) (-4 *3 (-13 (-854) (-368) (-1031)))))) +(-13 (-1021) (-417 |#1|) (-38 |#1|) (-10 -8 (-15 -3568 ($ (-1070 $ (-1182 $)) (-868))) (-15 -1915 ((-3 (-1070 $ (-1182 $)) "failed") $)) (-15 -1424 ((-413 (-570)) $ $)))) +((-2805 (((-2 (|:| -4313 |#2|) (|:| -3908 (-650 |#1|))) |#2| (-650 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -2805 (|#2| |#2| |#1|)) (-15 -2805 ((-2 (|:| -4313 |#2|) (|:| -3908 (-650 |#1|))) |#2| (-650 |#1|)))) (-368) (-662 |#1|)) (T -1034)) +((-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-368)) (-5 *2 (-2 (|:| -4313 *3) (|:| -3908 (-650 *5)))) (-5 *1 (-1034 *5 *3)) (-5 *4 (-650 *5)) (-4 *3 (-662 *5)))) (-2805 (*1 *2 *2 *3) (-12 (-4 *3 (-368)) (-5 *1 (-1034 *3 *2)) (-4 *2 (-662 *3))))) +(-10 -7 (-15 -2805 (|#2| |#2| |#1|)) (-15 -2805 ((-2 (|:| -4313 |#2|) (|:| -3908 (-650 |#1|))) |#2| (-650 |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3204 ((|#1| $ |#1|) 14)) (-3945 ((|#1| $ |#1|) 12)) (-1323 (($ |#1|) 10)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1872 ((|#1| $) 11)) (-3779 ((|#1| $) 13)) (-3798 (((-868) $) 21 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2923 (((-112) $ $) 9))) +(((-1035 |#1|) (-13 (-1226) (-10 -8 (-15 -1323 ($ |#1|)) (-15 -1872 (|#1| $)) (-15 -3945 (|#1| $ |#1|)) (-15 -3779 (|#1| $)) (-15 -3204 (|#1| $ |#1|)) (-15 -2923 ((-112) $ $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) (-1226)) (T -1035)) +((-1323 (*1 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) (-1872 (*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) (-3945 (*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) (-3779 (*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) (-3204 (*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) (-2923 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1035 *3)) (-4 *3 (-1226))))) +(-13 (-1226) (-10 -8 (-15 -1323 ($ |#1|)) (-15 -1872 (|#1| $)) (-15 -3945 (|#1| $ |#1|)) (-15 -3779 (|#1| $)) (-15 -3204 (|#1| $ |#1|)) (-15 -2923 ((-112) $ $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) NIL)) (-2242 (((-650 $) (-650 |#4|)) 118) (((-650 $) (-650 |#4|) (-112)) 119) (((-650 $) (-650 |#4|) (-112) (-112)) 117) (((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1709 (((-650 |#3|) $) NIL)) (-4006 (((-112) $) NIL)) (-1797 (((-112) $) NIL (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2530 ((|#4| |#4| $) NIL)) (-3696 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| $) 112)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1418 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 66)) (-3734 (($) NIL T CONST)) (-2262 (((-112) $) 29 (|has| |#1| (-562)))) (-2082 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4427 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2418 (((-112) $) NIL (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3572 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) NIL)) (-3152 (($ (-650 |#4|)) NIL)) (-3527 (((-3 $ "failed") $) 45)) (-3099 ((|#4| |#4| $) 69)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-1697 (($ |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) NIL)) (-1413 (((-112) |#4| $) NIL)) (-2992 (((-112) |#4| $) NIL)) (-2176 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1687 (((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112)) 133)) (-2885 (((-650 |#4|) $) 18 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4211 ((|#3| $) 38)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#4|) $) 19 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-3837 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 23)) (-3952 (((-650 |#3|) $) NIL)) (-2875 (((-112) |#3| $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-3383 (((-3 |#4| (-650 $)) |#4| |#4| $) NIL)) (-3064 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| |#4| $) 110)) (-1723 (((-3 |#4| "failed") $) 42)) (-1559 (((-650 $) |#4| $) 93)) (-3633 (((-3 (-112) (-650 $)) |#4| $) NIL)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2842 (((-650 $) |#4| $) 115) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 116) (((-650 $) |#4| (-650 $)) NIL)) (-4260 (((-650 $) (-650 |#4|) (-112) (-112) (-112)) 128)) (-2745 (($ |#4| $) 82) (($ (-650 |#4|) $) 83) (((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2500 (((-650 |#4|) $) NIL)) (-1560 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2458 ((|#4| |#4| $) NIL)) (-4181 (((-112) $ $) NIL)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2962 ((|#4| |#4| $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-3 |#4| "failed") $) 40)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2730 (((-3 $ "failed") $ |#4|) 59)) (-3500 (($ $ |#4|) NIL) (((-650 $) |#4| $) 95) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 89)) (-3116 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 17)) (-4359 (($) 14)) (-3324 (((-777) $) NIL)) (-3562 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) 13)) (-1411 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 22)) (-3677 (($ $ |#3|) 52)) (-3158 (($ $ |#3|) 54)) (-4381 (($ $) NIL)) (-4074 (($ $ |#3|) NIL)) (-3798 (((-868) $) 35) (((-650 |#4|) $) 46)) (-2136 (((-777) $) NIL (|has| |#3| (-373)))) (-1319 (((-112) $ $) NIL)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-4296 (((-650 $) |#4| $) 92) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) NIL)) (-1431 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) NIL)) (-4428 (((-112) |#4| $) NIL)) (-4059 (((-112) |#3| $) 65)) (-2923 (((-112) $ $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1036 |#1| |#2| |#3| |#4|) (-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2745 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -4260 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -1687 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112))))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -1036)) +((-2745 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *3))) (-5 *1 (-1036 *5 *6 *7 *3)) (-4 *3 (-1074 *5 *6 *7)))) (-2242 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) (-2242 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) (-4260 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) (-1687 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-650 *8)) (|:| |towers| (-650 (-1036 *5 *6 *7 *8))))) (-5 *1 (-1036 *5 *6 *7 *8)) (-5 *3 (-650 *8))))) +(-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2745 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -4260 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -1687 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112))))) +((-2785 (((-650 (-695 |#1|)) (-650 (-695 |#1|))) 73) (((-695 |#1|) (-695 |#1|)) 72) (((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-650 (-695 |#1|))) 71) (((-695 |#1|) (-695 |#1|) (-695 |#1|)) 68)) (-3593 (((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928)) 66) (((-695 |#1|) (-695 |#1|) (-928)) 65)) (-3424 (((-650 (-695 (-570))) (-650 (-650 (-570)))) 84) (((-650 (-695 (-570))) (-650 (-912 (-570))) (-570)) 83) (((-695 (-570)) (-650 (-570))) 80) (((-695 (-570)) (-912 (-570)) (-570)) 78)) (-1605 (((-695 (-959 |#1|)) (-777)) 98)) (-3659 (((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928)) 52 (|has| |#1| (-6 (-4450 "*")))) (((-695 |#1|) (-695 |#1|) (-928)) 50 (|has| |#1| (-6 (-4450 "*")))))) +(((-1037 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4450 "*"))) (-15 -3659 ((-695 |#1|) (-695 |#1|) (-928))) |%noBranch|) (IF (|has| |#1| (-6 (-4450 "*"))) (-15 -3659 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) |%noBranch|) (-15 -1605 ((-695 (-959 |#1|)) (-777))) (-15 -3593 ((-695 |#1|) (-695 |#1|) (-928))) (-15 -3593 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) (-15 -2785 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2785 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -2785 ((-695 |#1|) (-695 |#1|))) (-15 -2785 ((-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -3424 ((-695 (-570)) (-912 (-570)) (-570))) (-15 -3424 ((-695 (-570)) (-650 (-570)))) (-15 -3424 ((-650 (-695 (-570))) (-650 (-912 (-570))) (-570))) (-15 -3424 ((-650 (-695 (-570))) (-650 (-650 (-570)))))) (-1058)) (T -1037)) +((-3424 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-570)))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-1037 *4)) (-4 *4 (-1058)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-912 (-570)))) (-5 *4 (-570)) (-5 *2 (-650 (-695 *4))) (-5 *1 (-1037 *5)) (-4 *5 (-1058)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1037 *4)) (-4 *4 (-1058)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-912 (-570))) (-5 *4 (-570)) (-5 *2 (-695 *4)) (-5 *1 (-1037 *5)) (-4 *5 (-1058)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-2785 (*1 *2 *2 *2) (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-2785 (*1 *2 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) (-3593 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) (-3593 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-695 (-959 *4))) (-5 *1 (-1037 *4)) (-4 *4 (-1058)))) (-3659 (*1 *2 *2 *3) (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) (|has| *4 (-6 (-4450 "*"))) (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) (-3659 (*1 *2 *2 *3) (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (|has| *4 (-6 (-4450 "*"))) (-4 *4 (-1058)) (-5 *1 (-1037 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4450 "*"))) (-15 -3659 ((-695 |#1|) (-695 |#1|) (-928))) |%noBranch|) (IF (|has| |#1| (-6 (-4450 "*"))) (-15 -3659 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) |%noBranch|) (-15 -1605 ((-695 (-959 |#1|)) (-777))) (-15 -3593 ((-695 |#1|) (-695 |#1|) (-928))) (-15 -3593 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-928))) (-15 -2785 ((-695 |#1|) (-695 |#1|) (-695 |#1|))) (-15 -2785 ((-650 (-695 |#1|)) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -2785 ((-695 |#1|) (-695 |#1|))) (-15 -2785 ((-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -3424 ((-695 (-570)) (-912 (-570)) (-570))) (-15 -3424 ((-695 (-570)) (-650 (-570)))) (-15 -3424 ((-650 (-695 (-570))) (-650 (-912 (-570))) (-570))) (-15 -3424 ((-650 (-695 (-570))) (-650 (-650 (-570)))))) +((-1617 (((-695 |#1|) (-650 (-695 |#1|)) (-1276 |#1|)) 71 (|has| |#1| (-311)))) (-3144 (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1276 (-1276 |#1|))) 111 (|has| |#1| (-368))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1276 |#1|)) 118 (|has| |#1| (-368)))) (-2895 (((-1276 |#1|) (-650 (-1276 |#1|)) (-570)) 136 (-12 (|has| |#1| (-368)) (|has| |#1| (-373))))) (-4145 (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-928)) 124 (-12 (|has| |#1| (-368)) (|has| |#1| (-373)))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112)) 123 (-12 (|has| |#1| (-368)) (|has| |#1| (-373)))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|))) 122 (-12 (|has| |#1| (-368)) (|has| |#1| (-373)))) (((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112) (-570) (-570)) 121 (-12 (|has| |#1| (-368)) (|has| |#1| (-373))))) (-2421 (((-112) (-650 (-695 |#1|))) 104 (|has| |#1| (-368))) (((-112) (-650 (-695 |#1|)) (-570)) 107 (|has| |#1| (-368)))) (-3759 (((-1276 (-1276 |#1|)) (-650 (-695 |#1|)) (-1276 |#1|)) 68 (|has| |#1| (-311)))) (-2189 (((-695 |#1|) (-650 (-695 |#1|)) (-695 |#1|)) 48)) (-3653 (((-695 |#1|) (-1276 (-1276 |#1|))) 41)) (-3705 (((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-570)) 95 (|has| |#1| (-368))) (((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|))) 94 (|has| |#1| (-368))) (((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-112) (-570)) 102 (|has| |#1| (-368))))) +(((-1038 |#1|) (-10 -7 (-15 -3653 ((-695 |#1|) (-1276 (-1276 |#1|)))) (-15 -2189 ((-695 |#1|) (-650 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-311)) (PROGN (-15 -3759 ((-1276 (-1276 |#1|)) (-650 (-695 |#1|)) (-1276 |#1|))) (-15 -1617 ((-695 |#1|) (-650 (-695 |#1|)) (-1276 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -3705 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-112) (-570))) (-15 -3705 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -3705 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-570))) (-15 -2421 ((-112) (-650 (-695 |#1|)) (-570))) (-15 -2421 ((-112) (-650 (-695 |#1|)))) (-15 -3144 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1276 |#1|))) (-15 -3144 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1276 (-1276 |#1|))))) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#1| (-368)) (PROGN (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112) (-570) (-570))) (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)))) (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112))) (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-928))) (-15 -2895 ((-1276 |#1|) (-650 (-1276 |#1|)) (-570)))) |%noBranch|) |%noBranch|)) (-1058)) (T -1038)) +((-2895 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1276 *5))) (-5 *4 (-570)) (-5 *2 (-1276 *5)) (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-4145 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-368)) (-4 *4 (-373)) (-4 *4 (-1058)) (-5 *2 (-650 (-650 (-695 *4)))) (-5 *1 (-1038 *4)) (-5 *3 (-650 (-695 *4))))) (-4145 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-570)) (-4 *6 (-368)) (-4 *6 (-373)) (-4 *6 (-1058)) (-5 *2 (-650 (-650 (-695 *6)))) (-5 *1 (-1038 *6)) (-5 *3 (-650 (-695 *6))))) (-3144 (*1 *2 *3 *4) (-12 (-5 *4 (-1276 (-1276 *5))) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-3144 (*1 *2 *3 *4) (-12 (-5 *4 (-1276 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) (-5 *3 (-650 (-695 *5))))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) (-4 *4 (-1058)) (-5 *2 (-112)) (-5 *1 (-1038 *4)))) (-2421 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-4 *5 (-368)) (-4 *5 (-1058)) (-5 *2 (-112)) (-5 *1 (-1038 *5)))) (-3705 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-5 *2 (-695 *5)) (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-1058)))) (-3705 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-5 *1 (-1038 *4)) (-4 *4 (-368)) (-4 *4 (-1058)))) (-3705 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-650 (-695 *6))) (-5 *4 (-112)) (-5 *5 (-570)) (-5 *2 (-695 *6)) (-5 *1 (-1038 *6)) (-4 *6 (-368)) (-4 *6 (-1058)))) (-1617 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-1276 *5)) (-4 *5 (-311)) (-4 *5 (-1058)) (-5 *2 (-695 *5)) (-5 *1 (-1038 *5)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-695 *5))) (-4 *5 (-311)) (-4 *5 (-1058)) (-5 *2 (-1276 (-1276 *5))) (-5 *1 (-1038 *5)) (-5 *4 (-1276 *5)))) (-2189 (*1 *2 *3 *2) (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-4 *4 (-1058)) (-5 *1 (-1038 *4)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1276 (-1276 *4))) (-4 *4 (-1058)) (-5 *2 (-695 *4)) (-5 *1 (-1038 *4))))) +(-10 -7 (-15 -3653 ((-695 |#1|) (-1276 (-1276 |#1|)))) (-15 -2189 ((-695 |#1|) (-650 (-695 |#1|)) (-695 |#1|))) (IF (|has| |#1| (-311)) (PROGN (-15 -3759 ((-1276 (-1276 |#1|)) (-650 (-695 |#1|)) (-1276 |#1|))) (-15 -1617 ((-695 |#1|) (-650 (-695 |#1|)) (-1276 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -3705 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-112) (-570))) (-15 -3705 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -3705 ((-695 |#1|) (-650 (-695 |#1|)) (-650 (-695 |#1|)) (-570))) (-15 -2421 ((-112) (-650 (-695 |#1|)) (-570))) (-15 -2421 ((-112) (-650 (-695 |#1|)))) (-15 -3144 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1276 |#1|))) (-15 -3144 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-1276 (-1276 |#1|))))) |%noBranch|) (IF (|has| |#1| (-373)) (IF (|has| |#1| (-368)) (PROGN (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112) (-570) (-570))) (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)))) (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-112))) (-15 -4145 ((-650 (-650 (-695 |#1|))) (-650 (-695 |#1|)) (-928))) (-15 -2895 ((-1276 |#1|) (-650 (-1276 |#1|)) (-570)))) |%noBranch|) |%noBranch|)) +((-2656 ((|#1| (-928) |#1|) 18))) +(((-1039 |#1|) (-10 -7 (-15 -2656 (|#1| (-928) |#1|))) (-13 (-1109) (-10 -8 (-15 -3014 ($ $ $))))) (T -1039)) +((-2656 (*1 *2 *3 *2) (-12 (-5 *3 (-928)) (-5 *1 (-1039 *2)) (-4 *2 (-13 (-1109) (-10 -8 (-15 -3014 ($ $ $)))))))) +(-10 -7 (-15 -2656 (|#1| (-928) |#1|))) +((-3088 (((-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570))))))) (-695 (-413 (-959 (-570))))) 67)) (-1541 (((-650 (-695 (-320 (-570)))) (-320 (-570)) (-695 (-413 (-959 (-570))))) 52)) (-2896 (((-650 (-320 (-570))) (-695 (-413 (-959 (-570))))) 45)) (-1544 (((-650 (-695 (-320 (-570)))) (-695 (-413 (-959 (-570))))) 87)) (-1863 (((-695 (-320 (-570))) (-695 (-320 (-570)))) 38)) (-3365 (((-650 (-695 (-320 (-570)))) (-650 (-695 (-320 (-570))))) 76)) (-1415 (((-3 (-695 (-320 (-570))) "failed") (-695 (-413 (-959 (-570))))) 84))) +(((-1040) (-10 -7 (-15 -3088 ((-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570))))))) (-695 (-413 (-959 (-570)))))) (-15 -1541 ((-650 (-695 (-320 (-570)))) (-320 (-570)) (-695 (-413 (-959 (-570)))))) (-15 -2896 ((-650 (-320 (-570))) (-695 (-413 (-959 (-570)))))) (-15 -1415 ((-3 (-695 (-320 (-570))) "failed") (-695 (-413 (-959 (-570)))))) (-15 -1863 ((-695 (-320 (-570))) (-695 (-320 (-570))))) (-15 -3365 ((-650 (-695 (-320 (-570)))) (-650 (-695 (-320 (-570)))))) (-15 -1544 ((-650 (-695 (-320 (-570)))) (-695 (-413 (-959 (-570)))))))) (T -1040)) +((-1544 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)))) (-3365 (*1 *2 *2) (-12 (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)))) (-1863 (*1 *2 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040)))) (-1415 (*1 *2 *3) (|partial| -12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-320 (-570)))) (-5 *1 (-1040)))) (-1541 (*1 *2 *3 *4) (-12 (-5 *4 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)) (-5 *3 (-320 (-570))))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570)))))))) (-5 *1 (-1040))))) +(-10 -7 (-15 -3088 ((-650 (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) (|:| |radvect| (-650 (-695 (-320 (-570))))))) (-695 (-413 (-959 (-570)))))) (-15 -1541 ((-650 (-695 (-320 (-570)))) (-320 (-570)) (-695 (-413 (-959 (-570)))))) (-15 -2896 ((-650 (-320 (-570))) (-695 (-413 (-959 (-570)))))) (-15 -1415 ((-3 (-695 (-320 (-570))) "failed") (-695 (-413 (-959 (-570)))))) (-15 -1863 ((-695 (-320 (-570))) (-695 (-320 (-570))))) (-15 -3365 ((-650 (-695 (-320 (-570)))) (-650 (-695 (-320 (-570)))))) (-15 -1544 ((-650 (-695 (-320 (-570)))) (-695 (-413 (-959 (-570))))))) +((-2772 ((|#1| |#1| (-928)) 18))) +(((-1041 |#1|) (-10 -7 (-15 -2772 (|#1| |#1| (-928)))) (-13 (-1109) (-10 -8 (-15 * ($ $ $))))) (T -1041)) +((-2772 (*1 *2 *2 *3) (-12 (-5 *3 (-928)) (-5 *1 (-1041 *2)) (-4 *2 (-13 (-1109) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -2772 (|#1| |#1| (-928)))) +((-3798 ((|#1| (-316)) 11) (((-1281) |#1|) 9))) +(((-1042 |#1|) (-10 -7 (-15 -3798 ((-1281) |#1|)) (-15 -3798 (|#1| (-316)))) (-1226)) (T -1042)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-316)) (-5 *1 (-1042 *2)) (-4 *2 (-1226)))) (-3798 (*1 *2 *3) (-12 (-5 *2 (-1281)) (-5 *1 (-1042 *3)) (-4 *3 (-1226))))) +(-10 -7 (-15 -3798 ((-1281) |#1|)) (-15 -3798 (|#1| (-316)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-3600 (($ |#4|) 25)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-3586 ((|#4| $) 27)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 46) (($ (-570)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2862 (((-777)) 43 T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 21 T CONST)) (-1817 (($) 23 T CONST)) (-2923 (((-112) $ $) 40)) (-3026 (($ $) 31) (($ $ $) NIL)) (-3014 (($ $ $) 29)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1043 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -3600 ($ |#4|)) (-15 -3798 ($ |#4|)) (-15 -3586 (|#4| $)))) (-368) (-799) (-856) (-956 |#1| |#2| |#3|) (-650 |#4|)) (T -1043)) +((-3600 (*1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-650 *2)))) (-3798 (*1 *1 *2) (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) (-14 *6 (-650 *2)))) (-3586 (*1 *2 *1) (-12 (-4 *2 (-956 *3 *4 *5)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-14 *6 (-650 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -3600 ($ |#4|)) (-15 -3798 ($ |#4|)) (-15 -3586 (|#4| $)))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-2926 (((-1281) $ (-1186) (-1186)) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-2511 (((-112) (-112)) 43)) (-3446 (((-112) (-112)) 42)) (-3945 (((-52) $ (-1186) (-52)) NIL)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 (-52) "failed") (-1186) $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2571 (($ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-3 (-52) "failed") (-1186) $) NIL)) (-1697 (($ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-3849 (((-52) $ (-1186) (-52)) NIL (|has| $ (-6 -4449)))) (-3778 (((-52) $ (-1186)) NIL)) (-2885 (((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-650 (-52)) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-1186) $) NIL (|has| (-1186) (-856)))) (-2282 (((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-650 (-52)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109))))) (-3434 (((-1186) $) NIL (|has| (-1186) (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4449))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2799 (((-650 (-1186)) $) 37)) (-4242 (((-112) (-1186) $) NIL)) (-1334 (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL)) (-2213 (($ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL)) (-2044 (((-650 (-1186)) $) NIL)) (-1480 (((-112) (-1186) $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-3515 (((-52) $) NIL (|has| (-1186) (-856)))) (-4089 (((-3 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) "failed") (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL)) (-2973 (($ $ (-52)) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-298 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-650 (-52)) (-650 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-298 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-650 (-298 (-52)))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109))))) (-2880 (((-650 (-52)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 (((-52) $ (-1186)) 39) (((-52) $ (-1186) (-52)) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (((-777) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109)))) (((-777) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-3798 (((-868) $) 41 (-2779 (|has| (-52) (-619 (-868))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1044) (-13 (-1202 (-1186) (-52)) (-10 -7 (-15 -2511 ((-112) (-112))) (-15 -3446 ((-112) (-112))) (-6 -4448)))) (T -1044)) +((-2511 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044)))) (-3446 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044))))) +(-13 (-1202 (-1186) (-52)) (-10 -7 (-15 -2511 ((-112) (-112))) (-15 -3446 ((-112) (-112))) (-6 -4448))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1419 (((-1144) $) 9)) (-3798 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1045) (-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $))))) (T -1045)) +((-1419 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1045))))) +(-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)))) +((-3152 ((|#2| $) 10))) +(((-1046 |#1| |#2|) (-10 -8 (-15 -3152 (|#2| |#1|))) (-1047 |#2|) (-1226)) (T -1046)) +NIL +(-10 -8 (-15 -3152 (|#2| |#1|))) +((-4382 (((-3 |#1| "failed") $) 9)) (-3152 ((|#1| $) 8)) (-3798 (($ |#1|) 6))) +(((-1047 |#1|) (-141) (-1226)) (T -1047)) +((-4382 (*1 *2 *1) (|partial| -12 (-4 *1 (-1047 *2)) (-4 *2 (-1226)))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1226))))) +(-13 (-622 |t#1|) (-10 -8 (-15 -4382 ((-3 |t#1| "failed") $)) (-15 -3152 (|t#1| $)))) +(((-622 |#1|) . T)) +((-3602 (((-650 (-650 (-298 (-413 (-959 |#2|))))) (-650 (-959 |#2|)) (-650 (-1186))) 38))) +(((-1048 |#1| |#2|) (-10 -7 (-15 -3602 ((-650 (-650 (-298 (-413 (-959 |#2|))))) (-650 (-959 |#2|)) (-650 (-1186))))) (-562) (-13 (-562) (-1047 |#1|))) (T -1048)) +((-3602 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-4 *6 (-13 (-562) (-1047 *5))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *6)))))) (-5 *1 (-1048 *5 *6))))) +(-10 -7 (-15 -3602 ((-650 (-650 (-298 (-413 (-959 |#2|))))) (-650 (-959 |#2|)) (-650 (-1186))))) +((-3090 (((-384)) 17)) (-1513 (((-1 (-384)) (-384) (-384)) 22)) (-3678 (((-1 (-384)) (-777)) 50)) (-1927 (((-384)) 37)) (-3366 (((-1 (-384)) (-384) (-384)) 38)) (-1525 (((-384)) 29)) (-3131 (((-1 (-384)) (-384)) 30)) (-3517 (((-384) (-777)) 45)) (-2603 (((-1 (-384)) (-777)) 46)) (-1667 (((-1 (-384)) (-777) (-777)) 49)) (-2098 (((-1 (-384)) (-777) (-777)) 47))) +(((-1049) (-10 -7 (-15 -3090 ((-384))) (-15 -1927 ((-384))) (-15 -1525 ((-384))) (-15 -3517 ((-384) (-777))) (-15 -1513 ((-1 (-384)) (-384) (-384))) (-15 -3366 ((-1 (-384)) (-384) (-384))) (-15 -3131 ((-1 (-384)) (-384))) (-15 -2603 ((-1 (-384)) (-777))) (-15 -2098 ((-1 (-384)) (-777) (-777))) (-15 -1667 ((-1 (-384)) (-777) (-777))) (-15 -3678 ((-1 (-384)) (-777))))) (T -1049)) +((-3678 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-1667 (*1 *2 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-2098 (*1 *2 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) (-3131 (*1 *2 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) (-3366 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) (-1513 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-384)) (-5 *1 (-1049)))) (-1525 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))) (-1927 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049)))) (-3090 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049))))) +(-10 -7 (-15 -3090 ((-384))) (-15 -1927 ((-384))) (-15 -1525 ((-384))) (-15 -3517 ((-384) (-777))) (-15 -1513 ((-1 (-384)) (-384) (-384))) (-15 -3366 ((-1 (-384)) (-384) (-384))) (-15 -3131 ((-1 (-384)) (-384))) (-15 -2603 ((-1 (-384)) (-777))) (-15 -2098 ((-1 (-384)) (-777) (-777))) (-15 -1667 ((-1 (-384)) (-777) (-777))) (-15 -3678 ((-1 (-384)) (-777)))) +((-3801 (((-424 |#1|) |#1|) 33))) +(((-1050 |#1|) (-10 -7 (-15 -3801 ((-424 |#1|) |#1|))) (-1252 (-413 (-959 (-570))))) (T -1050)) +((-3801 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1050 *3)) (-4 *3 (-1252 (-413 (-959 (-570)))))))) +(-10 -7 (-15 -3801 ((-424 |#1|) |#1|))) +((-3184 (((-413 (-424 (-959 |#1|))) (-413 (-959 |#1|))) 14))) +(((-1051 |#1|) (-10 -7 (-15 -3184 ((-413 (-424 (-959 |#1|))) (-413 (-959 |#1|))))) (-311)) (T -1051)) +((-3184 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-311)) (-5 *2 (-413 (-424 (-959 *4)))) (-5 *1 (-1051 *4))))) +(-10 -7 (-15 -3184 ((-413 (-424 (-959 |#1|))) (-413 (-959 |#1|))))) +((-1709 (((-650 (-1186)) (-413 (-959 |#1|))) 17)) (-3768 (((-413 (-1182 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186)) 24)) (-1699 (((-413 (-959 |#1|)) (-413 (-1182 (-413 (-959 |#1|)))) (-1186)) 26)) (-4372 (((-3 (-1186) "failed") (-413 (-959 |#1|))) 20)) (-1725 (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-298 (-413 (-959 |#1|))))) 32) (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|)))) 33) (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-1186)) (-650 (-413 (-959 |#1|)))) 28) (((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|))) 29)) (-3798 (((-413 (-959 |#1|)) |#1|) 11))) +(((-1052 |#1|) (-10 -7 (-15 -1709 ((-650 (-1186)) (-413 (-959 |#1|)))) (-15 -4372 ((-3 (-1186) "failed") (-413 (-959 |#1|)))) (-15 -3768 ((-413 (-1182 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -1699 ((-413 (-959 |#1|)) (-413 (-1182 (-413 (-959 |#1|)))) (-1186))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-1186)) (-650 (-413 (-959 |#1|))))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -3798 ((-413 (-959 |#1|)) |#1|))) (-562)) (T -1052)) +((-3798 (*1 *2 *3) (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-1052 *3)) (-4 *3 (-562)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) (-5 *2 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *1 (-1052 *4)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-5 *2 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *1 (-1052 *4)))) (-1725 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-650 (-1186))) (-5 *4 (-650 (-413 (-959 *5)))) (-5 *2 (-413 (-959 *5))) (-4 *5 (-562)) (-5 *1 (-1052 *5)))) (-1725 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-1052 *4)))) (-1699 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-1182 (-413 (-959 *5))))) (-5 *4 (-1186)) (-5 *2 (-413 (-959 *5))) (-5 *1 (-1052 *5)) (-4 *5 (-562)))) (-3768 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-562)) (-5 *2 (-413 (-1182 (-413 (-959 *5))))) (-5 *1 (-1052 *5)) (-5 *3 (-413 (-959 *5))))) (-4372 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-1186)) (-5 *1 (-1052 *4)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-1186))) (-5 *1 (-1052 *4))))) +(-10 -7 (-15 -1709 ((-650 (-1186)) (-413 (-959 |#1|)))) (-15 -4372 ((-3 (-1186) "failed") (-413 (-959 |#1|)))) (-15 -3768 ((-413 (-1182 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -1699 ((-413 (-959 |#1|)) (-413 (-1182 (-413 (-959 |#1|)))) (-1186))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-1186)) (-650 (-413 (-959 |#1|))))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-298 (-413 (-959 |#1|))))) (-15 -1725 ((-413 (-959 |#1|)) (-413 (-959 |#1|)) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -3798 ((-413 (-959 |#1|)) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3734 (($) 18 T CONST)) (-1837 ((|#1| $) 23)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3080 ((|#1| $) 22)) (-3201 ((|#1|) 20 T CONST)) (-3798 (((-868) $) 12)) (-2149 ((|#1| $) 21)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16))) +(((-1053 |#1|) (-141) (-23)) (T -1053)) +((-1837 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23)))) (-3201 (*1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -1837 (|t#1| $)) (-15 -3080 (|t#1| $)) (-15 -2149 (|t#1| $)) (-15 -3201 (|t#1|) -3711))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1870 (($) 25 T CONST)) (-3734 (($) 18 T CONST)) (-1837 ((|#1| $) 23)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3080 ((|#1| $) 22)) (-3201 ((|#1|) 20 T CONST)) (-3798 (((-868) $) 12)) (-2149 ((|#1| $) 21)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16))) +(((-1054 |#1|) (-141) (-23)) (T -1054)) +((-1870 (*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-23))))) +(-13 (-1053 |t#1|) (-10 -8 (-15 -1870 ($) -3711))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-619 (-868)) . T) ((-1053 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 (-786 |#1| (-870 |#2|)))))) (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-2242 (((-650 $) (-650 (-786 |#1| (-870 |#2|)))) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112)) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112) (-112)) NIL)) (-1709 (((-650 (-870 |#2|)) $) NIL)) (-4006 (((-112) $) NIL)) (-1797 (((-112) $) NIL (|has| |#1| (-562)))) (-2208 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-2530 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3696 (((-650 (-2 (|:| |val| (-786 |#1| (-870 |#2|))) (|:| -3665 $))) (-786 |#1| (-870 |#2|)) $) NIL)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ (-870 |#2|)) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1418 (($ (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 (-786 |#1| (-870 |#2|)) "failed") $ (-870 |#2|)) NIL)) (-3734 (($) NIL T CONST)) (-2262 (((-112) $) NIL (|has| |#1| (-562)))) (-2082 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4427 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2418 (((-112) $) NIL (|has| |#1| (-562)))) (-1886 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))) $ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-3572 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| |#1| (-562)))) (-1651 (((-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-3152 (($ (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-3527 (((-3 $ "failed") $) NIL)) (-3099 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-786 |#1| (-870 |#2|)) (-1109))))) (-1697 (($ (-786 |#1| (-870 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-786 |#1| (-870 |#2|))) (|:| |den| |#1|)) (-786 |#1| (-870 |#2|)) $) NIL (|has| |#1| (-562)))) (-3153 (((-112) (-786 |#1| (-870 |#2|)) $ (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-2295 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3600 (((-786 |#1| (-870 |#2|)) (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $ (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (((-786 |#1| (-870 |#2|)) (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $ (-786 |#1| (-870 |#2|))) NIL (|has| $ (-6 -4448))) (((-786 |#1| (-870 |#2|)) (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-3072 (((-2 (|:| -4135 (-650 (-786 |#1| (-870 |#2|)))) (|:| -1718 (-650 (-786 |#1| (-870 |#2|))))) $) NIL)) (-1413 (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-2992 (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-2176 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-2885 (((-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-4347 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-4211 (((-870 |#2|) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-786 |#1| (-870 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-786 |#1| (-870 |#2|)) (-1109))))) (-3837 (($ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) $) NIL)) (-3952 (((-650 (-870 |#2|)) $) NIL)) (-2875 (((-112) (-870 |#2|) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-3383 (((-3 (-786 |#1| (-870 |#2|)) (-650 $)) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3064 (((-650 (-2 (|:| |val| (-786 |#1| (-870 |#2|))) (|:| -3665 $))) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-1723 (((-3 (-786 |#1| (-870 |#2|)) "failed") $) NIL)) (-1559 (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL)) (-3633 (((-3 (-112) (-650 $)) (-786 |#1| (-870 |#2|)) $) NIL)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-2842 (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-650 $)) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) (-650 $)) NIL)) (-2745 (($ (-786 |#1| (-870 |#2|)) $) NIL) (($ (-650 (-786 |#1| (-870 |#2|))) $) NIL)) (-2500 (((-650 (-786 |#1| (-870 |#2|))) $) NIL)) (-1560 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-2458 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-4181 (((-112) $ $) NIL)) (-1701 (((-2 (|:| |num| (-786 |#1| (-870 |#2|))) (|:| |den| |#1|)) (-786 |#1| (-870 |#2|)) $) NIL (|has| |#1| (-562)))) (-1871 (((-112) (-786 |#1| (-870 |#2|)) $) NIL) (((-112) $) NIL)) (-2962 (((-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-3 (-786 |#1| (-870 |#2|)) "failed") $) NIL)) (-4089 (((-3 (-786 |#1| (-870 |#2|)) "failed") (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL)) (-2730 (((-3 $ "failed") $ (-786 |#1| (-870 |#2|))) NIL)) (-3500 (($ $ (-786 |#1| (-870 |#2|))) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) (-650 $)) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-650 $)) NIL)) (-3116 (((-112) (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-786 |#1| (-870 |#2|))) (-650 (-786 |#1| (-870 |#2|)))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ $ (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ $ (-298 (-786 |#1| (-870 |#2|)))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (($ $ (-650 (-298 (-786 |#1| (-870 |#2|))))) NIL (-12 (|has| (-786 |#1| (-870 |#2|)) (-313 (-786 |#1| (-870 |#2|)))) (|has| (-786 |#1| (-870 |#2|)) (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-3324 (((-777) $) NIL)) (-3562 (((-777) (-786 |#1| (-870 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-786 |#1| (-870 |#2|)) (-1109)))) (((-777) (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-786 |#1| (-870 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-786 |#1| (-870 |#2|)))) NIL)) (-3677 (($ $ (-870 |#2|)) NIL)) (-3158 (($ $ (-870 |#2|)) NIL)) (-4381 (($ $) NIL)) (-4074 (($ $ (-870 |#2|)) NIL)) (-3798 (((-868) $) NIL) (((-650 (-786 |#1| (-870 |#2|))) $) NIL)) (-2136 (((-777) $) NIL (|has| (-870 |#2|) (-373)))) (-1319 (((-112) $ $) NIL)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 (-786 |#1| (-870 |#2|))))) "failed") (-650 (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 (-786 |#1| (-870 |#2|))))) "failed") (-650 (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|))) (-1 (-112) (-786 |#1| (-870 |#2|)) (-786 |#1| (-870 |#2|)))) NIL)) (-2863 (((-112) $ (-1 (-112) (-786 |#1| (-870 |#2|)) (-650 (-786 |#1| (-870 |#2|))))) NIL)) (-4296 (((-650 $) (-786 |#1| (-870 |#2|)) $) NIL) (((-650 $) (-786 |#1| (-870 |#2|)) (-650 $)) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) $) NIL) (((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-650 $)) NIL)) (-1431 (((-112) (-1 (-112) (-786 |#1| (-870 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1399 (((-650 (-870 |#2|)) $) NIL)) (-4428 (((-112) (-786 |#1| (-870 |#2|)) $) NIL)) (-4059 (((-112) (-870 |#2|) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1055 |#1| |#2|) (-13 (-1080 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) (-10 -8 (-15 -2242 ((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112) (-112))))) (-458) (-650 (-1186))) (T -1055)) +((-2242 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1055 *5 *6))))) +(-13 (-1080 |#1| (-537 (-870 |#2|)) (-870 |#2|) (-786 |#1| (-870 |#2|))) (-10 -8 (-15 -2242 ((-650 $) (-650 (-786 |#1| (-870 |#2|))) (-112) (-112))))) +((-1513 (((-1 (-570)) (-1103 (-570))) 32)) (-4187 (((-570) (-570) (-570) (-570) (-570)) 29)) (-2064 (((-1 (-570)) |RationalNumber|) NIL)) (-3879 (((-1 (-570)) |RationalNumber|) NIL)) (-3755 (((-1 (-570)) (-570) |RationalNumber|) NIL))) +(((-1056) (-10 -7 (-15 -1513 ((-1 (-570)) (-1103 (-570)))) (-15 -3755 ((-1 (-570)) (-570) |RationalNumber|)) (-15 -2064 ((-1 (-570)) |RationalNumber|)) (-15 -3879 ((-1 (-570)) |RationalNumber|)) (-15 -4187 ((-570) (-570) (-570) (-570) (-570))))) (T -1056)) +((-4187 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1056)))) (-3879 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))) (-2064 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)) (-5 *3 (-570)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-1103 (-570))) (-5 *2 (-1 (-570))) (-5 *1 (-1056))))) +(-10 -7 (-15 -1513 ((-1 (-570)) (-1103 (-570)))) (-15 -3755 ((-1 (-570)) (-570) |RationalNumber|)) (-15 -2064 ((-1 (-570)) |RationalNumber|)) (-15 -3879 ((-1 (-570)) |RationalNumber|)) (-15 -4187 ((-570) (-570) (-570) (-570) (-570)))) +((-3798 (((-868) $) NIL) (($ (-570)) 10))) +(((-1057 |#1|) (-10 -8 (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-1058)) (T -1057)) +NIL +(-10 -8 (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-1058) (-141)) (T -1058)) +((-2862 (*1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-777))))) +(-13 (-1067) (-732) (-654 $) (-622 (-570)) (-10 -7 (-15 -2862 ((-777)) -3711) (-6 -4445))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-622 (-570)) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-732) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-1466 (((-413 (-959 |#2|)) (-650 |#2|) (-650 |#2|) (-777) (-777)) 60))) +(((-1059 |#1| |#2|) (-10 -7 (-15 -1466 ((-413 (-959 |#2|)) (-650 |#2|) (-650 |#2|) (-777) (-777)))) (-1186) (-368)) (T -1059)) +((-1466 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-777)) (-4 *6 (-368)) (-5 *2 (-413 (-959 *6))) (-5 *1 (-1059 *5 *6)) (-14 *5 (-1186))))) +(-10 -7 (-15 -1466 ((-413 (-959 |#2|)) (-650 |#2|) (-650 |#2|) (-777) (-777)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 15)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 16 T CONST)) (-2923 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +(((-1060 |#1|) (-141) (-1067)) (T -1060)) +((-1809 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067))))) +(-13 (-1109) (-10 -8 (-15 (-1809) ($) -3711) (-15 -1359 ((-112) $)) (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-1630 (((-112) $) 40)) (-2525 (((-112) $) 17)) (-3227 (((-777) $) 13)) (-3239 (((-777) $) 14)) (-2881 (((-112) $) 30)) (-2501 (((-112) $) 42))) +(((-1061 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3239 ((-777) |#1|)) (-15 -3227 ((-777) |#1|)) (-15 -2501 ((-112) |#1|)) (-15 -1630 ((-112) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2525 ((-112) |#1|))) (-1062 |#2| |#3| |#4| |#5| |#6|) (-777) (-777) (-1058) (-240 |#3| |#4|) (-240 |#2| |#4|)) (T -1061)) +NIL +(-10 -8 (-15 -3239 ((-777) |#1|)) (-15 -3227 ((-777) |#1|)) (-15 -2501 ((-112) |#1|)) (-15 -1630 ((-112) |#1|)) (-15 -2881 ((-112) |#1|)) (-15 -2525 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1630 (((-112) $) 56)) (-2620 (((-3 $ "failed") $ $) 20)) (-2525 (((-112) $) 58)) (-3636 (((-112) $ (-777)) 66)) (-3734 (($) 18 T CONST)) (-3081 (($ $) 39 (|has| |#3| (-311)))) (-1774 ((|#4| $ (-570)) 44)) (-3979 (((-777) $) 38 (|has| |#3| (-562)))) (-3778 ((|#3| $ (-570) (-570)) 46)) (-2885 (((-650 |#3|) $) 73 (|has| $ (-6 -4448)))) (-2758 (((-777) $) 37 (|has| |#3| (-562)))) (-3766 (((-650 |#5|) $) 36 (|has| |#3| (-562)))) (-3227 (((-777) $) 50)) (-3239 (((-777) $) 49)) (-3846 (((-112) $ (-777)) 65)) (-1515 (((-570) $) 54)) (-2523 (((-570) $) 52)) (-2282 (((-650 |#3|) $) 74 (|has| $ (-6 -4448)))) (-1935 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1109)) (|has| $ (-6 -4448))))) (-1579 (((-570) $) 53)) (-4110 (((-570) $) 51)) (-2433 (($ (-650 (-650 |#3|))) 59)) (-3837 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2139 (((-650 (-650 |#3|)) $) 48)) (-2063 (((-112) $ (-777)) 64)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-562)))) (-3116 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#3|) (-650 |#3|)) 80 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) 78 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 (-298 |#3|))) 77 (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-3123 (((-112) $ $) 60)) (-4303 (((-112) $) 63)) (-4359 (($) 62)) (-1872 ((|#3| $ (-570) (-570)) 47) ((|#3| $ (-570) (-570) |#3|) 45)) (-2881 (((-112) $) 57)) (-3562 (((-777) |#3| $) 75 (-12 (|has| |#3| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4448)))) (-3964 (($ $) 61)) (-4357 ((|#5| $ (-570)) 43)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1431 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4448)))) (-2501 (((-112) $) 55)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#3|) 40 (|has| |#3| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2431 (((-777) $) 67 (|has| $ (-6 -4448))))) +(((-1062 |#1| |#2| |#3| |#4| |#5|) (-141) (-777) (-777) (-1058) (-240 |t#2| |t#3|) (-240 |t#1| |t#3|)) (T -1062)) +((-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) (-2433 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *5))) (-4 *5 (-1058)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112)))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777)))) (-3239 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-650 (-650 *5))))) (-1872 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058)))) (-3778 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058)))) (-1872 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *2 (-1058)) (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)))) (-1774 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *2 *7)) (-4 *6 (-1058)) (-4 *7 (-240 *4 *6)) (-4 *2 (-240 *5 *6)))) (-4357 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *7 *2)) (-4 *6 (-1058)) (-4 *7 (-240 *5 *6)) (-4 *2 (-240 *4 *6)))) (-1347 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) (-2410 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058)) (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-562)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058)) (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-368)))) (-3081 (*1 *1 *1) (-12 (-4 *1 (-1062 *2 *3 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *2 *4)) (-4 *4 (-311)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) (-5 *2 (-777)))) (-2758 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) (-5 *2 (-777)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) (-5 *2 (-650 *7))))) +(-13 (-111 |t#3| |t#3|) (-495 |t#3|) (-10 -8 (-6 -4448) (IF (|has| |t#3| (-174)) (-6 (-723 |t#3|)) |%noBranch|) (-15 -2433 ($ (-650 (-650 |t#3|)))) (-15 -2525 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -1630 ((-112) $)) (-15 -2501 ((-112) $)) (-15 -1515 ((-570) $)) (-15 -1579 ((-570) $)) (-15 -2523 ((-570) $)) (-15 -4110 ((-570) $)) (-15 -3227 ((-777) $)) (-15 -3239 ((-777) $)) (-15 -2139 ((-650 (-650 |t#3|)) $)) (-15 -1872 (|t#3| $ (-570) (-570))) (-15 -3778 (|t#3| $ (-570) (-570))) (-15 -1872 (|t#3| $ (-570) (-570) |t#3|)) (-15 -1774 (|t#4| $ (-570))) (-15 -4357 (|t#5| $ (-570))) (-15 -1347 ($ (-1 |t#3| |t#3|) $)) (-15 -1347 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-562)) (-15 -2410 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-368)) (-15 -3037 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-311)) (-15 -3081 ($ $)) |%noBranch|) (IF (|has| |t#3| (-562)) (PROGN (-15 -3979 ((-777) $)) (-15 -2758 ((-777) $)) (-15 -3766 ((-650 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-619 (-868)) . T) ((-313 |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))) ((-495 |#3|) . T) ((-520 |#3| |#3|) -12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))) ((-652 (-570)) . T) ((-652 |#3|) . T) ((-654 |#3|) . T) ((-646 |#3|) |has| |#3| (-174)) ((-723 |#3|) |has| |#3| (-174)) ((-1060 |#3|) . T) ((-1065 |#3|) . T) ((-1109) . T) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1630 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2525 (((-112) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-3734 (($) NIL T CONST)) (-3081 (($ $) 47 (|has| |#3| (-311)))) (-1774 (((-242 |#2| |#3|) $ (-570)) 36)) (-3341 (($ (-695 |#3|)) 45)) (-3979 (((-777) $) 49 (|has| |#3| (-562)))) (-3778 ((|#3| $ (-570) (-570)) NIL)) (-2885 (((-650 |#3|) $) NIL (|has| $ (-6 -4448)))) (-2758 (((-777) $) 51 (|has| |#3| (-562)))) (-3766 (((-650 (-242 |#1| |#3|)) $) 55 (|has| |#3| (-562)))) (-3227 (((-777) $) NIL)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1515 (((-570) $) NIL)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#3|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-1579 (((-570) $) NIL)) (-4110 (((-570) $) NIL)) (-2433 (($ (-650 (-650 |#3|))) 31)) (-3837 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2139 (((-650 (-650 |#3|)) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-562)))) (-3116 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#3|) (-650 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 (-298 |#3|))) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#3| $ (-570) (-570)) NIL) ((|#3| $ (-570) (-570) |#3|) NIL)) (-3374 (((-135)) 59 (|has| |#3| (-368)))) (-2881 (((-112) $) NIL)) (-3562 (((-777) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109)))) (((-777) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) 65 (|has| |#3| (-620 (-542))))) (-4357 (((-242 |#1| |#3|) $ (-570)) 40)) (-3798 (((-868) $) 19) (((-695 |#3|) $) 42)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-2501 (((-112) $) NIL)) (-1809 (($) 16 T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#3|) NIL (|has| |#3| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1063 |#1| |#2| |#3|) (-13 (-1062 |#1| |#2| |#3| (-242 |#2| |#3|) (-242 |#1| |#3|)) (-619 (-695 |#3|)) (-10 -8 (IF (|has| |#3| (-368)) (-6 (-1283 |#3|)) |%noBranch|) (IF (|has| |#3| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (-15 -3341 ($ (-695 |#3|))))) (-777) (-777) (-1058)) (T -1063)) +((-3341 (*1 *1 *2) (-12 (-5 *2 (-695 *5)) (-4 *5 (-1058)) (-5 *1 (-1063 *3 *4 *5)) (-14 *3 (-777)) (-14 *4 (-777))))) +(-13 (-1062 |#1| |#2| |#3| (-242 |#2| |#3|) (-242 |#1| |#3|)) (-619 (-695 |#3|)) (-10 -8 (IF (|has| |#3| (-368)) (-6 (-1283 |#3|)) |%noBranch|) (IF (|has| |#3| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|) (-15 -3341 ($ (-695 |#3|))))) +((-3600 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1347 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1064 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1347 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3600 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-777) (-777) (-1058) (-240 |#2| |#3|) (-240 |#1| |#3|) (-1062 |#1| |#2| |#3| |#4| |#5|) (-1058) (-240 |#2| |#7|) (-240 |#1| |#7|) (-1062 |#1| |#2| |#7| |#8| |#9|)) (T -1064)) +((-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1058)) (-4 *2 (-1058)) (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7)) (-4 *9 (-240 *5 *7)) (-4 *10 (-240 *6 *2)) (-4 *11 (-240 *5 *2)) (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *12 (-1062 *5 *6 *2 *10 *11)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1058)) (-4 *10 (-1058)) (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7)) (-4 *9 (-240 *5 *7)) (-4 *2 (-1062 *5 *6 *10 *11 *12)) (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *11 (-240 *6 *10)) (-4 *12 (-240 *5 *10))))) +(-10 -7 (-15 -1347 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3600 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ |#1|) 27))) +(((-1065 |#1|) (-141) (-1067)) (T -1065)) +NIL +(-13 (-21) (-1060 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1060 |#1|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2676 (((-1186) $) 11)) (-2825 ((|#1| $) 12)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3499 (($ (-1186) |#1|) 10)) (-3798 (((-868) $) 22 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2923 (((-112) $ $) 17 (|has| |#1| (-1109))))) +(((-1066 |#1| |#2|) (-13 (-1226) (-10 -8 (-15 -3499 ($ (-1186) |#1|)) (-15 -2676 ((-1186) $)) (-15 -2825 (|#1| $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) (-1102 |#2|) (-1226)) (T -1066)) +((-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-4 *4 (-1226)) (-5 *1 (-1066 *3 *4)) (-4 *3 (-1102 *4)))) (-2676 (*1 *2 *1) (-12 (-4 *4 (-1226)) (-5 *2 (-1186)) (-5 *1 (-1066 *3 *4)) (-4 *3 (-1102 *4)))) (-2825 (*1 *2 *1) (-12 (-4 *2 (-1102 *3)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1226))))) +(-13 (-1226) (-10 -8 (-15 -3499 ($ (-1186) |#1|)) (-15 -2676 ((-1186) $)) (-15 -2825 (|#1| $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-1067) (-141)) (T -1067)) +NIL +(-13 (-21) (-1121)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-1121) . T) ((-1109) . T)) +((-3667 (($ $) 17)) (-2109 (($ $) 25)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 55)) (-2233 (($ $) 27)) (-2545 (($ $) 12)) (-4140 (($ $) 43)) (-1411 (((-384) $) NIL) (((-227) $) NIL) (((-899 (-384)) $) 36)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL) (($ (-413 (-570))) 31) (($ (-570)) NIL) (($ (-413 (-570))) 31)) (-2862 (((-777)) 9)) (-1442 (($ $) 45))) +(((-1068 |#1|) (-10 -8 (-15 -2109 (|#1| |#1|)) (-15 -3667 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| (-570))) (-15 -1411 ((-227) |#1|)) (-15 -1411 ((-384) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| |#1|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-1069)) (T -1068)) +((-2862 (*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1068 *3)) (-4 *3 (-1069))))) +(-10 -8 (-15 -2109 (|#1| |#1|)) (-15 -3667 (|#1| |#1|)) (-15 -2545 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -2233 (|#1| |#1|)) (-15 -2125 ((-896 (-384) |#1|) |#1| (-899 (-384)) (-896 (-384) |#1|))) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| (-570))) (-15 -1411 ((-227) |#1|)) (-15 -1411 ((-384) |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| |#1|)) (-15 -2862 ((-777))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3356 (((-570) $) 97)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-3667 (($ $) 95)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-3815 (($ $) 105)) (-4073 (((-112) $ $) 65)) (-2579 (((-570) $) 122)) (-3734 (($) 18 T CONST)) (-2109 (($ $) 94)) (-4382 (((-3 (-570) "failed") $) 110) (((-3 (-413 (-570)) "failed") $) 107)) (-3152 (((-570) $) 111) (((-413 (-570)) $) 108)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3701 (((-112) $) 79)) (-2135 (((-112) $) 120)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 101)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 104)) (-2233 (($ $) 100)) (-3367 (((-112) $) 121)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-3382 (($ $ $) 119)) (-2876 (($ $ $) 118)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-2545 (($ $) 96)) (-4140 (($ $) 98)) (-3801 (((-424 $) $) 82)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-1411 (((-384) $) 113) (((-227) $) 112) (((-899 (-384)) $) 102)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ (-570)) 109) (($ (-413 (-570))) 106)) (-2862 (((-777)) 32 T CONST)) (-1442 (($ $) 99)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-2216 (($ $) 123)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2981 (((-112) $ $) 116)) (-2959 (((-112) $ $) 115)) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 117)) (-2948 (((-112) $ $) 114)) (-3037 (($ $ $) 73)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77) (($ $ (-413 (-570))) 103)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75))) +(((-1069) (-141)) (T -1069)) +((-2216 (*1 *1 *1) (-4 *1 (-1069))) (-2233 (*1 *1 *1) (-4 *1 (-1069))) (-1442 (*1 *1 *1) (-4 *1 (-1069))) (-4140 (*1 *1 *1) (-4 *1 (-1069))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-570)))) (-2545 (*1 *1 *1) (-4 *1 (-1069))) (-3667 (*1 *1 *1) (-4 *1 (-1069))) (-2109 (*1 *1 *1) (-4 *1 (-1069)))) +(-13 (-368) (-854) (-1031) (-1047 (-570)) (-1047 (-413 (-570))) (-1011) (-620 (-899 (-384))) (-893 (-384)) (-148) (-10 -8 (-15 -2233 ($ $)) (-15 -1442 ($ $)) (-15 -4140 ($ $)) (-15 -3356 ((-570) $)) (-15 -2545 ($ $)) (-15 -3667 ($ $)) (-15 -2109 ($ $)) (-15 -2216 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-620 (-227)) . T) ((-620 (-384)) . T) ((-620 (-899 (-384))) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 $) . T) ((-732) . T) ((-797) . T) ((-798) . T) ((-800) . T) ((-801) . T) ((-854) . T) ((-856) . T) ((-893 (-384)) . T) ((-927) . T) ((-1011) . T) ((-1031) . T) ((-1047 (-413 (-570))) . T) ((-1047 (-570)) . T) ((-1060 #0#) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) |#2| $) 26)) (-3475 ((|#1| $) 10)) (-2579 (((-570) |#2| $) 116)) (-2300 (((-3 $ "failed") |#2| (-928)) 75)) (-4411 ((|#1| $) 31)) (-1424 ((|#1| |#2| $ |#1|) 40)) (-3547 (($ $) 28)) (-2229 (((-3 |#2| "failed") |#2| $) 111)) (-2135 (((-112) |#2| $) NIL)) (-3367 (((-112) |#2| $) NIL)) (-3428 (((-112) |#2| $) 27)) (-2782 ((|#1| $) 117)) (-4399 ((|#1| $) 30)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1881 ((|#2| $) 102)) (-3798 (((-868) $) 92)) (-1319 (((-112) $ $) NIL)) (-3093 ((|#1| |#2| $ |#1|) 41)) (-2210 (((-650 $) |#2|) 77)) (-2923 (((-112) $ $) 97))) +(((-1070 |#1| |#2|) (-13 (-1077 |#1| |#2|) (-10 -8 (-15 -4399 (|#1| $)) (-15 -4411 (|#1| $)) (-15 -3475 (|#1| $)) (-15 -2782 (|#1| $)) (-15 -3547 ($ $)) (-15 -3428 ((-112) |#2| $)) (-15 -1424 (|#1| |#2| $ |#1|)))) (-13 (-854) (-368)) (-1252 |#1|)) (T -1070)) +((-1424 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1252 *2)))) (-4399 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1252 *2)))) (-4411 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1252 *2)))) (-3475 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1252 *2)))) (-2782 (*1 *2 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1252 *2)))) (-3547 (*1 *1 *1) (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) (-4 *3 (-1252 *2)))) (-3428 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-854) (-368))) (-5 *2 (-112)) (-5 *1 (-1070 *4 *3)) (-4 *3 (-1252 *4))))) +(-13 (-1077 |#1| |#2|) (-10 -8 (-15 -4399 (|#1| $)) (-15 -4411 (|#1| $)) (-15 -3475 (|#1| $)) (-15 -2782 (|#1| $)) (-15 -3547 ($ $)) (-15 -3428 ((-112) |#2| $)) (-15 -1424 (|#1| |#2| $ |#1|)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2744 (($ $ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4233 (($ $ $ $) NIL)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-2579 (((-570) $) NIL)) (-3086 (($ $ $) NIL)) (-3734 (($) NIL T CONST)) (-3362 (($ (-1186)) 10) (($ (-570)) 7)) (-4382 (((-3 (-570) "failed") $) NIL)) (-3152 (((-570) $) NIL)) (-2372 (($ $ $) NIL)) (-2004 (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-695 (-570)) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL)) (-3108 (((-112) $) NIL)) (-3875 (((-413 (-570)) $) NIL)) (-3408 (($) NIL) (($ $) NIL)) (-2380 (($ $ $) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1991 (($ $ $ $) NIL)) (-2378 (($ $ $) NIL)) (-2135 (((-112) $) NIL)) (-2375 (($ $ $) NIL)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-2481 (((-112) $) NIL)) (-2639 (((-112) $) NIL)) (-3641 (((-3 $ "failed") $) NIL)) (-3367 (((-112) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2170 (($ $ $ $) NIL)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-2609 (($ $) NIL)) (-3847 (($ $) NIL)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-2078 (($ $ $) NIL)) (-2310 (($) NIL T CONST)) (-3595 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) NIL) (($ (-650 $)) NIL)) (-3067 (($ $) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3699 (((-112) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-3519 (($ $ (-777)) NIL) (($ $) NIL)) (-2435 (($ $) NIL)) (-3964 (($ $) NIL)) (-1411 (((-570) $) 16) (((-542) $) NIL) (((-899 (-570)) $) NIL) (((-384) $) NIL) (((-227) $) NIL) (($ (-1186)) 9)) (-3798 (((-868) $) 23) (($ (-570)) 6) (($ $) NIL) (($ (-570)) 6)) (-2862 (((-777)) NIL T CONST)) (-3767 (((-112) $ $) NIL)) (-3755 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-4364 (($) NIL)) (-3258 (((-112) $ $) NIL)) (-4078 (($ $ $ $) NIL)) (-2216 (($ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL)) (-3026 (($ $) 22) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL))) +(((-1071) (-13 (-551) (-624 (-1186)) (-10 -8 (-6 -4435) (-6 -4440) (-6 -4436) (-15 -3362 ($ (-1186))) (-15 -3362 ($ (-570)))))) (T -1071)) +((-3362 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1071)))) (-3362 (*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1071))))) +(-13 (-551) (-624 (-1186)) (-10 -8 (-6 -4435) (-6 -4440) (-6 -4436) (-15 -3362 ($ (-1186))) (-15 -3362 ($ (-570))))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-2926 (((-1281) $ (-1186) (-1186)) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-2633 (($) 9)) (-3945 (((-52) $ (-1186) (-52)) NIL)) (-2957 (($ $) 32)) (-3737 (($ $) 30)) (-4170 (($ $) 29)) (-3822 (($ $) 31)) (-2083 (($ $) 35)) (-2528 (($ $) 36)) (-1753 (($ $) 28)) (-1317 (($ $) 33)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) 27 (|has| $ (-6 -4448)))) (-2361 (((-3 (-52) "failed") (-1186) $) 43)) (-3734 (($) NIL T CONST)) (-1955 (($) 7)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2571 (($ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) 53 (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-3 (-52) "failed") (-1186) $) NIL)) (-1697 (($ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448)))) (-3057 (((-3 (-1168) "failed") $ (-1168) (-570)) 74)) (-3849 (((-52) $ (-1186) (-52)) NIL (|has| $ (-6 -4449)))) (-3778 (((-52) $ (-1186)) NIL)) (-2885 (((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-650 (-52)) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-1186) $) NIL (|has| (-1186) (-856)))) (-2282 (((-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) 38 (|has| $ (-6 -4448))) (((-650 (-52)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109))))) (-3434 (((-1186) $) NIL (|has| (-1186) (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4449))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2799 (((-650 (-1186)) $) NIL)) (-4242 (((-112) (-1186) $) NIL)) (-1334 (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL)) (-2213 (($ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) 46)) (-2044 (((-650 (-1186)) $) NIL)) (-1480 (((-112) (-1186) $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-1376 (((-384) $ (-1186)) 52)) (-4183 (((-650 (-1168)) $ (-1168)) 76)) (-3515 (((-52) $) NIL (|has| (-1186) (-856)))) (-4089 (((-3 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) "failed") (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL)) (-2973 (($ $ (-52)) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-298 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL (-12 (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-313 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (($ $ (-650 (-52)) (-650 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-298 (-52))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109)))) (($ $ (-650 (-298 (-52)))) NIL (-12 (|has| (-52) (-313 (-52))) (|has| (-52) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109))))) (-2880 (((-650 (-52)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 (((-52) $ (-1186)) NIL) (((-52) $ (-1186) (-52)) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-2608 (($ $ (-1186)) 54)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109)))) (((-777) (-52) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-52) (-1109)))) (((-777) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) 40)) (-2445 (($ $ $) 41)) (-3798 (((-868) $) NIL (-2779 (|has| (-52) (-619 (-868))) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-619 (-868)))))) (-2504 (($ $ (-1186) (-384)) 50)) (-1693 (($ $ (-1186) (-384)) 51)) (-1319 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 (-1186)) (|:| -2219 (-52)))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-52) (-1109)) (|has| (-2 (|:| -2009 (-1186)) (|:| -2219 (-52))) (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1072) (-13 (-1202 (-1186) (-52)) (-10 -8 (-15 -2445 ($ $ $)) (-15 -1955 ($)) (-15 -1753 ($ $)) (-15 -4170 ($ $)) (-15 -3737 ($ $)) (-15 -3822 ($ $)) (-15 -1317 ($ $)) (-15 -2957 ($ $)) (-15 -2083 ($ $)) (-15 -2528 ($ $)) (-15 -2504 ($ $ (-1186) (-384))) (-15 -1693 ($ $ (-1186) (-384))) (-15 -1376 ((-384) $ (-1186))) (-15 -4183 ((-650 (-1168)) $ (-1168))) (-15 -2608 ($ $ (-1186))) (-15 -2633 ($)) (-15 -3057 ((-3 (-1168) "failed") $ (-1168) (-570))) (-6 -4448)))) (T -1072)) +((-2445 (*1 *1 *1 *1) (-5 *1 (-1072))) (-1955 (*1 *1) (-5 *1 (-1072))) (-1753 (*1 *1 *1) (-5 *1 (-1072))) (-4170 (*1 *1 *1) (-5 *1 (-1072))) (-3737 (*1 *1 *1) (-5 *1 (-1072))) (-3822 (*1 *1 *1) (-5 *1 (-1072))) (-1317 (*1 *1 *1) (-5 *1 (-1072))) (-2957 (*1 *1 *1) (-5 *1 (-1072))) (-2083 (*1 *1 *1) (-5 *1 (-1072))) (-2528 (*1 *1 *1) (-5 *1 (-1072))) (-2504 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072)))) (-1693 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072)))) (-1376 (*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-384)) (-5 *1 (-1072)))) (-4183 (*1 *2 *1 *3) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1072)) (-5 *3 (-1168)))) (-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1072)))) (-2633 (*1 *1) (-5 *1 (-1072))) (-3057 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-1072))))) +(-13 (-1202 (-1186) (-52)) (-10 -8 (-15 -2445 ($ $ $)) (-15 -1955 ($)) (-15 -1753 ($ $)) (-15 -4170 ($ $)) (-15 -3737 ($ $)) (-15 -3822 ($ $)) (-15 -1317 ($ $)) (-15 -2957 ($ $)) (-15 -2083 ($ $)) (-15 -2528 ($ $)) (-15 -2504 ($ $ (-1186) (-384))) (-15 -1693 ($ $ (-1186) (-384))) (-15 -1376 ((-384) $ (-1186))) (-15 -4183 ((-650 (-1168)) $ (-1168))) (-15 -2608 ($ $ (-1186))) (-15 -2633 ($)) (-15 -3057 ((-3 (-1168) "failed") $ (-1168) (-570))) (-6 -4448))) +((-1568 (($ $) 46)) (-2333 (((-112) $ $) 82)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-959 (-413 (-570)))) 253) (((-3 $ "failed") (-959 (-570))) 252) (((-3 $ "failed") (-959 |#2|)) 255)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) NIL) (((-570) $) NIL) ((|#4| $) NIL) (($ (-959 (-413 (-570)))) 241) (($ (-959 (-570))) 237) (($ (-959 |#2|)) 257)) (-1885 (($ $) NIL) (($ $ |#4|) 44)) (-3153 (((-112) $ $) 131) (((-112) $ (-650 $)) 135)) (-2740 (((-112) $) 60)) (-1874 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 125)) (-2147 (($ $) 160)) (-1348 (($ $) 156)) (-3630 (($ $) 155)) (-3314 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3018 (($ $ $) 90) (($ $ $ |#4|) 94)) (-4347 (((-112) $ $) 143) (((-112) $ (-650 $)) 144)) (-4211 ((|#4| $) 32)) (-3912 (($ $ $) 128)) (-3189 (((-112) $) 59)) (-3629 (((-777) $) 35)) (-2124 (($ $) 174)) (-3906 (($ $) 171)) (-2045 (((-650 $) $) 72)) (-1489 (($ $) 62)) (-2067 (($ $) 167)) (-1535 (((-650 $) $) 69)) (-1990 (($ $) 64)) (-1860 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3915 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2271 (-777))) $ $) 130)) (-1879 (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $) 126) (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $ |#4|) 127)) (-4118 (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $) 121) (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $ |#4|) 123)) (-2345 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2171 (($ $ $) 98) (($ $ $ |#4|) 107)) (-1615 (((-650 $) $) 54)) (-1560 (((-112) $ $) 140) (((-112) $ (-650 $)) 141)) (-2458 (($ $ $) 116)) (-2310 (($ $) 37)) (-4181 (((-112) $ $) 80)) (-1871 (((-112) $ $) 136) (((-112) $ (-650 $)) 138)) (-2962 (($ $ $) 112)) (-4188 (($ $) 41)) (-1869 ((|#2| |#2| $) 164) (($ (-650 $)) NIL) (($ $ $) NIL)) (-1545 (($ $ |#2|) NIL) (($ $ $) 153)) (-1577 (($ $ |#2|) 148) (($ $ $) 151)) (-2790 (($ $) 49)) (-3655 (($ $) 55)) (-1411 (((-899 (-384)) $) NIL) (((-899 (-570)) $) NIL) (((-542) $) NIL) (($ (-959 (-413 (-570)))) 243) (($ (-959 (-570))) 239) (($ (-959 |#2|)) 254) (((-1168) $) 281) (((-959 |#2|) $) 184)) (-3798 (((-868) $) 29) (($ (-570)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-959 |#2|) $) 185) (($ (-413 (-570))) NIL) (($ $) NIL)) (-3036 (((-3 (-112) "failed") $ $) 79))) +(((-1073 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -1869 (|#1| |#1| |#1|)) (-15 -1869 (|#1| (-650 |#1|))) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 ((-959 |#2|) |#1|)) (-15 -1411 ((-959 |#2|) |#1|)) (-15 -1411 ((-1168) |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -2067 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -1869 (|#2| |#2| |#1|)) (-15 -1545 (|#1| |#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1545 (|#1| |#1| |#2|)) (-15 -1577 (|#1| |#1| |#2|)) (-15 -1348 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -1411 (|#1| (-959 |#2|))) (-15 -3152 (|#1| (-959 |#2|))) (-15 -4382 ((-3 |#1| "failed") (-959 |#2|))) (-15 -1411 (|#1| (-959 (-570)))) (-15 -3152 (|#1| (-959 (-570)))) (-15 -4382 ((-3 |#1| "failed") (-959 (-570)))) (-15 -1411 (|#1| (-959 (-413 (-570))))) (-15 -3152 (|#1| (-959 (-413 (-570))))) (-15 -4382 ((-3 |#1| "failed") (-959 (-413 (-570))))) (-15 -2458 (|#1| |#1| |#1|)) (-15 -2962 (|#1| |#1| |#1|)) (-15 -3915 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2271 (-777))) |#1| |#1|)) (-15 -3912 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -1879 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -1879 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -4118 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -4118 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1| |#4|)) (-15 -2345 (|#1| |#1| |#1| |#4|)) (-15 -2171 (|#1| |#1| |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -3018 (|#1| |#1| |#1| |#4|)) (-15 -3314 (|#1| |#1| |#1| |#4|)) (-15 -3018 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -4347 ((-112) |#1| (-650 |#1|))) (-15 -4347 ((-112) |#1| |#1|)) (-15 -1560 ((-112) |#1| (-650 |#1|))) (-15 -1560 ((-112) |#1| |#1|)) (-15 -1871 ((-112) |#1| (-650 |#1|))) (-15 -1871 ((-112) |#1| |#1|)) (-15 -3153 ((-112) |#1| (-650 |#1|))) (-15 -3153 ((-112) |#1| |#1|)) (-15 -2333 ((-112) |#1| |#1|)) (-15 -4181 ((-112) |#1| |#1|)) (-15 -3036 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2045 ((-650 |#1|) |#1|)) (-15 -1535 ((-650 |#1|) |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3189 ((-112) |#1|)) (-15 -1885 (|#1| |#1| |#4|)) (-15 -1860 (|#1| |#1| |#4|)) (-15 -3655 (|#1| |#1|)) (-15 -1615 ((-650 |#1|) |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2310 (|#1| |#1|)) (-15 -3629 ((-777) |#1|)) (-15 -4211 (|#4| |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -3798 (|#1| |#4|)) (-15 -4382 ((-3 |#4| "failed") |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -1860 (|#2| |#1|)) (-15 -1885 (|#1| |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-1074 |#2| |#3| |#4|) (-1058) (-799) (-856)) (T -1073)) +NIL +(-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -1869 (|#1| |#1| |#1|)) (-15 -1869 (|#1| (-650 |#1|))) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 ((-959 |#2|) |#1|)) (-15 -1411 ((-959 |#2|) |#1|)) (-15 -1411 ((-1168) |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -2067 (|#1| |#1|)) (-15 -2147 (|#1| |#1|)) (-15 -1869 (|#2| |#2| |#1|)) (-15 -1545 (|#1| |#1| |#1|)) (-15 -1577 (|#1| |#1| |#1|)) (-15 -1545 (|#1| |#1| |#2|)) (-15 -1577 (|#1| |#1| |#2|)) (-15 -1348 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -1411 (|#1| (-959 |#2|))) (-15 -3152 (|#1| (-959 |#2|))) (-15 -4382 ((-3 |#1| "failed") (-959 |#2|))) (-15 -1411 (|#1| (-959 (-570)))) (-15 -3152 (|#1| (-959 (-570)))) (-15 -4382 ((-3 |#1| "failed") (-959 (-570)))) (-15 -1411 (|#1| (-959 (-413 (-570))))) (-15 -3152 (|#1| (-959 (-413 (-570))))) (-15 -4382 ((-3 |#1| "failed") (-959 (-413 (-570))))) (-15 -2458 (|#1| |#1| |#1|)) (-15 -2962 (|#1| |#1| |#1|)) (-15 -3915 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2271 (-777))) |#1| |#1|)) (-15 -3912 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -1879 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -1879 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -4118 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -2423 |#1|)) |#1| |#1| |#4|)) (-15 -4118 ((-2 (|:| -1436 |#1|) (|:| |gap| (-777)) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1| |#4|)) (-15 -2345 (|#1| |#1| |#1| |#4|)) (-15 -2171 (|#1| |#1| |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -3018 (|#1| |#1| |#1| |#4|)) (-15 -3314 (|#1| |#1| |#1| |#4|)) (-15 -3018 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -4347 ((-112) |#1| (-650 |#1|))) (-15 -4347 ((-112) |#1| |#1|)) (-15 -1560 ((-112) |#1| (-650 |#1|))) (-15 -1560 ((-112) |#1| |#1|)) (-15 -1871 ((-112) |#1| (-650 |#1|))) (-15 -1871 ((-112) |#1| |#1|)) (-15 -3153 ((-112) |#1| (-650 |#1|))) (-15 -3153 ((-112) |#1| |#1|)) (-15 -2333 ((-112) |#1| |#1|)) (-15 -4181 ((-112) |#1| |#1|)) (-15 -3036 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2045 ((-650 |#1|) |#1|)) (-15 -1535 ((-650 |#1|) |#1|)) (-15 -1990 (|#1| |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -2740 ((-112) |#1|)) (-15 -3189 ((-112) |#1|)) (-15 -1885 (|#1| |#1| |#4|)) (-15 -1860 (|#1| |#1| |#4|)) (-15 -3655 (|#1| |#1|)) (-15 -1615 ((-650 |#1|) |#1|)) (-15 -2790 (|#1| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -2310 (|#1| |#1|)) (-15 -3629 ((-777) |#1|)) (-15 -4211 (|#4| |#1|)) (-15 -1411 ((-542) |#1|)) (-15 -1411 ((-899 (-570)) |#1|)) (-15 -1411 ((-899 (-384)) |#1|)) (-15 -3798 (|#1| |#4|)) (-15 -4382 ((-3 |#4| "failed") |#1|)) (-15 -3152 (|#4| |#1|)) (-15 -1860 (|#2| |#1|)) (-15 -1885 (|#1| |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 |#3|) $) 112)) (-3768 (((-1182 $) $ |#3|) 127) (((-1182 |#1|) $) 126)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2318 (($ $) 90 (|has| |#1| (-562)))) (-2234 (((-112) $) 92 (|has| |#1| (-562)))) (-1818 (((-777) $) 114) (((-777) $ (-650 |#3|)) 113)) (-1568 (($ $) 273)) (-2333 (((-112) $ $) 259)) (-2620 (((-3 $ "failed") $ $) 20)) (-1485 (($ $ $) 218 (|has| |#1| (-562)))) (-3094 (((-650 $) $ $) 213 (|has| |#1| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3696 (($ $) 100 (|has| |#1| (-458)))) (-2555 (((-424 $) $) 99 (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-959 (-413 (-570)))) 233 (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))) (((-3 $ "failed") (-959 (-570))) 230 (-2779 (-12 (-1748 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186)))))) (((-3 $ "failed") (-959 |#1|)) 227 (-2779 (-12 (-1748 (|has| |#1| (-38 (-413 (-570))))) (-1748 (|has| |#1| (-38 (-570)))) (|has| |#3| (-620 (-1186)))) (-12 (-1748 (|has| |#1| (-551))) (-1748 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (-1748 (|has| |#1| (-1001 (-570)))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))))) (-3152 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) ((|#3| $) 139) (($ (-959 (-413 (-570)))) 232 (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))) (($ (-959 (-570))) 229 (-2779 (-12 (-1748 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186)))))) (($ (-959 |#1|)) 226 (-2779 (-12 (-1748 (|has| |#1| (-38 (-413 (-570))))) (-1748 (|has| |#1| (-38 (-570)))) (|has| |#3| (-620 (-1186)))) (-12 (-1748 (|has| |#1| (-551))) (-1748 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (-1748 (|has| |#1| (-1001 (-570)))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))))) (-2865 (($ $ $ |#3|) 110 (|has| |#1| (-174))) (($ $ $) 214 (|has| |#1| (-562)))) (-1885 (($ $) 156) (($ $ |#3|) 268)) (-2004 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-3153 (((-112) $ $) 258) (((-112) $ (-650 $)) 257)) (-2229 (((-3 $ "failed") $) 37)) (-2740 (((-112) $) 266)) (-1874 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 238)) (-2147 (($ $) 207 (|has| |#1| (-458)))) (-1908 (($ $) 178 (|has| |#1| (-458))) (($ $ |#3|) 107 (|has| |#1| (-458)))) (-1867 (((-650 $) $) 111)) (-3701 (((-112) $) 98 (|has| |#1| (-916)))) (-1348 (($ $) 223 (|has| |#1| (-562)))) (-3630 (($ $) 224 (|has| |#1| (-562)))) (-3314 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3018 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3155 (($ $ |#1| |#2| $) 174)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| |#3| (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| |#3| (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-2481 (((-112) $) 35)) (-1700 (((-777) $) 171)) (-4347 (((-112) $ $) 252) (((-112) $ (-650 $)) 251)) (-4383 (($ $ $ $ $) 209 (|has| |#1| (-562)))) (-4211 ((|#3| $) 277)) (-1699 (($ (-1182 |#1|) |#3|) 119) (($ (-1182 $) |#3|) 118)) (-2717 (((-650 $) $) 128)) (-2343 (((-112) $) 154)) (-3925 (($ |#1| |#2|) 155) (($ $ |#3| (-777)) 121) (($ $ (-650 |#3|) (-650 (-777))) 120)) (-3912 (($ $ $) 237)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#3|) 122)) (-3189 (((-112) $) 267)) (-2302 ((|#2| $) 172) (((-777) $ |#3|) 124) (((-650 (-777)) $ (-650 |#3|)) 123)) (-3629 (((-777) $) 276)) (-2550 (($ (-1 |#2| |#2|) $) 173)) (-1347 (($ (-1 |#1| |#1|) $) 153)) (-4372 (((-3 |#3| "failed") $) 125)) (-2124 (($ $) 204 (|has| |#1| (-458)))) (-3906 (($ $) 205 (|has| |#1| (-458)))) (-2045 (((-650 $) $) 262)) (-1489 (($ $) 265)) (-2067 (($ $) 206 (|has| |#1| (-458)))) (-1535 (((-650 $) $) 263)) (-1990 (($ $) 264)) (-1851 (($ $) 151)) (-1860 ((|#1| $) 150) (($ $ |#3|) 269)) (-1841 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-3915 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2271 (-777))) $ $) 236)) (-1879 (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $) 240) (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $ |#3|) 239)) (-4118 (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $) 242) (((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $ |#3|) 241)) (-2345 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2171 (($ $ $) 245) (($ $ $ |#3|) 243)) (-4122 (((-1168) $) 10)) (-3064 (($ $ $) 212 (|has| |#1| (-562)))) (-1615 (((-650 $) $) 271)) (-4193 (((-3 (-650 $) "failed") $) 116)) (-3607 (((-3 (-650 $) "failed") $) 117)) (-1657 (((-3 (-2 (|:| |var| |#3|) (|:| -3283 (-777))) "failed") $) 115)) (-1560 (((-112) $ $) 254) (((-112) $ (-650 $)) 253)) (-2458 (($ $ $) 234)) (-2310 (($ $) 275)) (-4181 (((-112) $ $) 260)) (-1871 (((-112) $ $) 256) (((-112) $ (-650 $)) 255)) (-2962 (($ $ $) 235)) (-4188 (($ $) 274)) (-3551 (((-1129) $) 11)) (-2261 (((-2 (|:| -1869 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-562)))) (-3447 (((-2 (|:| -1869 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-562)))) (-1830 (((-112) $) 168)) (-1838 ((|#1| $) 169)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-1869 ((|#1| |#1| $) 208 (|has| |#1| (-458))) (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-3801 (((-424 $) $) 101 (|has| |#1| (-916)))) (-3102 (((-2 (|:| -1869 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-562)))) (-2410 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-1545 (($ $ |#1|) 221 (|has| |#1| (-562))) (($ $ $) 219 (|has| |#1| (-562)))) (-1577 (($ $ |#1|) 222 (|has| |#1| (-562))) (($ $ $) 220 (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-650 |#3|) (-650 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-650 |#3|) (-650 $)) 140)) (-3511 (($ $ |#3|) 109 (|has| |#1| (-174)))) (-3519 (($ $ |#3|) 46) (($ $ (-650 |#3|)) 45) (($ $ |#3| (-777)) 44) (($ $ (-650 |#3|) (-650 (-777))) 43)) (-3324 ((|#2| $) 152) (((-777) $ |#3|) 132) (((-650 (-777)) $ (-650 |#3|)) 131)) (-2790 (($ $) 272)) (-3655 (($ $) 270)) (-1411 (((-899 (-384)) $) 84 (-12 (|has| |#3| (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| |#3| (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| |#3| (-620 (-542))) (|has| |#1| (-620 (-542))))) (($ (-959 (-413 (-570)))) 231 (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186))))) (($ (-959 (-570))) 228 (-2779 (-12 (-1748 (|has| |#1| (-38 (-413 (-570))))) (|has| |#1| (-38 (-570))) (|has| |#3| (-620 (-1186)))) (-12 (|has| |#1| (-38 (-413 (-570)))) (|has| |#3| (-620 (-1186)))))) (($ (-959 |#1|)) 225 (|has| |#3| (-620 (-1186)))) (((-1168) $) 203 (-12 (|has| |#1| (-1047 (-570))) (|has| |#3| (-620 (-1186))))) (((-959 |#1|) $) 202 (|has| |#3| (-620 (-1186))))) (-1427 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ |#3|) 108 (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 106 (-1760 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-959 |#1|) $) 201 (|has| |#3| (-620 (-1186)))) (($ (-413 (-570))) 80 (-2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570)))))) (($ $) 87 (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) 170)) (-3326 ((|#1| $ |#2|) 157) (($ $ |#3| (-777)) 130) (($ $ (-650 |#3|) (-650 (-777))) 129)) (-2917 (((-3 $ "failed") $) 81 (-2779 (-1760 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) 32 T CONST)) (-1484 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-3036 (((-3 (-112) "failed") $ $) 261)) (-1817 (($) 34 T CONST)) (-2480 (($ $ $ $ (-777)) 210 (|has| |#1| (-562)))) (-2425 (($ $ $ (-777)) 211 (|has| |#1| (-562)))) (-2835 (($ $ |#3|) 42) (($ $ (-650 |#3|)) 41) (($ $ |#3| (-777)) 40) (($ $ (-650 |#3|) (-650 (-777))) 39)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1074 |#1| |#2| |#3|) (-141) (-1058) (-799) (-856)) (T -1074)) +((-4211 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-777)))) (-2310 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-4188 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2790 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1615 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-3655 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1860 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-1885 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1990 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-1535 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-2045 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-3036 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-4181 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-2333 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-3153 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-1871 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1871 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-1560 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-4347 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)))) (-4347 (*1 *2 *1 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) (-3314 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3018 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3314 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-3018 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-2345 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2171 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2345 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-2171 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *2 (-856)))) (-4118 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -2423 *1))) (-4 *1 (-1074 *3 *4 *5)))) (-4118 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -2423 *1))) (-4 *1 (-1074 *4 *5 *3)))) (-1879 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1074 *3 *4 *5)))) (-1879 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1074 *4 *5 *3)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1074 *3 *4 *5)))) (-3912 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-3915 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2271 (-777)))) (-4 *1 (-1074 *3 *4 *5)))) (-2962 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-2458 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)))) (-4382 (*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)))) (-4382 (*1 *1 *2) (|partial| -2779 (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (-3152 (*1 *1 *2) (-2779 (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (-1411 (*1 *1 *2) (-2779 (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (-4382 (*1 *1 *2) (|partial| -2779 (-12 (-5 *2 (-959 *3)) (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-1748 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-1748 (-4 *3 (-551))) (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-1748 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))))) (-3152 (*1 *1 *2) (-2779 (-12 (-5 *2 (-959 *3)) (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-1748 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-1748 (-4 *3 (-551))) (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))) (-12 (-5 *2 (-959 *3)) (-12 (-1748 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) (-4 *5 (-856))))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *5 (-620 (-1186))) (-4 *4 (-799)) (-4 *5 (-856)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1348 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1577 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1545 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1577 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1545 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1485 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3102 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1869 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1074 *3 *4 *5)))) (-3447 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1869 *1) (|:| |coef1| *1))) (-4 *1 (-1074 *3 *4 *5)))) (-2261 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-2 (|:| -1869 *1) (|:| |coef2| *1))) (-4 *1 (-1074 *3 *4 *5)))) (-2865 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-3094 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5)))) (-3064 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-2425 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562)))) (-2480 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562)))) (-4383 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-562)))) (-1869 (*1 *2 *2 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2147 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2067 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-3906 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458)))) (-2124 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-458))))) +(-13 (-956 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4211 (|t#3| $)) (-15 -3629 ((-777) $)) (-15 -2310 ($ $)) (-15 -4188 ($ $)) (-15 -1568 ($ $)) (-15 -2790 ($ $)) (-15 -1615 ((-650 $) $)) (-15 -3655 ($ $)) (-15 -1860 ($ $ |t#3|)) (-15 -1885 ($ $ |t#3|)) (-15 -3189 ((-112) $)) (-15 -2740 ((-112) $)) (-15 -1489 ($ $)) (-15 -1990 ($ $)) (-15 -1535 ((-650 $) $)) (-15 -2045 ((-650 $) $)) (-15 -3036 ((-3 (-112) "failed") $ $)) (-15 -4181 ((-112) $ $)) (-15 -2333 ((-112) $ $)) (-15 -3153 ((-112) $ $)) (-15 -3153 ((-112) $ (-650 $))) (-15 -1871 ((-112) $ $)) (-15 -1871 ((-112) $ (-650 $))) (-15 -1560 ((-112) $ $)) (-15 -1560 ((-112) $ (-650 $))) (-15 -4347 ((-112) $ $)) (-15 -4347 ((-112) $ (-650 $))) (-15 -3314 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -3314 ($ $ $ |t#3|)) (-15 -3018 ($ $ $ |t#3|)) (-15 -2345 ($ $ $)) (-15 -2171 ($ $ $)) (-15 -2345 ($ $ $ |t#3|)) (-15 -2171 ($ $ $ |t#3|)) (-15 -4118 ((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $)) (-15 -4118 ((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -2423 $)) $ $ |t#3|)) (-15 -1879 ((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -1879 ((-2 (|:| -1436 $) (|:| |gap| (-777)) (|:| -1310 $) (|:| -2423 $)) $ $ |t#3|)) (-15 -1874 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -3912 ($ $ $)) (-15 -3915 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2271 (-777))) $ $)) (-15 -2962 ($ $ $)) (-15 -2458 ($ $ $)) (IF (|has| |t#3| (-620 (-1186))) (PROGN (-6 (-619 (-959 |t#1|))) (-6 (-620 (-959 |t#1|))) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -4382 ((-3 $ "failed") (-959 (-413 (-570))))) (-15 -3152 ($ (-959 (-413 (-570))))) (-15 -1411 ($ (-959 (-413 (-570))))) (-15 -4382 ((-3 $ "failed") (-959 (-570)))) (-15 -3152 ($ (-959 (-570)))) (-15 -1411 ($ (-959 (-570)))) (IF (|has| |t#1| (-1001 (-570))) |%noBranch| (PROGN (-15 -4382 ((-3 $ "failed") (-959 |t#1|))) (-15 -3152 ($ (-959 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-570))) (IF (|has| |t#1| (-38 (-413 (-570)))) |%noBranch| (PROGN (-15 -4382 ((-3 $ "failed") (-959 (-570)))) (-15 -3152 ($ (-959 (-570)))) (-15 -1411 ($ (-959 (-570)))) (IF (|has| |t#1| (-551)) |%noBranch| (PROGN (-15 -4382 ((-3 $ "failed") (-959 |t#1|))) (-15 -3152 ($ (-959 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-570))) |%noBranch| (IF (|has| |t#1| (-38 (-413 (-570)))) |%noBranch| (PROGN (-15 -4382 ((-3 $ "failed") (-959 |t#1|))) (-15 -3152 ($ (-959 |t#1|)))))) (-15 -1411 ($ (-959 |t#1|))) (IF (|has| |t#1| (-1047 (-570))) (-6 (-620 (-1168))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-15 -3630 ($ $)) (-15 -1348 ($ $)) (-15 -1577 ($ $ |t#1|)) (-15 -1545 ($ $ |t#1|)) (-15 -1577 ($ $ $)) (-15 -1545 ($ $ $)) (-15 -1485 ($ $ $)) (-15 -3102 ((-2 (|:| -1869 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3447 ((-2 (|:| -1869 $) (|:| |coef1| $)) $ $)) (-15 -2261 ((-2 (|:| -1869 $) (|:| |coef2| $)) $ $)) (-15 -2865 ($ $ $)) (-15 -3094 ((-650 $) $ $)) (-15 -3064 ($ $ $)) (-15 -2425 ($ $ $ (-777))) (-15 -2480 ($ $ $ $ (-777))) (-15 -4383 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-458)) (PROGN (-15 -1869 (|t#1| |t#1| $)) (-15 -2147 ($ $)) (-15 -2067 ($ $)) (-15 -3906 ($ $)) (-15 -2124 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 |#3|) . T) ((-622 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-619 (-868)) . T) ((-619 (-959 |#1|)) |has| |#3| (-620 (-1186))) ((-174) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| |#1| (-620 (-542))) (|has| |#3| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#3| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#3| (-620 (-899 (-570))))) ((-620 (-959 |#1|)) |has| |#3| (-620 (-1186))) ((-620 (-1168)) -12 (|has| |#1| (-1047 (-570))) (|has| |#3| (-620 (-1186)))) ((-294) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-313 $) . T) ((-330 |#1| |#2|) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -2779 (|has| |#1| (-916)) (|has| |#1| (-458))) ((-520 |#3| |#1|) . T) ((-520 |#3| $) . T) ((-520 $ $) . T) ((-562) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458))) ((-732) . T) ((-907 |#3|) . T) ((-893 (-384)) -12 (|has| |#1| (-893 (-384))) (|has| |#3| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-893 (-570))) (|has| |#3| (-893 (-570)))) ((-956 |#1| |#2| |#3|) . T) ((-916) |has| |#1| (-916)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 |#1|) . T) ((-1047 |#3|) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) |has| |#1| (-916))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-2689 (((-650 (-1144)) $) 18)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 27) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-1144) $) 20)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1075) (-13 (-1092) (-10 -8 (-15 -2689 ((-650 (-1144)) $)) (-15 -3587 ((-1144) $))))) (T -1075)) +((-2689 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1075)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1075))))) +(-13 (-1092) (-10 -8 (-15 -2689 ((-650 (-1144)) $)) (-15 -3587 ((-1144) $)))) +((-1359 (((-112) |#3| $) 15)) (-2300 (((-3 $ "failed") |#3| (-928)) 29)) (-2229 (((-3 |#3| "failed") |#3| $) 45)) (-2135 (((-112) |#3| $) 19)) (-3367 (((-112) |#3| $) 17))) +(((-1076 |#1| |#2| |#3|) (-10 -8 (-15 -2300 ((-3 |#1| "failed") |#3| (-928))) (-15 -2229 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2135 ((-112) |#3| |#1|)) (-15 -3367 ((-112) |#3| |#1|)) (-15 -1359 ((-112) |#3| |#1|))) (-1077 |#2| |#3|) (-13 (-854) (-368)) (-1252 |#2|)) (T -1076)) +NIL +(-10 -8 (-15 -2300 ((-3 |#1| "failed") |#3| (-928))) (-15 -2229 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2135 ((-112) |#3| |#1|)) (-15 -3367 ((-112) |#3| |#1|)) (-15 -1359 ((-112) |#3| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) |#2| $) 22)) (-2579 (((-570) |#2| $) 23)) (-2300 (((-3 $ "failed") |#2| (-928)) 16)) (-1424 ((|#1| |#2| $ |#1|) 14)) (-2229 (((-3 |#2| "failed") |#2| $) 19)) (-2135 (((-112) |#2| $) 20)) (-3367 (((-112) |#2| $) 21)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1881 ((|#2| $) 18)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-3093 ((|#1| |#2| $ |#1|) 15)) (-2210 (((-650 $) |#2|) 17)) (-2923 (((-112) $ $) 6))) +(((-1077 |#1| |#2|) (-141) (-13 (-854) (-368)) (-1252 |t#1|)) (T -1077)) +((-2579 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1252 *4)) (-5 *2 (-570)))) (-1359 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1252 *4)) (-5 *2 (-112)))) (-3367 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1252 *4)) (-5 *2 (-112)))) (-2135 (*1 *2 *3 *1) (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1252 *4)) (-5 *2 (-112)))) (-2229 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368))) (-4 *2 (-1252 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368))) (-4 *2 (-1252 *3)))) (-2210 (*1 *2 *3) (-12 (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1252 *4)) (-5 *2 (-650 *1)) (-4 *1 (-1077 *4 *3)))) (-2300 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-928)) (-4 *4 (-13 (-854) (-368))) (-4 *1 (-1077 *4 *2)) (-4 *2 (-1252 *4)))) (-3093 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368))) (-4 *3 (-1252 *2)))) (-1424 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368))) (-4 *3 (-1252 *2))))) +(-13 (-1109) (-10 -8 (-15 -2579 ((-570) |t#2| $)) (-15 -1359 ((-112) |t#2| $)) (-15 -3367 ((-112) |t#2| $)) (-15 -2135 ((-112) |t#2| $)) (-15 -2229 ((-3 |t#2| "failed") |t#2| $)) (-15 -1881 (|t#2| $)) (-15 -2210 ((-650 $) |t#2|)) (-15 -2300 ((-3 $ "failed") |t#2| (-928))) (-15 -3093 (|t#1| |t#2| $ |t#1|)) (-15 -1424 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2475 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-777)) 114)) (-2502 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777)) 63)) (-2462 (((-1281) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-777)) 99)) (-2649 (((-777) (-650 |#4|) (-650 |#5|)) 30)) (-3579 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777)) 65) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777) (-112)) 67)) (-4022 (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112)) 87)) (-1411 (((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) 92)) (-3509 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-112)) 62)) (-1367 (((-777) (-650 |#4|) (-650 |#5|)) 21))) +(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1367 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -2649 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3509 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-112))) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2475 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-777))) (-15 -1411 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2462 ((-1281) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-777)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1078)) +((-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1281)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168)) (-5 *1 (-1078 *4 *5 *6 *7 *8)))) (-2475 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-650 *11)) (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -3665 *11)))))) (-5 *6 (-777)) (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -3665 *11)))) (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9)) (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-5 *1 (-1078 *7 *8 *9 *10 *11)))) (-4022 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-4022 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3579 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1078 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) (-2502 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3509 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1367 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -2649 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3509 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-112))) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2475 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-777))) (-15 -1411 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2462 ((-1281) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-777)))) +((-1413 (((-112) |#5| $) 26)) (-2992 (((-112) |#5| $) 29)) (-2176 (((-112) |#5| $) 18) (((-112) $) 52)) (-2842 (((-650 $) |#5| $) NIL) (((-650 $) (-650 |#5|) $) 94) (((-650 $) (-650 |#5|) (-650 $)) 92) (((-650 $) |#5| (-650 $)) 95)) (-3500 (($ $ |#5|) NIL) (((-650 $) |#5| $) NIL) (((-650 $) |#5| (-650 $)) 73) (((-650 $) (-650 |#5|) $) 75) (((-650 $) (-650 |#5|) (-650 $)) 77)) (-4296 (((-650 $) |#5| $) NIL) (((-650 $) |#5| (-650 $)) 64) (((-650 $) (-650 |#5|) $) 69) (((-650 $) (-650 |#5|) (-650 $)) 71)) (-4428 (((-112) |#5| $) 32))) +(((-1079 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3500 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -3500 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -3500 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -3500 ((-650 |#1|) |#5| |#1|)) (-15 -4296 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -4296 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -4296 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -4296 ((-650 |#1|) |#5| |#1|)) (-15 -2842 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -2842 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -2842 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -2842 ((-650 |#1|) |#5| |#1|)) (-15 -2992 ((-112) |#5| |#1|)) (-15 -2176 ((-112) |#1|)) (-15 -4428 ((-112) |#5| |#1|)) (-15 -1413 ((-112) |#5| |#1|)) (-15 -2176 ((-112) |#5| |#1|)) (-15 -3500 (|#1| |#1| |#5|))) (-1080 |#2| |#3| |#4| |#5|) (-458) (-799) (-856) (-1074 |#2| |#3| |#4|)) (T -1079)) +NIL +(-10 -8 (-15 -3500 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -3500 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -3500 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -3500 ((-650 |#1|) |#5| |#1|)) (-15 -4296 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -4296 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -4296 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -4296 ((-650 |#1|) |#5| |#1|)) (-15 -2842 ((-650 |#1|) |#5| (-650 |#1|))) (-15 -2842 ((-650 |#1|) (-650 |#5|) (-650 |#1|))) (-15 -2842 ((-650 |#1|) (-650 |#5|) |#1|)) (-15 -2842 ((-650 |#1|) |#5| |#1|)) (-15 -2992 ((-112) |#5| |#1|)) (-15 -2176 ((-112) |#1|)) (-15 -4428 ((-112) |#5| |#1|)) (-15 -1413 ((-112) |#5| |#1|)) (-15 -2176 ((-112) |#5| |#1|)) (-15 -3500 (|#1| |#1| |#5|))) +((-2419 (((-112) $ $) 7)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) 86)) (-2242 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1709 (((-650 |#3|) $) 34)) (-4006 (((-112) $) 27)) (-1797 (((-112) $) 18 (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) 102) (((-112) $) 98)) (-2530 ((|#4| |#4| $) 93)) (-3696 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| $) 127)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) 28)) (-3636 (((-112) $ (-777)) 45)) (-1418 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 80)) (-3734 (($) 46 T CONST)) (-2262 (((-112) $) 23 (|has| |#1| (-562)))) (-2082 (((-112) $ $) 25 (|has| |#1| (-562)))) (-4427 (((-112) $ $) 24 (|has| |#1| (-562)))) (-2418 (((-112) $) 26 (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3572 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 37)) (-3152 (($ (-650 |#4|)) 36)) (-3527 (((-3 $ "failed") $) 83)) (-3099 ((|#4| |#4| $) 90)) (-3552 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2295 ((|#4| |#4| $) 88)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) 106)) (-1413 (((-112) |#4| $) 137)) (-2992 (((-112) |#4| $) 134)) (-2176 (((-112) |#4| $) 138) (((-112) $) 135)) (-2885 (((-650 |#4|) $) 53 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) 105) (((-112) $) 104)) (-4211 ((|#3| $) 35)) (-3846 (((-112) $ (-777)) 44)) (-2282 (((-650 |#4|) $) 54 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 48)) (-3952 (((-650 |#3|) $) 33)) (-2875 (((-112) |#3| $) 32)) (-2063 (((-112) $ (-777)) 43)) (-4122 (((-1168) $) 10)) (-3383 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3064 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| |#4| $) 128)) (-1723 (((-3 |#4| "failed") $) 84)) (-1559 (((-650 $) |#4| $) 130)) (-3633 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2842 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-2745 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-2500 (((-650 |#4|) $) 108)) (-1560 (((-112) |#4| $) 100) (((-112) $) 96)) (-2458 ((|#4| |#4| $) 91)) (-4181 (((-112) $ $) 111)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) 101) (((-112) $) 97)) (-2962 ((|#4| |#4| $) 92)) (-3551 (((-1129) $) 11)) (-3515 (((-3 |#4| "failed") $) 85)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2730 (((-3 $ "failed") $ |#4|) 79)) (-3500 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-3116 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) 39)) (-4303 (((-112) $) 42)) (-4359 (($) 41)) (-3324 (((-777) $) 107)) (-3562 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4448)))) (-3964 (($ $) 40)) (-1411 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 61)) (-3677 (($ $ |#3|) 29)) (-3158 (($ $ |#3|) 31)) (-4381 (($ $) 89)) (-4074 (($ $ |#3|) 30)) (-3798 (((-868) $) 12) (((-650 |#4|) $) 38)) (-2136 (((-777) $) 77 (|has| |#3| (-373)))) (-1319 (((-112) $ $) 9)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-4296 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-1431 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) 82)) (-4428 (((-112) |#4| $) 136)) (-4059 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-1080 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1080)) +((-2176 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1413 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-4428 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-2992 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-3633 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 (-112) (-650 *1))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-4380 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *1)))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-4380 (*1 *2 *3 *1) (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1559 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3383 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 *3 (-650 *1))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3064 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *1)))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3696 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *1)))) (-4 *1 (-1080 *4 *5 *6 *3)))) (-2842 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-2842 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *7)))) (-2842 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)))) (-2842 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) (-4296 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-4296 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) (-4296 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *7)))) (-4296 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)))) (-2745 (*1 *1 *2 *1) (-12 (-4 *1 (-1080 *3 *4 *5 *2)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2745 (*1 *1 *2 *1) (-12 (-5 *2 (-650 *6)) (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)))) (-3500 (*1 *2 *3 *1) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)))) (-3500 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) (-3500 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *7)))) (-3500 (*1 *2 *3 *2) (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1080 *5 *6 *7 *8))))) +(-13 (-1219 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2176 ((-112) |t#4| $)) (-15 -1413 ((-112) |t#4| $)) (-15 -4428 ((-112) |t#4| $)) (-15 -2176 ((-112) $)) (-15 -2992 ((-112) |t#4| $)) (-15 -3633 ((-3 (-112) (-650 $)) |t#4| $)) (-15 -4380 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |t#4| $)) (-15 -4380 ((-112) |t#4| $)) (-15 -1559 ((-650 $) |t#4| $)) (-15 -3383 ((-3 |t#4| (-650 $)) |t#4| |t#4| $)) (-15 -3064 ((-650 (-2 (|:| |val| |t#4|) (|:| -3665 $))) |t#4| |t#4| $)) (-15 -3696 ((-650 (-2 (|:| |val| |t#4|) (|:| -3665 $))) |t#4| $)) (-15 -2842 ((-650 $) |t#4| $)) (-15 -2842 ((-650 $) (-650 |t#4|) $)) (-15 -2842 ((-650 $) (-650 |t#4|) (-650 $))) (-15 -2842 ((-650 $) |t#4| (-650 $))) (-15 -4296 ((-650 $) |t#4| $)) (-15 -4296 ((-650 $) |t#4| (-650 $))) (-15 -4296 ((-650 $) (-650 |t#4|) $)) (-15 -4296 ((-650 $) (-650 |t#4|) (-650 $))) (-15 -2745 ($ |t#4| $)) (-15 -2745 ($ (-650 |t#4|) $)) (-15 -3500 ((-650 $) |t#4| $)) (-15 -3500 ((-650 $) |t#4| (-650 $))) (-15 -3500 ((-650 $) (-650 |t#4|) $)) (-15 -3500 ((-650 $) (-650 |t#4|) (-650 $))) (-15 -2242 ((-650 $) (-650 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1219 |#1| |#2| |#3| |#4|) . T) ((-1226) . T)) +((-3714 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|) 86)) (-3207 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|) 127)) (-1934 (((-650 |#5|) |#4| |#5|) 74)) (-3180 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2732 (((-1281)) 36)) (-3735 (((-1281)) 25)) (-1583 (((-1281) (-1168) (-1168) (-1168)) 32)) (-2822 (((-1281) (-1168) (-1168) (-1168)) 21)) (-2573 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#4| |#4| |#5|) 107)) (-3531 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#3| (-112)) 118) (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3139 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|) 113))) +(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2822 ((-1281) (-1168) (-1168) (-1168))) (-15 -3735 ((-1281))) (-15 -1583 ((-1281) (-1168) (-1168) (-1168))) (-15 -2732 ((-1281))) (-15 -2573 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3531 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3531 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#3| (-112))) (-15 -3139 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3207 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3180 ((-112) |#4| |#5|)) (-15 -3180 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -1934 ((-650 |#5|) |#4| |#5|)) (-15 -3714 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1081)) +((-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1934 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3180 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3180 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3207 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3139 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3531 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856)) (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -3665 *9)))) (-5 *1 (-1081 *6 *7 *4 *8 *9)))) (-3531 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-2573 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2732 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-1583 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3735 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-2822 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(-10 -7 (-15 -2822 ((-1281) (-1168) (-1168) (-1168))) (-15 -3735 ((-1281))) (-15 -1583 ((-1281) (-1168) (-1168) (-1168))) (-15 -2732 ((-1281))) (-15 -2573 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3531 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3531 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#3| (-112))) (-15 -3139 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3207 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3180 ((-112) |#4| |#5|)) (-15 -3180 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -1934 ((-650 |#5|) |#4| |#5|)) (-15 -3714 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|))) +((-2419 (((-112) $ $) NIL)) (-3873 (((-1225) $) 13)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1419 (((-1144) $) 10)) (-3798 (((-868) $) 20) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1082) (-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -3873 ((-1225) $))))) (T -1082)) +((-1419 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1082)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-1082))))) +(-13 (-1092) (-10 -8 (-15 -1419 ((-1144) $)) (-15 -3873 ((-1225) $)))) +((-4313 (((-112) $ $) 7))) +(((-1083) (-13 (-1226) (-10 -8 (-15 -4313 ((-112) $ $))))) (T -1083)) +((-4313 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1083))))) +(-13 (-1226) (-10 -8 (-15 -4313 ((-112) $ $)))) +((-2419 (((-112) $ $) NIL)) (-3574 (((-1186) $) 8)) (-4122 (((-1168) $) 17)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 11)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 14))) +(((-1084 |#1|) (-13 (-1109) (-10 -8 (-15 -3574 ((-1186) $)))) (-1186)) (T -1084)) +((-3574 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1084 *3)) (-14 *3 *2)))) +(-13 (-1109) (-10 -8 (-15 -3574 ((-1186) $)))) +((-2419 (((-112) $ $) NIL)) (-4276 (($ $ (-650 (-1186)) (-1 (-112) (-650 |#3|))) 34)) (-2143 (($ |#3| |#3|) 23) (($ |#3| |#3| (-650 (-1186))) 21)) (-2118 ((|#3| $) 13)) (-4382 (((-3 (-298 |#3|) "failed") $) 60)) (-3152 (((-298 |#3|) $) NIL)) (-2891 (((-650 (-1186)) $) 16)) (-1746 (((-899 |#1|) $) 11)) (-2108 ((|#3| $) 12)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1872 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-928)) 41)) (-3798 (((-868) $) 89) (($ (-298 |#3|)) 22)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 38))) +(((-1085 |#1| |#2| |#3|) (-13 (-1109) (-290 |#3| |#3|) (-1047 (-298 |#3|)) (-10 -8 (-15 -2143 ($ |#3| |#3|)) (-15 -2143 ($ |#3| |#3| (-650 (-1186)))) (-15 -4276 ($ $ (-650 (-1186)) (-1 (-112) (-650 |#3|)))) (-15 -1746 ((-899 |#1|) $)) (-15 -2108 (|#3| $)) (-15 -2118 (|#3| $)) (-15 -1872 (|#3| $ |#3| (-928))) (-15 -2891 ((-650 (-1186)) $)))) (-1109) (-13 (-1058) (-893 |#1|) (-620 (-899 |#1|))) (-13 (-436 |#2|) (-893 |#1|) (-620 (-899 |#1|)))) (T -1085)) +((-2143 (*1 *1 *2 *2) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1085 *3 *4 *2)) (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))) (-2143 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) (-4276 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1 (-112) (-650 *6))) (-4 *6 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *6)))) (-1746 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 *2))) (-5 *2 (-899 *3)) (-5 *1 (-1085 *3 *4 *5)) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 *2))))) (-2108 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1085 *3 *4 *2)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))))) (-2118 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1085 *3 *4 *2)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))))) (-1872 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-928)) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) (-2891 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-5 *2 (-650 (-1186))) (-5 *1 (-1085 *3 *4 *5)) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))))) +(-13 (-1109) (-290 |#3| |#3|) (-1047 (-298 |#3|)) (-10 -8 (-15 -2143 ($ |#3| |#3|)) (-15 -2143 ($ |#3| |#3| (-650 (-1186)))) (-15 -4276 ($ $ (-650 (-1186)) (-1 (-112) (-650 |#3|)))) (-15 -1746 ((-899 |#1|) $)) (-15 -2108 (|#3| $)) (-15 -2118 (|#3| $)) (-15 -1872 (|#3| $ |#3| (-928))) (-15 -2891 ((-650 (-1186)) $)))) +((-2419 (((-112) $ $) NIL)) (-4247 (($ (-650 (-1085 |#1| |#2| |#3|))) 14)) (-1575 (((-650 (-1085 |#1| |#2| |#3|)) $) 21)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1872 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-928)) 27)) (-3798 (((-868) $) 17)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 20))) +(((-1086 |#1| |#2| |#3|) (-13 (-1109) (-290 |#3| |#3|) (-10 -8 (-15 -4247 ($ (-650 (-1085 |#1| |#2| |#3|)))) (-15 -1575 ((-650 (-1085 |#1| |#2| |#3|)) $)) (-15 -1872 (|#3| $ |#3| (-928))))) (-1109) (-13 (-1058) (-893 |#1|) (-620 (-899 |#1|))) (-13 (-436 |#2|) (-893 |#1|) (-620 (-899 |#1|)))) (T -1086)) +((-4247 (*1 *1 *2) (-12 (-5 *2 (-650 (-1085 *3 *4 *5))) (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) (-5 *1 (-1086 *3 *4 *5)))) (-1575 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) (-5 *2 (-650 (-1085 *3 *4 *5))) (-5 *1 (-1086 *3 *4 *5)) (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))))) (-1872 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-928)) (-4 *4 (-1109)) (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1086 *4 *5 *2)) (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4))))))) +(-13 (-1109) (-290 |#3| |#3|) (-10 -8 (-15 -4247 ($ (-650 (-1085 |#1| |#2| |#3|)))) (-15 -1575 ((-650 (-1085 |#1| |#2| |#3|)) $)) (-15 -1872 (|#3| $ |#3| (-928))))) +((-3965 (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)) 88) (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|))) 92) (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112)) 90))) +(((-1087 |#1| |#2|) (-10 -7 (-15 -3965 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -3965 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -3965 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)))) (-13 (-311) (-148)) (-650 (-1186))) (T -1087)) +((-3965 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *4)) (|:| -1861 (-650 (-959 *4)))))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-650 (-959 *4))) (-14 *5 (-650 (-1186))))) (-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186)))))) +(-10 -7 (-15 -3965 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -3965 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -3965 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)))) +((-3801 (((-424 |#3|) |#3|) 18))) +(((-1088 |#1| |#2| |#3|) (-10 -7 (-15 -3801 ((-424 |#3|) |#3|))) (-1252 (-413 (-570))) (-13 (-368) (-148) (-730 (-413 (-570)) |#1|)) (-1252 |#2|)) (T -1088)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-13 (-368) (-148) (-730 (-413 (-570)) *4))) (-5 *2 (-424 *3)) (-5 *1 (-1088 *4 *5 *3)) (-4 *3 (-1252 *5))))) +(-10 -7 (-15 -3801 ((-424 |#3|) |#3|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 139)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-368)))) (-2318 (($ $) NIL (|has| |#1| (-368)))) (-2234 (((-112) $) NIL (|has| |#1| (-368)))) (-2365 (((-695 |#1|) (-1276 $)) NIL) (((-695 |#1|)) 123)) (-3142 ((|#1| $) 128)) (-2299 (((-1199 (-928) (-777)) (-570)) NIL (|has| |#1| (-354)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3475 (((-777)) 46 (|has| |#1| (-373)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-2427 (($ (-1276 |#1|) (-1276 $)) NIL) (($ (-1276 |#1|)) 49)) (-1493 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-354)))) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-2684 (((-695 |#1|) $ (-1276 $)) NIL) (((-695 |#1|) $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 115) (((-695 |#1|) (-695 $)) 110)) (-3600 (($ |#2|) 67) (((-3 $ "failed") (-413 |#2|)) NIL (|has| |#1| (-368)))) (-2229 (((-3 $ "failed") $) NIL)) (-3979 (((-928)) 84)) (-3408 (($) 50 (|has| |#1| (-373)))) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3740 (($) NIL (|has| |#1| (-354)))) (-4316 (((-112) $) NIL (|has| |#1| (-354)))) (-3640 (($ $ (-777)) NIL (|has| |#1| (-354))) (($ $) NIL (|has| |#1| (-354)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-4202 (((-928) $) NIL (|has| |#1| (-354))) (((-839 (-928)) $) NIL (|has| |#1| (-354)))) (-2481 (((-112) $) NIL)) (-2233 ((|#1| $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-354)))) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2780 ((|#2| $) 91 (|has| |#1| (-368)))) (-2484 (((-928) $) 148 (|has| |#1| (-373)))) (-3586 ((|#2| $) 64)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-2310 (($) NIL (|has| |#1| (-354)) CONST)) (-2155 (($ (-928)) 138 (|has| |#1| (-373)))) (-3551 (((-1129) $) NIL)) (-2335 (($) 130)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-4061 (((-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570))))) NIL (|has| |#1| (-354)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3511 ((|#1| (-1276 $)) NIL) ((|#1|) 119)) (-2174 (((-777) $) NIL (|has| |#1| (-354))) (((-3 (-777) "failed") $ $) NIL (|has| |#1| (-354)))) (-3519 (($ $) NIL (-2779 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) NIL (-2779 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1 |#1| |#1|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-4169 (((-695 |#1|) (-1276 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-1881 ((|#2|) 80)) (-2042 (($) NIL (|has| |#1| (-354)))) (-1861 (((-1276 |#1|) $ (-1276 $)) 96) (((-695 |#1|) (-1276 $) (-1276 $)) NIL) (((-1276 |#1|) $) 77) (((-695 |#1|) (-1276 $)) 92)) (-1411 (((-1276 |#1|) $) NIL) (($ (-1276 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (|has| |#1| (-354)))) (-3798 (((-868) $) 63) (($ (-570)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-368))) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-368)) (|has| |#1| (-1047 (-413 (-570))))))) (-2917 (($ $) NIL (|has| |#1| (-354))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-4042 ((|#2| $) 89)) (-2862 (((-777)) 82 T CONST)) (-1319 (((-112) $ $) NIL)) (-2077 (((-1276 $)) 88)) (-3258 (((-112) $ $) NIL (|has| |#1| (-368)))) (-1809 (($) 32 T CONST)) (-1817 (($) 19 T CONST)) (-2835 (($ $) NIL (-2779 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-777)) NIL (-2779 (-12 (|has| |#1| (-235)) (|has| |#1| (-368))) (|has| |#1| (-354)))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-368)) (|has| |#1| (-907 (-1186))))) (($ $ (-1 |#1| |#1|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-368)))) (-2923 (((-112) $ $) 69)) (-3037 (($ $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) 73) (($ $ $) NIL)) (-3014 (($ $ $) 71)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-413 (-570)) $) NIL (|has| |#1| (-368))) (($ $ (-413 (-570))) NIL (|has| |#1| (-368))))) +(((-1089 |#1| |#2| |#3|) (-730 |#1| |#2|) (-174) (-1252 |#1|) |#2|) (T -1089)) +NIL +(-730 |#1| |#2|) +((-3801 (((-424 |#3|) |#3|) 19))) +(((-1090 |#1| |#2| |#3|) (-10 -7 (-15 -3801 ((-424 |#3|) |#3|))) (-1252 (-413 (-959 (-570)))) (-13 (-368) (-148) (-730 (-413 (-959 (-570))) |#1|)) (-1252 |#2|)) (T -1090)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-1252 (-413 (-959 (-570))))) (-4 *5 (-13 (-368) (-148) (-730 (-413 (-959 (-570))) *4))) (-5 *2 (-424 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1252 *5))))) +(-10 -7 (-15 -3801 ((-424 |#3|) |#3|))) +((-2419 (((-112) $ $) NIL)) (-3382 (($ $ $) 16)) (-2876 (($ $ $) 17)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3001 (($) 6)) (-1411 (((-1186) $) 20)) (-3798 (((-868) $) 13)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 15)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 9))) +(((-1091) (-13 (-856) (-620 (-1186)) (-10 -8 (-15 -3001 ($))))) (T -1091)) +((-3001 (*1 *1) (-5 *1 (-1091)))) +(-13 (-856) (-620 (-1186)) (-10 -8 (-15 -3001 ($)))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-1191)) 17) (((-1191) $) 16)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-1092) (-141)) (T -1092)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-621 #0=(-1190)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T)) -((-1524 ((|#1| |#1| (-1 (-569) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2464 (((-1280)) 21)) (-4315 (((-649 |#1|)) 13))) -(((-1092 |#1|) (-10 -7 (-15 -2464 ((-1280))) (-15 -4315 ((-649 |#1|))) (-15 -1524 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1524 (|#1| |#1| (-1 (-569) |#1| |#1|)))) (-132)) (T -1092)) -((-1524 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2)))) (-1524 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2)))) (-4315 (*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-132)))) (-2464 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1092 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -2464 ((-1280))) (-15 -4315 ((-649 |#1|))) (-15 -1524 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1524 (|#1| |#1| (-1 (-569) |#1| |#1|)))) -((-3058 (($ (-109) $) 20)) (-1625 (((-696 (-109)) (-511) $) 19)) (-3635 (($) 7)) (-3399 (($) 21)) (-3164 (($) 22)) (-3174 (((-649 (-176)) $) 10)) (-3796 (((-867) $) 25))) -(((-1093) (-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3174 ((-649 (-176)) $)) (-15 -1625 ((-696 (-109)) (-511) $)) (-15 -3058 ($ (-109) $)) (-15 -3399 ($)) (-15 -3164 ($))))) (T -1093)) -((-3635 (*1 *1) (-5 *1 (-1093))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1093)))) (-1625 (*1 *2 *3 *1) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1093)))) (-3058 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1093)))) (-3399 (*1 *1) (-5 *1 (-1093))) (-3164 (*1 *1) (-5 *1 (-1093)))) -(-13 (-618 (-867)) (-10 -8 (-15 -3635 ($)) (-15 -3174 ((-649 (-176)) $)) (-15 -1625 ((-696 (-109)) (-511) $)) (-15 -3058 ($ (-109) $)) (-15 -3399 ($)) (-15 -3164 ($)))) -((-2901 (((-1275 (-694 |#1|)) (-649 (-694 |#1|))) 47) (((-1275 (-694 (-958 |#1|))) (-649 (-1185)) (-694 (-958 |#1|))) 75) (((-1275 (-694 (-412 (-958 |#1|)))) (-649 (-1185)) (-694 (-412 (-958 |#1|)))) 92)) (-2415 (((-1275 |#1|) (-694 |#1|) (-649 (-694 |#1|))) 41))) -(((-1094 |#1|) (-10 -7 (-15 -2901 ((-1275 (-694 (-412 (-958 |#1|)))) (-649 (-1185)) (-694 (-412 (-958 |#1|))))) (-15 -2901 ((-1275 (-694 (-958 |#1|))) (-649 (-1185)) (-694 (-958 |#1|)))) (-15 -2901 ((-1275 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2415 ((-1275 |#1|) (-694 |#1|) (-649 (-694 |#1|))))) (-367)) (T -1094)) -((-2415 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367)) (-5 *2 (-1275 *5)) (-5 *1 (-1094 *5)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-1094 *4)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367)) (-5 *2 (-1275 (-694 (-958 *5)))) (-5 *1 (-1094 *5)) (-5 *4 (-694 (-958 *5))))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367)) (-5 *2 (-1275 (-694 (-412 (-958 *5))))) (-5 *1 (-1094 *5)) (-5 *4 (-694 (-412 (-958 *5))))))) -(-10 -7 (-15 -2901 ((-1275 (-694 (-412 (-958 |#1|)))) (-649 (-1185)) (-694 (-412 (-958 |#1|))))) (-15 -2901 ((-1275 (-694 (-958 |#1|))) (-649 (-1185)) (-694 (-958 |#1|)))) (-15 -2901 ((-1275 (-694 |#1|)) (-649 (-694 |#1|)))) (-15 -2415 ((-1275 |#1|) (-694 |#1|) (-649 (-694 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3072 (((-649 (-776)) $) NIL) (((-649 (-776)) $ (-1185)) NIL)) (-3766 (((-776) $) NIL) (((-776) $ (-1185)) NIL)) (-1712 (((-649 (-1096 (-1185))) $) NIL)) (-3767 (((-1181 $) $ (-1096 (-1185))) NIL) (((-1181 |#1|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1096 (-1185)))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1590 (($ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1096 (-1185)) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL) (((-3 (-1133 |#1| (-1185)) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1096 (-1185)) $) NIL) (((-1185) $) NIL) (((-1133 |#1| (-1185)) $) NIL)) (-3346 (($ $ $ (-1096 (-1185))) NIL (|has| |#1| (-173)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ (-1096 (-1185))) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 (-1096 (-1185))) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1096 (-1185)) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1096 (-1185)) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ (-1185)) NIL) (((-776) $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-1700 (($ (-1181 |#1|) (-1096 (-1185))) NIL) (($ (-1181 $) (-1096 (-1185))) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-536 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1096 (-1185))) NIL)) (-2272 (((-536 (-1096 (-1185))) $) NIL) (((-776) $ (-1096 (-1185))) NIL) (((-649 (-776)) $ (-649 (-1096 (-1185)))) NIL)) (-2492 (($ (-1 (-536 (-1096 (-1185))) (-536 (-1096 (-1185)))) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3389 (((-1 $ (-776)) (-1185)) NIL) (((-1 $ (-776)) $) NIL (|has| |#1| (-234)))) (-2306 (((-3 (-1096 (-1185)) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3152 (((-1096 (-1185)) $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-3173 (((-112) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1096 (-1185))) (|:| -1993 (-776))) "failed") $) NIL)) (-1510 (($ $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1096 (-1185)) |#1|) NIL) (($ $ (-649 (-1096 (-1185))) (-649 |#1|)) NIL) (($ $ (-1096 (-1185)) $) NIL) (($ $ (-649 (-1096 (-1185))) (-649 $)) NIL) (($ $ (-1185) $) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 $)) NIL (|has| |#1| (-234))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-234))) (($ $ (-649 (-1185)) (-649 |#1|)) NIL (|has| |#1| (-234)))) (-3059 (($ $ (-1096 (-1185))) NIL (|has| |#1| (-173)))) (-3517 (($ $ (-1096 (-1185))) NIL) (($ $ (-649 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1848 (((-649 (-1185)) $) NIL)) (-4339 (((-536 (-1096 (-1185))) $) NIL) (((-776) $ (-1096 (-1185))) NIL) (((-649 (-776)) $ (-649 (-1096 (-1185)))) NIL) (((-776) $ (-1185)) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1096 (-1185)) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1096 (-1185)) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1096 (-1185)) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) NIL (|has| |#1| (-457))) (($ $ (-1096 (-1185))) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-1096 (-1185))) NIL) (($ (-1185)) NIL) (($ (-1133 |#1| (-1185))) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-536 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1096 (-1185))) NIL) (($ $ (-649 (-1096 (-1185)))) NIL) (($ $ (-1096 (-1185)) (-776)) NIL) (($ $ (-649 (-1096 (-1185))) (-649 (-776))) NIL) (($ $) NIL (|has| |#1| (-234))) (($ $ (-776)) NIL (|has| |#1| (-234))) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1095 |#1|) (-13 (-255 |#1| (-1185) (-1096 (-1185)) (-536 (-1096 (-1185)))) (-1046 (-1133 |#1| (-1185)))) (-1057)) (T -1095)) -NIL -(-13 (-255 |#1| (-1185) (-1096 (-1185)) (-536 (-1096 (-1185)))) (-1046 (-1133 |#1| (-1185)))) -((-2417 (((-112) $ $) NIL)) (-3766 (((-776) $) NIL)) (-2672 ((|#1| $) 10)) (-4381 (((-3 |#1| "failed") $) NIL)) (-3150 ((|#1| $) NIL)) (-1466 (((-776) $) 11)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3389 (($ |#1| (-776)) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3517 (($ $) NIL) (($ $ (-776)) NIL)) (-3796 (((-867) $) NIL) (($ |#1|) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 16))) -(((-1096 |#1|) (-268 |#1|) (-855)) (T -1096)) -NIL -(-268 |#1|) -((-1346 (((-649 |#2|) (-1 |#2| |#1|) (-1102 |#1|)) 29 (|has| |#1| (-853))) (((-1102 |#2|) (-1 |#2| |#1|) (-1102 |#1|)) 14))) -(((-1097 |#1| |#2|) (-10 -7 (-15 -1346 ((-1102 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) |%noBranch|)) (-1225) (-1225)) (T -1097)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-853)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-649 *6)) (-5 *1 (-1097 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1102 *6)) (-5 *1 (-1097 *5 *6))))) -(-10 -7 (-15 -1346 ((-1102 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-649 |#2|) (-1 |#2| |#1|) (-1102 |#1|))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 16) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3453 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1098) (-13 (-1091) (-10 -8 (-15 -3453 ((-649 (-1143)) $))))) (T -1098)) -((-3453 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1098))))) -(-13 (-1091) (-10 -8 (-15 -3453 ((-649 (-1143)) $)))) -((-1346 (((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)) 19))) -(((-1099 |#1| |#2|) (-10 -7 (-15 -1346 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)))) (-1225) (-1225)) (T -1099)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1100 *6)) (-5 *1 (-1099 *5 *6))))) -(-10 -7 (-15 -1346 ((-1100 |#2|) (-1 |#2| |#1|) (-1100 |#1|)))) -((-2417 (((-112) $ $) NIL (|has| (-1102 |#1|) (-1108)))) (-2672 (((-1185) $) NIL)) (-2821 (((-1102 |#1|) $) NIL)) (-3435 (((-1167) $) NIL (|has| (-1102 |#1|) (-1108)))) (-3547 (((-1128) $) NIL (|has| (-1102 |#1|) (-1108)))) (-3497 (($ (-1185) (-1102 |#1|)) NIL)) (-3796 (((-867) $) NIL (|has| (-1102 |#1|) (-1108)))) (-1520 (((-112) $ $) NIL (|has| (-1102 |#1|) (-1108)))) (-2920 (((-112) $ $) NIL (|has| (-1102 |#1|) (-1108))))) -(((-1100 |#1|) (-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) (-1102 |#1|))) (-15 -2672 ((-1185) $)) (-15 -2821 ((-1102 |#1|) $)) (IF (|has| (-1102 |#1|) (-1108)) (-6 (-1108)) |%noBranch|))) (-1225)) (T -1100)) -((-3497 (*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1102 *4)) (-4 *4 (-1225)) (-5 *1 (-1100 *4)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1100 *3)) (-4 *3 (-1225)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-1102 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-1225))))) -(-13 (-1225) (-10 -8 (-15 -3497 ($ (-1185) (-1102 |#1|))) (-15 -2672 ((-1185) $)) (-15 -2821 ((-1102 |#1|) $)) (IF (|has| (-1102 |#1|) (-1108)) (-6 (-1108)) |%noBranch|))) -((-2821 (($ |#1| |#1|) 8)) (-1365 ((|#1| $) 11)) (-1487 ((|#1| $) 13)) (-1500 (((-569) $) 9)) (-2916 ((|#1| $) 10)) (-1812 ((|#1| $) 12)) (-1410 (($ |#1|) 6)) (-3645 (($ |#1| |#1|) 15)) (-2686 (($ $ (-569)) 14))) -(((-1101 |#1|) (-140) (-1225)) (T -1101)) -((-3645 (*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-2686 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1101 *3)) (-4 *3 (-1225)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-1812 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-1365 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1225)) (-5 *2 (-569)))) (-2821 (*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))) -(-13 (-623 |t#1|) (-10 -8 (-15 -3645 ($ |t#1| |t#1|)) (-15 -2686 ($ $ (-569))) (-15 -1487 (|t#1| $)) (-15 -1812 (|t#1| $)) (-15 -1365 (|t#1| $)) (-15 -2916 (|t#1| $)) (-15 -1500 ((-569) $)) (-15 -2821 ($ |t#1| |t#1|)))) -(((-623 |#1|) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2821 (($ |#1| |#1|) 16)) (-1346 (((-649 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-853)))) (-1365 ((|#1| $) 12)) (-1487 ((|#1| $) 11)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1500 (((-569) $) 15)) (-2916 ((|#1| $) 14)) (-1812 ((|#1| $) 13)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1380 (((-649 |#1|) $) 44 (|has| |#1| (-853))) (((-649 |#1|) (-649 $)) 43 (|has| |#1| (-853)))) (-1410 (($ |#1|) 29)) (-3796 (((-867) $) 28 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3645 (($ |#1| |#1|) 10)) (-2686 (($ $ (-569)) 17)) (-2920 (((-112) $ $) 22 (|has| |#1| (-1108))))) -(((-1102 |#1|) (-13 (-1101 |#1|) (-10 -7 (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-649 |#1|))) |%noBranch|))) (-1225)) (T -1102)) -NIL -(-13 (-1101 |#1|) (-10 -7 (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-649 |#1|))) |%noBranch|))) -((-2821 (($ |#1| |#1|) 8)) (-1346 ((|#2| (-1 |#1| |#1|) $) 16)) (-1365 ((|#1| $) 11)) (-1487 ((|#1| $) 13)) (-1500 (((-569) $) 9)) (-2916 ((|#1| $) 10)) (-1812 ((|#1| $) 12)) (-1380 ((|#2| (-649 $)) 18) ((|#2| $) 17)) (-1410 (($ |#1|) 6)) (-3645 (($ |#1| |#1|) 15)) (-2686 (($ $ (-569)) 14))) -(((-1103 |#1| |#2|) (-140) (-853) (-1157 |t#1|)) (T -1103)) -((-1380 (*1 *2 *3) (-12 (-5 *3 (-649 *1)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1157 *4)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1157 *3)))) (-1346 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853)) (-4 *2 (-1157 *4))))) -(-13 (-1101 |t#1|) (-10 -8 (-15 -1380 (|t#2| (-649 $))) (-15 -1380 (|t#2| $)) (-15 -1346 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-623 |#1|) . T) ((-1101 |#1|) . T)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-1724 (((-1143) $) 12)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 18) (($ (-1190)) NIL) (((-1190) $) NIL)) (-3586 (((-649 (-1143)) $) 10)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1104) (-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $)) (-15 -1724 ((-1143) $))))) (T -1104)) -((-3586 (*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1104)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1104))))) -(-13 (-1091) (-10 -8 (-15 -3586 ((-649 (-1143)) $)) (-15 -1724 ((-1143) $)))) -((-3969 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2541 (($ $ $) 10)) (-2237 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1105 |#1| |#2|) (-10 -8 (-15 -3969 (|#1| |#2| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2237 (|#1| |#1| |#1|))) (-1106 |#2|) (-1108)) (T -1105)) -NIL -(-10 -8 (-15 -3969 (|#1| |#2| |#1|)) (-15 -3969 (|#1| |#1| |#2|)) (-15 -3969 (|#1| |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#2|)) (-15 -2237 (|#1| |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-3969 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-2541 (($ $ $) 21)) (-4179 (((-112) $ $) 20)) (-3914 (((-112) $ (-776)) 36)) (-4257 (($) 26) (($ (-649 |#1|)) 25)) (-1417 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4447)))) (-4427 (($) 37 T CONST)) (-3550 (($ $) 60 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 59 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4447)))) (-2882 (((-649 |#1|) $) 44 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) 29)) (-2314 (((-112) $ (-776)) 35)) (-2009 (((-649 |#1|) $) 45 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 39)) (-4254 (((-112) $ (-776)) 34)) (-3435 (((-1167) $) 10)) (-2101 (($ $ $) 24)) (-3547 (((-1128) $) 11)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3208 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#1|) (-649 |#1|)) 51 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 49 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 (-297 |#1|))) 48 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 30)) (-3162 (((-112) $) 33)) (-3635 (($) 32)) (-2237 (($ $ $) 23) (($ $ |#1|) 22)) (-3560 (((-776) |#1| $) 46 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4447)))) (-3962 (($ $) 31)) (-1410 (((-541) $) 61 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 52)) (-3796 (((-867) $) 12)) (-3868 (($) 28) (($ (-649 |#1|)) 27)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 38 (|has| $ (-6 -4447))))) -(((-1106 |#1|) (-140) (-1108)) (T -1106)) -((-1651 (*1 *2 *1 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-3868 (*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3)))) (-4257 (*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-4257 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3)))) (-2101 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2237 (*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) (-3969 (*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-3969 (*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) (-3969 (*1 *1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) -(-13 (-1108) (-151 |t#1|) (-10 -8 (-6 -4437) (-15 -1651 ((-112) $ $)) (-15 -3868 ($)) (-15 -3868 ($ (-649 |t#1|))) (-15 -4257 ($)) (-15 -4257 ($ (-649 |t#1|))) (-15 -2101 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -2237 ($ $ |t#1|)) (-15 -2541 ($ $ $)) (-15 -4179 ((-112) $ $)) (-15 -3969 ($ $ $)) (-15 -3969 ($ $ |t#1|)) (-15 -3969 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) . T) ((-1225) . T)) -((-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 8)) (-1520 (((-112) $ $) 12))) -(((-1107 |#1|) (-10 -8 (-15 -1520 ((-112) |#1| |#1|)) (-15 -3435 ((-1167) |#1|)) (-15 -3547 ((-1128) |#1|))) (-1108)) (T -1107)) -NIL -(-10 -8 (-15 -1520 ((-112) |#1| |#1|)) (-15 -3435 ((-1167) |#1|)) (-15 -3547 ((-1128) |#1|))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-1108) (-140)) (T -1108)) -((-3547 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1128)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1167)))) (-1520 (*1 *2 *1 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-112))))) -(-13 (-102) (-618 (-867)) (-10 -8 (-15 -3547 ((-1128) $)) (-15 -3435 ((-1167) $)) (-15 -1520 ((-112) $ $)))) -(((-102) . T) ((-618 (-867)) . T)) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) 36)) (-1478 (($ (-649 (-927))) 72)) (-2674 (((-3 $ "failed") $ (-927) (-927)) 83)) (-3406 (($) 40)) (-2004 (((-112) (-927) $) 44)) (-2731 (((-927) $) 66)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 39)) (-2345 (((-3 $ "failed") $ (-927)) 79)) (-3547 (((-1128) $) NIL)) (-1747 (((-1275 $)) 49)) (-4251 (((-649 (-927)) $) 27)) (-3117 (((-776) $ (-927) (-927)) 80)) (-3796 (((-867) $) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 24))) -(((-1109 |#1| |#2|) (-13 (-372) (-10 -8 (-15 -2345 ((-3 $ "failed") $ (-927))) (-15 -2674 ((-3 $ "failed") $ (-927) (-927))) (-15 -4251 ((-649 (-927)) $)) (-15 -1478 ($ (-649 (-927)))) (-15 -1747 ((-1275 $))) (-15 -2004 ((-112) (-927) $)) (-15 -3117 ((-776) $ (-927) (-927))))) (-927) (-927)) (T -1109)) -((-2345 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2674 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4251 (*1 *2 *1) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1478 (*1 *1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-1747 (*1 *2) (-12 (-5 *2 (-1275 (-1109 *3 *4))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) (-2004 (*1 *2 *3 *1) (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3117 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-372) (-10 -8 (-15 -2345 ((-3 $ "failed") $ (-927))) (-15 -2674 ((-3 $ "failed") $ (-927) (-927))) (-15 -4251 ((-649 (-927)) $)) (-15 -1478 ($ (-649 (-927)))) (-15 -1747 ((-1275 $))) (-15 -2004 ((-112) (-927) $)) (-15 -3117 ((-776) $ (-927) (-927))))) -((-2417 (((-112) $ $) NIL)) (-3610 (($) NIL (|has| |#1| (-372)))) (-3969 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-2541 (($ $ $) 81)) (-4179 (((-112) $ $) 82)) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#1| (-372)))) (-4257 (($ (-649 |#1|)) NIL) (($) 13)) (-1796 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1794 (($ |#1| $) 74 (|has| $ (-6 -4447))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4447)))) (-3406 (($) NIL (|has| |#1| (-372)))) (-2882 (((-649 |#1|) $) 19 (|has| $ (-6 -4447)))) (-1651 (((-112) $ $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-3380 ((|#1| $) 55 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2839 ((|#1| $) 53 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 34)) (-2731 (((-927) $) NIL (|has| |#1| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2101 (($ $ $) 79)) (-1877 ((|#1| $) 25)) (-3894 (($ |#1| $) 69)) (-2150 (($ (-927)) NIL (|has| |#1| (-372)))) (-3547 (((-1128) $) NIL)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1781 ((|#1| $) 27)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 21)) (-3635 (($) 11)) (-2237 (($ $ |#1|) NIL) (($ $ $) 80)) (-2434 (($) NIL) (($ (-649 |#1|)) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 16)) (-1410 (((-541) $) 50 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 62)) (-3327 (($ $) NIL (|has| |#1| (-372)))) (-3796 (((-867) $) NIL)) (-1970 (((-776) $) NIL)) (-3868 (($ (-649 |#1|)) NIL) (($) 12)) (-1520 (((-112) $ $) NIL)) (-3423 (($ (-649 |#1|)) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 52)) (-2428 (((-776) $) 10 (|has| $ (-6 -4447))))) -(((-1110 |#1|) (-430 |#1|) (-1108)) (T -1110)) -NIL -(-430 |#1|) -((-2417 (((-112) $ $) 7)) (-3179 (((-112) $) 33)) (-1404 ((|#2| $) 28)) (-3936 (((-112) $) 34)) (-3390 ((|#1| $) 29)) (-2229 (((-112) $) 36)) (-3734 (((-112) $) 38)) (-3685 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3605 (((-112) $) 32)) (-1433 ((|#3| $) 27)) (-3547 (((-1128) $) 11)) (-3953 (((-112) $) 31)) (-2557 ((|#4| $) 26)) (-2624 ((|#5| $) 25)) (-4312 (((-112) $ $) 39)) (-1869 (($ $ (-569)) 21) (($ $ (-649 (-569))) 20)) (-3881 (((-649 $) $) 30)) (-1410 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-649 $)) 40)) (-3796 (((-867) $) 12)) (-3407 (($ $) 23)) (-3395 (($ $) 24)) (-1520 (((-112) $ $) 9)) (-3952 (((-112) $) 37)) (-2920 (((-112) $ $) 6)) (-2428 (((-569) $) 22))) -(((-1111 |#1| |#2| |#3| |#4| |#5|) (-140) (-1108) (-1108) (-1108) (-1108) (-1108)) (T -1111)) -((-4312 (*1 *2 *1 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-2229 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112)))) (-3881 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-1111 *3 *4 *5 *6 *7)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-1404 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *2 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *2 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-2557 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *2 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *2)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-3407 (*1 *1 *1) (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-569)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108))))) -(-13 (-1108) (-623 |t#1|) (-623 |t#2|) (-623 |t#3|) (-623 |t#4|) (-623 |t#4|) (-623 |t#5|) (-623 (-649 $)) (-10 -8 (-15 -4312 ((-112) $ $)) (-15 -3734 ((-112) $)) (-15 -3952 ((-112) $)) (-15 -2229 ((-112) $)) (-15 -3685 ((-112) $)) (-15 -3936 ((-112) $)) (-15 -3179 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3953 ((-112) $)) (-15 -3881 ((-649 $) $)) (-15 -3390 (|t#1| $)) (-15 -1404 (|t#2| $)) (-15 -1433 (|t#3| $)) (-15 -2557 (|t#4| $)) (-15 -2624 (|t#5| $)) (-15 -3395 ($ $)) (-15 -3407 ($ $)) (-15 -2428 ((-569) $)) (-15 -1869 ($ $ (-569))) (-15 -1869 ($ $ (-649 (-569)))))) -(((-102) . T) ((-618 (-867)) . T) ((-623 (-649 $)) . T) ((-623 |#1|) . T) ((-623 |#2|) . T) ((-623 |#3|) . T) ((-623 |#4|) . T) ((-623 |#5|) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3179 (((-112) $) NIL)) (-1404 (((-1185) $) NIL)) (-3936 (((-112) $) NIL)) (-3390 (((-1167) $) NIL)) (-2229 (((-112) $) NIL)) (-3734 (((-112) $) NIL)) (-3685 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3605 (((-112) $) NIL)) (-1433 (((-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3953 (((-112) $) NIL)) (-2557 (((-226) $) NIL)) (-2624 (((-867) $) NIL)) (-4312 (((-112) $ $) NIL)) (-1869 (($ $ (-569)) NIL) (($ $ (-649 (-569))) NIL)) (-3881 (((-649 $) $) NIL)) (-1410 (($ (-1167)) NIL) (($ (-1185)) NIL) (($ (-569)) NIL) (($ (-226)) NIL) (($ (-867)) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL)) (-3407 (($ $) NIL)) (-3395 (($ $) NIL)) (-1520 (((-112) $ $) NIL)) (-3952 (((-112) $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-569) $) NIL))) -(((-1112) (-1111 (-1167) (-1185) (-569) (-226) (-867))) (T -1112)) -NIL -(-1111 (-1167) (-1185) (-569) (-226) (-867)) -((-2417 (((-112) $ $) NIL)) (-3179 (((-112) $) 45)) (-1404 ((|#2| $) 48)) (-3936 (((-112) $) 20)) (-3390 ((|#1| $) 21)) (-2229 (((-112) $) 42)) (-3734 (((-112) $) 14)) (-3685 (((-112) $) 44)) (-3435 (((-1167) $) NIL)) (-3605 (((-112) $) 46)) (-1433 ((|#3| $) 50)) (-3547 (((-1128) $) NIL)) (-3953 (((-112) $) 47)) (-2557 ((|#4| $) 49)) (-2624 ((|#5| $) 51)) (-4312 (((-112) $ $) 41)) (-1869 (($ $ (-569)) 62) (($ $ (-649 (-569))) 64)) (-3881 (((-649 $) $) 27)) (-1410 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-649 $)) 52)) (-3796 (((-867) $) 28)) (-3407 (($ $) 26)) (-3395 (($ $) 58)) (-1520 (((-112) $ $) NIL)) (-3952 (((-112) $) 23)) (-2920 (((-112) $ $) 40)) (-2428 (((-569) $) 60))) -(((-1113 |#1| |#2| |#3| |#4| |#5|) (-1111 |#1| |#2| |#3| |#4| |#5|) (-1108) (-1108) (-1108) (-1108) (-1108)) (T -1113)) -NIL -(-1111 |#1| |#2| |#3| |#4| |#5|) -((-3362 (((-1280) $) 22)) (-1707 (($ (-1185) (-439) |#2|) 11)) (-3796 (((-867) $) 16))) -(((-1114 |#1| |#2|) (-13 (-400) (-10 -8 (-15 -1707 ($ (-1185) (-439) |#2|)))) (-1108) (-435 |#1|)) (T -1114)) -((-1707 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *3 (-439)) (-4 *5 (-1108)) (-5 *1 (-1114 *5 *4)) (-4 *4 (-435 *5))))) -(-13 (-400) (-10 -8 (-15 -1707 ($ (-1185) (-439) |#2|)))) -((-2137 (((-112) |#5| |#5|) 44)) (-3197 (((-112) |#5| |#5|) 59)) (-3083 (((-112) |#5| (-649 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-2831 (((-112) (-649 |#4|) (-649 |#4|)) 65)) (-2210 (((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 70)) (-3681 (((-1280)) 32)) (-2197 (((-1280) (-1167) (-1167) (-1167)) 28)) (-2611 (((-649 |#5|) (-649 |#5|)) 101)) (-1805 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) 93)) (-1419 (((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112)) 123)) (-3599 (((-112) |#5| |#5|) 53)) (-1647 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2503 (((-112) (-649 |#4|) (-649 |#4|)) 64)) (-2066 (((-112) (-649 |#4|) (-649 |#4|)) 66)) (-2151 (((-112) (-649 |#4|) (-649 |#4|)) 67)) (-3543 (((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3841 (((-649 |#5|) (-649 |#5|)) 49))) -(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1115)) -((-3543 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9)))) (-5 *1 (-1115 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) (-4 *4 (-1079 *6 *7 *8 *9)))) (-1419 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9))))) (-5 *1 (-1115 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7)))) (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)))) (-2611 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))) (-3083 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1115 *5 *6 *7 *8 *3)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-1647 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2066 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-2831 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3599 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-1115 *3 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *3) (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) (-3681 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2197 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(-10 -7 (-15 -2197 ((-1280) (-1167) (-1167) (-1167))) (-15 -3681 ((-1280))) (-15 -2137 ((-112) |#5| |#5|)) (-15 -3841 ((-649 |#5|) (-649 |#5|))) (-15 -3599 ((-112) |#5| |#5|)) (-15 -3197 ((-112) |#5| |#5|)) (-15 -2831 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2503 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2066 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -2151 ((-112) (-649 |#4|) (-649 |#4|))) (-15 -1647 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3083 ((-112) |#5| |#5|)) (-15 -3083 ((-112) |#5| (-649 |#5|))) (-15 -2611 ((-649 |#5|) (-649 |#5|))) (-15 -2210 ((-112) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -1805 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-15 -1419 ((-649 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|)))) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -3543 ((-3 (-2 (|:| -4312 (-649 |#4|)) (|:| -3663 |#5|) (|:| |ineq| (-649 |#4|))) "failed") (-649 |#4|) |#5| (-649 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3970 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|) 108)) (-3907 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|) 80)) (-2511 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 102)) (-1818 (((-649 |#5|) |#4| |#5|) 124)) (-2131 (((-649 |#5|) |#4| |#5|) 131)) (-2333 (((-649 |#5|) |#4| |#5|) 132)) (-2211 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 109)) (-3607 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 130)) (-2684 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3409 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112)) 92) (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-4302 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|) 87)) (-2351 (((-1280)) 36)) (-3280 (((-1280)) 25)) (-2933 (((-1280) (-1167) (-1167) (-1167)) 32)) (-3673 (((-1280) (-1167) (-1167) (-1167)) 21))) -(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -3907 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -4302 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2511 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2684 ((-112) |#4| |#5|)) (-15 -2211 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1818 ((-649 |#5|) |#4| |#5|)) (-15 -3607 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2131 ((-649 |#5|) |#4| |#5|)) (-15 -2684 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2333 ((-649 |#5|) |#4| |#5|)) (-15 -3970 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1079 |#1| |#2| |#3| |#4|)) (T -1116)) -((-3970 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2333 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-1818 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2684 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2511 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-4302 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9)))) (-5 *1 (-1116 *6 *7 *4 *8 *9)))) (-3409 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) (-3907 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) (-2351 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-2933 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) (-3280 (*1 *2) (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) (-3673 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(-10 -7 (-15 -3673 ((-1280) (-1167) (-1167) (-1167))) (-15 -3280 ((-1280))) (-15 -2933 ((-1280) (-1167) (-1167) (-1167))) (-15 -2351 ((-1280))) (-15 -3907 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3409 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) |#3| (-112))) (-15 -4302 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2511 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#4| |#5|)) (-15 -2684 ((-112) |#4| |#5|)) (-15 -2211 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -1818 ((-649 |#5|) |#4| |#5|)) (-15 -3607 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2131 ((-649 |#5|) |#4| |#5|)) (-15 -2684 ((-649 (-2 (|:| |val| (-112)) (|:| -3663 |#5|))) |#4| |#5|)) (-15 -2333 ((-649 |#5|) |#4| |#5|)) (-15 -3970 ((-649 (-2 (|:| |val| |#4|) (|:| -3663 |#5|))) |#4| |#5|))) -((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-1117 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1117)) -NIL -(-13 (-1079 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1079 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T)) -((-1579 (((-649 (-569)) (-569) (-569) (-569)) 39)) (-3090 (((-649 (-569)) (-569) (-569) (-569)) 29)) (-4109 (((-649 (-569)) (-569) (-569) (-569)) 34)) (-3729 (((-569) (-569) (-569)) 23)) (-2498 (((-1275 (-569)) (-649 (-569)) (-1275 (-569)) (-569)) 75) (((-1275 (-569)) (-1275 (-569)) (-1275 (-569)) (-569)) 70)) (-3321 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112)) 52)) (-3711 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 74)) (-4170 (((-694 (-569)) (-649 (-569)) (-649 (-569))) 58)) (-3049 (((-649 (-694 (-569))) (-649 (-569))) 63)) (-1971 (((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569))) 78)) (-3588 (((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569))) 88))) -(((-1118) (-10 -7 (-15 -3588 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1971 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3049 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -4170 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -3711 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3321 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -2498 ((-1275 (-569)) (-1275 (-569)) (-1275 (-569)) (-569))) (-15 -2498 ((-1275 (-569)) (-649 (-569)) (-1275 (-569)) (-569))) (-15 -3729 ((-569) (-569) (-569))) (-15 -4109 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3090 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1579 ((-649 (-569)) (-569) (-569) (-569))))) (T -1118)) -((-1579 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))) (-3090 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))) (-4109 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569)))) (-3729 (*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1118)))) (-2498 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569)) (-5 *1 (-1118)))) (-2498 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-569)) (-5 *1 (-1118)))) (-3321 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1118)))) (-3711 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1118)))) (-4170 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-1118)))) (-1971 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1118)))) (-3588 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118))))) -(-10 -7 (-15 -3588 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -1971 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3049 ((-649 (-694 (-569))) (-649 (-569)))) (-15 -4170 ((-694 (-569)) (-649 (-569)) (-649 (-569)))) (-15 -3711 ((-694 (-569)) (-649 (-569)) (-649 (-569)) (-694 (-569)))) (-15 -3321 ((-649 (-569)) (-649 (-569)) (-649 (-569)) (-112))) (-15 -2498 ((-1275 (-569)) (-1275 (-569)) (-1275 (-569)) (-569))) (-15 -2498 ((-1275 (-569)) (-649 (-569)) (-1275 (-569)) (-569))) (-15 -3729 ((-569) (-569) (-569))) (-15 -4109 ((-649 (-569)) (-569) (-569) (-569))) (-15 -3090 ((-649 (-569)) (-569) (-569) (-569))) (-15 -1579 ((-649 (-569)) (-569) (-569) (-569)))) -((** (($ $ (-927)) 10))) -(((-1119 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-927)))) (-1120)) (T -1119)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-927)))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6)) (** (($ $ (-927)) 14)) (* (($ $ $) 15))) -(((-1120) (-140)) (T -1120)) -((* (*1 *1 *1 *1) (-4 *1 (-1120))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-927))))) -(-13 (-1108) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-927))))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL (|has| |#3| (-1108)))) (-4143 (((-112) $) NIL (|has| |#3| (-131)))) (-3636 (($ (-927)) NIL (|has| |#3| (-1057)))) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-3151 (($ $ $) NIL (|has| |#3| (-798)))) (-2208 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3914 (((-112) $ (-776)) NIL)) (-3473 (((-776)) NIL (|has| |#3| (-372)))) (-2919 (((-569) $) NIL (|has| |#3| (-853)))) (-3943 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1108)))) (-3150 (((-569) $) NIL (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108)))) (((-412 (-569)) $) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) ((|#3| $) NIL (|has| |#3| (-1108)))) (-2957 (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#3| (-644 (-569))) (|has| |#3| (-1057)))) (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) NIL (|has| |#3| (-1057))) (((-694 |#3|) (-694 $)) NIL (|has| |#3| (-1057)))) (-3086 (((-3 $ "failed") $) NIL (|has| |#3| (-731)))) (-3406 (($) NIL (|has| |#3| (-372)))) (-3846 ((|#3| $ (-569) |#3|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#3| $ (-569)) 12)) (-3712 (((-112) $) NIL (|has| |#3| (-853)))) (-2882 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL (|has| |#3| (-731)))) (-2051 (((-112) $) NIL (|has| |#3| (-853)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2009 (((-649 |#3|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3834 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#3| |#3|) $) NIL)) (-2731 (((-927) $) NIL (|has| |#3| (-372)))) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#3| (-1108)))) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-2150 (($ (-927)) NIL (|has| |#3| (-372)))) (-3547 (((-1128) $) NIL (|has| |#3| (-1108)))) (-3513 ((|#3| $) NIL (|has| (-569) (-855)))) (-1682 (($ $ |#3|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#3|))) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-297 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108)))) (($ $ (-649 |#3|) (-649 |#3|)) NIL (-12 (|has| |#3| (-312 |#3|)) (|has| |#3| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-4199 (((-649 |#3|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#3| $ (-569) |#3|) NIL) ((|#3| $ (-569)) NIL)) (-3040 ((|#3| $ $) NIL (|has| |#3| (-1057)))) (-3848 (($ (-1275 |#3|)) NIL)) (-2377 (((-134)) NIL (|has| |#3| (-367)))) (-3517 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057)))) (-3560 (((-776) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447))) (((-776) |#3| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#3| (-1108))))) (-3962 (($ $) NIL)) (-3796 (((-1275 |#3|) $) NIL) (($ (-569)) NIL (-2776 (-12 (|has| |#3| (-1046 (-569))) (|has| |#3| (-1108))) (|has| |#3| (-1057)))) (($ (-412 (-569))) NIL (-12 (|has| |#3| (-1046 (-412 (-569)))) (|has| |#3| (-1108)))) (($ |#3|) NIL (|has| |#3| (-1108))) (((-867) $) NIL (|has| |#3| (-618 (-867))))) (-2721 (((-776)) NIL (|has| |#3| (-1057)) CONST)) (-1520 (((-112) $ $) NIL (|has| |#3| (-1108)))) (-1980 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4447)))) (-2271 (($ $) NIL (|has| |#3| (-853)))) (-1804 (($) NIL (|has| |#3| (-131)) CONST)) (-1815 (($) NIL (|has| |#3| (-731)) CONST)) (-2832 (($ $) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-776)) NIL (-12 (|has| |#3| (-234)) (|has| |#3| (-1057)))) (($ $ (-1185)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#3| (-906 (-1185))) (|has| |#3| (-1057)))) (($ $ (-1 |#3| |#3|) (-776)) NIL (|has| |#3| (-1057))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1057)))) (-2978 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2956 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2920 (((-112) $ $) NIL (|has| |#3| (-1108)))) (-2966 (((-112) $ $) NIL (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-2944 (((-112) $ $) 24 (-2776 (|has| |#3| (-798)) (|has| |#3| (-853))))) (-3035 (($ $ |#3|) NIL (|has| |#3| (-367)))) (-3024 (($ $ $) NIL (|has| |#3| (-1057))) (($ $) NIL (|has| |#3| (-1057)))) (-3012 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-776)) NIL (|has| |#3| (-731))) (($ $ (-927)) NIL (|has| |#3| (-731)))) (* (($ (-569) $) NIL (|has| |#3| (-1057))) (($ $ $) NIL (|has| |#3| (-731))) (($ $ |#3|) NIL (|has| |#3| (-731))) (($ |#3| $) NIL (|has| |#3| (-731))) (($ (-776) $) NIL (|has| |#3| (-131))) (($ (-927) $) NIL (|has| |#3| (-25)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1121 |#1| |#2| |#3|) (-239 |#1| |#3|) (-776) (-776) (-798)) (T -1121)) -NIL -(-239 |#1| |#3|) -((-4329 (((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 50)) (-4014 (((-569) (-1248 |#2| |#1|)) 97 (|has| |#1| (-457)))) (-3683 (((-569) (-1248 |#2| |#1|)) 79)) (-2757 (((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 60)) (-2328 (((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 96 (|has| |#1| (-457)))) (-2402 (((-649 |#1|) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 64)) (-4021 (((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|)) 78))) -(((-1122 |#1| |#2|) (-10 -7 (-15 -4329 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2757 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2402 ((-649 |#1|) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4021 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -3683 ((-569) (-1248 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -2328 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4014 ((-569) (-1248 |#2| |#1|)))) |%noBranch|)) (-825) (-1185)) (T -1122)) -((-4014 (*1 *2 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-4021 (*1 *2 *3 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5)))) (-2402 (*1 *2 *3 *3) (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 *4)) (-5 *1 (-1122 *4 *5)))) (-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4))) (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4)))) (-4329 (*1 *2 *3 *3) (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4))) (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4))))) -(-10 -7 (-15 -4329 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2757 ((-649 (-1248 |#2| |#1|)) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -2402 ((-649 |#1|) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4021 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -3683 ((-569) (-1248 |#2| |#1|))) (IF (|has| |#1| (-457)) (PROGN (-15 -2328 ((-569) (-1248 |#2| |#1|) (-1248 |#2| |#1|))) (-15 -4014 ((-569) (-1248 |#2| |#1|)))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-2471 (($ (-511) (-1126)) 13)) (-4331 (((-1126) $) 19)) (-3573 (((-511) $) 16)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 26) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1123) (-13 (-1091) (-10 -8 (-15 -2471 ($ (-511) (-1126))) (-15 -3573 ((-511) $)) (-15 -4331 ((-1126) $))))) (T -1123)) -((-2471 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-1123)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1123)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1123))))) -(-13 (-1091) (-10 -8 (-15 -2471 ($ (-511) (-1126))) (-15 -3573 ((-511) $)) (-15 -4331 ((-1126) $)))) -((-2919 (((-3 (-569) "failed") |#2| (-1185) |#2| (-1167)) 19) (((-3 (-569) "failed") |#2| (-1185) (-848 |#2|)) 17) (((-3 (-569) "failed") |#2|) 60))) -(((-1124 |#1| |#2|) (-10 -7 (-15 -2919 ((-3 (-569) "failed") |#2|)) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) (-848 |#2|))) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) |#2| (-1167)))) (-13 (-561) (-1046 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1210) (-435 |#1|))) (T -1124)) -((-2919 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-1167)) (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1124 *6 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))))) (-2919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1124 *6 *3)))) (-2919 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4)))))) -(-10 -7 (-15 -2919 ((-3 (-569) "failed") |#2|)) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) (-848 |#2|))) (-15 -2919 ((-3 (-569) "failed") |#2| (-1185) |#2| (-1167)))) -((-2919 (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)) (-1167)) 38) (((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-848 (-412 (-958 |#1|)))) 33) (((-3 (-569) "failed") (-412 (-958 |#1|))) 14))) -(((-1125 |#1|) (-10 -7 (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-848 (-412 (-958 |#1|))))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)) (-1167)))) (-457)) (T -1125)) -((-2919 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1185)) (-5 *5 (-1167)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *6)))) (-2919 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 (-412 (-958 *6)))) (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *6)))) (-2919 (*1 *2 *3) (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *4))))) -(-10 -7 (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-848 (-412 (-958 |#1|))))) (-15 -2919 ((-3 (-569) "failed") (-412 (-958 |#1|)) (-1185) (-412 (-958 |#1|)) (-1167)))) -((-2417 (((-112) $ $) NIL)) (-3870 (((-1190) $) 12)) (-3815 (((-649 (-1190)) $) 14)) (-4331 (($ (-649 (-1190)) (-1190)) 10)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 29)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 17))) -(((-1126) (-13 (-1108) (-10 -8 (-15 -4331 ($ (-649 (-1190)) (-1190))) (-15 -3870 ((-1190) $)) (-15 -3815 ((-649 (-1190)) $))))) (T -1126)) -((-4331 (*1 *1 *2 *3) (-12 (-5 *2 (-649 (-1190))) (-5 *3 (-1190)) (-5 *1 (-1126)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1126)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1126))))) -(-13 (-1108) (-10 -8 (-15 -4331 ($ (-649 (-1190)) (-1190))) (-15 -3870 ((-1190) $)) (-15 -3815 ((-649 (-1190)) $)))) -((-2469 (((-319 (-569)) (-48)) 12))) -(((-1127) (-10 -7 (-15 -2469 ((-319 (-569)) (-48))))) (T -1127)) -((-2469 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1127))))) -(-10 -7 (-15 -2469 ((-319 (-569)) (-48)))) -((-2417 (((-112) $ $) NIL)) (-2436 (($ $) 44)) (-4143 (((-112) $) 69)) (-1783 (($ $ $) 51)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 97)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-3889 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2709 (($ $ $ $) 80)) (-1830 (($ $) NIL)) (-3764 (((-423 $) $) NIL)) (-2227 (((-112) $ $) NIL)) (-3473 (((-776)) 82)) (-2919 (((-569) $) NIL)) (-3084 (($ $ $) 77)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL)) (-3150 (((-569) $) NIL)) (-2368 (($ $ $) 63)) (-2957 (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 91) (((-694 (-569)) (-694 $)) 32)) (-3086 (((-3 $ "failed") $) NIL)) (-3377 (((-3 (-412 (-569)) "failed") $) NIL)) (-1441 (((-112) $) NIL)) (-1606 (((-412 (-569)) $) NIL)) (-3406 (($) 94) (($ $) 95)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL)) (-1473 (((-112) $) NIL)) (-3499 (($ $ $ $) NIL)) (-3211 (($ $ $) 92)) (-3712 (((-112) $) NIL)) (-3074 (($ $ $) NIL)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL)) (-2349 (((-112) $) 71)) (-2719 (((-112) $) 68)) (-1749 (($ $) 45)) (-3885 (((-3 $ "failed") $) NIL)) (-2051 (((-112) $) 81)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-2196 (($ $ $ $) 78)) (-3380 (($ $ $) 73) (($) 42 T CONST)) (-2839 (($ $ $) 72) (($) 41 T CONST)) (-2606 (($ $) NIL)) (-2731 (((-927) $) 87)) (-3845 (($ $) 76)) (-1839 (($ $ $) NIL) (($ (-649 $)) NIL)) (-3435 (((-1167) $) NIL)) (-1973 (($ $ $) NIL)) (-2307 (($) NIL T CONST)) (-2150 (($ (-927)) 86)) (-3593 (($ $) 56)) (-3547 (((-1128) $) 75)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL)) (-1870 (($ $ $) 66) (($ (-649 $)) NIL)) (-1948 (($ $) NIL)) (-3800 (((-423 $) $) NIL)) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL)) (-4024 (((-112) $) NIL)) (-2431 (((-776) $) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 65)) (-3517 (($ $ (-776)) NIL) (($ $) NIL)) (-2432 (($ $) 57)) (-3962 (($ $) NIL)) (-1410 (((-569) $) 17) (((-541) $) NIL) (((-898 (-569)) $) NIL) (((-383) $) NIL) (((-226) $) NIL)) (-3796 (((-867) $) 35) (($ (-569)) 93) (($ $) NIL) (($ (-569)) 93)) (-2721 (((-776)) NIL T CONST)) (-2752 (((-112) $ $) NIL)) (-3613 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-4363 (($) 40)) (-2664 (((-112) $ $) NIL)) (-2384 (($ $ $ $) 79)) (-2271 (($ $) 67)) (-4419 (($ $ $) 47)) (-1804 (($) 7 T CONST)) (-3506 (($ $ $) 50)) (-1815 (($) 39 T CONST)) (-3266 (((-1167) $) 26) (((-1167) $ (-112)) 27) (((-1280) (-827) $) 28) (((-1280) (-827) $ (-112)) 29)) (-3519 (($ $) 48)) (-2832 (($ $ (-776)) NIL) (($ $) NIL)) (-3492 (($ $ $) 49)) (-2978 (((-112) $ $) 55)) (-2956 (((-112) $ $) 52)) (-2920 (((-112) $ $) 43)) (-2966 (((-112) $ $) 54)) (-2944 (((-112) $ $) 10)) (-4406 (($ $ $) 46)) (-3024 (($ $) 16) (($ $ $) 59)) (-3012 (($ $ $) 58)) (** (($ $ (-927)) NIL) (($ $ (-776)) 61)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 38) (($ $ $) 37))) -(((-1128) (-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1749 ($ $)) (-15 -1783 ($ $ $)) (-15 -3519 ($ $)) (-15 -3492 ($ $ $)) (-15 -3506 ($ $ $))))) (T -1128)) -((-1749 (*1 *1 *1) (-5 *1 (-1128))) (-1783 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3519 (*1 *1 *1) (-5 *1 (-1128))) (-3492 (*1 *1 *1 *1) (-5 *1 (-1128))) (-3506 (*1 *1 *1 *1) (-5 *1 (-1128)))) -(-13 (-550) (-849) (-666) (-833) (-10 -8 (-6 -4434) (-6 -4439) (-6 -4435) (-15 -1749 ($ $)) (-15 -1783 ($ $ $)) (-15 -3519 ($ $)) (-15 -3492 ($ $ $)) (-15 -3506 ($ $ $)))) +(((-93) . T) ((-102) . T) ((-622 #0=(-1191)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T)) +((-1777 ((|#1| |#1| (-1 (-570) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-2467 (((-1281)) 21)) (-4317 (((-650 |#1|)) 13))) +(((-1093 |#1|) (-10 -7 (-15 -2467 ((-1281))) (-15 -4317 ((-650 |#1|))) (-15 -1777 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1777 (|#1| |#1| (-1 (-570) |#1| |#1|)))) (-133)) (T -1093)) +((-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-570) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2)))) (-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2)))) (-4317 (*1 *2) (-12 (-5 *2 (-650 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-133)))) (-2467 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1093 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -2467 ((-1281))) (-15 -4317 ((-650 |#1|))) (-15 -1777 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1777 (|#1| |#1| (-1 (-570) |#1| |#1|)))) +((-3405 (($ (-109) $) 20)) (-3231 (((-697 (-109)) (-512) $) 19)) (-4359 (($) 7)) (-1346 (($) 21)) (-3251 (($) 22)) (-3042 (((-650 (-177)) $) 10)) (-3798 (((-868) $) 25))) +(((-1094) (-13 (-619 (-868)) (-10 -8 (-15 -4359 ($)) (-15 -3042 ((-650 (-177)) $)) (-15 -3231 ((-697 (-109)) (-512) $)) (-15 -3405 ($ (-109) $)) (-15 -1346 ($)) (-15 -3251 ($))))) (T -1094)) +((-4359 (*1 *1) (-5 *1 (-1094))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-650 (-177))) (-5 *1 (-1094)))) (-3231 (*1 *2 *3 *1) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-1094)))) (-3405 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1094)))) (-1346 (*1 *1) (-5 *1 (-1094))) (-3251 (*1 *1) (-5 *1 (-1094)))) +(-13 (-619 (-868)) (-10 -8 (-15 -4359 ($)) (-15 -3042 ((-650 (-177)) $)) (-15 -3231 ((-697 (-109)) (-512) $)) (-15 -3405 ($ (-109) $)) (-15 -1346 ($)) (-15 -3251 ($)))) +((-1601 (((-1276 (-695 |#1|)) (-650 (-695 |#1|))) 47) (((-1276 (-695 (-959 |#1|))) (-650 (-1186)) (-695 (-959 |#1|))) 75) (((-1276 (-695 (-413 (-959 |#1|)))) (-650 (-1186)) (-695 (-413 (-959 |#1|)))) 92)) (-1861 (((-1276 |#1|) (-695 |#1|) (-650 (-695 |#1|))) 41))) +(((-1095 |#1|) (-10 -7 (-15 -1601 ((-1276 (-695 (-413 (-959 |#1|)))) (-650 (-1186)) (-695 (-413 (-959 |#1|))))) (-15 -1601 ((-1276 (-695 (-959 |#1|))) (-650 (-1186)) (-695 (-959 |#1|)))) (-15 -1601 ((-1276 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -1861 ((-1276 |#1|) (-695 |#1|) (-650 (-695 |#1|))))) (-368)) (T -1095)) +((-1861 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-695 *5))) (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 (-1276 *5)) (-5 *1 (-1095 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) (-5 *2 (-1276 (-695 *4))) (-5 *1 (-1095 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368)) (-5 *2 (-1276 (-695 (-959 *5)))) (-5 *1 (-1095 *5)) (-5 *4 (-695 (-959 *5))))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368)) (-5 *2 (-1276 (-695 (-413 (-959 *5))))) (-5 *1 (-1095 *5)) (-5 *4 (-695 (-413 (-959 *5))))))) +(-10 -7 (-15 -1601 ((-1276 (-695 (-413 (-959 |#1|)))) (-650 (-1186)) (-695 (-413 (-959 |#1|))))) (-15 -1601 ((-1276 (-695 (-959 |#1|))) (-650 (-1186)) (-695 (-959 |#1|)))) (-15 -1601 ((-1276 (-695 |#1|)) (-650 (-695 |#1|)))) (-15 -1861 ((-1276 |#1|) (-695 |#1|) (-650 (-695 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2194 (((-650 (-777)) $) NIL) (((-650 (-777)) $ (-1186)) NIL)) (-2793 (((-777) $) NIL) (((-777) $ (-1186)) NIL)) (-1709 (((-650 (-1097 (-1186))) $) NIL)) (-3768 (((-1182 $) $ (-1097 (-1186))) NIL) (((-1182 |#1|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1097 (-1186)))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-2836 (($ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1097 (-1186)) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL) (((-3 (-1134 |#1| (-1186)) "failed") $) NIL)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1097 (-1186)) $) NIL) (((-1186) $) NIL) (((-1134 |#1| (-1186)) $) NIL)) (-2865 (($ $ $ (-1097 (-1186))) NIL (|has| |#1| (-174)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ (-1097 (-1186))) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-537 (-1097 (-1186))) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1097 (-1186)) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1097 (-1186)) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4202 (((-777) $ (-1186)) NIL) (((-777) $) NIL)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-1699 (($ (-1182 |#1|) (-1097 (-1186))) NIL) (($ (-1182 $) (-1097 (-1186))) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-537 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1097 (-1186))) NIL)) (-2302 (((-537 (-1097 (-1186))) $) NIL) (((-777) $ (-1097 (-1186))) NIL) (((-650 (-777)) $ (-650 (-1097 (-1186)))) NIL)) (-2550 (($ (-1 (-537 (-1097 (-1186))) (-537 (-1097 (-1186)))) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2994 (((-1 $ (-777)) (-1186)) NIL) (((-1 $ (-777)) $) NIL (|has| |#1| (-235)))) (-4372 (((-3 (-1097 (-1186)) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-3154 (((-1097 (-1186)) $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-2916 (((-112) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-1097 (-1186))) (|:| -3283 (-777))) "failed") $) NIL)) (-1511 (($ $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1097 (-1186)) |#1|) NIL) (($ $ (-650 (-1097 (-1186))) (-650 |#1|)) NIL) (($ $ (-1097 (-1186)) $) NIL) (($ $ (-650 (-1097 (-1186))) (-650 $)) NIL) (($ $ (-1186) $) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 $)) NIL (|has| |#1| (-235))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-235))) (($ $ (-650 (-1186)) (-650 |#1|)) NIL (|has| |#1| (-235)))) (-3511 (($ $ (-1097 (-1186))) NIL (|has| |#1| (-174)))) (-3519 (($ $ (-1097 (-1186))) NIL) (($ $ (-650 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3803 (((-650 (-1186)) $) NIL)) (-3324 (((-537 (-1097 (-1186))) $) NIL) (((-777) $ (-1097 (-1186))) NIL) (((-650 (-777)) $ (-650 (-1097 (-1186)))) NIL) (((-777) $ (-1186)) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-1097 (-1186)) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1097 (-1186)) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1097 (-1186)) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) NIL (|has| |#1| (-458))) (($ $ (-1097 (-1186))) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-1097 (-1186))) NIL) (($ (-1186)) NIL) (($ (-1134 |#1| (-1186))) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-537 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-1097 (-1186))) NIL) (($ $ (-650 (-1097 (-1186)))) NIL) (($ $ (-1097 (-1186)) (-777)) NIL) (($ $ (-650 (-1097 (-1186))) (-650 (-777))) NIL) (($ $) NIL (|has| |#1| (-235))) (($ $ (-777)) NIL (|has| |#1| (-235))) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1096 |#1|) (-13 (-256 |#1| (-1186) (-1097 (-1186)) (-537 (-1097 (-1186)))) (-1047 (-1134 |#1| (-1186)))) (-1058)) (T -1096)) +NIL +(-13 (-256 |#1| (-1186) (-1097 (-1186)) (-537 (-1097 (-1186)))) (-1047 (-1134 |#1| (-1186)))) +((-2419 (((-112) $ $) NIL)) (-2793 (((-777) $) NIL)) (-2676 ((|#1| $) 10)) (-4382 (((-3 |#1| "failed") $) NIL)) (-3152 ((|#1| $) NIL)) (-4202 (((-777) $) 11)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-2994 (($ |#1| (-777)) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3519 (($ $) NIL) (($ $ (-777)) NIL)) (-3798 (((-868) $) NIL) (($ |#1|) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 16))) +(((-1097 |#1|) (-269 |#1|) (-856)) (T -1097)) +NIL +(-269 |#1|) +((-1347 (((-650 |#2|) (-1 |#2| |#1|) (-1103 |#1|)) 29 (|has| |#1| (-854))) (((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|)) 14))) +(((-1098 |#1| |#2|) (-10 -7 (-15 -1347 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) (IF (|has| |#1| (-854)) (-15 -1347 ((-650 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) |%noBranch|)) (-1226) (-1226)) (T -1098)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-854)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-650 *6)) (-5 *1 (-1098 *5 *6)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1103 *6)) (-5 *1 (-1098 *5 *6))))) +(-10 -7 (-15 -1347 ((-1103 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) (IF (|has| |#1| (-854)) (-15 -1347 ((-650 |#2|) (-1 |#2| |#1|) (-1103 |#1|))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 16) (($ (-1191)) NIL) (((-1191) $) NIL)) (-2183 (((-650 (-1144)) $) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1099) (-13 (-1092) (-10 -8 (-15 -2183 ((-650 (-1144)) $))))) (T -1099)) +((-2183 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1099))))) +(-13 (-1092) (-10 -8 (-15 -2183 ((-650 (-1144)) $)))) +((-1347 (((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)) 19))) +(((-1100 |#1| |#2|) (-10 -7 (-15 -1347 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)))) (-1226) (-1226)) (T -1100)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1101 *6)) (-5 *1 (-1100 *5 *6))))) +(-10 -7 (-15 -1347 ((-1101 |#2|) (-1 |#2| |#1|) (-1101 |#1|)))) +((-2419 (((-112) $ $) NIL (|has| (-1103 |#1|) (-1109)))) (-2676 (((-1186) $) NIL)) (-2825 (((-1103 |#1|) $) NIL)) (-4122 (((-1168) $) NIL (|has| (-1103 |#1|) (-1109)))) (-3551 (((-1129) $) NIL (|has| (-1103 |#1|) (-1109)))) (-3499 (($ (-1186) (-1103 |#1|)) NIL)) (-3798 (((-868) $) NIL (|has| (-1103 |#1|) (-1109)))) (-1319 (((-112) $ $) NIL (|has| (-1103 |#1|) (-1109)))) (-2923 (((-112) $ $) NIL (|has| (-1103 |#1|) (-1109))))) +(((-1101 |#1|) (-13 (-1226) (-10 -8 (-15 -3499 ($ (-1186) (-1103 |#1|))) (-15 -2676 ((-1186) $)) (-15 -2825 ((-1103 |#1|) $)) (IF (|has| (-1103 |#1|) (-1109)) (-6 (-1109)) |%noBranch|))) (-1226)) (T -1101)) +((-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1103 *4)) (-4 *4 (-1226)) (-5 *1 (-1101 *4)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1101 *3)) (-4 *3 (-1226)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-1103 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-1226))))) +(-13 (-1226) (-10 -8 (-15 -3499 ($ (-1186) (-1103 |#1|))) (-15 -2676 ((-1186) $)) (-15 -2825 ((-1103 |#1|) $)) (IF (|has| (-1103 |#1|) (-1109)) (-6 (-1109)) |%noBranch|))) +((-2825 (($ |#1| |#1|) 8)) (-1918 ((|#1| $) 11)) (-1491 ((|#1| $) 13)) (-1501 (((-570) $) 9)) (-3549 ((|#1| $) 10)) (-1815 ((|#1| $) 12)) (-1411 (($ |#1|) 6)) (-3648 (($ |#1| |#1|) 15)) (-2690 (($ $ (-570)) 14))) +(((-1102 |#1|) (-141) (-1226)) (T -1102)) +((-3648 (*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) (-2690 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1102 *3)) (-4 *3 (-1226)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) (-1501 (*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1226)) (-5 *2 (-570)))) (-2825 (*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226))))) +(-13 (-624 |t#1|) (-10 -8 (-15 -3648 ($ |t#1| |t#1|)) (-15 -2690 ($ $ (-570))) (-15 -1491 (|t#1| $)) (-15 -1815 (|t#1| $)) (-15 -1918 (|t#1| $)) (-15 -3549 (|t#1| $)) (-15 -1501 ((-570) $)) (-15 -2825 ($ |t#1| |t#1|)))) +(((-624 |#1|) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2825 (($ |#1| |#1|) 16)) (-1347 (((-650 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-854)))) (-1918 ((|#1| $) 12)) (-1491 ((|#1| $) 11)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1501 (((-570) $) 15)) (-3549 ((|#1| $) 14)) (-1815 ((|#1| $) 13)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1381 (((-650 |#1|) $) 44 (|has| |#1| (-854))) (((-650 |#1|) (-650 $)) 43 (|has| |#1| (-854)))) (-1411 (($ |#1|) 29)) (-3798 (((-868) $) 28 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3648 (($ |#1| |#1|) 10)) (-2690 (($ $ (-570)) 17)) (-2923 (((-112) $ $) 22 (|has| |#1| (-1109))))) +(((-1103 |#1|) (-13 (-1102 |#1|) (-10 -7 (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-650 |#1|))) |%noBranch|))) (-1226)) (T -1103)) +NIL +(-13 (-1102 |#1|) (-10 -7 (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-650 |#1|))) |%noBranch|))) +((-2825 (($ |#1| |#1|) 8)) (-1347 ((|#2| (-1 |#1| |#1|) $) 16)) (-1918 ((|#1| $) 11)) (-1491 ((|#1| $) 13)) (-1501 (((-570) $) 9)) (-3549 ((|#1| $) 10)) (-1815 ((|#1| $) 12)) (-1381 ((|#2| (-650 $)) 18) ((|#2| $) 17)) (-1411 (($ |#1|) 6)) (-3648 (($ |#1| |#1|) 15)) (-2690 (($ $ (-570)) 14))) +(((-1104 |#1| |#2|) (-141) (-854) (-1158 |t#1|)) (T -1104)) +((-1381 (*1 *2 *3) (-12 (-5 *3 (-650 *1)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854)) (-4 *2 (-1158 *4)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-1104 *3 *2)) (-4 *3 (-854)) (-4 *2 (-1158 *3)))) (-1347 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854)) (-4 *2 (-1158 *4))))) +(-13 (-1102 |t#1|) (-10 -8 (-15 -1381 (|t#2| (-650 $))) (-15 -1381 (|t#2| $)) (-15 -1347 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-624 |#1|) . T) ((-1102 |#1|) . T)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-1723 (((-1144) $) 12)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 18) (($ (-1191)) NIL) (((-1191) $) NIL)) (-3587 (((-650 (-1144)) $) 10)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1105) (-13 (-1092) (-10 -8 (-15 -3587 ((-650 (-1144)) $)) (-15 -1723 ((-1144) $))))) (T -1105)) +((-3587 (*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1105)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1105))))) +(-13 (-1092) (-10 -8 (-15 -3587 ((-650 (-1144)) $)) (-15 -1723 ((-1144) $)))) +((-3971 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3612 (($ $ $) 10)) (-2688 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1106 |#1| |#2|) (-10 -8 (-15 -3971 (|#1| |#2| |#1|)) (-15 -3971 (|#1| |#1| |#2|)) (-15 -3971 (|#1| |#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#2|)) (-15 -2688 (|#1| |#1| |#1|))) (-1107 |#2|) (-1109)) (T -1106)) +NIL +(-10 -8 (-15 -3971 (|#1| |#2| |#1|)) (-15 -3971 (|#1| |#1| |#2|)) (-15 -3971 (|#1| |#1| |#1|)) (-15 -3612 (|#1| |#1| |#1|)) (-15 -2688 (|#1| |#1| |#2|)) (-15 -2688 (|#1| |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-3971 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3612 (($ $ $) 21)) (-2220 (((-112) $ $) 20)) (-3636 (((-112) $ (-777)) 36)) (-4259 (($) 26) (($ (-650 |#1|)) 25)) (-1418 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4448)))) (-3734 (($) 37 T CONST)) (-3552 (($ $) 60 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 59 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4448)))) (-2885 (((-650 |#1|) $) 44 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) 29)) (-3846 (((-112) $ (-777)) 35)) (-2282 (((-650 |#1|) $) 45 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 39)) (-2063 (((-112) $ (-777)) 34)) (-4122 (((-1168) $) 10)) (-2842 (($ $ $) 24)) (-3551 (((-1129) $) 11)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3116 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#1|) (-650 |#1|)) 51 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 49 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 (-298 |#1|))) 48 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 30)) (-4303 (((-112) $) 33)) (-4359 (($) 32)) (-2688 (($ $ $) 23) (($ $ |#1|) 22)) (-3562 (((-777) |#1| $) 46 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4448)))) (-3964 (($ $) 31)) (-1411 (((-542) $) 61 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 52)) (-3798 (((-868) $) 12)) (-3871 (($) 28) (($ (-650 |#1|)) 27)) (-1319 (((-112) $ $) 9)) (-1431 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 38 (|has| $ (-6 -4448))))) +(((-1107 |#1|) (-141) (-1109)) (T -1107)) +((-1939 (*1 *2 *1 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-3871 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-3871 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3)))) (-4259 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-4259 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3)))) (-2842 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-2688 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-2688 (*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-3612 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-2220 (*1 *2 *1 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) (-3971 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-3971 (*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) (-3971 (*1 *1 *2 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) +(-13 (-1109) (-152 |t#1|) (-10 -8 (-6 -4438) (-15 -1939 ((-112) $ $)) (-15 -3871 ($)) (-15 -3871 ($ (-650 |t#1|))) (-15 -4259 ($)) (-15 -4259 ($ (-650 |t#1|))) (-15 -2842 ($ $ $)) (-15 -2688 ($ $ $)) (-15 -2688 ($ $ |t#1|)) (-15 -3612 ($ $ $)) (-15 -2220 ((-112) $ $)) (-15 -3971 ($ $ $)) (-15 -3971 ($ $ |t#1|)) (-15 -3971 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) . T) ((-1226) . T)) +((-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 8)) (-1319 (((-112) $ $) 12))) +(((-1108 |#1|) (-10 -8 (-15 -1319 ((-112) |#1| |#1|)) (-15 -4122 ((-1168) |#1|)) (-15 -3551 ((-1129) |#1|))) (-1109)) (T -1108)) +NIL +(-10 -8 (-15 -1319 ((-112) |#1| |#1|)) (-15 -4122 ((-1168) |#1|)) (-15 -3551 ((-1129) |#1|))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-1109) (-141)) (T -1109)) +((-3551 (*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1129)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1168)))) (-1319 (*1 *2 *1 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-112))))) +(-13 (-102) (-619 (-868)) (-10 -8 (-15 -3551 ((-1129) $)) (-15 -4122 ((-1168) $)) (-15 -1319 ((-112) $ $)))) +(((-102) . T) ((-619 (-868)) . T)) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) 36)) (-2929 (($ (-650 (-928))) 72)) (-1855 (((-3 $ "failed") $ (-928) (-928)) 83)) (-3408 (($) 40)) (-1935 (((-112) (-928) $) 44)) (-2484 (((-928) $) 66)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) 39)) (-3322 (((-3 $ "failed") $ (-928)) 79)) (-3551 (((-1129) $) NIL)) (-2949 (((-1276 $)) 49)) (-2934 (((-650 (-928)) $) 27)) (-3118 (((-777) $ (-928) (-928)) 80)) (-3798 (((-868) $) 32)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 24))) +(((-1110 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -3322 ((-3 $ "failed") $ (-928))) (-15 -1855 ((-3 $ "failed") $ (-928) (-928))) (-15 -2934 ((-650 (-928)) $)) (-15 -2929 ($ (-650 (-928)))) (-15 -2949 ((-1276 $))) (-15 -1935 ((-112) (-928) $)) (-15 -3118 ((-777) $ (-928) (-928))))) (-928) (-928)) (T -1110)) +((-3322 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1855 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-2949 (*1 *2) (-12 (-5 *2 (-1276 (-1110 *3 *4))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-928)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3118 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-777)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-373) (-10 -8 (-15 -3322 ((-3 $ "failed") $ (-928))) (-15 -1855 ((-3 $ "failed") $ (-928) (-928))) (-15 -2934 ((-650 (-928)) $)) (-15 -2929 ($ (-650 (-928)))) (-15 -2949 ((-1276 $))) (-15 -1935 ((-112) (-928) $)) (-15 -3118 ((-777) $ (-928) (-928))))) +((-2419 (((-112) $ $) NIL)) (-3466 (($) NIL (|has| |#1| (-373)))) (-3971 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3612 (($ $ $) 81)) (-2220 (((-112) $ $) 82)) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| |#1| (-373)))) (-4259 (($ (-650 |#1|)) NIL) (($) 13)) (-2660 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2571 (($ |#1| $) 74 (|has| $ (-6 -4448))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4448)))) (-3408 (($) NIL (|has| |#1| (-373)))) (-2885 (((-650 |#1|) $) 19 (|has| $ (-6 -4448)))) (-1939 (((-112) $ $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-3382 ((|#1| $) 55 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2876 ((|#1| $) 53 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 34)) (-2484 (((-928) $) NIL (|has| |#1| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-2842 (($ $ $) 79)) (-1334 ((|#1| $) 25)) (-2213 (($ |#1| $) 69)) (-2155 (($ (-928)) NIL (|has| |#1| (-373)))) (-3551 (((-1129) $) NIL)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4067 ((|#1| $) 27)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 21)) (-4359 (($) 11)) (-2688 (($ $ |#1|) NIL) (($ $ $) 80)) (-2709 (($) NIL) (($ (-650 |#1|)) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 16)) (-1411 (((-542) $) 50 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 62)) (-3624 (($ $) NIL (|has| |#1| (-373)))) (-3798 (((-868) $) NIL)) (-2977 (((-777) $) NIL)) (-3871 (($ (-650 |#1|)) NIL) (($) 12)) (-1319 (((-112) $ $) NIL)) (-2089 (($ (-650 |#1|)) NIL)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 52)) (-2431 (((-777) $) 10 (|has| $ (-6 -4448))))) +(((-1111 |#1|) (-431 |#1|) (-1109)) (T -1111)) +NIL +(-431 |#1|) +((-2419 (((-112) $ $) 7)) (-2311 (((-112) $) 33)) (-1405 ((|#2| $) 28)) (-3876 (((-112) $) 34)) (-3391 ((|#1| $) 29)) (-4312 (((-112) $) 36)) (-1604 (((-112) $) 38)) (-1467 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-2381 (((-112) $) 32)) (-1434 ((|#3| $) 27)) (-3551 (((-1129) $) 11)) (-1670 (((-112) $) 31)) (-2560 ((|#4| $) 26)) (-2627 ((|#5| $) 25)) (-4313 (((-112) $ $) 39)) (-1872 (($ $ (-570)) 21) (($ $ (-650 (-570))) 20)) (-3883 (((-650 $) $) 30)) (-1411 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-650 $)) 40)) (-3798 (((-868) $) 12)) (-3409 (($ $) 23)) (-3397 (($ $) 24)) (-1319 (((-112) $ $) 9)) (-1546 (((-112) $) 37)) (-2923 (((-112) $ $) 6)) (-2431 (((-570) $) 22))) +(((-1112 |#1| |#2| |#3| |#4| |#5|) (-141) (-1109) (-1109) (-1109) (-1109) (-1109)) (T -1112)) +((-4313 (*1 *2 *1 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112)))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-1112 *3 *4 *5 *6 *7)))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *2 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *2 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-2560 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *2 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *2)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)))) (-3409 (*1 *1 *1) (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)))) (-2431 (*1 *2 *1) (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-570)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109))))) +(-13 (-1109) (-624 |t#1|) (-624 |t#2|) (-624 |t#3|) (-624 |t#4|) (-624 |t#4|) (-624 |t#5|) (-624 (-650 $)) (-10 -8 (-15 -4313 ((-112) $ $)) (-15 -1604 ((-112) $)) (-15 -1546 ((-112) $)) (-15 -4312 ((-112) $)) (-15 -1467 ((-112) $)) (-15 -3876 ((-112) $)) (-15 -2311 ((-112) $)) (-15 -2381 ((-112) $)) (-15 -1670 ((-112) $)) (-15 -3883 ((-650 $) $)) (-15 -3391 (|t#1| $)) (-15 -1405 (|t#2| $)) (-15 -1434 (|t#3| $)) (-15 -2560 (|t#4| $)) (-15 -2627 (|t#5| $)) (-15 -3397 ($ $)) (-15 -3409 ($ $)) (-15 -2431 ((-570) $)) (-15 -1872 ($ $ (-570))) (-15 -1872 ($ $ (-650 (-570)))))) +(((-102) . T) ((-619 (-868)) . T) ((-624 (-650 $)) . T) ((-624 |#1|) . T) ((-624 |#2|) . T) ((-624 |#3|) . T) ((-624 |#4|) . T) ((-624 |#5|) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-2311 (((-112) $) NIL)) (-1405 (((-1186) $) NIL)) (-3876 (((-112) $) NIL)) (-3391 (((-1168) $) NIL)) (-4312 (((-112) $) NIL)) (-1604 (((-112) $) NIL)) (-1467 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-2381 (((-112) $) NIL)) (-1434 (((-570) $) NIL)) (-3551 (((-1129) $) NIL)) (-1670 (((-112) $) NIL)) (-2560 (((-227) $) NIL)) (-2627 (((-868) $) NIL)) (-4313 (((-112) $ $) NIL)) (-1872 (($ $ (-570)) NIL) (($ $ (-650 (-570))) NIL)) (-3883 (((-650 $) $) NIL)) (-1411 (($ (-1168)) NIL) (($ (-1186)) NIL) (($ (-570)) NIL) (($ (-227)) NIL) (($ (-868)) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL)) (-3409 (($ $) NIL)) (-3397 (($ $) NIL)) (-1319 (((-112) $ $) NIL)) (-1546 (((-112) $) NIL)) (-2923 (((-112) $ $) NIL)) (-2431 (((-570) $) NIL))) +(((-1113) (-1112 (-1168) (-1186) (-570) (-227) (-868))) (T -1113)) +NIL +(-1112 (-1168) (-1186) (-570) (-227) (-868)) +((-2419 (((-112) $ $) NIL)) (-2311 (((-112) $) 45)) (-1405 ((|#2| $) 48)) (-3876 (((-112) $) 20)) (-3391 ((|#1| $) 21)) (-4312 (((-112) $) 42)) (-1604 (((-112) $) 14)) (-1467 (((-112) $) 44)) (-4122 (((-1168) $) NIL)) (-2381 (((-112) $) 46)) (-1434 ((|#3| $) 50)) (-3551 (((-1129) $) NIL)) (-1670 (((-112) $) 47)) (-2560 ((|#4| $) 49)) (-2627 ((|#5| $) 51)) (-4313 (((-112) $ $) 41)) (-1872 (($ $ (-570)) 62) (($ $ (-650 (-570))) 64)) (-3883 (((-650 $) $) 27)) (-1411 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-650 $)) 52)) (-3798 (((-868) $) 28)) (-3409 (($ $) 26)) (-3397 (($ $) 58)) (-1319 (((-112) $ $) NIL)) (-1546 (((-112) $) 23)) (-2923 (((-112) $ $) 40)) (-2431 (((-570) $) 60))) +(((-1114 |#1| |#2| |#3| |#4| |#5|) (-1112 |#1| |#2| |#3| |#4| |#5|) (-1109) (-1109) (-1109) (-1109) (-1109)) (T -1114)) +NIL +(-1112 |#1| |#2| |#3| |#4| |#5|) +((-3363 (((-1281) $) 22)) (-1706 (($ (-1186) (-440) |#2|) 11)) (-3798 (((-868) $) 16))) +(((-1115 |#1| |#2|) (-13 (-401) (-10 -8 (-15 -1706 ($ (-1186) (-440) |#2|)))) (-1109) (-436 |#1|)) (T -1115)) +((-1706 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *3 (-440)) (-4 *5 (-1109)) (-5 *1 (-1115 *5 *4)) (-4 *4 (-436 *5))))) +(-13 (-401) (-10 -8 (-15 -1706 ($ (-1186) (-440) |#2|)))) +((-3138 (((-112) |#5| |#5|) 44)) (-3335 (((-112) |#5| |#5|) 59)) (-3890 (((-112) |#5| (-650 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-1680 (((-112) (-650 |#4|) (-650 |#4|)) 65)) (-2856 (((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) 70)) (-2264 (((-1281)) 32)) (-2246 (((-1281) (-1168) (-1168) (-1168)) 28)) (-3051 (((-650 |#5|) (-650 |#5|)) 101)) (-2157 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) 93)) (-1768 (((-650 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112)) 123)) (-3012 (((-112) |#5| |#5|) 53)) (-2845 (((-3 (-112) "failed") |#5| |#5|) 78)) (-2391 (((-112) (-650 |#4|) (-650 |#4|)) 64)) (-4350 (((-112) (-650 |#4|) (-650 |#4|)) 66)) (-4181 (((-112) (-650 |#4|) (-650 |#4|)) 67)) (-1610 (((-3 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3934 (((-650 |#5|) (-650 |#5|)) 49))) +(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2246 ((-1281) (-1168) (-1168) (-1168))) (-15 -2264 ((-1281))) (-15 -3138 ((-112) |#5| |#5|)) (-15 -3934 ((-650 |#5|) (-650 |#5|))) (-15 -3012 ((-112) |#5| |#5|)) (-15 -3335 ((-112) |#5| |#5|)) (-15 -1680 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2391 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4350 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4181 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2845 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3890 ((-112) |#5| |#5|)) (-15 -3890 ((-112) |#5| (-650 |#5|))) (-15 -3051 ((-650 |#5|) (-650 |#5|))) (-15 -2856 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2157 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-15 -1768 ((-650 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -1610 ((-3 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1116)) +((-1610 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| -4313 (-650 *9)) (|:| -3665 *4) (|:| |ineq| (-650 *9)))) (-5 *1 (-1116 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9)) (-4 *4 (-1080 *6 *7 *8 *9)))) (-1768 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| -4313 (-650 *9)) (|:| -3665 *10) (|:| |ineq| (-650 *9))))) (-5 *1 (-1116 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -3665 *7)))) (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))) (-2856 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)))) (-3051 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1116 *5 *6 *7 *8 *3)))) (-3890 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-2845 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-4181 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-4350 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-2391 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3335 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3012 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-3934 (*1 *2 *2) (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-1116 *3 *4 *5 *6 *7)))) (-3138 (*1 *2 *3 *3) (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) (-2264 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-2246 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(-10 -7 (-15 -2246 ((-1281) (-1168) (-1168) (-1168))) (-15 -2264 ((-1281))) (-15 -3138 ((-112) |#5| |#5|)) (-15 -3934 ((-650 |#5|) (-650 |#5|))) (-15 -3012 ((-112) |#5| |#5|)) (-15 -3335 ((-112) |#5| |#5|)) (-15 -1680 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2391 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4350 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -4181 ((-112) (-650 |#4|) (-650 |#4|))) (-15 -2845 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3890 ((-112) |#5| |#5|)) (-15 -3890 ((-112) |#5| (-650 |#5|))) (-15 -3051 ((-650 |#5|) (-650 |#5|))) (-15 -2856 ((-112) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2157 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-15 -1768 ((-650 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|)))) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -1610 ((-3 (-2 (|:| -4313 (-650 |#4|)) (|:| -3665 |#5|) (|:| |ineq| (-650 |#4|))) "failed") (-650 |#4|) |#5| (-650 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-2712 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|) 108)) (-4109 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#4| |#4| |#5|) 80)) (-3694 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|) 102)) (-1946 (((-650 |#5|) |#4| |#5|) 124)) (-2552 (((-650 |#5|) |#4| |#5|) 131)) (-4295 (((-650 |#5|) |#4| |#5|) 132)) (-2968 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|) 109)) (-1380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|) 130)) (-1481 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4013 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#3| (-112)) 92) (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2091 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|) 87)) (-2732 (((-1281)) 36)) (-3735 (((-1281)) 25)) (-1583 (((-1281) (-1168) (-1168) (-1168)) 32)) (-2822 (((-1281) (-1168) (-1168) (-1168)) 21))) +(((-1117 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2822 ((-1281) (-1168) (-1168) (-1168))) (-15 -3735 ((-1281))) (-15 -1583 ((-1281) (-1168) (-1168) (-1168))) (-15 -2732 ((-1281))) (-15 -4109 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -4013 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4013 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#3| (-112))) (-15 -2091 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3694 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -1481 ((-112) |#4| |#5|)) (-15 -2968 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -1946 ((-650 |#5|) |#4| |#5|)) (-15 -1380 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -2552 ((-650 |#5|) |#4| |#5|)) (-15 -1481 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -4295 ((-650 |#5|) |#4| |#5|)) (-15 -2712 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1117)) +((-2712 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-4295 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1481 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2552 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1380 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1946 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2968 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-1481 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3694 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2091 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856)) (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -3665 *9)))) (-5 *1 (-1117 *6 *7 *4 *8 *9)))) (-4013 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1117 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-4109 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))) (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-2732 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-1583 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) (-3735 (*1 *2) (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) (-2822 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(-10 -7 (-15 -2822 ((-1281) (-1168) (-1168) (-1168))) (-15 -3735 ((-1281))) (-15 -1583 ((-1281) (-1168) (-1168) (-1168))) (-15 -2732 ((-1281))) (-15 -4109 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -4013 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4013 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) |#3| (-112))) (-15 -2091 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -3694 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#4| |#5|)) (-15 -1481 ((-112) |#4| |#5|)) (-15 -2968 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -1946 ((-650 |#5|) |#4| |#5|)) (-15 -1380 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -2552 ((-650 |#5|) |#4| |#5|)) (-15 -1481 ((-650 (-2 (|:| |val| (-112)) (|:| -3665 |#5|))) |#4| |#5|)) (-15 -4295 ((-650 |#5|) |#4| |#5|)) (-15 -2712 ((-650 (-2 (|:| |val| |#4|) (|:| -3665 |#5|))) |#4| |#5|))) +((-2419 (((-112) $ $) 7)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) 86)) (-2242 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1709 (((-650 |#3|) $) 34)) (-4006 (((-112) $) 27)) (-1797 (((-112) $) 18 (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) 102) (((-112) $) 98)) (-2530 ((|#4| |#4| $) 93)) (-3696 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| $) 127)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) 28)) (-3636 (((-112) $ (-777)) 45)) (-1418 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 80)) (-3734 (($) 46 T CONST)) (-2262 (((-112) $) 23 (|has| |#1| (-562)))) (-2082 (((-112) $ $) 25 (|has| |#1| (-562)))) (-4427 (((-112) $ $) 24 (|has| |#1| (-562)))) (-2418 (((-112) $) 26 (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3572 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 37)) (-3152 (($ (-650 |#4|)) 36)) (-3527 (((-3 $ "failed") $) 83)) (-3099 ((|#4| |#4| $) 90)) (-3552 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2295 ((|#4| |#4| $) 88)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) 106)) (-1413 (((-112) |#4| $) 137)) (-2992 (((-112) |#4| $) 134)) (-2176 (((-112) |#4| $) 138) (((-112) $) 135)) (-2885 (((-650 |#4|) $) 53 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) 105) (((-112) $) 104)) (-4211 ((|#3| $) 35)) (-3846 (((-112) $ (-777)) 44)) (-2282 (((-650 |#4|) $) 54 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 48)) (-3952 (((-650 |#3|) $) 33)) (-2875 (((-112) |#3| $) 32)) (-2063 (((-112) $ (-777)) 43)) (-4122 (((-1168) $) 10)) (-3383 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3064 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| |#4| $) 128)) (-1723 (((-3 |#4| "failed") $) 84)) (-1559 (((-650 $) |#4| $) 130)) (-3633 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2842 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-2745 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-2500 (((-650 |#4|) $) 108)) (-1560 (((-112) |#4| $) 100) (((-112) $) 96)) (-2458 ((|#4| |#4| $) 91)) (-4181 (((-112) $ $) 111)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) 101) (((-112) $) 97)) (-2962 ((|#4| |#4| $) 92)) (-3551 (((-1129) $) 11)) (-3515 (((-3 |#4| "failed") $) 85)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2730 (((-3 $ "failed") $ |#4|) 79)) (-3500 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-3116 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) 39)) (-4303 (((-112) $) 42)) (-4359 (($) 41)) (-3324 (((-777) $) 107)) (-3562 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4448)))) (-3964 (($ $) 40)) (-1411 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 61)) (-3677 (($ $ |#3|) 29)) (-3158 (($ $ |#3|) 31)) (-4381 (($ $) 89)) (-4074 (($ $ |#3|) 30)) (-3798 (((-868) $) 12) (((-650 |#4|) $) 38)) (-2136 (((-777) $) 77 (|has| |#3| (-373)))) (-1319 (((-112) $ $) 9)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-4296 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-1431 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) 82)) (-4428 (((-112) |#4| $) 136)) (-4059 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-1118 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1118)) +NIL +(-13 (-1080 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1219 |#1| |#2| |#3| |#4|) . T) ((-1226) . T)) +((-4353 (((-650 (-570)) (-570) (-570) (-570)) 39)) (-1406 (((-650 (-570)) (-570) (-570) (-570)) 29)) (-3386 (((-650 (-570)) (-570) (-570) (-570)) 34)) (-4166 (((-570) (-570) (-570)) 23)) (-1931 (((-1276 (-570)) (-650 (-570)) (-1276 (-570)) (-570)) 75) (((-1276 (-570)) (-1276 (-570)) (-1276 (-570)) (-570)) 70)) (-3146 (((-650 (-570)) (-650 (-570)) (-650 (-570)) (-112)) 52)) (-2047 (((-695 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570))) 74)) (-2827 (((-695 (-570)) (-650 (-570)) (-650 (-570))) 58)) (-3957 (((-650 (-695 (-570))) (-650 (-570))) 63)) (-1913 (((-650 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570))) 78)) (-3234 (((-695 (-570)) (-650 (-570)) (-650 (-570)) (-650 (-570))) 88))) +(((-1119) (-10 -7 (-15 -3234 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-650 (-570)))) (-15 -1913 ((-650 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -3957 ((-650 (-695 (-570))) (-650 (-570)))) (-15 -2827 ((-695 (-570)) (-650 (-570)) (-650 (-570)))) (-15 -2047 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -3146 ((-650 (-570)) (-650 (-570)) (-650 (-570)) (-112))) (-15 -1931 ((-1276 (-570)) (-1276 (-570)) (-1276 (-570)) (-570))) (-15 -1931 ((-1276 (-570)) (-650 (-570)) (-1276 (-570)) (-570))) (-15 -4166 ((-570) (-570) (-570))) (-15 -3386 ((-650 (-570)) (-570) (-570) (-570))) (-15 -1406 ((-650 (-570)) (-570) (-570) (-570))) (-15 -4353 ((-650 (-570)) (-570) (-570) (-570))))) (T -1119)) +((-4353 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))) (-1406 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))) (-3386 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570)))) (-4166 (*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1119)))) (-1931 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1276 (-570))) (-5 *3 (-650 (-570))) (-5 *4 (-570)) (-5 *1 (-1119)))) (-1931 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1276 (-570))) (-5 *3 (-570)) (-5 *1 (-1119)))) (-3146 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *3 (-112)) (-5 *1 (-1119)))) (-2047 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-695 (-570))) (-5 *3 (-650 (-570))) (-5 *1 (-1119)))) (-2827 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-1119)))) (-1913 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *3 (-695 (-570))) (-5 *1 (-1119)))) (-3234 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119))))) +(-10 -7 (-15 -3234 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-650 (-570)))) (-15 -1913 ((-650 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -3957 ((-650 (-695 (-570))) (-650 (-570)))) (-15 -2827 ((-695 (-570)) (-650 (-570)) (-650 (-570)))) (-15 -2047 ((-695 (-570)) (-650 (-570)) (-650 (-570)) (-695 (-570)))) (-15 -3146 ((-650 (-570)) (-650 (-570)) (-650 (-570)) (-112))) (-15 -1931 ((-1276 (-570)) (-1276 (-570)) (-1276 (-570)) (-570))) (-15 -1931 ((-1276 (-570)) (-650 (-570)) (-1276 (-570)) (-570))) (-15 -4166 ((-570) (-570) (-570))) (-15 -3386 ((-650 (-570)) (-570) (-570) (-570))) (-15 -1406 ((-650 (-570)) (-570) (-570) (-570))) (-15 -4353 ((-650 (-570)) (-570) (-570) (-570)))) +((** (($ $ (-928)) 10))) +(((-1120 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-928)))) (-1121)) (T -1120)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-928)))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6)) (** (($ $ (-928)) 14)) (* (($ $ $) 15))) +(((-1121) (-141)) (T -1121)) +((* (*1 *1 *1 *1) (-4 *1 (-1121))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-928))))) +(-13 (-1109) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-928))))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL (|has| |#3| (-1109)))) (-1359 (((-112) $) NIL (|has| |#3| (-132)))) (-3241 (($ (-928)) NIL (|has| |#3| (-1058)))) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-1647 (($ $ $) NIL (|has| |#3| (-799)))) (-2620 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3636 (((-112) $ (-777)) NIL)) (-3475 (((-777)) NIL (|has| |#3| (-373)))) (-2579 (((-570) $) NIL (|has| |#3| (-854)))) (-3945 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1109)))) (-3152 (((-570) $) NIL (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109)))) (((-413 (-570)) $) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) ((|#3| $) NIL (|has| |#3| (-1109)))) (-2004 (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#3| (-645 (-570))) (|has| |#3| (-1058)))) (((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 $) (-1276 $)) NIL (|has| |#3| (-1058))) (((-695 |#3|) (-695 $)) NIL (|has| |#3| (-1058)))) (-2229 (((-3 $ "failed") $) NIL (|has| |#3| (-732)))) (-3408 (($) NIL (|has| |#3| (-373)))) (-3849 ((|#3| $ (-570) |#3|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#3| $ (-570)) 12)) (-2135 (((-112) $) NIL (|has| |#3| (-854)))) (-2885 (((-650 |#3|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL (|has| |#3| (-732)))) (-3367 (((-112) $) NIL (|has| |#3| (-854)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2282 (((-650 |#3|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3837 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#3| |#3|) $) NIL)) (-2484 (((-928) $) NIL (|has| |#3| (-373)))) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#3| (-1109)))) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-2155 (($ (-928)) NIL (|has| |#3| (-373)))) (-3551 (((-1129) $) NIL (|has| |#3| (-1109)))) (-3515 ((|#3| $) NIL (|has| (-570) (-856)))) (-2973 (($ $ |#3|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#3|))) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-298 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109)))) (($ $ (-650 |#3|) (-650 |#3|)) NIL (-12 (|has| |#3| (-313 |#3|)) (|has| |#3| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-2880 (((-650 |#3|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#3| $ (-570) |#3|) NIL) ((|#3| $ (-570)) NIL)) (-2331 ((|#3| $ $) NIL (|has| |#3| (-1058)))) (-3850 (($ (-1276 |#3|)) NIL)) (-3374 (((-135)) NIL (|has| |#3| (-368)))) (-3519 (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058)))) (-3562 (((-777) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448))) (((-777) |#3| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#3| (-1109))))) (-3964 (($ $) NIL)) (-3798 (((-1276 |#3|) $) NIL) (($ (-570)) NIL (-2779 (-12 (|has| |#3| (-1047 (-570))) (|has| |#3| (-1109))) (|has| |#3| (-1058)))) (($ (-413 (-570))) NIL (-12 (|has| |#3| (-1047 (-413 (-570)))) (|has| |#3| (-1109)))) (($ |#3|) NIL (|has| |#3| (-1109))) (((-868) $) NIL (|has| |#3| (-619 (-868))))) (-2862 (((-777)) NIL (|has| |#3| (-1058)) CONST)) (-1319 (((-112) $ $) NIL (|has| |#3| (-1109)))) (-1431 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4448)))) (-2216 (($ $) NIL (|has| |#3| (-854)))) (-1809 (($) NIL (|has| |#3| (-132)) CONST)) (-1817 (($) NIL (|has| |#3| (-732)) CONST)) (-2835 (($ $) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-777)) NIL (-12 (|has| |#3| (-235)) (|has| |#3| (-1058)))) (($ $ (-1186)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#3| (-907 (-1186))) (|has| |#3| (-1058)))) (($ $ (-1 |#3| |#3|) (-777)) NIL (|has| |#3| (-1058))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1058)))) (-2981 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2959 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2923 (((-112) $ $) NIL (|has| |#3| (-1109)))) (-2969 (((-112) $ $) NIL (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-2948 (((-112) $ $) 24 (-2779 (|has| |#3| (-799)) (|has| |#3| (-854))))) (-3037 (($ $ |#3|) NIL (|has| |#3| (-368)))) (-3026 (($ $ $) NIL (|has| |#3| (-1058))) (($ $) NIL (|has| |#3| (-1058)))) (-3014 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-777)) NIL (|has| |#3| (-732))) (($ $ (-928)) NIL (|has| |#3| (-732)))) (* (($ (-570) $) NIL (|has| |#3| (-1058))) (($ $ $) NIL (|has| |#3| (-732))) (($ $ |#3|) NIL (|has| |#3| (-732))) (($ |#3| $) NIL (|has| |#3| (-732))) (($ (-777) $) NIL (|has| |#3| (-132))) (($ (-928) $) NIL (|has| |#3| (-25)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1122 |#1| |#2| |#3|) (-240 |#1| |#3|) (-777) (-777) (-799)) (T -1122)) +NIL +(-240 |#1| |#3|) +((-1790 (((-650 (-1249 |#2| |#1|)) (-1249 |#2| |#1|) (-1249 |#2| |#1|)) 50)) (-3948 (((-570) (-1249 |#2| |#1|)) 97 (|has| |#1| (-458)))) (-4376 (((-570) (-1249 |#2| |#1|)) 79)) (-2970 (((-650 (-1249 |#2| |#1|)) (-1249 |#2| |#1|) (-1249 |#2| |#1|)) 60)) (-1943 (((-570) (-1249 |#2| |#1|) (-1249 |#2| |#1|)) 96 (|has| |#1| (-458)))) (-2000 (((-650 |#1|) (-1249 |#2| |#1|) (-1249 |#2| |#1|)) 64)) (-3381 (((-570) (-1249 |#2| |#1|) (-1249 |#2| |#1|)) 78))) +(((-1123 |#1| |#2|) (-10 -7 (-15 -1790 ((-650 (-1249 |#2| |#1|)) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -2970 ((-650 (-1249 |#2| |#1|)) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -2000 ((-650 |#1|) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -3381 ((-570) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -4376 ((-570) (-1249 |#2| |#1|))) (IF (|has| |#1| (-458)) (PROGN (-15 -1943 ((-570) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -3948 ((-570) (-1249 |#2| |#1|)))) |%noBranch|)) (-826) (-1186)) (T -1123)) +((-3948 (*1 *2 *3) (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-1943 (*1 *2 *3 *3) (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-3381 (*1 *2 *3 *3) (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5)))) (-2000 (*1 *2 *3 *3) (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 *4)) (-5 *1 (-1123 *4 *5)))) (-2970 (*1 *2 *3 *3) (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1249 *5 *4))) (-5 *1 (-1123 *4 *5)) (-5 *3 (-1249 *5 *4)))) (-1790 (*1 *2 *3 *3) (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1249 *5 *4))) (-5 *1 (-1123 *4 *5)) (-5 *3 (-1249 *5 *4))))) +(-10 -7 (-15 -1790 ((-650 (-1249 |#2| |#1|)) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -2970 ((-650 (-1249 |#2| |#1|)) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -2000 ((-650 |#1|) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -3381 ((-570) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -4376 ((-570) (-1249 |#2| |#1|))) (IF (|has| |#1| (-458)) (PROGN (-15 -1943 ((-570) (-1249 |#2| |#1|) (-1249 |#2| |#1|))) (-15 -3948 ((-570) (-1249 |#2| |#1|)))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-2250 (($ (-512) (-1127)) 13)) (-4332 (((-1127) $) 19)) (-3574 (((-512) $) 16)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 26) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1124) (-13 (-1092) (-10 -8 (-15 -2250 ($ (-512) (-1127))) (-15 -3574 ((-512) $)) (-15 -4332 ((-1127) $))))) (T -1124)) +((-2250 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-1124)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1124)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1124))))) +(-13 (-1092) (-10 -8 (-15 -2250 ($ (-512) (-1127))) (-15 -3574 ((-512) $)) (-15 -4332 ((-1127) $)))) +((-2579 (((-3 (-570) "failed") |#2| (-1186) |#2| (-1168)) 19) (((-3 (-570) "failed") |#2| (-1186) (-849 |#2|)) 17) (((-3 (-570) "failed") |#2|) 60))) +(((-1125 |#1| |#2|) (-10 -7 (-15 -2579 ((-3 (-570) "failed") |#2|)) (-15 -2579 ((-3 (-570) "failed") |#2| (-1186) (-849 |#2|))) (-15 -2579 ((-3 (-570) "failed") |#2| (-1186) |#2| (-1168)))) (-13 (-562) (-1047 (-570)) (-645 (-570)) (-458)) (-13 (-27) (-1211) (-436 |#1|))) (T -1125)) +((-2579 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-1168)) (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) (-5 *1 (-1125 *6 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))))) (-2579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) (-5 *1 (-1125 *6 *3)))) (-2579 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4)))))) +(-10 -7 (-15 -2579 ((-3 (-570) "failed") |#2|)) (-15 -2579 ((-3 (-570) "failed") |#2| (-1186) (-849 |#2|))) (-15 -2579 ((-3 (-570) "failed") |#2| (-1186) |#2| (-1168)))) +((-2579 (((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)) (-1168)) 38) (((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-849 (-413 (-959 |#1|)))) 33) (((-3 (-570) "failed") (-413 (-959 |#1|))) 14))) +(((-1126 |#1|) (-10 -7 (-15 -2579 ((-3 (-570) "failed") (-413 (-959 |#1|)))) (-15 -2579 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-849 (-413 (-959 |#1|))))) (-15 -2579 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)) (-1168)))) (-458)) (T -1126)) +((-2579 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1186)) (-5 *5 (-1168)) (-4 *6 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *6)))) (-2579 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 (-413 (-959 *6)))) (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *6)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *4))))) +(-10 -7 (-15 -2579 ((-3 (-570) "failed") (-413 (-959 |#1|)))) (-15 -2579 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-849 (-413 (-959 |#1|))))) (-15 -2579 ((-3 (-570) "failed") (-413 (-959 |#1|)) (-1186) (-413 (-959 |#1|)) (-1168)))) +((-2419 (((-112) $ $) NIL)) (-3873 (((-1191) $) 12)) (-3818 (((-650 (-1191)) $) 14)) (-4332 (($ (-650 (-1191)) (-1191)) 10)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 29)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 17))) +(((-1127) (-13 (-1109) (-10 -8 (-15 -4332 ($ (-650 (-1191)) (-1191))) (-15 -3873 ((-1191) $)) (-15 -3818 ((-650 (-1191)) $))))) (T -1127)) +((-4332 (*1 *1 *2 *3) (-12 (-5 *2 (-650 (-1191))) (-5 *3 (-1191)) (-5 *1 (-1127)))) (-3873 (*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1127)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1127))))) +(-13 (-1109) (-10 -8 (-15 -4332 ($ (-650 (-1191)) (-1191))) (-15 -3873 ((-1191) $)) (-15 -3818 ((-650 (-1191)) $)))) +((-2057 (((-320 (-570)) (-48)) 12))) +(((-1128) (-10 -7 (-15 -2057 ((-320 (-570)) (-48))))) (T -1128)) +((-2057 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-320 (-570))) (-5 *1 (-1128))))) +(-10 -7 (-15 -2057 ((-320 (-570)) (-48)))) +((-2419 (((-112) $ $) NIL)) (-2439 (($ $) 44)) (-1359 (((-112) $) 71)) (-1786 (($ $ $) 53)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 99)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2744 (($ $ $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-4233 (($ $ $ $) 82)) (-3696 (($ $) NIL)) (-2555 (((-424 $) $) NIL)) (-4073 (((-112) $ $) NIL)) (-3475 (((-777)) 84)) (-2579 (((-570) $) NIL)) (-3086 (($ $ $) 79)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL)) (-3152 (((-570) $) NIL)) (-2372 (($ $ $) 65)) (-2004 (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 93) (((-695 (-570)) (-695 $)) 32)) (-2229 (((-3 $ "failed") $) NIL)) (-3369 (((-3 (-413 (-570)) "failed") $) NIL)) (-3108 (((-112) $) NIL)) (-3875 (((-413 (-570)) $) NIL)) (-3408 (($) 96) (($ $) 97)) (-2380 (($ $ $) 64)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL)) (-3701 (((-112) $) NIL)) (-1991 (($ $ $ $) NIL)) (-2378 (($ $ $) 94)) (-2135 (((-112) $) NIL)) (-2375 (($ $ $) NIL)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL)) (-1773 (($ $ $) 52)) (-2481 (((-112) $) 73)) (-2639 (((-112) $) 70)) (-1748 (($ $) 45)) (-3641 (((-3 $ "failed") $) NIL)) (-3367 (((-112) $) 83)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-2170 (($ $ $ $) 80)) (-3382 (($ $ $) 75) (($) 42 T CONST)) (-2876 (($ $ $) 74) (($) 41 T CONST)) (-2609 (($ $) NIL)) (-2484 (((-928) $) 89)) (-3847 (($ $) 78)) (-1841 (($ $ $) NIL) (($ (-650 $)) NIL)) (-4122 (((-1168) $) NIL)) (-2078 (($ $ $) NIL)) (-2310 (($) NIL T CONST)) (-2155 (($ (-928)) 88)) (-3595 (($ $) 58)) (-3551 (((-1129) $) 77)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL)) (-1869 (($ $ $) 68) (($ (-650 $)) NIL)) (-3067 (($ $) NIL)) (-3801 (((-424 $) $) NIL)) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL)) (-2410 (((-3 $ "failed") $ $) NIL)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL)) (-3699 (((-112) $) NIL)) (-3788 (((-777) $) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 67)) (-3519 (($ $ (-777)) NIL) (($ $) NIL)) (-2435 (($ $) 59)) (-3964 (($ $) NIL)) (-1411 (((-570) $) 17) (((-542) $) NIL) (((-899 (-570)) $) NIL) (((-384) $) NIL) (((-227) $) NIL)) (-3798 (((-868) $) 35) (($ (-570)) 95) (($ $) NIL) (($ (-570)) 95)) (-2862 (((-777)) NIL T CONST)) (-3767 (((-112) $ $) NIL)) (-3755 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-4364 (($) 40)) (-3258 (((-112) $ $) NIL)) (-1760 (($ $ $) 50)) (-4078 (($ $ $ $) 81)) (-2216 (($ $) 69)) (-4423 (($ $ $) 47)) (-1809 (($) 7 T CONST)) (-3508 (($ $ $) 51)) (-1817 (($) 39 T CONST)) (-1985 (((-1168) $) 26) (((-1168) $ (-112)) 27) (((-1281) (-828) $) 28) (((-1281) (-828) $ (-112)) 29)) (-3521 (($ $) 48)) (-2835 (($ $ (-777)) NIL) (($ $) NIL)) (-3494 (($ $ $) 49)) (-2981 (((-112) $ $) 57)) (-2959 (((-112) $ $) 54)) (-2923 (((-112) $ $) 43)) (-2969 (((-112) $ $) 56)) (-2948 (((-112) $ $) 10)) (-4407 (($ $ $) 46)) (-3026 (($ $) 16) (($ $ $) 61)) (-3014 (($ $ $) 60)) (** (($ $ (-928)) NIL) (($ $ (-777)) 63)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 38) (($ $ $) 37))) +(((-1129) (-13 (-551) (-850) (-113) (-667) (-834) (-10 -8 (-6 -4435) (-6 -4440) (-6 -4436) (-15 -1786 ($ $ $)) (-15 -3521 ($ $)) (-15 -3494 ($ $ $)) (-15 -3508 ($ $ $))))) (T -1129)) +((-1786 (*1 *1 *1 *1) (-5 *1 (-1129))) (-3521 (*1 *1 *1) (-5 *1 (-1129))) (-3494 (*1 *1 *1 *1) (-5 *1 (-1129))) (-3508 (*1 *1 *1 *1) (-5 *1 (-1129)))) +(-13 (-551) (-850) (-113) (-667) (-834) (-10 -8 (-6 -4435) (-6 -4440) (-6 -4436) (-15 -1786 ($ $ $)) (-15 -3521 ($ $)) (-15 -3494 ($ $ $)) (-15 -3508 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3310 ((|#1| $) 45)) (-3914 (((-112) $ (-776)) 8)) (-4427 (($) 7 T CONST)) (-4235 ((|#1| |#1| $) 47)) (-2412 ((|#1| $) 46)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1877 ((|#1| $) 40)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-1781 ((|#1| $) 42)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-2804 (((-776) $) 44)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) 43)) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1129 |#1|) (-140) (-1225)) (T -1129)) -((-4235 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225)))) (-2804 (*1 *2 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1225)) (-5 *2 (-776))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4447) (-15 -4235 (|t#1| |t#1| $)) (-15 -2412 (|t#1| $)) (-15 -3310 (|t#1| $)) (-15 -2804 ((-776) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-3140 ((|#3| $) 87)) (-4381 (((-3 (-569) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3150 (((-569) $) NIL) (((-412 (-569)) $) NIL) ((|#3| $) 47)) (-2957 (((-694 (-569)) (-694 $)) NIL) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL) (((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 $) (-1275 $)) 84) (((-694 |#3|) (-694 $)) 76)) (-3517 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185)) NIL) (($ $ (-776)) NIL) (($ $) NIL)) (-1928 ((|#3| $) 89)) (-1912 ((|#4| $) 43)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ |#3|) 25)) (** (($ $ (-927)) NIL) (($ $ (-776)) 24) (($ $ (-569)) 95))) -(((-1130 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -1928 (|#3| |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -1912 (|#4| |#1|)) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3796 ((-867) |#1|))) (-1131 |#2| |#3| |#4| |#5|) (-776) (-1057) (-239 |#2| |#3|) (-239 |#2| |#3|)) (T -1130)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-569))) (-15 -1928 (|#3| |#1|)) (-15 -3140 (|#3| |#1|)) (-15 -1912 (|#4| |#1|)) (-15 -2957 ((-694 |#3|) (-694 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 |#3|)) (|:| |vec| (-1275 |#3|))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 |#1|) (-1275 |#1|))) (-15 -2957 ((-694 (-569)) (-694 |#1|))) (-15 -3796 (|#1| |#3|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|) (-776))) (-15 -3517 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3140 ((|#2| $) 77)) (-1551 (((-112) $) 117)) (-2208 (((-3 $ "failed") $ $) 20)) (-3169 (((-112) $) 115)) (-3914 (((-112) $ (-776)) 107)) (-3419 (($ |#2|) 80)) (-4427 (($) 18 T CONST)) (-2439 (($ $) 134 (|has| |#2| (-310)))) (-4044 ((|#3| $ (-569)) 129)) (-4381 (((-3 (-569) "failed") $) 92 (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) 89 (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) 86)) (-3150 (((-569) $) 91 (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) 88 (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) 87)) (-2957 (((-694 (-569)) (-694 $)) 84 (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 83 (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 82) (((-694 |#2|) (-694 $)) 81)) (-3086 (((-3 $ "failed") $) 37)) (-3978 (((-776) $) 135 (|has| |#2| (-561)))) (-3776 ((|#2| $ (-569) (-569)) 127)) (-2882 (((-649 |#2|) $) 100 (|has| $ (-6 -4447)))) (-2349 (((-112) $) 35)) (-1539 (((-776) $) 136 (|has| |#2| (-561)))) (-2970 (((-649 |#4|) $) 137 (|has| |#2| (-561)))) (-3225 (((-776) $) 123)) (-3236 (((-776) $) 124)) (-2314 (((-112) $ (-776)) 108)) (-2874 ((|#2| $) 72 (|has| |#2| (-6 (-4449 "*"))))) (-4241 (((-569) $) 119)) (-1537 (((-569) $) 121)) (-2009 (((-649 |#2|) $) 99 (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-1378 (((-569) $) 120)) (-2742 (((-569) $) 122)) (-2430 (($ (-649 (-649 |#2|))) 114)) (-3834 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2884 (((-649 (-649 |#2|)) $) 125)) (-4254 (((-112) $ (-776)) 109)) (-3435 (((-1167) $) 10)) (-2725 (((-3 $ "failed") $) 71 (|has| |#2| (-367)))) (-3547 (((-1128) $) 11)) (-2407 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-561)))) (-3208 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) 96 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 95 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 93 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 113)) (-3162 (((-112) $) 110)) (-3635 (($) 111)) (-1869 ((|#2| $ (-569) (-569) |#2|) 128) ((|#2| $ (-569) (-569)) 126)) (-3517 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-776)) 55) (($ $ (-649 (-1185)) (-649 (-776))) 48 (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) 47 (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) 46 (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) 45 (|has| |#2| (-906 (-1185)))) (($ $ (-776)) 43 (|has| |#2| (-234))) (($ $) 41 (|has| |#2| (-234)))) (-1928 ((|#2| $) 76)) (-3687 (($ (-649 |#2|)) 79)) (-3387 (((-112) $) 116)) (-1912 ((|#3| $) 78)) (-3242 ((|#2| $) 73 (|has| |#2| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4447))) (((-776) |#2| $) 98 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 112)) (-3041 ((|#4| $ (-569)) 130)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 90 (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) 85)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1980 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4447)))) (-2768 (((-112) $) 118)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-776)) 53) (($ $ (-649 (-1185)) (-649 (-776))) 52 (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) 51 (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) 50 (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) 49 (|has| |#2| (-906 (-1185)))) (($ $ (-776)) 44 (|has| |#2| (-234))) (($ $) 42 (|has| |#2| (-234)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#2|) 133 (|has| |#2| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 70 (|has| |#2| (-367)))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2428 (((-776) $) 106 (|has| $ (-6 -4447))))) -(((-1131 |#1| |#2| |#3| |#4|) (-140) (-776) (-1057) (-239 |t#1| |t#2|) (-239 |t#1| |t#2|)) (T -1131)) -((-3419 (*1 *1 *2) (-12 (-4 *2 (-1057)) (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)))) (-3687 (*1 *1 *2) (-12 (-5 *2 (-649 *4)) (-4 *4 (-1057)) (-4 *1 (-1131 *3 *4 *5 *6)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)))) (-1912 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1057)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (-4 *2 (-1057)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1131 *3 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *2 (-239 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *2 (-239 *3 *4)) (-4 *5 (-239 *3 *4)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) (-2725 (*1 *1 *1) (|partial| -12 (-4 *1 (-1131 *2 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1131 *3 *4 *5 *6)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367))))) -(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1061 |t#1| |t#1| |t#2| |t#3| |t#4|) (-416 |t#2|) (-381 |t#2|) (-10 -8 (IF (|has| |t#2| (-173)) (-6 (-722 |t#2|)) |%noBranch|) (-15 -3419 ($ |t#2|)) (-15 -3687 ($ (-649 |t#2|))) (-15 -1912 (|t#3| $)) (-15 -3140 (|t#2| $)) (-15 -1928 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4449 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3242 (|t#2| $)) (-15 -2874 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-367)) (PROGN (-15 -2725 ((-3 $ "failed") $)) (-15 ** ($ $ (-569)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4449 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 #0=(-412 (-569))) |has| |#2| (-1046 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-232 |#2|) . T) ((-234) |has| |#2| (-234)) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-381 |#2|) . T) ((-416 |#2|) . T) ((-494 |#2|) . T) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-6 (-4449 "*")))) ((-644 (-569)) |has| |#2| (-644 (-569))) ((-644 |#2|) . T) ((-722 |#2|) -2776 (|has| |#2| (-173)) (|has| |#2| (-6 (-4449 "*")))) ((-731) . T) ((-906 (-1185)) |has| |#2| (-906 (-1185))) ((-1061 |#1| |#1| |#2| |#3| |#4|) . T) ((-1046 #0#) |has| |#2| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#2| (-1046 (-569))) ((-1046 |#2|) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1225) . T)) -((-1623 ((|#4| |#4|) 81)) (-3397 ((|#4| |#4|) 76)) (-3016 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|) 91)) (-3257 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1885 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1132 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#4| |#4|)) (-15 -1885 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1623 (|#4| |#4|)) (-15 -3257 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3016 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|))) (-310) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1132)) -((-3016 (*1 *2 *3 *4) (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) (-5 *1 (-1132 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(-10 -7 (-15 -3397 (|#4| |#4|)) (-15 -1885 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1623 (|#4| |#4|)) (-15 -3257 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3016 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2403 (-649 |#3|))) |#4| |#3|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 18)) (-1712 (((-649 |#2|) $) 174)) (-3767 (((-1181 $) $ |#2|) 60) (((-1181 |#1|) $) 49)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 116 (|has| |#1| (-561)))) (-4355 (($ $) 118 (|has| |#1| (-561)))) (-3039 (((-112) $) 120 (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 |#2|)) 213)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) 167) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 |#2| "failed") $) NIL)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) ((|#2| $) NIL)) (-3346 (($ $ $ |#2|) NIL (|has| |#1| (-173)))) (-1883 (($ $) 217)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 90)) (-2642 (($ $) NIL (|has| |#1| (-457))) (($ $ |#2|) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-536 |#2|) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#1| (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#1| (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-2349 (((-112) $) 20)) (-3366 (((-776) $) 30)) (-1700 (($ (-1181 |#1|) |#2|) 54) (($ (-1181 $) |#2|) 71)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) 38)) (-3923 (($ |#1| (-536 |#2|)) 78) (($ $ |#2| (-776)) 58) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ |#2|) NIL)) (-2272 (((-536 |#2|) $) 205) (((-776) $ |#2|) 206) (((-649 (-776)) $ (-649 |#2|)) 207)) (-2492 (($ (-1 (-536 |#2|) (-536 |#2|)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 128)) (-2306 (((-3 |#2| "failed") $) 177)) (-1849 (($ $) 216)) (-1857 ((|#1| $) 43)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| |#2|) (|:| -1993 (-776))) "failed") $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 39)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 148 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 153 (|has| |#1| (-457))) (($ $ $) 138 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#1| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-915)))) (-2407 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-561)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-649 |#2|) (-649 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-649 |#2|) (-649 $)) 194)) (-3059 (($ $ |#2|) NIL (|has| |#1| (-173)))) (-3517 (($ $ |#2|) 215) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4339 (((-536 |#2|) $) 201) (((-776) $ |#2|) 196) (((-649 (-776)) $ (-649 |#2|)) 199)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| |#1| (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| |#1| (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| |#1| (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#1| $) 134 (|has| |#1| (-457))) (($ $ |#2|) 137 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-3796 (((-867) $) 159) (($ (-569)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2512 (((-649 |#1|) $) 162)) (-4383 ((|#1| $ (-536 |#2|)) 80) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 87 T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) 123 (|has| |#1| (-561)))) (-1804 (($) 12 T CONST)) (-1815 (($) 14 T CONST)) (-2832 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2920 (((-112) $ $) 106)) (-3035 (($ $ |#1|) 132 (|has| |#1| (-367)))) (-3024 (($ $) 93) (($ $ $) 104)) (-3012 (($ $ $) 55)) (** (($ $ (-927)) 110) (($ $ (-776)) 109)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 96) (($ $ $) 72) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1133 |#1| |#2|) (-955 |#1| (-536 |#2|) |#2|) (-1057) (-855)) (T -1133)) -NIL -(-955 |#1| (-536 |#2|) |#2|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2771 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-4118 (($ $) 156 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3278 (((-958 |#1|) $ (-776)) NIL) (((-958 |#1|) $ (-776) (-776)) NIL)) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $ |#2|) NIL) (((-776) $ |#2| (-776)) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2198 (((-112) $) NIL)) (-3923 (($ $ (-649 |#2|) (-649 (-536 |#2|))) NIL) (($ $ |#2| (-536 |#2|)) NIL) (($ |#1| (-536 |#2|)) NIL) (($ $ |#2| (-776)) 63) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $ |#2|) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-1632 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-412 (-569)))))) (-3166 (($ $ (-776)) 16)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4389 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (($ $ |#2| $) 106) (($ $ (-649 |#2|) (-649 $)) 99) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3517 (($ $ |#2|) 109) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-4339 (((-536 |#2|) $) NIL)) (-1583 (((-1 (-1165 |#3|) |#3|) (-649 |#2|) (-649 (-1165 |#3|))) 87)) (-4128 (($ $) 158 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 18)) (-3796 (((-867) $) 199) (($ (-569)) NIL) (($ |#1|) 45 (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#2|) 70) (($ |#3|) 68)) (-4383 ((|#1| $ (-536 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL) ((|#3| $ (-776)) 43)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-1503 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 52 T CONST)) (-1815 (($) 62 T CONST)) (-2832 (($ $ |#2|) NIL) (($ $ (-649 |#2|)) NIL) (($ $ |#2| (-776)) NIL) (($ $ (-649 |#2|) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) 201 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 66)) (** (($ $ (-927)) NIL) (($ $ (-776)) 77) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 112 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 65) (($ $ (-412 (-569))) 117 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 115 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1134 |#1| |#2| |#3|) (-13 (-745 |#1| |#2|) (-10 -8 (-15 -4383 (|#3| $ (-776))) (-15 -3796 ($ |#2|)) (-15 -3796 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1583 ((-1 (-1165 |#3|) |#3|) (-649 |#2|) (-649 (-1165 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ |#2| |#1|)) (-15 -1632 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1057) (-855) (-955 |#1| (-536 |#2|) |#2|)) (T -1134)) -((-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5)) (-5 *1 (-1134 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-855)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *2 (-855)) (-5 *1 (-1134 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-3796 (*1 *1 *2) (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2)) (-4 *2 (-955 *3 (-536 *4) *4)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1165 *7))) (-4 *6 (-855)) (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1057)) (-5 *2 (-1 (-1165 *7) *7)) (-5 *1 (-1134 *5 *6 *7)))) (-3579 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-4 *2 (-855)) (-5 *1 (-1134 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) (-1632 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1134 *4 *3 *5))) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)) (-4 *3 (-855)) (-5 *1 (-1134 *4 *3 *5)) (-4 *5 (-955 *4 (-536 *3) *3))))) -(-13 (-745 |#1| |#2|) (-10 -8 (-15 -4383 (|#3| $ (-776))) (-15 -3796 ($ |#2|)) (-15 -3796 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1583 ((-1 (-1165 |#3|) |#3|) (-649 |#2|) (-649 (-1165 |#3|)))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ |#2| |#1|)) (-15 -1632 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87) (((-649 $) (-649 |#4|) (-112)) 112)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 127)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2648 (((-112) |#4| $) 137)) (-2438 (((-112) |#4| $) 134)) (-2404 (((-112) |#4| $) 138) (((-112) $) 135)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) 129)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 128)) (-1724 (((-3 |#4| "failed") $) 84)) (-2798 (((-649 $) |#4| $) 130)) (-2716 (((-3 (-112) (-649 $)) |#4| $) 133)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2101 (((-649 $) |#4| $) 126) (((-649 $) (-649 |#4|) $) 125) (((-649 $) (-649 |#4|) (-649 $)) 124) (((-649 $) |#4| (-649 $)) 123)) (-3446 (($ |#4| $) 118) (($ (-649 |#4|) $) 117)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78) (((-649 $) |#4| $) 116) (((-649 $) |#4| (-649 $)) 115) (((-649 $) (-649 |#4|) $) 114) (((-649 $) (-649 |#4|) (-649 $)) 113)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-2744 (((-649 $) |#4| $) 122) (((-649 $) |#4| (-649 $)) 121) (((-649 $) (-649 |#4|) $) 120) (((-649 $) (-649 |#4|) (-649 $)) 119)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4159 (((-112) |#4| $) 136)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-1135 |#1| |#2| |#3| |#4|) (-140) (-457) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1135)) -NIL -(-13 (-1117 |t#1| |t#2| |t#3| |t#4|) (-789 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-789 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1079 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1117 |#1| |#2| |#3| |#4|) . T) ((-1218 |#1| |#2| |#3| |#4|) . T) ((-1225) . T)) -((-3218 (((-649 |#2|) |#1|) 15)) (-1382 (((-649 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-649 |#2|) |#1|) 63)) (-4177 (((-649 |#2|) |#2| |#2| |#2|) 45) (((-649 |#2|) |#1|) 61)) (-1393 ((|#2| |#1|) 56)) (-3772 (((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3792 (((-649 |#2|) |#2| |#2|) 42) (((-649 |#2|) |#1|) 60)) (-2812 (((-649 |#2|) |#2| |#2| |#2| |#2|) 46) (((-649 |#2|) |#1|) 62)) (-3120 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3915 ((|#2| |#2| |#2| |#2|) 53)) (-2321 ((|#2| |#2| |#2|) 52)) (-3600 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -3218 ((-649 |#2|) |#1|)) (-15 -1393 (|#2| |#1|)) (-15 -3772 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3792 ((-649 |#2|) |#1|)) (-15 -4177 ((-649 |#2|) |#1|)) (-15 -2812 ((-649 |#2|) |#1|)) (-15 -1382 ((-649 |#2|) |#1|)) (-15 -3792 ((-649 |#2|) |#2| |#2|)) (-15 -4177 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -2812 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1382 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2321 (|#2| |#2| |#2|)) (-15 -3915 (|#2| |#2| |#2| |#2|)) (-15 -3600 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3120 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1251 |#2|) (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (T -1136)) -((-3120 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-3600 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-3915 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-2321 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-1382 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-2812 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-4177 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-3792 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3)))) (-1382 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-4177 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-3792 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-2 (|:| |solns| (-649 *5)) (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1136 *3 *5)) (-4 *3 (-1251 *5)))) (-1393 (*1 *2 *3) (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2)))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -3218 ((-649 |#2|) |#1|)) (-15 -1393 (|#2| |#1|)) (-15 -3772 ((-2 (|:| |solns| (-649 |#2|)) (|:| |maps| (-649 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3792 ((-649 |#2|) |#1|)) (-15 -4177 ((-649 |#2|) |#1|)) (-15 -2812 ((-649 |#2|) |#1|)) (-15 -1382 ((-649 |#2|) |#1|)) (-15 -3792 ((-649 |#2|) |#2| |#2|)) (-15 -4177 ((-649 |#2|) |#2| |#2| |#2|)) (-15 -2812 ((-649 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1382 ((-649 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2321 (|#2| |#2| |#2|)) (-15 -3915 (|#2| |#2| |#2| |#2|)) (-15 -3600 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3120 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1585 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|))))) 118) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185))) 117) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|)))) 115) (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 113) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|)))) 97) (((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1185)) 98) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|))) 92) (((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1185)) 82)) (-4353 (((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 111) (((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1185)) 54)) (-2619 (((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1185)) 122) (((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185)) 121))) -(((-1137 |#1|) (-10 -7 (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -4353 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -4353 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1185)))) (-13 (-310) (-147))) (T -1137)) -((-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5)))) (-5 *1 (-1137 *5)))) (-4353 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5)))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1137 *5))))) -(-10 -7 (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-412 (-958 |#1|)))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -1585 ((-649 (-297 (-319 |#1|))) (-297 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-412 (-958 |#1|))))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -1585 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -4353 ((-649 (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -4353 ((-649 (-649 (-319 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -2619 ((-1174 (-649 (-319 |#1|)) (-649 (-297 (-319 |#1|)))) (-412 (-958 |#1|)) (-1185)))) -((-4258 (((-412 (-1181 (-319 |#1|))) (-1275 (-319 |#1|)) (-412 (-1181 (-319 |#1|))) (-569)) 38)) (-1444 (((-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|)))) 49))) -(((-1138 |#1|) (-10 -7 (-15 -1444 ((-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))))) (-15 -4258 ((-412 (-1181 (-319 |#1|))) (-1275 (-319 |#1|)) (-412 (-1181 (-319 |#1|))) (-569)))) (-561)) (T -1138)) -((-4258 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-412 (-1181 (-319 *5)))) (-5 *3 (-1275 (-319 *5))) (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1138 *5)))) (-1444 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-412 (-1181 (-319 *3)))) (-4 *3 (-561)) (-5 *1 (-1138 *3))))) -(-10 -7 (-15 -1444 ((-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))) (-412 (-1181 (-319 |#1|))))) (-15 -4258 ((-412 (-1181 (-319 |#1|))) (-1275 (-319 |#1|)) (-412 (-1181 (-319 |#1|))) (-569)))) -((-3218 (((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1185))) 246) (((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1185)) 23) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1185)) 29) (((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|))) 28) (((-649 (-297 (-319 |#1|))) (-319 |#1|)) 24))) -(((-1139 |#1|) (-10 -7 (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1185))) (-15 -3218 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1185))))) (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (T -1139)) -((-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1185))) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1139 *5)) (-5 *3 (-649 (-297 (-319 *5)))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5)) (-5 *3 (-319 *5)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5)) (-5 *3 (-297 (-319 *5))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-297 (-319 *4))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4)) (-5 *3 (-319 *4))))) -(-10 -7 (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-297 (-319 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-319 |#1|))) (-319 |#1|) (-1185))) (-15 -3218 ((-649 (-649 (-297 (-319 |#1|)))) (-649 (-297 (-319 |#1|))) (-649 (-1185))))) -((-2373 ((|#2| |#2|) 30 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-2781 ((|#2| |#2|) 29 (|has| |#1| (-855))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1140 |#1| |#2|) (-10 -7 (-15 -2781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2373 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -2781 (|#2| |#2|)) (-15 -2373 (|#2| |#2|))) |%noBranch|)) (-1225) (-13 (-609 (-569) |#1|) (-10 -7 (-6 -4447) (-6 -4448)))) (T -1140)) -((-2373 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448)))))) (-2781 (*1 *2 *2) (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2)) (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448)))))) (-2373 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448)))))) (-2781 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2)) (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448))))))) -(-10 -7 (-15 -2781 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2373 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-855)) (PROGN (-15 -2781 (|#2| |#2|)) (-15 -2373 (|#2| |#2|))) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-3849 (((-1173 3 |#1|) $) 141)) (-3463 (((-112) $) 101)) (-3461 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 104) (($ (-649 (-949 |#1|))) 103) (((-649 (-949 |#1|)) $) 102)) (-3214 (((-112) $) 72)) (-3283 (($ $ (-949 |#1|)) 76) (($ $ (-649 |#1|)) 81) (($ $ (-776)) 83) (($ (-949 |#1|)) 77) (((-949 |#1|) $) 75)) (-4354 (((-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 139)) (-1391 (((-776) $) 53)) (-3045 (((-776) $) 52)) (-1889 (($ $ (-776) (-949 |#1|)) 67)) (-2876 (((-112) $) 111)) (-1770 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 118) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 120) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 115) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 127) (($ (-649 (-649 (-949 |#1|)))) 116) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 117) (((-649 (-649 (-949 |#1|))) $) 114)) (-4198 (($ (-649 $)) 56) (($ $ $) 57)) (-2476 (((-649 (-172)) $) 133)) (-3316 (((-649 (-949 |#1|)) $) 130)) (-4194 (((-649 (-649 (-172))) $) 132)) (-3053 (((-649 (-649 (-649 (-949 |#1|)))) $) NIL)) (-4156 (((-649 (-649 (-649 (-776)))) $) 131)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2064 (((-776) $ (-649 (-949 |#1|))) 65)) (-3723 (((-112) $) 84)) (-2207 (($ $ (-649 (-949 |#1|))) 86) (($ $ (-649 (-649 |#1|))) 92) (($ (-649 (-949 |#1|))) 87) (((-649 (-949 |#1|)) $) 85)) (-1832 (($) 48) (($ (-1173 3 |#1|)) 49)) (-3962 (($ $) 63)) (-3961 (((-649 $) $) 62)) (-1960 (($ (-649 $)) 59)) (-2680 (((-649 $) $) 61)) (-3796 (((-867) $) 146)) (-2085 (((-112) $) 94)) (-3878 (($ $ (-649 (-949 |#1|))) 96) (($ $ (-649 (-649 |#1|))) 99) (($ (-649 (-949 |#1|))) 97) (((-649 (-949 |#1|)) $) 95)) (-3982 (($ $) 140)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1141 |#1|) (-1142 |#1|) (-1057)) (T -1141)) -NIL -(-1142 |#1|) -((-2417 (((-112) $ $) 7)) (-3849 (((-1173 3 |#1|) $) 14)) (-3463 (((-112) $) 30)) (-3461 (($ $ (-649 (-949 |#1|))) 34) (($ $ (-649 (-649 |#1|))) 33) (($ (-649 (-949 |#1|))) 32) (((-649 (-949 |#1|)) $) 31)) (-3214 (((-112) $) 45)) (-3283 (($ $ (-949 |#1|)) 50) (($ $ (-649 |#1|)) 49) (($ $ (-776)) 48) (($ (-949 |#1|)) 47) (((-949 |#1|) $) 46)) (-4354 (((-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $) 16)) (-1391 (((-776) $) 59)) (-3045 (((-776) $) 60)) (-1889 (($ $ (-776) (-949 |#1|)) 51)) (-2876 (((-112) $) 22)) (-1770 (($ $ (-649 (-649 (-949 |#1|))) (-649 (-172)) (-172)) 29) (($ $ (-649 (-649 (-649 |#1|))) (-649 (-172)) (-172)) 28) (($ $ (-649 (-649 (-949 |#1|))) (-112) (-112)) 27) (($ $ (-649 (-649 (-649 |#1|))) (-112) (-112)) 26) (($ (-649 (-649 (-949 |#1|)))) 25) (($ (-649 (-649 (-949 |#1|))) (-112) (-112)) 24) (((-649 (-649 (-949 |#1|))) $) 23)) (-4198 (($ (-649 $)) 58) (($ $ $) 57)) (-2476 (((-649 (-172)) $) 17)) (-3316 (((-649 (-949 |#1|)) $) 21)) (-4194 (((-649 (-649 (-172))) $) 18)) (-3053 (((-649 (-649 (-649 (-949 |#1|)))) $) 19)) (-4156 (((-649 (-649 (-649 (-776)))) $) 20)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2064 (((-776) $ (-649 (-949 |#1|))) 52)) (-3723 (((-112) $) 40)) (-2207 (($ $ (-649 (-949 |#1|))) 44) (($ $ (-649 (-649 |#1|))) 43) (($ (-649 (-949 |#1|))) 42) (((-649 (-949 |#1|)) $) 41)) (-1832 (($) 62) (($ (-1173 3 |#1|)) 61)) (-3962 (($ $) 53)) (-3961 (((-649 $) $) 54)) (-1960 (($ (-649 $)) 56)) (-2680 (((-649 $) $) 55)) (-3796 (((-867) $) 12)) (-2085 (((-112) $) 35)) (-3878 (($ $ (-649 (-949 |#1|))) 39) (($ $ (-649 (-649 |#1|))) 38) (($ (-649 (-949 |#1|))) 37) (((-649 (-949 |#1|)) $) 36)) (-3982 (($ $) 15)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-1142 |#1|) (-140) (-1057)) (T -1142)) -((-3796 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-867)))) (-1832 (*1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-1832 (*1 *1 *2) (-12 (-5 *2 (-1173 3 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-1391 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-1960 (*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-2680 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)))) (-3961 (*1 *2 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-2064 (*1 *2 *1 *3) (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1142 *4)) (-4 *4 (-1057)) (-5 *2 (-776)))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3283 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-949 *3)))) (-3214 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-2207 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3878 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3878 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3461 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-1770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057)))) (-1770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172))) (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057)))) (-1770 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) (-1770 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112)) (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) (-1770 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1057)) (-4 *1 (-1142 *4)))) (-1770 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-949 *3)))))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-649 (-776))))))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-649 (-949 *3))))))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-172)))))) (-2476 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-172))))) (-4354 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776)))))) (-3982 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-1173 3 *3))))) -(-13 (-1108) (-10 -8 (-15 -1832 ($)) (-15 -1832 ($ (-1173 3 |t#1|))) (-15 -3045 ((-776) $)) (-15 -1391 ((-776) $)) (-15 -4198 ($ (-649 $))) (-15 -4198 ($ $ $)) (-15 -1960 ($ (-649 $))) (-15 -2680 ((-649 $) $)) (-15 -3961 ((-649 $) $)) (-15 -3962 ($ $)) (-15 -2064 ((-776) $ (-649 (-949 |t#1|)))) (-15 -1889 ($ $ (-776) (-949 |t#1|))) (-15 -3283 ($ $ (-949 |t#1|))) (-15 -3283 ($ $ (-649 |t#1|))) (-15 -3283 ($ $ (-776))) (-15 -3283 ($ (-949 |t#1|))) (-15 -3283 ((-949 |t#1|) $)) (-15 -3214 ((-112) $)) (-15 -2207 ($ $ (-649 (-949 |t#1|)))) (-15 -2207 ($ $ (-649 (-649 |t#1|)))) (-15 -2207 ($ (-649 (-949 |t#1|)))) (-15 -2207 ((-649 (-949 |t#1|)) $)) (-15 -3723 ((-112) $)) (-15 -3878 ($ $ (-649 (-949 |t#1|)))) (-15 -3878 ($ $ (-649 (-649 |t#1|)))) (-15 -3878 ($ (-649 (-949 |t#1|)))) (-15 -3878 ((-649 (-949 |t#1|)) $)) (-15 -2085 ((-112) $)) (-15 -3461 ($ $ (-649 (-949 |t#1|)))) (-15 -3461 ($ $ (-649 (-649 |t#1|)))) (-15 -3461 ($ (-649 (-949 |t#1|)))) (-15 -3461 ((-649 (-949 |t#1|)) $)) (-15 -3463 ((-112) $)) (-15 -1770 ($ $ (-649 (-649 (-949 |t#1|))) (-649 (-172)) (-172))) (-15 -1770 ($ $ (-649 (-649 (-649 |t#1|))) (-649 (-172)) (-172))) (-15 -1770 ($ $ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -1770 ($ $ (-649 (-649 (-649 |t#1|))) (-112) (-112))) (-15 -1770 ($ (-649 (-649 (-949 |t#1|))))) (-15 -1770 ($ (-649 (-649 (-949 |t#1|))) (-112) (-112))) (-15 -1770 ((-649 (-649 (-949 |t#1|))) $)) (-15 -2876 ((-112) $)) (-15 -3316 ((-649 (-949 |t#1|)) $)) (-15 -4156 ((-649 (-649 (-649 (-776)))) $)) (-15 -3053 ((-649 (-649 (-649 (-949 |t#1|)))) $)) (-15 -4194 ((-649 (-649 (-172))) $)) (-15 -2476 ((-649 (-172)) $)) (-15 -4354 ((-2 (|:| -4317 (-776)) (|:| |curves| (-776)) (|:| |polygons| (-776)) (|:| |constructs| (-776))) $)) (-15 -3982 ($ $)) (-15 -3849 ((-1173 3 |t#1|) $)) (-15 -3796 ((-867) $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 184) (($ (-1190)) NIL) (((-1190) $) 7)) (-1795 (((-112) $ (|[\|\|]| (-529))) 19) (((-112) $ (|[\|\|]| (-219))) 23) (((-112) $ (|[\|\|]| (-681))) 27) (((-112) $ (|[\|\|]| (-1285))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-611))) 39) (((-112) $ (|[\|\|]| (-133))) 43) (((-112) $ (|[\|\|]| (-1123))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-686))) 55) (((-112) $ (|[\|\|]| (-522))) 59) (((-112) $ (|[\|\|]| (-1074))) 63) (((-112) $ (|[\|\|]| (-1286))) 67) (((-112) $ (|[\|\|]| (-530))) 71) (((-112) $ (|[\|\|]| (-1159))) 75) (((-112) $ (|[\|\|]| (-154))) 79) (((-112) $ (|[\|\|]| (-676))) 83) (((-112) $ (|[\|\|]| (-314))) 87) (((-112) $ (|[\|\|]| (-1044))) 91) (((-112) $ (|[\|\|]| (-181))) 95) (((-112) $ (|[\|\|]| (-978))) 99) (((-112) $ (|[\|\|]| (-1081))) 103) (((-112) $ (|[\|\|]| (-1098))) 107) (((-112) $ (|[\|\|]| (-1104))) 111) (((-112) $ (|[\|\|]| (-631))) 115) (((-112) $ (|[\|\|]| (-1175))) 119) (((-112) $ (|[\|\|]| (-156))) 123) (((-112) $ (|[\|\|]| (-137))) 127) (((-112) $ (|[\|\|]| (-483))) 131) (((-112) $ (|[\|\|]| (-597))) 135) (((-112) $ (|[\|\|]| (-511))) 139) (((-112) $ (|[\|\|]| (-1167))) 143) (((-112) $ (|[\|\|]| (-569))) 147)) (-1520 (((-112) $ $) NIL)) (-3993 (((-529) $) 20) (((-219) $) 24) (((-681) $) 28) (((-1285) $) 32) (((-138) $) 36) (((-611) $) 40) (((-133) $) 44) (((-1123) $) 48) (((-96) $) 52) (((-686) $) 56) (((-522) $) 60) (((-1074) $) 64) (((-1286) $) 68) (((-530) $) 72) (((-1159) $) 76) (((-154) $) 80) (((-676) $) 84) (((-314) $) 88) (((-1044) $) 92) (((-181) $) 96) (((-978) $) 100) (((-1081) $) 104) (((-1098) $) 108) (((-1104) $) 112) (((-631) $) 116) (((-1175) $) 120) (((-156) $) 124) (((-137) $) 128) (((-483) $) 132) (((-597) $) 136) (((-511) $) 140) (((-1167) $) 144) (((-569) $) 148)) (-2920 (((-112) $ $) NIL))) -(((-1143) (-1145)) (T -1143)) -NIL -(-1145) -((-2045 (((-649 (-1190)) (-1167)) 9))) -(((-1144) (-10 -7 (-15 -2045 ((-649 (-1190)) (-1167))))) (T -1144)) -((-2045 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-1144))))) -(-10 -7 (-15 -2045 ((-649 (-1190)) (-1167)))) -((-2417 (((-112) $ $) 7)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-1190)) 17) (((-1190) $) 16)) (-1795 (((-112) $ (|[\|\|]| (-529))) 85) (((-112) $ (|[\|\|]| (-219))) 83) (((-112) $ (|[\|\|]| (-681))) 81) (((-112) $ (|[\|\|]| (-1285))) 79) (((-112) $ (|[\|\|]| (-138))) 77) (((-112) $ (|[\|\|]| (-611))) 75) (((-112) $ (|[\|\|]| (-133))) 73) (((-112) $ (|[\|\|]| (-1123))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-686))) 67) (((-112) $ (|[\|\|]| (-522))) 65) (((-112) $ (|[\|\|]| (-1074))) 63) (((-112) $ (|[\|\|]| (-1286))) 61) (((-112) $ (|[\|\|]| (-530))) 59) (((-112) $ (|[\|\|]| (-1159))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-676))) 53) (((-112) $ (|[\|\|]| (-314))) 51) (((-112) $ (|[\|\|]| (-1044))) 49) (((-112) $ (|[\|\|]| (-181))) 47) (((-112) $ (|[\|\|]| (-978))) 45) (((-112) $ (|[\|\|]| (-1081))) 43) (((-112) $ (|[\|\|]| (-1098))) 41) (((-112) $ (|[\|\|]| (-1104))) 39) (((-112) $ (|[\|\|]| (-631))) 37) (((-112) $ (|[\|\|]| (-1175))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-483))) 29) (((-112) $ (|[\|\|]| (-597))) 27) (((-112) $ (|[\|\|]| (-511))) 25) (((-112) $ (|[\|\|]| (-1167))) 23) (((-112) $ (|[\|\|]| (-569))) 21)) (-1520 (((-112) $ $) 9)) (-3993 (((-529) $) 84) (((-219) $) 82) (((-681) $) 80) (((-1285) $) 78) (((-138) $) 76) (((-611) $) 74) (((-133) $) 72) (((-1123) $) 70) (((-96) $) 68) (((-686) $) 66) (((-522) $) 64) (((-1074) $) 62) (((-1286) $) 60) (((-530) $) 58) (((-1159) $) 56) (((-154) $) 54) (((-676) $) 52) (((-314) $) 50) (((-1044) $) 48) (((-181) $) 46) (((-978) $) 44) (((-1081) $) 42) (((-1098) $) 40) (((-1104) $) 38) (((-631) $) 36) (((-1175) $) 34) (((-156) $) 32) (((-137) $) 30) (((-483) $) 28) (((-597) $) 26) (((-511) $) 24) (((-1167) $) 22) (((-569) $) 20)) (-2920 (((-112) $ $) 6))) -(((-1145) (-140)) (T -1145)) -((-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-529)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-219)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-681)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1285))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1285)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-138)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-611)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-133)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1123)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-96)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-686)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-522)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1074)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1286))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1286)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-530)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1159)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-154)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-676)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-314)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1044))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1044)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-181)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-978)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1081)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1098)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1104)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-631)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1175)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-156)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-137)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-483)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-597)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-511)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1167)))) (-1795 (*1 *2 *1 *3) (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-569))))) -(-13 (-1091) (-1270) (-10 -8 (-15 -1795 ((-112) $ (|[\|\|]| (-529)))) (-15 -3993 ((-529) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-219)))) (-15 -3993 ((-219) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-681)))) (-15 -3993 ((-681) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1285)))) (-15 -3993 ((-1285) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-138)))) (-15 -3993 ((-138) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-611)))) (-15 -3993 ((-611) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-133)))) (-15 -3993 ((-133) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1123)))) (-15 -3993 ((-1123) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-96)))) (-15 -3993 ((-96) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-686)))) (-15 -3993 ((-686) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-522)))) (-15 -3993 ((-522) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1074)))) (-15 -3993 ((-1074) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1286)))) (-15 -3993 ((-1286) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-530)))) (-15 -3993 ((-530) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1159)))) (-15 -3993 ((-1159) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-154)))) (-15 -3993 ((-154) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-676)))) (-15 -3993 ((-676) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-314)))) (-15 -3993 ((-314) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1044)))) (-15 -3993 ((-1044) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-181)))) (-15 -3993 ((-181) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-978)))) (-15 -3993 ((-978) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1081)))) (-15 -3993 ((-1081) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1098)))) (-15 -3993 ((-1098) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1104)))) (-15 -3993 ((-1104) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-631)))) (-15 -3993 ((-631) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1175)))) (-15 -3993 ((-1175) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-156)))) (-15 -3993 ((-156) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-137)))) (-15 -3993 ((-137) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-483)))) (-15 -3993 ((-483) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-597)))) (-15 -3993 ((-597) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -3993 ((-511) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))) (-15 -3993 ((-1167) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-569)))) (-15 -3993 ((-569) $)))) -(((-93) . T) ((-102) . T) ((-621 #0=(-1190)) . T) ((-618 (-867)) . T) ((-618 #0#) . T) ((-495 #0#) . T) ((-1108) . T) ((-1091) . T) ((-1270) . T)) -((-3589 (((-1280) (-649 (-867))) 22) (((-1280) (-867)) 21)) (-3731 (((-1280) (-649 (-867))) 20) (((-1280) (-867)) 19)) (-3362 (((-1280) (-649 (-867))) 18) (((-1280) (-867)) 10) (((-1280) (-1167) (-867)) 16))) -(((-1146) (-10 -7 (-15 -3362 ((-1280) (-1167) (-867))) (-15 -3362 ((-1280) (-867))) (-15 -3731 ((-1280) (-867))) (-15 -3589 ((-1280) (-867))) (-15 -3362 ((-1280) (-649 (-867)))) (-15 -3731 ((-1280) (-649 (-867)))) (-15 -3589 ((-1280) (-649 (-867)))))) (T -1146)) -((-3589 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3362 (*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) (-3362 (*1 *2 *3 *4) (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146))))) -(-10 -7 (-15 -3362 ((-1280) (-1167) (-867))) (-15 -3362 ((-1280) (-867))) (-15 -3731 ((-1280) (-867))) (-15 -3589 ((-1280) (-867))) (-15 -3362 ((-1280) (-649 (-867)))) (-15 -3731 ((-1280) (-649 (-867)))) (-15 -3589 ((-1280) (-649 (-867))))) -((-2533 (($ $ $) 10)) (-3977 (($ $) 9)) (-2090 (($ $ $) 13)) (-2730 (($ $ $) 15)) (-4164 (($ $ $) 12)) (-4099 (($ $ $) 14)) (-4273 (($ $) 17)) (-1407 (($ $) 16)) (-2271 (($ $) 6)) (-2392 (($ $ $) 11) (($ $) 7)) (-2165 (($ $ $) 8))) -(((-1147) (-140)) (T -1147)) -((-4273 (*1 *1 *1) (-4 *1 (-1147))) (-1407 (*1 *1 *1) (-4 *1 (-1147))) (-2730 (*1 *1 *1 *1) (-4 *1 (-1147))) (-4099 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2090 (*1 *1 *1 *1) (-4 *1 (-1147))) (-4164 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2392 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2533 (*1 *1 *1 *1) (-4 *1 (-1147))) (-3977 (*1 *1 *1) (-4 *1 (-1147))) (-2165 (*1 *1 *1 *1) (-4 *1 (-1147))) (-2392 (*1 *1 *1) (-4 *1 (-1147))) (-2271 (*1 *1 *1) (-4 *1 (-1147)))) -(-13 (-10 -8 (-15 -2271 ($ $)) (-15 -2392 ($ $)) (-15 -2165 ($ $ $)) (-15 -3977 ($ $)) (-15 -2533 ($ $ $)) (-15 -2392 ($ $ $)) (-15 -4164 ($ $ $)) (-15 -2090 ($ $ $)) (-15 -4099 ($ $ $)) (-15 -2730 ($ $ $)) (-15 -1407 ($ $)) (-15 -4273 ($ $)))) -((-2417 (((-112) $ $) 44)) (-2188 ((|#1| $) 17)) (-2703 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2529 (((-112) $) 19)) (-2264 (($ $ |#1|) 30)) (-4098 (($ $ (-112)) 32)) (-2394 (($ $) 33)) (-2562 (($ $ |#2|) 31)) (-3435 (((-1167) $) NIL)) (-2637 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3547 (((-1128) $) NIL)) (-3162 (((-112) $) 16)) (-3635 (($) 13)) (-3962 (($ $) 29)) (-3809 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) 23) (((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|)))) 26) (((-649 $) |#1| (-649 |#2|)) 28)) (-2385 ((|#2| $) 18)) (-3796 (((-867) $) 53)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 42))) -(((-1148 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3635 ($)) (-15 -3162 ((-112) $)) (-15 -2188 (|#1| $)) (-15 -2385 (|#2| $)) (-15 -2529 ((-112) $)) (-15 -3809 ($ |#1| |#2| (-112))) (-15 -3809 ($ |#1| |#2|)) (-15 -3809 ($ (-2 (|:| |val| |#1|) (|:| -3663 |#2|)))) (-15 -3809 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))))) (-15 -3809 ((-649 $) |#1| (-649 |#2|))) (-15 -3962 ($ $)) (-15 -2264 ($ $ |#1|)) (-15 -2562 ($ $ |#2|)) (-15 -4098 ($ $ (-112))) (-15 -2394 ($ $)) (-15 -2637 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2703 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1108) (-34)) (-13 (-1108) (-34))) (T -1148)) -((-3635 (*1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-2188 (*1 *2 *1) (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *2 *3)) (-4 *3 (-13 (-1108) (-34))))) (-2385 (*1 *2 *1) (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-13 (-1108) (-34))))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3663 *4))) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1148 *3 *4)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3663 *5)))) (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-649 (-1148 *4 *5))) (-5 *1 (-1148 *4 *5)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-649 (-1148 *3 *5))) (-5 *1 (-1148 *3 *5)) (-4 *3 (-13 (-1108) (-34))))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-2264 (*1 *1 *1 *2) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-2562 (*1 *1 *1 *2) (-12 (-5 *1 (-1148 *3 *2)) (-4 *3 (-13 (-1108) (-34))) (-4 *2 (-13 (-1108) (-34))))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-2394 (*1 *1 *1) (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-2637 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1148 *5 *6)))) (-2703 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34)))))) -(-13 (-1108) (-10 -8 (-15 -3635 ($)) (-15 -3162 ((-112) $)) (-15 -2188 (|#1| $)) (-15 -2385 (|#2| $)) (-15 -2529 ((-112) $)) (-15 -3809 ($ |#1| |#2| (-112))) (-15 -3809 ($ |#1| |#2|)) (-15 -3809 ($ (-2 (|:| |val| |#1|) (|:| -3663 |#2|)))) (-15 -3809 ((-649 $) (-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))))) (-15 -3809 ((-649 $) |#1| (-649 |#2|))) (-15 -3962 ($ $)) (-15 -2264 ($ $ |#1|)) (-15 -2562 ($ $ |#2|)) (-15 -4098 ($ $ (-112))) (-15 -2394 ($ $)) (-15 -2637 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2703 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2417 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-2188 (((-1148 |#1| |#2|) $) 27)) (-3862 (($ $) 91)) (-3566 (((-112) (-1148 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1916 (($ $ $ (-649 (-1148 |#1| |#2|))) 108) (($ $ $ (-649 (-1148 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3914 (((-112) $ (-776)) NIL)) (-2052 (((-1148 |#1| |#2|) $ (-1148 |#1| |#2|)) 46 (|has| $ (-6 -4448)))) (-3943 (((-1148 |#1| |#2|) $ "value" (-1148 |#1| |#2|)) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 44 (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-1713 (((-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) $) 95)) (-1794 (($ (-1148 |#1| |#2|) $) 42)) (-1698 (($ (-1148 |#1| |#2|) $) 34)) (-2882 (((-649 (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 54)) (-2254 (((-112) (-1148 |#1| |#2|) $) 97)) (-1534 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 (-1148 |#1| |#2|)) $) 58 (|has| $ (-6 -4447)))) (-2004 (((-112) (-1148 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-1148 |#1| |#2|) (-1108))))) (-3834 (($ (-1 (-1148 |#1| |#2|) (-1148 |#1| |#2|)) $) 50 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-1148 |#1| |#2|) (-1148 |#1| |#2|)) $) 49)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 (-1148 |#1| |#2|)) $) 56)) (-1887 (((-112) $) 45)) (-3435 (((-1167) $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-3547 (((-1128) $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-2397 (((-3 $ "failed") $) 89)) (-3208 (((-112) (-1 (-112) (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-1148 |#1| |#2|)))) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108)))) (($ $ (-297 (-1148 |#1| |#2|))) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108)))) (($ $ (-1148 |#1| |#2|) (-1148 |#1| |#2|)) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108)))) (($ $ (-649 (-1148 |#1| |#2|)) (-649 (-1148 |#1| |#2|))) NIL (-12 (|has| (-1148 |#1| |#2|) (-312 (-1148 |#1| |#2|))) (|has| (-1148 |#1| |#2|) (-1108))))) (-3790 (((-112) $ $) 53)) (-3162 (((-112) $) 24)) (-3635 (($) 26)) (-1869 (((-1148 |#1| |#2|) $ "value") NIL)) (-2602 (((-569) $ $) NIL)) (-3966 (((-112) $) 47)) (-3560 (((-776) (-1 (-112) (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447))) (((-776) (-1148 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-1148 |#1| |#2|) (-1108))))) (-3962 (($ $) 52)) (-3809 (($ (-1148 |#1| |#2|)) 10) (($ |#1| |#2| (-649 $)) 13) (($ |#1| |#2| (-649 (-1148 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-649 |#2|)) 18)) (-4138 (((-649 |#2|) $) 96)) (-3796 (((-867) $) 87 (|has| (-1148 |#1| |#2|) (-618 (-867))))) (-4001 (((-649 $) $) 31)) (-4280 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-1520 (((-112) $ $) NIL (|has| (-1148 |#1| |#2|) (-1108)))) (-1980 (((-112) (-1 (-112) (-1148 |#1| |#2|)) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 70 (|has| (-1148 |#1| |#2|) (-1108)))) (-2428 (((-776) $) 64 (|has| $ (-6 -4447))))) -(((-1149 |#1| |#2|) (-13 (-1018 (-1148 |#1| |#2|)) (-10 -8 (-6 -4448) (-6 -4447) (-15 -2397 ((-3 $ "failed") $)) (-15 -3862 ($ $)) (-15 -3809 ($ (-1148 |#1| |#2|))) (-15 -3809 ($ |#1| |#2| (-649 $))) (-15 -3809 ($ |#1| |#2| (-649 (-1148 |#1| |#2|)))) (-15 -3809 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4138 ((-649 |#2|) $)) (-15 -1713 ((-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) $)) (-15 -2254 ((-112) (-1148 |#1| |#2|) $)) (-15 -3566 ((-112) (-1148 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1698 ($ (-1148 |#1| |#2|) $)) (-15 -1794 ($ (-1148 |#1| |#2|) $)) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)))) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1108) (-34)) (-13 (-1108) (-34))) (T -1149)) -((-2397 (*1 *1 *1) (|partial| -12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3862 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2) (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1149 *2 *3))) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) (-3809 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-649 (-1148 *2 *3))) (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))) (-5 *1 (-1149 *2 *3)))) (-3809 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1108) (-34))) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))))) (-4138 (*1 *2 *1) (-12 (-5 *2 (-649 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))))) (-2254 (*1 *2 *3 *1) (-12 (-5 *3 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)))) (-3566 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1148 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *5 *6)))) (-1698 (*1 *1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-1794 (*1 *1 *2 *1) (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-1916 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-649 (-1148 *3 *4))) (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) (-1916 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-1148 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) (-5 *1 (-1149 *4 *5))))) -(-13 (-1018 (-1148 |#1| |#2|)) (-10 -8 (-6 -4448) (-6 -4447) (-15 -2397 ((-3 $ "failed") $)) (-15 -3862 ($ $)) (-15 -3809 ($ (-1148 |#1| |#2|))) (-15 -3809 ($ |#1| |#2| (-649 $))) (-15 -3809 ($ |#1| |#2| (-649 (-1148 |#1| |#2|)))) (-15 -3809 ($ |#1| |#2| |#1| (-649 |#2|))) (-15 -4138 ((-649 |#2|) $)) (-15 -1713 ((-649 (-2 (|:| |val| |#1|) (|:| -3663 |#2|))) $)) (-15 -2254 ((-112) (-1148 |#1| |#2|) $)) (-15 -3566 ((-112) (-1148 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1698 ($ (-1148 |#1| |#2|) $)) (-15 -1794 ($ (-1148 |#1| |#2|) $)) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)))) (-15 -1916 ($ $ $ (-649 (-1148 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2937 (($ $) NIL)) (-3140 ((|#2| $) NIL)) (-1551 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4330 (($ (-694 |#2|)) 56)) (-3169 (((-112) $) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-3419 (($ |#2|) 14)) (-4427 (($) NIL T CONST)) (-2439 (($ $) 69 (|has| |#2| (-310)))) (-4044 (((-241 |#1| |#2|) $ (-569)) 42)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 |#2| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) ((|#2| $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) 83)) (-3978 (((-776) $) 71 (|has| |#2| (-561)))) (-3776 ((|#2| $ (-569) (-569)) NIL)) (-2882 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2349 (((-112) $) NIL)) (-1539 (((-776) $) 73 (|has| |#2| (-561)))) (-2970 (((-649 (-241 |#1| |#2|)) $) 77 (|has| |#2| (-561)))) (-3225 (((-776) $) NIL)) (-4300 (($ |#2|) 25)) (-3236 (((-776) $) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-2874 ((|#2| $) 67 (|has| |#2| (-6 (-4449 "*"))))) (-4241 (((-569) $) NIL)) (-1537 (((-569) $) NIL)) (-2009 (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-1378 (((-569) $) NIL)) (-2742 (((-569) $) NIL)) (-2430 (($ (-649 (-649 |#2|))) 37)) (-3834 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2884 (((-649 (-649 |#2|)) $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-2725 (((-3 $ "failed") $) 80 (|has| |#2| (-367)))) (-3547 (((-1128) $) NIL)) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561)))) (-3208 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ (-569) (-569) |#2|) NIL) ((|#2| $ (-569) (-569)) NIL)) (-3517 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-1928 ((|#2| $) NIL)) (-3687 (($ (-649 |#2|)) 50)) (-3387 (((-112) $) NIL)) (-1912 (((-241 |#1| |#2|) $) NIL)) (-3242 ((|#2| $) 65 (|has| |#2| (-6 (-4449 "*"))))) (-3560 (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 89 (|has| |#2| (-619 (-541))))) (-3041 (((-241 |#1| |#2|) $ (-569)) 44)) (-3796 (((-867) $) 47) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#2| (-1046 (-412 (-569))))) (($ |#2|) NIL) (((-694 |#2|) $) 52)) (-2721 (((-776)) 23 T CONST)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2768 (((-112) $) NIL)) (-1804 (($) 16 T CONST)) (-1815 (($) 21 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-776)) NIL (|has| |#2| (-234))) (($ $) NIL (|has| |#2| (-234)))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) 63) (($ $ (-569)) 82 (|has| |#2| (-367)))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-241 |#1| |#2|) $ (-241 |#1| |#2|)) 59) (((-241 |#1| |#2|) (-241 |#1| |#2|) $) 61)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1150 |#1| |#2|) (-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4300 ($ |#2|)) (-15 -2937 ($ $)) (-15 -4330 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4449 "*"))) (-6 -4436) |%noBranch|) (IF (|has| |#2| (-6 (-4449 "*"))) (IF (|has| |#2| (-6 -4444)) (-6 -4444) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) (-776) (-1057)) (T -1150)) -((-4300 (*1 *1 *2) (-12 (-5 *1 (-1150 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1057)))) (-2937 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1057)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-694 *4)) (-4 *4 (-1057)) (-5 *1 (-1150 *3 *4)) (-14 *3 (-776))))) -(-13 (-1131 |#1| |#2| (-241 |#1| |#2|) (-241 |#1| |#2|)) (-618 (-694 |#2|)) (-10 -8 (-15 -4300 ($ |#2|)) (-15 -2937 ($ $)) (-15 -4330 ($ (-694 |#2|))) (IF (|has| |#2| (-6 (-4449 "*"))) (-6 -4436) |%noBranch|) (IF (|has| |#2| (-6 (-4449 "*"))) (IF (|has| |#2| (-6 -4444)) (-6 -4444) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-619 (-541))) (-6 (-619 (-541))) |%noBranch|))) -((-4209 (($ $) 19)) (-2455 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2528 (((-112) $ $) 24)) (-2268 (($ $) 17)) (-1869 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1242 (-569))) NIL) (($ $ $) 31)) (-3796 (($ (-144)) 29) (((-867) $) NIL))) -(((-1151 |#1|) (-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1869 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| (-141))) (-15 -2455 (|#1| |#1| (-144))) (-15 -3796 (|#1| (-144))) (-15 -2528 ((-112) |#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1869 ((-144) |#1| (-569))) (-15 -1869 ((-144) |#1| (-569) (-144)))) (-1152)) (T -1151)) -NIL -(-10 -8 (-15 -3796 ((-867) |#1|)) (-15 -1869 (|#1| |#1| |#1|)) (-15 -2455 (|#1| |#1| (-141))) (-15 -2455 (|#1| |#1| (-144))) (-15 -3796 (|#1| (-144))) (-15 -2528 ((-112) |#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -2268 (|#1| |#1|)) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -1869 ((-144) |#1| (-569))) (-15 -1869 ((-144) |#1| (-569) (-144)))) -((-2417 (((-112) $ $) 19 (|has| (-144) (-1108)))) (-1402 (($ $) 121)) (-4209 (($ $) 122)) (-2455 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) 119)) (-2486 (((-112) $ $ (-569)) 118)) (-2241 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-1637 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3903 (($ $ (-1242 (-569)) $) 115)) (-3550 (($ $) 79 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-144) $) 78 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) 52)) (-2528 (((-112) $ $) 120)) (-4036 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1108))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2882 (((-649 (-144)) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) 116)) (-4148 (((-776) $ $ (-144)) 117)) (-3834 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2588 (($ $) 123)) (-2268 (($ $) 124)) (-4254 (((-112) $ (-776)) 10)) (-1648 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3435 (((-1167) $) 22 (|has| (-144) (-1108)))) (-4298 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| (-144) (-1108)))) (-3513 (((-144) $) 43 (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1682 (($ $ (-144)) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1242 (-569))) 64) (($ $ $) 103)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4447))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) 71)) (-2443 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (($ (-144)) 112) (((-867) $) 18 (|has| (-144) (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| (-144) (-1108)))) (-1980 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2956 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2920 (((-112) $ $) 20 (|has| (-144) (-1108)))) (-2966 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2944 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1152) (-140)) (T -1152)) -((-2268 (*1 *1 *1) (-4 *1 (-1152))) (-2588 (*1 *1 *1) (-4 *1 (-1152))) (-4209 (*1 *1 *1) (-4 *1 (-1152))) (-1402 (*1 *1 *1) (-4 *1 (-1152))) (-2528 (*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112)))) (-2506 (*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112)))) (-2486 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-569)) (-5 *2 (-112)))) (-4148 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-776)))) (-4045 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3903 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1242 (-569))))) (-4036 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)))) (-4036 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)) (-5 *3 (-141)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1152)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1152)))) (-2241 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1152)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))) (-2455 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) (-1869 (*1 *1 *1 *1) (-4 *1 (-1152)))) -(-13 (-19 (-144)) (-10 -8 (-15 -2268 ($ $)) (-15 -2588 ($ $)) (-15 -4209 ($ $)) (-15 -1402 ($ $)) (-15 -2528 ((-112) $ $)) (-15 -2506 ((-112) $ $)) (-15 -2486 ((-112) $ $ (-569))) (-15 -4148 ((-776) $ $ (-144))) (-15 -4045 ((-112) $ $ (-144))) (-15 -3903 ($ $ (-1242 (-569)) $)) (-15 -4036 ((-569) $ $ (-569))) (-15 -4036 ((-569) (-141) $ (-569))) (-15 -3796 ($ (-144))) (-15 -2241 ((-649 $) $ (-144))) (-15 -2241 ((-649 $) $ (-141))) (-15 -2455 ($ $ (-144))) (-15 -2455 ($ $ (-141))) (-15 -1648 ($ $ (-144))) (-15 -1648 ($ $ (-141))) (-15 -1637 ($ $ (-144))) (-15 -1637 ($ $ (-141))) (-15 -1869 ($ $ $)))) -(((-34) . T) ((-102) -2776 (|has| (-144) (-1108)) (|has| (-144) (-855))) ((-618 (-867)) -2776 (|has| (-144) (-1108)) (|has| (-144) (-855)) (|has| (-144) (-618 (-867)))) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-656 #0#) . T) ((-19 #0#) . T) ((-855) |has| (-144) (-855)) ((-1108) -2776 (|has| (-144) (-1108)) (|has| (-144) (-855))) ((-1225) . T)) -((-2111 (((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776)) 112)) (-4083 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 61)) (-2458 (((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)) 97)) (-3232 (((-776) (-649 |#4|) (-649 |#5|)) 30)) (-2554 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776)) 63) (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112)) 65)) (-2316 (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112)) 85)) (-1410 (((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) 90)) (-3760 (((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|) 60)) (-1772 (((-776) (-649 |#4|) (-649 |#5|)) 21))) -(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|) (-1117 |#1| |#2| |#3| |#4|)) (T -1153)) -((-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1117 *4 *5 *6 *7)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167)) (-5 *1 (-1153 *4 *5 *6 *7 *8)))) (-2111 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-649 *11)) (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11)))))) (-5 *6 (-776)) (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11)))) (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9)) (-4 *11 (-1117 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-5 *1 (-1153 *7 *8 *9 *10 *11)))) (-2316 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-2316 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-2554 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))) (-2554 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3)))) (-2554 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *7 *8 *9 *3 *4)) (-4 *4 (-1117 *7 *8 *9 *3)))) (-4083 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))) (-4083 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *3 (-1073 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3)))) (-3760 (*1 *2 *3 *4) (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-649 *4)) (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3)))) (-3232 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) (-1772 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -1772 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3232 ((-776) (-649 |#4|) (-649 |#5|))) (-15 -3760 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -4083 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776) (-112))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5| (-776))) (-15 -2554 ((-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) |#4| |#5|)) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112))) (-15 -2316 ((-649 |#5|) (-649 |#4|) (-649 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2111 ((-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-649 |#4|) (-649 |#5|) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-2 (|:| |done| (-649 |#5|)) (|:| |todo| (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))))) (-776))) (-15 -1410 ((-1167) (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|)))) (-15 -2458 ((-1280) (-649 (-2 (|:| |val| (-649 |#4|)) (|:| -3663 |#5|))) (-776)))) -((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) 124) (((-649 $) (-649 |#4|) (-112)) 125) (((-649 $) (-649 |#4|) (-112) (-112)) 123) (((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-1830 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| $) 97)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 75)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) 29 (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 45)) (-2548 ((|#4| |#4| $) 78)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2648 (((-112) |#4| $) NIL)) (-2438 (((-112) |#4| $) NIL)) (-2404 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1661 (((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112)) 139)) (-2882 (((-649 |#4|) $) 18 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 38)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 19 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3834 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 23)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-4275 (((-3 |#4| (-649 $)) |#4| |#4| $) NIL)) (-1384 (((-649 (-2 (|:| |val| |#4|) (|:| -3663 $))) |#4| |#4| $) 117)) (-1724 (((-3 |#4| "failed") $) 42)) (-2798 (((-649 $) |#4| $) 102)) (-2716 (((-3 (-112) (-649 $)) |#4| $) NIL)) (-4422 (((-649 (-2 (|:| |val| (-112)) (|:| -3663 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2101 (((-649 $) |#4| $) 121) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 122) (((-649 $) |#4| (-649 $)) NIL)) (-1530 (((-649 $) (-649 |#4|) (-112) (-112) (-112)) 134)) (-3446 (($ |#4| $) 88) (($ (-649 |#4|) $) 89) (((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-1586 (((-649 |#4|) $) NIL)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) NIL)) (-2151 (((-112) $ $) NIL)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 40)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) 59)) (-3166 (($ $ |#4|) NIL) (((-649 $) |#4| $) 104) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) 99)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 17)) (-3635 (($) 14)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 22)) (-3381 (($ $ |#3|) 52)) (-2963 (($ $ |#3|) 54)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) 35) (((-649 |#4|) $) 46)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-2744 (((-649 $) |#4| $) 66) (((-649 $) |#4| (-649 $)) NIL) (((-649 $) (-649 |#4|) $) NIL) (((-649 $) (-649 |#4|) (-649 $)) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4159 (((-112) |#4| $) NIL)) (-4269 (((-112) |#3| $) 74)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1154 |#1| |#2| |#3| |#4|) (-13 (-1117 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) (-457) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -1154)) -((-3446 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *3))) (-5 *1 (-1154 *5 *6 *7 *3)) (-4 *3 (-1073 *5 *6 *7)))) (-1806 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) (-1806 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) (-1530 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) (-1661 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-649 *8)) (|:| |towers| (-649 (-1154 *5 *6 *7 *8))))) (-5 *1 (-1154 *5 *6 *7 *8)) (-5 *3 (-649 *8))))) -(-13 (-1117 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3446 ((-649 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112))) (-15 -1806 ((-649 $) (-649 |#4|) (-112) (-112) (-112) (-112))) (-15 -1530 ((-649 $) (-649 |#4|) (-112) (-112) (-112))) (-15 -1661 ((-2 (|:| |val| (-649 |#4|)) (|:| |towers| (-649 $))) (-649 |#4|) (-112) (-112))))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3310 ((|#1| $) 37)) (-2364 (($ (-649 |#1|)) 45)) (-3914 (((-112) $ (-776)) NIL)) (-4427 (($) NIL T CONST)) (-4235 ((|#1| |#1| $) 40)) (-2412 ((|#1| $) 35)) (-2882 (((-649 |#1|) $) 18 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 22)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1877 ((|#1| $) 38)) (-3894 (($ |#1| $) 41)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1781 ((|#1| $) 36)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 32)) (-3635 (($) 43)) (-2804 (((-776) $) 30)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 27)) (-3796 (((-867) $) 14 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3423 (($ (-649 |#1|)) NIL)) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 17 (|has| |#1| (-1108)))) (-2428 (((-776) $) 31 (|has| $ (-6 -4447))))) -(((-1155 |#1|) (-13 (-1129 |#1|) (-10 -8 (-15 -2364 ($ (-649 |#1|))))) (-1225)) (T -1155)) -((-2364 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1155 *3))))) -(-13 (-1129 |#1|) (-10 -8 (-15 -2364 ($ (-649 |#1|))))) -((-3943 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1242 (-569)) |#2|) 55) ((|#2| $ (-569) |#2|) 52)) (-2199 (((-112) $) 12)) (-3834 (($ (-1 |#2| |#2|) $) 50)) (-3513 ((|#2| $) NIL) (($ $ (-776)) 20)) (-1682 (($ $ |#2|) 51)) (-4038 (((-112) $) 11)) (-1869 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1242 (-569))) 38) ((|#2| $ (-569)) 29) ((|#2| $ (-569) |#2|) NIL)) (-2866 (($ $ $) 58) (($ $ |#2|) NIL)) (-2443 (($ $ $) 40) (($ |#2| $) NIL) (($ (-649 $)) 47) (($ $ |#2|) NIL))) -(((-1156 |#1| |#2|) (-10 -8 (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| "last")) (-15 -1869 (|#1| |#1| "rest")) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1869 (|#2| |#1| "value")) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|))) (-1157 |#2|) (-1225)) (T -1156)) -NIL -(-10 -8 (-15 -2199 ((-112) |#1|)) (-15 -4038 ((-112) |#1|)) (-15 -3943 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569) |#2|)) (-15 -1869 (|#2| |#1| (-569))) (-15 -1682 (|#1| |#1| |#2|)) (-15 -2443 (|#1| |#1| |#2|)) (-15 -2443 (|#1| (-649 |#1|))) (-15 -1869 (|#1| |#1| (-1242 (-569)))) (-15 -3943 (|#2| |#1| (-1242 (-569)) |#2|)) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -2866 (|#1| |#1| |#2|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| "last")) (-15 -1869 (|#1| |#1| "rest")) (-15 -3513 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "first")) (-15 -3513 (|#2| |#1|)) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1869 (|#2| |#1| "value")) (-15 -3834 (|#1| (-1 |#2| |#2|) |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2002 (((-1280) $ (-569) (-569)) 98 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 118 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 87 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4447)))) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-3550 (($ $) 100 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4447))) (($ |#1| $) 101 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3846 ((|#1| $ (-569) |#1|) 86 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 88)) (-2199 (((-112) $) 84)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) 109)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 96 (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 95 (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-4298 (($ $ $ (-569)) 117) (($ |#1| $ (-569)) 116)) (-1696 (((-649 (-569)) $) 93)) (-1414 (((-112) (-569) $) 92)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-1682 (($ $ |#1|) 97 (|has| $ (-6 -4448)))) (-4038 (((-112) $) 85)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 91)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1242 (-569))) 113) ((|#1| $ (-569)) 90) ((|#1| $ (-569) |#1|) 89)) (-2602 (((-569) $ $) 45)) (-4328 (($ $ (-1242 (-569))) 115) (($ $ (-569)) 114)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-1410 (((-541) $) 99 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 108)) (-2866 (($ $ $) 62 (|has| $ (-6 -4448))) (($ $ |#1|) 61 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 79) (($ |#1| $) 78) (($ (-649 $)) 111) (($ $ |#1|) 110)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1157 |#1|) (-140) (-1225)) (T -1157)) -((-4038 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))) -(-13 (-1263 |t#1|) (-656 |t#1|) (-10 -8 (-15 -4038 ((-112) $)) (-15 -2199 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T) ((-1263 |#1|) . T)) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1158 |#1| |#2| |#3|) (-1201 |#1| |#2|) (-1108) (-1108) |#2|) (T -1158)) -NIL -(-1201 |#1| |#2|) -((-2417 (((-112) $ $) NIL)) (-3666 (((-696 (-1143)) $) 27)) (-3761 (((-1143) $) 15)) (-2248 (((-1143) $) 17)) (-3435 (((-1167) $) NIL)) (-4141 (((-511) $) 13)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 37) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1159) (-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -2248 ((-1143) $)) (-15 -3666 ((-696 (-1143)) $)) (-15 -3761 ((-1143) $))))) (T -1159)) -((-4141 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1159)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-696 (-1143))) (-5 *1 (-1159)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159))))) -(-13 (-1091) (-10 -8 (-15 -4141 ((-511) $)) (-15 -2248 ((-1143) $)) (-15 -3666 ((-696 (-1143)) $)) (-15 -3761 ((-1143) $)))) -((-2417 (((-112) $ $) 7)) (-3885 (((-3 $ "failed") $) 14)) (-3435 (((-1167) $) 10)) (-2307 (($) 15 T CONST)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-2920 (((-112) $ $) 6))) -(((-1160) (-140)) (T -1160)) -((-2307 (*1 *1) (-4 *1 (-1160))) (-3885 (*1 *1 *1) (|partial| -4 *1 (-1160)))) -(-13 (-1108) (-10 -8 (-15 -2307 ($) -3709) (-15 -3885 ((-3 $ "failed") $)))) -(((-102) . T) ((-618 (-867)) . T) ((-1108) . T)) -((-3559 (((-1165 |#1|) (-1165 |#1|)) 17)) (-2695 (((-1165 |#1|) (-1165 |#1|)) 13)) (-2238 (((-1165 |#1|) (-1165 |#1|) (-569) (-569)) 20)) (-1729 (((-1165 |#1|) (-1165 |#1|)) 15))) -(((-1161 |#1|) (-10 -7 (-15 -2695 ((-1165 |#1|) (-1165 |#1|))) (-15 -1729 ((-1165 |#1|) (-1165 |#1|))) (-15 -3559 ((-1165 |#1|) (-1165 |#1|))) (-15 -2238 ((-1165 |#1|) (-1165 |#1|) (-569) (-569)))) (-13 (-561) (-147))) (T -1161)) -((-2238 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1161 *4)))) (-3559 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1161 *3)))) (-1729 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1161 *3)))) (-2695 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1161 *3))))) -(-10 -7 (-15 -2695 ((-1165 |#1|) (-1165 |#1|))) (-15 -1729 ((-1165 |#1|) (-1165 |#1|))) (-15 -3559 ((-1165 |#1|) (-1165 |#1|))) (-15 -2238 ((-1165 |#1|) (-1165 |#1|) (-569) (-569)))) -((-2443 (((-1165 |#1|) (-1165 (-1165 |#1|))) 15))) -(((-1162 |#1|) (-10 -7 (-15 -2443 ((-1165 |#1|) (-1165 (-1165 |#1|))))) (-1225)) (T -1162)) -((-2443 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1162 *4)) (-4 *4 (-1225))))) -(-10 -7 (-15 -2443 ((-1165 |#1|) (-1165 (-1165 |#1|))))) -((-1610 (((-1165 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)) 25)) (-3598 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)) 26)) (-1346 (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 16))) -(((-1163 |#1| |#2|) (-10 -7 (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1610 ((-1165 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|))) (-15 -3598 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)))) (-1225) (-1225)) (T -1163)) -((-3598 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-1163 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1165 *6)) (-4 *6 (-1225)) (-4 *3 (-1225)) (-5 *2 (-1165 *3)) (-5 *1 (-1163 *6 *3)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6))))) -(-10 -7 (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|))) (-15 -1610 ((-1165 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|))) (-15 -3598 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1165 |#1|)))) -((-1346 (((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-1165 |#2|)) 21))) -(((-1164 |#1| |#2| |#3|) (-10 -7 (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-1165 |#2|)))) (-1225) (-1225) (-1225)) (T -1164)) -((-1346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-1165 *7)) (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) (-5 *1 (-1164 *6 *7 *8))))) -(-10 -7 (-15 -1346 ((-1165 |#3|) (-1 |#3| |#1| |#2|) (-1165 |#1|) (-1165 |#2|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) NIL)) (-2563 ((|#1| $) NIL)) (-1568 (($ $) 67)) (-2002 (((-1280) $ (-569) (-569)) 99 (|has| $ (-6 -4448)))) (-2790 (($ $ (-569)) 129 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-2654 (((-867) $) 56 (|has| |#1| (-1108)))) (-4028 (((-112)) 55 (|has| |#1| (-1108)))) (-2052 ((|#1| $ |#1|) NIL (|has| $ (-6 -4448)))) (-2530 (($ $ $) 116 (|has| $ (-6 -4448))) (($ $ (-569) $) 142)) (-1344 ((|#1| $ |#1|) 126 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 121 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4448))) (($ $ "rest" $) 125 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 113 (|has| $ (-6 -4448))) ((|#1| $ (-569) |#1|) 77 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 80)) (-2550 ((|#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3115 (($ $) 14)) (-3525 (($ $) 42) (($ $ (-776)) 111)) (-1489 (((-112) (-649 |#1|) $) 135 (|has| |#1| (-1108)))) (-3239 (($ (-649 |#1|)) 131)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) 79)) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-2199 (((-112) $) NIL)) (-2882 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-1871 (((-1280) (-569) $) 141 (|has| |#1| (-1108)))) (-1465 (((-776) $) 138)) (-2280 (((-649 $) $) NIL)) (-1534 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-4254 (((-112) $ (-776)) NIL)) (-2275 (((-649 |#1|) $) NIL)) (-1887 (((-112) $) NIL)) (-1438 (($ $) 114)) (-2350 (((-112) $) 13)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1724 ((|#1| $) NIL) (($ $ (-776)) NIL)) (-4298 (($ $ $ (-569)) NIL) (($ |#1| $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) 96)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-1340 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2867 ((|#1| $) 10)) (-3513 ((|#1| $) 41) (($ $ (-776)) 65)) (-2799 (((-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))) (-776) $) 36)) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1392 (($ (-1 (-112) |#1|) $) 146)) (-1401 (($ (-1 (-112) |#1|) $) 147)) (-1682 (($ $ |#1|) 90 (|has| $ (-6 -4448)))) (-3166 (($ $ (-569)) 45)) (-4038 (((-112) $) 94)) (-1949 (((-112) $) 12)) (-3934 (((-112) $) 137)) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 30)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) 20)) (-3635 (($) 60)) (-1869 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1242 (-569))) NIL) ((|#1| $ (-569)) 75) ((|#1| $ (-569) |#1|) NIL)) (-2602 (((-569) $ $) 64)) (-4328 (($ $ (-1242 (-569))) NIL) (($ $ (-569)) NIL)) (-4316 (($ (-1 $)) 63)) (-3966 (((-112) $) 91)) (-1641 (($ $) 92)) (-4142 (($ $) 117 (|has| $ (-6 -4448)))) (-1490 (((-776) $) NIL)) (-4322 (($ $) NIL)) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 59)) (-1410 (((-541) $) NIL (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 73)) (-3748 (($ |#1| $) 115)) (-2866 (($ $ $) 119 (|has| $ (-6 -4448))) (($ $ |#1|) 120 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 101) (($ |#1| $) 61) (($ (-649 $)) 106) (($ $ |#1|) 100)) (-2007 (($ $) 66)) (-3796 (($ (-649 |#1|)) 130) (((-867) $) 57 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) NIL)) (-4280 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 133 (|has| |#1| (-1108)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1165 |#1|) (-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4448) (-15 -3239 ($ (-649 |#1|))) (IF (|has| |#1| (-1108)) (-15 -1489 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -2799 ((-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -4316 ($ (-1 $))) (-15 -3748 ($ |#1| $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -1871 ((-1280) (-569) $)) (-15 -2654 ((-867) $)) (-15 -4028 ((-112)))) |%noBranch|) (-15 -2530 ($ $ (-569) $)) (-15 -1340 ($ (-1 |#1|))) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)))) (-1225)) (T -1165)) -((-3239 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1489 (*1 *2 *3 *1) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-4 *4 (-1225)) (-5 *2 (-112)) (-5 *1 (-1165 *4)))) (-2799 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776)))) (-5 *1 (-1165 *4)) (-4 *4 (-1225)) (-5 *3 (-776)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-1 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1225)))) (-3748 (*1 *1 *2 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1225)))) (-1871 (*1 *2 *3 *1) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1165 *4)) (-4 *4 (-1108)) (-4 *4 (-1225)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1165 *3)) (-4 *3 (-1108)) (-4 *3 (-1225)))) (-4028 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1108)) (-4 *3 (-1225)))) (-2530 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1165 *3)) (-4 *3 (-1225)))) (-1340 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1340 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) (-1401 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3))))) -(-13 (-679 |#1|) (-621 (-649 |#1|)) (-10 -8 (-6 -4448) (-15 -3239 ($ (-649 |#1|))) (IF (|has| |#1| (-1108)) (-15 -1489 ((-112) (-649 |#1|) $)) |%noBranch|) (-15 -2799 ((-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776))) (-776) $)) (-15 -4316 ($ (-1 $))) (-15 -3748 ($ |#1| $)) (IF (|has| |#1| (-1108)) (PROGN (-15 -1871 ((-1280) (-569) $)) (-15 -2654 ((-867) $)) (-15 -4028 ((-112)))) |%noBranch|) (-15 -2530 ($ $ (-569) $)) (-15 -1340 ($ (-1 |#1|))) (-15 -1340 ($ (-1 |#1| |#1|) |#1|)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1401 ($ (-1 (-112) |#1|) $)))) -((-2417 (((-112) $ $) 19)) (-1402 (($ $) 121)) (-4209 (($ $) 122)) (-2455 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) 119)) (-2486 (((-112) $ $ (-569)) 118)) (-3390 (($ (-569)) 128)) (-2241 (((-649 $) $ (-144)) 111) (((-649 $) $ (-141)) 110)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| (-144) (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 (((-144) $ (-569) (-144)) 53 (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-1637 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3903 (($ $ (-1242 (-569)) $) 115)) (-3550 (($ $) 79 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ (-144) $) 78 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) 54 (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) 52)) (-2528 (((-112) $ $) 120)) (-4036 (((-569) (-1 (-112) (-144)) $) 98) (((-569) (-144) $) 97 (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) 96 (|has| (-144) (-1108))) (((-569) $ $ (-569)) 114) (((-569) (-141) $ (-569)) 113)) (-2882 (((-649 (-144)) $) 31 (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) 116)) (-4148 (((-776) $ $ (-144)) 117)) (-3834 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-2588 (($ $) 123)) (-2268 (($ $) 124)) (-4254 (((-112) $ (-776)) 10)) (-1648 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-3435 (((-1167) $) 22)) (-4298 (($ (-144) $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21)) (-3513 (((-144) $) 43 (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-1682 (($ $ (-144)) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) 27 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) 26 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) 24 (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 (((-144) $ (-569) (-144)) 51) (((-144) $ (-569)) 50) (($ $ (-1242 (-569))) 64) (($ $ $) 103)) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3560 (((-776) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4447))) (((-776) (-144) $) 29 (-12 (|has| (-144) (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) 71)) (-2443 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (($ (-144)) 112) (((-867) $) 18)) (-1520 (((-112) $ $) 23)) (-1980 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4447)))) (-3266 (((-1167) $) 132) (((-1167) $ (-112)) 131) (((-1280) (-827) $) 130) (((-1280) (-827) $ (-112)) 129)) (-2978 (((-112) $ $) 85 (|has| (-144) (-855)))) (-2956 (((-112) $ $) 84 (|has| (-144) (-855)))) (-2920 (((-112) $ $) 20)) (-2966 (((-112) $ $) 86 (|has| (-144) (-855)))) (-2944 (((-112) $ $) 83 (|has| (-144) (-855)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1166) (-140)) (T -1166)) -((-3390 (*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1166))))) -(-13 (-1152) (-1108) (-833) (-10 -8 (-15 -3390 ($ (-569))))) -(((-34) . T) ((-102) . T) ((-618 (-867)) . T) ((-151 #0=(-144)) . T) ((-619 (-541)) |has| (-144) (-619 (-541))) ((-289 #1=(-569) #0#) . T) ((-291 #1# #0#) . T) ((-312 #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-377 #0#) . T) ((-494 #0#) . T) ((-609 #1# #0#) . T) ((-519 #0# #0#) -12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))) ((-656 #0#) . T) ((-19 #0#) . T) ((-833) . T) ((-855) |has| (-144) (-855)) ((-1108) . T) ((-1152) . T) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-1402 (($ $) NIL)) (-4209 (($ $) NIL)) (-2455 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-2506 (((-112) $ $) NIL)) (-2486 (((-112) $ $ (-569)) NIL)) (-3390 (($ (-569)) 8)) (-2241 (((-649 $) $ (-144)) NIL) (((-649 $) $ (-141)) NIL)) (-1317 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-855)))) (-2951 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-144) (-855))))) (-3358 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4448))) (((-144) $ (-1242 (-569)) (-144)) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-1637 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3903 (($ $ (-1242 (-569)) $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-1698 (($ (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4447))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3846 (((-144) $ (-569) (-144)) NIL (|has| $ (-6 -4448)))) (-3776 (((-144) $ (-569)) NIL)) (-2528 (((-112) $ $) NIL)) (-4036 (((-569) (-1 (-112) (-144)) $) NIL) (((-569) (-144) $) NIL (|has| (-144) (-1108))) (((-569) (-144) $ (-569)) NIL (|has| (-144) (-1108))) (((-569) $ $ (-569)) NIL) (((-569) (-141) $ (-569)) NIL)) (-2882 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-4300 (($ (-776) (-144)) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| (-144) (-855)))) (-4198 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-855)))) (-2009 (((-649 (-144)) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-3256 (((-569) $) NIL (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| (-144) (-855)))) (-4045 (((-112) $ $ (-144)) NIL)) (-4148 (((-776) $ $ (-144)) NIL)) (-3834 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2588 (($ $) NIL)) (-2268 (($ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-1648 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3435 (((-1167) $) NIL)) (-4298 (($ (-144) $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-144) $) NIL (|has| (-569) (-855)))) (-1574 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1682 (($ $ (-144)) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-144)))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-297 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108)))) (($ $ (-649 (-144)) (-649 (-144))) NIL (-12 (|has| (-144) (-312 (-144))) (|has| (-144) (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-4199 (((-649 (-144)) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 (((-144) $ (-569) (-144)) NIL) (((-144) $ (-569)) NIL) (($ $ (-1242 (-569))) NIL) (($ $ $) NIL)) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3560 (((-776) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447))) (((-776) (-144) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-144) (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-144) (-619 (-541))))) (-3809 (($ (-649 (-144))) NIL)) (-2443 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (($ (-144)) NIL) (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-1980 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4447)))) (-3266 (((-1167) $) 19) (((-1167) $ (-112)) 21) (((-1280) (-827) $) 22) (((-1280) (-827) $ (-112)) 23)) (-2978 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2956 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2944 (((-112) $ $) NIL (|has| (-144) (-855)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1167) (-1166)) (T -1167)) -NIL -(-1166) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-2002 (((-1280) $ (-1167) (-1167)) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-1167) |#1|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#1| "failed") (-1167) $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#1| "failed") (-1167) $) NIL)) (-1698 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-1167) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-1167)) NIL)) (-2882 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-1167) $) NIL (|has| (-1167) (-855)))) (-2009 (((-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-1167) $) NIL (|has| (-1167) (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-2795 (((-649 (-1167)) $) NIL)) (-3804 (((-112) (-1167) $) NIL)) (-1877 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-1696 (((-649 (-1167)) $) NIL)) (-1414 (((-112) (-1167) $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-3513 ((|#1| $) NIL (|has| (-1167) (-855)))) (-1574 (((-3 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) "failed") (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL (-12 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-312 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-1167)) NIL) ((|#1| $ (-1167) |#1|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-618 (-867))) (|has| |#1| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 (-1167)) (|:| -2216 |#1|)) (-1108)) (|has| |#1| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1168 |#1|) (-13 (-1201 (-1167) |#1|) (-10 -7 (-6 -4447))) (-1108)) (T -1168)) -NIL -(-13 (-1201 (-1167) |#1|) (-10 -7 (-6 -4447))) -((-3490 (((-1165 |#1|) (-1165 |#1|)) 84)) (-3086 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 42)) (-3650 (((-1165 |#1|) (-412 (-569)) (-1165 |#1|)) 136 (|has| |#1| (-38 (-412 (-569)))))) (-4037 (((-1165 |#1|) |#1| (-1165 |#1|)) 142 (|has| |#1| (-367)))) (-2868 (((-1165 |#1|) (-1165 |#1|)) 99)) (-2692 (((-1165 (-569)) (-569)) 64)) (-3777 (((-1165 |#1|) (-1165 (-1165 |#1|))) 118 (|has| |#1| (-38 (-412 (-569)))))) (-1655 (((-1165 |#1|) (-569) (-569) (-1165 |#1|)) 104)) (-3348 (((-1165 |#1|) |#1| (-569)) 54)) (-4346 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 67)) (-4303 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 139 (|has| |#1| (-367)))) (-1824 (((-1165 |#1|) |#1| (-1 (-1165 |#1|))) 117 (|has| |#1| (-38 (-412 (-569)))))) (-4173 (((-1165 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1165 |#1|))) 140 (|has| |#1| (-367)))) (-1597 (((-1165 |#1|) (-1165 |#1|)) 98)) (-3374 (((-1165 |#1|) (-1165 |#1|)) 83)) (-2892 (((-1165 |#1|) (-569) (-569) (-1165 |#1|)) 105)) (-3579 (((-1165 |#1|) |#1| (-1165 |#1|)) 114 (|has| |#1| (-38 (-412 (-569)))))) (-2842 (((-1165 (-569)) (-569)) 63)) (-3805 (((-1165 |#1|) |#1|) 66)) (-2347 (((-1165 |#1|) (-1165 |#1|) (-569) (-569)) 101)) (-2623 (((-1165 |#1|) (-1 |#1| (-569)) (-1165 |#1|)) 73)) (-2407 (((-3 (-1165 |#1|) "failed") (-1165 |#1|) (-1165 |#1|)) 40)) (-4230 (((-1165 |#1|) (-1165 |#1|)) 100)) (-1725 (((-1165 |#1|) (-1165 |#1|) |#1|) 78)) (-4144 (((-1165 |#1|) (-1165 |#1|)) 69)) (-2383 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 79)) (-3796 (((-1165 |#1|) |#1|) 74)) (-4051 (((-1165 |#1|) (-1165 (-1165 |#1|))) 89)) (-3035 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 41)) (-3024 (((-1165 |#1|) (-1165 |#1|)) 21) (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 23)) (-3012 (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 17)) (* (((-1165 |#1|) (-1165 |#1|) |#1|) 29) (((-1165 |#1|) |#1| (-1165 |#1|)) 26) (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 27))) -(((-1169 |#1|) (-10 -7 (-15 -3012 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2407 ((-3 (-1165 |#1|) "failed") (-1165 |#1|) (-1165 |#1|))) (-15 -3035 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3086 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -3348 ((-1165 |#1|) |#1| (-569))) (-15 -2842 ((-1165 (-569)) (-569))) (-15 -2692 ((-1165 (-569)) (-569))) (-15 -3805 ((-1165 |#1|) |#1|)) (-15 -4346 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4144 ((-1165 |#1|) (-1165 |#1|))) (-15 -2623 ((-1165 |#1|) (-1 |#1| (-569)) (-1165 |#1|))) (-15 -3796 ((-1165 |#1|) |#1|)) (-15 -1725 ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2383 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3374 ((-1165 |#1|) (-1165 |#1|))) (-15 -3490 ((-1165 |#1|) (-1165 |#1|))) (-15 -4051 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -1597 ((-1165 |#1|) (-1165 |#1|))) (-15 -2868 ((-1165 |#1|) (-1165 |#1|))) (-15 -4230 ((-1165 |#1|) (-1165 |#1|))) (-15 -2347 ((-1165 |#1|) (-1165 |#1|) (-569) (-569))) (-15 -1655 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (-15 -2892 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 -1824 ((-1165 |#1|) |#1| (-1 (-1165 |#1|)))) (-15 -3777 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -3650 ((-1165 |#1|) (-412 (-569)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -4303 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4173 ((-1165 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1165 |#1|)))) (-15 -4037 ((-1165 |#1|) |#1| (-1165 |#1|)))) |%noBranch|)) (-1057)) (T -1169)) -((-4037 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1165 *4))) (-4 *4 (-367)) (-4 *4 (-1057)) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3650 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1057)) (-5 *3 (-412 (-569))) (-5 *1 (-1169 *4)))) (-3777 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1165 *3))) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)))) (-3579 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2892 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-1655 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-2347 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2868 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-1597 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)) (-4 *4 (-1057)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2383 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3796 (*1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) (-2623 (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1057)) (-5 *1 (-1169 *4)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-4346 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3805 (*1 *2 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) (-2692 (*1 *2 *3) (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057)) (-5 *3 (-569)))) (-2842 (*1 *2 *3) (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057)) (-5 *3 (-569)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) (-3086 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-2407 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))) -(-10 -7 (-15 -3012 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3024 ((-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 * ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 * ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2407 ((-3 (-1165 |#1|) "failed") (-1165 |#1|) (-1165 |#1|))) (-15 -3035 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3086 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -3348 ((-1165 |#1|) |#1| (-569))) (-15 -2842 ((-1165 (-569)) (-569))) (-15 -2692 ((-1165 (-569)) (-569))) (-15 -3805 ((-1165 |#1|) |#1|)) (-15 -4346 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4144 ((-1165 |#1|) (-1165 |#1|))) (-15 -2623 ((-1165 |#1|) (-1 |#1| (-569)) (-1165 |#1|))) (-15 -3796 ((-1165 |#1|) |#1|)) (-15 -1725 ((-1165 |#1|) (-1165 |#1|) |#1|)) (-15 -2383 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -3374 ((-1165 |#1|) (-1165 |#1|))) (-15 -3490 ((-1165 |#1|) (-1165 |#1|))) (-15 -4051 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -1597 ((-1165 |#1|) (-1165 |#1|))) (-15 -2868 ((-1165 |#1|) (-1165 |#1|))) (-15 -4230 ((-1165 |#1|) (-1165 |#1|))) (-15 -2347 ((-1165 |#1|) (-1165 |#1|) (-569) (-569))) (-15 -1655 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (-15 -2892 ((-1165 |#1|) (-569) (-569) (-1165 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ((-1165 |#1|) |#1| (-1165 |#1|))) (-15 -1824 ((-1165 |#1|) |#1| (-1 (-1165 |#1|)))) (-15 -3777 ((-1165 |#1|) (-1165 (-1165 |#1|)))) (-15 -3650 ((-1165 |#1|) (-412 (-569)) (-1165 |#1|)))) |%noBranch|) (IF (|has| |#1| (-367)) (PROGN (-15 -4303 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -4173 ((-1165 |#1|) (-1 |#1| (-569)) |#1| (-1 (-1165 |#1|)))) (-15 -4037 ((-1165 |#1|) |#1| (-1165 |#1|)))) |%noBranch|)) -((-2771 (((-1165 |#1|) (-1165 |#1|)) 60)) (-2626 (((-1165 |#1|) (-1165 |#1|)) 42)) (-2746 (((-1165 |#1|) (-1165 |#1|)) 56)) (-2601 (((-1165 |#1|) (-1165 |#1|)) 38)) (-4118 (((-1165 |#1|) (-1165 |#1|)) 63)) (-2647 (((-1165 |#1|) (-1165 |#1|)) 45)) (-2662 (((-1165 |#1|) (-1165 |#1|)) 34)) (-4389 (((-1165 |#1|) (-1165 |#1|)) 29)) (-4128 (((-1165 |#1|) (-1165 |#1|)) 64)) (-2661 (((-1165 |#1|) (-1165 |#1|)) 46)) (-2783 (((-1165 |#1|) (-1165 |#1|)) 61)) (-2635 (((-1165 |#1|) (-1165 |#1|)) 43)) (-2758 (((-1165 |#1|) (-1165 |#1|)) 58)) (-2614 (((-1165 |#1|) (-1165 |#1|)) 40)) (-4161 (((-1165 |#1|) (-1165 |#1|)) 68)) (-2701 (((-1165 |#1|) (-1165 |#1|)) 50)) (-4140 (((-1165 |#1|) (-1165 |#1|)) 66)) (-2675 (((-1165 |#1|) (-1165 |#1|)) 48)) (-4183 (((-1165 |#1|) (-1165 |#1|)) 71)) (-2723 (((-1165 |#1|) (-1165 |#1|)) 53)) (-1503 (((-1165 |#1|) (-1165 |#1|)) 72)) (-2734 (((-1165 |#1|) (-1165 |#1|)) 54)) (-4175 (((-1165 |#1|) (-1165 |#1|)) 70)) (-2712 (((-1165 |#1|) (-1165 |#1|)) 52)) (-4151 (((-1165 |#1|) (-1165 |#1|)) 69)) (-2689 (((-1165 |#1|) (-1165 |#1|)) 51)) (** (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 36))) -(((-1170 |#1|) (-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|)))) (-38 (-412 (-569)))) (T -1170)) -((-1503 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3)))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1170 *3))))) -(-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|)))) -((-2771 (((-1165 |#1|) (-1165 |#1|)) 107)) (-2626 (((-1165 |#1|) (-1165 |#1|)) 61)) (-2298 (((-2 (|:| -2746 (-1165 |#1|)) (|:| -2758 (-1165 |#1|))) (-1165 |#1|)) 103)) (-2746 (((-1165 |#1|) (-1165 |#1|)) 104)) (-2522 (((-2 (|:| -2601 (-1165 |#1|)) (|:| -2614 (-1165 |#1|))) (-1165 |#1|)) 54)) (-2601 (((-1165 |#1|) (-1165 |#1|)) 55)) (-4118 (((-1165 |#1|) (-1165 |#1|)) 109)) (-2647 (((-1165 |#1|) (-1165 |#1|)) 68)) (-2662 (((-1165 |#1|) (-1165 |#1|)) 40)) (-4389 (((-1165 |#1|) (-1165 |#1|)) 37)) (-4128 (((-1165 |#1|) (-1165 |#1|)) 110)) (-2661 (((-1165 |#1|) (-1165 |#1|)) 69)) (-2783 (((-1165 |#1|) (-1165 |#1|)) 108)) (-2635 (((-1165 |#1|) (-1165 |#1|)) 64)) (-2758 (((-1165 |#1|) (-1165 |#1|)) 105)) (-2614 (((-1165 |#1|) (-1165 |#1|)) 56)) (-4161 (((-1165 |#1|) (-1165 |#1|)) 118)) (-2701 (((-1165 |#1|) (-1165 |#1|)) 93)) (-4140 (((-1165 |#1|) (-1165 |#1|)) 112)) (-2675 (((-1165 |#1|) (-1165 |#1|)) 89)) (-4183 (((-1165 |#1|) (-1165 |#1|)) 122)) (-2723 (((-1165 |#1|) (-1165 |#1|)) 97)) (-1503 (((-1165 |#1|) (-1165 |#1|)) 124)) (-2734 (((-1165 |#1|) (-1165 |#1|)) 99)) (-4175 (((-1165 |#1|) (-1165 |#1|)) 120)) (-2712 (((-1165 |#1|) (-1165 |#1|)) 95)) (-4151 (((-1165 |#1|) (-1165 |#1|)) 114)) (-2689 (((-1165 |#1|) (-1165 |#1|)) 91)) (** (((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) 41))) -(((-1171 |#1|) (-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2522 ((-2 (|:| -2601 (-1165 |#1|)) (|:| -2614 (-1165 |#1|))) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2298 ((-2 (|:| -2746 (-1165 |#1|)) (|:| -2758 (-1165 |#1|))) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|)))) (-38 (-412 (-569)))) (T -1171)) -((-1503 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4183 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4128 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2746 (-1165 *4)) (|:| -2758 (-1165 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2701 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2689 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2661 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2647 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2626 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2614 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-2 (|:| -2601 (-1165 *4)) (|:| -2614 (-1165 *4)))) (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3)))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1171 *3))))) -(-10 -7 (-15 -4389 ((-1165 |#1|) (-1165 |#1|))) (-15 -2662 ((-1165 |#1|) (-1165 |#1|))) (-15 ** ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2522 ((-2 (|:| -2601 (-1165 |#1|)) (|:| -2614 (-1165 |#1|))) (-1165 |#1|))) (-15 -2601 ((-1165 |#1|) (-1165 |#1|))) (-15 -2614 ((-1165 |#1|) (-1165 |#1|))) (-15 -2626 ((-1165 |#1|) (-1165 |#1|))) (-15 -2635 ((-1165 |#1|) (-1165 |#1|))) (-15 -2647 ((-1165 |#1|) (-1165 |#1|))) (-15 -2661 ((-1165 |#1|) (-1165 |#1|))) (-15 -2675 ((-1165 |#1|) (-1165 |#1|))) (-15 -2689 ((-1165 |#1|) (-1165 |#1|))) (-15 -2701 ((-1165 |#1|) (-1165 |#1|))) (-15 -2712 ((-1165 |#1|) (-1165 |#1|))) (-15 -2723 ((-1165 |#1|) (-1165 |#1|))) (-15 -2734 ((-1165 |#1|) (-1165 |#1|))) (-15 -2298 ((-2 (|:| -2746 (-1165 |#1|)) (|:| -2758 (-1165 |#1|))) (-1165 |#1|))) (-15 -2746 ((-1165 |#1|) (-1165 |#1|))) (-15 -2758 ((-1165 |#1|) (-1165 |#1|))) (-15 -2771 ((-1165 |#1|) (-1165 |#1|))) (-15 -2783 ((-1165 |#1|) (-1165 |#1|))) (-15 -4118 ((-1165 |#1|) (-1165 |#1|))) (-15 -4128 ((-1165 |#1|) (-1165 |#1|))) (-15 -4140 ((-1165 |#1|) (-1165 |#1|))) (-15 -4151 ((-1165 |#1|) (-1165 |#1|))) (-15 -4161 ((-1165 |#1|) (-1165 |#1|))) (-15 -4175 ((-1165 |#1|) (-1165 |#1|))) (-15 -4183 ((-1165 |#1|) (-1165 |#1|))) (-15 -1503 ((-1165 |#1|) (-1165 |#1|)))) -((-4003 (((-964 |#2|) |#2| |#2|) 50)) (-2642 ((|#2| |#2| |#1|) 19 (|has| |#1| (-310))))) -(((-1172 |#1| |#2|) (-10 -7 (-15 -4003 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -2642 (|#2| |#2| |#1|)) |%noBranch|)) (-561) (-1251 |#1|)) (T -1172)) -((-2642 (*1 *2 *2 *3) (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1172 *3 *2)) (-4 *2 (-1251 *3)))) (-4003 (*1 *2 *3 *3) (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1172 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -4003 ((-964 |#2|) |#2| |#2|)) (IF (|has| |#1| (-310)) (-15 -2642 (|#2| |#2| |#1|)) |%noBranch|)) -((-2417 (((-112) $ $) NIL)) (-2527 (($ $ (-649 (-776))) 81)) (-3849 (($) 33)) (-2659 (($ $) 51)) (-3818 (((-649 $) $) 60)) (-2100 (((-112) $) 19)) (-1669 (((-649 (-949 |#2|)) $) 88)) (-3258 (($ $) 82)) (-2393 (((-776) $) 47)) (-4300 (($) 32)) (-2926 (($ $ (-649 (-776)) (-949 |#2|)) 74) (($ $ (-649 (-776)) (-776)) 75) (($ $ (-776) (-949 |#2|)) 77)) (-4198 (($ $ $) 57) (($ (-649 $)) 59)) (-2467 (((-776) $) 89)) (-1887 (((-112) $) 15)) (-3435 (((-1167) $) NIL)) (-3634 (((-112) $) 22)) (-3547 (((-1128) $) NIL)) (-2005 (((-172) $) 87)) (-2243 (((-949 |#2|) $) 83)) (-2497 (((-776) $) 84)) (-3784 (((-112) $) 86)) (-1311 (($ $ (-649 (-776)) (-172)) 80)) (-2791 (($ $) 52)) (-3796 (((-867) $) 100)) (-4211 (($ $ (-649 (-776)) (-112)) 79)) (-4001 (((-649 $) $) 11)) (-3682 (($ $ (-776)) 46)) (-2158 (($ $) 43)) (-1520 (((-112) $ $) NIL)) (-2797 (($ $ $ (-949 |#2|) (-776)) 70)) (-2749 (($ $ (-949 |#2|)) 69)) (-2367 (($ $ (-649 (-776)) (-949 |#2|)) 66) (($ $ (-649 (-776)) (-776)) 72) (((-776) $ (-949 |#2|)) 73)) (-2920 (((-112) $ $) 94))) -(((-1173 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -1887 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3634 ((-112) $)) (-15 -4300 ($)) (-15 -3849 ($)) (-15 -2158 ($ $)) (-15 -3682 ($ $ (-776))) (-15 -4001 ((-649 $) $)) (-15 -2393 ((-776) $)) (-15 -2659 ($ $)) (-15 -2791 ($ $)) (-15 -4198 ($ $ $)) (-15 -4198 ($ (-649 $))) (-15 -3818 ((-649 $) $)) (-15 -2367 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2749 ($ $ (-949 |#2|))) (-15 -2797 ($ $ $ (-949 |#2|) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2367 ($ $ (-649 (-776)) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-776))) (-15 -2367 ((-776) $ (-949 |#2|))) (-15 -2926 ($ $ (-776) (-949 |#2|))) (-15 -4211 ($ $ (-649 (-776)) (-112))) (-15 -1311 ($ $ (-649 (-776)) (-172))) (-15 -2527 ($ $ (-649 (-776)))) (-15 -2243 ((-949 |#2|) $)) (-15 -2497 ((-776) $)) (-15 -3784 ((-112) $)) (-15 -2005 ((-172) $)) (-15 -2467 ((-776) $)) (-15 -3258 ($ $)) (-15 -1669 ((-649 (-949 |#2|)) $)))) (-927) (-1057)) (T -1173)) -((-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-4300 (*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-3849 (*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2659 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-4198 (*1 *1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2749 (*1 *1 *1 *2) (-12 (-5 *2 (-949 *4)) (-4 *4 (-1057)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)))) (-2797 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2367 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-2926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-2367 (*1 *2 *1 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *2 (-776)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-2926 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) (-4211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-1311 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)) (-4 *5 (-1057)))) (-2527 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-949 *4)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-172)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057)))) (-3258 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) (-4 *4 (-1057))))) -(-13 (-1108) (-10 -8 (-15 -1887 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -3634 ((-112) $)) (-15 -4300 ($)) (-15 -3849 ($)) (-15 -2158 ($ $)) (-15 -3682 ($ $ (-776))) (-15 -4001 ((-649 $) $)) (-15 -2393 ((-776) $)) (-15 -2659 ($ $)) (-15 -2791 ($ $)) (-15 -4198 ($ $ $)) (-15 -4198 ($ (-649 $))) (-15 -3818 ((-649 $) $)) (-15 -2367 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2749 ($ $ (-949 |#2|))) (-15 -2797 ($ $ $ (-949 |#2|) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-949 |#2|))) (-15 -2367 ($ $ (-649 (-776)) (-776))) (-15 -2926 ($ $ (-649 (-776)) (-776))) (-15 -2367 ((-776) $ (-949 |#2|))) (-15 -2926 ($ $ (-776) (-949 |#2|))) (-15 -4211 ($ $ (-649 (-776)) (-112))) (-15 -1311 ($ $ (-649 (-776)) (-172))) (-15 -2527 ($ $ (-649 (-776)))) (-15 -2243 ((-949 |#2|) $)) (-15 -2497 ((-776) $)) (-15 -3784 ((-112) $)) (-15 -2005 ((-172) $)) (-15 -2467 ((-776) $)) (-15 -3258 ($ $)) (-15 -1669 ((-649 (-949 |#2|)) $)))) -((-2417 (((-112) $ $) NIL)) (-2115 ((|#2| $) 11)) (-2105 ((|#1| $) 10)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3809 (($ |#1| |#2|) 9)) (-3796 (((-867) $) 16)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1174 |#1| |#2|) (-13 (-1108) (-10 -8 (-15 -3809 ($ |#1| |#2|)) (-15 -2105 (|#1| $)) (-15 -2115 (|#2| $)))) (-1108) (-1108)) (T -1174)) -((-3809 (*1 *1 *2 *3) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-2105 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-1108)))) (-2115 (*1 *2 *1) (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-1108))))) -(-13 (-1108) (-10 -8 (-15 -3809 ($ |#1| |#2|)) (-15 -2105 (|#1| $)) (-15 -2115 (|#2| $)))) -((-2417 (((-112) $ $) NIL)) (-3727 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1175) (-13 (-1091) (-10 -8 (-15 -3727 ((-1143) $))))) (T -1175)) -((-3727 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1175))))) -(-13 (-1091) (-10 -8 (-15 -3727 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-1183 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 11)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4355 (($ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3039 (((-112) $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2917 (($ $ (-569)) NIL) (($ $ (-569) (-569)) 75)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-1494 (((-1183 |#1| |#2| |#3|) $) 42)) (-3956 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 32)) (-1773 (((-1183 |#1| |#2| |#3|) $) 33)) (-2771 (($ $) 116 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 92 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) 112 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 88 (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) 120 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 96 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1185) "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-3150 (((-1183 |#1| |#2| |#3|) $) 140) (((-1185) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-2612 (($ $) 37) (($ (-569) $) 38)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-1183 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-1183 |#1| |#2| |#3|))) (|:| |vec| (-1275 (-1183 |#1| |#2| |#3|)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) 54)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 74 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 76 (|has| |#1| (-561)))) (-3406 (($) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-3712 (((-112) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) 28)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) NIL) (((-569) $ (-569)) 26)) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-367)))) (-4399 (((-1183 |#1| |#2| |#3|) $) 44 (|has| |#1| (-367)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) NIL)) (-2148 (($ (-1 |#1| (-569)) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-569)) 19) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-3380 (($ $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2839 (($ $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2662 (($ $) 81 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1784 (($ (-569) (-1183 |#1| |#2| |#3|)) 36)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 79 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 80 (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3231 (($ $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3465 (((-1183 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 158)) (-2407 (((-3 $ "failed") $ $) 55 (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) 82 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) (-1183 |#1| |#2| |#3|)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-519 (-1185) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-1183 |#1| |#2| |#3|))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-519 (-1185) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1183 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1183 |#1| |#2| |#3|))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1183 |#1| |#2| |#3|)) (-649 (-1183 |#1| |#2| |#3|))) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-312 (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) NIL) (($ $ $) 61 (|has| (-569) (-1120))) (($ $ (-1183 |#1| |#2| |#3|)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-289 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1271 |#2|)) 57) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 56 (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-3181 (($ $) NIL (|has| |#1| (-367)))) (-4412 (((-1183 |#1| |#2| |#3|) $) 46 (|has| |#1| (-367)))) (-4339 (((-569) $) 43)) (-4128 (($ $) 122 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 98 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 118 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 94 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 114 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 90 (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-541) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 162) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1183 |#1| |#2| |#3|)) 30) (($ (-1271 |#2|)) 25) (($ (-1185)) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (($ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-4383 ((|#1| $ (-569)) 77)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 12)) (-2040 (((-1183 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 128 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 104 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4140 (($ $) 124 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 100 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 108 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 110 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 106 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 126 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 102 (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) NIL (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1804 (($) 21 T CONST)) (-1815 (($) 16 T CONST)) (-2832 (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-2978 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2956 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2944 (((-112) $ $) NIL (-2776 (-12 (|has| (-1183 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1183 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 49 (|has| |#1| (-367))) (($ (-1183 |#1| |#2| |#3|) (-1183 |#1| |#2| |#3|)) 50 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 23)) (** (($ $ (-927)) NIL) (($ $ (-776)) 60) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) 83 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 137 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1183 |#1| |#2| |#3|)) 48 (|has| |#1| (-367))) (($ (-1183 |#1| |#2| |#3|) $) 47 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1176 |#1| |#2| |#3|) (-13 (-1237 |#1| (-1183 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1176)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1237 |#1| (-1183 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-3272 ((|#2| |#2| (-1100 |#2|)) 26) ((|#2| |#2| (-1185)) 28))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -3272 (|#2| |#2| (-1185))) (-15 -3272 (|#2| |#2| (-1100 |#2|)))) (-13 (-561) (-1046 (-569)) (-644 (-569))) (-13 (-435 |#1|) (-160) (-27) (-1210))) (T -1177)) -((-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210))) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1177 *4 *2)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210)))))) -(-10 -7 (-15 -3272 (|#2| |#2| (-1185))) (-15 -3272 (|#2| |#2| (-1100 |#2|)))) -((-3272 (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1100 (-412 (-958 |#1|)))) 31) (((-412 (-958 |#1|)) (-958 |#1|) (-1100 (-958 |#1|))) 44) (((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1185)) 33) (((-412 (-958 |#1|)) (-958 |#1|) (-1185)) 36))) -(((-1178 |#1|) (-10 -7 (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1185))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1100 (-958 |#1|)))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1100 (-412 (-958 |#1|)))))) (-13 (-561) (-1046 (-569)))) (T -1178)) -((-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-3 *3 (-319 *5))) (-5 *1 (-1178 *5)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1100 (-958 *5))) (-5 *3 (-958 *5)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 *3)) (-5 *1 (-1178 *5)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1178 *5)) (-5 *3 (-412 (-958 *5))))) (-3272 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 (-958 *5))) (-5 *1 (-1178 *5)) (-5 *3 (-958 *5))))) -(-10 -7 (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1185))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1185))) (-15 -3272 ((-412 (-958 |#1|)) (-958 |#1|) (-1100 (-958 |#1|)))) (-15 -3272 ((-3 (-412 (-958 |#1|)) (-319 |#1|)) (-412 (-958 |#1|)) (-1100 (-412 (-958 |#1|)))))) -((-1346 (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 13))) -(((-1179 |#1| |#2|) (-10 -7 (-15 -1346 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)))) (-1057) (-1057)) (T -1179)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-5 *2 (-1181 *6)) (-5 *1 (-1179 *5 *6))))) -(-10 -7 (-15 -1346 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)))) -((-3764 (((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))) 51)) (-3800 (((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))) 52))) -(((-1180 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|)))) (-15 -3764 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))))) (-798) (-855) (-457) (-955 |#3| |#1| |#2|)) (T -1180)) -((-3764 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7)))) (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7)))) (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7)))))) -(-10 -7 (-15 -3800 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|)))) (-15 -3764 ((-423 (-1181 (-412 |#4|))) (-1181 (-412 |#4|))))) -((-2417 (((-112) $ $) 171)) (-4143 (((-112) $) 43)) (-3678 (((-1275 |#1|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#1|)) NIL)) (-3767 (((-1181 $) $ (-1090)) 82) (((-1181 |#1|) $) 71)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) 164 (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) 158 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) 95 (|has| |#1| (-915)))) (-1830 (($ $) NIL (|has| |#1| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 115 (|has| |#1| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2401 (($ $ (-776)) 61)) (-2452 (($ $ (-776)) 63)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#1| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#1| $) NIL) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-1090) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $ $) 160 (|has| |#1| (-173)))) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) 80)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) NIL) (((-694 |#1|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1525 (($ $ $) 131)) (-3405 (($ $ $) NIL (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-2642 (($ $) 165 (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-776) $) 69)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-3548 (((-867) $ (-867)) 148)) (-1466 (((-776) $ $) NIL (|has| |#1| (-561)))) (-2349 (((-112) $) 48)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) 73) (($ (-1181 $) (-1090)) 89)) (-3003 (($ $ (-776)) 51)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 87) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 153)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1894 (((-1181 |#1|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) 76)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) NIL (|has| |#1| (-457)))) (-3435 (((-1167) $) NIL)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) 60)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) 50)) (-1835 ((|#1| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 103 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-457))) (($ $ $) 167 (|has| |#1| (-457)))) (-2448 (($ $ (-776) |#1| $) 123)) (-2156 (((-423 (-1181 $)) (-1181 $)) 101 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 100 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 108 (|has| |#1| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-649 (-1090)) (-649 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) NIL (|has| |#1| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) 54)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 172 (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#1| (-173))) ((|#1| $) 156 (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4339 (((-776) $) 78) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 162 (|has| |#1| (-457))) (($ $ (-1090)) NIL (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-915))))) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#1| (-561)))) (-3796 (((-867) $) 149) (($ (-569)) NIL) (($ |#1|) 77) (($ (-1090)) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) 41 (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 17 T CONST)) (-1815 (($) 19 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2920 (((-112) $ $) 120)) (-3035 (($ $ |#1|) 173 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 90)) (** (($ $ (-927)) 14) (($ $ (-776)) 12)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 39) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1181 |#1|) (-13 (-1251 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))) (-15 -2448 ($ $ (-776) |#1| $)))) (-1057)) (T -1181)) -((-3548 (*1 *2 *1 *2) (-12 (-5 *2 (-867)) (-5 *1 (-1181 *3)) (-4 *3 (-1057)))) (-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1181 *3)) (-4 *3 (-1057))))) -(-13 (-1251 |#1|) (-10 -8 (-15 -3548 ((-867) $ (-867))) (-15 -2448 ($ $ (-776) |#1| $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 11)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1183 |#1| |#2| |#3|) "failed") $) 36)) (-3150 (((-1176 |#1| |#2| |#3|) $) NIL) (((-1183 |#1| |#2| |#3|) $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3646 (((-412 (-569)) $) 59)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) (-1176 |#1| |#2| |#3|)) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) 20) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4029 (((-1176 |#1| |#2| |#3|) $) 41)) (-4380 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) NIL)) (-1784 (((-1176 |#1| |#2| |#3|) $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1271 |#2|)) 38)) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 62) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1176 |#1| |#2| |#3|)) 30) (($ (-1183 |#1| |#2| |#3|)) 31) (($ (-1271 |#2|)) 26) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 12)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 22 T CONST)) (-1815 (($) 16 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 24)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1182 |#1| |#2| |#3|) (-13 (-1258 |#1| (-1176 |#1| |#2| |#3|)) (-1046 (-1183 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1182)) -((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1258 |#1| (-1176 |#1| |#2| |#3|)) (-1046 (-1183 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 129)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 119)) (-2020 (((-1248 |#2| |#1|) $ (-776)) 69)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-776)) 85) (($ $ (-776) (-776)) 82)) (-2300 (((-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 105)) (-2771 (($ $) 173 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 169 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 118) (($ (-1165 |#1|)) 113)) (-4118 (($ $) 177 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) 25)) (-3938 (($ $) 28)) (-3278 (((-958 |#1|) $ (-776)) 81) (((-958 |#1|) $ (-776) (-776)) 83)) (-1677 (((-112) $) 124)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $) 126) (((-776) $ (-776)) 128)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL)) (-2148 (($ (-1 |#1| (-569)) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 13) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $) 133 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 134 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-3166 (($ $ (-776)) 15)) (-2407 (((-3 $ "failed") $ $) 26 (|has| |#1| (-561)))) (-4389 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1869 ((|#1| $ (-776)) 122) (($ $ $) 132 (|has| (-776) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1271 |#2|)) 31)) (-4339 (((-776) $) NIL)) (-4128 (($ $) 179 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 175 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 171 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 206) (($ (-569)) NIL) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 130 (|has| |#1| (-173))) (($ (-1248 |#2| |#1|)) 55) (($ (-1271 |#2|)) 36)) (-2512 (((-1165 |#1|) $) 101)) (-4383 ((|#1| $ (-776)) 121)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 58)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 185 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 161 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 181 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 157 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 189 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 165 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-776)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 191 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 167 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 187 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 163 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 183 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 159 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 17 T CONST)) (-1815 (($) 20 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 198)) (-3012 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 203 (|has| |#1| (-367))) (($ $ $) 138 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 141 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1183 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1183)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-1183 *3 *4 *5)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1183 *4 *5 *6)) (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-3796 (((-867) $) 33) (($ (-1185)) 35)) (-2776 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 46)) (-2764 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 39) (($ $) 40)) (-2690 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 41)) (-2676 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 43)) (-2663 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 42)) (-2649 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 44)) (-2091 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $))) 45))) -(((-1184) (-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -2690 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2663 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2676 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2649 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2776 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2091 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ $))))) (T -1184)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) (-2690 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2663 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2676 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2649 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2776 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2091 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) (-5 *1 (-1184)))) (-2764 (*1 *1 *1) (-5 *1 (-1184)))) -(-13 (-618 (-867)) (-10 -8 (-15 -3796 ($ (-1185))) (-15 -2690 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2663 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2676 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2649 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2776 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2091 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)) (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) (|:| CF (-319 (-170 (-383)))) (|:| |switch| $)))) (-15 -2764 ($ $)))) -((-2417 (((-112) $ $) NIL)) (-2906 (($ $ (-649 (-867))) 62)) (-2639 (($ $ (-649 (-867))) 60)) (-3390 (((-1167) $) 101)) (-3857 (((-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))) $) 108)) (-2376 (((-112) $) 23)) (-4364 (($ $ (-649 (-649 (-867)))) 59) (($ $ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867))))) 99)) (-4427 (($) 163 T CONST)) (-4015 (((-1280)) 135)) (-3131 (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 69) (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 76)) (-4300 (($) 122) (($ $) 131)) (-3573 (($ $) 100)) (-3380 (($ $ $) NIL)) (-2839 (($ $ $) NIL)) (-3382 (((-649 $) $) 136)) (-3435 (((-1167) $) 114)) (-3547 (((-1128) $) NIL)) (-1869 (($ $ (-649 (-867))) 61)) (-1410 (((-541) $) 48) (((-1185) $) 49) (((-898 (-569)) $) 80) (((-898 (-383)) $) 78)) (-3796 (((-867) $) 55) (($ (-1167)) 50)) (-1520 (((-112) $ $) NIL)) (-3155 (($ $ (-649 (-867))) 63)) (-3266 (((-1167) $) 34) (((-1167) $ (-112)) 35) (((-1280) (-827) $) 36) (((-1280) (-827) $ (-112)) 37)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 51)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) 52))) -(((-1185) (-13 (-855) (-619 (-541)) (-833) (-619 (-1185)) (-621 (-1167)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4300 ($)) (-15 -4300 ($ $)) (-15 -4015 ((-1280))) (-15 -3573 ($ $)) (-15 -2376 ((-112) $)) (-15 -3857 ((-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -4364 ($ $ (-649 (-649 (-867))))) (-15 -4364 ($ $ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -2639 ($ $ (-649 (-867)))) (-15 -2906 ($ $ (-649 (-867)))) (-15 -3155 ($ $ (-649 (-867)))) (-15 -1869 ($ $ (-649 (-867)))) (-15 -3390 ((-1167) $)) (-15 -3382 ((-649 $) $)) (-15 -4427 ($) -3709)))) (T -1185)) -((-4300 (*1 *1) (-5 *1 (-1185))) (-4300 (*1 *1 *1) (-5 *1 (-1185))) (-4015 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1185)))) (-3573 (*1 *1 *1) (-5 *1 (-1185))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1185)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1185)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867))))) (-5 *1 (-1185)))) (-2639 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-2906 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-3155 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1185)))) (-4427 (*1 *1) (-5 *1 (-1185)))) -(-13 (-855) (-619 (-541)) (-833) (-619 (-1185)) (-621 (-1167)) (-619 (-898 (-569))) (-619 (-898 (-383))) (-892 (-569)) (-892 (-383)) (-10 -8 (-15 -4300 ($)) (-15 -4300 ($ $)) (-15 -4015 ((-1280))) (-15 -3573 ($ $)) (-15 -2376 ((-112) $)) (-15 -3857 ((-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))) $)) (-15 -4364 ($ $ (-649 (-649 (-867))))) (-15 -4364 ($ $ (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) (|:| |args| (-649 (-867)))))) (-15 -2639 ($ $ (-649 (-867)))) (-15 -2906 ($ $ (-649 (-867)))) (-15 -3155 ($ $ (-649 (-867)))) (-15 -1869 ($ $ (-649 (-867)))) (-15 -3390 ((-1167) $)) (-15 -3382 ((-649 $) $)) (-15 -4427 ($) -3709))) -((-2480 (((-1275 |#1|) |#1| (-927)) 18) (((-1275 |#1|) (-649 |#1|)) 25))) -(((-1186 |#1|) (-10 -7 (-15 -2480 ((-1275 |#1|) (-649 |#1|))) (-15 -2480 ((-1275 |#1|) |#1| (-927)))) (-1057)) (T -1186)) -((-2480 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1275 *3)) (-5 *1 (-1186 *3)) (-4 *3 (-1057)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1057)) (-5 *2 (-1275 *4)) (-5 *1 (-1186 *4))))) -(-10 -7 (-15 -2480 ((-1275 |#1|) (-649 |#1|))) (-15 -2480 ((-1275 |#1|) |#1| (-927)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| |#1| (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#1| (-1046 (-412 (-569))))) (((-3 |#1| "failed") $) NIL)) (-3150 (((-569) $) NIL (|has| |#1| (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| |#1| (-1046 (-412 (-569))))) ((|#1| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2642 (($ $) NIL (|has| |#1| (-457)))) (-2870 (($ $ |#1| (-979) $) NIL)) (-2349 (((-112) $) 17)) (-3366 (((-776) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-979)) NIL)) (-2272 (((-979) $) NIL)) (-2492 (($ (-1 (-979) (-979)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#1| $) NIL)) (-2448 (($ $ (-979) |#1| $) NIL (-12 (|has| (-979) (-131)) (|has| |#1| (-561))))) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-561)))) (-4339 (((-979) $) NIL)) (-3833 ((|#1| $) NIL (|has| |#1| (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) NIL) (($ (-412 (-569))) NIL (-2776 (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-1046 (-412 (-569))))))) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ (-979)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#1| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1804 (($) 11 T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 21)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1187 |#1|) (-13 (-329 |#1| (-979)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-979) (-131)) (-15 -2448 ($ $ (-979) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) (-1057)) (T -1187)) -((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-979)) (-4 *2 (-131)) (-5 *1 (-1187 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))) -(-13 (-329 |#1| (-979)) (-10 -8 (IF (|has| |#1| (-561)) (IF (|has| (-979) (-131)) (-15 -2448 ($ $ (-979) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) -((-2161 (((-1189) (-1185) $) 25)) (-2096 (($) 29)) (-1566 (((-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-1185) $) 22)) (-3000 (((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) $) 41) (((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) 42) (((-1280) (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) 43)) (-1785 (((-1280) (-1185)) 58)) (-1442 (((-1280) (-1185) $) 55) (((-1280) (-1185)) 56) (((-1280)) 57)) (-3999 (((-1280) (-1185)) 37)) (-1460 (((-1185)) 36)) (-3635 (($) 34)) (-2739 (((-442) (-1185) (-442) (-1185) $) 45) (((-442) (-649 (-1185)) (-442) (-1185) $) 49) (((-442) (-1185) (-442)) 46) (((-442) (-1185) (-442) (-1185)) 50)) (-4214 (((-1185)) 35)) (-3796 (((-867) $) 28)) (-3688 (((-1280)) 30) (((-1280) (-1185)) 33)) (-1847 (((-649 (-1185)) (-1185) $) 24)) (-2888 (((-1280) (-1185) (-649 (-1185)) $) 38) (((-1280) (-1185) (-649 (-1185))) 39) (((-1280) (-649 (-1185))) 40))) -(((-1188) (-13 (-618 (-867)) (-10 -8 (-15 -2096 ($)) (-15 -3688 ((-1280))) (-15 -3688 ((-1280) (-1185))) (-15 -2739 ((-442) (-1185) (-442) (-1185) $)) (-15 -2739 ((-442) (-649 (-1185)) (-442) (-1185) $)) (-15 -2739 ((-442) (-1185) (-442))) (-15 -2739 ((-442) (-1185) (-442) (-1185))) (-15 -3999 ((-1280) (-1185))) (-15 -4214 ((-1185))) (-15 -1460 ((-1185))) (-15 -2888 ((-1280) (-1185) (-649 (-1185)) $)) (-15 -2888 ((-1280) (-1185) (-649 (-1185)))) (-15 -2888 ((-1280) (-649 (-1185)))) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -3000 ((-1280) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -1442 ((-1280) (-1185) $)) (-15 -1442 ((-1280) (-1185))) (-15 -1442 ((-1280))) (-15 -1785 ((-1280) (-1185))) (-15 -3635 ($)) (-15 -1566 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-1185) $)) (-15 -1847 ((-649 (-1185)) (-1185) $)) (-15 -2161 ((-1189) (-1185) $))))) (T -1188)) -((-2096 (*1 *1) (-5 *1 (-1188))) (-3688 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *4 (-1185)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) (-2739 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-4214 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188)))) (-1460 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188)))) (-2888 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3000 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1185)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3000 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1442 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1442 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) (-3635 (*1 *1) (-5 *1 (-1188))) (-1566 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *1 (-1188)))) (-1847 (*1 *2 *3 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1188)) (-5 *3 (-1185)))) (-2161 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1189)) (-5 *1 (-1188))))) -(-13 (-618 (-867)) (-10 -8 (-15 -2096 ($)) (-15 -3688 ((-1280))) (-15 -3688 ((-1280) (-1185))) (-15 -2739 ((-442) (-1185) (-442) (-1185) $)) (-15 -2739 ((-442) (-649 (-1185)) (-442) (-1185) $)) (-15 -2739 ((-442) (-1185) (-442))) (-15 -2739 ((-442) (-1185) (-442) (-1185))) (-15 -3999 ((-1280) (-1185))) (-15 -4214 ((-1185))) (-15 -1460 ((-1185))) (-15 -2888 ((-1280) (-1185) (-649 (-1185)) $)) (-15 -2888 ((-1280) (-1185) (-649 (-1185)))) (-15 -2888 ((-1280) (-649 (-1185)))) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")) $)) (-15 -3000 ((-1280) (-1185) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -3000 ((-1280) (-3 (|:| |fst| (-439)) (|:| -2579 "void")))) (-15 -1442 ((-1280) (-1185) $)) (-15 -1442 ((-1280) (-1185))) (-15 -1442 ((-1280))) (-15 -1785 ((-1280) (-1185))) (-15 -3635 ($)) (-15 -1566 ((-3 (|:| |fst| (-439)) (|:| -2579 "void")) (-1185) $)) (-15 -1847 ((-649 (-1185)) (-1185) $)) (-15 -2161 ((-1189) (-1185) $)))) -((-2921 (((-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) $) 66)) (-3584 (((-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))) (-439) $) 47)) (-3300 (($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))) 17)) (-1785 (((-1280) $) 73)) (-2162 (((-649 (-1185)) $) 22)) (-3289 (((-1112) $) 60)) (-3856 (((-442) (-1185) $) 27)) (-1381 (((-649 (-1185)) $) 30)) (-3635 (($) 19)) (-2739 (((-442) (-649 (-1185)) (-442) $) 25) (((-442) (-1185) (-442) $) 24)) (-3796 (((-867) $) 9) (((-1198 (-1185) (-442)) $) 13))) -(((-1189) (-13 (-618 (-867)) (-10 -8 (-15 -3796 ((-1198 (-1185) (-442)) $)) (-15 -3635 ($)) (-15 -2739 ((-442) (-649 (-1185)) (-442) $)) (-15 -2739 ((-442) (-1185) (-442) $)) (-15 -3856 ((-442) (-1185) $)) (-15 -2162 ((-649 (-1185)) $)) (-15 -3584 ((-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -1381 ((-649 (-1185)) $)) (-15 -2921 ((-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) $)) (-15 -3289 ((-1112) $)) (-15 -1785 ((-1280) $)) (-15 -3300 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))))))) (T -1189)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-1198 (-1185) (-442))) (-5 *1 (-1189)))) (-3635 (*1 *1) (-5 *1 (-1189))) (-2739 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *1 (-1189)))) (-2739 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1189)))) (-3856 (*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-442)) (-5 *1 (-1189)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189)))) (-3584 (*1 *2 *3 *1) (-12 (-5 *3 (-439)) (-5 *2 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) (-5 *1 (-1189)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))))) (-5 *1 (-1189)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1189)))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1189)))) (-3300 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))) (-5 *1 (-1189))))) -(-13 (-618 (-867)) (-10 -8 (-15 -3796 ((-1198 (-1185) (-442)) $)) (-15 -3635 ($)) (-15 -2739 ((-442) (-649 (-1185)) (-442) $)) (-15 -2739 ((-442) (-1185) (-442) $)) (-15 -3856 ((-442) (-1185) $)) (-15 -2162 ((-649 (-1185)) $)) (-15 -3584 ((-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))) (-439) $)) (-15 -1381 ((-649 (-1185)) $)) (-15 -2921 ((-649 (-649 (-3 (|:| -3573 (-1185)) (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) $)) (-15 -3289 ((-1112) $)) (-15 -1785 ((-1280) $)) (-15 -3300 ($ (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442)))))))) -((-2417 (((-112) $ $) NIL)) (-4381 (((-3 (-569) "failed") $) 29) (((-3 (-226) "failed") $) 35) (((-3 (-511) "failed") $) 43) (((-3 (-1167) "failed") $) 47)) (-3150 (((-569) $) 30) (((-226) $) 36) (((-511) $) 40) (((-1167) $) 48)) (-1843 (((-112) $) 53)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2060 (((-3 (-569) (-226) (-511) (-1167) $) $) 55)) (-1822 (((-649 $) $) 57)) (-1410 (((-1112) $) 24) (($ (-1112)) 25)) (-2129 (((-112) $) 56)) (-3796 (((-867) $) 23) (($ (-569)) 26) (($ (-226)) 32) (($ (-511)) 38) (($ (-1167)) 44) (((-541) $) 59) (((-569) $) 31) (((-226) $) 37) (((-511) $) 41) (((-1167) $) 49)) (-1795 (((-112) $ (|[\|\|]| (-569))) 10) (((-112) $ (|[\|\|]| (-226))) 13) (((-112) $ (|[\|\|]| (-511))) 19) (((-112) $ (|[\|\|]| (-1167))) 16)) (-3498 (($ (-511) (-649 $)) 51) (($ $ (-649 $)) 52)) (-1520 (((-112) $ $) NIL)) (-3993 (((-569) $) 27) (((-226) $) 33) (((-511) $) 39) (((-1167) $) 45)) (-2920 (((-112) $ $) 7))) -(((-1190) (-13 (-1270) (-1108) (-1046 (-569)) (-1046 (-226)) (-1046 (-511)) (-1046 (-1167)) (-618 (-541)) (-10 -8 (-15 -1410 ((-1112) $)) (-15 -1410 ($ (-1112))) (-15 -3796 ((-569) $)) (-15 -3993 ((-569) $)) (-15 -3796 ((-226) $)) (-15 -3993 ((-226) $)) (-15 -3796 ((-511) $)) (-15 -3993 ((-511) $)) (-15 -3796 ((-1167) $)) (-15 -3993 ((-1167) $)) (-15 -3498 ($ (-511) (-649 $))) (-15 -3498 ($ $ (-649 $))) (-15 -1843 ((-112) $)) (-15 -2060 ((-3 (-569) (-226) (-511) (-1167) $) $)) (-15 -1822 ((-649 $) $)) (-15 -2129 ((-112) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-569)))) (-15 -1795 ((-112) $ (|[\|\|]| (-226)))) (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -1795 ((-112) $ (|[\|\|]| (-1167))))))) (T -1190)) -((-1410 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1190)))) (-1410 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190)))) (-3498 (*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1190))) (-5 *1 (-1190)))) (-3498 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1167) (-1190))) (-5 *1 (-1190)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1190)))) (-1795 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-1190))))) -(-13 (-1270) (-1108) (-1046 (-569)) (-1046 (-226)) (-1046 (-511)) (-1046 (-1167)) (-618 (-541)) (-10 -8 (-15 -1410 ((-1112) $)) (-15 -1410 ($ (-1112))) (-15 -3796 ((-569) $)) (-15 -3993 ((-569) $)) (-15 -3796 ((-226) $)) (-15 -3993 ((-226) $)) (-15 -3796 ((-511) $)) (-15 -3993 ((-511) $)) (-15 -3796 ((-1167) $)) (-15 -3993 ((-1167) $)) (-15 -3498 ($ (-511) (-649 $))) (-15 -3498 ($ $ (-649 $))) (-15 -1843 ((-112) $)) (-15 -2060 ((-3 (-569) (-226) (-511) (-1167) $) $)) (-15 -1822 ((-649 $) $)) (-15 -2129 ((-112) $)) (-15 -1795 ((-112) $ (|[\|\|]| (-569)))) (-15 -1795 ((-112) $ (|[\|\|]| (-226)))) (-15 -1795 ((-112) $ (|[\|\|]| (-511)))) (-15 -1795 ((-112) $ (|[\|\|]| (-1167)))))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) 22)) (-4427 (($) 12 T CONST)) (-3406 (($) 26)) (-3380 (($ $ $) NIL) (($) 19 T CONST)) (-2839 (($ $ $) NIL) (($) 20 T CONST)) (-2731 (((-927) $) 24)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) 23)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-1191 |#1|) (-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) (-927)) (T -1191)) -((-4427 (*1 *1) (-12 (-5 *1 (-1191 *2)) (-14 *2 (-927))))) -(-13 (-849) (-10 -8 (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3312 ((|#1| $) 45)) (-3636 (((-112) $ (-777)) 8)) (-3734 (($) 7 T CONST)) (-2141 ((|#1| |#1| $) 47)) (-1561 ((|#1| $) 46)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1334 ((|#1| $) 40)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-4067 ((|#1| $) 42)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-2806 (((-777) $) 44)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) 43)) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1130 |#1|) (-141) (-1226)) (T -1130)) +((-2141 (*1 *2 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1226)))) (-1561 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1226)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1226)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1226)) (-5 *2 (-777))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4448) (-15 -2141 (|t#1| |t#1| $)) (-15 -1561 (|t#1| $)) (-15 -3312 (|t#1| $)) (-15 -2806 ((-777) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-3142 ((|#3| $) 87)) (-4382 (((-3 (-570) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3152 (((-570) $) NIL) (((-413 (-570)) $) NIL) ((|#3| $) 47)) (-2004 (((-695 (-570)) (-695 $)) NIL) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL) (((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 $) (-1276 $)) 84) (((-695 |#3|) (-695 $)) 76)) (-3519 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186)) NIL) (($ $ (-777)) NIL) (($ $) NIL)) (-1689 ((|#3| $) 89)) (-3672 ((|#4| $) 43)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ |#3|) 25)) (** (($ $ (-928)) NIL) (($ $ (-777)) 24) (($ $ (-570)) 95))) +(((-1131 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 -1689 (|#3| |#1|)) (-15 -3142 (|#3| |#1|)) (-15 -3672 (|#4| |#1|)) (-15 -2004 ((-695 |#3|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -3798 (|#1| |#3|)) (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3152 (|#3| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3798 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -3798 ((-868) |#1|))) (-1132 |#2| |#3| |#4| |#5|) (-777) (-1058) (-240 |#2| |#3|) (-240 |#2| |#3|)) (T -1131)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-570))) (-15 -1689 (|#3| |#1|)) (-15 -3142 (|#3| |#1|)) (-15 -3672 (|#4| |#1|)) (-15 -2004 ((-695 |#3|) (-695 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 |#3|)) (|:| |vec| (-1276 |#3|))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 |#1|) (-1276 |#1|))) (-15 -2004 ((-695 (-570)) (-695 |#1|))) (-15 -3798 (|#1| |#3|)) (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3152 (|#3| |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|) (-777))) (-15 -3519 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3798 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3142 ((|#2| $) 77)) (-1630 (((-112) $) 117)) (-2620 (((-3 $ "failed") $ $) 20)) (-2525 (((-112) $) 115)) (-3636 (((-112) $ (-777)) 107)) (-1650 (($ |#2|) 80)) (-3734 (($) 18 T CONST)) (-3081 (($ $) 134 (|has| |#2| (-311)))) (-1774 ((|#3| $ (-570)) 129)) (-4382 (((-3 (-570) "failed") $) 92 (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) 89 (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) 86)) (-3152 (((-570) $) 91 (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) 88 (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) 87)) (-2004 (((-695 (-570)) (-695 $)) 84 (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 83 (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) 82) (((-695 |#2|) (-695 $)) 81)) (-2229 (((-3 $ "failed") $) 37)) (-3979 (((-777) $) 135 (|has| |#2| (-562)))) (-3778 ((|#2| $ (-570) (-570)) 127)) (-2885 (((-650 |#2|) $) 100 (|has| $ (-6 -4448)))) (-2481 (((-112) $) 35)) (-2758 (((-777) $) 136 (|has| |#2| (-562)))) (-3766 (((-650 |#4|) $) 137 (|has| |#2| (-562)))) (-3227 (((-777) $) 123)) (-3239 (((-777) $) 124)) (-3846 (((-112) $ (-777)) 108)) (-3646 ((|#2| $) 72 (|has| |#2| (-6 (-4450 "*"))))) (-1515 (((-570) $) 119)) (-2523 (((-570) $) 121)) (-2282 (((-650 |#2|) $) 99 (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-1579 (((-570) $) 120)) (-4110 (((-570) $) 122)) (-2433 (($ (-650 (-650 |#2|))) 114)) (-3837 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-2139 (((-650 (-650 |#2|)) $) 125)) (-2063 (((-112) $ (-777)) 109)) (-4122 (((-1168) $) 10)) (-1972 (((-3 $ "failed") $) 71 (|has| |#2| (-368)))) (-3551 (((-1129) $) 11)) (-2410 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-562)))) (-3116 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) 96 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 95 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 93 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) 113)) (-4303 (((-112) $) 110)) (-4359 (($) 111)) (-1872 ((|#2| $ (-570) (-570) |#2|) 128) ((|#2| $ (-570) (-570)) 126)) (-3519 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-777)) 55) (($ $ (-650 (-1186)) (-650 (-777))) 48 (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) 47 (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) 46 (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) 45 (|has| |#2| (-907 (-1186)))) (($ $ (-777)) 43 (|has| |#2| (-235))) (($ $) 41 (|has| |#2| (-235)))) (-1689 ((|#2| $) 76)) (-1668 (($ (-650 |#2|)) 79)) (-2881 (((-112) $) 116)) (-3672 ((|#3| $) 78)) (-4415 ((|#2| $) 73 (|has| |#2| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4448))) (((-777) |#2| $) 98 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 112)) (-4357 ((|#4| $ (-570)) 130)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 90 (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) 85)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1431 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4448)))) (-2501 (((-112) $) 118)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-777)) 53) (($ $ (-650 (-1186)) (-650 (-777))) 52 (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) 51 (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) 50 (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) 49 (|has| |#2| (-907 (-1186)))) (($ $ (-777)) 44 (|has| |#2| (-235))) (($ $) 42 (|has| |#2| (-235)))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#2|) 133 (|has| |#2| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 70 (|has| |#2| (-368)))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2431 (((-777) $) 106 (|has| $ (-6 -4448))))) +(((-1132 |#1| |#2| |#3| |#4|) (-141) (-777) (-1058) (-240 |t#1| |t#2|) (-240 |t#1| |t#2|)) (T -1132)) +((-1650 (*1 *1 *2) (-12 (-4 *2 (-1058)) (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-650 *4)) (-4 *4 (-1058)) (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *2 (-240 *3 *4)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (-4 *2 (-1058)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (-4 *2 (-1058)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *2 (-240 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *2 (-240 *3 *4)) (-4 *5 (-240 *3 *4)))) (-4415 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058)))) (-1972 (*1 *1 *1) (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-240 *2 *3)) (-4 *5 (-240 *2 *3)) (-4 *3 (-368)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)) (-4 *4 (-368))))) +(-13 (-233 |t#2|) (-111 |t#2| |t#2|) (-1062 |t#1| |t#1| |t#2| |t#3| |t#4|) (-417 |t#2|) (-382 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-723 |t#2|)) |%noBranch|) (-15 -1650 ($ |t#2|)) (-15 -1668 ($ (-650 |t#2|))) (-15 -3672 (|t#3| $)) (-15 -3142 (|t#2| $)) (-15 -1689 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4450 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4415 (|t#2| $)) (-15 -3646 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-368)) (PROGN (-15 -1972 ((-3 $ "failed") $)) (-15 ** ($ $ (-570)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4450 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 #0=(-413 (-570))) |has| |#2| (-1047 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-233 |#2|) . T) ((-235) |has| |#2| (-235)) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-382 |#2|) . T) ((-417 |#2|) . T) ((-495 |#2|) . T) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-652 $) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-646 |#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-6 (-4450 "*")))) ((-645 (-570)) |has| |#2| (-645 (-570))) ((-645 |#2|) . T) ((-723 |#2|) -2779 (|has| |#2| (-174)) (|has| |#2| (-6 (-4450 "*")))) ((-732) . T) ((-907 (-1186)) |has| |#2| (-907 (-1186))) ((-1062 |#1| |#1| |#2| |#3| |#4|) . T) ((-1047 #0#) |has| |#2| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#2| (-1047 (-570))) ((-1047 |#2|) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1226) . T)) +((-3122 ((|#4| |#4|) 81)) (-2346 ((|#4| |#4|) 76)) (-2834 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|))) |#4| |#3|) 91)) (-3556 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-3920 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2346 (|#4| |#4|)) (-15 -3920 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3122 (|#4| |#4|)) (-15 -3556 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2834 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|))) |#4| |#3|))) (-311) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -1133)) +((-2834 (*1 *2 *3 *4) (-12 (-4 *5 (-311)) (-4 *6 (-378 *5)) (-4 *4 (-378 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) (-5 *1 (-1133 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) (-3556 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-3122 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) +(-10 -7 (-15 -2346 (|#4| |#4|)) (-15 -3920 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3122 (|#4| |#4|)) (-15 -3556 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2834 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2077 (-650 |#3|))) |#4| |#3|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 18)) (-1709 (((-650 |#2|) $) 174)) (-3768 (((-1182 $) $ |#2|) 60) (((-1182 |#1|) $) 49)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 116 (|has| |#1| (-562)))) (-2318 (($ $) 118 (|has| |#1| (-562)))) (-2234 (((-112) $) 120 (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 |#2|)) 213)) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) 167) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 |#2| "failed") $) NIL)) (-3152 ((|#1| $) 165) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) ((|#2| $) NIL)) (-2865 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1885 (($ $) 217)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) 90)) (-1908 (($ $) NIL (|has| |#1| (-458))) (($ $ |#2|) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-537 |#2|) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#1| (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#1| (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-2481 (((-112) $) 20)) (-1700 (((-777) $) 30)) (-1699 (($ (-1182 |#1|) |#2|) 54) (($ (-1182 $) |#2|) 71)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) 38)) (-3925 (($ |#1| (-537 |#2|)) 78) (($ $ |#2| (-777)) 58) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ |#2|) NIL)) (-2302 (((-537 |#2|) $) 205) (((-777) $ |#2|) 206) (((-650 (-777)) $ (-650 |#2|)) 207)) (-2550 (($ (-1 (-537 |#2|) (-537 |#2|)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) 128)) (-4372 (((-3 |#2| "failed") $) 177)) (-1851 (($ $) 216)) (-1860 ((|#1| $) 43)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| |#2|) (|:| -3283 (-777))) "failed") $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) 39)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 148 (|has| |#1| (-458)))) (-1869 (($ (-650 $)) 153 (|has| |#1| (-458))) (($ $ $) 138 (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#1| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-916)))) (-2410 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-562)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-650 |#2|) (-650 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-650 |#2|) (-650 $)) 194)) (-3511 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3519 (($ $ |#2|) 215) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3324 (((-537 |#2|) $) 201) (((-777) $ |#2|) 196) (((-650 (-777)) $ (-650 |#2|)) 199)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| |#1| (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| |#1| (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| |#1| (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-1427 ((|#1| $) 134 (|has| |#1| (-458))) (($ $ |#2|) 137 (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3798 (((-868) $) 159) (($ (-570)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-562))) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2479 (((-650 |#1|) $) 162)) (-3326 ((|#1| $ (-537 |#2|)) 80) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) 87 T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) 123 (|has| |#1| (-562)))) (-1809 (($) 12 T CONST)) (-1817 (($) 14 T CONST)) (-2835 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2923 (((-112) $ $) 106)) (-3037 (($ $ |#1|) 132 (|has| |#1| (-368)))) (-3026 (($ $) 93) (($ $ $) 104)) (-3014 (($ $ $) 55)) (** (($ $ (-928)) 110) (($ $ (-777)) 109)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 96) (($ $ $) 72) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1134 |#1| |#2|) (-956 |#1| (-537 |#2|) |#2|) (-1058) (-856)) (T -1134)) +NIL +(-956 |#1| (-537 |#2|) |#2|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 |#2|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-2774 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 128 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2749 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 124 (|has| |#1| (-38 (-413 (-570)))))) (-4119 (($ $) 156 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3280 (((-959 |#1|) $ (-777)) NIL) (((-959 |#1|) $ (-777) (-777)) NIL)) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-777) $ |#2|) NIL) (((-777) $ |#2| (-777)) NIL)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2343 (((-112) $) NIL)) (-3925 (($ $ (-650 |#2|) (-650 (-537 |#2|))) NIL) (($ $ |#2| (-537 |#2|)) NIL) (($ |#1| (-537 |#2|)) NIL) (($ $ |#2| (-777)) 63) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $) 122 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-1840 (($ $ |#2|) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-2630 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-413 (-570)))))) (-3500 (($ $ (-777)) 16)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4390 (($ $) 120 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (($ $ |#2| $) 106) (($ $ (-650 |#2|) (-650 $)) 99) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL)) (-3519 (($ $ |#2|) 109) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-3324 (((-537 |#2|) $) NIL)) (-3505 (((-1 (-1166 |#3|) |#3|) (-650 |#2|) (-650 (-1166 |#3|))) 87)) (-4129 (($ $) 158 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 126 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 18)) (-3798 (((-868) $) 199) (($ (-570)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-562))) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#2|) 70) (($ |#3|) 68)) (-3326 ((|#1| $ (-537 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL) ((|#3| $ (-777)) 43)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) 164 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) 160 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 168 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-1504 (($ $) 170 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 166 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 162 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 52 T CONST)) (-1817 (($) 62 T CONST)) (-2835 (($ $ |#2|) NIL) (($ $ (-650 |#2|)) NIL) (($ $ |#2| (-777)) NIL) (($ $ (-650 |#2|) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) 201 (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 66)) (** (($ $ (-928)) NIL) (($ $ (-777)) 77) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 112 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 65) (($ $ (-413 (-570))) 117 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 115 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1135 |#1| |#2| |#3|) (-13 (-746 |#1| |#2|) (-10 -8 (-15 -3326 (|#3| $ (-777))) (-15 -3798 ($ |#2|)) (-15 -3798 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3505 ((-1 (-1166 |#3|) |#3|) (-650 |#2|) (-650 (-1166 |#3|)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $ |#2| |#1|)) (-15 -2630 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1058) (-856) (-956 |#1| (-537 |#2|) |#2|)) (T -1135)) +((-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *2 (-956 *4 (-537 *5) *5)) (-5 *1 (-1135 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-856)))) (-3798 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *2 (-856)) (-5 *1 (-1135 *3 *2 *4)) (-4 *4 (-956 *3 (-537 *2) *2)))) (-3798 (*1 *1 *2) (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-956 *3 (-537 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2)) (-4 *2 (-956 *3 (-537 *4) *4)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1166 *7))) (-4 *6 (-856)) (-4 *7 (-956 *5 (-537 *6) *6)) (-4 *5 (-1058)) (-5 *2 (-1 (-1166 *7) *7)) (-5 *1 (-1135 *5 *6 *7)))) (-1840 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-4 *2 (-856)) (-5 *1 (-1135 *3 *2 *4)) (-4 *4 (-956 *3 (-537 *2) *2)))) (-2630 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1135 *4 *3 *5))) (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)) (-4 *3 (-856)) (-5 *1 (-1135 *4 *3 *5)) (-4 *5 (-956 *4 (-537 *3) *3))))) +(-13 (-746 |#1| |#2|) (-10 -8 (-15 -3326 (|#3| $ (-777))) (-15 -3798 ($ |#2|)) (-15 -3798 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3505 ((-1 (-1166 |#3|) |#3|) (-650 |#2|) (-650 (-1166 |#3|)))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $ |#2| |#1|)) (-15 -2630 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2419 (((-112) $ $) 7)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) 86)) (-2242 (((-650 $) (-650 |#4|)) 87) (((-650 $) (-650 |#4|) (-112)) 112)) (-1709 (((-650 |#3|) $) 34)) (-4006 (((-112) $) 27)) (-1797 (((-112) $) 18 (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) 102) (((-112) $) 98)) (-2530 ((|#4| |#4| $) 93)) (-3696 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| $) 127)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) 28)) (-3636 (((-112) $ (-777)) 45)) (-1418 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 80)) (-3734 (($) 46 T CONST)) (-2262 (((-112) $) 23 (|has| |#1| (-562)))) (-2082 (((-112) $ $) 25 (|has| |#1| (-562)))) (-4427 (((-112) $ $) 24 (|has| |#1| (-562)))) (-2418 (((-112) $) 26 (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3572 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 37)) (-3152 (($ (-650 |#4|)) 36)) (-3527 (((-3 $ "failed") $) 83)) (-3099 ((|#4| |#4| $) 90)) (-3552 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2295 ((|#4| |#4| $) 88)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) 106)) (-1413 (((-112) |#4| $) 137)) (-2992 (((-112) |#4| $) 134)) (-2176 (((-112) |#4| $) 138) (((-112) $) 135)) (-2885 (((-650 |#4|) $) 53 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) 105) (((-112) $) 104)) (-4211 ((|#3| $) 35)) (-3846 (((-112) $ (-777)) 44)) (-2282 (((-650 |#4|) $) 54 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 48)) (-3952 (((-650 |#3|) $) 33)) (-2875 (((-112) |#3| $) 32)) (-2063 (((-112) $ (-777)) 43)) (-4122 (((-1168) $) 10)) (-3383 (((-3 |#4| (-650 $)) |#4| |#4| $) 129)) (-3064 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| |#4| $) 128)) (-1723 (((-3 |#4| "failed") $) 84)) (-1559 (((-650 $) |#4| $) 130)) (-3633 (((-3 (-112) (-650 $)) |#4| $) 133)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2842 (((-650 $) |#4| $) 126) (((-650 $) (-650 |#4|) $) 125) (((-650 $) (-650 |#4|) (-650 $)) 124) (((-650 $) |#4| (-650 $)) 123)) (-2745 (($ |#4| $) 118) (($ (-650 |#4|) $) 117)) (-2500 (((-650 |#4|) $) 108)) (-1560 (((-112) |#4| $) 100) (((-112) $) 96)) (-2458 ((|#4| |#4| $) 91)) (-4181 (((-112) $ $) 111)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) 101) (((-112) $) 97)) (-2962 ((|#4| |#4| $) 92)) (-3551 (((-1129) $) 11)) (-3515 (((-3 |#4| "failed") $) 85)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2730 (((-3 $ "failed") $ |#4|) 79)) (-3500 (($ $ |#4|) 78) (((-650 $) |#4| $) 116) (((-650 $) |#4| (-650 $)) 115) (((-650 $) (-650 |#4|) $) 114) (((-650 $) (-650 |#4|) (-650 $)) 113)) (-3116 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) 39)) (-4303 (((-112) $) 42)) (-4359 (($) 41)) (-3324 (((-777) $) 107)) (-3562 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4448)))) (-3964 (($ $) 40)) (-1411 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 61)) (-3677 (($ $ |#3|) 29)) (-3158 (($ $ |#3|) 31)) (-4381 (($ $) 89)) (-4074 (($ $ |#3|) 30)) (-3798 (((-868) $) 12) (((-650 |#4|) $) 38)) (-2136 (((-777) $) 77 (|has| |#3| (-373)))) (-1319 (((-112) $ $) 9)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-4296 (((-650 $) |#4| $) 122) (((-650 $) |#4| (-650 $)) 121) (((-650 $) (-650 |#4|) $) 120) (((-650 $) (-650 |#4|) (-650 $)) 119)) (-1431 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) 82)) (-4428 (((-112) |#4| $) 136)) (-4059 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-1136 |#1| |#2| |#3| |#4|) (-141) (-458) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1136)) +NIL +(-13 (-1118 |t#1| |t#2| |t#3| |t#4|) (-790 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-790 |#1| |#2| |#3| |#4|) . T) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1118 |#1| |#2| |#3| |#4|) . T) ((-1219 |#1| |#2| |#3| |#4|) . T) ((-1226) . T)) +((-3884 (((-650 |#2|) |#1|) 15)) (-1340 (((-650 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-650 |#2|) |#1|) 63)) (-2073 (((-650 |#2|) |#2| |#2| |#2|) 45) (((-650 |#2|) |#1|) 61)) (-3643 ((|#2| |#1|) 56)) (-2144 (((-2 (|:| |solns| (-650 |#2|)) (|:| |maps| (-650 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3794 (((-650 |#2|) |#2| |#2|) 42) (((-650 |#2|) |#1|) 60)) (-3695 (((-650 |#2|) |#2| |#2| |#2| |#2|) 46) (((-650 |#2|) |#1|) 62)) (-3483 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-2508 ((|#2| |#2| |#2| |#2|) 53)) (-1470 ((|#2| |#2| |#2|) 52)) (-1940 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1137 |#1| |#2|) (-10 -7 (-15 -3884 ((-650 |#2|) |#1|)) (-15 -3643 (|#2| |#1|)) (-15 -2144 ((-2 (|:| |solns| (-650 |#2|)) (|:| |maps| (-650 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3794 ((-650 |#2|) |#1|)) (-15 -2073 ((-650 |#2|) |#1|)) (-15 -3695 ((-650 |#2|) |#1|)) (-15 -1340 ((-650 |#2|) |#1|)) (-15 -3794 ((-650 |#2|) |#2| |#2|)) (-15 -2073 ((-650 |#2|) |#2| |#2| |#2|)) (-15 -3695 ((-650 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1340 ((-650 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1470 (|#2| |#2| |#2|)) (-15 -2508 (|#2| |#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3483 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1252 |#2|) (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (T -1137)) +((-3483 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2)))) (-1940 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2)))) (-2508 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2)))) (-1470 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2)))) (-1340 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3)))) (-3695 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3)))) (-2073 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3)))) (-3794 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3)))) (-1340 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) (-2073 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) (-2144 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-2 (|:| |solns| (-650 *5)) (|:| |maps| (-650 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1137 *3 *5)) (-4 *3 (-1252 *5)))) (-3643 (*1 *2 *3) (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2)))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -3884 ((-650 |#2|) |#1|)) (-15 -3643 (|#2| |#1|)) (-15 -2144 ((-2 (|:| |solns| (-650 |#2|)) (|:| |maps| (-650 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3794 ((-650 |#2|) |#1|)) (-15 -2073 ((-650 |#2|) |#1|)) (-15 -3695 ((-650 |#2|) |#1|)) (-15 -1340 ((-650 |#2|) |#1|)) (-15 -3794 ((-650 |#2|) |#2| |#2|)) (-15 -2073 ((-650 |#2|) |#2| |#2| |#2|)) (-15 -3695 ((-650 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1340 ((-650 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1470 (|#2| |#2| |#2|)) (-15 -2508 (|#2| |#2| |#2| |#2|)) (-15 -1940 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3483 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3712 (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|))))) 118) (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186))) 117) (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|)))) 115) (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 113) (((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|)))) 97) (((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))) (-1186)) 98) (((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|))) 92) (((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)) (-1186)) 82)) (-2232 (((-650 (-650 (-320 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 111) (((-650 (-320 |#1|)) (-413 (-959 |#1|)) (-1186)) 54)) (-4416 (((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-413 (-959 |#1|)) (-1186)) 122) (((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186)) 121))) +(((-1138 |#1|) (-10 -7 (-15 -3712 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -3712 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)))) (-15 -3712 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -3712 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -2232 ((-650 (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -2232 ((-650 (-650 (-320 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -4416 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -4416 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-413 (-959 |#1|)) (-1186)))) (-13 (-311) (-148))) (T -1138)) +((-4416 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-4416 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-320 *5)))) (-5 *1 (-1138 *5)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-320 *5))) (-5 *1 (-1138 *5)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *4))))) (-5 *1 (-1138 *4)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-298 (-413 (-959 *5))))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *4))))) (-5 *1 (-1138 *4)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1138 *5)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1138 *5)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4)))) (-3712 (*1 *2 *3 *4) (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1138 *5))))) +(-10 -7 (-15 -3712 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)) (-1186))) (-15 -3712 ((-650 (-298 (-320 |#1|))) (-413 (-959 |#1|)))) (-15 -3712 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -3712 ((-650 (-298 (-320 |#1|))) (-298 (-413 (-959 |#1|))))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-413 (-959 |#1|))))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -3712 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -2232 ((-650 (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -2232 ((-650 (-650 (-320 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -4416 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -4416 ((-1175 (-650 (-320 |#1|)) (-650 (-298 (-320 |#1|)))) (-413 (-959 |#1|)) (-1186)))) +((-2352 (((-413 (-1182 (-320 |#1|))) (-1276 (-320 |#1|)) (-413 (-1182 (-320 |#1|))) (-570)) 38)) (-3459 (((-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|)))) 49))) +(((-1139 |#1|) (-10 -7 (-15 -3459 ((-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))))) (-15 -2352 ((-413 (-1182 (-320 |#1|))) (-1276 (-320 |#1|)) (-413 (-1182 (-320 |#1|))) (-570)))) (-562)) (T -1139)) +((-2352 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-413 (-1182 (-320 *5)))) (-5 *3 (-1276 (-320 *5))) (-5 *4 (-570)) (-4 *5 (-562)) (-5 *1 (-1139 *5)))) (-3459 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-413 (-1182 (-320 *3)))) (-4 *3 (-562)) (-5 *1 (-1139 *3))))) +(-10 -7 (-15 -3459 ((-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))) (-413 (-1182 (-320 |#1|))))) (-15 -2352 ((-413 (-1182 (-320 |#1|))) (-1276 (-320 |#1|)) (-413 (-1182 (-320 |#1|))) (-570)))) +((-3884 (((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-320 |#1|))) (-650 (-1186))) 246) (((-650 (-298 (-320 |#1|))) (-320 |#1|) (-1186)) 23) (((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)) (-1186)) 29) (((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|))) 28) (((-650 (-298 (-320 |#1|))) (-320 |#1|)) 24))) +(((-1140 |#1|) (-10 -7 (-15 -3884 ((-650 (-298 (-320 |#1|))) (-320 |#1|))) (-15 -3884 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)))) (-15 -3884 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)) (-1186))) (-15 -3884 ((-650 (-298 (-320 |#1|))) (-320 |#1|) (-1186))) (-15 -3884 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-320 |#1|))) (-650 (-1186))))) (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (T -1140)) +((-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1186))) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1140 *5)) (-5 *3 (-650 (-298 (-320 *5)))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5)) (-5 *3 (-320 *5)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5)) (-5 *3 (-298 (-320 *5))))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4)) (-5 *3 (-298 (-320 *4))))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4)) (-5 *3 (-320 *4))))) +(-10 -7 (-15 -3884 ((-650 (-298 (-320 |#1|))) (-320 |#1|))) (-15 -3884 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)))) (-15 -3884 ((-650 (-298 (-320 |#1|))) (-298 (-320 |#1|)) (-1186))) (-15 -3884 ((-650 (-298 (-320 |#1|))) (-320 |#1|) (-1186))) (-15 -3884 ((-650 (-650 (-298 (-320 |#1|)))) (-650 (-298 (-320 |#1|))) (-650 (-1186))))) +((-4235 ((|#2| |#2|) 30 (|has| |#1| (-856))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3631 ((|#2| |#2|) 29 (|has| |#1| (-856))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -3631 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4235 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-856)) (PROGN (-15 -3631 (|#2| |#2|)) (-15 -4235 (|#2| |#2|))) |%noBranch|)) (-1226) (-13 (-610 (-570) |#1|) (-10 -7 (-6 -4448) (-6 -4449)))) (T -1141)) +((-4235 (*1 *2 *2) (-12 (-4 *3 (-856)) (-4 *3 (-1226)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4448) (-6 -4449)))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-856)) (-4 *3 (-1226)) (-5 *1 (-1141 *3 *2)) (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4448) (-6 -4449)))))) (-4235 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4448) (-6 -4449)))))) (-3631 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4448) (-6 -4449))))))) +(-10 -7 (-15 -3631 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -4235 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-856)) (PROGN (-15 -3631 (|#2| |#2|)) (-15 -4235 (|#2| |#2|))) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-4384 (((-1174 3 |#1|) $) 141)) (-3972 (((-112) $) 101)) (-3764 (($ $ (-650 (-950 |#1|))) 44) (($ $ (-650 (-650 |#1|))) 104) (($ (-650 (-950 |#1|))) 103) (((-650 (-950 |#1|)) $) 102)) (-1554 (((-112) $) 72)) (-3286 (($ $ (-950 |#1|)) 76) (($ $ (-650 |#1|)) 81) (($ $ (-777)) 83) (($ (-950 |#1|)) 77) (((-950 |#1|) $) 75)) (-4355 (((-2 (|:| -3958 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777))) $) 139)) (-4058 (((-777) $) 53)) (-1646 (((-777) $) 52)) (-4344 (($ $ (-777) (-950 |#1|)) 67)) (-2562 (((-112) $) 111)) (-4410 (($ $ (-650 (-650 (-950 |#1|))) (-650 (-173)) (-173)) 118) (($ $ (-650 (-650 (-650 |#1|))) (-650 (-173)) (-173)) 120) (($ $ (-650 (-650 (-950 |#1|))) (-112) (-112)) 115) (($ $ (-650 (-650 (-650 |#1|))) (-112) (-112)) 127) (($ (-650 (-650 (-950 |#1|)))) 116) (($ (-650 (-650 (-950 |#1|))) (-112) (-112)) 117) (((-650 (-650 (-950 |#1|))) $) 114)) (-2735 (($ (-650 $)) 56) (($ $ $) 57)) (-1608 (((-650 (-173)) $) 133)) (-3318 (((-650 (-950 |#1|)) $) 130)) (-3584 (((-650 (-650 (-173))) $) 132)) (-4232 (((-650 (-650 (-650 (-950 |#1|)))) $) NIL)) (-4248 (((-650 (-650 (-650 (-777)))) $) 131)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2221 (((-777) $ (-650 (-950 |#1|))) 65)) (-3810 (((-112) $) 84)) (-2519 (($ $ (-650 (-950 |#1|))) 86) (($ $ (-650 (-650 |#1|))) 92) (($ (-650 (-950 |#1|))) 87) (((-650 (-950 |#1|)) $) 85)) (-2587 (($) 48) (($ (-1174 3 |#1|)) 49)) (-3964 (($ $) 63)) (-3197 (((-650 $) $) 62)) (-3276 (($ (-650 $)) 59)) (-2239 (((-650 $) $) 61)) (-3798 (((-868) $) 146)) (-3843 (((-112) $) 94)) (-4200 (($ $ (-650 (-950 |#1|))) 96) (($ $ (-650 (-650 |#1|))) 99) (($ (-650 (-950 |#1|))) 97) (((-650 (-950 |#1|)) $) 95)) (-2548 (($ $) 140)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1142 |#1|) (-1143 |#1|) (-1058)) (T -1142)) +NIL +(-1143 |#1|) +((-2419 (((-112) $ $) 7)) (-4384 (((-1174 3 |#1|) $) 14)) (-3972 (((-112) $) 30)) (-3764 (($ $ (-650 (-950 |#1|))) 34) (($ $ (-650 (-650 |#1|))) 33) (($ (-650 (-950 |#1|))) 32) (((-650 (-950 |#1|)) $) 31)) (-1554 (((-112) $) 45)) (-3286 (($ $ (-950 |#1|)) 50) (($ $ (-650 |#1|)) 49) (($ $ (-777)) 48) (($ (-950 |#1|)) 47) (((-950 |#1|) $) 46)) (-4355 (((-2 (|:| -3958 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777))) $) 16)) (-4058 (((-777) $) 59)) (-1646 (((-777) $) 60)) (-4344 (($ $ (-777) (-950 |#1|)) 51)) (-2562 (((-112) $) 22)) (-4410 (($ $ (-650 (-650 (-950 |#1|))) (-650 (-173)) (-173)) 29) (($ $ (-650 (-650 (-650 |#1|))) (-650 (-173)) (-173)) 28) (($ $ (-650 (-650 (-950 |#1|))) (-112) (-112)) 27) (($ $ (-650 (-650 (-650 |#1|))) (-112) (-112)) 26) (($ (-650 (-650 (-950 |#1|)))) 25) (($ (-650 (-650 (-950 |#1|))) (-112) (-112)) 24) (((-650 (-650 (-950 |#1|))) $) 23)) (-2735 (($ (-650 $)) 58) (($ $ $) 57)) (-1608 (((-650 (-173)) $) 17)) (-3318 (((-650 (-950 |#1|)) $) 21)) (-3584 (((-650 (-650 (-173))) $) 18)) (-4232 (((-650 (-650 (-650 (-950 |#1|)))) $) 19)) (-4248 (((-650 (-650 (-650 (-777)))) $) 20)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-2221 (((-777) $ (-650 (-950 |#1|))) 52)) (-3810 (((-112) $) 40)) (-2519 (($ $ (-650 (-950 |#1|))) 44) (($ $ (-650 (-650 |#1|))) 43) (($ (-650 (-950 |#1|))) 42) (((-650 (-950 |#1|)) $) 41)) (-2587 (($) 62) (($ (-1174 3 |#1|)) 61)) (-3964 (($ $) 53)) (-3197 (((-650 $) $) 54)) (-3276 (($ (-650 $)) 56)) (-2239 (((-650 $) $) 55)) (-3798 (((-868) $) 12)) (-3843 (((-112) $) 35)) (-4200 (($ $ (-650 (-950 |#1|))) 39) (($ $ (-650 (-650 |#1|))) 38) (($ (-650 (-950 |#1|))) 37) (((-650 (-950 |#1|)) $) 36)) (-2548 (($ $) 15)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-1143 |#1|) (-141) (-1058)) (T -1143)) +((-3798 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-868)))) (-2587 (*1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-2587 (*1 *1 *2) (-12 (-5 *2 (-1174 3 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) (-2735 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-2735 (*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-2239 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)))) (-3197 (*1 *2 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)))) (-3964 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-2221 (*1 *2 *1 *3) (-12 (-5 *3 (-650 (-950 *4))) (-4 *1 (-1143 *4)) (-4 *4 (-1058)) (-5 *2 (-777)))) (-4344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-950 *4)) (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3286 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3286 (*1 *1 *2) (-12 (-5 *2 (-950 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-950 *3)))) (-1554 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-4200 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-4200 (*1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-4410 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-650 (-950 *5)))) (-5 *3 (-650 (-173))) (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058)))) (-4410 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-650 (-173))) (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058)))) (-4410 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) (-4410 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-112)) (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) (-4410 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 *3)))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) (-4410 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) (-4 *4 (-1058)) (-4 *1 (-1143 *4)))) (-4410 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-950 *3)))))) (-2562 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-650 (-777))))))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-650 (-950 *3))))))) (-3584 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-173)))))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-173))))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -3958 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777)))))) (-2548 (*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-1174 3 *3))))) +(-13 (-1109) (-10 -8 (-15 -2587 ($)) (-15 -2587 ($ (-1174 3 |t#1|))) (-15 -1646 ((-777) $)) (-15 -4058 ((-777) $)) (-15 -2735 ($ (-650 $))) (-15 -2735 ($ $ $)) (-15 -3276 ($ (-650 $))) (-15 -2239 ((-650 $) $)) (-15 -3197 ((-650 $) $)) (-15 -3964 ($ $)) (-15 -2221 ((-777) $ (-650 (-950 |t#1|)))) (-15 -4344 ($ $ (-777) (-950 |t#1|))) (-15 -3286 ($ $ (-950 |t#1|))) (-15 -3286 ($ $ (-650 |t#1|))) (-15 -3286 ($ $ (-777))) (-15 -3286 ($ (-950 |t#1|))) (-15 -3286 ((-950 |t#1|) $)) (-15 -1554 ((-112) $)) (-15 -2519 ($ $ (-650 (-950 |t#1|)))) (-15 -2519 ($ $ (-650 (-650 |t#1|)))) (-15 -2519 ($ (-650 (-950 |t#1|)))) (-15 -2519 ((-650 (-950 |t#1|)) $)) (-15 -3810 ((-112) $)) (-15 -4200 ($ $ (-650 (-950 |t#1|)))) (-15 -4200 ($ $ (-650 (-650 |t#1|)))) (-15 -4200 ($ (-650 (-950 |t#1|)))) (-15 -4200 ((-650 (-950 |t#1|)) $)) (-15 -3843 ((-112) $)) (-15 -3764 ($ $ (-650 (-950 |t#1|)))) (-15 -3764 ($ $ (-650 (-650 |t#1|)))) (-15 -3764 ($ (-650 (-950 |t#1|)))) (-15 -3764 ((-650 (-950 |t#1|)) $)) (-15 -3972 ((-112) $)) (-15 -4410 ($ $ (-650 (-650 (-950 |t#1|))) (-650 (-173)) (-173))) (-15 -4410 ($ $ (-650 (-650 (-650 |t#1|))) (-650 (-173)) (-173))) (-15 -4410 ($ $ (-650 (-650 (-950 |t#1|))) (-112) (-112))) (-15 -4410 ($ $ (-650 (-650 (-650 |t#1|))) (-112) (-112))) (-15 -4410 ($ (-650 (-650 (-950 |t#1|))))) (-15 -4410 ($ (-650 (-650 (-950 |t#1|))) (-112) (-112))) (-15 -4410 ((-650 (-650 (-950 |t#1|))) $)) (-15 -2562 ((-112) $)) (-15 -3318 ((-650 (-950 |t#1|)) $)) (-15 -4248 ((-650 (-650 (-650 (-777)))) $)) (-15 -4232 ((-650 (-650 (-650 (-950 |t#1|)))) $)) (-15 -3584 ((-650 (-650 (-173))) $)) (-15 -1608 ((-650 (-173)) $)) (-15 -4355 ((-2 (|:| -3958 (-777)) (|:| |curves| (-777)) (|:| |polygons| (-777)) (|:| |constructs| (-777))) $)) (-15 -2548 ($ $)) (-15 -4384 ((-1174 3 |t#1|) $)) (-15 -3798 ((-868) $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 184) (($ (-1191)) NIL) (((-1191) $) 7)) (-1798 (((-112) $ (|[\|\|]| (-530))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-682))) 27) (((-112) $ (|[\|\|]| (-1286))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-612))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1124))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-687))) 55) (((-112) $ (|[\|\|]| (-523))) 59) (((-112) $ (|[\|\|]| (-1075))) 63) (((-112) $ (|[\|\|]| (-1287))) 67) (((-112) $ (|[\|\|]| (-531))) 71) (((-112) $ (|[\|\|]| (-1160))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-677))) 83) (((-112) $ (|[\|\|]| (-315))) 87) (((-112) $ (|[\|\|]| (-1045))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-979))) 99) (((-112) $ (|[\|\|]| (-1082))) 103) (((-112) $ (|[\|\|]| (-1099))) 107) (((-112) $ (|[\|\|]| (-1105))) 111) (((-112) $ (|[\|\|]| (-632))) 115) (((-112) $ (|[\|\|]| (-1176))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-484))) 131) (((-112) $ (|[\|\|]| (-598))) 135) (((-112) $ (|[\|\|]| (-512))) 139) (((-112) $ (|[\|\|]| (-1168))) 143) (((-112) $ (|[\|\|]| (-570))) 147)) (-1319 (((-112) $ $) NIL)) (-3994 (((-530) $) 20) (((-220) $) 24) (((-682) $) 28) (((-1286) $) 32) (((-139) $) 36) (((-612) $) 40) (((-134) $) 44) (((-1124) $) 48) (((-96) $) 52) (((-687) $) 56) (((-523) $) 60) (((-1075) $) 64) (((-1287) $) 68) (((-531) $) 72) (((-1160) $) 76) (((-155) $) 80) (((-677) $) 84) (((-315) $) 88) (((-1045) $) 92) (((-182) $) 96) (((-979) $) 100) (((-1082) $) 104) (((-1099) $) 108) (((-1105) $) 112) (((-632) $) 116) (((-1176) $) 120) (((-157) $) 124) (((-138) $) 128) (((-484) $) 132) (((-598) $) 136) (((-512) $) 140) (((-1168) $) 144) (((-570) $) 148)) (-2923 (((-112) $ $) NIL))) +(((-1144) (-1146)) (T -1144)) +NIL +(-1146) +((-2048 (((-650 (-1191)) (-1168)) 9))) +(((-1145) (-10 -7 (-15 -2048 ((-650 (-1191)) (-1168))))) (T -1145)) +((-2048 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-1145))))) +(-10 -7 (-15 -2048 ((-650 (-1191)) (-1168)))) +((-2419 (((-112) $ $) 7)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-1191)) 17) (((-1191) $) 16)) (-1798 (((-112) $ (|[\|\|]| (-530))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-682))) 81) (((-112) $ (|[\|\|]| (-1286))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-612))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1124))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-687))) 67) (((-112) $ (|[\|\|]| (-523))) 65) (((-112) $ (|[\|\|]| (-1075))) 63) (((-112) $ (|[\|\|]| (-1287))) 61) (((-112) $ (|[\|\|]| (-531))) 59) (((-112) $ (|[\|\|]| (-1160))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-677))) 53) (((-112) $ (|[\|\|]| (-315))) 51) (((-112) $ (|[\|\|]| (-1045))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-979))) 45) (((-112) $ (|[\|\|]| (-1082))) 43) (((-112) $ (|[\|\|]| (-1099))) 41) (((-112) $ (|[\|\|]| (-1105))) 39) (((-112) $ (|[\|\|]| (-632))) 37) (((-112) $ (|[\|\|]| (-1176))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-484))) 29) (((-112) $ (|[\|\|]| (-598))) 27) (((-112) $ (|[\|\|]| (-512))) 25) (((-112) $ (|[\|\|]| (-1168))) 23) (((-112) $ (|[\|\|]| (-570))) 21)) (-1319 (((-112) $ $) 9)) (-3994 (((-530) $) 84) (((-220) $) 82) (((-682) $) 80) (((-1286) $) 78) (((-139) $) 76) (((-612) $) 74) (((-134) $) 72) (((-1124) $) 70) (((-96) $) 68) (((-687) $) 66) (((-523) $) 64) (((-1075) $) 62) (((-1287) $) 60) (((-531) $) 58) (((-1160) $) 56) (((-155) $) 54) (((-677) $) 52) (((-315) $) 50) (((-1045) $) 48) (((-182) $) 46) (((-979) $) 44) (((-1082) $) 42) (((-1099) $) 40) (((-1105) $) 38) (((-632) $) 36) (((-1176) $) 34) (((-157) $) 32) (((-138) $) 30) (((-484) $) 28) (((-598) $) 26) (((-512) $) 24) (((-1168) $) 22) (((-570) $) 20)) (-2923 (((-112) $ $) 6))) +(((-1146) (-141)) (T -1146)) +((-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-530)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-220)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-682)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1286))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1286)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-139)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-612)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-134)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1124)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-96)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-687)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-523)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1075)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1287))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1287)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-531)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1160)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-155)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-677)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-315))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-315)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1045)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-182)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-979)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1082)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1099)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1105)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-632))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-632)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1176)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-157)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-138)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-484)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-598))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-598)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-512)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1168)))) (-1798 (*1 *2 *1 *3) (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-570))))) +(-13 (-1092) (-1271) (-10 -8 (-15 -1798 ((-112) $ (|[\|\|]| (-530)))) (-15 -3994 ((-530) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-220)))) (-15 -3994 ((-220) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-682)))) (-15 -3994 ((-682) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1286)))) (-15 -3994 ((-1286) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-139)))) (-15 -3994 ((-139) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-612)))) (-15 -3994 ((-612) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-134)))) (-15 -3994 ((-134) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1124)))) (-15 -3994 ((-1124) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-96)))) (-15 -3994 ((-96) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-687)))) (-15 -3994 ((-687) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-523)))) (-15 -3994 ((-523) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1075)))) (-15 -3994 ((-1075) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1287)))) (-15 -3994 ((-1287) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-531)))) (-15 -3994 ((-531) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3994 ((-1160) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-155)))) (-15 -3994 ((-155) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-677)))) (-15 -3994 ((-677) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-315)))) (-15 -3994 ((-315) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1045)))) (-15 -3994 ((-1045) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-182)))) (-15 -3994 ((-182) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-979)))) (-15 -3994 ((-979) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1082)))) (-15 -3994 ((-1082) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1099)))) (-15 -3994 ((-1099) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1105)))) (-15 -3994 ((-1105) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-632)))) (-15 -3994 ((-632) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1176)))) (-15 -3994 ((-1176) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-157)))) (-15 -3994 ((-157) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-138)))) (-15 -3994 ((-138) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-484)))) (-15 -3994 ((-484) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-598)))) (-15 -3994 ((-598) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-512)))) (-15 -3994 ((-512) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-1168)))) (-15 -3994 ((-1168) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-570)))) (-15 -3994 ((-570) $)))) +(((-93) . T) ((-102) . T) ((-622 #0=(-1191)) . T) ((-619 (-868)) . T) ((-619 #0#) . T) ((-496 #0#) . T) ((-1109) . T) ((-1092) . T) ((-1271) . T)) +((-3375 (((-1281) (-650 (-868))) 22) (((-1281) (-868)) 21)) (-4327 (((-1281) (-650 (-868))) 20) (((-1281) (-868)) 19)) (-3363 (((-1281) (-650 (-868))) 18) (((-1281) (-868)) 10) (((-1281) (-1168) (-868)) 16))) +(((-1147) (-10 -7 (-15 -3363 ((-1281) (-1168) (-868))) (-15 -3363 ((-1281) (-868))) (-15 -4327 ((-1281) (-868))) (-15 -3375 ((-1281) (-868))) (-15 -3363 ((-1281) (-650 (-868)))) (-15 -4327 ((-1281) (-650 (-868)))) (-15 -3375 ((-1281) (-650 (-868)))))) (T -1147)) +((-3375 (*1 *2 *3) (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1281)) (-5 *1 (-1147)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1281)) (-5 *1 (-1147)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1281)) (-5 *1 (-1147)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) (-3363 (*1 *2 *3 *4) (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147))))) +(-10 -7 (-15 -3363 ((-1281) (-1168) (-868))) (-15 -3363 ((-1281) (-868))) (-15 -4327 ((-1281) (-868))) (-15 -3375 ((-1281) (-868))) (-15 -3363 ((-1281) (-650 (-868)))) (-15 -4327 ((-1281) (-650 (-868)))) (-15 -3375 ((-1281) (-650 (-868))))) +((-3951 (($ $ $) 10)) (-3399 (($ $) 9)) (-4291 (($ $ $) 13)) (-2405 (($ $ $) 15)) (-3520 (($ $ $) 12)) (-3784 (($ $ $) 14)) (-3252 (($ $) 17)) (-3727 (($ $) 16)) (-2216 (($ $) 6)) (-3563 (($ $ $) 11) (($ $) 7)) (-2098 (($ $ $) 8))) +(((-1148) (-141)) (T -1148)) +((-3252 (*1 *1 *1) (-4 *1 (-1148))) (-3727 (*1 *1 *1) (-4 *1 (-1148))) (-2405 (*1 *1 *1 *1) (-4 *1 (-1148))) (-3784 (*1 *1 *1 *1) (-4 *1 (-1148))) (-4291 (*1 *1 *1 *1) (-4 *1 (-1148))) (-3520 (*1 *1 *1 *1) (-4 *1 (-1148))) (-3563 (*1 *1 *1 *1) (-4 *1 (-1148))) (-3951 (*1 *1 *1 *1) (-4 *1 (-1148))) (-3399 (*1 *1 *1) (-4 *1 (-1148))) (-2098 (*1 *1 *1 *1) (-4 *1 (-1148))) (-3563 (*1 *1 *1) (-4 *1 (-1148))) (-2216 (*1 *1 *1) (-4 *1 (-1148)))) +(-13 (-10 -8 (-15 -2216 ($ $)) (-15 -3563 ($ $)) (-15 -2098 ($ $ $)) (-15 -3399 ($ $)) (-15 -3951 ($ $ $)) (-15 -3563 ($ $ $)) (-15 -3520 ($ $ $)) (-15 -4291 ($ $ $)) (-15 -3784 ($ $ $)) (-15 -2405 ($ $ $)) (-15 -3727 ($ $)) (-15 -3252 ($ $)))) +((-2419 (((-112) $ $) 44)) (-2190 ((|#1| $) 17)) (-3554 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2532 (((-112) $) 19)) (-2854 (($ $ |#1|) 30)) (-1784 (($ $ (-112)) 32)) (-3783 (($ $) 33)) (-2966 (($ $ |#2|) 31)) (-4122 (((-1168) $) NIL)) (-1614 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3551 (((-1129) $) NIL)) (-4303 (((-112) $) 16)) (-4359 (($) 13)) (-3964 (($ $) 29)) (-3811 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3665 |#2|))) 23) (((-650 $) (-650 (-2 (|:| |val| |#1|) (|:| -3665 |#2|)))) 26) (((-650 $) |#1| (-650 |#2|)) 28)) (-2388 ((|#2| $) 18)) (-3798 (((-868) $) 53)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 42))) +(((-1149 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -4359 ($)) (-15 -4303 ((-112) $)) (-15 -2190 (|#1| $)) (-15 -2388 (|#2| $)) (-15 -2532 ((-112) $)) (-15 -3811 ($ |#1| |#2| (-112))) (-15 -3811 ($ |#1| |#2|)) (-15 -3811 ($ (-2 (|:| |val| |#1|) (|:| -3665 |#2|)))) (-15 -3811 ((-650 $) (-650 (-2 (|:| |val| |#1|) (|:| -3665 |#2|))))) (-15 -3811 ((-650 $) |#1| (-650 |#2|))) (-15 -3964 ($ $)) (-15 -2854 ($ $ |#1|)) (-15 -2966 ($ $ |#2|)) (-15 -1784 ($ $ (-112))) (-15 -3783 ($ $)) (-15 -1614 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3554 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1109) (-34)) (-13 (-1109) (-34))) (T -1149)) +((-4359 (*1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-2190 (*1 *2 *1) (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *2 *3)) (-4 *3 (-13 (-1109) (-34))))) (-2388 (*1 *2 *1) (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-13 (-1109) (-34))))) (-2532 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-3811 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-3811 (*1 *1 *2 *3) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3665 *4))) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1149 *3 *4)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-650 (-2 (|:| |val| *4) (|:| -3665 *5)))) (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-650 (-1149 *4 *5))) (-5 *1 (-1149 *4 *5)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *4 (-650 *5)) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-650 (-1149 *3 *5))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-13 (-1109) (-34))))) (-3964 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2854 (*1 *1 *1 *2) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-2966 (*1 *1 *1 *2) (-12 (-5 *1 (-1149 *3 *2)) (-4 *3 (-13 (-1109) (-34))) (-4 *2 (-13 (-1109) (-34))))) (-1784 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-1614 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *5 *6)))) (-3554 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34)))))) +(-13 (-1109) (-10 -8 (-15 -4359 ($)) (-15 -4303 ((-112) $)) (-15 -2190 (|#1| $)) (-15 -2388 (|#2| $)) (-15 -2532 ((-112) $)) (-15 -3811 ($ |#1| |#2| (-112))) (-15 -3811 ($ |#1| |#2|)) (-15 -3811 ($ (-2 (|:| |val| |#1|) (|:| -3665 |#2|)))) (-15 -3811 ((-650 $) (-650 (-2 (|:| |val| |#1|) (|:| -3665 |#2|))))) (-15 -3811 ((-650 $) |#1| (-650 |#2|))) (-15 -3964 ($ $)) (-15 -2854 ($ $ |#1|)) (-15 -2966 ($ $ |#2|)) (-15 -1784 ($ $ (-112))) (-15 -3783 ($ $)) (-15 -1614 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3554 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2419 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-2190 (((-1149 |#1| |#2|) $) 27)) (-3061 (($ $) 91)) (-1954 (((-112) (-1149 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-2801 (($ $ $ (-650 (-1149 |#1| |#2|))) 108) (($ $ $ (-650 (-1149 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3636 (((-112) $ (-777)) NIL)) (-3470 (((-1149 |#1| |#2|) $ (-1149 |#1| |#2|)) 46 (|has| $ (-6 -4449)))) (-3945 (((-1149 |#1| |#2|) $ "value" (-1149 |#1| |#2|)) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 44 (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-1712 (((-650 (-2 (|:| |val| |#1|) (|:| -3665 |#2|))) $) 95)) (-2571 (($ (-1149 |#1| |#2|) $) 42)) (-1697 (($ (-1149 |#1| |#2|) $) 34)) (-2885 (((-650 (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 54)) (-3022 (((-112) (-1149 |#1| |#2|) $) 97)) (-3471 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 (-1149 |#1| |#2|)) $) 58 (|has| $ (-6 -4448)))) (-1935 (((-112) (-1149 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-1149 |#1| |#2|) (-1109))))) (-3837 (($ (-1 (-1149 |#1| |#2|) (-1149 |#1| |#2|)) $) 50 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-1149 |#1| |#2|) (-1149 |#1| |#2|)) $) 49)) (-2063 (((-112) $ (-777)) NIL)) (-2278 (((-650 (-1149 |#1| |#2|)) $) 56)) (-4142 (((-112) $) 45)) (-4122 (((-1168) $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-3551 (((-1129) $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-2691 (((-3 $ "failed") $) 89)) (-3116 (((-112) (-1 (-112) (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-1149 |#1| |#2|)))) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109)))) (($ $ (-298 (-1149 |#1| |#2|))) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109)))) (($ $ (-1149 |#1| |#2|) (-1149 |#1| |#2|)) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109)))) (($ $ (-650 (-1149 |#1| |#2|)) (-650 (-1149 |#1| |#2|))) NIL (-12 (|has| (-1149 |#1| |#2|) (-313 (-1149 |#1| |#2|))) (|has| (-1149 |#1| |#2|) (-1109))))) (-3123 (((-112) $ $) 53)) (-4303 (((-112) $) 24)) (-4359 (($) 26)) (-1872 (((-1149 |#1| |#2|) $ "value") NIL)) (-3536 (((-570) $ $) NIL)) (-3680 (((-112) $) 47)) (-3562 (((-777) (-1 (-112) (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4448))) (((-777) (-1149 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-1149 |#1| |#2|) (-1109))))) (-3964 (($ $) 52)) (-3811 (($ (-1149 |#1| |#2|)) 10) (($ |#1| |#2| (-650 $)) 13) (($ |#1| |#2| (-650 (-1149 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-650 |#2|)) 18)) (-4139 (((-650 |#2|) $) 96)) (-3798 (((-868) $) 87 (|has| (-1149 |#1| |#2|) (-619 (-868))))) (-1974 (((-650 $) $) 31)) (-2650 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-1319 (((-112) $ $) NIL (|has| (-1149 |#1| |#2|) (-1109)))) (-1431 (((-112) (-1 (-112) (-1149 |#1| |#2|)) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 70 (|has| (-1149 |#1| |#2|) (-1109)))) (-2431 (((-777) $) 64 (|has| $ (-6 -4448))))) +(((-1150 |#1| |#2|) (-13 (-1019 (-1149 |#1| |#2|)) (-10 -8 (-6 -4449) (-6 -4448) (-15 -2691 ((-3 $ "failed") $)) (-15 -3061 ($ $)) (-15 -3811 ($ (-1149 |#1| |#2|))) (-15 -3811 ($ |#1| |#2| (-650 $))) (-15 -3811 ($ |#1| |#2| (-650 (-1149 |#1| |#2|)))) (-15 -3811 ($ |#1| |#2| |#1| (-650 |#2|))) (-15 -4139 ((-650 |#2|) $)) (-15 -1712 ((-650 (-2 (|:| |val| |#1|) (|:| -3665 |#2|))) $)) (-15 -3022 ((-112) (-1149 |#1| |#2|) $)) (-15 -1954 ((-112) (-1149 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1697 ($ (-1149 |#1| |#2|) $)) (-15 -2571 ($ (-1149 |#1| |#2|) $)) (-15 -2801 ($ $ $ (-650 (-1149 |#1| |#2|)))) (-15 -2801 ($ $ $ (-650 (-1149 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1109) (-34)) (-13 (-1109) (-34))) (T -1150)) +((-2691 (*1 *1 *1) (|partial| -12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-3061 (*1 *1 *1) (-12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-3811 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-650 (-1150 *2 *3))) (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) (-3811 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-650 (-1149 *2 *3))) (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))) (-5 *1 (-1150 *2 *3)))) (-3811 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-650 *3)) (-4 *3 (-13 (-1109) (-34))) (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-650 *4)) (-5 *1 (-1150 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) (-5 *1 (-1150 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))))) (-3022 (*1 *2 *3 *1) (-12 (-5 *3 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1150 *4 *5)))) (-1954 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1149 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1150 *5 *6)))) (-1697 (*1 *1 *2 *1) (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-2571 (*1 *1 *2 *1) (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-2801 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-650 (-1149 *3 *4))) (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) (-2801 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-1149 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) (-5 *1 (-1150 *4 *5))))) +(-13 (-1019 (-1149 |#1| |#2|)) (-10 -8 (-6 -4449) (-6 -4448) (-15 -2691 ((-3 $ "failed") $)) (-15 -3061 ($ $)) (-15 -3811 ($ (-1149 |#1| |#2|))) (-15 -3811 ($ |#1| |#2| (-650 $))) (-15 -3811 ($ |#1| |#2| (-650 (-1149 |#1| |#2|)))) (-15 -3811 ($ |#1| |#2| |#1| (-650 |#2|))) (-15 -4139 ((-650 |#2|) $)) (-15 -1712 ((-650 (-2 (|:| |val| |#1|) (|:| -3665 |#2|))) $)) (-15 -3022 ((-112) (-1149 |#1| |#2|) $)) (-15 -1954 ((-112) (-1149 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1697 ($ (-1149 |#1| |#2|) $)) (-15 -2571 ($ (-1149 |#1| |#2|) $)) (-15 -2801 ($ $ $ (-650 (-1149 |#1| |#2|)))) (-15 -2801 ($ $ $ (-650 (-1149 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3933 (($ $) NIL)) (-3142 ((|#2| $) NIL)) (-1630 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3791 (($ (-695 |#2|)) 56)) (-2525 (((-112) $) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1650 (($ |#2|) 14)) (-3734 (($) NIL T CONST)) (-3081 (($ $) 69 (|has| |#2| (-311)))) (-1774 (((-242 |#1| |#2|) $ (-570)) 42)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 |#2| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) ((|#2| $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) 83)) (-3979 (((-777) $) 71 (|has| |#2| (-562)))) (-3778 ((|#2| $ (-570) (-570)) NIL)) (-2885 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-2481 (((-112) $) NIL)) (-2758 (((-777) $) 73 (|has| |#2| (-562)))) (-3766 (((-650 (-242 |#1| |#2|)) $) 77 (|has| |#2| (-562)))) (-3227 (((-777) $) NIL)) (-4300 (($ |#2|) 25)) (-3239 (((-777) $) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-3646 ((|#2| $) 67 (|has| |#2| (-6 (-4450 "*"))))) (-1515 (((-570) $) NIL)) (-2523 (((-570) $) NIL)) (-2282 (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-1579 (((-570) $) NIL)) (-4110 (((-570) $) NIL)) (-2433 (($ (-650 (-650 |#2|))) 37)) (-3837 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2139 (((-650 (-650 |#2|)) $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-1972 (((-3 $ "failed") $) 80 (|has| |#2| (-368)))) (-3551 (((-1129) $) NIL)) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562)))) (-3116 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ (-570) (-570) |#2|) NIL) ((|#2| $ (-570) (-570)) NIL)) (-3519 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-1689 ((|#2| $) NIL)) (-1668 (($ (-650 |#2|)) 50)) (-2881 (((-112) $) NIL)) (-3672 (((-242 |#1| |#2|) $) NIL)) (-4415 ((|#2| $) 65 (|has| |#2| (-6 (-4450 "*"))))) (-3562 (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3964 (($ $) NIL)) (-1411 (((-542) $) 89 (|has| |#2| (-620 (-542))))) (-4357 (((-242 |#1| |#2|) $ (-570)) 44)) (-3798 (((-868) $) 47) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#2| (-1047 (-413 (-570))))) (($ |#2|) NIL) (((-695 |#2|) $) 52)) (-2862 (((-777)) 23 T CONST)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2501 (((-112) $) NIL)) (-1809 (($) 16 T CONST)) (-1817 (($) 21 T CONST)) (-2835 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-777)) NIL (|has| |#2| (-235))) (($ $) NIL (|has| |#2| (-235)))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) 63) (($ $ (-570)) 82 (|has| |#2| (-368)))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-242 |#1| |#2|) $ (-242 |#1| |#2|)) 59) (((-242 |#1| |#2|) (-242 |#1| |#2|) $) 61)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1151 |#1| |#2|) (-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-10 -8 (-15 -4300 ($ |#2|)) (-15 -3933 ($ $)) (-15 -3791 ($ (-695 |#2|))) (IF (|has| |#2| (-6 (-4450 "*"))) (-6 -4437) |%noBranch|) (IF (|has| |#2| (-6 (-4450 "*"))) (IF (|has| |#2| (-6 -4445)) (-6 -4445) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) (-777) (-1058)) (T -1151)) +((-4300 (*1 *1 *2) (-12 (-5 *1 (-1151 *3 *2)) (-14 *3 (-777)) (-4 *2 (-1058)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-777)) (-4 *3 (-1058)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-695 *4)) (-4 *4 (-1058)) (-5 *1 (-1151 *3 *4)) (-14 *3 (-777))))) +(-13 (-1132 |#1| |#2| (-242 |#1| |#2|) (-242 |#1| |#2|)) (-619 (-695 |#2|)) (-10 -8 (-15 -4300 ($ |#2|)) (-15 -3933 ($ $)) (-15 -3791 ($ (-695 |#2|))) (IF (|has| |#2| (-6 (-4450 "*"))) (-6 -4437) |%noBranch|) (IF (|has| |#2| (-6 (-4450 "*"))) (IF (|has| |#2| (-6 -4445)) (-6 -4445) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-620 (-542))) (-6 (-620 (-542))) |%noBranch|))) +((-1385 (($ $) 19)) (-3205 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2531 (((-112) $ $) 24)) (-1956 (($ $) 17)) (-1872 (((-145) $ (-570) (-145)) NIL) (((-145) $ (-570)) NIL) (($ $ (-1243 (-570))) NIL) (($ $ $) 31)) (-3798 (($ (-145)) 29) (((-868) $) NIL))) +(((-1152 |#1|) (-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-142))) (-15 -3205 (|#1| |#1| (-145))) (-15 -3798 (|#1| (-145))) (-15 -2531 ((-112) |#1| |#1|)) (-15 -1385 (|#1| |#1|)) (-15 -1956 (|#1| |#1|)) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -1872 ((-145) |#1| (-570))) (-15 -1872 ((-145) |#1| (-570) (-145)))) (-1153)) (T -1152)) +NIL +(-10 -8 (-15 -3798 ((-868) |#1|)) (-15 -1872 (|#1| |#1| |#1|)) (-15 -3205 (|#1| |#1| (-142))) (-15 -3205 (|#1| |#1| (-145))) (-15 -3798 (|#1| (-145))) (-15 -2531 ((-112) |#1| |#1|)) (-15 -1385 (|#1| |#1|)) (-15 -1956 (|#1| |#1|)) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -1872 ((-145) |#1| (-570))) (-15 -1872 ((-145) |#1| (-570) (-145)))) +((-2419 (((-112) $ $) 19 (|has| (-145) (-1109)))) (-3432 (($ $) 121)) (-1385 (($ $) 122)) (-3205 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-2509 (((-112) $ $) 119)) (-2489 (((-112) $ $ (-570)) 118)) (-3144 (((-650 $) $ (-145)) 111) (((-650 $) $ (-142)) 110)) (-2163 (((-112) (-1 (-112) (-145) (-145)) $) 99) (((-112) $) 93 (|has| (-145) (-856)))) (-2632 (($ (-1 (-112) (-145) (-145)) $) 90 (|has| $ (-6 -4449))) (($ $) 89 (-12 (|has| (-145) (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) (-145) (-145)) $) 100) (($ $) 94 (|has| (-145) (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3945 (((-145) $ (-570) (-145)) 53 (|has| $ (-6 -4449))) (((-145) $ (-1243 (-570)) (-145)) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-1637 (($ $ (-145)) 105) (($ $ (-142)) 104)) (-1500 (($ $) 91 (|has| $ (-6 -4449)))) (-2256 (($ $) 101)) (-3797 (($ $ (-1243 (-570)) $) 115)) (-3552 (($ $) 79 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ (-145) $) 78 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-145)) $) 75 (|has| $ (-6 -4448)))) (-3600 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 77 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 74 (|has| $ (-6 -4448))) (((-145) (-1 (-145) (-145) (-145)) $) 73 (|has| $ (-6 -4448)))) (-3849 (((-145) $ (-570) (-145)) 54 (|has| $ (-6 -4449)))) (-3778 (((-145) $ (-570)) 52)) (-2531 (((-112) $ $) 120)) (-4039 (((-570) (-1 (-112) (-145)) $) 98) (((-570) (-145) $) 97 (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) 96 (|has| (-145) (-1109))) (((-570) $ $ (-570)) 114) (((-570) (-142) $ (-570)) 113)) (-2885 (((-650 (-145)) $) 31 (|has| $ (-6 -4448)))) (-4300 (($ (-777) (-145)) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 88 (|has| (-145) (-856)))) (-2735 (($ (-1 (-112) (-145) (-145)) $ $) 102) (($ $ $) 95 (|has| (-145) (-856)))) (-2282 (((-650 (-145)) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 87 (|has| (-145) (-856)))) (-4047 (((-112) $ $ (-145)) 116)) (-4150 (((-777) $ $ (-145)) 117)) (-3837 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1765 (($ $) 123)) (-1956 (($ $) 124)) (-2063 (((-112) $ (-777)) 10)) (-1648 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4122 (((-1168) $) 22 (|has| (-145) (-1109)))) (-4299 (($ (-145) $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| (-145) (-1109)))) (-3515 (((-145) $) 43 (|has| (-570) (-856)))) (-4089 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 72)) (-2973 (($ $ (-145)) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-145)))) 27 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) 26 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) 24 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2880 (((-650 (-145)) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 (((-145) $ (-570) (-145)) 51) (((-145) $ (-570)) 50) (($ $ (-1243 (-570))) 64) (($ $ $) 103)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-3562 (((-777) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4448))) (((-777) (-145) $) 29 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 92 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| (-145) (-620 (-542))))) (-3811 (($ (-650 (-145))) 71)) (-2445 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (($ (-145)) 112) (((-868) $) 18 (|has| (-145) (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| (-145) (-1109)))) (-1431 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 85 (|has| (-145) (-856)))) (-2959 (((-112) $ $) 84 (|has| (-145) (-856)))) (-2923 (((-112) $ $) 20 (|has| (-145) (-1109)))) (-2969 (((-112) $ $) 86 (|has| (-145) (-856)))) (-2948 (((-112) $ $) 83 (|has| (-145) (-856)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1153) (-141)) (T -1153)) +((-1956 (*1 *1 *1) (-4 *1 (-1153))) (-1765 (*1 *1 *1) (-4 *1 (-1153))) (-1385 (*1 *1 *1) (-4 *1 (-1153))) (-3432 (*1 *1 *1) (-4 *1 (-1153))) (-2531 (*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112)))) (-2509 (*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112)))) (-2489 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-570)) (-5 *2 (-112)))) (-4150 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-777)))) (-4047 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3797 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1243 (-570))))) (-4039 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)))) (-4039 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)) (-5 *3 (-142)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1153)))) (-3144 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-650 *1)) (-4 *1 (-1153)))) (-3144 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-650 *1)) (-4 *1 (-1153)))) (-3205 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))) (-3205 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))) (-1648 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) (-1872 (*1 *1 *1 *1) (-4 *1 (-1153)))) +(-13 (-19 (-145)) (-10 -8 (-15 -1956 ($ $)) (-15 -1765 ($ $)) (-15 -1385 ($ $)) (-15 -3432 ($ $)) (-15 -2531 ((-112) $ $)) (-15 -2509 ((-112) $ $)) (-15 -2489 ((-112) $ $ (-570))) (-15 -4150 ((-777) $ $ (-145))) (-15 -4047 ((-112) $ $ (-145))) (-15 -3797 ($ $ (-1243 (-570)) $)) (-15 -4039 ((-570) $ $ (-570))) (-15 -4039 ((-570) (-142) $ (-570))) (-15 -3798 ($ (-145))) (-15 -3144 ((-650 $) $ (-145))) (-15 -3144 ((-650 $) $ (-142))) (-15 -3205 ($ $ (-145))) (-15 -3205 ($ $ (-142))) (-15 -1648 ($ $ (-145))) (-15 -1648 ($ $ (-142))) (-15 -1637 ($ $ (-145))) (-15 -1637 ($ $ (-142))) (-15 -1872 ($ $ $)))) +(((-34) . T) ((-102) -2779 (|has| (-145) (-1109)) (|has| (-145) (-856))) ((-619 (-868)) -2779 (|has| (-145) (-1109)) (|has| (-145) (-856)) (|has| (-145) (-619 (-868)))) ((-152 #0=(-145)) . T) ((-620 (-542)) |has| (-145) (-620 (-542))) ((-290 #1=(-570) #0#) . T) ((-292 #1# #0#) . T) ((-313 #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-378 #0#) . T) ((-495 #0#) . T) ((-610 #1# #0#) . T) ((-520 #0# #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-657 #0#) . T) ((-19 #0#) . T) ((-856) |has| (-145) (-856)) ((-1109) -2779 (|has| (-145) (-1109)) (|has| (-145) (-856))) ((-1226) . T)) +((-2475 (((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-777)) 112)) (-2502 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777)) 61)) (-2462 (((-1281) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-777)) 97)) (-2649 (((-777) (-650 |#4|) (-650 |#5|)) 30)) (-3579 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777)) 63) (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777) (-112)) 65)) (-4022 (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112)) 85)) (-1411 (((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) 90)) (-3509 (((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|) 60)) (-1367 (((-777) (-650 |#4|) (-650 |#5|)) 21))) +(((-1154 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1367 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -2649 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3509 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2475 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-777))) (-15 -1411 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2462 ((-1281) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-777)))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|) (-1118 |#1| |#2| |#3| |#4|)) (T -1154)) +((-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1281)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1118 *4 *5 *6 *7)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168)) (-5 *1 (-1154 *4 *5 *6 *7 *8)))) (-2475 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-650 *11)) (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -3665 *11)))))) (-5 *6 (-777)) (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -3665 *11)))) (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9)) (-4 *11 (-1118 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-5 *1 (-1154 *7 *8 *9 *10 *11)))) (-4022 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-4022 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-3579 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3)))) (-3579 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799)) (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1154 *7 *8 *9 *3 *4)) (-4 *4 (-1118 *7 *8 *9 *3)))) (-2502 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))) (-2502 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *3 (-1074 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3)))) (-3509 (*1 *2 *3 *4) (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-650 *4)) (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -1367 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -2649 ((-777) (-650 |#4|) (-650 |#5|))) (-15 -3509 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -2502 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777) (-112))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5| (-777))) (-15 -3579 ((-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) |#4| |#5|)) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112))) (-15 -4022 ((-650 |#5|) (-650 |#4|) (-650 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -2475 ((-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-650 |#4|) (-650 |#5|) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-2 (|:| |done| (-650 |#5|)) (|:| |todo| (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))))) (-777))) (-15 -1411 ((-1168) (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|)))) (-15 -2462 ((-1281) (-650 (-2 (|:| |val| (-650 |#4|)) (|:| -3665 |#5|))) (-777)))) +((-2419 (((-112) $ $) NIL)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) NIL)) (-2242 (((-650 $) (-650 |#4|)) 124) (((-650 $) (-650 |#4|) (-112)) 125) (((-650 $) (-650 |#4|) (-112) (-112)) 123) (((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1709 (((-650 |#3|) $) NIL)) (-4006 (((-112) $) NIL)) (-1797 (((-112) $) NIL (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2530 ((|#4| |#4| $) NIL)) (-3696 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| $) 97)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1418 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 75)) (-3734 (($) NIL T CONST)) (-2262 (((-112) $) 29 (|has| |#1| (-562)))) (-2082 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4427 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2418 (((-112) $) NIL (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3572 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) NIL)) (-3152 (($ (-650 |#4|)) NIL)) (-3527 (((-3 $ "failed") $) 45)) (-3099 ((|#4| |#4| $) 78)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-1697 (($ |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) NIL)) (-1413 (((-112) |#4| $) NIL)) (-2992 (((-112) |#4| $) NIL)) (-2176 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1687 (((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112)) 139)) (-2885 (((-650 |#4|) $) 18 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4211 ((|#3| $) 38)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#4|) $) 19 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-3837 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 23)) (-3952 (((-650 |#3|) $) NIL)) (-2875 (((-112) |#3| $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-3383 (((-3 |#4| (-650 $)) |#4| |#4| $) NIL)) (-3064 (((-650 (-2 (|:| |val| |#4|) (|:| -3665 $))) |#4| |#4| $) 117)) (-1723 (((-3 |#4| "failed") $) 42)) (-1559 (((-650 $) |#4| $) 102)) (-3633 (((-3 (-112) (-650 $)) |#4| $) NIL)) (-4380 (((-650 (-2 (|:| |val| (-112)) (|:| -3665 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2842 (((-650 $) |#4| $) 121) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 122) (((-650 $) |#4| (-650 $)) NIL)) (-4260 (((-650 $) (-650 |#4|) (-112) (-112) (-112)) 134)) (-2745 (($ |#4| $) 88) (($ (-650 |#4|) $) 89) (((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2500 (((-650 |#4|) $) NIL)) (-1560 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2458 ((|#4| |#4| $) NIL)) (-4181 (((-112) $ $) NIL)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2962 ((|#4| |#4| $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-3 |#4| "failed") $) 40)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2730 (((-3 $ "failed") $ |#4|) 59)) (-3500 (($ $ |#4|) NIL) (((-650 $) |#4| $) 104) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) 99)) (-3116 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 17)) (-4359 (($) 14)) (-3324 (((-777) $) NIL)) (-3562 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) 13)) (-1411 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 22)) (-3677 (($ $ |#3|) 52)) (-3158 (($ $ |#3|) 54)) (-4381 (($ $) NIL)) (-4074 (($ $ |#3|) NIL)) (-3798 (((-868) $) 35) (((-650 |#4|) $) 46)) (-2136 (((-777) $) NIL (|has| |#3| (-373)))) (-1319 (((-112) $ $) NIL)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-4296 (((-650 $) |#4| $) 66) (((-650 $) |#4| (-650 $)) NIL) (((-650 $) (-650 |#4|) $) NIL) (((-650 $) (-650 |#4|) (-650 $)) NIL)) (-1431 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) NIL)) (-4428 (((-112) |#4| $) NIL)) (-4059 (((-112) |#3| $) 74)) (-2923 (((-112) $ $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1155 |#1| |#2| |#3| |#4|) (-13 (-1118 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2745 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -4260 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -1687 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112))))) (-458) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -1155)) +((-2745 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *3))) (-5 *1 (-1155 *5 *6 *7 *3)) (-4 *3 (-1074 *5 *6 *7)))) (-2242 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) (-2242 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) (-4260 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) (-1687 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-650 *8)) (|:| |towers| (-650 (-1155 *5 *6 *7 *8))))) (-5 *1 (-1155 *5 *6 *7 *8)) (-5 *3 (-650 *8))))) +(-13 (-1118 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2745 ((-650 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112))) (-15 -2242 ((-650 $) (-650 |#4|) (-112) (-112) (-112) (-112))) (-15 -4260 ((-650 $) (-650 |#4|) (-112) (-112) (-112))) (-15 -1687 ((-2 (|:| |val| (-650 |#4|)) (|:| |towers| (-650 $))) (-650 |#4|) (-112) (-112))))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3312 ((|#1| $) 37)) (-2367 (($ (-650 |#1|)) 45)) (-3636 (((-112) $ (-777)) NIL)) (-3734 (($) NIL T CONST)) (-2141 ((|#1| |#1| $) 40)) (-1561 ((|#1| $) 35)) (-2885 (((-650 |#1|) $) 18 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 22)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1334 ((|#1| $) 38)) (-2213 (($ |#1| $) 41)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-4067 ((|#1| $) 36)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 32)) (-4359 (($) 43)) (-2806 (((-777) $) 30)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 27)) (-3798 (((-868) $) 14 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2089 (($ (-650 |#1|)) NIL)) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 17 (|has| |#1| (-1109)))) (-2431 (((-777) $) 31 (|has| $ (-6 -4448))))) +(((-1156 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -2367 ($ (-650 |#1|))))) (-1226)) (T -1156)) +((-2367 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-1156 *3))))) +(-13 (-1130 |#1|) (-10 -8 (-15 -2367 ($ (-650 |#1|))))) +((-3945 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1243 (-570)) |#2|) 55) ((|#2| $ (-570) |#2|) 52)) (-2430 (((-112) $) 12)) (-3837 (($ (-1 |#2| |#2|) $) 50)) (-3515 ((|#2| $) NIL) (($ $ (-777)) 20)) (-2973 (($ $ |#2|) 51)) (-2356 (((-112) $) 11)) (-1872 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1243 (-570))) 38) ((|#2| $ (-570)) 29) ((|#2| $ (-570) |#2|) NIL)) (-2832 (($ $ $) 58) (($ $ |#2|) NIL)) (-2445 (($ $ $) 40) (($ |#2| $) NIL) (($ (-650 $)) 47) (($ $ |#2|) NIL))) +(((-1157 |#1| |#2|) (-10 -8 (-15 -2430 ((-112) |#1|)) (-15 -2356 ((-112) |#1|)) (-15 -3945 (|#2| |#1| (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570))) (-15 -2973 (|#1| |#1| |#2|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -2445 (|#1| (-650 |#1|))) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -3945 (|#2| |#1| (-1243 (-570)) |#2|)) (-15 -3945 (|#2| |#1| "last" |#2|)) (-15 -3945 (|#1| |#1| "rest" |#1|)) (-15 -3945 (|#2| |#1| "first" |#2|)) (-15 -2832 (|#1| |#1| |#2|)) (-15 -2832 (|#1| |#1| |#1|)) (-15 -1872 (|#2| |#1| "last")) (-15 -1872 (|#1| |#1| "rest")) (-15 -3515 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "first")) (-15 -3515 (|#2| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#1|)) (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -1872 (|#2| |#1| "value")) (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|))) (-1158 |#2|) (-1226)) (T -1157)) +NIL +(-10 -8 (-15 -2430 ((-112) |#1|)) (-15 -2356 ((-112) |#1|)) (-15 -3945 (|#2| |#1| (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570) |#2|)) (-15 -1872 (|#2| |#1| (-570))) (-15 -2973 (|#1| |#1| |#2|)) (-15 -2445 (|#1| |#1| |#2|)) (-15 -2445 (|#1| (-650 |#1|))) (-15 -1872 (|#1| |#1| (-1243 (-570)))) (-15 -3945 (|#2| |#1| (-1243 (-570)) |#2|)) (-15 -3945 (|#2| |#1| "last" |#2|)) (-15 -3945 (|#1| |#1| "rest" |#1|)) (-15 -3945 (|#2| |#1| "first" |#2|)) (-15 -2832 (|#1| |#1| |#2|)) (-15 -2832 (|#1| |#1| |#1|)) (-15 -1872 (|#2| |#1| "last")) (-15 -1872 (|#1| |#1| "rest")) (-15 -3515 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "first")) (-15 -3515 (|#2| |#1|)) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#1|)) (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -1872 (|#2| |#1| "value")) (-15 -3837 (|#1| (-1 |#2| |#2|) |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-2566 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2926 (((-1281) $ (-570) (-570)) 98 (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) 53 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1716 (($ $ $) 57 (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) 55 (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) 59 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4449))) (($ $ "rest" $) 56 (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 118 (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) 87 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4448)))) (-2553 ((|#1| $) 67)) (-3734 (($) 7 T CONST)) (-3527 (($ $) 74) (($ $ (-777)) 72)) (-3552 (($ $) 100 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4448))) (($ |#1| $) 101 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3849 ((|#1| $ (-570) |#1|) 86 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 88)) (-2430 (((-112) $) 84)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-4300 (($ (-777) |#1|) 109)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 96 (|has| (-570) (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 95 (|has| (-570) (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1723 ((|#1| $) 71) (($ $ (-777)) 69)) (-4299 (($ $ $ (-570)) 117) (($ |#1| $ (-570)) 116)) (-2044 (((-650 (-570)) $) 93)) (-1480 (((-112) (-570) $) 92)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 77) (($ $ (-777)) 75)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2973 (($ $ |#1|) 97 (|has| $ (-6 -4449)))) (-2356 (((-112) $) 85)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 91)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1243 (-570))) 113) ((|#1| $ (-570)) 90) ((|#1| $ (-570) |#1|) 89)) (-3536 (((-570) $ $) 45)) (-4331 (($ $ (-1243 (-570))) 115) (($ $ (-570)) 114)) (-3680 (((-112) $) 47)) (-3566 (($ $) 63)) (-2447 (($ $) 60 (|has| $ (-6 -4449)))) (-1497 (((-777) $) 64)) (-2360 (($ $) 65)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-1411 (((-542) $) 99 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 108)) (-2832 (($ $ $) 62 (|has| $ (-6 -4449))) (($ $ |#1|) 61 (|has| $ (-6 -4449)))) (-2445 (($ $ $) 79) (($ |#1| $) 78) (($ (-650 $)) 111) (($ $ |#1|) 110)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1158 |#1|) (-141) (-1226)) (T -1158)) +((-2356 (*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1226)) (-5 *2 (-112))))) +(-13 (-1264 |t#1|) (-657 |t#1|) (-10 -8 (-15 -2356 ((-112) $)) (-15 -2430 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1226) . T) ((-1264 |#1|) . T)) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#2| $ |#1| |#2|) NIL)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) NIL)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2799 (((-650 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2044 (((-650 |#1|) $) NIL)) (-1480 (((-112) |#1| $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1159 |#1| |#2| |#3|) (-1202 |#1| |#2|) (-1109) (-1109) |#2|) (T -1159)) +NIL +(-1202 |#1| |#2|) +((-2419 (((-112) $ $) NIL)) (-2080 (((-697 (-1144)) $) 27)) (-3763 (((-1144) $) 15)) (-2540 (((-1144) $) 17)) (-4122 (((-1168) $) NIL)) (-2357 (((-512) $) 13)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 37) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1160) (-13 (-1092) (-10 -8 (-15 -2357 ((-512) $)) (-15 -2540 ((-1144) $)) (-15 -2080 ((-697 (-1144)) $)) (-15 -3763 ((-1144) $))))) (T -1160)) +((-2357 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1160)))) (-2540 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160)))) (-2080 (*1 *2 *1) (-12 (-5 *2 (-697 (-1144))) (-5 *1 (-1160)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160))))) +(-13 (-1092) (-10 -8 (-15 -2357 ((-512) $)) (-15 -2540 ((-1144) $)) (-15 -2080 ((-697 (-1144)) $)) (-15 -3763 ((-1144) $)))) +((-2419 (((-112) $ $) 7)) (-3641 (((-3 $ "failed") $) 14)) (-4122 (((-1168) $) 10)) (-2310 (($) 15 T CONST)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-2923 (((-112) $ $) 6))) +(((-1161) (-141)) (T -1161)) +((-2310 (*1 *1) (-4 *1 (-1161))) (-3641 (*1 *1 *1) (|partial| -4 *1 (-1161)))) +(-13 (-1109) (-10 -8 (-15 -2310 ($) -3711) (-15 -3641 ((-3 $ "failed") $)))) +(((-102) . T) ((-619 (-868)) . T) ((-1109) . T)) +((-2493 (((-1166 |#1|) (-1166 |#1|)) 17)) (-4107 (((-1166 |#1|) (-1166 |#1|)) 13)) (-2809 (((-1166 |#1|) (-1166 |#1|) (-570) (-570)) 20)) (-3802 (((-1166 |#1|) (-1166 |#1|)) 15))) +(((-1162 |#1|) (-10 -7 (-15 -4107 ((-1166 |#1|) (-1166 |#1|))) (-15 -3802 ((-1166 |#1|) (-1166 |#1|))) (-15 -2493 ((-1166 |#1|) (-1166 |#1|))) (-15 -2809 ((-1166 |#1|) (-1166 |#1|) (-570) (-570)))) (-13 (-562) (-148))) (T -1162)) +((-2809 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-1162 *4)))) (-2493 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1162 *3)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1162 *3)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1162 *3))))) +(-10 -7 (-15 -4107 ((-1166 |#1|) (-1166 |#1|))) (-15 -3802 ((-1166 |#1|) (-1166 |#1|))) (-15 -2493 ((-1166 |#1|) (-1166 |#1|))) (-15 -2809 ((-1166 |#1|) (-1166 |#1|) (-570) (-570)))) +((-2445 (((-1166 |#1|) (-1166 (-1166 |#1|))) 15))) +(((-1163 |#1|) (-10 -7 (-15 -2445 ((-1166 |#1|) (-1166 (-1166 |#1|))))) (-1226)) (T -1163)) +((-2445 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1163 *4)) (-4 *4 (-1226))))) +(-10 -7 (-15 -2445 ((-1166 |#1|) (-1166 (-1166 |#1|))))) +((-4292 (((-1166 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)) 25)) (-3600 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)) 26)) (-1347 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 16))) +(((-1164 |#1| |#2|) (-10 -7 (-15 -1347 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -4292 ((-1166 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|))) (-15 -3600 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)))) (-1226) (-1226)) (T -1164)) +((-3600 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1226)) (-4 *2 (-1226)) (-5 *1 (-1164 *5 *2)))) (-4292 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1166 *6)) (-4 *6 (-1226)) (-4 *3 (-1226)) (-5 *2 (-1166 *3)) (-5 *1 (-1164 *6 *3)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6))))) +(-10 -7 (-15 -1347 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|))) (-15 -4292 ((-1166 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|))) (-15 -3600 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1166 |#1|)))) +((-1347 (((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-1166 |#2|)) 21))) +(((-1165 |#1| |#2| |#3|) (-10 -7 (-15 -1347 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-1166 |#2|)))) (-1226) (-1226) (-1226)) (T -1165)) +((-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-1166 *7)) (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-1166 *8)) (-5 *1 (-1165 *6 *7 *8))))) +(-10 -7 (-15 -1347 ((-1166 |#3|) (-1 |#3| |#1| |#2|) (-1166 |#1|) (-1166 |#2|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) NIL)) (-2566 ((|#1| $) NIL)) (-1568 (($ $) 67)) (-2926 (((-1281) $ (-570) (-570)) 99 (|has| $ (-6 -4449)))) (-2008 (($ $ (-570)) 129 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3769 (((-868) $) 56 (|has| |#1| (-1109)))) (-2807 (((-112)) 55 (|has| |#1| (-1109)))) (-3470 ((|#1| $ |#1|) NIL (|has| $ (-6 -4449)))) (-1716 (($ $ $) 116 (|has| $ (-6 -4449))) (($ $ (-570) $) 142)) (-2631 ((|#1| $ |#1|) 126 (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) 121 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4449))) (($ $ "rest" $) 125 (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 113 (|has| $ (-6 -4449))) ((|#1| $ (-570) |#1|) 77 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 80)) (-2553 ((|#1| $) NIL)) (-3734 (($) NIL T CONST)) (-3129 (($ $) 14)) (-3527 (($ $) 42) (($ $ (-777)) 111)) (-1375 (((-112) (-650 |#1|) $) 135 (|has| |#1| (-1109)))) (-2195 (($ (-650 |#1|)) 131)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) 79)) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-2430 (((-112) $) NIL)) (-2885 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1873 (((-1281) (-570) $) 141 (|has| |#1| (-1109)))) (-4104 (((-777) $) 138)) (-1713 (((-650 $) $) NIL)) (-3471 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2063 (((-112) $ (-777)) NIL)) (-2278 (((-650 |#1|) $) NIL)) (-4142 (((-112) $) NIL)) (-4035 (($ $) 114)) (-2601 (((-112) $) 13)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1723 ((|#1| $) NIL) (($ $ (-777)) NIL)) (-4299 (($ $ $ (-570)) NIL) (($ |#1| $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) 96)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-1342 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2928 ((|#1| $) 10)) (-3515 ((|#1| $) 41) (($ $ (-777)) 65)) (-1675 (((-2 (|:| |cycle?| (-112)) (|:| -4315 (-777)) (|:| |period| (-777))) (-777) $) 36)) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1392 (($ (-1 (-112) |#1|) $) 146)) (-1404 (($ (-1 (-112) |#1|) $) 147)) (-2973 (($ $ |#1|) 90 (|has| $ (-6 -4449)))) (-3500 (($ $ (-570)) 45)) (-2356 (((-112) $) 94)) (-3188 (((-112) $) 12)) (-1865 (((-112) $) 137)) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 30)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) 20)) (-4359 (($) 60)) (-1872 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1243 (-570))) NIL) ((|#1| $ (-570)) 75) ((|#1| $ (-570) |#1|) NIL)) (-3536 (((-570) $ $) 64)) (-4331 (($ $ (-1243 (-570))) NIL) (($ $ (-570)) NIL)) (-3853 (($ (-1 $)) 63)) (-3680 (((-112) $) 91)) (-3566 (($ $) 92)) (-2447 (($ $) 117 (|has| $ (-6 -4449)))) (-1497 (((-777) $) NIL)) (-2360 (($ $) NIL)) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 59)) (-1411 (((-542) $) NIL (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 73)) (-3749 (($ |#1| $) 115)) (-2832 (($ $ $) 119 (|has| $ (-6 -4449))) (($ $ |#1|) 120 (|has| $ (-6 -4449)))) (-2445 (($ $ $) 101) (($ |#1| $) 61) (($ (-650 $)) 106) (($ $ |#1|) 100)) (-2115 (($ $) 66)) (-3798 (($ (-650 |#1|)) 130) (((-868) $) 57 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) NIL)) (-2650 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 133 (|has| |#1| (-1109)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1166 |#1|) (-13 (-680 |#1|) (-622 (-650 |#1|)) (-10 -8 (-6 -4449) (-15 -2195 ($ (-650 |#1|))) (IF (|has| |#1| (-1109)) (-15 -1375 ((-112) (-650 |#1|) $)) |%noBranch|) (-15 -1675 ((-2 (|:| |cycle?| (-112)) (|:| -4315 (-777)) (|:| |period| (-777))) (-777) $)) (-15 -3853 ($ (-1 $))) (-15 -3749 ($ |#1| $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -1873 ((-1281) (-570) $)) (-15 -3769 ((-868) $)) (-15 -2807 ((-112)))) |%noBranch|) (-15 -1716 ($ $ (-570) $)) (-15 -1342 ($ (-1 |#1|))) (-15 -1342 ($ (-1 |#1| |#1|) |#1|)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)))) (-1226)) (T -1166)) +((-2195 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3)))) (-1375 (*1 *2 *3 *1) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-4 *4 (-1226)) (-5 *2 (-112)) (-5 *1 (-1166 *4)))) (-1675 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4315 (-777)) (|:| |period| (-777)))) (-5 *1 (-1166 *4)) (-4 *4 (-1226)) (-5 *3 (-777)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-1 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1226)))) (-3749 (*1 *1 *2 *1) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1226)))) (-1873 (*1 *2 *3 *1) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1166 *4)) (-4 *4 (-1109)) (-4 *4 (-1226)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1166 *3)) (-4 *3 (-1109)) (-4 *3 (-1226)))) (-2807 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1109)) (-4 *3 (-1226)))) (-1716 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1166 *3)) (-4 *3 (-1226)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3)))) (-1342 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3)))) (-1404 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3))))) +(-13 (-680 |#1|) (-622 (-650 |#1|)) (-10 -8 (-6 -4449) (-15 -2195 ($ (-650 |#1|))) (IF (|has| |#1| (-1109)) (-15 -1375 ((-112) (-650 |#1|) $)) |%noBranch|) (-15 -1675 ((-2 (|:| |cycle?| (-112)) (|:| -4315 (-777)) (|:| |period| (-777))) (-777) $)) (-15 -3853 ($ (-1 $))) (-15 -3749 ($ |#1| $)) (IF (|has| |#1| (-1109)) (PROGN (-15 -1873 ((-1281) (-570) $)) (-15 -3769 ((-868) $)) (-15 -2807 ((-112)))) |%noBranch|) (-15 -1716 ($ $ (-570) $)) (-15 -1342 ($ (-1 |#1|))) (-15 -1342 ($ (-1 |#1| |#1|) |#1|)) (-15 -1392 ($ (-1 (-112) |#1|) $)) (-15 -1404 ($ (-1 (-112) |#1|) $)))) +((-2419 (((-112) $ $) 19)) (-3432 (($ $) 121)) (-1385 (($ $) 122)) (-3205 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-2509 (((-112) $ $) 119)) (-2489 (((-112) $ $ (-570)) 118)) (-3391 (($ (-570)) 128)) (-3144 (((-650 $) $ (-145)) 111) (((-650 $) $ (-142)) 110)) (-2163 (((-112) (-1 (-112) (-145) (-145)) $) 99) (((-112) $) 93 (|has| (-145) (-856)))) (-2632 (($ (-1 (-112) (-145) (-145)) $) 90 (|has| $ (-6 -4449))) (($ $) 89 (-12 (|has| (-145) (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) (-145) (-145)) $) 100) (($ $) 94 (|has| (-145) (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3945 (((-145) $ (-570) (-145)) 53 (|has| $ (-6 -4449))) (((-145) $ (-1243 (-570)) (-145)) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-1637 (($ $ (-145)) 105) (($ $ (-142)) 104)) (-1500 (($ $) 91 (|has| $ (-6 -4449)))) (-2256 (($ $) 101)) (-3797 (($ $ (-1243 (-570)) $) 115)) (-3552 (($ $) 79 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ (-145) $) 78 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-145)) $) 75 (|has| $ (-6 -4448)))) (-3600 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 77 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 74 (|has| $ (-6 -4448))) (((-145) (-1 (-145) (-145) (-145)) $) 73 (|has| $ (-6 -4448)))) (-3849 (((-145) $ (-570) (-145)) 54 (|has| $ (-6 -4449)))) (-3778 (((-145) $ (-570)) 52)) (-2531 (((-112) $ $) 120)) (-4039 (((-570) (-1 (-112) (-145)) $) 98) (((-570) (-145) $) 97 (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) 96 (|has| (-145) (-1109))) (((-570) $ $ (-570)) 114) (((-570) (-142) $ (-570)) 113)) (-2885 (((-650 (-145)) $) 31 (|has| $ (-6 -4448)))) (-4300 (($ (-777) (-145)) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 88 (|has| (-145) (-856)))) (-2735 (($ (-1 (-112) (-145) (-145)) $ $) 102) (($ $ $) 95 (|has| (-145) (-856)))) (-2282 (((-650 (-145)) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 87 (|has| (-145) (-856)))) (-4047 (((-112) $ $ (-145)) 116)) (-4150 (((-777) $ $ (-145)) 117)) (-3837 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-1765 (($ $) 123)) (-1956 (($ $) 124)) (-2063 (((-112) $ (-777)) 10)) (-1648 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-4122 (((-1168) $) 22)) (-4299 (($ (-145) $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21)) (-3515 (((-145) $) 43 (|has| (-570) (-856)))) (-4089 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 72)) (-2973 (($ $ (-145)) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-145)))) 27 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) 26 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) 24 (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2880 (((-650 (-145)) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 (((-145) $ (-570) (-145)) 51) (((-145) $ (-570)) 50) (($ $ (-1243 (-570))) 64) (($ $ $) 103)) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-3562 (((-777) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4448))) (((-777) (-145) $) 29 (-12 (|has| (-145) (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 92 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| (-145) (-620 (-542))))) (-3811 (($ (-650 (-145))) 71)) (-2445 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (($ (-145)) 112) (((-868) $) 18)) (-1319 (((-112) $ $) 23)) (-1431 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4448)))) (-1985 (((-1168) $) 132) (((-1168) $ (-112)) 131) (((-1281) (-828) $) 130) (((-1281) (-828) $ (-112)) 129)) (-2981 (((-112) $ $) 85 (|has| (-145) (-856)))) (-2959 (((-112) $ $) 84 (|has| (-145) (-856)))) (-2923 (((-112) $ $) 20)) (-2969 (((-112) $ $) 86 (|has| (-145) (-856)))) (-2948 (((-112) $ $) 83 (|has| (-145) (-856)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1167) (-141)) (T -1167)) +((-3391 (*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1167))))) +(-13 (-1153) (-1109) (-834) (-10 -8 (-15 -3391 ($ (-570))))) +(((-34) . T) ((-102) . T) ((-619 (-868)) . T) ((-152 #0=(-145)) . T) ((-620 (-542)) |has| (-145) (-620 (-542))) ((-290 #1=(-570) #0#) . T) ((-292 #1# #0#) . T) ((-313 #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-378 #0#) . T) ((-495 #0#) . T) ((-610 #1# #0#) . T) ((-520 #0# #0#) -12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))) ((-657 #0#) . T) ((-19 #0#) . T) ((-834) . T) ((-856) |has| (-145) (-856)) ((-1109) . T) ((-1153) . T) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-3432 (($ $) NIL)) (-1385 (($ $) NIL)) (-3205 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2509 (((-112) $ $) NIL)) (-2489 (((-112) $ $ (-570)) NIL)) (-3391 (($ (-570)) 8)) (-3144 (((-650 $) $ (-145)) NIL) (((-650 $) $ (-142)) NIL)) (-2163 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-856)))) (-2632 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| (-145) (-856))))) (-3360 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 (((-145) $ (-570) (-145)) NIL (|has| $ (-6 -4449))) (((-145) $ (-1243 (-570)) (-145)) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1637 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3797 (($ $ (-1243 (-570)) $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-1697 (($ (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4448))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4448)))) (-3849 (((-145) $ (-570) (-145)) NIL (|has| $ (-6 -4449)))) (-3778 (((-145) $ (-570)) NIL)) (-2531 (((-112) $ $) NIL)) (-4039 (((-570) (-1 (-112) (-145)) $) NIL) (((-570) (-145) $) NIL (|has| (-145) (-1109))) (((-570) (-145) $ (-570)) NIL (|has| (-145) (-1109))) (((-570) $ $ (-570)) NIL) (((-570) (-142) $ (-570)) NIL)) (-2885 (((-650 (-145)) $) NIL (|has| $ (-6 -4448)))) (-4300 (($ (-777) (-145)) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| (-145) (-856)))) (-2735 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-856)))) (-2282 (((-650 (-145)) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-3434 (((-570) $) NIL (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| (-145) (-856)))) (-4047 (((-112) $ $ (-145)) NIL)) (-4150 (((-777) $ $ (-145)) NIL)) (-3837 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-1765 (($ $) NIL)) (-1956 (($ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-1648 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-4122 (((-1168) $) NIL)) (-4299 (($ (-145) $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-145) $) NIL (|has| (-570) (-856)))) (-4089 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2973 (($ $ (-145)) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-145)))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-298 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109)))) (($ $ (-650 (-145)) (-650 (-145))) NIL (-12 (|has| (-145) (-313 (-145))) (|has| (-145) (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2880 (((-650 (-145)) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 (((-145) $ (-570) (-145)) NIL) (((-145) $ (-570)) NIL) (($ $ (-1243 (-570))) NIL) (($ $ $) NIL)) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-3562 (((-777) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448))) (((-777) (-145) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-145) (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-145) (-620 (-542))))) (-3811 (($ (-650 (-145))) NIL)) (-2445 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (($ (-145)) NIL) (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-1431 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4448)))) (-1985 (((-1168) $) 19) (((-1168) $ (-112)) 21) (((-1281) (-828) $) 22) (((-1281) (-828) $ (-112)) 23)) (-2981 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2959 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2948 (((-112) $ $) NIL (|has| (-145) (-856)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1168) (-1167)) (T -1168)) +NIL +(-1167) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL)) (-2926 (((-1281) $ (-1168) (-1168)) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-1168) |#1|) NIL)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#1| "failed") (-1168) $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#1| "failed") (-1168) $) NIL)) (-1697 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-1168) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-1168)) NIL)) (-2885 (((-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-1168) $) NIL (|has| (-1168) (-856)))) (-2282 (((-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-1168) $) NIL (|has| (-1168) (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-2799 (((-650 (-1168)) $) NIL)) (-4242 (((-112) (-1168) $) NIL)) (-1334 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL)) (-2044 (((-650 (-1168)) $) NIL)) (-1480 (((-112) (-1168) $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-3515 ((|#1| $) NIL (|has| (-1168) (-856)))) (-4089 (((-3 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) "failed") (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL (-12 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-313 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-1168)) NIL) ((|#1| $ (-1168) |#1|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-619 (-868))) (|has| |#1| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 (-1168)) (|:| -2219 |#1|)) (-1109)) (|has| |#1| (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1169 |#1|) (-13 (-1202 (-1168) |#1|) (-10 -7 (-6 -4448))) (-1109)) (T -1169)) +NIL +(-13 (-1202 (-1168) |#1|) (-10 -7 (-6 -4448))) +((-2581 (((-1166 |#1|) (-1166 |#1|)) 84)) (-2229 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 42)) (-3210 (((-1166 |#1|) (-413 (-570)) (-1166 |#1|)) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2271 (((-1166 |#1|) |#1| (-1166 |#1|)) 142 (|has| |#1| (-368)))) (-3052 (((-1166 |#1|) (-1166 |#1|)) 99)) (-3833 (((-1166 (-570)) (-570)) 64)) (-4370 (((-1166 |#1|) (-1166 (-1166 |#1|))) 118 (|has| |#1| (-38 (-413 (-570)))))) (-2294 (((-1166 |#1|) (-570) (-570) (-1166 |#1|)) 104)) (-3350 (((-1166 |#1|) |#1| (-570)) 54)) (-2759 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 67)) (-2197 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 139 (|has| |#1| (-368)))) (-4405 (((-1166 |#1|) |#1| (-1 (-1166 |#1|))) 117 (|has| |#1| (-38 (-413 (-570)))))) (-3013 (((-1166 |#1|) (-1 |#1| (-570)) |#1| (-1 (-1166 |#1|))) 140 (|has| |#1| (-368)))) (-2275 (((-1166 |#1|) (-1166 |#1|)) 98)) (-4301 (((-1166 |#1|) (-1166 |#1|)) 83)) (-1688 (((-1166 |#1|) (-570) (-570) (-1166 |#1|)) 105)) (-1840 (((-1166 |#1|) |#1| (-1166 |#1|)) 114 (|has| |#1| (-38 (-413 (-570)))))) (-2014 (((-1166 (-570)) (-570)) 63)) (-3807 (((-1166 |#1|) |#1|) 66)) (-3559 (((-1166 |#1|) (-1166 |#1|) (-570) (-570)) 101)) (-1722 (((-1166 |#1|) (-1 |#1| (-570)) (-1166 |#1|)) 73)) (-2410 (((-3 (-1166 |#1|) "failed") (-1166 |#1|) (-1166 |#1|)) 40)) (-2802 (((-1166 |#1|) (-1166 |#1|)) 100)) (-1725 (((-1166 |#1|) (-1166 |#1|) |#1|) 78)) (-1475 (((-1166 |#1|) (-1166 |#1|)) 69)) (-3980 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 79)) (-3798 (((-1166 |#1|) |#1|) 74)) (-4120 (((-1166 |#1|) (-1166 (-1166 |#1|))) 89)) (-3037 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 41)) (-3026 (((-1166 |#1|) (-1166 |#1|)) 21) (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 23)) (-3014 (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 17)) (* (((-1166 |#1|) (-1166 |#1|) |#1|) 29) (((-1166 |#1|) |#1| (-1166 |#1|)) 26) (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 27))) +(((-1170 |#1|) (-10 -7 (-15 -3014 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3026 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3026 ((-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -2410 ((-3 (-1166 |#1|) "failed") (-1166 |#1|) (-1166 |#1|))) (-15 -3037 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2229 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3350 ((-1166 |#1|) |#1| (-570))) (-15 -2014 ((-1166 (-570)) (-570))) (-15 -3833 ((-1166 (-570)) (-570))) (-15 -3807 ((-1166 |#1|) |#1|)) (-15 -2759 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1475 ((-1166 |#1|) (-1166 |#1|))) (-15 -1722 ((-1166 |#1|) (-1 |#1| (-570)) (-1166 |#1|))) (-15 -3798 ((-1166 |#1|) |#1|)) (-15 -1725 ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -3980 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -4301 ((-1166 |#1|) (-1166 |#1|))) (-15 -2581 ((-1166 |#1|) (-1166 |#1|))) (-15 -4120 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -2275 ((-1166 |#1|) (-1166 |#1|))) (-15 -3052 ((-1166 |#1|) (-1166 |#1|))) (-15 -2802 ((-1166 |#1|) (-1166 |#1|))) (-15 -3559 ((-1166 |#1|) (-1166 |#1|) (-570) (-570))) (-15 -2294 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (-15 -1688 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 -4405 ((-1166 |#1|) |#1| (-1 (-1166 |#1|)))) (-15 -4370 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -3210 ((-1166 |#1|) (-413 (-570)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -2197 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3013 ((-1166 |#1|) (-1 |#1| (-570)) |#1| (-1 (-1166 |#1|)))) (-15 -2271 ((-1166 |#1|) |#1| (-1166 |#1|)))) |%noBranch|)) (-1058)) (T -1170)) +((-2271 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-570))) (-5 *5 (-1 (-1166 *4))) (-4 *4 (-368)) (-4 *4 (-1058)) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)))) (-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3210 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1058)) (-5 *3 (-413 (-570))) (-5 *1 (-1170 *4)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)) (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058)))) (-4405 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1166 *3))) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)))) (-1840 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-1688 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-2294 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-3559 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-2802 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4120 (*1 *2 *3) (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)) (-4 *4 (-1058)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-4301 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3980 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-1725 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3798 (*1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) (-1722 (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1 *4 (-570))) (-4 *4 (-1058)) (-5 *1 (-1170 *4)))) (-1475 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2759 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3807 (*1 *2 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) (-3833 (*1 *2 *3) (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058)) (-5 *3 (-570)))) (-2014 (*1 *2 *3) (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058)) (-5 *3 (-570)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) (-2229 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3037 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-2410 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3026 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3026 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) (-3014 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))) +(-10 -7 (-15 -3014 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3026 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3026 ((-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 * ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 * ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -2410 ((-3 (-1166 |#1|) "failed") (-1166 |#1|) (-1166 |#1|))) (-15 -3037 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2229 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3350 ((-1166 |#1|) |#1| (-570))) (-15 -2014 ((-1166 (-570)) (-570))) (-15 -3833 ((-1166 (-570)) (-570))) (-15 -3807 ((-1166 |#1|) |#1|)) (-15 -2759 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -1475 ((-1166 |#1|) (-1166 |#1|))) (-15 -1722 ((-1166 |#1|) (-1 |#1| (-570)) (-1166 |#1|))) (-15 -3798 ((-1166 |#1|) |#1|)) (-15 -1725 ((-1166 |#1|) (-1166 |#1|) |#1|)) (-15 -3980 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -4301 ((-1166 |#1|) (-1166 |#1|))) (-15 -2581 ((-1166 |#1|) (-1166 |#1|))) (-15 -4120 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -2275 ((-1166 |#1|) (-1166 |#1|))) (-15 -3052 ((-1166 |#1|) (-1166 |#1|))) (-15 -2802 ((-1166 |#1|) (-1166 |#1|))) (-15 -3559 ((-1166 |#1|) (-1166 |#1|) (-570) (-570))) (-15 -2294 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (-15 -1688 ((-1166 |#1|) (-570) (-570) (-1166 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ((-1166 |#1|) |#1| (-1166 |#1|))) (-15 -4405 ((-1166 |#1|) |#1| (-1 (-1166 |#1|)))) (-15 -4370 ((-1166 |#1|) (-1166 (-1166 |#1|)))) (-15 -3210 ((-1166 |#1|) (-413 (-570)) (-1166 |#1|)))) |%noBranch|) (IF (|has| |#1| (-368)) (PROGN (-15 -2197 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3013 ((-1166 |#1|) (-1 |#1| (-570)) |#1| (-1 (-1166 |#1|)))) (-15 -2271 ((-1166 |#1|) |#1| (-1166 |#1|)))) |%noBranch|)) +((-2774 (((-1166 |#1|) (-1166 |#1|)) 60)) (-2629 (((-1166 |#1|) (-1166 |#1|)) 42)) (-2749 (((-1166 |#1|) (-1166 |#1|)) 56)) (-2604 (((-1166 |#1|) (-1166 |#1|)) 38)) (-4119 (((-1166 |#1|) (-1166 |#1|)) 63)) (-2648 (((-1166 |#1|) (-1166 |#1|)) 45)) (-2665 (((-1166 |#1|) (-1166 |#1|)) 34)) (-4390 (((-1166 |#1|) (-1166 |#1|)) 29)) (-4129 (((-1166 |#1|) (-1166 |#1|)) 64)) (-2664 (((-1166 |#1|) (-1166 |#1|)) 46)) (-2786 (((-1166 |#1|) (-1166 |#1|)) 61)) (-2636 (((-1166 |#1|) (-1166 |#1|)) 43)) (-2761 (((-1166 |#1|) (-1166 |#1|)) 58)) (-2616 (((-1166 |#1|) (-1166 |#1|)) 40)) (-4165 (((-1166 |#1|) (-1166 |#1|)) 68)) (-2704 (((-1166 |#1|) (-1166 |#1|)) 50)) (-4141 (((-1166 |#1|) (-1166 |#1|)) 66)) (-2678 (((-1166 |#1|) (-1166 |#1|)) 48)) (-4186 (((-1166 |#1|) (-1166 |#1|)) 71)) (-2726 (((-1166 |#1|) (-1166 |#1|)) 53)) (-1504 (((-1166 |#1|) (-1166 |#1|)) 72)) (-2737 (((-1166 |#1|) (-1166 |#1|)) 54)) (-4176 (((-1166 |#1|) (-1166 |#1|)) 70)) (-2715 (((-1166 |#1|) (-1166 |#1|)) 52)) (-4153 (((-1166 |#1|) (-1166 |#1|)) 69)) (-2692 (((-1166 |#1|) (-1166 |#1|)) 51)) (** (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 36))) +(((-1171 |#1|) (-10 -7 (-15 -4390 ((-1166 |#1|) (-1166 |#1|))) (-15 -2665 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2604 ((-1166 |#1|) (-1166 |#1|))) (-15 -2616 ((-1166 |#1|) (-1166 |#1|))) (-15 -2629 ((-1166 |#1|) (-1166 |#1|))) (-15 -2636 ((-1166 |#1|) (-1166 |#1|))) (-15 -2648 ((-1166 |#1|) (-1166 |#1|))) (-15 -2664 ((-1166 |#1|) (-1166 |#1|))) (-15 -2678 ((-1166 |#1|) (-1166 |#1|))) (-15 -2692 ((-1166 |#1|) (-1166 |#1|))) (-15 -2704 ((-1166 |#1|) (-1166 |#1|))) (-15 -2715 ((-1166 |#1|) (-1166 |#1|))) (-15 -2726 ((-1166 |#1|) (-1166 |#1|))) (-15 -2737 ((-1166 |#1|) (-1166 |#1|))) (-15 -2749 ((-1166 |#1|) (-1166 |#1|))) (-15 -2761 ((-1166 |#1|) (-1166 |#1|))) (-15 -2774 ((-1166 |#1|) (-1166 |#1|))) (-15 -2786 ((-1166 |#1|) (-1166 |#1|))) (-15 -4119 ((-1166 |#1|) (-1166 |#1|))) (-15 -4129 ((-1166 |#1|) (-1166 |#1|))) (-15 -4141 ((-1166 |#1|) (-1166 |#1|))) (-15 -4153 ((-1166 |#1|) (-1166 |#1|))) (-15 -4165 ((-1166 |#1|) (-1166 |#1|))) (-15 -4176 ((-1166 |#1|) (-1166 |#1|))) (-15 -4186 ((-1166 |#1|) (-1166 |#1|))) (-15 -1504 ((-1166 |#1|) (-1166 |#1|)))) (-38 (-413 (-570)))) (T -1171)) +((-1504 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4129 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2664 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-2665 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3))))) +(-10 -7 (-15 -4390 ((-1166 |#1|) (-1166 |#1|))) (-15 -2665 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2604 ((-1166 |#1|) (-1166 |#1|))) (-15 -2616 ((-1166 |#1|) (-1166 |#1|))) (-15 -2629 ((-1166 |#1|) (-1166 |#1|))) (-15 -2636 ((-1166 |#1|) (-1166 |#1|))) (-15 -2648 ((-1166 |#1|) (-1166 |#1|))) (-15 -2664 ((-1166 |#1|) (-1166 |#1|))) (-15 -2678 ((-1166 |#1|) (-1166 |#1|))) (-15 -2692 ((-1166 |#1|) (-1166 |#1|))) (-15 -2704 ((-1166 |#1|) (-1166 |#1|))) (-15 -2715 ((-1166 |#1|) (-1166 |#1|))) (-15 -2726 ((-1166 |#1|) (-1166 |#1|))) (-15 -2737 ((-1166 |#1|) (-1166 |#1|))) (-15 -2749 ((-1166 |#1|) (-1166 |#1|))) (-15 -2761 ((-1166 |#1|) (-1166 |#1|))) (-15 -2774 ((-1166 |#1|) (-1166 |#1|))) (-15 -2786 ((-1166 |#1|) (-1166 |#1|))) (-15 -4119 ((-1166 |#1|) (-1166 |#1|))) (-15 -4129 ((-1166 |#1|) (-1166 |#1|))) (-15 -4141 ((-1166 |#1|) (-1166 |#1|))) (-15 -4153 ((-1166 |#1|) (-1166 |#1|))) (-15 -4165 ((-1166 |#1|) (-1166 |#1|))) (-15 -4176 ((-1166 |#1|) (-1166 |#1|))) (-15 -4186 ((-1166 |#1|) (-1166 |#1|))) (-15 -1504 ((-1166 |#1|) (-1166 |#1|)))) +((-2774 (((-1166 |#1|) (-1166 |#1|)) 107)) (-2629 (((-1166 |#1|) (-1166 |#1|)) 61)) (-2893 (((-2 (|:| -2749 (-1166 |#1|)) (|:| -2761 (-1166 |#1|))) (-1166 |#1|)) 103)) (-2749 (((-1166 |#1|) (-1166 |#1|)) 104)) (-2342 (((-2 (|:| -2604 (-1166 |#1|)) (|:| -2616 (-1166 |#1|))) (-1166 |#1|)) 54)) (-2604 (((-1166 |#1|) (-1166 |#1|)) 55)) (-4119 (((-1166 |#1|) (-1166 |#1|)) 109)) (-2648 (((-1166 |#1|) (-1166 |#1|)) 68)) (-2665 (((-1166 |#1|) (-1166 |#1|)) 40)) (-4390 (((-1166 |#1|) (-1166 |#1|)) 37)) (-4129 (((-1166 |#1|) (-1166 |#1|)) 110)) (-2664 (((-1166 |#1|) (-1166 |#1|)) 69)) (-2786 (((-1166 |#1|) (-1166 |#1|)) 108)) (-2636 (((-1166 |#1|) (-1166 |#1|)) 64)) (-2761 (((-1166 |#1|) (-1166 |#1|)) 105)) (-2616 (((-1166 |#1|) (-1166 |#1|)) 56)) (-4165 (((-1166 |#1|) (-1166 |#1|)) 118)) (-2704 (((-1166 |#1|) (-1166 |#1|)) 93)) (-4141 (((-1166 |#1|) (-1166 |#1|)) 112)) (-2678 (((-1166 |#1|) (-1166 |#1|)) 89)) (-4186 (((-1166 |#1|) (-1166 |#1|)) 122)) (-2726 (((-1166 |#1|) (-1166 |#1|)) 97)) (-1504 (((-1166 |#1|) (-1166 |#1|)) 124)) (-2737 (((-1166 |#1|) (-1166 |#1|)) 99)) (-4176 (((-1166 |#1|) (-1166 |#1|)) 120)) (-2715 (((-1166 |#1|) (-1166 |#1|)) 95)) (-4153 (((-1166 |#1|) (-1166 |#1|)) 114)) (-2692 (((-1166 |#1|) (-1166 |#1|)) 91)) (** (((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) 41))) +(((-1172 |#1|) (-10 -7 (-15 -4390 ((-1166 |#1|) (-1166 |#1|))) (-15 -2665 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2342 ((-2 (|:| -2604 (-1166 |#1|)) (|:| -2616 (-1166 |#1|))) (-1166 |#1|))) (-15 -2604 ((-1166 |#1|) (-1166 |#1|))) (-15 -2616 ((-1166 |#1|) (-1166 |#1|))) (-15 -2629 ((-1166 |#1|) (-1166 |#1|))) (-15 -2636 ((-1166 |#1|) (-1166 |#1|))) (-15 -2648 ((-1166 |#1|) (-1166 |#1|))) (-15 -2664 ((-1166 |#1|) (-1166 |#1|))) (-15 -2678 ((-1166 |#1|) (-1166 |#1|))) (-15 -2692 ((-1166 |#1|) (-1166 |#1|))) (-15 -2704 ((-1166 |#1|) (-1166 |#1|))) (-15 -2715 ((-1166 |#1|) (-1166 |#1|))) (-15 -2726 ((-1166 |#1|) (-1166 |#1|))) (-15 -2737 ((-1166 |#1|) (-1166 |#1|))) (-15 -2893 ((-2 (|:| -2749 (-1166 |#1|)) (|:| -2761 (-1166 |#1|))) (-1166 |#1|))) (-15 -2749 ((-1166 |#1|) (-1166 |#1|))) (-15 -2761 ((-1166 |#1|) (-1166 |#1|))) (-15 -2774 ((-1166 |#1|) (-1166 |#1|))) (-15 -2786 ((-1166 |#1|) (-1166 |#1|))) (-15 -4119 ((-1166 |#1|) (-1166 |#1|))) (-15 -4129 ((-1166 |#1|) (-1166 |#1|))) (-15 -4141 ((-1166 |#1|) (-1166 |#1|))) (-15 -4153 ((-1166 |#1|) (-1166 |#1|))) (-15 -4165 ((-1166 |#1|) (-1166 |#1|))) (-15 -4176 ((-1166 |#1|) (-1166 |#1|))) (-15 -4186 ((-1166 |#1|) (-1166 |#1|))) (-15 -1504 ((-1166 |#1|) (-1166 |#1|)))) (-38 (-413 (-570)))) (T -1172)) +((-1504 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4153 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4129 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-2 (|:| -2749 (-1166 *4)) (|:| -2761 (-1166 *4)))) (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2726 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2704 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2664 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2342 (*1 *2 *3) (-12 (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-2 (|:| -2604 (-1166 *4)) (|:| -2616 (-1166 *4)))) (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-2665 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1172 *3))))) +(-10 -7 (-15 -4390 ((-1166 |#1|) (-1166 |#1|))) (-15 -2665 ((-1166 |#1|) (-1166 |#1|))) (-15 ** ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2342 ((-2 (|:| -2604 (-1166 |#1|)) (|:| -2616 (-1166 |#1|))) (-1166 |#1|))) (-15 -2604 ((-1166 |#1|) (-1166 |#1|))) (-15 -2616 ((-1166 |#1|) (-1166 |#1|))) (-15 -2629 ((-1166 |#1|) (-1166 |#1|))) (-15 -2636 ((-1166 |#1|) (-1166 |#1|))) (-15 -2648 ((-1166 |#1|) (-1166 |#1|))) (-15 -2664 ((-1166 |#1|) (-1166 |#1|))) (-15 -2678 ((-1166 |#1|) (-1166 |#1|))) (-15 -2692 ((-1166 |#1|) (-1166 |#1|))) (-15 -2704 ((-1166 |#1|) (-1166 |#1|))) (-15 -2715 ((-1166 |#1|) (-1166 |#1|))) (-15 -2726 ((-1166 |#1|) (-1166 |#1|))) (-15 -2737 ((-1166 |#1|) (-1166 |#1|))) (-15 -2893 ((-2 (|:| -2749 (-1166 |#1|)) (|:| -2761 (-1166 |#1|))) (-1166 |#1|))) (-15 -2749 ((-1166 |#1|) (-1166 |#1|))) (-15 -2761 ((-1166 |#1|) (-1166 |#1|))) (-15 -2774 ((-1166 |#1|) (-1166 |#1|))) (-15 -2786 ((-1166 |#1|) (-1166 |#1|))) (-15 -4119 ((-1166 |#1|) (-1166 |#1|))) (-15 -4129 ((-1166 |#1|) (-1166 |#1|))) (-15 -4141 ((-1166 |#1|) (-1166 |#1|))) (-15 -4153 ((-1166 |#1|) (-1166 |#1|))) (-15 -4165 ((-1166 |#1|) (-1166 |#1|))) (-15 -4176 ((-1166 |#1|) (-1166 |#1|))) (-15 -4186 ((-1166 |#1|) (-1166 |#1|))) (-15 -1504 ((-1166 |#1|) (-1166 |#1|)))) +((-2138 (((-965 |#2|) |#2| |#2|) 50)) (-1908 ((|#2| |#2| |#1|) 19 (|has| |#1| (-311))))) +(((-1173 |#1| |#2|) (-10 -7 (-15 -2138 ((-965 |#2|) |#2| |#2|)) (IF (|has| |#1| (-311)) (-15 -1908 (|#2| |#2| |#1|)) |%noBranch|)) (-562) (-1252 |#1|)) (T -1173)) +((-1908 (*1 *2 *2 *3) (-12 (-4 *3 (-311)) (-4 *3 (-562)) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1252 *3)))) (-2138 (*1 *2 *3 *3) (-12 (-4 *4 (-562)) (-5 *2 (-965 *3)) (-5 *1 (-1173 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -2138 ((-965 |#2|) |#2| |#2|)) (IF (|has| |#1| (-311)) (-15 -1908 (|#2| |#2| |#1|)) |%noBranch|)) +((-2419 (((-112) $ $) NIL)) (-1603 (($ $ (-650 (-777))) 81)) (-4384 (($) 33)) (-3038 (($ $) 51)) (-2651 (((-650 $) $) 60)) (-2736 (((-112) $) 19)) (-4191 (((-650 (-950 |#2|)) $) 88)) (-3673 (($ $) 82)) (-3679 (((-777) $) 47)) (-4300 (($) 32)) (-2127 (($ $ (-650 (-777)) (-950 |#2|)) 74) (($ $ (-650 (-777)) (-777)) 75) (($ $ (-777) (-950 |#2|)) 77)) (-2735 (($ $ $) 57) (($ (-650 $)) 59)) (-2470 (((-777) $) 89)) (-4142 (((-112) $) 15)) (-4122 (((-1168) $) NIL)) (-4261 (((-112) $) 22)) (-3551 (((-1129) $) NIL)) (-2028 (((-173) $) 87)) (-3243 (((-950 |#2|) $) 83)) (-3024 (((-777) $) 84)) (-3931 (((-112) $) 86)) (-2828 (($ $ (-650 (-777)) (-173)) 80)) (-2117 (($ $) 52)) (-3798 (((-868) $) 100)) (-1618 (($ $ (-650 (-777)) (-112)) 79)) (-1974 (((-650 $) $) 11)) (-2350 (($ $ (-777)) 46)) (-2444 (($ $) 43)) (-1319 (((-112) $ $) NIL)) (-1452 (($ $ $ (-950 |#2|) (-777)) 70)) (-3468 (($ $ (-950 |#2|)) 69)) (-3775 (($ $ (-650 (-777)) (-950 |#2|)) 66) (($ $ (-650 (-777)) (-777)) 72) (((-777) $ (-950 |#2|)) 73)) (-2923 (((-112) $ $) 94))) +(((-1174 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -4142 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -4261 ((-112) $)) (-15 -4300 ($)) (-15 -4384 ($)) (-15 -2444 ($ $)) (-15 -2350 ($ $ (-777))) (-15 -1974 ((-650 $) $)) (-15 -3679 ((-777) $)) (-15 -3038 ($ $)) (-15 -2117 ($ $)) (-15 -2735 ($ $ $)) (-15 -2735 ($ (-650 $))) (-15 -2651 ((-650 $) $)) (-15 -3775 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -3468 ($ $ (-950 |#2|))) (-15 -1452 ($ $ $ (-950 |#2|) (-777))) (-15 -2127 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -3775 ($ $ (-650 (-777)) (-777))) (-15 -2127 ($ $ (-650 (-777)) (-777))) (-15 -3775 ((-777) $ (-950 |#2|))) (-15 -2127 ($ $ (-777) (-950 |#2|))) (-15 -1618 ($ $ (-650 (-777)) (-112))) (-15 -2828 ($ $ (-650 (-777)) (-173))) (-15 -1603 ($ $ (-650 (-777)))) (-15 -3243 ((-950 |#2|) $)) (-15 -3024 ((-777) $)) (-15 -3931 ((-112) $)) (-15 -2028 ((-173) $)) (-15 -2470 ((-777) $)) (-15 -3673 ($ $)) (-15 -4191 ((-650 (-950 |#2|)) $)))) (-928) (-1058)) (T -1174)) +((-4142 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-4300 (*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-4384 (*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-2444 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-1974 (*1 *2 *1) (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3038 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-2117 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-2735 (*1 *1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-2735 (*1 *1 *2) (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-950 *4)) (-4 *4 (-1058)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)))) (-1452 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-950 *5)) (-5 *3 (-777)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-2127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-3775 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-2127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-3775 (*1 *2 *1 *3) (-12 (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *2 (-777)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-2127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) (-1618 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-112)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-2828 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-650 (-777))) (-5 *3 (-173)) (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)) (-4 *5 (-1058)))) (-1603 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-950 *4)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2028 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058)))) (-3673 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-650 (-950 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) (-4 *4 (-1058))))) +(-13 (-1109) (-10 -8 (-15 -4142 ((-112) $)) (-15 -2736 ((-112) $)) (-15 -4261 ((-112) $)) (-15 -4300 ($)) (-15 -4384 ($)) (-15 -2444 ($ $)) (-15 -2350 ($ $ (-777))) (-15 -1974 ((-650 $) $)) (-15 -3679 ((-777) $)) (-15 -3038 ($ $)) (-15 -2117 ($ $)) (-15 -2735 ($ $ $)) (-15 -2735 ($ (-650 $))) (-15 -2651 ((-650 $) $)) (-15 -3775 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -3468 ($ $ (-950 |#2|))) (-15 -1452 ($ $ $ (-950 |#2|) (-777))) (-15 -2127 ($ $ (-650 (-777)) (-950 |#2|))) (-15 -3775 ($ $ (-650 (-777)) (-777))) (-15 -2127 ($ $ (-650 (-777)) (-777))) (-15 -3775 ((-777) $ (-950 |#2|))) (-15 -2127 ($ $ (-777) (-950 |#2|))) (-15 -1618 ($ $ (-650 (-777)) (-112))) (-15 -2828 ($ $ (-650 (-777)) (-173))) (-15 -1603 ($ $ (-650 (-777)))) (-15 -3243 ((-950 |#2|) $)) (-15 -3024 ((-777) $)) (-15 -3931 ((-112) $)) (-15 -2028 ((-173) $)) (-15 -2470 ((-777) $)) (-15 -3673 ($ $)) (-15 -4191 ((-650 (-950 |#2|)) $)))) +((-2419 (((-112) $ $) NIL)) (-2118 ((|#2| $) 11)) (-2108 ((|#1| $) 10)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3811 (($ |#1| |#2|) 9)) (-3798 (((-868) $) 16)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1175 |#1| |#2|) (-13 (-1109) (-10 -8 (-15 -3811 ($ |#1| |#2|)) (-15 -2108 (|#1| $)) (-15 -2118 (|#2| $)))) (-1109) (-1109)) (T -1175)) +((-3811 (*1 *1 *2 *3) (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-2108 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-1109)))) (-2118 (*1 *2 *1) (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-1109))))) +(-13 (-1109) (-10 -8 (-15 -3811 ($ |#1| |#2|)) (-15 -2108 (|#1| $)) (-15 -2118 (|#2| $)))) +((-2419 (((-112) $ $) NIL)) (-3729 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1176) (-13 (-1092) (-10 -8 (-15 -3729 ((-1144) $))))) (T -1176)) +((-3729 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1176))))) +(-13 (-1092) (-10 -8 (-15 -3729 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-1184 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 11)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-2318 (($ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-2234 (((-112) $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3667 (($ $ (-570)) NIL) (($ $ (-570) (-570)) 75)) (-1919 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) NIL)) (-1893 (((-1184 |#1| |#2| |#3|) $) 42)) (-3907 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 32)) (-1776 (((-1184 |#1| |#2| |#3|) $) 33)) (-2774 (($ $) 116 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 92 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) 112 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 88 (|has| |#1| (-38 (-413 (-570)))))) (-2579 (((-570) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-3325 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) NIL)) (-4119 (($ $) 120 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 96 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1186) "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-570) "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-3152 (((-1184 |#1| |#2| |#3|) $) 140) (((-1186) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-413 (-570)) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-570) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-1962 (($ $) 37) (($ (-570) $) 38)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-1184 |#1| |#2| |#3|)) (-695 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 (-1184 |#1| |#2| |#3|))) (|:| |vec| (-1276 (-1184 |#1| |#2| |#3|)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368))))) (-2229 (((-3 $ "failed") $) 54)) (-3660 (((-413 (-959 |#1|)) $ (-570)) 74 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 76 (|has| |#1| (-562)))) (-3408 (($) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2135 (((-112) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-2465 (((-112) $) 28)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-893 (-570))) (|has| |#1| (-368))))) (-4202 (((-570) $) NIL) (((-570) $ (-570)) 26)) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL (|has| |#1| (-368)))) (-4400 (((-1184 |#1| |#2| |#3|) $) 44 (|has| |#1| (-368)))) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3641 (((-3 $ "failed") $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))))) (-3367 (((-112) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-2964 (($ $ (-928)) NIL)) (-3989 (($ (-1 |#1| (-570)) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-570)) 19) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-3382 (($ $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2876 (($ $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-368)))) (-2665 (($ $) 81 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-1788 (($ (-570) (-1184 |#1| |#2| |#3|)) 36)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1840 (($ $) 79 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 80 (|has| |#1| (-38 (-413 (-570)))))) (-2310 (($) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2545 (($ $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-4140 (((-1184 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-570)) 158)) (-2410 (((-3 $ "failed") $ $) 55 (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) 82 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) (-1184 |#1| |#2| |#3|)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-520 (-1186) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-1184 |#1| |#2| |#3|))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-520 (-1186) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-298 (-1184 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-298 (-1184 |#1| |#2| |#3|))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1184 |#1| |#2| |#3|)) (-650 (-1184 |#1| |#2| |#3|))) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-313 (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-570)) NIL) (($ $ $) 61 (|has| (-570) (-1121))) (($ $ (-1184 |#1| |#2| |#3|)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-290 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1272 |#2|)) 57) (($ $ (-777)) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 56 (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-2397 (($ $) NIL (|has| |#1| (-368)))) (-4413 (((-1184 |#1| |#2| |#3|) $) 46 (|has| |#1| (-368)))) (-3324 (((-570) $) 43)) (-4129 (($ $) 122 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 98 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 118 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 94 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 114 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 90 (|has| |#1| (-38 (-413 (-570)))))) (-1411 (((-542) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-620 (-542))) (|has| |#1| (-368)))) (((-384) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-227) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-899 (-384)) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) 162) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1184 |#1| |#2| |#3|)) 30) (($ (-1272 |#2|)) 25) (($ (-1186)) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (($ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562)))) (($ (-413 (-570))) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))) (|has| |#1| (-38 (-413 (-570))))))) (-3326 ((|#1| $ (-570)) 77)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 12)) (-1442 (((-1184 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) 128 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 104 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-4141 (($ $) 124 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 100 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 108 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-570)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 110 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 106 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 126 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 102 (|has| |#1| (-38 (-413 (-570)))))) (-2216 (($ $) NIL (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-1809 (($) 21 T CONST)) (-1817 (($) 16 T CONST)) (-2835 (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-2981 (((-112) $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2959 (((-112) $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2948 (((-112) $ $) NIL (-2779 (-12 (|has| (-1184 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1184 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 49 (|has| |#1| (-368))) (($ (-1184 |#1| |#2| |#3|) (-1184 |#1| |#2| |#3|)) 50 (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 23)) (** (($ $ (-928)) NIL) (($ $ (-777)) 60) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) 83 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 137 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1184 |#1| |#2| |#3|)) 48 (|has| |#1| (-368))) (($ (-1184 |#1| |#2| |#3|) $) 47 (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1177 |#1| |#2| |#3|) (-13 (-1238 |#1| (-1184 |#1| |#2| |#3|)) (-10 -8 (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1177)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1238 |#1| (-1184 |#1| |#2| |#3|)) (-10 -8 (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-3274 ((|#2| |#2| (-1101 |#2|)) 26) ((|#2| |#2| (-1186)) 28))) +(((-1178 |#1| |#2|) (-10 -7 (-15 -3274 (|#2| |#2| (-1186))) (-15 -3274 (|#2| |#2| (-1101 |#2|)))) (-13 (-562) (-1047 (-570)) (-645 (-570))) (-13 (-436 |#1|) (-161) (-27) (-1211))) (T -1178)) +((-3274 (*1 *2 *2 *3) (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1211))) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1178 *4 *2)))) (-3274 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1211)))))) +(-10 -7 (-15 -3274 (|#2| |#2| (-1186))) (-15 -3274 (|#2| |#2| (-1101 |#2|)))) +((-3274 (((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1101 (-413 (-959 |#1|)))) 31) (((-413 (-959 |#1|)) (-959 |#1|) (-1101 (-959 |#1|))) 44) (((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1186)) 33) (((-413 (-959 |#1|)) (-959 |#1|) (-1186)) 36))) +(((-1179 |#1|) (-10 -7 (-15 -3274 ((-413 (-959 |#1|)) (-959 |#1|) (-1186))) (-15 -3274 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -3274 ((-413 (-959 |#1|)) (-959 |#1|) (-1101 (-959 |#1|)))) (-15 -3274 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1101 (-413 (-959 |#1|)))))) (-13 (-562) (-1047 (-570)))) (T -1179)) +((-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-3 *3 (-320 *5))) (-5 *1 (-1179 *5)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-1101 (-959 *5))) (-5 *3 (-959 *5)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 *3)) (-5 *1 (-1179 *5)))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-3 (-413 (-959 *5)) (-320 *5))) (-5 *1 (-1179 *5)) (-5 *3 (-413 (-959 *5))))) (-3274 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 (-959 *5))) (-5 *1 (-1179 *5)) (-5 *3 (-959 *5))))) +(-10 -7 (-15 -3274 ((-413 (-959 |#1|)) (-959 |#1|) (-1186))) (-15 -3274 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1186))) (-15 -3274 ((-413 (-959 |#1|)) (-959 |#1|) (-1101 (-959 |#1|)))) (-15 -3274 ((-3 (-413 (-959 |#1|)) (-320 |#1|)) (-413 (-959 |#1|)) (-1101 (-413 (-959 |#1|)))))) +((-1347 (((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)) 13))) +(((-1180 |#1| |#2|) (-10 -7 (-15 -1347 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)))) (-1058) (-1058)) (T -1180)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6))))) +(-10 -7 (-15 -1347 ((-1182 |#2|) (-1 |#2| |#1|) (-1182 |#1|)))) +((-2555 (((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))) 51)) (-3801 (((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))) 52))) +(((-1181 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|)))) (-15 -2555 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))))) (-799) (-856) (-458) (-956 |#3| |#1| |#2|)) (T -1181)) +((-2555 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7)))) (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7))))) (-3801 (*1 *2 *3) (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458)) (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7)))) (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7)))))) +(-10 -7 (-15 -3801 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|)))) (-15 -2555 ((-424 (-1182 (-413 |#4|))) (-1182 (-413 |#4|))))) +((-2419 (((-112) $ $) 171)) (-1359 (((-112) $) 43)) (-2012 (((-1276 |#1|) $ (-777)) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-3832 (($ (-1182 |#1|)) NIL)) (-3768 (((-1182 $) $ (-1091)) 82) (((-1182 |#1|) $) 71)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) 164 (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-1485 (($ $ $) 158 (|has| |#1| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) 95 (|has| |#1| (-916)))) (-3696 (($ $) NIL (|has| |#1| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 115 (|has| |#1| (-916)))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-3100 (($ $ (-777)) 61)) (-4146 (($ $ (-777)) 63)) (-2651 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-458)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#1| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL)) (-3152 ((|#1| $) NIL) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-1091) $) NIL)) (-2865 (($ $ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) 80)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) NIL) (((-695 |#1|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-3770 (($ $ $) 131)) (-3858 (($ $ $) NIL (|has| |#1| (-562)))) (-1874 (((-2 (|:| -1436 |#1|) (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-1908 (($ $) 165 (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-777) $) 69)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-3949 (((-868) $ (-868)) 148)) (-4202 (((-777) $ $) NIL (|has| |#1| (-562)))) (-2481 (((-112) $) 48)) (-1700 (((-777) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#1| (-1161)))) (-1699 (($ (-1182 |#1|) (-1091)) 73) (($ (-1182 $) (-1091)) 89)) (-2964 (($ $ (-777)) 51)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) 87) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1091)) NIL) (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 153)) (-2302 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2550 (($ (-1 (-777) (-777)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-3713 (((-1182 |#1|) $) NIL)) (-4372 (((-3 (-1091) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) 76)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) NIL (|has| |#1| (-458)))) (-4122 (((-1168) $) NIL)) (-3627 (((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777)) 60)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-1091)) (|:| -3283 (-777))) "failed") $) NIL)) (-1840 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2310 (($) NIL (|has| |#1| (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) 50)) (-1838 ((|#1| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 103 (|has| |#1| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-458))) (($ $ $) 167 (|has| |#1| (-458)))) (-3750 (($ $ (-777) |#1| $) 123)) (-3484 (((-424 (-1182 $)) (-1182 $)) 101 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 100 (|has| |#1| (-916)))) (-3801 (((-424 $) $) 108 (|has| |#1| (-916)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-650 (-1091)) (-650 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) NIL (|has| |#1| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#1| (-562)))) (-2575 (((-3 $ "failed") $ (-777)) 54)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 172 (|has| |#1| (-368)))) (-3511 (($ $ (-1091)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3519 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3324 (((-777) $) 78) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) 162 (|has| |#1| (-458))) (($ $ (-1091)) NIL (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-916))))) (-3276 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#1| (-562)))) (-3798 (((-868) $) 149) (($ (-570)) NIL) (($ |#1|) 77) (($ (-1091)) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) 41 (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) 17 T CONST)) (-1817 (($) 19 T CONST)) (-2835 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2923 (((-112) $ $) 120)) (-3037 (($ $ |#1|) 173 (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 90)) (** (($ $ (-928)) 14) (($ $ (-777)) 12)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 39) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1182 |#1|) (-13 (-1252 |#1|) (-10 -8 (-15 -3949 ((-868) $ (-868))) (-15 -3750 ($ $ (-777) |#1| $)))) (-1058)) (T -1182)) +((-3949 (*1 *2 *1 *2) (-12 (-5 *2 (-868)) (-5 *1 (-1182 *3)) (-4 *3 (-1058)))) (-3750 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1182 *3)) (-4 *3 (-1058))))) +(-13 (-1252 |#1|) (-10 -8 (-15 -3949 ((-868) $ (-868))) (-15 -3750 ($ $ (-777) |#1| $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 11)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) NIL)) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1184 |#1| |#2| |#3|) "failed") $) 36)) (-3152 (((-1177 |#1| |#2| |#3|) $) NIL) (((-1184 |#1| |#2| |#3|) $) NIL)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2987 (((-413 (-570)) $) 59)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-1800 (($ (-413 (-570)) (-1177 |#1| |#2| |#3|)) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) NIL)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-413 (-570))) 20) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2903 (((-1177 |#1| |#2| |#3|) $) 41)) (-2596 (((-3 (-1177 |#1| |#2| |#3|) "failed") $) NIL)) (-1788 (((-1177 |#1| |#2| |#3|) $) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1840 (($ $) 39 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 40 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) NIL)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $ (-1272 |#2|)) 38)) (-3324 (((-413 (-570)) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) 62) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1177 |#1| |#2| |#3|)) 30) (($ (-1184 |#1| |#2| |#3|)) 31) (($ (-1272 |#2|)) 26) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 12)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 22 T CONST)) (-1817 (($) 16 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 24)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1183 |#1| |#2| |#3|) (-13 (-1259 |#1| (-1177 |#1| |#2| |#3|)) (-1047 (-1184 |#1| |#2| |#3|)) (-622 (-1272 |#2|)) (-10 -8 (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1183)) +((-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1259 |#1| (-1177 |#1| |#2| |#3|)) (-1047 (-1184 |#1| |#2| |#3|)) (-622 (-1272 |#2|)) (-10 -8 (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 129)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 119)) (-2238 (((-1249 |#2| |#1|) $ (-777)) 69)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-777)) 85) (($ $ (-777) (-777)) 82)) (-1919 (((-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|))) $) 105)) (-2774 (($ $) 173 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2749 (($ $) 169 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|)))) 118) (($ (-1166 |#1|)) 113)) (-4119 (($ $) 177 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) 25)) (-2657 (($ $) 28)) (-3280 (((-959 |#1|) $ (-777)) 81) (((-959 |#1|) $ (-777) (-777)) 83)) (-2465 (((-112) $) 124)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-777) $) 126) (((-777) $ (-777)) 128)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) NIL)) (-3989 (($ (-1 |#1| (-570)) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) 13) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-1840 (($ $) 133 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 134 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-3500 (($ $ (-777)) 15)) (-2410 (((-3 $ "failed") $ $) 26 (|has| |#1| (-562)))) (-4390 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-777)))))) (-1872 ((|#1| $ (-777)) 122) (($ $ $) 132 (|has| (-777) (-1121)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $ (-1272 |#2|)) 31)) (-3324 (((-777) $) NIL)) (-4129 (($ $) 179 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 175 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 171 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) 206) (($ (-570)) NIL) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1249 |#2| |#1|)) 55) (($ (-1272 |#2|)) 36)) (-2479 (((-1166 |#1|) $) 101)) (-3326 ((|#1| $ (-777)) 121)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 58)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) 185 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 161 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) 181 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 157 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 189 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 165 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-777)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-777)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 191 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 167 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 187 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 163 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 183 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 159 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 17 T CONST)) (-1817 (($) 20 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) 198)) (-3014 (($ $ $) 35)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ |#1|) 203 (|has| |#1| (-368))) (($ $ $) 138 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 141 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1184 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-10 -8 (-15 -3798 ($ (-1249 |#2| |#1|))) (-15 -2238 ((-1249 |#2| |#1|) $ (-777))) (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1184)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1249 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-1184 *3 *4 *5)))) (-2238 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1249 *5 *4)) (-5 *1 (-1184 *4 *5 *6)) (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1267 |#1|) (-10 -8 (-15 -3798 ($ (-1249 |#2| |#1|))) (-15 -2238 ((-1249 |#2| |#1|) $ (-777))) (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-3798 (((-868) $) 33) (($ (-1186)) 35)) (-2779 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 46)) (-2767 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 39) (($ $) 40)) (-2693 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 41)) (-2679 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 43)) (-2666 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 42)) (-2652 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 44)) (-2092 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $))) 45))) +(((-1185) (-13 (-619 (-868)) (-10 -8 (-15 -3798 ($ (-1186))) (-15 -2693 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2666 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2679 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2652 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2779 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2092 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2767 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2767 ($ $))))) (T -1185)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-2693 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2666 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2679 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2652 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2779 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2092 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) (-5 *1 (-1185)))) (-2767 (*1 *1 *1) (-5 *1 (-1185)))) +(-13 (-619 (-868)) (-10 -8 (-15 -3798 ($ (-1186))) (-15 -2693 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2666 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2679 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2652 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2779 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2092 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)) (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2767 ($ (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) (|:| CF (-320 (-171 (-384)))) (|:| |switch| $)))) (-15 -2767 ($ $)))) +((-2419 (((-112) $ $) NIL)) (-3829 (($ $ (-650 (-868))) 62)) (-1627 (($ $ (-650 (-868))) 60)) (-3391 (((-1168) $) 101)) (-3859 (((-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868)))) $) 108)) (-3265 (((-112) $) 23)) (-4365 (($ $ (-650 (-650 (-868)))) 59) (($ $ (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868))))) 99)) (-3734 (($) 163 T CONST)) (-4037 (((-1281)) 135)) (-2125 (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 69) (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 76)) (-4300 (($) 122) (($ $) 131)) (-3574 (($ $) 100)) (-3382 (($ $ $) NIL)) (-2876 (($ $ $) NIL)) (-3384 (((-650 $) $) 136)) (-4122 (((-1168) $) 114)) (-3551 (((-1129) $) NIL)) (-1872 (($ $ (-650 (-868))) 61)) (-1411 (((-542) $) 48) (((-1186) $) 49) (((-899 (-570)) $) 80) (((-899 (-384)) $) 78)) (-3798 (((-868) $) 55) (($ (-1168)) 50)) (-1319 (((-112) $ $) NIL)) (-3855 (($ $ (-650 (-868))) 63)) (-1985 (((-1168) $) 34) (((-1168) $ (-112)) 35) (((-1281) (-828) $) 36) (((-1281) (-828) $ (-112)) 37)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 51)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) 52))) +(((-1186) (-13 (-856) (-620 (-542)) (-834) (-620 (-1186)) (-622 (-1168)) (-620 (-899 (-570))) (-620 (-899 (-384))) (-893 (-570)) (-893 (-384)) (-10 -8 (-15 -4300 ($)) (-15 -4300 ($ $)) (-15 -4037 ((-1281))) (-15 -3574 ($ $)) (-15 -3265 ((-112) $)) (-15 -3859 ((-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868)))) $)) (-15 -4365 ($ $ (-650 (-650 (-868))))) (-15 -4365 ($ $ (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868)))))) (-15 -1627 ($ $ (-650 (-868)))) (-15 -3829 ($ $ (-650 (-868)))) (-15 -3855 ($ $ (-650 (-868)))) (-15 -1872 ($ $ (-650 (-868)))) (-15 -3391 ((-1168) $)) (-15 -3384 ((-650 $) $)) (-15 -3734 ($) -3711)))) (T -1186)) +((-4300 (*1 *1) (-5 *1 (-1186))) (-4300 (*1 *1 *1) (-5 *1 (-1186))) (-4037 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1186)))) (-3574 (*1 *1 *1) (-5 *1 (-1186))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868))))) (-5 *1 (-1186)))) (-4365 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-1186)))) (-4365 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868))))) (-5 *1 (-1186)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1186)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1186)))) (-3734 (*1 *1) (-5 *1 (-1186)))) +(-13 (-856) (-620 (-542)) (-834) (-620 (-1186)) (-622 (-1168)) (-620 (-899 (-570))) (-620 (-899 (-384))) (-893 (-570)) (-893 (-384)) (-10 -8 (-15 -4300 ($)) (-15 -4300 ($ $)) (-15 -4037 ((-1281))) (-15 -3574 ($ $)) (-15 -3265 ((-112) $)) (-15 -3859 ((-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868)))) $)) (-15 -4365 ($ $ (-650 (-650 (-868))))) (-15 -4365 ($ $ (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) (|:| |args| (-650 (-868)))))) (-15 -1627 ($ $ (-650 (-868)))) (-15 -3829 ($ $ (-650 (-868)))) (-15 -3855 ($ $ (-650 (-868)))) (-15 -1872 ($ $ (-650 (-868)))) (-15 -3391 ((-1168) $)) (-15 -3384 ((-650 $) $)) (-15 -3734 ($) -3711))) +((-3954 (((-1276 |#1|) |#1| (-928)) 18) (((-1276 |#1|) (-650 |#1|)) 25))) +(((-1187 |#1|) (-10 -7 (-15 -3954 ((-1276 |#1|) (-650 |#1|))) (-15 -3954 ((-1276 |#1|) |#1| (-928)))) (-1058)) (T -1187)) +((-3954 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-1276 *3)) (-5 *1 (-1187 *3)) (-4 *3 (-1058)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1058)) (-5 *2 (-1276 *4)) (-5 *1 (-1187 *4))))) +(-10 -7 (-15 -3954 ((-1276 |#1|) (-650 |#1|))) (-15 -3954 ((-1276 |#1|) |#1| (-928)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| |#1| (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#1| (-1047 (-413 (-570))))) (((-3 |#1| "failed") $) NIL)) (-3152 (((-570) $) NIL (|has| |#1| (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| |#1| (-1047 (-413 (-570))))) ((|#1| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-1908 (($ $) NIL (|has| |#1| (-458)))) (-3155 (($ $ |#1| (-980) $) NIL)) (-2481 (((-112) $) 17)) (-1700 (((-777) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-980)) NIL)) (-2302 (((-980) $) NIL)) (-2550 (($ (-1 (-980) (-980)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#1| $) NIL)) (-3750 (($ $ (-980) |#1| $) NIL (-12 (|has| (-980) (-132)) (|has| |#1| (-562))))) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-562)))) (-3324 (((-980) $) NIL)) (-1427 ((|#1| $) NIL (|has| |#1| (-458)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) NIL) (($ (-413 (-570))) NIL (-2779 (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-1047 (-413 (-570))))))) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ (-980)) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#1| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-1809 (($) 11 T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 21)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1188 |#1|) (-13 (-330 |#1| (-980)) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| (-980) (-132)) (-15 -3750 ($ $ (-980) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|))) (-1058)) (T -1188)) +((-3750 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-980)) (-4 *2 (-132)) (-5 *1 (-1188 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))) +(-13 (-330 |#1| (-980)) (-10 -8 (IF (|has| |#1| (-562)) (IF (|has| (-980) (-132)) (-15 -3750 ($ $ (-980) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|))) +((-2784 (((-1190) (-1186) $) 25)) (-3613 (($) 29)) (-2697 (((-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-1186) $) 22)) (-2617 (((-1281) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void")) $) 41) (((-1281) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) 42) (((-1281) (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) 43)) (-4262 (((-1281) (-1186)) 58)) (-3214 (((-1281) (-1186) $) 55) (((-1281) (-1186)) 56) (((-1281)) 57)) (-1812 (((-1281) (-1186)) 37)) (-1835 (((-1186)) 36)) (-4359 (($) 34)) (-2742 (((-443) (-1186) (-443) (-1186) $) 45) (((-443) (-650 (-1186)) (-443) (-1186) $) 49) (((-443) (-1186) (-443)) 46) (((-443) (-1186) (-443) (-1186)) 50)) (-1850 (((-1186)) 35)) (-3798 (((-868) $) 28)) (-1778 (((-1281)) 30) (((-1281) (-1186)) 33)) (-1833 (((-650 (-1186)) (-1186) $) 24)) (-4367 (((-1281) (-1186) (-650 (-1186)) $) 38) (((-1281) (-1186) (-650 (-1186))) 39) (((-1281) (-650 (-1186))) 40))) +(((-1189) (-13 (-619 (-868)) (-10 -8 (-15 -3613 ($)) (-15 -1778 ((-1281))) (-15 -1778 ((-1281) (-1186))) (-15 -2742 ((-443) (-1186) (-443) (-1186) $)) (-15 -2742 ((-443) (-650 (-1186)) (-443) (-1186) $)) (-15 -2742 ((-443) (-1186) (-443))) (-15 -2742 ((-443) (-1186) (-443) (-1186))) (-15 -1812 ((-1281) (-1186))) (-15 -1850 ((-1186))) (-15 -1835 ((-1186))) (-15 -4367 ((-1281) (-1186) (-650 (-1186)) $)) (-15 -4367 ((-1281) (-1186) (-650 (-1186)))) (-15 -4367 ((-1281) (-650 (-1186)))) (-15 -2617 ((-1281) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void")) $)) (-15 -2617 ((-1281) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void")))) (-15 -2617 ((-1281) (-3 (|:| |fst| (-440)) (|:| -2582 "void")))) (-15 -3214 ((-1281) (-1186) $)) (-15 -3214 ((-1281) (-1186))) (-15 -3214 ((-1281))) (-15 -4262 ((-1281) (-1186))) (-15 -4359 ($)) (-15 -2697 ((-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-1186) $)) (-15 -1833 ((-650 (-1186)) (-1186) $)) (-15 -2784 ((-1190) (-1186) $))))) (T -1189)) +((-3613 (*1 *1) (-5 *1 (-1189))) (-1778 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1189)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-2742 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) (-2742 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *4 (-1186)) (-5 *1 (-1189)))) (-2742 (*1 *2 *3 *2) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) (-2742 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-1850 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189)))) (-1835 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189)))) (-4367 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-4367 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-2617 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1186)) (-5 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-5 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-3214 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-3214 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1189)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) (-4359 (*1 *1) (-5 *1 (-1189))) (-2697 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *1 (-1189)))) (-1833 (*1 *2 *3 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1189)) (-5 *3 (-1186)))) (-2784 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1190)) (-5 *1 (-1189))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3613 ($)) (-15 -1778 ((-1281))) (-15 -1778 ((-1281) (-1186))) (-15 -2742 ((-443) (-1186) (-443) (-1186) $)) (-15 -2742 ((-443) (-650 (-1186)) (-443) (-1186) $)) (-15 -2742 ((-443) (-1186) (-443))) (-15 -2742 ((-443) (-1186) (-443) (-1186))) (-15 -1812 ((-1281) (-1186))) (-15 -1850 ((-1186))) (-15 -1835 ((-1186))) (-15 -4367 ((-1281) (-1186) (-650 (-1186)) $)) (-15 -4367 ((-1281) (-1186) (-650 (-1186)))) (-15 -4367 ((-1281) (-650 (-1186)))) (-15 -2617 ((-1281) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void")) $)) (-15 -2617 ((-1281) (-1186) (-3 (|:| |fst| (-440)) (|:| -2582 "void")))) (-15 -2617 ((-1281) (-3 (|:| |fst| (-440)) (|:| -2582 "void")))) (-15 -3214 ((-1281) (-1186) $)) (-15 -3214 ((-1281) (-1186))) (-15 -3214 ((-1281))) (-15 -4262 ((-1281) (-1186))) (-15 -4359 ($)) (-15 -2697 ((-3 (|:| |fst| (-440)) (|:| -2582 "void")) (-1186) $)) (-15 -1833 ((-650 (-1186)) (-1186) $)) (-15 -2784 ((-1190) (-1186) $)))) +((-2713 (((-650 (-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) $) 66)) (-4256 (((-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))) (-440) $) 47)) (-3302 (($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-443))))) 17)) (-4262 (((-1281) $) 73)) (-2938 (((-650 (-1186)) $) 22)) (-2093 (((-1113) $) 60)) (-2576 (((-443) (-1186) $) 27)) (-4338 (((-650 (-1186)) $) 30)) (-4359 (($) 19)) (-2742 (((-443) (-650 (-1186)) (-443) $) 25) (((-443) (-1186) (-443) $) 24)) (-3798 (((-868) $) 9) (((-1199 (-1186) (-443)) $) 13))) +(((-1190) (-13 (-619 (-868)) (-10 -8 (-15 -3798 ((-1199 (-1186) (-443)) $)) (-15 -4359 ($)) (-15 -2742 ((-443) (-650 (-1186)) (-443) $)) (-15 -2742 ((-443) (-1186) (-443) $)) (-15 -2576 ((-443) (-1186) $)) (-15 -2938 ((-650 (-1186)) $)) (-15 -4256 ((-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))) (-440) $)) (-15 -4338 ((-650 (-1186)) $)) (-15 -2713 ((-650 (-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) $)) (-15 -2093 ((-1113) $)) (-15 -4262 ((-1281) $)) (-15 -3302 ($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-443))))))))) (T -1190)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-1199 (-1186) (-443))) (-5 *1 (-1190)))) (-4359 (*1 *1) (-5 *1 (-1190))) (-2742 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *1 (-1190)))) (-2742 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1190)))) (-2576 (*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-443)) (-5 *1 (-1190)))) (-2938 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190)))) (-4256 (*1 *2 *3 *1) (-12 (-5 *3 (-440)) (-5 *2 (-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) (-5 *1 (-1190)))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))))) (-5 *1 (-1190)))) (-2093 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1190)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1190)))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-443))))) (-5 *1 (-1190))))) +(-13 (-619 (-868)) (-10 -8 (-15 -3798 ((-1199 (-1186) (-443)) $)) (-15 -4359 ($)) (-15 -2742 ((-443) (-650 (-1186)) (-443) $)) (-15 -2742 ((-443) (-1186) (-443) $)) (-15 -2576 ((-443) (-1186) $)) (-15 -2938 ((-650 (-1186)) $)) (-15 -4256 ((-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))) (-440) $)) (-15 -4338 ((-650 (-1186)) $)) (-15 -2713 ((-650 (-650 (-3 (|:| -3574 (-1186)) (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) $)) (-15 -2093 ((-1113) $)) (-15 -4262 ((-1281) $)) (-15 -3302 ($ (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-443)))))))) +((-2419 (((-112) $ $) NIL)) (-4382 (((-3 (-570) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-512) "failed") $) 43) (((-3 (-1168) "failed") $) 47)) (-3152 (((-570) $) 30) (((-227) $) 36) (((-512) $) 40) (((-1168) $) 48)) (-1391 (((-112) $) 53)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1848 (((-3 (-570) (-227) (-512) (-1168) $) $) 55)) (-4229 (((-650 $) $) 57)) (-1411 (((-1113) $) 24) (($ (-1113)) 25)) (-3664 (((-112) $) 56)) (-3798 (((-868) $) 23) (($ (-570)) 26) (($ (-227)) 32) (($ (-512)) 38) (($ (-1168)) 44) (((-542) $) 59) (((-570) $) 31) (((-227) $) 37) (((-512) $) 41) (((-1168) $) 49)) (-1798 (((-112) $ (|[\|\|]| (-570))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-512))) 19) (((-112) $ (|[\|\|]| (-1168))) 16)) (-3075 (($ (-512) (-650 $)) 51) (($ $ (-650 $)) 52)) (-1319 (((-112) $ $) NIL)) (-3994 (((-570) $) 27) (((-227) $) 33) (((-512) $) 39) (((-1168) $) 45)) (-2923 (((-112) $ $) 7))) +(((-1191) (-13 (-1271) (-1109) (-1047 (-570)) (-1047 (-227)) (-1047 (-512)) (-1047 (-1168)) (-619 (-542)) (-10 -8 (-15 -1411 ((-1113) $)) (-15 -1411 ($ (-1113))) (-15 -3798 ((-570) $)) (-15 -3994 ((-570) $)) (-15 -3798 ((-227) $)) (-15 -3994 ((-227) $)) (-15 -3798 ((-512) $)) (-15 -3994 ((-512) $)) (-15 -3798 ((-1168) $)) (-15 -3994 ((-1168) $)) (-15 -3075 ($ (-512) (-650 $))) (-15 -3075 ($ $ (-650 $))) (-15 -1391 ((-112) $)) (-15 -1848 ((-3 (-570) (-227) (-512) (-1168) $) $)) (-15 -4229 ((-650 $) $)) (-15 -3664 ((-112) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-570)))) (-15 -1798 ((-112) $ (|[\|\|]| (-227)))) (-15 -1798 ((-112) $ (|[\|\|]| (-512)))) (-15 -1798 ((-112) $ (|[\|\|]| (-1168))))))) (T -1191)) +((-1411 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1191)))) (-1411 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-1191)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191)))) (-3075 (*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-650 (-1191))) (-5 *1 (-1191)))) (-3075 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-3 (-570) (-227) (-512) (-1168) (-1191))) (-5 *1 (-1191)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)) (-5 *1 (-1191)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1191)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-1191)))) (-1798 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1191))))) +(-13 (-1271) (-1109) (-1047 (-570)) (-1047 (-227)) (-1047 (-512)) (-1047 (-1168)) (-619 (-542)) (-10 -8 (-15 -1411 ((-1113) $)) (-15 -1411 ($ (-1113))) (-15 -3798 ((-570) $)) (-15 -3994 ((-570) $)) (-15 -3798 ((-227) $)) (-15 -3994 ((-227) $)) (-15 -3798 ((-512) $)) (-15 -3994 ((-512) $)) (-15 -3798 ((-1168) $)) (-15 -3994 ((-1168) $)) (-15 -3075 ($ (-512) (-650 $))) (-15 -3075 ($ $ (-650 $))) (-15 -1391 ((-112) $)) (-15 -1848 ((-3 (-570) (-227) (-512) (-1168) $) $)) (-15 -4229 ((-650 $) $)) (-15 -3664 ((-112) $)) (-15 -1798 ((-112) $ (|[\|\|]| (-570)))) (-15 -1798 ((-112) $ (|[\|\|]| (-227)))) (-15 -1798 ((-112) $ (|[\|\|]| (-512)))) (-15 -1798 ((-112) $ (|[\|\|]| (-1168)))))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) 22)) (-3734 (($) 12 T CONST)) (-3408 (($) 26)) (-3382 (($ $ $) NIL) (($) 19 T CONST)) (-2876 (($ $ $) NIL) (($) 20 T CONST)) (-2484 (((-928) $) 24)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) 23)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1192 |#1|) (-13 (-850) (-10 -8 (-15 -3734 ($) -3711))) (-928)) (T -1192)) +((-3734 (*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-928))))) +(-13 (-850) (-10 -8 (-15 -3734 ($) -3711))) ((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) 19 T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) 12 T CONST)) (-2839 (($ $ $) NIL) (($) 18 T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) 21)) (-1353 (($ $ $) 20)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-1192 |#1|) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) (-927)) (T -1192)) -((-1353 (*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) (-1368 (*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) (-4427 (*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927))))) -(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) 19 T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) 12 T CONST)) (-2876 (($ $ $) NIL) (($) 18 T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1370 (($ $ $) 21)) (-1354 (($ $ $) 20)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1193 |#1|) (-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) (-928)) (T -1193)) +((-1354 (*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) (-1370 (*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) (-3734 (*1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928))))) +(-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 9)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 7))) -(((-1193) (-1108)) (T -1193)) -NIL -(-1108) -((-1910 (((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 67)) (-3218 (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|)))) 78) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|))) 74) (((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185)) 79) (((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185)) 73) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|))))) 106) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|)))) 105) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185))) 107) (((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1185))) 104))) -(((-1194 |#1|) (-10 -7 (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -1910 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))))) (-561)) (T -1194)) -((-1910 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1194 *5)))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1194 *4)) (-5 *3 (-297 (-412 (-958 *4)))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) (-5 *1 (-1194 *4)) (-5 *3 (-412 (-958 *4))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5)) (-5 *3 (-297 (-412 (-958 *5)))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-1185)) (-4 *5 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5)) (-5 *3 (-412 (-958 *5))))) (-3218 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1194 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4))))))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1194 *4)))) (-3218 (*1 *2 *3 *4) (-12 (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1194 *5)) (-5 *3 (-649 (-297 (-412 (-958 *5))))))) (-3218 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1194 *5))))) -(-10 -7 (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))) (-649 (-1185)))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-412 (-958 |#1|))))) (-15 -3218 ((-649 (-649 (-297 (-412 (-958 |#1|))))) (-649 (-297 (-412 (-958 |#1|)))))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))) (-1185))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-412 (-958 |#1|)))) (-15 -3218 ((-649 (-297 (-412 (-958 |#1|)))) (-297 (-412 (-958 |#1|))))) (-15 -1910 ((-649 (-649 (-958 |#1|))) (-649 (-412 (-958 |#1|))) (-649 (-1185))))) -((-2792 (((-1167)) 7)) (-1636 (((-1167)) 11 T CONST)) (-3691 (((-1280) (-1167)) 13)) (-4268 (((-1167)) 8 T CONST)) (-1455 (((-130)) 10 T CONST))) -(((-1195) (-13 (-1225) (-10 -7 (-15 -2792 ((-1167))) (-15 -4268 ((-1167)) -3709) (-15 -1455 ((-130)) -3709) (-15 -1636 ((-1167)) -3709) (-15 -3691 ((-1280) (-1167)))))) (T -1195)) -((-2792 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))) (-4268 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))) (-1455 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1195)))) (-1636 (*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1195))))) -(-13 (-1225) (-10 -7 (-15 -2792 ((-1167))) (-15 -4268 ((-1167)) -3709) (-15 -1455 ((-130)) -3709) (-15 -1636 ((-1167)) -3709) (-15 -3691 ((-1280) (-1167))))) -((-4343 (((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 56)) (-3979 (((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|))) 38)) (-3739 (((-1197 (-649 |#1|)) (-649 |#1|)) 49)) (-2872 (((-649 (-649 |#1|)) (-649 |#1|)) 45)) (-3565 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))) 53)) (-3750 (((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|)))) 52)) (-3133 (((-649 (-649 |#1|)) (-649 (-649 |#1|))) 43)) (-2725 (((-649 |#1|) (-649 |#1|)) 46)) (-2819 (((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 32)) (-4293 (((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|)))) 29)) (-1528 (((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|))) 24)) (-2505 (((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|)))) 58)) (-2273 (((-649 (-649 |#1|)) (-1197 (-649 |#1|))) 60))) -(((-1196 |#1|) (-10 -7 (-15 -1528 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -4293 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2819 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -4343 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2505 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2273 ((-649 (-649 |#1|)) (-1197 (-649 |#1|)))) (-15 -3979 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -3739 ((-1197 (-649 |#1|)) (-649 |#1|))) (-15 -3133 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -2872 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -2725 ((-649 |#1|) (-649 |#1|))) (-15 -3750 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3565 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))))) (-855)) (T -1196)) -((-3565 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4)))) (|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4)))))) (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 (-649 *4)))))) (-3750 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5) (|:| |f4| (-649 *5)))) (-5 *1 (-1196 *6)) (-5 *4 (-649 *5)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1196 *3)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)) (-5 *3 (-649 *4)))) (-3133 (*1 *2 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1196 *3)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-1197 (-649 *4))) (-5 *1 (-1196 *4)) (-5 *3 (-649 *4)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4)))) (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 *4))))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-1197 (-649 *4))) (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)) (-4 *4 (-855)))) (-4343 (*1 *2 *2 *3) (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) (-4 *4 (-855)) (-5 *1 (-1196 *4)))) (-2819 (*1 *2 *3 *2) (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *1 (-1196 *4)))) (-4293 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1196 *5)))) (-1528 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4)))) (-5 *1 (-1196 *6)) (-5 *5 (-649 *4))))) -(-10 -7 (-15 -1528 ((-2 (|:| |fs| (-112)) (|:| |sd| (-649 |#1|)) (|:| |td| (-649 (-649 |#1|)))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 |#1|)))) (-15 -4293 ((-649 (-649 (-649 |#1|))) (-1 (-112) |#1| |#1|) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -2819 ((-649 (-649 (-649 |#1|))) (-649 |#1|) (-649 (-649 (-649 |#1|))))) (-15 -4343 ((-649 (-649 |#1|)) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2505 ((-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))))) (-15 -2273 ((-649 (-649 |#1|)) (-1197 (-649 |#1|)))) (-15 -3979 ((-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)))) (-15 -3739 ((-1197 (-649 |#1|)) (-649 |#1|))) (-15 -3133 ((-649 (-649 |#1|)) (-649 (-649 |#1|)))) (-15 -2872 ((-649 (-649 |#1|)) (-649 |#1|))) (-15 -2725 ((-649 |#1|) (-649 |#1|))) (-15 -3750 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 |#1|) (-649 (-649 (-649 |#1|))) (-649 (-649 |#1|)) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))) (-649 (-649 (-649 |#1|))))) (-15 -3565 ((-2 (|:| |f1| (-649 |#1|)) (|:| |f2| (-649 (-649 (-649 |#1|)))) (|:| |f3| (-649 (-649 |#1|))) (|:| |f4| (-649 (-649 (-649 |#1|))))) (-649 (-649 (-649 |#1|)))))) -((-3241 (($ (-649 (-649 |#1|))) 10)) (-2884 (((-649 (-649 |#1|)) $) 11)) (-3796 (((-867) $) 36))) -(((-1197 |#1|) (-10 -8 (-15 -3241 ($ (-649 (-649 |#1|)))) (-15 -2884 ((-649 (-649 |#1|)) $)) (-15 -3796 ((-867) $))) (-1108)) (T -1197)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1197 *3)) (-4 *3 (-1108)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1197 *3)) (-4 *3 (-1108)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-1197 *3))))) -(-10 -8 (-15 -3241 ($ (-649 (-649 |#1|)))) (-15 -2884 ((-649 (-649 |#1|)) $)) (-15 -3796 ((-867) $))) -((-2417 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-4287 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-2002 (((-1280) $ |#1| |#1|) NIL (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#2| $ |#1| |#2|) NIL)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) NIL)) (-4427 (($) NIL T CONST)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) NIL)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) NIL)) (-4426 ((|#1| $) NIL (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-649 |#2|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-3256 ((|#1| $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2795 (((-649 |#1|) $) NIL)) (-3804 (((-112) |#1| $) NIL)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-1696 (((-649 |#1|) $) NIL)) (-1414 (((-112) |#1| $) NIL)) (-3547 (((-1128) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3513 ((|#2| $) NIL (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL)) (-1682 (($ $ |#2|) NIL (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2434 (($) NIL) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) NIL (-12 (|has| $ (-6 -4447)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (((-776) |#2| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108)))) (((-776) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-3796 (((-867) $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867))) (|has| |#2| (-618 (-867)))))) (-1520 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) NIL)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) NIL (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) NIL (-2776 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| |#2| (-1108))))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1198 |#1| |#2|) (-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) (-1108) (-1108)) (T -1198)) -NIL -(-13 (-1201 |#1| |#2|) (-10 -7 (-6 -4447))) -((-2537 ((|#1| (-649 |#1|)) 49)) (-3816 ((|#1| |#1| (-569)) 24)) (-2186 (((-1181 |#1|) |#1| (-927)) 20))) -(((-1199 |#1|) (-10 -7 (-15 -2537 (|#1| (-649 |#1|))) (-15 -2186 ((-1181 |#1|) |#1| (-927))) (-15 -3816 (|#1| |#1| (-569)))) (-367)) (T -1199)) -((-3816 (*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1199 *2)) (-4 *2 (-367)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-927)) (-5 *2 (-1181 *3)) (-5 *1 (-1199 *3)) (-4 *3 (-367)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1199 *2)) (-4 *2 (-367))))) -(-10 -7 (-15 -2537 (|#1| (-649 |#1|))) (-15 -2186 ((-1181 |#1|) |#1| (-927))) (-15 -3816 (|#1| |#1| (-569)))) -((-4287 (($) 10) (($ (-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)))) 14)) (-1794 (($ (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2882 (((-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 39) (((-649 |#3|) $) 41)) (-3834 (($ (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1346 (($ (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1877 (((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 60)) (-3894 (($ (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 16)) (-1696 (((-649 |#2|) $) 19)) (-1414 (((-112) |#2| $) 65)) (-1574 (((-3 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) "failed") (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) 64)) (-1781 (((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) 69)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-4199 (((-649 |#3|) $) 43)) (-1869 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-776) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) $) NIL) (((-776) |#3| $) NIL) (((-776) (-1 (-112) |#3|) $) 79)) (-3796 (((-867) $) 27)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2920 (((-112) $ $) 51))) -(((-1200 |#1| |#2| |#3|) (-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4287 (|#1| (-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))))) (-15 -4287 (|#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2882 ((-649 |#3|) |#1|)) (-15 -3560 ((-776) |#3| |#1|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1414 ((-112) |#2| |#1|)) (-15 -1696 ((-649 |#2|) |#1|)) (-15 -1794 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1794 (|#1| (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1794 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1574 ((-3 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) "failed") (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1877 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3894 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1781 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3560 ((-776) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -2882 ((-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3560 ((-776) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3208 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1980 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3834 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1346 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|))) (-1201 |#2| |#3|) (-1108) (-1108)) (T -1200)) -NIL -(-10 -8 (-15 -2920 ((-112) |#1| |#1|)) (-15 -3796 ((-867) |#1|)) (-15 -1346 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4287 (|#1| (-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))))) (-15 -4287 (|#1|)) (-15 -1346 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3834 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1980 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3208 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3560 ((-776) (-1 (-112) |#3|) |#1|)) (-15 -2882 ((-649 |#3|) |#1|)) (-15 -3560 ((-776) |#3| |#1|)) (-15 -1869 (|#3| |#1| |#2| |#3|)) (-15 -1869 (|#3| |#1| |#2|)) (-15 -4199 ((-649 |#3|) |#1|)) (-15 -1414 ((-112) |#2| |#1|)) (-15 -1696 ((-649 |#2|) |#1|)) (-15 -1794 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1794 (|#1| (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1794 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1574 ((-3 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) "failed") (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1877 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3894 (|#1| (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -1781 ((-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -3560 ((-776) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) |#1|)) (-15 -2882 ((-649 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3560 ((-776) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3208 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1980 ((-112) (-1 (-112) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -3834 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|)) (-15 -1346 (|#1| (-1 (-2 (|:| -2006 |#2|) (|:| -2216 |#3|)) (-2 (|:| -2006 |#2|) (|:| -2216 |#3|))) |#1|))) -((-2417 (((-112) $ $) 19 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-4287 (($) 73) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 72)) (-2002 (((-1280) $ |#1| |#1|) 100 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#2| $ |#1| |#2|) 74)) (-1796 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 46 (|has| $ (-6 -4447)))) (-1417 (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 56 (|has| $ (-6 -4447)))) (-2359 (((-3 |#2| "failed") |#1| $) 62)) (-4427 (($) 7 T CONST)) (-3550 (($ $) 59 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447))))) (-1794 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 48 (|has| $ (-6 -4447))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 47 (|has| $ (-6 -4447))) (((-3 |#2| "failed") |#1| $) 63)) (-1698 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 55 (|has| $ (-6 -4447)))) (-3598 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 57 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 54 (|has| $ (-6 -4447))) (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 53 (|has| $ (-6 -4447)))) (-3846 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4448)))) (-3776 ((|#2| $ |#1|) 89)) (-2882 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 31 (|has| $ (-6 -4447))) (((-649 |#2|) $) 80 (|has| $ (-6 -4447)))) (-2314 (((-112) $ (-776)) 9)) (-4426 ((|#1| $) 97 (|has| |#1| (-855)))) (-2009 (((-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 30 (|has| $ (-6 -4447))) (((-649 |#2|) $) 81 (|has| $ (-6 -4447)))) (-2004 (((-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447))))) (-3256 ((|#1| $) 96 (|has| |#1| (-855)))) (-3834 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 35 (|has| $ (-6 -4448))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4448)))) (-1346 (($ (-1 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-4254 (((-112) $ (-776)) 10)) (-3435 (((-1167) $) 22 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2795 (((-649 |#1|) $) 64)) (-3804 (((-112) |#1| $) 65)) (-1877 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 40)) (-3894 (($ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 41)) (-1696 (((-649 |#1|) $) 94)) (-1414 (((-112) |#1| $) 93)) (-3547 (((-1128) $) 21 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3513 ((|#2| $) 98 (|has| |#1| (-855)))) (-1574 (((-3 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) "failed") (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 52)) (-1682 (($ $ |#2|) 99 (|has| $ (-6 -4448)))) (-1781 (((-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 42)) (-3208 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 33 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))))) 27 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-297 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 26 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) 25 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 24 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)))) (($ $ (-649 |#2|) (-649 |#2|)) 87 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-297 |#2|)) 85 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108)))) (($ $ (-649 (-297 |#2|))) 84 (-12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4447)) (|has| |#2| (-1108))))) (-4199 (((-649 |#2|) $) 92)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2434 (($) 50) (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 49)) (-3560 (((-776) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 32 (|has| $ (-6 -4447))) (((-776) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| $ (-6 -4447)))) (((-776) |#2| $) 82 (-12 (|has| |#2| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4447)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 60 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))))) (-3809 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 51)) (-3796 (((-867) $) 18 (-2776 (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))))) (-1520 (((-112) $ $) 23 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-3423 (($ (-649 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) 43)) (-1980 (((-112) (-1 (-112) (-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) $) 34 (|has| $ (-6 -4447))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (-2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1201 |#1| |#2|) (-140) (-1108) (-1108)) (T -1201)) -((-3943 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) (-4287 (*1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) (-4287 (*1 *1 *2) (-12 (-5 *2 (-649 (-2 (|:| -2006 *3) (|:| -2216 *4)))) (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *1 (-1201 *3 *4)))) (-1346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))))) -(-13 (-615 |t#1| |t#2|) (-609 |t#1| |t#2|) (-10 -8 (-15 -3943 (|t#2| $ |t#1| |t#2|)) (-15 -4287 ($)) (-15 -4287 ($ (-649 (-2 (|:| -2006 |t#1|) (|:| -2216 |t#2|))))) (-15 -1346 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2006 |#1|) (|:| -2216 |#2|))) . T) ((-102) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-618 (-867)) -2776 (|has| |#2| (-1108)) (|has| |#2| (-618 (-867))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-618 (-867)))) ((-151 #0#) . T) ((-619 (-541)) |has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-619 (-541))) ((-230 #0#) . T) ((-236 #0#) . T) ((-289 |#1| |#2|) . T) ((-291 |#1| |#2|) . T) ((-312 #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-312 |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-494 #0#) . T) ((-494 |#2|) . T) ((-609 |#1| |#2|) . T) ((-519 #0# #0#) -12 (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-312 (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)))) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-519 |#2| |#2|) -12 (|has| |#2| (-312 |#2|)) (|has| |#2| (-1108))) ((-615 |#1| |#2|) . T) ((-1108) -2776 (|has| |#2| (-1108)) (|has| (-2 (|:| -2006 |#1|) (|:| -2216 |#2|)) (-1108))) ((-1225) . T)) -((-4131 (((-112)) 29)) (-1654 (((-1280) (-1167)) 31)) (-2754 (((-112)) 41)) (-1469 (((-1280)) 39)) (-3062 (((-1280) (-1167) (-1167)) 30)) (-1313 (((-112)) 42)) (-3894 (((-1280) |#1| |#2|) 53)) (-3437 (((-1280)) 26)) (-4105 (((-3 |#2| "failed") |#1|) 51)) (-2990 (((-1280)) 40))) -(((-1202 |#1| |#2|) (-10 -7 (-15 -3437 ((-1280))) (-15 -3062 ((-1280) (-1167) (-1167))) (-15 -1654 ((-1280) (-1167))) (-15 -1469 ((-1280))) (-15 -2990 ((-1280))) (-15 -4131 ((-112))) (-15 -2754 ((-112))) (-15 -1313 ((-112))) (-15 -4105 ((-3 |#2| "failed") |#1|)) (-15 -3894 ((-1280) |#1| |#2|))) (-1108) (-1108)) (T -1202)) -((-3894 (*1 *2 *3 *4) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-4105 (*1 *2 *3) (|partial| -12 (-4 *2 (-1108)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-1108)))) (-1313 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2754 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-4131 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-2990 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-1469 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)))) (-3062 (*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)))) (-3437 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108))))) -(-10 -7 (-15 -3437 ((-1280))) (-15 -3062 ((-1280) (-1167) (-1167))) (-15 -1654 ((-1280) (-1167))) (-15 -1469 ((-1280))) (-15 -2990 ((-1280))) (-15 -4131 ((-112))) (-15 -2754 ((-112))) (-15 -1313 ((-112))) (-15 -4105 ((-3 |#2| "failed") |#1|)) (-15 -3894 ((-1280) |#1| |#2|))) -((-1988 (((-1167) (-1167)) 22)) (-3549 (((-52) (-1167)) 25))) -(((-1203) (-10 -7 (-15 -3549 ((-52) (-1167))) (-15 -1988 ((-1167) (-1167))))) (T -1203)) -((-1988 (*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1203)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-1203))))) -(-10 -7 (-15 -3549 ((-52) (-1167))) (-15 -1988 ((-1167) (-1167)))) -((-3796 (((-1205) |#1|) 11))) -(((-1204 |#1|) (-10 -7 (-15 -3796 ((-1205) |#1|))) (-1108)) (T -1204)) -((-3796 (*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-1204 *3)) (-4 *3 (-1108))))) -(-10 -7 (-15 -3796 ((-1205) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4395 (((-649 (-1167)) $) 39)) (-4404 (((-649 (-1167)) $ (-649 (-1167))) 42)) (-1644 (((-649 (-1167)) $ (-649 (-1167))) 41)) (-2789 (((-649 (-1167)) $ (-649 (-1167))) 43)) (-1612 (((-649 (-1167)) $) 38)) (-4300 (($) 28)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3193 (((-649 (-1167)) $) 40)) (-4158 (((-1280) $ (-569)) 35) (((-1280) $) 36)) (-1410 (($ (-867) (-569)) 33) (($ (-867) (-569) (-867)) NIL)) (-3796 (((-867) $) 49) (($ (-867)) 32)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1205) (-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -1410 ($ (-867) (-569) (-867))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -4395 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -4404 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167))))))) (T -1205)) -((-1410 (*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205)))) (-1410 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205)))) (-4158 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1205)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1205)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-4395 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-4300 (*1 *1) (-5 *1 (-1205))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-2789 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-4404 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205)))) (-1644 (*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) -(-13 (-1108) (-621 (-867)) (-10 -8 (-15 -1410 ($ (-867) (-569))) (-15 -1410 ($ (-867) (-569) (-867))) (-15 -4158 ((-1280) $ (-569))) (-15 -4158 ((-1280) $)) (-15 -3193 ((-649 (-1167)) $)) (-15 -4395 ((-649 (-1167)) $)) (-15 -4300 ($)) (-15 -1612 ((-649 (-1167)) $)) (-15 -2789 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -4404 ((-649 (-1167)) $ (-649 (-1167)))) (-15 -1644 ((-649 (-1167)) $ (-649 (-1167)))))) -((-2417 (((-112) $ $) NIL)) (-3265 (((-1167) $ (-1167)) 17) (((-1167) $) 16)) (-2617 (((-1167) $ (-1167)) 15)) (-3229 (($ $ (-1167)) NIL)) (-3243 (((-3 (-1167) "failed") $) 11)) (-2998 (((-1167) $) 8)) (-1584 (((-3 (-1167) "failed") $) 12)) (-2358 (((-1167) $) 9)) (-1721 (($ (-393)) NIL) (($ (-393) (-1167)) NIL)) (-3573 (((-393) $) NIL)) (-3435 (((-1167) $) NIL)) (-4065 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3002 (((-112) $) 21)) (-3796 (((-867) $) NIL)) (-2543 (($ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1206) (-13 (-368 (-393) (-1167)) (-10 -8 (-15 -3265 ((-1167) $ (-1167))) (-15 -3265 ((-1167) $)) (-15 -2998 ((-1167) $)) (-15 -3243 ((-3 (-1167) "failed") $)) (-15 -1584 ((-3 (-1167) "failed") $)) (-15 -3002 ((-112) $))))) (T -1206)) -((-3265 (*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-3243 (*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-1584 (*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) -(-13 (-368 (-393) (-1167)) (-10 -8 (-15 -3265 ((-1167) $ (-1167))) (-15 -3265 ((-1167) $)) (-15 -2998 ((-1167) $)) (-15 -3243 ((-3 (-1167) "failed") $)) (-15 -1584 ((-3 (-1167) "failed") $)) (-15 -3002 ((-112) $)))) -((-2919 (((-3 (-569) "failed") |#1|) 19)) (-1501 (((-3 (-569) "failed") |#1|) 14)) (-4367 (((-569) (-1167)) 33))) -(((-1207 |#1|) (-10 -7 (-15 -2919 ((-3 (-569) "failed") |#1|)) (-15 -1501 ((-3 (-569) "failed") |#1|)) (-15 -4367 ((-569) (-1167)))) (-1057)) (T -1207)) -((-4367 (*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-1207 *4)) (-4 *4 (-1057)))) (-1501 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057)))) (-2919 (*1 *2 *3) (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057))))) -(-10 -7 (-15 -2919 ((-3 (-569) "failed") |#1|)) (-15 -1501 ((-3 (-569) "failed") |#1|)) (-15 -4367 ((-569) (-1167)))) -((-2860 (((-1141 (-226))) 9))) -(((-1208) (-10 -7 (-15 -2860 ((-1141 (-226)))))) (T -1208)) -((-2860 (*1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1208))))) -(-10 -7 (-15 -2860 ((-1141 (-226))))) -((-1312 (($) 12)) (-4161 (($ $) 36)) (-4140 (($ $) 34)) (-2675 (($ $) 26)) (-4183 (($ $) 18)) (-1503 (($ $) 16)) (-4175 (($ $) 20)) (-2712 (($ $) 31)) (-4151 (($ $) 35)) (-2689 (($ $) 30))) -(((-1209 |#1|) (-10 -8 (-15 -1312 (|#1|)) (-15 -4161 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2689 (|#1| |#1|))) (-1210)) (T -1209)) -NIL -(-10 -8 (-15 -1312 (|#1|)) (-15 -4161 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2689 (|#1| |#1|))) -((-2771 (($ $) 26)) (-2626 (($ $) 11)) (-2746 (($ $) 27)) (-2601 (($ $) 10)) (-4118 (($ $) 28)) (-2647 (($ $) 9)) (-1312 (($) 16)) (-2662 (($ $) 19)) (-4389 (($ $) 18)) (-4128 (($ $) 29)) (-2661 (($ $) 8)) (-2783 (($ $) 30)) (-2635 (($ $) 7)) (-2758 (($ $) 31)) (-2614 (($ $) 6)) (-4161 (($ $) 20)) (-2701 (($ $) 32)) (-4140 (($ $) 21)) (-2675 (($ $) 33)) (-4183 (($ $) 22)) (-2723 (($ $) 34)) (-1503 (($ $) 23)) (-2734 (($ $) 35)) (-4175 (($ $) 24)) (-2712 (($ $) 36)) (-4151 (($ $) 25)) (-2689 (($ $) 37)) (** (($ $ $) 17))) -(((-1210) (-140)) (T -1210)) -((-1312 (*1 *1) (-4 *1 (-1210)))) -(-13 (-1213) (-95) (-498) (-35) (-287) (-10 -8 (-15 -1312 ($)))) -(((-35) . T) ((-95) . T) ((-287) . T) ((-498) . T) ((-1213) . T)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2188 ((|#1| $) 19)) (-2277 (($ |#1| (-649 $)) 28) (($ (-649 |#1|)) 35) (($ |#1|) 30)) (-3914 (((-112) $ (-776)) 71)) (-2052 ((|#1| $ |#1|) 14 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 13 (|has| $ (-6 -4448)))) (-4427 (($) NIL T CONST)) (-2882 (((-649 |#1|) $) 75 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 63)) (-1534 (((-112) $ $) 49 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 61)) (-2009 (((-649 |#1|) $) 76 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3834 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 27)) (-4254 (((-112) $ (-776)) 59)) (-2275 (((-649 |#1|) $) 54)) (-1887 (((-112) $) 52)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3208 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 105)) (-3162 (((-112) $) 9)) (-3635 (($) 10)) (-1869 ((|#1| $ "value") NIL)) (-2602 (((-569) $ $) 48)) (-3680 (((-649 $) $) 87)) (-2067 (((-112) $ $) 108)) (-2894 (((-649 $) $) 103)) (-4356 (($ $) 104)) (-3966 (((-112) $) 82)) (-3560 (((-776) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4447))) (((-776) |#1| $) 17 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3962 (($ $) 86)) (-3796 (((-867) $) 89 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 12)) (-4280 (((-112) $ $) 39 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 37 (|has| |#1| (-1108)))) (-2428 (((-776) $) 57 (|has| $ (-6 -4447))))) -(((-1211 |#1|) (-13 (-1018 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2277 ($ |#1| (-649 $))) (-15 -2277 ($ (-649 |#1|))) (-15 -2277 ($ |#1|)) (-15 -3966 ((-112) $)) (-15 -4356 ($ $)) (-15 -2894 ((-649 $) $)) (-15 -2067 ((-112) $ $)) (-15 -3680 ((-649 $) $)))) (-1108)) (T -1211)) -((-3966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))) (-2277 (*1 *1 *2 *3) (-12 (-5 *3 (-649 (-1211 *2))) (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1211 *3)))) (-2277 (*1 *1 *2) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) (-4356 (*1 *1 *1) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))) (-2067 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108))))) -(-13 (-1018 |#1|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2277 ($ |#1| (-649 $))) (-15 -2277 ($ (-649 |#1|))) (-15 -2277 ($ |#1|)) (-15 -3966 ((-112) $)) (-15 -4356 ($ $)) (-15 -2894 ((-649 $) $)) (-15 -2067 ((-112) $ $)) (-15 -3680 ((-649 $) $)))) -((-2626 (($ $) 15)) (-2647 (($ $) 12)) (-2661 (($ $) 10)) (-2635 (($ $) 17))) -(((-1212 |#1|) (-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2626 (|#1| |#1|))) (-1213)) (T -1212)) -NIL -(-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2626 (|#1| |#1|))) -((-2626 (($ $) 11)) (-2601 (($ $) 10)) (-2647 (($ $) 9)) (-2661 (($ $) 8)) (-2635 (($ $) 7)) (-2614 (($ $) 6))) -(((-1213) (-140)) (T -1213)) -((-2626 (*1 *1 *1) (-4 *1 (-1213))) (-2601 (*1 *1 *1) (-4 *1 (-1213))) (-2647 (*1 *1 *1) (-4 *1 (-1213))) (-2661 (*1 *1 *1) (-4 *1 (-1213))) (-2635 (*1 *1 *1) (-4 *1 (-1213))) (-2614 (*1 *1 *1) (-4 *1 (-1213)))) -(-13 (-10 -8 (-15 -2614 ($ $)) (-15 -2635 ($ $)) (-15 -2661 ($ $)) (-15 -2647 ($ $)) (-15 -2601 ($ $)) (-15 -2626 ($ $)))) -((-1396 ((|#2| |#2|) 98)) (-4060 (((-112) |#2|) 29)) (-3824 ((|#2| |#2|) 33)) (-3836 ((|#2| |#2|) 35)) (-3509 ((|#2| |#2| (-1185)) 92) ((|#2| |#2|) 93)) (-1628 (((-170 |#2|) |#2|) 31)) (-3038 ((|#2| |#2| (-1185)) 94) ((|#2| |#2|) 95))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -1396 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1628 ((-170 |#2|) |#2|))) (-13 (-457) (-1046 (-569)) (-644 (-569))) (-13 (-27) (-1210) (-435 |#1|))) (T -1214)) -((-1628 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-170 *3)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-4060 (*1 *2 *3) (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3038 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3038 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) (-3509 (*1 *2 *2 *3) (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) (-3509 (*1 *2 *2) (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))) -(-10 -7 (-15 -3509 (|#2| |#2|)) (-15 -3509 (|#2| |#2| (-1185))) (-15 -3038 (|#2| |#2|)) (-15 -3038 (|#2| |#2| (-1185))) (-15 -1396 (|#2| |#2|)) (-15 -3824 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -4060 ((-112) |#2|)) (-15 -1628 ((-170 |#2|) |#2|))) -((-3928 ((|#4| |#4| |#1|) 32)) (-4090 ((|#4| |#4| |#1|) 33))) -(((-1215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3928 (|#4| |#4| |#1|)) (-15 -4090 (|#4| |#4| |#1|))) (-561) (-377 |#1|) (-377 |#1|) (-692 |#1| |#2| |#3|)) (T -1215)) -((-4090 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) (-3928 (*1 *2 *2 *3) (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(-10 -7 (-15 -3928 (|#4| |#4| |#1|)) (-15 -4090 (|#4| |#4| |#1|))) -((-4408 ((|#2| |#2|) 148)) (-1453 ((|#2| |#2|) 145)) (-2293 ((|#2| |#2|) 136)) (-3587 ((|#2| |#2|) 133)) (-3827 ((|#2| |#2|) 141)) (-2665 ((|#2| |#2|) 129)) (-4261 ((|#2| |#2|) 44)) (-1607 ((|#2| |#2|) 105)) (-2469 ((|#2| |#2|) 88)) (-3165 ((|#2| |#2|) 143)) (-1582 ((|#2| |#2|) 131)) (-3524 ((|#2| |#2|) 153)) (-2263 ((|#2| |#2|) 151)) (-3874 ((|#2| |#2|) 152)) (-3424 ((|#2| |#2|) 150)) (-2169 ((|#2| |#2|) 163)) (-1969 ((|#2| |#2|) 30 (-12 (|has| |#2| (-619 (-898 |#1|))) (|has| |#2| (-892 |#1|)) (|has| |#1| (-619 (-898 |#1|))) (|has| |#1| (-892 |#1|))))) (-3937 ((|#2| |#2|) 89)) (-3394 ((|#2| |#2|) 154)) (-1380 ((|#2| |#2|) 155)) (-1678 ((|#2| |#2|) 142)) (-2945 ((|#2| |#2|) 130)) (-3445 ((|#2| |#2|) 149)) (-1496 ((|#2| |#2|) 147)) (-4089 ((|#2| |#2|) 137)) (-1640 ((|#2| |#2|) 135)) (-1397 ((|#2| |#2|) 139)) (-3030 ((|#2| |#2|) 127))) -(((-1216 |#1| |#2|) (-10 -7 (-15 -1380 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2169 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -3587 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -1969 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-457) (-13 (-435 |#1|) (-1210))) (T -1216)) -((-1969 (*1 *2 *2) (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3874 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3424 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3587 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-4408 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2665 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1397 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3030 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-4261 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2169 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210))))) (-1380 (*1 *2 *2) (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) (-4 *2 (-13 (-435 *3) (-1210)))))) -(-10 -7 (-15 -1380 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2169 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -3030 (|#2| |#2|)) (-15 -1397 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -3445 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -2665 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -4408 (|#2| |#2|)) (-15 -3587 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3424 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (IF (|has| |#1| (-892 |#1|)) (IF (|has| |#1| (-619 (-898 |#1|))) (IF (|has| |#2| (-619 (-898 |#1|))) (IF (|has| |#2| (-892 |#1|)) (-15 -1969 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2501 (((-112) |#5| $) 68) (((-112) $) 110)) (-2950 ((|#5| |#5| $) 83)) (-1417 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-4149 (((-649 |#5|) (-649 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4381 (((-3 $ "failed") (-649 |#5|)) 135)) (-3525 (((-3 $ "failed") $) 120)) (-2548 ((|#5| |#5| $) 102)) (-2288 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3604 ((|#5| |#5| $) 106)) (-3598 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1694 (((-2 (|:| -4133 (-649 |#5|)) (|:| -1721 (-649 |#5|))) $) 63)) (-2140 (((-112) |#5| $) 66) (((-112) $) 111)) (-3372 ((|#4| $) 116)) (-1724 (((-3 |#5| "failed") $) 118)) (-1586 (((-649 |#5|) $) 55)) (-2310 (((-112) |#5| $) 75) (((-112) $) 115)) (-1341 ((|#5| |#5| $) 89)) (-2151 (((-112) $ $) 29)) (-4046 (((-112) |#5| $) 71) (((-112) $) 113)) (-4348 ((|#5| |#5| $) 86)) (-3513 (((-3 |#5| "failed") $) 117)) (-3166 (($ $ |#5|) 136)) (-4339 (((-776) $) 60)) (-3809 (($ (-649 |#5|)) 133)) (-3381 (($ $ |#4|) 131)) (-2963 (($ $ |#4|) 129)) (-4039 (($ $) 128)) (-3796 (((-867) $) NIL) (((-649 |#5|) $) 121)) (-1873 (((-776) $) 140)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2546 (((-112) $ (-1 (-112) |#5| (-649 |#5|))) 108)) (-3183 (((-649 |#4|) $) 123)) (-4269 (((-112) |#4| $) 126)) (-2920 (((-112) $ $) 20))) -(((-1217 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1873 ((-776) |#1|)) (-15 -3166 (|#1| |#1| |#5|)) (-15 -1417 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4269 ((-112) |#4| |#1|)) (-15 -3183 ((-649 |#4|) |#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -1724 ((-3 |#5| "failed") |#1|)) (-15 -3513 ((-3 |#5| "failed") |#1|)) (-15 -3604 (|#5| |#5| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2548 (|#5| |#5| |#1|)) (-15 -1341 (|#5| |#5| |#1|)) (-15 -4348 (|#5| |#5| |#1|)) (-15 -2950 (|#5| |#5| |#1|)) (-15 -4149 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3598 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2310 ((-112) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -2501 ((-112) |#1|)) (-15 -2546 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -2310 ((-112) |#5| |#1|)) (-15 -4046 ((-112) |#5| |#1|)) (-15 -2501 ((-112) |#5| |#1|)) (-15 -2288 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2140 ((-112) |#1|)) (-15 -2140 ((-112) |#5| |#1|)) (-15 -1694 ((-2 (|:| -4133 (-649 |#5|)) (|:| -1721 (-649 |#5|))) |#1|)) (-15 -4339 ((-776) |#1|)) (-15 -1586 ((-649 |#5|) |#1|)) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2151 ((-112) |#1| |#1|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -3372 (|#4| |#1|)) (-15 -4381 ((-3 |#1| "failed") (-649 |#5|))) (-15 -3796 ((-649 |#5|) |#1|)) (-15 -3809 (|#1| (-649 |#5|))) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1417 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) (-1218 |#2| |#3| |#4| |#5|) (-561) (-798) (-855) (-1073 |#2| |#3| |#4|)) (T -1217)) -NIL -(-10 -8 (-15 -1873 ((-776) |#1|)) (-15 -3166 (|#1| |#1| |#5|)) (-15 -1417 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4269 ((-112) |#4| |#1|)) (-15 -3183 ((-649 |#4|) |#1|)) (-15 -3525 ((-3 |#1| "failed") |#1|)) (-15 -1724 ((-3 |#5| "failed") |#1|)) (-15 -3513 ((-3 |#5| "failed") |#1|)) (-15 -3604 (|#5| |#5| |#1|)) (-15 -4039 (|#1| |#1|)) (-15 -2548 (|#5| |#5| |#1|)) (-15 -1341 (|#5| |#5| |#1|)) (-15 -4348 (|#5| |#5| |#1|)) (-15 -2950 (|#5| |#5| |#1|)) (-15 -4149 ((-649 |#5|) (-649 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3598 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2310 ((-112) |#1|)) (-15 -4046 ((-112) |#1|)) (-15 -2501 ((-112) |#1|)) (-15 -2546 ((-112) |#1| (-1 (-112) |#5| (-649 |#5|)))) (-15 -2310 ((-112) |#5| |#1|)) (-15 -4046 ((-112) |#5| |#1|)) (-15 -2501 ((-112) |#5| |#1|)) (-15 -2288 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2140 ((-112) |#1|)) (-15 -2140 ((-112) |#5| |#1|)) (-15 -1694 ((-2 (|:| -4133 (-649 |#5|)) (|:| -1721 (-649 |#5|))) |#1|)) (-15 -4339 ((-776) |#1|)) (-15 -1586 ((-649 |#5|) |#1|)) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3494 ((-3 (-2 (|:| |bas| |#1|) (|:| -3310 (-649 |#5|))) "failed") (-649 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2151 ((-112) |#1| |#1|)) (-15 -3381 (|#1| |#1| |#4|)) (-15 -2963 (|#1| |#1| |#4|)) (-15 -3372 (|#4| |#1|)) (-15 -4381 ((-3 |#1| "failed") (-649 |#5|))) (-15 -3796 ((-649 |#5|) |#1|)) (-15 -3809 (|#1| (-649 |#5|))) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1417 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3598 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3796 ((-867) |#1|)) (-15 -2920 ((-112) |#1| |#1|))) -((-2417 (((-112) $ $) 7)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) 86)) (-1806 (((-649 $) (-649 |#4|)) 87)) (-1712 (((-649 |#3|) $) 34)) (-1731 (((-112) $) 27)) (-2800 (((-112) $) 18 (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) 102) (((-112) $) 98)) (-2950 ((|#4| |#4| $) 93)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 28)) (-3914 (((-112) $ (-776)) 45)) (-1417 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) 80)) (-4427 (($) 46 T CONST)) (-3503 (((-112) $) 23 (|has| |#1| (-561)))) (-1717 (((-112) $ $) 25 (|has| |#1| (-561)))) (-2039 (((-112) $ $) 24 (|has| |#1| (-561)))) (-1964 (((-112) $) 26 (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2459 (((-649 |#4|) (-649 |#4|) $) 19 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) 20 (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) 37)) (-3150 (($ (-649 |#4|)) 36)) (-3525 (((-3 $ "failed") $) 83)) (-2548 ((|#4| |#4| $) 90)) (-3550 (($ $) 69 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#4| $) 68 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3604 ((|#4| |#4| $) 88)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) 106)) (-2882 (((-649 |#4|) $) 53 (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) 105) (((-112) $) 104)) (-3372 ((|#3| $) 35)) (-2314 (((-112) $ (-776)) 44)) (-2009 (((-649 |#4|) $) 54 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) 48)) (-1328 (((-649 |#3|) $) 33)) (-1512 (((-112) |#3| $) 32)) (-4254 (((-112) $ (-776)) 43)) (-3435 (((-1167) $) 10)) (-1724 (((-3 |#4| "failed") $) 84)) (-1586 (((-649 |#4|) $) 108)) (-2310 (((-112) |#4| $) 100) (((-112) $) 96)) (-1341 ((|#4| |#4| $) 91)) (-2151 (((-112) $ $) 111)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) 101) (((-112) $) 97)) (-4348 ((|#4| |#4| $) 92)) (-3547 (((-1128) $) 11)) (-3513 (((-3 |#4| "failed") $) 85)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1589 (((-3 $ "failed") $ |#4|) 79)) (-3166 (($ $ |#4|) 78)) (-3208 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) 60 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) 58 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) 57 (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) 39)) (-3162 (((-112) $) 42)) (-3635 (($) 41)) (-4339 (((-776) $) 107)) (-3560 (((-776) |#4| $) 55 (-12 (|has| |#4| (-1108)) (|has| $ (-6 -4447)))) (((-776) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4447)))) (-3962 (($ $) 40)) (-1410 (((-541) $) 70 (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) 61)) (-3381 (($ $ |#3|) 29)) (-2963 (($ $ |#3|) 31)) (-4039 (($ $) 89)) (-3112 (($ $ |#3|) 30)) (-3796 (((-867) $) 12) (((-649 |#4|) $) 38)) (-1873 (((-776) $) 77 (|has| |#3| (-372)))) (-1520 (((-112) $ $) 9)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) 99)) (-1980 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) 82)) (-4269 (((-112) |#3| $) 81)) (-2920 (((-112) $ $) 6)) (-2428 (((-776) $) 47 (|has| $ (-6 -4447))))) -(((-1218 |#1| |#2| |#3| |#4|) (-140) (-561) (-798) (-855) (-1073 |t#1| |t#2| |t#3|)) (T -1218)) -((-2151 (*1 *2 *1 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *8)))) (-5 *3 (-649 *8)) (-4 *1 (-1218 *5 *6 *7 *8)))) (-3494 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *9)))) (-5 *3 (-649 *9)) (-4 *1 (-1218 *6 *7 *8 *9)))) (-1586 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *6)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-776)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-2 (|:| -4133 (-649 *6)) (|:| -1721 (-649 *6)))))) (-2140 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-2288 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1218 *5 *6 *7 *3)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)))) (-2501 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-4046 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2310 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2546 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1218 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)))) (-2501 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-4046 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) (-3598 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1218 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *2 (-1073 *5 *6 *7)))) (-4149 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1218 *5 *6 *7 *8)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)))) (-2950 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-4348 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1341 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-2548 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-4039 (*1 *1 *1) (-12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4)))) (-3604 (*1 *2 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) (-4 *1 (-1218 *4 *5 *6 *7)))) (-1923 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-649 (-2 (|:| -4133 *1) (|:| -1721 (-649 *7))))) (-5 *3 (-649 *7)) (-4 *1 (-1218 *4 *5 *6 *7)))) (-3513 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1724 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-3525 (*1 *1 *1) (|partial| -12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) (-4269 (*1 *2 *3 *1) (-12 (-4 *1 (-1218 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112)))) (-1417 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1218 *4 *5 *3 *2)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1073 *4 *5 *3)))) (-1589 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) (-1873 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *5 (-372)) (-5 *2 (-776))))) -(-13 (-984 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4447) (-6 -4448) (-15 -2151 ((-112) $ $)) (-15 -3494 ((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3494 ((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |t#4|))) "failed") (-649 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1586 ((-649 |t#4|) $)) (-15 -4339 ((-776) $)) (-15 -1694 ((-2 (|:| -4133 (-649 |t#4|)) (|:| -1721 (-649 |t#4|))) $)) (-15 -2140 ((-112) |t#4| $)) (-15 -2140 ((-112) $)) (-15 -2288 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2501 ((-112) |t#4| $)) (-15 -4046 ((-112) |t#4| $)) (-15 -2310 ((-112) |t#4| $)) (-15 -2546 ((-112) $ (-1 (-112) |t#4| (-649 |t#4|)))) (-15 -2501 ((-112) $)) (-15 -4046 ((-112) $)) (-15 -2310 ((-112) $)) (-15 -3598 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4149 ((-649 |t#4|) (-649 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2950 (|t#4| |t#4| $)) (-15 -4348 (|t#4| |t#4| $)) (-15 -1341 (|t#4| |t#4| $)) (-15 -2548 (|t#4| |t#4| $)) (-15 -4039 ($ $)) (-15 -3604 (|t#4| |t#4| $)) (-15 -1806 ((-649 $) (-649 |t#4|))) (-15 -1923 ((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |t#4|)))) (-649 |t#4|))) (-15 -3513 ((-3 |t#4| "failed") $)) (-15 -1724 ((-3 |t#4| "failed") $)) (-15 -3525 ((-3 $ "failed") $)) (-15 -3183 ((-649 |t#3|) $)) (-15 -4269 ((-112) |t#3| $)) (-15 -1417 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1589 ((-3 $ "failed") $ |t#4|)) (-15 -3166 ($ $ |t#4|)) (IF (|has| |t#3| (-372)) (-15 -1873 ((-776) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-618 (-649 |#4|)) . T) ((-618 (-867)) . T) ((-151 |#4|) . T) ((-619 (-541)) |has| |#4| (-619 (-541))) ((-312 |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-494 |#4|) . T) ((-519 |#4| |#4|) -12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1108) . T) ((-1225) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1185)) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3278 (((-958 |#1|) $ (-776)) 20) (((-958 |#1|) $ (-776) (-776)) NIL)) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $ (-1185)) NIL) (((-776) $ (-1185) (-776)) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2198 (((-112) $) NIL)) (-3923 (($ $ (-649 (-1185)) (-649 (-536 (-1185)))) NIL) (($ $ (-1185) (-536 (-1185))) NIL) (($ |#1| (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3579 (($ $ (-1185)) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-1632 (($ (-1 $) (-1185) |#1|) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3166 (($ $ (-776)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (($ $ (-1185) $) NIL) (($ $ (-649 (-1185)) (-649 $)) NIL) (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL)) (-3517 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-4339 (((-536 (-1185)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ $) NIL (|has| |#1| (-561))) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-1185)) NIL) (($ (-958 |#1|)) NIL)) (-4383 ((|#1| $ (-536 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (((-958 |#1|) $ (-776)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2832 (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1219 |#1|) (-13 (-745 |#1| (-1185)) (-10 -8 (-15 -4383 ((-958 |#1|) $ (-776))) (-15 -3796 ($ (-1185))) (-15 -3796 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ (-1185) |#1|)) (-15 -1632 ($ (-1 $) (-1185) |#1|))) |%noBranch|))) (-1057)) (T -1219)) -((-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1219 *4)) (-4 *4 (-1057)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-1057)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-5 *1 (-1219 *3)))) (-3579 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)))) (-1632 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1219 *4))) (-5 *3 (-1185)) (-5 *1 (-1219 *4)) (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057))))) -(-13 (-745 |#1| (-1185)) (-10 -8 (-15 -4383 ((-958 |#1|) $ (-776))) (-15 -3796 ($ (-1185))) (-15 -3796 ($ (-958 |#1|))) (IF (|has| |#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $ (-1185) |#1|)) (-15 -1632 ($ (-1 $) (-1185) |#1|))) |%noBranch|))) -((-3983 (($ |#1| (-649 (-649 (-949 (-226)))) (-112)) 19)) (-2363 (((-112) $ (-112)) 18)) (-2722 (((-112) $) 17)) (-1649 (((-649 (-649 (-949 (-226)))) $) 13)) (-3794 ((|#1| $) 8)) (-4368 (((-112) $) 15))) -(((-1220 |#1|) (-10 -8 (-15 -3794 (|#1| $)) (-15 -1649 ((-649 (-649 (-949 (-226)))) $)) (-15 -4368 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -2363 ((-112) $ (-112))) (-15 -3983 ($ |#1| (-649 (-649 (-949 (-226)))) (-112)))) (-982)) (T -1220)) -((-3983 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112)) (-5 *1 (-1220 *2)) (-4 *2 (-982)))) (-2363 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1220 *3)) (-4 *3 (-982)))) (-3794 (*1 *2 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-982))))) -(-10 -8 (-15 -3794 (|#1| $)) (-15 -1649 ((-649 (-649 (-949 (-226)))) $)) (-15 -4368 ((-112) $)) (-15 -2722 ((-112) $)) (-15 -2363 ((-112) $ (-112))) (-15 -3983 ($ |#1| (-649 (-649 (-949 (-226)))) (-112)))) -((-3636 (((-949 (-226)) (-949 (-226))) 31)) (-3283 (((-949 (-226)) (-226) (-226) (-226) (-226)) 10)) (-3860 (((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226)))) 60)) (-3040 (((-226) (-949 (-226)) (-949 (-226))) 27)) (-3260 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 28)) (-2213 (((-649 (-649 (-226))) (-569)) 48)) (-3024 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 26)) (-3012 (((-949 (-226)) (-949 (-226)) (-949 (-226))) 24)) (* (((-949 (-226)) (-226) (-949 (-226))) 22))) -(((-1221) (-10 -7 (-15 -3283 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -3012 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3024 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3040 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3260 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3636 ((-949 (-226)) (-949 (-226)))) (-15 -2213 ((-649 (-649 (-226))) (-569))) (-15 -3860 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226))))))) (T -1221)) -((-3860 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 (-949 *4))) (-5 *1 (-1221)) (-5 *3 (-949 *4)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1221)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (-3260 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (-3040 (*1 *2 *3 *3) (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1221)))) (-3024 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (-3012 (*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1221)))) (-3283 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)) (-5 *3 (-226))))) -(-10 -7 (-15 -3283 ((-949 (-226)) (-226) (-226) (-226) (-226))) (-15 * ((-949 (-226)) (-226) (-949 (-226)))) (-15 -3012 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3024 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3040 ((-226) (-949 (-226)) (-949 (-226)))) (-15 -3260 ((-949 (-226)) (-949 (-226)) (-949 (-226)))) (-15 -3636 ((-949 (-226)) (-949 (-226)))) (-15 -2213 ((-649 (-649 (-226))) (-569))) (-15 -3860 ((-649 (-949 (-226))) (-949 (-226)) (-949 (-226)) (-949 (-226)) (-226) (-649 (-649 (-226)))))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1417 ((|#1| $ (-776)) 18)) (-3845 (((-776) $) 13)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3796 (((-964 |#1|) $) 12) (($ (-964 |#1|)) 11) (((-867) $) 29 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2920 (((-112) $ $) 22 (|has| |#1| (-1108))))) -(((-1222 |#1|) (-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1417 (|#1| $ (-776))) (-15 -3845 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) (-1225)) (T -1222)) -((-1417 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-1222 *2)) (-4 *2 (-1225)))) (-3845 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1222 *3)) (-4 *3 (-1225))))) -(-13 (-495 (-964 |#1|)) (-10 -8 (-15 -1417 (|#1| $ (-776))) (-15 -3845 ((-776) $)) (IF (|has| |#1| (-618 (-867))) (-6 (-618 (-867))) |%noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|))) -((-1643 (((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)) (-569)) 94)) (-3597 (((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|))) 86)) (-1987 (((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|))) 70))) -(((-1223 |#1|) (-10 -7 (-15 -3597 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1987 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1643 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)) (-569)))) (-353)) (T -1223)) -((-1643 (*1 *2 *3 *4) (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1181 (-1181 *5)))) (-5 *1 (-1223 *5)) (-5 *3 (-1181 (-1181 *5))))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4)))) (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4))))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4)))) (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4)))))) -(-10 -7 (-15 -3597 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1987 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)))) (-15 -1643 ((-423 (-1181 (-1181 |#1|))) (-1181 (-1181 |#1|)) (-569)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 9) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1224) (-1091)) (T -1224)) -NIL -(-1091) -NIL -(((-1225) (-140)) (T -1225)) -NIL -(-13 (-10 -7 (-6 -3057))) -((-2630 (((-112)) 18)) (-3288 (((-1280) (-649 |#1|) (-649 |#1|)) 22) (((-1280) (-649 |#1|)) 23)) (-2314 (((-112) |#1| |#1|) 37 (|has| |#1| (-855)))) (-4254 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2369 ((|#1| (-649 |#1|)) 38 (|has| |#1| (-855))) ((|#1| (-649 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2943 (((-2 (|:| -1365 (-649 |#1|)) (|:| -2916 (-649 |#1|)))) 20))) -(((-1226 |#1|) (-10 -7 (-15 -3288 ((-1280) (-649 |#1|))) (-15 -3288 ((-1280) (-649 |#1|) (-649 |#1|))) (-15 -2943 ((-2 (|:| -1365 (-649 |#1|)) (|:| -2916 (-649 |#1|))))) (-15 -4254 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4254 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2369 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2630 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -2369 (|#1| (-649 |#1|))) (-15 -2314 ((-112) |#1| |#1|))) |%noBranch|)) (-1108)) (T -1226)) -((-2314 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-855)) (-4 *3 (-1108)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-855)) (-5 *1 (-1226 *2)))) (-2630 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1226 *2)) (-4 *2 (-1108)))) (-4254 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1108)) (-5 *2 (-112)) (-5 *1 (-1226 *3)))) (-4254 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) (-2943 (*1 *2) (-12 (-5 *2 (-2 (|:| -1365 (-649 *3)) (|:| -2916 (-649 *3)))) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) (-3288 (*1 *2 *3 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280)) (-5 *1 (-1226 *4)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280)) (-5 *1 (-1226 *4))))) -(-10 -7 (-15 -3288 ((-1280) (-649 |#1|))) (-15 -3288 ((-1280) (-649 |#1|) (-649 |#1|))) (-15 -2943 ((-2 (|:| -1365 (-649 |#1|)) (|:| -2916 (-649 |#1|))))) (-15 -4254 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4254 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2369 (|#1| (-649 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2630 ((-112))) (IF (|has| |#1| (-855)) (PROGN (-15 -2369 (|#1| (-649 |#1|))) (-15 -2314 ((-112) |#1| |#1|))) |%noBranch|)) -((-4224 (((-1280) (-649 (-1185)) (-649 (-1185))) 14) (((-1280) (-649 (-1185))) 12)) (-2806 (((-1280)) 16)) (-4191 (((-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185))))) 20))) -(((-1227) (-10 -7 (-15 -4224 ((-1280) (-649 (-1185)))) (-15 -4224 ((-1280) (-649 (-1185)) (-649 (-1185)))) (-15 -4191 ((-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185)))))) (-15 -2806 ((-1280))))) (T -1227)) -((-2806 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1227)))) (-4191 (*1 *2) (-12 (-5 *2 (-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185))))) (-5 *1 (-1227)))) (-4224 (*1 *2 *3 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227)))) (-4224 (*1 *2 *3) (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227))))) -(-10 -7 (-15 -4224 ((-1280) (-649 (-1185)))) (-15 -4224 ((-1280) (-649 (-1185)) (-649 (-1185)))) (-15 -4191 ((-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185)))))) (-15 -2806 ((-1280)))) -((-1830 (($ $) 17)) (-1473 (((-112) $) 28))) -(((-1228 |#1|) (-10 -8 (-15 -1830 (|#1| |#1|)) (-15 -1473 ((-112) |#1|))) (-1229)) (T -1228)) -NIL -(-10 -8 (-15 -1830 (|#1| |#1|)) (-15 -1473 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 57)) (-3764 (((-423 $) $) 58)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-1473 (((-112) $) 59)) (-2349 (((-112) $) 35)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 56)) (-2407 (((-3 $ "failed") $ $) 48)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27))) -(((-1229) (-140)) (T -1229)) -((-1473 (*1 *2 *1) (-12 (-4 *1 (-1229)) (-5 *2 (-112)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229)))) (-1830 (*1 *1 *1) (-4 *1 (-1229))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229))))) -(-13 (-457) (-10 -8 (-15 -1473 ((-112) $)) (-15 -3764 ((-423 $) $)) (-15 -1830 ($ $)) (-15 -3800 ((-423 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-293) . T) ((-457) . T) ((-561) . T) ((-651 (-569)) . T) ((-651 $) . T) ((-653 $) . T) ((-645 $) . T) ((-722 $) . T) ((-731) . T) ((-1059 $) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-1230) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1230)) -((-1353 (*1 *1 *1 *1) (-5 *1 (-1230))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1230))) (-4427 (*1 *1) (-5 *1 (-1230)))) -(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 9)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 7))) +(((-1194) (-1109)) (T -1194)) +NIL +(-1109) +((-3457 (((-650 (-650 (-959 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 67)) (-3884 (((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|)))) 78) (((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|))) 74) (((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186)) 79) (((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186)) 73) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|))))) 106) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|)))) 105) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186))) 107) (((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))) (-650 (-1186))) 104))) +(((-1195 |#1|) (-10 -7 (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))))) (-15 -3457 ((-650 (-650 (-959 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))))) (-562)) (T -1195)) +((-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-959 *5)))) (-5 *1 (-1195 *5)))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4))))) (-5 *1 (-1195 *4)) (-5 *3 (-298 (-413 (-959 *4)))))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4))))) (-5 *1 (-1195 *4)) (-5 *3 (-413 (-959 *4))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5)) (-5 *3 (-298 (-413 (-959 *5)))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-1186)) (-4 *5 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5)) (-5 *3 (-413 (-959 *5))))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-1195 *4)) (-5 *3 (-650 (-298 (-413 (-959 *4))))))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-1195 *4)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-1195 *5)) (-5 *3 (-650 (-298 (-413 (-959 *5))))))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-1195 *5))))) +(-10 -7 (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))) (-650 (-1186)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))) (-650 (-1186)))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-413 (-959 |#1|))))) (-15 -3884 ((-650 (-650 (-298 (-413 (-959 |#1|))))) (-650 (-298 (-413 (-959 |#1|)))))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)) (-1186))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))) (-1186))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-413 (-959 |#1|)))) (-15 -3884 ((-650 (-298 (-413 (-959 |#1|)))) (-298 (-413 (-959 |#1|))))) (-15 -3457 ((-650 (-650 (-959 |#1|))) (-650 (-413 (-959 |#1|))) (-650 (-1186))))) +((-2204 (((-1168)) 7)) (-3157 (((-1168)) 11 T CONST)) (-3693 (((-1281) (-1168)) 13)) (-3960 (((-1168)) 8 T CONST)) (-1331 (((-131)) 10 T CONST))) +(((-1196) (-13 (-1226) (-10 -7 (-15 -2204 ((-1168))) (-15 -3960 ((-1168)) -3711) (-15 -1331 ((-131)) -3711) (-15 -3157 ((-1168)) -3711) (-15 -3693 ((-1281) (-1168)))))) (T -1196)) +((-2204 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))) (-3960 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))) (-1331 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1196)))) (-3157 (*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196)))) (-3693 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1196))))) +(-13 (-1226) (-10 -7 (-15 -2204 ((-1168))) (-15 -3960 ((-1168)) -3711) (-15 -1331 ((-131)) -3711) (-15 -3157 ((-1168)) -3711) (-15 -3693 ((-1281) (-1168))))) +((-2454 (((-650 (-650 |#1|)) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|)))) 56)) (-3529 (((-650 (-650 (-650 |#1|))) (-650 (-650 |#1|))) 38)) (-1827 (((-1198 (-650 |#1|)) (-650 |#1|)) 49)) (-3411 (((-650 (-650 |#1|)) (-650 |#1|)) 45)) (-3567 (((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 (-650 (-650 |#1|)))) 53)) (-1585 (((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 |#1|) (-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|)))) 52)) (-2317 (((-650 (-650 |#1|)) (-650 (-650 |#1|))) 43)) (-1972 (((-650 |#1|) (-650 |#1|)) 46)) (-1994 (((-650 (-650 (-650 |#1|))) (-650 |#1|) (-650 (-650 (-650 |#1|)))) 32)) (-2619 (((-650 (-650 (-650 |#1|))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 (-650 |#1|)))) 29)) (-4076 (((-2 (|:| |fs| (-112)) (|:| |sd| (-650 |#1|)) (|:| |td| (-650 (-650 |#1|)))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 |#1|))) 24)) (-1393 (((-650 (-650 |#1|)) (-650 (-650 (-650 |#1|)))) 58)) (-2390 (((-650 (-650 |#1|)) (-1198 (-650 |#1|))) 60))) +(((-1197 |#1|) (-10 -7 (-15 -4076 ((-2 (|:| |fs| (-112)) (|:| |sd| (-650 |#1|)) (|:| |td| (-650 (-650 |#1|)))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 |#1|)))) (-15 -2619 ((-650 (-650 (-650 |#1|))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -1994 ((-650 (-650 (-650 |#1|))) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -2454 ((-650 (-650 |#1|)) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -1393 ((-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -2390 ((-650 (-650 |#1|)) (-1198 (-650 |#1|)))) (-15 -3529 ((-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)))) (-15 -1827 ((-1198 (-650 |#1|)) (-650 |#1|))) (-15 -2317 ((-650 (-650 |#1|)) (-650 (-650 |#1|)))) (-15 -3411 ((-650 (-650 |#1|)) (-650 |#1|))) (-15 -1972 ((-650 |#1|) (-650 |#1|))) (-15 -1585 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 |#1|) (-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))))) (-15 -3567 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 (-650 (-650 |#1|)))))) (-856)) (T -1197)) +((-3567 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-2 (|:| |f1| (-650 *4)) (|:| |f2| (-650 (-650 (-650 *4)))) (|:| |f3| (-650 (-650 *4))) (|:| |f4| (-650 (-650 (-650 *4)))))) (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 (-650 *4)))))) (-1585 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-856)) (-5 *3 (-650 *6)) (-5 *5 (-650 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-650 *5)) (|:| |f3| *5) (|:| |f4| (-650 *5)))) (-5 *1 (-1197 *6)) (-5 *4 (-650 *5)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-1197 *3)))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)) (-5 *3 (-650 *4)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-856)) (-5 *1 (-1197 *3)))) (-1827 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-1198 (-650 *4))) (-5 *1 (-1197 *4)) (-5 *3 (-650 *4)))) (-3529 (*1 *2 *3) (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 (-650 *4)))) (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 *4))))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1198 (-650 *4))) (-4 *4 (-856)) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)) (-4 *4 (-856)))) (-2454 (*1 *2 *2 *3) (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4))) (-4 *4 (-856)) (-5 *1 (-1197 *4)))) (-1994 (*1 *2 *3 *2) (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-650 *4)) (-4 *4 (-856)) (-5 *1 (-1197 *4)))) (-2619 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-650 *5)) (-4 *5 (-856)) (-5 *1 (-1197 *5)))) (-4076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-856)) (-5 *4 (-650 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-650 *4)))) (-5 *1 (-1197 *6)) (-5 *5 (-650 *4))))) +(-10 -7 (-15 -4076 ((-2 (|:| |fs| (-112)) (|:| |sd| (-650 |#1|)) (|:| |td| (-650 (-650 |#1|)))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 |#1|)))) (-15 -2619 ((-650 (-650 (-650 |#1|))) (-1 (-112) |#1| |#1|) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -1994 ((-650 (-650 (-650 |#1|))) (-650 |#1|) (-650 (-650 (-650 |#1|))))) (-15 -2454 ((-650 (-650 |#1|)) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -1393 ((-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))))) (-15 -2390 ((-650 (-650 |#1|)) (-1198 (-650 |#1|)))) (-15 -3529 ((-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)))) (-15 -1827 ((-1198 (-650 |#1|)) (-650 |#1|))) (-15 -2317 ((-650 (-650 |#1|)) (-650 (-650 |#1|)))) (-15 -3411 ((-650 (-650 |#1|)) (-650 |#1|))) (-15 -1972 ((-650 |#1|) (-650 |#1|))) (-15 -1585 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 |#1|) (-650 (-650 (-650 |#1|))) (-650 (-650 |#1|)) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))) (-650 (-650 (-650 |#1|))))) (-15 -3567 ((-2 (|:| |f1| (-650 |#1|)) (|:| |f2| (-650 (-650 (-650 |#1|)))) (|:| |f3| (-650 (-650 |#1|))) (|:| |f4| (-650 (-650 (-650 |#1|))))) (-650 (-650 (-650 |#1|)))))) +((-2386 (($ (-650 (-650 |#1|))) 10)) (-2139 (((-650 (-650 |#1|)) $) 11)) (-3798 (((-868) $) 36))) +(((-1198 |#1|) (-10 -8 (-15 -2386 ($ (-650 (-650 |#1|)))) (-15 -2139 ((-650 (-650 |#1|)) $)) (-15 -3798 ((-868) $))) (-1109)) (T -1198)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1198 *3)) (-4 *3 (-1109)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1109)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-1198 *3))))) +(-10 -8 (-15 -2386 ($ (-650 (-650 |#1|)))) (-15 -2139 ((-650 (-650 |#1|)) $)) (-15 -3798 ((-868) $))) +((-2419 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-4290 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-2926 (((-1281) $ |#1| |#1|) NIL (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#2| $ |#1| |#2|) NIL)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) NIL)) (-3734 (($) NIL T CONST)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) NIL)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-650 |#2|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-3434 ((|#1| $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2799 (((-650 |#1|) $) NIL)) (-4242 (((-112) |#1| $) NIL)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-2044 (((-650 |#1|) $) NIL)) (-1480 (((-112) |#1| $) NIL)) (-3551 (((-1129) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-3515 ((|#2| $) NIL (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL)) (-2973 (($ $ |#2|) NIL (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2709 (($) NIL) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) NIL (-12 (|has| $ (-6 -4448)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (((-777) |#2| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109)))) (((-777) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-3798 (((-868) $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868))) (|has| |#2| (-619 (-868)))))) (-1319 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) NIL)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) NIL (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) NIL (-2779 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| |#2| (-1109))))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1199 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) (-1109) (-1109)) (T -1199)) +NIL +(-13 (-1202 |#1| |#2|) (-10 -7 (-6 -4448))) +((-4369 ((|#1| (-650 |#1|)) 49)) (-3741 ((|#1| |#1| (-570)) 24)) (-3684 (((-1182 |#1|) |#1| (-928)) 20))) +(((-1200 |#1|) (-10 -7 (-15 -4369 (|#1| (-650 |#1|))) (-15 -3684 ((-1182 |#1|) |#1| (-928))) (-15 -3741 (|#1| |#1| (-570)))) (-368)) (T -1200)) +((-3741 (*1 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-1200 *2)) (-4 *2 (-368)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *4 (-928)) (-5 *2 (-1182 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-368)))) (-4369 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-1200 *2)) (-4 *2 (-368))))) +(-10 -7 (-15 -4369 (|#1| (-650 |#1|))) (-15 -3684 ((-1182 |#1|) |#1| (-928))) (-15 -3741 (|#1| |#1| (-570)))) +((-4290 (($) 10) (($ (-650 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)))) 14)) (-2571 (($ (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2885 (((-650 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) 39) (((-650 |#3|) $) 41)) (-3837 (($ (-1 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1347 (($ (-1 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1334 (((-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) $) 60)) (-2213 (($ (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) $) 16)) (-2044 (((-650 |#2|) $) 19)) (-1480 (((-112) |#2| $) 65)) (-4089 (((-3 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) "failed") (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) 64)) (-4067 (((-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) $) 69)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-2880 (((-650 |#3|) $) 43)) (-1872 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) NIL) (((-777) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) $) NIL) (((-777) |#3| $) NIL) (((-777) (-1 (-112) |#3|) $) 79)) (-3798 (((-868) $) 27)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2923 (((-112) $ $) 51))) +(((-1201 |#1| |#2| |#3|) (-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -1347 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4290 (|#1| (-650 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))))) (-15 -4290 (|#1|)) (-15 -1347 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3837 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3562 ((-777) (-1 (-112) |#3|) |#1|)) (-15 -2885 ((-650 |#3|) |#1|)) (-15 -3562 ((-777) |#3| |#1|)) (-15 -1872 (|#3| |#1| |#2| |#3|)) (-15 -1872 (|#3| |#1| |#2|)) (-15 -2880 ((-650 |#3|) |#1|)) (-15 -1480 ((-112) |#2| |#1|)) (-15 -2044 ((-650 |#2|) |#1|)) (-15 -2571 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2571 (|#1| (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -2571 (|#1| (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -4089 ((-3 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) "failed") (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -1334 ((-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -2213 (|#1| (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -4067 ((-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -3562 ((-777) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -2885 ((-650 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -3562 ((-777) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -3116 ((-112) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -1431 ((-112) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -3837 (|#1| (-1 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -1347 (|#1| (-1 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|))) (-1202 |#2| |#3|) (-1109) (-1109)) (T -1201)) +NIL +(-10 -8 (-15 -2923 ((-112) |#1| |#1|)) (-15 -3798 ((-868) |#1|)) (-15 -1347 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4290 (|#1| (-650 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))))) (-15 -4290 (|#1|)) (-15 -1347 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3837 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1431 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3116 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3562 ((-777) (-1 (-112) |#3|) |#1|)) (-15 -2885 ((-650 |#3|) |#1|)) (-15 -3562 ((-777) |#3| |#1|)) (-15 -1872 (|#3| |#1| |#2| |#3|)) (-15 -1872 (|#3| |#1| |#2|)) (-15 -2880 ((-650 |#3|) |#1|)) (-15 -1480 ((-112) |#2| |#1|)) (-15 -2044 ((-650 |#2|) |#1|)) (-15 -2571 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2571 (|#1| (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -2571 (|#1| (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -4089 ((-3 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) "failed") (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -1334 ((-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -2213 (|#1| (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -4067 ((-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -3562 ((-777) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) |#1|)) (-15 -2885 ((-650 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -3562 ((-777) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -3116 ((-112) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -1431 ((-112) (-1 (-112) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -3837 (|#1| (-1 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|)) (-15 -1347 (|#1| (-1 (-2 (|:| -2009 |#2|) (|:| -2219 |#3|)) (-2 (|:| -2009 |#2|) (|:| -2219 |#3|))) |#1|))) +((-2419 (((-112) $ $) 19 (-2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-4290 (($) 73) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 72)) (-2926 (((-1281) $ |#1| |#1|) 100 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#2| $ |#1| |#2|) 74)) (-2660 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 46 (|has| $ (-6 -4448)))) (-1418 (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 56 (|has| $ (-6 -4448)))) (-2361 (((-3 |#2| "failed") |#1| $) 62)) (-3734 (($) 7 T CONST)) (-3552 (($ $) 59 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448))))) (-2571 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 48 (|has| $ (-6 -4448))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 47 (|has| $ (-6 -4448))) (((-3 |#2| "failed") |#1| $) 63)) (-1697 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 55 (|has| $ (-6 -4448)))) (-3600 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 57 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 54 (|has| $ (-6 -4448))) (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 53 (|has| $ (-6 -4448)))) (-3849 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4449)))) (-3778 ((|#2| $ |#1|) 89)) (-2885 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 31 (|has| $ (-6 -4448))) (((-650 |#2|) $) 80 (|has| $ (-6 -4448)))) (-3846 (((-112) $ (-777)) 9)) (-1720 ((|#1| $) 97 (|has| |#1| (-856)))) (-2282 (((-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 30 (|has| $ (-6 -4448))) (((-650 |#2|) $) 81 (|has| $ (-6 -4448)))) (-1935 (((-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448))))) (-3434 ((|#1| $) 96 (|has| |#1| (-856)))) (-3837 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 35 (|has| $ (-6 -4449))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4449)))) (-1347 (($ (-1 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2063 (((-112) $ (-777)) 10)) (-4122 (((-1168) $) 22 (-2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2799 (((-650 |#1|) $) 64)) (-4242 (((-112) |#1| $) 65)) (-1334 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 40)) (-2213 (($ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 41)) (-2044 (((-650 |#1|) $) 94)) (-1480 (((-112) |#1| $) 93)) (-3551 (((-1129) $) 21 (-2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-3515 ((|#2| $) 98 (|has| |#1| (-856)))) (-4089 (((-3 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) "failed") (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 52)) (-2973 (($ $ |#2|) 99 (|has| $ (-6 -4449)))) (-4067 (((-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 42)) (-3116 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 33 (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))))) 27 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-298 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 26 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) 25 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 24 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)))) (($ $ (-650 |#2|) (-650 |#2|)) 87 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-298 |#2|)) 85 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109)))) (($ $ (-650 (-298 |#2|))) 84 (-12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4448)) (|has| |#2| (-1109))))) (-2880 (((-650 |#2|) $) 92)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2709 (($) 50) (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 49)) (-3562 (((-777) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 32 (|has| $ (-6 -4448))) (((-777) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| $ (-6 -4448)))) (((-777) |#2| $) 82 (-12 (|has| |#2| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4448)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 60 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))))) (-3811 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 51)) (-3798 (((-868) $) 18 (-2779 (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868)))))) (-1319 (((-112) $ $) 23 (-2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2089 (($ (-650 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) 43)) (-1431 (((-112) (-1 (-112) (-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) $) 34 (|has| $ (-6 -4448))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (-2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1202 |#1| |#2|) (-141) (-1109) (-1109)) (T -1202)) +((-3945 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) (-4290 (*1 *1) (-12 (-4 *1 (-1202 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) (-4290 (*1 *1 *2) (-12 (-5 *2 (-650 (-2 (|:| -2009 *3) (|:| -2219 *4)))) (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *1 (-1202 *3 *4)))) (-1347 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))))) +(-13 (-616 |t#1| |t#2|) (-610 |t#1| |t#2|) (-10 -8 (-15 -3945 (|t#2| $ |t#1| |t#2|)) (-15 -4290 ($)) (-15 -4290 ($ (-650 (-2 (|:| -2009 |t#1|) (|:| -2219 |t#2|))))) (-15 -1347 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -2009 |#1|) (|:| -2219 |#2|))) . T) ((-102) -2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-619 (-868)) -2779 (|has| |#2| (-1109)) (|has| |#2| (-619 (-868))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-619 (-868)))) ((-152 #0#) . T) ((-620 (-542)) |has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-620 (-542))) ((-231 #0#) . T) ((-237 #0#) . T) ((-290 |#1| |#2|) . T) ((-292 |#1| |#2|) . T) ((-313 #0#) -12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-313 |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-495 #0#) . T) ((-495 |#2|) . T) ((-610 |#1| |#2|) . T) ((-520 #0# #0#) -12 (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-313 (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)))) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-520 |#2| |#2|) -12 (|has| |#2| (-313 |#2|)) (|has| |#2| (-1109))) ((-616 |#1| |#2|) . T) ((-1109) -2779 (|has| |#2| (-1109)) (|has| (-2 (|:| -2009 |#1|) (|:| -2219 |#2|)) (-1109))) ((-1226) . T)) +((-2905 (((-112)) 29)) (-2198 (((-1281) (-1168)) 31)) (-2671 (((-112)) 41)) (-3240 (((-1281)) 39)) (-2513 (((-1281) (-1168) (-1168)) 30)) (-2936 (((-112)) 42)) (-2213 (((-1281) |#1| |#2|) 53)) (-3083 (((-1281)) 26)) (-4245 (((-3 |#2| "failed") |#1|) 51)) (-4028 (((-1281)) 40))) +(((-1203 |#1| |#2|) (-10 -7 (-15 -3083 ((-1281))) (-15 -2513 ((-1281) (-1168) (-1168))) (-15 -2198 ((-1281) (-1168))) (-15 -3240 ((-1281))) (-15 -4028 ((-1281))) (-15 -2905 ((-112))) (-15 -2671 ((-112))) (-15 -2936 ((-112))) (-15 -4245 ((-3 |#2| "failed") |#1|)) (-15 -2213 ((-1281) |#1| |#2|))) (-1109) (-1109)) (T -1203)) +((-2213 (*1 *2 *3 *4) (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-4245 (*1 *2 *3) (|partial| -12 (-4 *2 (-1109)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-1109)))) (-2936 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2671 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2905 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-4028 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-3240 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1203 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)))) (-2513 (*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1203 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)))) (-3083 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109))))) +(-10 -7 (-15 -3083 ((-1281))) (-15 -2513 ((-1281) (-1168) (-1168))) (-15 -2198 ((-1281) (-1168))) (-15 -3240 ((-1281))) (-15 -4028 ((-1281))) (-15 -2905 ((-112))) (-15 -2671 ((-112))) (-15 -2936 ((-112))) (-15 -4245 ((-3 |#2| "failed") |#1|)) (-15 -2213 ((-1281) |#1| |#2|))) +((-4057 (((-1168) (-1168)) 22)) (-4048 (((-52) (-1168)) 25))) +(((-1204) (-10 -7 (-15 -4048 ((-52) (-1168))) (-15 -4057 ((-1168) (-1168))))) (T -1204)) +((-4057 (*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1204)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-1204))))) +(-10 -7 (-15 -4048 ((-52) (-1168))) (-15 -4057 ((-1168) (-1168)))) +((-3798 (((-1206) |#1|) 11))) +(((-1205 |#1|) (-10 -7 (-15 -3798 ((-1206) |#1|))) (-1109)) (T -1205)) +((-3798 (*1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *1 (-1205 *3)) (-4 *3 (-1109))))) +(-10 -7 (-15 -3798 ((-1206) |#1|))) +((-2419 (((-112) $ $) NIL)) (-4396 (((-650 (-1168)) $) 39)) (-3522 (((-650 (-1168)) $ (-650 (-1168))) 42)) (-2549 (((-650 (-1168)) $ (-650 (-1168))) 41)) (-1910 (((-650 (-1168)) $ (-650 (-1168))) 43)) (-3273 (((-650 (-1168)) $) 38)) (-4300 (($) 28)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-4197 (((-650 (-1168)) $) 40)) (-4160 (((-1281) $ (-570)) 35) (((-1281) $) 36)) (-1411 (($ (-868) (-570)) 33) (($ (-868) (-570) (-868)) NIL)) (-3798 (((-868) $) 49) (($ (-868)) 32)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1206) (-13 (-1109) (-622 (-868)) (-10 -8 (-15 -1411 ($ (-868) (-570))) (-15 -1411 ($ (-868) (-570) (-868))) (-15 -4160 ((-1281) $ (-570))) (-15 -4160 ((-1281) $)) (-15 -4197 ((-650 (-1168)) $)) (-15 -4396 ((-650 (-1168)) $)) (-15 -4300 ($)) (-15 -3273 ((-650 (-1168)) $)) (-15 -1910 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -3522 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -2549 ((-650 (-1168)) $ (-650 (-1168))))))) (T -1206)) +((-1411 (*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1206)))) (-1411 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1206)))) (-4160 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1206)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1206)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206)))) (-4300 (*1 *1) (-5 *1 (-1206))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206)))) (-1910 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206)))) (-3522 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206)))) (-2549 (*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(-13 (-1109) (-622 (-868)) (-10 -8 (-15 -1411 ($ (-868) (-570))) (-15 -1411 ($ (-868) (-570) (-868))) (-15 -4160 ((-1281) $ (-570))) (-15 -4160 ((-1281) $)) (-15 -4197 ((-650 (-1168)) $)) (-15 -4396 ((-650 (-1168)) $)) (-15 -4300 ($)) (-15 -3273 ((-650 (-1168)) $)) (-15 -1910 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -3522 ((-650 (-1168)) $ (-650 (-1168)))) (-15 -2549 ((-650 (-1168)) $ (-650 (-1168)))))) +((-2419 (((-112) $ $) NIL)) (-3060 (((-1168) $ (-1168)) 17) (((-1168) $) 16)) (-2307 (((-1168) $ (-1168)) 15)) (-3611 (($ $ (-1168)) NIL)) (-1425 (((-3 (-1168) "failed") $) 11)) (-3709 (((-1168) $) 8)) (-3617 (((-3 (-1168) "failed") $) 12)) (-2289 (((-1168) $) 9)) (-1718 (($ (-394)) NIL) (($ (-394) (-1168)) NIL)) (-3574 (((-394) $) NIL)) (-4122 (((-1168) $) NIL)) (-3608 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2843 (((-112) $) 21)) (-3798 (((-868) $) NIL)) (-2514 (($ $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1207) (-13 (-369 (-394) (-1168)) (-10 -8 (-15 -3060 ((-1168) $ (-1168))) (-15 -3060 ((-1168) $)) (-15 -3709 ((-1168) $)) (-15 -1425 ((-3 (-1168) "failed") $)) (-15 -3617 ((-3 (-1168) "failed") $)) (-15 -2843 ((-112) $))))) (T -1207)) +((-3060 (*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1207)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1207)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1207)))) (-1425 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1207)))) (-3617 (*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1207)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207))))) +(-13 (-369 (-394) (-1168)) (-10 -8 (-15 -3060 ((-1168) $ (-1168))) (-15 -3060 ((-1168) $)) (-15 -3709 ((-1168) $)) (-15 -1425 ((-3 (-1168) "failed") $)) (-15 -3617 ((-3 (-1168) "failed") $)) (-15 -2843 ((-112) $)))) +((-2579 (((-3 (-570) "failed") |#1|) 19)) (-4345 (((-3 (-570) "failed") |#1|) 14)) (-3921 (((-570) (-1168)) 33))) +(((-1208 |#1|) (-10 -7 (-15 -2579 ((-3 (-570) "failed") |#1|)) (-15 -4345 ((-3 (-570) "failed") |#1|)) (-15 -3921 ((-570) (-1168)))) (-1058)) (T -1208)) +((-3921 (*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-1208 *4)) (-4 *4 (-1058)))) (-4345 (*1 *2 *3) (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1208 *3)) (-4 *3 (-1058)))) (-2579 (*1 *2 *3) (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1208 *3)) (-4 *3 (-1058))))) +(-10 -7 (-15 -2579 ((-3 (-570) "failed") |#1|)) (-15 -4345 ((-3 (-570) "failed") |#1|)) (-15 -3921 ((-570) (-1168)))) +((-3441 (((-1142 (-227))) 9))) +(((-1209) (-10 -7 (-15 -3441 ((-1142 (-227)))))) (T -1209)) +((-3441 (*1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1209))))) +(-10 -7 (-15 -3441 ((-1142 (-227))))) +((-1313 (($) 12)) (-4165 (($ $) 36)) (-4141 (($ $) 34)) (-2678 (($ $) 26)) (-4186 (($ $) 18)) (-1504 (($ $) 16)) (-4176 (($ $) 20)) (-2715 (($ $) 31)) (-4153 (($ $) 35)) (-2692 (($ $) 30))) +(((-1210 |#1|) (-10 -8 (-15 -1313 (|#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -1504 (|#1| |#1|)) (-15 -4176 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2715 (|#1| |#1|)) (-15 -2692 (|#1| |#1|))) (-1211)) (T -1210)) +NIL +(-10 -8 (-15 -1313 (|#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -1504 (|#1| |#1|)) (-15 -4176 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2715 (|#1| |#1|)) (-15 -2692 (|#1| |#1|))) +((-2774 (($ $) 26)) (-2629 (($ $) 11)) (-2749 (($ $) 27)) (-2604 (($ $) 10)) (-4119 (($ $) 28)) (-2648 (($ $) 9)) (-1313 (($) 16)) (-2665 (($ $) 19)) (-4390 (($ $) 18)) (-4129 (($ $) 29)) (-2664 (($ $) 8)) (-2786 (($ $) 30)) (-2636 (($ $) 7)) (-2761 (($ $) 31)) (-2616 (($ $) 6)) (-4165 (($ $) 20)) (-2704 (($ $) 32)) (-4141 (($ $) 21)) (-2678 (($ $) 33)) (-4186 (($ $) 22)) (-2726 (($ $) 34)) (-1504 (($ $) 23)) (-2737 (($ $) 35)) (-4176 (($ $) 24)) (-2715 (($ $) 36)) (-4153 (($ $) 25)) (-2692 (($ $) 37)) (** (($ $ $) 17))) +(((-1211) (-141)) (T -1211)) +((-1313 (*1 *1) (-4 *1 (-1211)))) +(-13 (-1214) (-95) (-499) (-35) (-288) (-10 -8 (-15 -1313 ($)))) +(((-35) . T) ((-95) . T) ((-288) . T) ((-499) . T) ((-1214) . T)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2190 ((|#1| $) 19)) (-2280 (($ |#1| (-650 $)) 28) (($ (-650 |#1|)) 35) (($ |#1|) 30)) (-3636 (((-112) $ (-777)) 71)) (-3470 ((|#1| $ |#1|) 14 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 13 (|has| $ (-6 -4449)))) (-3734 (($) NIL T CONST)) (-2885 (((-650 |#1|) $) 75 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 63)) (-3471 (((-112) $ $) 49 (|has| |#1| (-1109)))) (-3846 (((-112) $ (-777)) 61)) (-2282 (((-650 |#1|) $) 76 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 74 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3837 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 27)) (-2063 (((-112) $ (-777)) 59)) (-2278 (((-650 |#1|) $) 54)) (-4142 (((-112) $) 52)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3116 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 105)) (-4303 (((-112) $) 9)) (-4359 (($) 10)) (-1872 ((|#1| $ "value") NIL)) (-3536 (((-570) $ $) 48)) (-2178 (((-650 $) $) 87)) (-1333 (((-112) $ $) 108)) (-2060 (((-650 $) $) 103)) (-2403 (($ $) 104)) (-3680 (((-112) $) 82)) (-3562 (((-777) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4448))) (((-777) |#1| $) 17 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3964 (($ $) 86)) (-3798 (((-868) $) 89 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 12)) (-2650 (((-112) $ $) 39 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 37 (|has| |#1| (-1109)))) (-2431 (((-777) $) 57 (|has| $ (-6 -4448))))) +(((-1212 |#1|) (-13 (-1019 |#1|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -2280 ($ |#1| (-650 $))) (-15 -2280 ($ (-650 |#1|))) (-15 -2280 ($ |#1|)) (-15 -3680 ((-112) $)) (-15 -2403 ($ $)) (-15 -2060 ((-650 $) $)) (-15 -1333 ((-112) $ $)) (-15 -2178 ((-650 $) $)))) (-1109)) (T -1212)) +((-3680 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-1109)))) (-2280 (*1 *1 *2 *3) (-12 (-5 *3 (-650 (-1212 *2))) (-5 *1 (-1212 *2)) (-4 *2 (-1109)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1212 *3)))) (-2280 (*1 *1 *2) (-12 (-5 *1 (-1212 *2)) (-4 *2 (-1109)))) (-2403 (*1 *1 *1) (-12 (-5 *1 (-1212 *2)) (-4 *2 (-1109)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-650 (-1212 *3))) (-5 *1 (-1212 *3)) (-4 *3 (-1109)))) (-1333 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-1109)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-650 (-1212 *3))) (-5 *1 (-1212 *3)) (-4 *3 (-1109))))) +(-13 (-1019 |#1|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -2280 ($ |#1| (-650 $))) (-15 -2280 ($ (-650 |#1|))) (-15 -2280 ($ |#1|)) (-15 -3680 ((-112) $)) (-15 -2403 ($ $)) (-15 -2060 ((-650 $) $)) (-15 -1333 ((-112) $ $)) (-15 -2178 ((-650 $) $)))) +((-2629 (($ $) 15)) (-2648 (($ $) 12)) (-2664 (($ $) 10)) (-2636 (($ $) 17))) +(((-1213 |#1|) (-10 -8 (-15 -2636 (|#1| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)) (-15 -2629 (|#1| |#1|))) (-1214)) (T -1213)) +NIL +(-10 -8 (-15 -2636 (|#1| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)) (-15 -2629 (|#1| |#1|))) +((-2629 (($ $) 11)) (-2604 (($ $) 10)) (-2648 (($ $) 9)) (-2664 (($ $) 8)) (-2636 (($ $) 7)) (-2616 (($ $) 6))) +(((-1214) (-141)) (T -1214)) +((-2629 (*1 *1 *1) (-4 *1 (-1214))) (-2604 (*1 *1 *1) (-4 *1 (-1214))) (-2648 (*1 *1 *1) (-4 *1 (-1214))) (-2664 (*1 *1 *1) (-4 *1 (-1214))) (-2636 (*1 *1 *1) (-4 *1 (-1214))) (-2616 (*1 *1 *1) (-4 *1 (-1214)))) +(-13 (-10 -8 (-15 -2616 ($ $)) (-15 -2636 ($ $)) (-15 -2664 ($ $)) (-15 -2648 ($ $)) (-15 -2604 ($ $)) (-15 -2629 ($ $)))) +((-2924 ((|#2| |#2|) 98)) (-1782 (((-112) |#2|) 29)) (-3827 ((|#2| |#2|) 33)) (-3839 ((|#2| |#2|) 35)) (-1465 ((|#2| |#2| (-1186)) 92) ((|#2| |#2|) 93)) (-3477 (((-171 |#2|) |#2|) 31)) (-2159 ((|#2| |#2| (-1186)) 94) ((|#2| |#2|) 95))) +(((-1215 |#1| |#2|) (-10 -7 (-15 -1465 (|#2| |#2|)) (-15 -1465 (|#2| |#2| (-1186))) (-15 -2159 (|#2| |#2|)) (-15 -2159 (|#2| |#2| (-1186))) (-15 -2924 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -1782 ((-112) |#2|)) (-15 -3477 ((-171 |#2|) |#2|))) (-13 (-458) (-1047 (-570)) (-645 (-570))) (-13 (-27) (-1211) (-436 |#1|))) (T -1215)) +((-3477 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-171 *3)) (-5 *1 (-1215 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112)) (-5 *1 (-1215 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) (-3827 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) (-2924 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) (-2159 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) (-2159 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) (-1465 (*1 *2 *2 *3) (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) (-1465 (*1 *2 *2) (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3)))))) +(-10 -7 (-15 -1465 (|#2| |#2|)) (-15 -1465 (|#2| |#2| (-1186))) (-15 -2159 (|#2| |#2|)) (-15 -2159 (|#2| |#2| (-1186))) (-15 -2924 (|#2| |#2|)) (-15 -3827 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -1782 ((-112) |#2|)) (-15 -3477 ((-171 |#2|) |#2|))) +((-2460 ((|#4| |#4| |#1|) 32)) (-2106 ((|#4| |#4| |#1|) 33))) +(((-1216 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2460 (|#4| |#4| |#1|)) (-15 -2106 (|#4| |#4| |#1|))) (-562) (-378 |#1|) (-378 |#1|) (-693 |#1| |#2| |#3|)) (T -1216)) +((-2106 (*1 *2 *2 *3) (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1216 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) (-2460 (*1 *2 *2 *3) (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-5 *1 (-1216 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) +(-10 -7 (-15 -2460 (|#4| |#4| |#1|)) (-15 -2106 (|#4| |#4| |#1|))) +((-2567 ((|#2| |#2|) 148)) (-2315 ((|#2| |#2|) 145)) (-3688 ((|#2| |#2|) 136)) (-3126 ((|#2| |#2|) 133)) (-2059 ((|#2| |#2|) 141)) (-3392 ((|#2| |#2|) 129)) (-1502 ((|#2| |#2|) 44)) (-3981 ((|#2| |#2|) 105)) (-2057 ((|#2| |#2|) 88)) (-3396 ((|#2| |#2|) 143)) (-3401 ((|#2| |#2|) 131)) (-3279 ((|#2| |#2|) 153)) (-2765 ((|#2| |#2|) 151)) (-1435 ((|#2| |#2|) 152)) (-2983 ((|#2| |#2|) 150)) (-4426 ((|#2| |#2|) 163)) (-2897 ((|#2| |#2|) 30 (-12 (|has| |#2| (-620 (-899 |#1|))) (|has| |#2| (-893 |#1|)) (|has| |#1| (-620 (-899 |#1|))) (|has| |#1| (-893 |#1|))))) (-2542 ((|#2| |#2|) 89)) (-2175 ((|#2| |#2|) 154)) (-1381 ((|#2| |#2|) 155)) (-2557 ((|#2| |#2|) 142)) (-3222 ((|#2| |#2|) 130)) (-2613 ((|#2| |#2|) 149)) (-3996 ((|#2| |#2|) 147)) (-2006 ((|#2| |#2|) 137)) (-3465 ((|#2| |#2|) 135)) (-3002 ((|#2| |#2|) 139)) (-2800 ((|#2| |#2|) 127))) +(((-1217 |#1| |#2|) (-10 -7 (-15 -1381 (|#2| |#2|)) (-15 -2057 (|#2| |#2|)) (-15 -4426 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)) (-15 -3222 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -3401 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -3688 (|#2| |#2|)) (-15 -2567 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (IF (|has| |#1| (-893 |#1|)) (IF (|has| |#1| (-620 (-899 |#1|))) (IF (|has| |#2| (-620 (-899 |#1|))) (IF (|has| |#2| (-893 |#1|)) (-15 -2897 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-458) (-13 (-436 |#1|) (-1211))) (T -1217)) +((-2897 (*1 *2 *2) (-12 (-4 *3 (-620 (-899 *3))) (-4 *3 (-893 *3)) (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-620 (-899 *3))) (-4 *2 (-893 *3)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3279 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2983 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3465 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2567 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3396 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3401 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2557 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3222 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2613 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2006 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3002 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2175 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2542 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-4426 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-2057 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211))))) (-1381 (*1 *2 *2) (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) (-4 *2 (-13 (-436 *3) (-1211)))))) +(-10 -7 (-15 -1381 (|#2| |#2|)) (-15 -2057 (|#2| |#2|)) (-15 -4426 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -2542 (|#2| |#2|)) (-15 -2175 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (-15 -3002 (|#2| |#2|)) (-15 -2006 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)) (-15 -3222 (|#2| |#2|)) (-15 -2557 (|#2| |#2|)) (-15 -3401 (|#2| |#2|)) (-15 -3396 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -3688 (|#2| |#2|)) (-15 -2567 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -2765 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3279 (|#2| |#2|)) (IF (|has| |#1| (-893 |#1|)) (IF (|has| |#1| (-620 (-899 |#1|))) (IF (|has| |#2| (-620 (-899 |#1|))) (IF (|has| |#2| (-893 |#1|)) (-15 -2897 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2208 (((-112) |#5| $) 68) (((-112) $) 110)) (-2530 ((|#5| |#5| $) 83)) (-1418 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1886 (((-650 |#5|) (-650 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-4382 (((-3 $ "failed") (-650 |#5|)) 135)) (-3527 (((-3 $ "failed") $) 120)) (-3099 ((|#5| |#5| $) 102)) (-3153 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2295 ((|#5| |#5| $) 106)) (-3600 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3072 (((-2 (|:| -4135 (-650 |#5|)) (|:| -1718 (-650 |#5|))) $) 63)) (-4347 (((-112) |#5| $) 66) (((-112) $) 111)) (-4211 ((|#4| $) 116)) (-1723 (((-3 |#5| "failed") $) 118)) (-2500 (((-650 |#5|) $) 55)) (-1560 (((-112) |#5| $) 75) (((-112) $) 115)) (-2458 ((|#5| |#5| $) 89)) (-4181 (((-112) $ $) 29)) (-1871 (((-112) |#5| $) 71) (((-112) $) 113)) (-2962 ((|#5| |#5| $) 86)) (-3515 (((-3 |#5| "failed") $) 117)) (-3500 (($ $ |#5|) 136)) (-3324 (((-777) $) 60)) (-3811 (($ (-650 |#5|)) 133)) (-3677 (($ $ |#4|) 131)) (-3158 (($ $ |#4|) 129)) (-4381 (($ $) 128)) (-3798 (((-868) $) NIL) (((-650 |#5|) $) 121)) (-2136 (((-777) $) 140)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2863 (((-112) $ (-1 (-112) |#5| (-650 |#5|))) 108)) (-1399 (((-650 |#4|) $) 123)) (-4059 (((-112) |#4| $) 126)) (-2923 (((-112) $ $) 20))) +(((-1218 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2136 ((-777) |#1|)) (-15 -3500 (|#1| |#1| |#5|)) (-15 -1418 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4059 ((-112) |#4| |#1|)) (-15 -1399 ((-650 |#4|) |#1|)) (-15 -3527 ((-3 |#1| "failed") |#1|)) (-15 -1723 ((-3 |#5| "failed") |#1|)) (-15 -3515 ((-3 |#5| "failed") |#1|)) (-15 -2295 (|#5| |#5| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3099 (|#5| |#5| |#1|)) (-15 -2458 (|#5| |#5| |#1|)) (-15 -2962 (|#5| |#5| |#1|)) (-15 -2530 (|#5| |#5| |#1|)) (-15 -1886 ((-650 |#5|) (-650 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3600 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1560 ((-112) |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -2208 ((-112) |#1|)) (-15 -2863 ((-112) |#1| (-1 (-112) |#5| (-650 |#5|)))) (-15 -1560 ((-112) |#5| |#1|)) (-15 -1871 ((-112) |#5| |#1|)) (-15 -2208 ((-112) |#5| |#1|)) (-15 -3153 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4347 ((-112) |#1|)) (-15 -4347 ((-112) |#5| |#1|)) (-15 -3072 ((-2 (|:| -4135 (-650 |#5|)) (|:| -1718 (-650 |#5|))) |#1|)) (-15 -3324 ((-777) |#1|)) (-15 -2500 ((-650 |#5|) |#1|)) (-15 -2797 ((-3 (-2 (|:| |bas| |#1|) (|:| -3312 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2797 ((-3 (-2 (|:| |bas| |#1|) (|:| -3312 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4181 ((-112) |#1| |#1|)) (-15 -3677 (|#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#4|)) (-15 -4211 (|#4| |#1|)) (-15 -4382 ((-3 |#1| "failed") (-650 |#5|))) (-15 -3798 ((-650 |#5|) |#1|)) (-15 -3811 (|#1| (-650 |#5|))) (-15 -3600 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3600 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1418 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3600 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) (-1219 |#2| |#3| |#4| |#5|) (-562) (-799) (-856) (-1074 |#2| |#3| |#4|)) (T -1218)) +NIL +(-10 -8 (-15 -2136 ((-777) |#1|)) (-15 -3500 (|#1| |#1| |#5|)) (-15 -1418 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4059 ((-112) |#4| |#1|)) (-15 -1399 ((-650 |#4|) |#1|)) (-15 -3527 ((-3 |#1| "failed") |#1|)) (-15 -1723 ((-3 |#5| "failed") |#1|)) (-15 -3515 ((-3 |#5| "failed") |#1|)) (-15 -2295 (|#5| |#5| |#1|)) (-15 -4381 (|#1| |#1|)) (-15 -3099 (|#5| |#5| |#1|)) (-15 -2458 (|#5| |#5| |#1|)) (-15 -2962 (|#5| |#5| |#1|)) (-15 -2530 (|#5| |#5| |#1|)) (-15 -1886 ((-650 |#5|) (-650 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3600 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1560 ((-112) |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -2208 ((-112) |#1|)) (-15 -2863 ((-112) |#1| (-1 (-112) |#5| (-650 |#5|)))) (-15 -1560 ((-112) |#5| |#1|)) (-15 -1871 ((-112) |#5| |#1|)) (-15 -2208 ((-112) |#5| |#1|)) (-15 -3153 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4347 ((-112) |#1|)) (-15 -4347 ((-112) |#5| |#1|)) (-15 -3072 ((-2 (|:| -4135 (-650 |#5|)) (|:| -1718 (-650 |#5|))) |#1|)) (-15 -3324 ((-777) |#1|)) (-15 -2500 ((-650 |#5|) |#1|)) (-15 -2797 ((-3 (-2 (|:| |bas| |#1|) (|:| -3312 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2797 ((-3 (-2 (|:| |bas| |#1|) (|:| -3312 (-650 |#5|))) "failed") (-650 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4181 ((-112) |#1| |#1|)) (-15 -3677 (|#1| |#1| |#4|)) (-15 -3158 (|#1| |#1| |#4|)) (-15 -4211 (|#4| |#1|)) (-15 -4382 ((-3 |#1| "failed") (-650 |#5|))) (-15 -3798 ((-650 |#5|) |#1|)) (-15 -3811 (|#1| (-650 |#5|))) (-15 -3600 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3600 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1418 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3600 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3798 ((-868) |#1|)) (-15 -2923 ((-112) |#1| |#1|))) +((-2419 (((-112) $ $) 7)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) 86)) (-2242 (((-650 $) (-650 |#4|)) 87)) (-1709 (((-650 |#3|) $) 34)) (-4006 (((-112) $) 27)) (-1797 (((-112) $) 18 (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) 102) (((-112) $) 98)) (-2530 ((|#4| |#4| $) 93)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) 28)) (-3636 (((-112) $ (-777)) 45)) (-1418 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) 80)) (-3734 (($) 46 T CONST)) (-2262 (((-112) $) 23 (|has| |#1| (-562)))) (-2082 (((-112) $ $) 25 (|has| |#1| (-562)))) (-4427 (((-112) $ $) 24 (|has| |#1| (-562)))) (-2418 (((-112) $) 26 (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3572 (((-650 |#4|) (-650 |#4|) $) 19 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) 20 (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) 37)) (-3152 (($ (-650 |#4|)) 36)) (-3527 (((-3 $ "failed") $) 83)) (-3099 ((|#4| |#4| $) 90)) (-3552 (($ $) 69 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#4| $) 68 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2295 ((|#4| |#4| $) 88)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) 106)) (-2885 (((-650 |#4|) $) 53 (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) 105) (((-112) $) 104)) (-4211 ((|#3| $) 35)) (-3846 (((-112) $ (-777)) 44)) (-2282 (((-650 |#4|) $) 54 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) 48)) (-3952 (((-650 |#3|) $) 33)) (-2875 (((-112) |#3| $) 32)) (-2063 (((-112) $ (-777)) 43)) (-4122 (((-1168) $) 10)) (-1723 (((-3 |#4| "failed") $) 84)) (-2500 (((-650 |#4|) $) 108)) (-1560 (((-112) |#4| $) 100) (((-112) $) 96)) (-2458 ((|#4| |#4| $) 91)) (-4181 (((-112) $ $) 111)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) 101) (((-112) $) 97)) (-2962 ((|#4| |#4| $) 92)) (-3551 (((-1129) $) 11)) (-3515 (((-3 |#4| "failed") $) 85)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2730 (((-3 $ "failed") $ |#4|) 79)) (-3500 (($ $ |#4|) 78)) (-3116 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) 60 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) 58 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) 57 (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) 39)) (-4303 (((-112) $) 42)) (-4359 (($) 41)) (-3324 (((-777) $) 107)) (-3562 (((-777) |#4| $) 55 (-12 (|has| |#4| (-1109)) (|has| $ (-6 -4448)))) (((-777) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4448)))) (-3964 (($ $) 40)) (-1411 (((-542) $) 70 (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) 61)) (-3677 (($ $ |#3|) 29)) (-3158 (($ $ |#3|) 31)) (-4381 (($ $) 89)) (-4074 (($ $ |#3|) 30)) (-3798 (((-868) $) 12) (((-650 |#4|) $) 38)) (-2136 (((-777) $) 77 (|has| |#3| (-373)))) (-1319 (((-112) $ $) 9)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) 99)) (-1431 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) 82)) (-4059 (((-112) |#3| $) 81)) (-2923 (((-112) $ $) 6)) (-2431 (((-777) $) 47 (|has| $ (-6 -4448))))) +(((-1219 |#1| |#2| |#3| |#4|) (-141) (-562) (-799) (-856) (-1074 |t#1| |t#2| |t#3|)) (T -1219)) +((-4181 (*1 *2 *1 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-2797 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3312 (-650 *8)))) (-5 *3 (-650 *8)) (-4 *1 (-1219 *5 *6 *7 *8)))) (-2797 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3312 (-650 *9)))) (-5 *3 (-650 *9)) (-4 *1 (-1219 *6 *7 *8 *9)))) (-2500 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *6)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-777)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-2 (|:| -4135 (-650 *6)) (|:| -1718 (-650 *6)))))) (-4347 (*1 *2 *3 *1) (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-4347 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-3153 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1219 *5 *6 *7 *3)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)))) (-2208 (*1 *2 *3 *1) (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1871 (*1 *2 *3 *1) (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-1560 (*1 *2 *3 *1) (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-2863 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-650 *7))) (-4 *1 (-1219 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) (-3600 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1219 *5 *6 *7 *2)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *2 (-1074 *5 *6 *7)))) (-1886 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1219 *5 *6 *7 *8)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)))) (-2530 (*1 *2 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2962 (*1 *2 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2458 (*1 *2 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-3099 (*1 *2 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-4381 (*1 *1 *1) (-12 (-4 *1 (-1219 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4)))) (-2295 (*1 *2 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2242 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) (-4 *1 (-1219 *4 *5 *6 *7)))) (-2324 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-650 (-2 (|:| -4135 *1) (|:| -1718 (-650 *7))))) (-5 *3 (-650 *7)) (-4 *1 (-1219 *4 *5 *6 *7)))) (-3515 (*1 *2 *1) (|partial| -12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-1723 (*1 *2 *1) (|partial| -12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-3527 (*1 *1 *1) (|partial| -12 (-4 *1 (-1219 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) (-4059 (*1 *2 *3 *1) (-12 (-4 *1 (-1219 *4 *5 *3 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112)))) (-1418 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1219 *4 *5 *3 *2)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *3 (-856)) (-4 *2 (-1074 *4 *5 *3)))) (-2730 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-3500 (*1 *1 *1 *2) (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *5 (-373)) (-5 *2 (-777))))) +(-13 (-985 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4448) (-6 -4449) (-15 -4181 ((-112) $ $)) (-15 -2797 ((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |t#4|))) "failed") (-650 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2797 ((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |t#4|))) "failed") (-650 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2500 ((-650 |t#4|) $)) (-15 -3324 ((-777) $)) (-15 -3072 ((-2 (|:| -4135 (-650 |t#4|)) (|:| -1718 (-650 |t#4|))) $)) (-15 -4347 ((-112) |t#4| $)) (-15 -4347 ((-112) $)) (-15 -3153 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2208 ((-112) |t#4| $)) (-15 -1871 ((-112) |t#4| $)) (-15 -1560 ((-112) |t#4| $)) (-15 -2863 ((-112) $ (-1 (-112) |t#4| (-650 |t#4|)))) (-15 -2208 ((-112) $)) (-15 -1871 ((-112) $)) (-15 -1560 ((-112) $)) (-15 -3600 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1886 ((-650 |t#4|) (-650 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2530 (|t#4| |t#4| $)) (-15 -2962 (|t#4| |t#4| $)) (-15 -2458 (|t#4| |t#4| $)) (-15 -3099 (|t#4| |t#4| $)) (-15 -4381 ($ $)) (-15 -2295 (|t#4| |t#4| $)) (-15 -2242 ((-650 $) (-650 |t#4|))) (-15 -2324 ((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |t#4|)))) (-650 |t#4|))) (-15 -3515 ((-3 |t#4| "failed") $)) (-15 -1723 ((-3 |t#4| "failed") $)) (-15 -3527 ((-3 $ "failed") $)) (-15 -1399 ((-650 |t#3|) $)) (-15 -4059 ((-112) |t#3| $)) (-15 -1418 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2730 ((-3 $ "failed") $ |t#4|)) (-15 -3500 ($ $ |t#4|)) (IF (|has| |t#3| (-373)) (-15 -2136 ((-777) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-619 (-650 |#4|)) . T) ((-619 (-868)) . T) ((-152 |#4|) . T) ((-620 (-542)) |has| |#4| (-620 (-542))) ((-313 |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-495 |#4|) . T) ((-520 |#4| |#4|) -12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))) ((-985 |#1| |#2| |#3| |#4|) . T) ((-1109) . T) ((-1226) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1186)) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-3280 (((-959 |#1|) $ (-777)) 20) (((-959 |#1|) $ (-777) (-777)) NIL)) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-777) $ (-1186)) NIL) (((-777) $ (-1186) (-777)) NIL)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2343 (((-112) $) NIL)) (-3925 (($ $ (-650 (-1186)) (-650 (-537 (-1186)))) NIL) (($ $ (-1186) (-537 (-1186))) NIL) (($ |#1| (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-1840 (($ $ (-1186)) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186) |#1|) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-2630 (($ (-1 $) (-1186) |#1|) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3500 (($ $ (-777)) NIL)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1725 (($ $ (-1186) $) NIL) (($ $ (-650 (-1186)) (-650 $)) NIL) (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL)) (-3519 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-3324 (((-537 (-1186)) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-562))) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-1186)) NIL) (($ (-959 |#1|)) NIL)) (-3326 ((|#1| $ (-537 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (((-959 |#1|) $ (-777)) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2835 (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1220 |#1|) (-13 (-746 |#1| (-1186)) (-10 -8 (-15 -3326 ((-959 |#1|) $ (-777))) (-15 -3798 ($ (-1186))) (-15 -3798 ($ (-959 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $ (-1186) |#1|)) (-15 -2630 ($ (-1 $) (-1186) |#1|))) |%noBranch|))) (-1058)) (T -1220)) +((-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-959 *4)) (-5 *1 (-1220 *4)) (-4 *4 (-1058)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1220 *3)) (-4 *3 (-1058)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-5 *1 (-1220 *3)))) (-1840 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-1220 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)))) (-2630 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1220 *4))) (-5 *3 (-1186)) (-5 *1 (-1220 *4)) (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058))))) +(-13 (-746 |#1| (-1186)) (-10 -8 (-15 -3326 ((-959 |#1|) $ (-777))) (-15 -3798 ($ (-1186))) (-15 -3798 ($ (-959 |#1|))) (IF (|has| |#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $ (-1186) |#1|)) (-15 -2630 ($ (-1 $) (-1186) |#1|))) |%noBranch|))) +((-2695 (($ |#1| (-650 (-650 (-950 (-227)))) (-112)) 19)) (-1538 (((-112) $ (-112)) 18)) (-2963 (((-112) $) 17)) (-2944 (((-650 (-650 (-950 (-227)))) $) 13)) (-3444 ((|#1| $) 8)) (-3995 (((-112) $) 15))) +(((-1221 |#1|) (-10 -8 (-15 -3444 (|#1| $)) (-15 -2944 ((-650 (-650 (-950 (-227)))) $)) (-15 -3995 ((-112) $)) (-15 -2963 ((-112) $)) (-15 -1538 ((-112) $ (-112))) (-15 -2695 ($ |#1| (-650 (-650 (-950 (-227)))) (-112)))) (-983)) (T -1221)) +((-2695 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-112)) (-5 *1 (-1221 *2)) (-4 *2 (-983)))) (-1538 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-983)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-983)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-983)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-1221 *3)) (-4 *3 (-983)))) (-3444 (*1 *2 *1) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-983))))) +(-10 -8 (-15 -3444 (|#1| $)) (-15 -2944 ((-650 (-650 (-950 (-227)))) $)) (-15 -3995 ((-112) $)) (-15 -2963 ((-112) $)) (-15 -1538 ((-112) $ (-112))) (-15 -2695 ($ |#1| (-650 (-650 (-950 (-227)))) (-112)))) +((-3241 (((-950 (-227)) (-950 (-227))) 31)) (-3286 (((-950 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2868 (((-650 (-950 (-227))) (-950 (-227)) (-950 (-227)) (-950 (-227)) (-227) (-650 (-650 (-227)))) 60)) (-2331 (((-227) (-950 (-227)) (-950 (-227))) 27)) (-2597 (((-950 (-227)) (-950 (-227)) (-950 (-227))) 28)) (-1986 (((-650 (-650 (-227))) (-570)) 48)) (-3026 (((-950 (-227)) (-950 (-227)) (-950 (-227))) 26)) (-3014 (((-950 (-227)) (-950 (-227)) (-950 (-227))) 24)) (* (((-950 (-227)) (-227) (-950 (-227))) 22))) +(((-1222) (-10 -7 (-15 -3286 ((-950 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-950 (-227)) (-227) (-950 (-227)))) (-15 -3014 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3026 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -2331 ((-227) (-950 (-227)) (-950 (-227)))) (-15 -2597 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3241 ((-950 (-227)) (-950 (-227)))) (-15 -1986 ((-650 (-650 (-227))) (-570))) (-15 -2868 ((-650 (-950 (-227))) (-950 (-227)) (-950 (-227)) (-950 (-227)) (-227) (-650 (-650 (-227))))))) (T -1222)) +((-2868 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-650 (-650 (-227)))) (-5 *4 (-227)) (-5 *2 (-650 (-950 *4))) (-5 *1 (-1222)) (-5 *3 (-950 *4)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-570)) (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-1222)))) (-3241 (*1 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) (-2597 (*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) (-2331 (*1 *2 *3 *3) (-12 (-5 *3 (-950 (-227))) (-5 *2 (-227)) (-5 *1 (-1222)))) (-3026 (*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) (-3014 (*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-950 (-227))) (-5 *3 (-227)) (-5 *1 (-1222)))) (-3286 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)) (-5 *3 (-227))))) +(-10 -7 (-15 -3286 ((-950 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-950 (-227)) (-227) (-950 (-227)))) (-15 -3014 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3026 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -2331 ((-227) (-950 (-227)) (-950 (-227)))) (-15 -2597 ((-950 (-227)) (-950 (-227)) (-950 (-227)))) (-15 -3241 ((-950 (-227)) (-950 (-227)))) (-15 -1986 ((-650 (-650 (-227))) (-570))) (-15 -2868 ((-650 (-950 (-227))) (-950 (-227)) (-950 (-227)) (-950 (-227)) (-227) (-650 (-650 (-227)))))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1418 ((|#1| $ (-777)) 18)) (-3847 (((-777) $) 13)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3798 (((-965 |#1|) $) 12) (($ (-965 |#1|)) 11) (((-868) $) 29 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2923 (((-112) $ $) 22 (|has| |#1| (-1109))))) +(((-1223 |#1|) (-13 (-496 (-965 |#1|)) (-10 -8 (-15 -1418 (|#1| $ (-777))) (-15 -3847 ((-777) $)) (IF (|has| |#1| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) (-1226)) (T -1223)) +((-1418 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-1223 *2)) (-4 *2 (-1226)))) (-3847 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1223 *3)) (-4 *3 (-1226))))) +(-13 (-496 (-965 |#1|)) (-10 -8 (-15 -1418 (|#1| $ (-777))) (-15 -3847 ((-777) $)) (IF (|has| |#1| (-619 (-868))) (-6 (-619 (-868))) |%noBranch|) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|))) +((-2449 (((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)) (-570)) 94)) (-2898 (((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|))) 86)) (-3968 (((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|))) 70))) +(((-1224 |#1|) (-10 -7 (-15 -2898 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -3968 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -2449 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)) (-570)))) (-354)) (T -1224)) +((-2449 (*1 *2 *3 *4) (-12 (-5 *4 (-570)) (-4 *5 (-354)) (-5 *2 (-424 (-1182 (-1182 *5)))) (-5 *1 (-1224 *5)) (-5 *3 (-1182 (-1182 *5))))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4)))) (-5 *1 (-1224 *4)) (-5 *3 (-1182 (-1182 *4))))) (-2898 (*1 *2 *3) (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4)))) (-5 *1 (-1224 *4)) (-5 *3 (-1182 (-1182 *4)))))) +(-10 -7 (-15 -2898 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -3968 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)))) (-15 -2449 ((-424 (-1182 (-1182 |#1|))) (-1182 (-1182 |#1|)) (-570)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 9) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1225) (-1092)) (T -1225)) +NIL +(-1092) +NIL +(((-1226) (-141)) (T -1226)) +NIL +(-13 (-10 -7 (-6 -3059))) +((-4071 (((-112)) 18)) (-1995 (((-1281) (-650 |#1|) (-650 |#1|)) 22) (((-1281) (-650 |#1|)) 23)) (-3846 (((-112) |#1| |#1|) 37 (|has| |#1| (-856)))) (-2063 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3877 ((|#1| (-650 |#1|)) 38 (|has| |#1| (-856))) ((|#1| (-650 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-4335 (((-2 (|:| -1918 (-650 |#1|)) (|:| -3549 (-650 |#1|)))) 20))) +(((-1227 |#1|) (-10 -7 (-15 -1995 ((-1281) (-650 |#1|))) (-15 -1995 ((-1281) (-650 |#1|) (-650 |#1|))) (-15 -4335 ((-2 (|:| -1918 (-650 |#1|)) (|:| -3549 (-650 |#1|))))) (-15 -2063 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2063 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3877 (|#1| (-650 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4071 ((-112))) (IF (|has| |#1| (-856)) (PROGN (-15 -3877 (|#1| (-650 |#1|))) (-15 -3846 ((-112) |#1| |#1|))) |%noBranch|)) (-1109)) (T -1227)) +((-3846 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1227 *3)) (-4 *3 (-856)) (-4 *3 (-1109)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-856)) (-5 *1 (-1227 *2)))) (-4071 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1227 *3)) (-4 *3 (-1109)))) (-3877 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1227 *2)) (-4 *2 (-1109)))) (-2063 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1109)) (-5 *2 (-112)) (-5 *1 (-1227 *3)))) (-2063 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1227 *3)) (-4 *3 (-1109)))) (-4335 (*1 *2) (-12 (-5 *2 (-2 (|:| -1918 (-650 *3)) (|:| -3549 (-650 *3)))) (-5 *1 (-1227 *3)) (-4 *3 (-1109)))) (-1995 (*1 *2 *3 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1281)) (-5 *1 (-1227 *4)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1281)) (-5 *1 (-1227 *4))))) +(-10 -7 (-15 -1995 ((-1281) (-650 |#1|))) (-15 -1995 ((-1281) (-650 |#1|) (-650 |#1|))) (-15 -4335 ((-2 (|:| -1918 (-650 |#1|)) (|:| -3549 (-650 |#1|))))) (-15 -2063 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2063 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3877 (|#1| (-650 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4071 ((-112))) (IF (|has| |#1| (-856)) (PROGN (-15 -3877 (|#1| (-650 |#1|))) (-15 -3846 ((-112) |#1| |#1|))) |%noBranch|)) +((-3388 (((-1281) (-650 (-1186)) (-650 (-1186))) 14) (((-1281) (-650 (-1186))) 12)) (-4218 (((-1281)) 16)) (-3216 (((-2 (|:| -3549 (-650 (-1186))) (|:| -1918 (-650 (-1186))))) 20))) +(((-1228) (-10 -7 (-15 -3388 ((-1281) (-650 (-1186)))) (-15 -3388 ((-1281) (-650 (-1186)) (-650 (-1186)))) (-15 -3216 ((-2 (|:| -3549 (-650 (-1186))) (|:| -1918 (-650 (-1186)))))) (-15 -4218 ((-1281))))) (T -1228)) +((-4218 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1228)))) (-3216 (*1 *2) (-12 (-5 *2 (-2 (|:| -3549 (-650 (-1186))) (|:| -1918 (-650 (-1186))))) (-5 *1 (-1228)))) (-3388 (*1 *2 *3 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1281)) (-5 *1 (-1228)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1281)) (-5 *1 (-1228))))) +(-10 -7 (-15 -3388 ((-1281) (-650 (-1186)))) (-15 -3388 ((-1281) (-650 (-1186)) (-650 (-1186)))) (-15 -3216 ((-2 (|:| -3549 (-650 (-1186))) (|:| -1918 (-650 (-1186)))))) (-15 -4218 ((-1281)))) +((-3696 (($ $) 17)) (-3701 (((-112) $) 28))) +(((-1229 |#1|) (-10 -8 (-15 -3696 (|#1| |#1|)) (-15 -3701 ((-112) |#1|))) (-1230)) (T -1229)) +NIL +(-10 -8 (-15 -3696 (|#1| |#1|)) (-15 -3701 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 57)) (-2555 (((-424 $) $) 58)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-3701 (((-112) $) 59)) (-2481 (((-112) $) 35)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3801 (((-424 $) $) 56)) (-2410 (((-3 $ "failed") $ $) 48)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27))) +(((-1230) (-141)) (T -1230)) +((-3701 (*1 *2 *1) (-12 (-4 *1 (-1230)) (-5 *2 (-112)))) (-2555 (*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1230)))) (-3696 (*1 *1 *1) (-4 *1 (-1230))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1230))))) +(-13 (-458) (-10 -8 (-15 -3701 ((-112) $)) (-15 -2555 ((-424 $) $)) (-15 -3696 ($ $)) (-15 -3801 ((-424 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-294) . T) ((-458) . T) ((-562) . T) ((-652 (-570)) . T) ((-652 $) . T) ((-654 $) . T) ((-646 $) . T) ((-723 $) . T) ((-732) . T) ((-1060 $) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1370 (($ $ $) NIL)) (-1354 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1231) (-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711)))) (T -1231)) +((-1354 (*1 *1 *1 *1) (-5 *1 (-1231))) (-1370 (*1 *1 *1 *1) (-5 *1 (-1231))) (-3734 (*1 *1) (-5 *1 (-1231)))) +(-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-1231) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1231)) -((-1353 (*1 *1 *1 *1) (-5 *1 (-1231))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1231))) (-4427 (*1 *1) (-5 *1 (-1231)))) -(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1370 (($ $ $) NIL)) (-1354 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1232) (-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711)))) (T -1232)) +((-1354 (*1 *1 *1 *1) (-5 *1 (-1232))) (-1370 (*1 *1 *1 *1) (-5 *1 (-1232))) (-3734 (*1 *1) (-5 *1 (-1232)))) +(-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-1232) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1232)) -((-1353 (*1 *1 *1 *1) (-5 *1 (-1232))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1232))) (-4427 (*1 *1) (-5 *1 (-1232)))) -(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1370 (($ $ $) NIL)) (-1354 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1233) (-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711)))) (T -1233)) +((-1354 (*1 *1 *1 *1) (-5 *1 (-1233))) (-1370 (*1 *1 *1 *1) (-5 *1 (-1233))) (-3734 (*1 *1) (-5 *1 (-1233)))) +(-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64))) -((-2417 (((-112) $ $) NIL)) (-3473 (((-776)) NIL)) (-4427 (($) NIL T CONST)) (-3406 (($) NIL)) (-3380 (($ $ $) NIL) (($) NIL T CONST)) (-2839 (($ $ $) NIL) (($) NIL T CONST)) (-2731 (((-927) $) NIL)) (-3435 (((-1167) $) NIL)) (-2150 (($ (-927)) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) NIL)) (-1368 (($ $ $) NIL)) (-1353 (($ $ $) NIL)) (-1520 (((-112) $ $) NIL)) (-2978 (((-112) $ $) NIL)) (-2956 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-2944 (((-112) $ $) NIL))) -(((-1233) (-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709)))) (T -1233)) -((-1353 (*1 *1 *1 *1) (-5 *1 (-1233))) (-1368 (*1 *1 *1 *1) (-5 *1 (-1233))) (-4427 (*1 *1) (-5 *1 (-1233)))) -(-13 (-849) (-10 -8 (-15 -1353 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -4427 ($) -3709))) +((-2419 (((-112) $ $) NIL)) (-3475 (((-777)) NIL)) (-3734 (($) NIL T CONST)) (-3408 (($) NIL)) (-3382 (($ $ $) NIL) (($) NIL T CONST)) (-2876 (($ $ $) NIL) (($) NIL T CONST)) (-2484 (((-928) $) NIL)) (-4122 (((-1168) $) NIL)) (-2155 (($ (-928)) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) NIL)) (-1370 (($ $ $) NIL)) (-1354 (($ $ $) NIL)) (-1319 (((-112) $ $) NIL)) (-2981 (((-112) $ $) NIL)) (-2959 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL)) (-2948 (((-112) $ $) NIL))) +(((-1234) (-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711)))) (T -1234)) +((-1354 (*1 *1 *1 *1) (-5 *1 (-1234))) (-1370 (*1 *1 *1 *1) (-5 *1 (-1234))) (-3734 (*1 *1) (-5 *1 (-1234)))) +(-13 (-850) (-10 -8 (-15 -1354 ($ $ $)) (-15 -1370 ($ $ $)) (-15 -3734 ($) -3711))) ((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8))) -((-1346 (((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)) 23))) -(((-1234 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1346 ((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)))) (-1057) (-1057) (-1185) (-1185) |#1| |#2|) (T -1234)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5 *7 *9)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1239 *6 *8 *10)) (-5 *1 (-1234 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1185))))) -(-10 -7 (-15 -1346 ((-1239 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1239 |#1| |#3| |#5|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113)) (-2148 (($ (-1 |#1| (-569)) $) 184)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-569)) 73) (($ $ (-1090) (-569)) 88) (($ $ (-649 (-1090)) (-649 (-569))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569)))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-4339 (((-569) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-569)) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-569) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-1235 |#1|) (-140) (-1057)) (T -1235)) -((-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) (-4 *3 (-1057)) (-4 *1 (-1235 *3)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1235 *3)) (-4 *3 (-1057)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-3011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561)) (-5 *2 (-412 (-958 *4))))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) (-3579 (*1 *1 *1 *2) (-2776 (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057)) (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))) -(-13 (-1253 |t#1| (-569)) (-10 -8 (-15 -3323 ($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |t#1|))))) (-15 -2148 ($ (-1 |t#1| (-569)) $)) (IF (|has| |t#1| (-561)) (PROGN (-15 -3011 ((-412 (-958 |t#1|)) $ (-569))) (-15 -3011 ((-412 (-958 |t#1|)) $ (-569) (-569)))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (IF (|has| |t#1| (-15 -3579 (|t#1| |t#1| (-1185)))) (IF (|has| |t#1| (-15 -1712 ((-649 (-1185)) |t#1|))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1210)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1010)) (-6 (-1210))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-569) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-569) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1229) |has| |#1| (-367)) ((-1253 |#1| #0#) . T)) -((-4143 (((-112) $) 12)) (-4381 (((-3 |#3| "failed") $) 17) (((-3 (-1185) "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL)) (-3150 ((|#3| $) 14) (((-1185) $) NIL) (((-412 (-569)) $) NIL) (((-569) $) NIL))) -(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|))) (-1237 |#2| |#3|) (-1057) (-1266 |#2|)) (T -1236)) -NIL -(-10 -8 (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -4381 ((-3 (-1185) "failed") |#1|)) (-15 -3150 ((-1185) |#1|)) (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1938 ((|#2| $) 242 (-1759 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 110) (($ $ (-569) (-569)) 109)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 117)) (-1494 ((|#2| $) 278)) (-3956 (((-3 |#2| "failed") $) 274)) (-1773 ((|#2| $) 275)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-3534 (((-423 (-1181 $)) (-1181 $)) 251 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 248 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) 260 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 185)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#2| "failed") $) 281) (((-3 (-569) "failed") $) 271 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) 269 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-1185) "failed") $) 253 (-1759 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-3150 ((|#2| $) 282) (((-569) $) 270 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) 268 (-1759 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-1185) $) 252 (-1759 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-2612 (($ $) 277) (($ (-569) $) 276)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-2957 (((-694 |#2|) (-694 $)) 232 (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) 231 (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 230 (-1759 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) 229 (-1759 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) 37)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 183 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 182 (|has| |#1| (-561)))) (-3406 (($) 244 (-1759 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-3712 (((-112) $) 258 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 236 (-1759 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 235 (-1759 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) 112) (((-569) $ (-569)) 111)) (-2349 (((-112) $) 35)) (-2177 (($ $) 240 (|has| |#1| (-367)))) (-4399 ((|#2| $) 238 (|has| |#1| (-367)))) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) 272 (-1759 (|has| |#2| (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) 259 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) 113)) (-2148 (($ (-1 |#1| (-569)) $) 184)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-569)) 73) (($ $ (-1090) (-569)) 88) (($ $ (-649 (-1090)) (-649 (-569))) 87)) (-3380 (($ $ $) 262 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2839 (($ $ $) 263 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1346 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-367)))) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-1784 (($ (-569) |#2|) 279)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-2307 (($) 273 (-1759 (|has| |#2| (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3231 (($ $) 243 (-1759 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3465 ((|#2| $) 246 (-1759 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) 249 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) 250 (-1759 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) |#2|) 223 (-1759 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 |#2|)) 222 (-1759 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) 221 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) 220 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) 219 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) 218 (-1759 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) 116) (($ $ $) 93 (|has| (-569) (-1120))) (($ $ |#2|) 217 (-1759 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 227 (|has| |#1| (-367))) (($ $ (-776)) 96 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 94 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) 101 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185) (-776)) 100 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1185))) 99 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185)) 98 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-3181 (($ $) 241 (|has| |#1| (-367)))) (-4412 ((|#2| $) 239 (|has| |#1| (-367)))) (-4339 (((-569) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-226) $) 257 (-1759 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-383) $) 256 (-1759 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-541) $) 255 (-1759 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) 234 (-1759 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) 233 (-1759 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 247 (-1759 (-1759 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#1| (-367))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 280) (($ (-1185)) 254 (-1759 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367)))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-569)) 71)) (-2239 (((-3 $ "failed") $) 60 (-2776 (-1759 (-2776 (|has| |#2| (-145)) (-1759 (|has| $ (-145)) (|has| |#2| (-915)))) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-2040 ((|#2| $) 245 (-1759 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) 261 (-1759 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) 225 (|has| |#1| (-367))) (($ $ (-776)) 97 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 95 (-2776 (-1759 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) 105 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185) (-776)) 104 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-649 (-1185))) 103 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))))) (($ $ (-1185)) 102 (-2776 (-1759 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))))) (-2978 (((-112) $ $) 265 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2956 (((-112) $ $) 266 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2920 (((-112) $ $) 6)) (-2966 (((-112) $ $) 264 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2944 (((-112) $ $) 267 (-1759 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367))) (($ |#2| |#2|) 237 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-367))) (($ |#2| $) 215 (|has| |#1| (-367))) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-1237 |#1| |#2|) (-140) (-1057) (-1266 |t#1|)) (T -1237)) -((-4339 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1266 *3)) (-5 *2 (-569)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *2 (-569)) (-4 *4 (-1057)) (-4 *1 (-1237 *4 *3)) (-4 *3 (-1266 *4)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))) (-2612 (*1 *1 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1266 *2)))) (-2612 (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1266 *3)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3)))) (-3956 (*1 *2 *1) (|partial| -12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3))))) -(-13 (-1235 |t#1|) (-1046 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1784 ($ (-569) |t#2|)) (-15 -4339 ((-569) $)) (-15 -1494 (|t#2| $)) (-15 -2612 ($ $)) (-15 -2612 ($ (-569) $)) (-15 -1773 (|t#2| $)) (-15 -3956 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-367)) (-6 (-1000 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-569)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 |#2|) |has| |#1| (-367)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-367)) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1185)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-226)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) ((-619 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) ((-619 (-541)) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-619 (-898 (-569))))) ((-232 |#2|) |has| |#1| (-367)) ((-234) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-234))) (|has| |#1| (-15 * (|#1| (-569) |#1|)))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 |#2| $) -12 (|has| |#1| (-367)) (|has| |#2| (-289 |#2| |#2|))) ((-289 $ $) |has| (-569) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-367) |has| |#1| (-367)) ((-342 |#2|) |has| |#1| (-367)) ((-381 |#2|) |has| |#1| (-367)) ((-405 |#2|) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-519 (-1185) |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-519 (-1185) |#2|))) ((-519 |#2| |#2|) -12 (|has| |#1| (-367)) (|has| |#2| (-312 |#2|))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 |#2|) |has| |#1| (-367)) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 |#2|) |has| |#1| (-367)) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 |#2|) |has| |#1| (-367)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-644 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-644 (-569)))) ((-644 |#2|) |has| |#1| (-367)) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 |#2|) |has| |#1| (-367)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-796) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-797) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-799) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-800) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-825) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-853) -12 (|has| |#1| (-367)) (|has| |#2| (-825))) ((-855) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-855))) (-12 (|has| |#1| (-367)) (|has| |#2| (-825)))) ((-906 (-1185)) -2776 (-12 (|has| |#1| (-367)) (|has| |#2| (-906 (-1185)))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))) ((-892 (-383)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-383)))) ((-892 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-892 (-569)))) ((-890 |#2|) |has| |#1| (-367)) ((-915) -12 (|has| |#1| (-367)) (|has| |#2| (-915))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1000 |#2|) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1030) -12 (|has| |#1| (-367)) (|has| |#2| (-1030))) ((-1046 (-412 (-569))) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))) ((-1046 (-569)) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-569)))) ((-1046 #2#) -12 (|has| |#1| (-367)) (|has| |#2| (-1046 (-1185)))) ((-1046 |#2|) . T) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 |#2|) |has| |#1| (-367)) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 |#2|) |has| |#1| (-367)) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) -12 (|has| |#1| (-367)) (|has| |#2| (-1160))) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1225) |has| |#1| (-367)) ((-1229) |has| |#1| (-367)) ((-1235 |#1|) . T) ((-1253 |#1| #0#) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 81)) (-1938 ((|#2| $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 100)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-569)) 109) (($ $ (-569) (-569)) 111)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) 51)) (-1494 ((|#2| $) 11)) (-3956 (((-3 |#2| "failed") $) 35)) (-1773 ((|#2| $) 36)) (-2771 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) 59)) (-4118 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) 157) (((-3 (-569) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-1185) "failed") $) NIL (-12 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-3150 ((|#2| $) 156) (((-569) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| |#2| (-1046 (-569))) (|has| |#1| (-367)))) (((-1185) $) NIL (-12 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367))))) (-2612 (($ $) 65) (($ (-569) $) 28)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 |#2|) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| |#2| (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) 88)) (-3011 (((-412 (-958 |#1|)) $ (-569)) 124 (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) 126 (|has| |#1| (-561)))) (-3406 (($) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-3712 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) 74)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| |#2| (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| |#2| (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) 105) (((-569) $ (-569)) 107)) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-367)))) (-4399 ((|#2| $) 165 (|has| |#1| (-367)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) 148)) (-2148 (($ (-1 |#1| (-569)) $) 144)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-569)) 20) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-3380 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2839 (($ $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-1346 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-367)))) (-2662 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1784 (($ (-569) |#2|) 10)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 159 (|has| |#1| (-367)))) (-3579 (($ $) 228 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 233 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210)))))) (-2307 (($) NIL (-12 (|has| |#2| (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3231 (($ $) NIL (-12 (|has| |#2| (-310)) (|has| |#1| (-367))))) (-3465 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| |#2| (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-569)) 138)) (-2407 (((-3 $ "failed") $ $) 128 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) |#2|) NIL (-12 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 |#2|)) NIL (-12 (|has| |#2| (-519 (-1185) |#2|)) (|has| |#1| (-367)))) (($ $ (-649 (-297 |#2|))) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-297 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367)))) (($ $ (-649 |#2|) (-649 |#2|)) NIL (-12 (|has| |#2| (-312 |#2|)) (|has| |#1| (-367))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) 103) (($ $ $) 90 (|has| (-569) (-1120))) (($ $ |#2|) NIL (-12 (|has| |#2| (-289 |#2| |#2|)) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 149 (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) 153 (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-3181 (($ $) NIL (|has| |#1| (-367)))) (-4412 ((|#2| $) 166 (|has| |#1| (-367)))) (-4339 (((-569) $) 12)) (-4128 (($ $) 212 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-226) $) NIL (-12 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| |#2| (-1030)) (|has| |#1| (-367)))) (((-541) $) NIL (-12 (|has| |#2| (-619 (-541))) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| |#2| (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| |#2| (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))))) (-2007 (($ $) 136)) (-3796 (((-867) $) 267) (($ (-569)) 24) (($ |#1|) 22 (|has| |#1| (-173))) (($ |#2|) 21) (($ (-1185)) NIL (-12 (|has| |#2| (-1046 (-1185))) (|has| |#1| (-367)))) (($ (-412 (-569))) 169 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-569)) 85)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915)) (|has| |#1| (-367))) (-12 (|has| |#2| (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) 155 T CONST)) (-2170 ((|#1| $) 102)) (-2040 ((|#2| $) NIL (-12 (|has| |#2| (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 214 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 222 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 224 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 220 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 216 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) NIL (-12 (|has| |#2| (-825)) (|has| |#1| (-367))))) (-1804 (($) 13 T CONST)) (-1815 (($) 18 T CONST)) (-2832 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-367))) (($ $ (-1 |#2| |#2|) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2776 (-12 (|has| |#2| (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#2| (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-2978 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2956 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2920 (((-112) $ $) 72)) (-2966 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-2944 (((-112) $ $) NIL (-12 (|has| |#2| (-855)) (|has| |#1| (-367))))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 163 (|has| |#1| (-367))) (($ |#2| |#2|) 164 (|has| |#1| (-367)))) (-3024 (($ $) 227) (($ $ $) 78)) (-3012 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 84) (($ $ (-569)) 160 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 172 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-367))) (($ |#2| $) 161 (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1238 |#1| |#2|) (-1237 |#1| |#2|) (-1057) (-1266 |#1|)) (T -1238)) -NIL -(-1237 |#1| |#2|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1938 (((-1267 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 10)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4355 (($ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-3039 (((-112) $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-2917 (($ $ (-569)) NIL) (($ $ (-569) (-569)) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|))) $) NIL)) (-1494 (((-1267 |#1| |#2| |#3|) $) NIL)) (-3956 (((-3 (-1267 |#1| |#2| |#3|) "failed") $) NIL)) (-1773 (((-1267 |#1| |#2| |#3|) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2919 (((-569) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3323 (($ (-1165 (-2 (|:| |k| (-569)) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1267 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1185) "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-3 (-412 (-569)) "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-3 (-569) "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-3150 (((-1267 |#1| |#2| |#3|) $) NIL) (((-1185) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (((-412 (-569)) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367)))) (((-569) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))))) (-2612 (($ $) NIL) (($ (-569) $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-1267 |#1| |#2| |#3|)) (-694 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-1267 |#1| |#2| |#3|))) (|:| |vec| (-1275 (-1267 |#1| |#2| |#3|)))) (-694 $) (-1275 $)) NIL (|has| |#1| (-367))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367)))) (((-694 (-569)) (-694 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-644 (-569))) (|has| |#1| (-367))))) (-3086 (((-3 $ "failed") $) NIL)) (-3011 (((-412 (-958 |#1|)) $ (-569)) NIL (|has| |#1| (-561))) (((-412 (-958 |#1|)) $ (-569) (-569)) NIL (|has| |#1| (-561)))) (-3406 (($) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-3712 (((-112) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-892 (-383))) (|has| |#1| (-367)))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-892 (-569))) (|has| |#1| (-367))))) (-1466 (((-569) $) NIL) (((-569) $ (-569)) NIL)) (-2349 (((-112) $) NIL)) (-2177 (($ $) NIL (|has| |#1| (-367)))) (-4399 (((-1267 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3885 (((-3 $ "failed") $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))))) (-2051 (((-112) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-3003 (($ $ (-927)) NIL)) (-2148 (($ (-1 |#1| (-569)) $) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-569)) 18) (($ $ (-1090) (-569)) NIL) (($ $ (-649 (-1090)) (-649 (-569))) NIL)) (-3380 (($ $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2839 (($ $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-367)))) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-1784 (($ (-569) (-1267 |#1| |#2| |#3|)) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 27 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 28 (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1160)) (|has| |#1| (-367))) CONST)) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3231 (($ $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-310)) (|has| |#1| (-367))))) (-3465 (((-1267 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-569)) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-569))))) (($ $ (-1185) (-1267 |#1| |#2| |#3|)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-519 (-1185) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1185)) (-649 (-1267 |#1| |#2| |#3|))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-519 (-1185) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-297 (-1267 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-297 (-1267 |#1| |#2| |#3|))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367)))) (($ $ (-649 (-1267 |#1| |#2| |#3|)) (-649 (-1267 |#1| |#2| |#3|))) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-312 (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-569)) NIL) (($ $ $) NIL (|has| (-569) (-1120))) (($ $ (-1267 |#1| |#2| |#3|)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-289 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) (|has| |#1| (-367))))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-1271 |#2|)) 26) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) 25 (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-3181 (($ $) NIL (|has| |#1| (-367)))) (-4412 (((-1267 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367)))) (-4339 (((-569) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1410 (((-541) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-619 (-541))) (|has| |#1| (-367)))) (((-383) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-226) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1030)) (|has| |#1| (-367)))) (((-898 (-383)) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-619 (-898 (-383)))) (|has| |#1| (-367)))) (((-898 (-569)) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-619 (-898 (-569)))) (|has| |#1| (-367))))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1267 |#1| |#2| |#3|)) NIL) (($ (-1271 |#2|)) 24) (($ (-1185)) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-1185))) (|has| |#1| (-367)))) (($ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561)))) (($ (-412 (-569))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-1046 (-569))) (|has| |#1| (-367))) (|has| |#1| (-38 (-412 (-569))))))) (-4383 ((|#1| $ (-569)) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-145)) (|has| |#1| (-367))) (|has| |#1| (-145))))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 11)) (-2040 (((-1267 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-550)) (|has| |#1| (-367))))) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-915)) (|has| |#1| (-367))) (|has| |#1| (-561))))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-569)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-569)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2271 (($ $) NIL (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))))) (-1804 (($) 20 T CONST)) (-1815 (($) 15 T CONST)) (-2832 (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|))) NIL (|has| |#1| (-367))) (($ $ (-1 (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) (-776)) NIL (|has| |#1| (-367))) (($ $ (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-234)) (|has| |#1| (-367))) (|has| |#1| (-15 * (|#1| (-569) |#1|))))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185) (-776)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-649 (-1185))) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185)))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-906 (-1185))) (|has| |#1| (-367))) (-12 (|has| |#1| (-15 * (|#1| (-569) |#1|))) (|has| |#1| (-906 (-1185))))))) (-2978 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2956 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2920 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-2944 (((-112) $ $) NIL (-2776 (-12 (|has| (-1267 |#1| |#2| |#3|) (-825)) (|has| |#1| (-367))) (-12 (|has| (-1267 |#1| |#2| |#3|) (-855)) (|has| |#1| (-367)))))) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367))) (($ (-1267 |#1| |#2| |#3|) (-1267 |#1| |#2| |#3|)) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 22)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1267 |#1| |#2| |#3|)) NIL (|has| |#1| (-367))) (($ (-1267 |#1| |#2| |#3|) $) NIL (|has| |#1| (-367))) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1239 |#1| |#2| |#3|) (-13 (-1237 |#1| (-1267 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1239)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1237 |#1| (-1267 |#1| |#2| |#3|)) (-10 -8 (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-2138 (((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)) 13)) (-3386 (((-423 |#1|) |#1|) 26)) (-3800 (((-423 |#1|) |#1|) 24))) -(((-1240 |#1|) (-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)))) (-1251 (-569))) (T -1240)) -((-2138 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))) (-3386 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569))))) (-3800 (*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569)))))) -(-10 -7 (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3386 ((-423 |#1|) |#1|)) (-15 -2138 ((-2 (|:| |contp| (-569)) (|:| -4360 (-649 (-2 (|:| |irr| |#1|) (|:| -4180 (-569)))))) |#1| (-112)))) -((-1346 (((-1165 |#2|) (-1 |#2| |#1|) (-1242 |#1|)) 23 (|has| |#1| (-853))) (((-1242 |#2|) (-1 |#2| |#1|) (-1242 |#1|)) 17))) -(((-1241 |#1| |#2|) (-10 -7 (-15 -1346 ((-1242 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) |%noBranch|)) (-1225) (-1225)) (T -1241)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-853)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1165 *6)) (-5 *1 (-1241 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1242 *6)) (-5 *1 (-1241 *5 *6))))) -(-10 -7 (-15 -1346 ((-1242 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) (IF (|has| |#1| (-853)) (-15 -1346 ((-1165 |#2|) (-1 |#2| |#1|) (-1242 |#1|))) |%noBranch|)) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2821 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1346 (((-1165 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-853)))) (-1365 ((|#1| $) 15)) (-1487 ((|#1| $) 12)) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-1500 (((-569) $) 19)) (-2916 ((|#1| $) 18)) (-1812 ((|#1| $) 13)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-2485 (((-112) $) 17)) (-1380 (((-1165 |#1|) $) 41 (|has| |#1| (-853))) (((-1165 |#1|) (-649 $)) 40 (|has| |#1| (-853)))) (-1410 (($ |#1|) 26)) (-3796 (($ (-1102 |#1|)) 25) (((-867) $) 37 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3645 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2686 (($ $ (-569)) 14)) (-2920 (((-112) $ $) 30 (|has| |#1| (-1108))))) -(((-1242 |#1|) (-13 (-1101 |#1|) (-10 -8 (-15 -3645 ($ |#1|)) (-15 -2821 ($ |#1|)) (-15 -3796 ($ (-1102 |#1|))) (-15 -2485 ((-112) $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-1165 |#1|))) |%noBranch|))) (-1225)) (T -1242)) -((-3645 (*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225)))) (-2821 (*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225)))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1102 *3)) (-4 *3 (-1225)) (-5 *1 (-1242 *3)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1225))))) -(-13 (-1101 |#1|) (-10 -8 (-15 -3645 ($ |#1|)) (-15 -2821 ($ |#1|)) (-15 -3796 ($ (-1102 |#1|))) (-15 -2485 ((-112) $)) (IF (|has| |#1| (-1108)) (-6 (-1108)) |%noBranch|) (IF (|has| |#1| (-853)) (-6 (-1103 |#1| (-1165 |#1|))) |%noBranch|))) -((-1346 (((-1248 |#3| |#4|) (-1 |#4| |#2|) (-1248 |#1| |#2|)) 15))) -(((-1243 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 ((-1248 |#3| |#4|) (-1 |#4| |#2|) (-1248 |#1| |#2|)))) (-1185) (-1057) (-1185) (-1057)) (T -1243)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1248 *5 *6)) (-14 *5 (-1185)) (-4 *6 (-1057)) (-4 *8 (-1057)) (-5 *2 (-1248 *7 *8)) (-5 *1 (-1243 *5 *6 *7 *8)) (-14 *7 (-1185))))) -(-10 -7 (-15 -1346 ((-1248 |#3| |#4|) (-1 |#4| |#2|) (-1248 |#1| |#2|)))) -((-2974 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4377 ((|#1| |#3|) 13)) (-3110 ((|#3| |#3|) 19))) -(((-1244 |#1| |#2| |#3|) (-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-561) (-1000 |#1|) (-1251 |#2|)) (T -1244)) -((-2974 (*1 *2 *3) (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1244 *4 *5 *3)) (-4 *3 (-1251 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-1244 *3 *4 *2)) (-4 *2 (-1251 *4)))) (-4377 (*1 *2 *3) (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-1244 *2 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -4377 (|#1| |#3|)) (-15 -3110 (|#3| |#3|)) (-15 -2974 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1553 (((-3 |#2| "failed") |#2| (-776) |#1|) 37)) (-1752 (((-3 |#2| "failed") |#2| (-776)) 38)) (-1959 (((-3 (-2 (|:| -4398 |#2|) (|:| -4410 |#2|)) "failed") |#2|) 52)) (-1816 (((-649 |#2|) |#2|) 54)) (-3293 (((-3 |#2| "failed") |#2| |#2|) 48))) -(((-1245 |#1| |#2|) (-10 -7 (-15 -1752 ((-3 |#2| "failed") |#2| (-776))) (-15 -1553 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -3293 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1959 ((-3 (-2 (|:| -4398 |#2|) (|:| -4410 |#2|)) "failed") |#2|)) (-15 -1816 ((-649 |#2|) |#2|))) (-13 (-561) (-147)) (-1251 |#1|)) (T -1245)) -((-1816 (*1 *2 *3) (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3)) (-5 *1 (-1245 *4 *3)) (-4 *3 (-1251 *4)))) (-1959 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-1245 *4 *3)) (-4 *3 (-1251 *4)))) (-3293 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1245 *3 *2)) (-4 *2 (-1251 *3)))) (-1553 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4)))) (-1752 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4))))) -(-10 -7 (-15 -1752 ((-3 |#2| "failed") |#2| (-776))) (-15 -1553 ((-3 |#2| "failed") |#2| (-776) |#1|)) (-15 -3293 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1959 ((-3 (-2 (|:| -4398 |#2|) (|:| -4410 |#2|)) "failed") |#2|)) (-15 -1816 ((-649 |#2|) |#2|))) -((-3477 (((-3 (-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) "failed") |#2| |#2|) 30))) -(((-1246 |#1| |#2|) (-10 -7 (-15 -3477 ((-3 (-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) "failed") |#2| |#2|))) (-561) (-1251 |#1|)) (T -1246)) -((-3477 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-1246 *4 *3)) (-4 *3 (-1251 *4))))) -(-10 -7 (-15 -3477 ((-3 (-2 (|:| -4007 |#2|) (|:| -2054 |#2|)) "failed") |#2| |#2|))) -((-1484 ((|#2| |#2| |#2|) 22)) (-3413 ((|#2| |#2| |#2|) 36)) (-2082 ((|#2| |#2| |#2| (-776) (-776)) 44))) -(((-1247 |#1| |#2|) (-10 -7 (-15 -1484 (|#2| |#2| |#2|)) (-15 -3413 (|#2| |#2| |#2|)) (-15 -2082 (|#2| |#2| |#2| (-776) (-776)))) (-1057) (-1251 |#1|)) (T -1247)) -((-2082 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-1247 *4 *2)) (-4 *2 (-1251 *4)))) (-3413 (*1 *2 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3)))) (-1484 (*1 *2 *2 *2) (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3))))) -(-10 -7 (-15 -1484 (|#2| |#2| |#2|)) (-15 -3413 (|#2| |#2| |#2|)) (-15 -2082 (|#2| |#2| |#2| (-776) (-776)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3678 (((-1275 |#2|) $ (-776)) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-3103 (($ (-1181 |#2|)) NIL)) (-3767 (((-1181 $) $ (-1090)) NIL) (((-1181 |#2|) $) NIL)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#2| (-561)))) (-4355 (($ $) NIL (|has| |#2| (-561)))) (-3039 (((-112) $) NIL (|has| |#2| (-561)))) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-1726 (($ $ $) NIL (|has| |#2| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-1830 (($ $) NIL (|has| |#2| (-457)))) (-3764 (((-423 $) $) NIL (|has| |#2| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-2227 (((-112) $ $) NIL (|has| |#2| (-367)))) (-2401 (($ $ (-776)) NIL)) (-2452 (($ $ (-776)) NIL)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-457)))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL) (((-3 (-412 (-569)) "failed") $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) NIL (|has| |#2| (-1046 (-569)))) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#2| $) NIL) (((-412 (-569)) $) NIL (|has| |#2| (-1046 (-412 (-569))))) (((-569) $) NIL (|has| |#2| (-1046 (-569)))) (((-1090) $) NIL)) (-3346 (($ $ $ (-1090)) NIL (|has| |#2| (-173))) ((|#2| $ $) NIL (|has| |#2| (-173)))) (-2368 (($ $ $) NIL (|has| |#2| (-367)))) (-1883 (($ $) NIL)) (-2957 (((-694 (-569)) (-694 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) NIL (|has| |#2| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#2|)) (|:| |vec| (-1275 |#2|))) (-694 $) (-1275 $)) NIL) (((-694 |#2|) (-694 $)) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2379 (($ $ $) NIL (|has| |#2| (-367)))) (-1525 (($ $ $) NIL)) (-3405 (($ $ $) NIL (|has| |#2| (-561)))) (-3514 (((-2 (|:| -1435 |#2|) (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#2| (-367)))) (-2642 (($ $) NIL (|has| |#2| (-457))) (($ $ (-1090)) NIL (|has| |#2| (-457)))) (-1867 (((-649 $) $) NIL)) (-1473 (((-112) $) NIL (|has| |#2| (-915)))) (-2870 (($ $ |#2| (-776) $) NIL)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) NIL (-12 (|has| (-1090) (-892 (-383))) (|has| |#2| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) NIL (-12 (|has| (-1090) (-892 (-569))) (|has| |#2| (-892 (-569)))))) (-1466 (((-776) $ $) NIL (|has| |#2| (-561)))) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-3885 (((-3 $ "failed") $) NIL (|has| |#2| (-1160)))) (-1700 (($ (-1181 |#2|) (-1090)) NIL) (($ (-1181 $) (-1090)) NIL)) (-3003 (($ $ (-776)) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3923 (($ |#2| (-776)) 18) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) NIL) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-2492 (($ (-1 (-776) (-776)) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-1894 (((-1181 |#2|) $) NIL)) (-2306 (((-3 (-1090) "failed") $) NIL)) (-1849 (($ $) NIL)) (-1857 ((|#2| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-3435 (((-1167) $) NIL)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) NIL)) (-4250 (((-3 (-649 $) "failed") $) NIL)) (-2427 (((-3 (-649 $) "failed") $) NIL)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) NIL)) (-3579 (($ $) NIL (|has| |#2| (-38 (-412 (-569)))))) (-2307 (($) NIL (|has| |#2| (-1160)) CONST)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 ((|#2| $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#2| (-457)))) (-1870 (($ (-649 $)) NIL (|has| |#2| (-457))) (($ $ $) NIL (|has| |#2| (-457)))) (-2448 (($ $ (-776) |#2| $) NIL)) (-2156 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) NIL (|has| |#2| (-915)))) (-3800 (((-423 $) $) NIL (|has| |#2| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#2| (-367)))) (-2407 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-561))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#2| (-367)))) (-1725 (($ $ (-649 (-297 $))) NIL) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#2|) NIL) (($ $ (-649 (-1090)) (-649 |#2|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-649 (-1090)) (-649 $)) NIL)) (-2431 (((-776) $) NIL (|has| |#2| (-367)))) (-1869 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) NIL (|has| |#2| (-561))) ((|#2| (-412 $) |#2|) NIL (|has| |#2| (-367))) (((-412 $) $ (-412 $)) NIL (|has| |#2| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) NIL)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#2| (-367)))) (-3059 (($ $ (-1090)) NIL (|has| |#2| (-173))) ((|#2| $) NIL (|has| |#2| (-173)))) (-3517 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4339 (((-776) $) NIL) (((-776) $ (-1090)) NIL) (((-649 (-776)) $ (-649 (-1090))) NIL)) (-1410 (((-898 (-383)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#2| (-619 (-898 (-383)))))) (((-898 (-569)) $) NIL (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#2| (-619 (-898 (-569)))))) (((-541) $) NIL (-12 (|has| (-1090) (-619 (-541))) (|has| |#2| (-619 (-541)))))) (-3833 ((|#2| $) NIL (|has| |#2| (-457))) (($ $ (-1090)) NIL (|has| |#2| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-915))))) (-1960 (((-3 $ "failed") $ $) NIL (|has| |#2| (-561))) (((-3 (-412 $) "failed") (-412 $) $) NIL (|has| |#2| (-561)))) (-3796 (((-867) $) 13) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1090)) NIL) (($ (-1271 |#1|)) 20) (($ (-412 (-569))) NIL (-2776 (|has| |#2| (-38 (-412 (-569)))) (|has| |#2| (-1046 (-412 (-569)))))) (($ $) NIL (|has| |#2| (-561)))) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-776)) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2239 (((-3 $ "failed") $) NIL (-2776 (-12 (|has| $ (-145)) (|has| |#2| (-915))) (|has| |#2| (-145))))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| |#2| (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL (|has| |#2| (-561)))) (-1804 (($) NIL T CONST)) (-1815 (($) 14 T CONST)) (-2832 (($ $ (-1090)) NIL) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) NIL) (($ $ (-1185)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1185) (-776)) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) NIL (|has| |#2| (-906 (-1185)))) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#2|) NIL (|has| |#2| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-412 (-569))) NIL (|has| |#2| (-38 (-412 (-569))))) (($ (-412 (-569)) $) NIL (|has| |#2| (-38 (-412 (-569))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1248 |#1| |#2|) (-13 (-1251 |#2|) (-621 (-1271 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#2| $)))) (-1185) (-1057)) (T -1248)) -((-2448 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1248 *4 *3)) (-14 *4 (-1185)) (-4 *3 (-1057))))) -(-13 (-1251 |#2|) (-621 (-1271 |#1|)) (-10 -8 (-15 -2448 ($ $ (-776) |#2| $)))) -((-1346 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1249 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|))) (-1057) (-1251 |#1|) (-1057) (-1251 |#3|)) (T -1249)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *2 (-1251 *6)) (-5 *1 (-1249 *5 *4 *6 *2)) (-4 *4 (-1251 *5))))) -(-10 -7 (-15 -1346 (|#4| (-1 |#3| |#1|) |#2|))) -((-3678 (((-1275 |#2|) $ (-776)) 129)) (-1712 (((-649 (-1090)) $) 16)) (-3103 (($ (-1181 |#2|)) 80)) (-3722 (((-776) $) NIL) (((-776) $ (-649 (-1090))) 21)) (-3534 (((-423 (-1181 $)) (-1181 $)) 204)) (-1830 (($ $) 194)) (-3764 (((-423 $) $) 192)) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 95)) (-2401 (($ $ (-776)) 84)) (-2452 (($ $ (-776)) 86)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4381 (((-3 |#2| "failed") $) 132) (((-3 (-412 (-569)) "failed") $) NIL) (((-3 (-569) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL)) (-3150 ((|#2| $) 130) (((-412 (-569)) $) NIL) (((-569) $) NIL) (((-1090) $) NIL)) (-3405 (($ $ $) 170)) (-3514 (((-2 (|:| -1435 |#2|) (|:| -4007 $) (|:| -2054 $)) $ $) 172)) (-1466 (((-776) $ $) 189)) (-3885 (((-3 $ "failed") $) 138)) (-3923 (($ |#2| (-776)) NIL) (($ $ (-1090) (-776)) 59) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-2272 (((-776) $) NIL) (((-776) $ (-1090)) 54) (((-649 (-776)) $ (-649 (-1090))) 55)) (-1894 (((-1181 |#2|) $) 72)) (-2306 (((-3 (-1090) "failed") $) 52)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) 83)) (-3579 (($ $) 219)) (-2307 (($) 134)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 201)) (-2156 (((-423 (-1181 $)) (-1181 $)) 101)) (-3814 (((-423 (-1181 $)) (-1181 $)) 99)) (-3800 (((-423 $) $) 120)) (-1725 (($ $ (-649 (-297 $))) 51) (($ $ (-297 $)) NIL) (($ $ $ $) NIL) (($ $ (-649 $) (-649 $)) NIL) (($ $ (-1090) |#2|) 39) (($ $ (-649 (-1090)) (-649 |#2|)) 36) (($ $ (-1090) $) 32) (($ $ (-649 (-1090)) (-649 $)) 30)) (-2431 (((-776) $) 207)) (-1869 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-412 $) (-412 $) (-412 $)) 164) ((|#2| (-412 $) |#2|) 206) (((-412 $) $ (-412 $)) 188)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 212)) (-3517 (($ $ (-1090)) 157) (($ $ (-649 (-1090))) NIL) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL) (($ $ (-776)) NIL) (($ $) 155) (($ $ (-1185)) NIL) (($ $ (-649 (-1185))) NIL) (($ $ (-1185) (-776)) NIL) (($ $ (-649 (-1185)) (-649 (-776))) NIL) (($ $ (-1 |#2| |#2|) (-776)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-4339 (((-776) $) NIL) (((-776) $ (-1090)) 17) (((-649 (-776)) $ (-649 (-1090))) 23)) (-3833 ((|#2| $) NIL) (($ $ (-1090)) 140)) (-1960 (((-3 $ "failed") $ $) 180) (((-3 (-412 $) "failed") (-412 $) $) 176)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#2|) NIL) (($ (-1090)) 64) (($ (-412 (-569))) NIL) (($ $) NIL))) -(((-1250 |#1| |#2|) (-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1869 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -1869 (|#2| (-412 |#1|) |#2|)) (-15 -3818 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3514 ((-2 (|:| -1435 |#2|) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -1960 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -1960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1466 ((-776) |#1| |#1|)) (-15 -1869 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2452 (|#1| |#1| (-776))) (-15 -2401 (|#1| |#1| (-776))) (-15 -4226 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| (-776))) (-15 -3103 (|#1| (-1181 |#2|))) (-15 -1894 ((-1181 |#2|) |#1|)) (-15 -3678 ((-1275 |#2|) |#1| (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| |#2|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3534 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3833 (|#1| |#1| (-1090))) (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3722 ((-776) |#1| (-649 (-1090)))) (-15 -3722 ((-776) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3923 (|#1| |#1| (-1090) (-776))) (-15 -2272 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -2272 ((-776) |#1| (-1090))) (-15 -2306 ((-3 (-1090) "failed") |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -4339 ((-776) |#1| (-1090))) (-15 -3796 (|#1| (-1090))) (-15 -4381 ((-3 (-1090) "failed") |#1|)) (-15 -3150 ((-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1090) |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 ((-776) |#1|)) (-15 -3923 (|#1| |#2| (-776))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -2272 ((-776) |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -3517 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1090) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1090)))) (-15 -3517 (|#1| |#1| (-1090))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) (-1251 |#2|) (-1057)) (T -1250)) -NIL -(-10 -8 (-15 -3796 (|#1| |#1|)) (-15 -2219 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -3764 ((-423 |#1|) |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -2307 (|#1|)) (-15 -3885 ((-3 |#1| "failed") |#1|)) (-15 -1869 ((-412 |#1|) |#1| (-412 |#1|))) (-15 -2431 ((-776) |#1|)) (-15 -2084 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3579 (|#1| |#1|)) (-15 -1869 (|#2| (-412 |#1|) |#2|)) (-15 -3818 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3514 ((-2 (|:| -1435 |#2|) (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| |#1|)) (-15 -3405 (|#1| |#1| |#1|)) (-15 -1960 ((-3 (-412 |#1|) "failed") (-412 |#1|) |#1|)) (-15 -1960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1466 ((-776) |#1| |#1|)) (-15 -1869 ((-412 |#1|) (-412 |#1|) (-412 |#1|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2452 (|#1| |#1| (-776))) (-15 -2401 (|#1| |#1| (-776))) (-15 -4226 ((-2 (|:| -4007 |#1|) (|:| -2054 |#1|)) |#1| (-776))) (-15 -3103 (|#1| (-1181 |#2|))) (-15 -1894 ((-1181 |#2|) |#1|)) (-15 -3678 ((-1275 |#2|) |#1| (-776))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3517 (|#1| |#1| (-1 |#2| |#2|) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1185) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1185)))) (-15 -3517 (|#1| |#1| (-1185))) (-15 -3517 (|#1| |#1|)) (-15 -3517 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| |#1|)) (-15 -1869 (|#2| |#1| |#2|)) (-15 -3800 ((-423 |#1|) |#1|)) (-15 -3534 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3814 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -2156 ((-423 (-1181 |#1|)) (-1181 |#1|))) (-15 -3466 ((-3 (-649 (-1181 |#1|)) "failed") (-649 (-1181 |#1|)) (-1181 |#1|))) (-15 -3833 (|#1| |#1| (-1090))) (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3722 ((-776) |#1| (-649 (-1090)))) (-15 -3722 ((-776) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3923 (|#1| |#1| (-1090) (-776))) (-15 -2272 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -2272 ((-776) |#1| (-1090))) (-15 -2306 ((-3 (-1090) "failed") |#1|)) (-15 -4339 ((-649 (-776)) |#1| (-649 (-1090)))) (-15 -4339 ((-776) |#1| (-1090))) (-15 -3796 (|#1| (-1090))) (-15 -4381 ((-3 (-1090) "failed") |#1|)) (-15 -3150 ((-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#1|))) (-15 -1725 (|#1| |#1| (-1090) |#1|)) (-15 -1725 (|#1| |#1| (-649 (-1090)) (-649 |#2|))) (-15 -1725 (|#1| |#1| (-1090) |#2|)) (-15 -1725 (|#1| |#1| (-649 |#1|) (-649 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-297 |#1|))) (-15 -1725 (|#1| |#1| (-649 (-297 |#1|)))) (-15 -4339 ((-776) |#1|)) (-15 -3923 (|#1| |#2| (-776))) (-15 -4381 ((-3 (-569) "failed") |#1|)) (-15 -3150 ((-569) |#1|)) (-15 -4381 ((-3 (-412 (-569)) "failed") |#1|)) (-15 -3150 ((-412 (-569)) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4381 ((-3 |#2| "failed") |#1|)) (-15 -3796 (|#1| |#2|)) (-15 -2272 ((-776) |#1|)) (-15 -3833 (|#2| |#1|)) (-15 -3517 (|#1| |#1| (-649 (-1090)) (-649 (-776)))) (-15 -3517 (|#1| |#1| (-1090) (-776))) (-15 -3517 (|#1| |#1| (-649 (-1090)))) (-15 -3517 (|#1| |#1| (-1090))) (-15 -3796 (|#1| (-569))) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3678 (((-1275 |#1|) $ (-776)) 240)) (-1712 (((-649 (-1090)) $) 112)) (-3103 (($ (-1181 |#1|)) 238)) (-3767 (((-1181 $) $ (-1090)) 127) (((-1181 |#1|) $) 126)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 89 (|has| |#1| (-561)))) (-4355 (($ $) 90 (|has| |#1| (-561)))) (-3039 (((-112) $) 92 (|has| |#1| (-561)))) (-3722 (((-776) $) 114) (((-776) $ (-649 (-1090))) 113)) (-2208 (((-3 $ "failed") $ $) 20)) (-1726 (($ $ $) 225 (|has| |#1| (-561)))) (-3534 (((-423 (-1181 $)) (-1181 $)) 102 (|has| |#1| (-915)))) (-1830 (($ $) 100 (|has| |#1| (-457)))) (-3764 (((-423 $) $) 99 (|has| |#1| (-457)))) (-3466 (((-3 (-649 (-1181 $)) "failed") (-649 (-1181 $)) (-1181 $)) 105 (|has| |#1| (-915)))) (-2227 (((-112) $ $) 210 (|has| |#1| (-367)))) (-2401 (($ $ (-776)) 233)) (-2452 (($ $ (-776)) 232)) (-3818 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-457)))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 166) (((-3 (-412 (-569)) "failed") $) 163 (|has| |#1| (-1046 (-412 (-569))))) (((-3 (-569) "failed") $) 161 (|has| |#1| (-1046 (-569)))) (((-3 (-1090) "failed") $) 138)) (-3150 ((|#1| $) 165) (((-412 (-569)) $) 164 (|has| |#1| (-1046 (-412 (-569))))) (((-569) $) 162 (|has| |#1| (-1046 (-569)))) (((-1090) $) 139)) (-3346 (($ $ $ (-1090)) 110 (|has| |#1| (-173))) ((|#1| $ $) 228 (|has| |#1| (-173)))) (-2368 (($ $ $) 214 (|has| |#1| (-367)))) (-1883 (($ $) 156)) (-2957 (((-694 (-569)) (-694 $)) 136 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 (-569))) (|:| |vec| (-1275 (-569)))) (-694 $) (-1275 $)) 135 (|has| |#1| (-644 (-569)))) (((-2 (|:| -1863 (-694 |#1|)) (|:| |vec| (-1275 |#1|))) (-694 $) (-1275 $)) 134) (((-694 |#1|) (-694 $)) 133)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 213 (|has| |#1| (-367)))) (-1525 (($ $ $) 231)) (-3405 (($ $ $) 222 (|has| |#1| (-561)))) (-3514 (((-2 (|:| -1435 |#1|) (|:| -4007 $) (|:| -2054 $)) $ $) 221 (|has| |#1| (-561)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 208 (|has| |#1| (-367)))) (-2642 (($ $) 178 (|has| |#1| (-457))) (($ $ (-1090)) 107 (|has| |#1| (-457)))) (-1867 (((-649 $) $) 111)) (-1473 (((-112) $) 98 (|has| |#1| (-915)))) (-2870 (($ $ |#1| (-776) $) 174)) (-3131 (((-895 (-383) $) $ (-898 (-383)) (-895 (-383) $)) 86 (-12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383))))) (((-895 (-569) $) $ (-898 (-569)) (-895 (-569) $)) 85 (-12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))))) (-1466 (((-776) $ $) 226 (|has| |#1| (-561)))) (-2349 (((-112) $) 35)) (-3366 (((-776) $) 171)) (-3885 (((-3 $ "failed") $) 206 (|has| |#1| (-1160)))) (-1700 (($ (-1181 |#1|) (-1090)) 119) (($ (-1181 $) (-1090)) 118)) (-3003 (($ $ (-776)) 237)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 217 (|has| |#1| (-367)))) (-2572 (((-649 $) $) 128)) (-2198 (((-112) $) 154)) (-3923 (($ |#1| (-776)) 155) (($ $ (-1090) (-776)) 121) (($ $ (-649 (-1090)) (-649 (-776))) 120)) (-2976 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $ (-1090)) 122) (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 235)) (-2272 (((-776) $) 172) (((-776) $ (-1090)) 124) (((-649 (-776)) $ (-649 (-1090))) 123)) (-2492 (($ (-1 (-776) (-776)) $) 173)) (-1346 (($ (-1 |#1| |#1|) $) 153)) (-1894 (((-1181 |#1|) $) 239)) (-2306 (((-3 (-1090) "failed") $) 125)) (-1849 (($ $) 151)) (-1857 ((|#1| $) 150)) (-1839 (($ (-649 $)) 96 (|has| |#1| (-457))) (($ $ $) 95 (|has| |#1| (-457)))) (-3435 (((-1167) $) 10)) (-4226 (((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776)) 234)) (-4250 (((-3 (-649 $) "failed") $) 116)) (-2427 (((-3 (-649 $) "failed") $) 117)) (-2850 (((-3 (-2 (|:| |var| (-1090)) (|:| -1993 (-776))) "failed") $) 115)) (-3579 (($ $) 218 (|has| |#1| (-38 (-412 (-569)))))) (-2307 (($) 205 (|has| |#1| (-1160)) CONST)) (-3547 (((-1128) $) 11)) (-1828 (((-112) $) 168)) (-1835 ((|#1| $) 169)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 97 (|has| |#1| (-457)))) (-1870 (($ (-649 $)) 94 (|has| |#1| (-457))) (($ $ $) 93 (|has| |#1| (-457)))) (-2156 (((-423 (-1181 $)) (-1181 $)) 104 (|has| |#1| (-915)))) (-3814 (((-423 (-1181 $)) (-1181 $)) 103 (|has| |#1| (-915)))) (-3800 (((-423 $) $) 101 (|has| |#1| (-915)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 215 (|has| |#1| (-367)))) (-2407 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-561))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 209 (|has| |#1| (-367)))) (-1725 (($ $ (-649 (-297 $))) 147) (($ $ (-297 $)) 146) (($ $ $ $) 145) (($ $ (-649 $) (-649 $)) 144) (($ $ (-1090) |#1|) 143) (($ $ (-649 (-1090)) (-649 |#1|)) 142) (($ $ (-1090) $) 141) (($ $ (-649 (-1090)) (-649 $)) 140)) (-2431 (((-776) $) 211 (|has| |#1| (-367)))) (-1869 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-412 $) (-412 $) (-412 $)) 227 (|has| |#1| (-561))) ((|#1| (-412 $) |#1|) 219 (|has| |#1| (-367))) (((-412 $) $ (-412 $)) 207 (|has| |#1| (-561)))) (-1565 (((-3 $ "failed") $ (-776)) 236)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 212 (|has| |#1| (-367)))) (-3059 (($ $ (-1090)) 109 (|has| |#1| (-173))) ((|#1| $) 229 (|has| |#1| (-173)))) (-3517 (($ $ (-1090)) 46) (($ $ (-649 (-1090))) 45) (($ $ (-1090) (-776)) 44) (($ $ (-649 (-1090)) (-649 (-776))) 43) (($ $ (-776)) 255) (($ $) 253) (($ $ (-1185)) 252 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 251 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 250 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 249 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-4339 (((-776) $) 152) (((-776) $ (-1090)) 132) (((-649 (-776)) $ (-649 (-1090))) 131)) (-1410 (((-898 (-383)) $) 84 (-12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383)))))) (((-898 (-569)) $) 83 (-12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569)))))) (((-541) $) 82 (-12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))))) (-3833 ((|#1| $) 177 (|has| |#1| (-457))) (($ $ (-1090)) 108 (|has| |#1| (-457)))) (-1924 (((-3 (-1275 $) "failed") (-694 $)) 106 (-1759 (|has| $ (-145)) (|has| |#1| (-915))))) (-1960 (((-3 $ "failed") $ $) 224 (|has| |#1| (-561))) (((-3 (-412 $) "failed") (-412 $) $) 223 (|has| |#1| (-561)))) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 167) (($ (-1090)) 137) (($ (-412 (-569))) 80 (-2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569)))))) (($ $) 87 (|has| |#1| (-561)))) (-2512 (((-649 |#1|) $) 170)) (-4383 ((|#1| $ (-776)) 157) (($ $ (-1090) (-776)) 130) (($ $ (-649 (-1090)) (-649 (-776))) 129)) (-2239 (((-3 $ "failed") $) 81 (-2776 (-1759 (|has| $ (-145)) (|has| |#1| (-915))) (|has| |#1| (-145))))) (-2721 (((-776)) 32 T CONST)) (-3184 (($ $ $ (-776)) 175 (|has| |#1| (-173)))) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 91 (|has| |#1| (-561)))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-1090)) 42) (($ $ (-649 (-1090))) 41) (($ $ (-1090) (-776)) 40) (($ $ (-649 (-1090)) (-649 (-776))) 39) (($ $ (-776)) 256) (($ $) 254) (($ $ (-1185)) 248 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185))) 247 (|has| |#1| (-906 (-1185)))) (($ $ (-1185) (-776)) 246 (|has| |#1| (-906 (-1185)))) (($ $ (-649 (-1185)) (-649 (-776))) 245 (|has| |#1| (-906 (-1185)))) (($ $ (-1 |#1| |#1|) (-776)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 158 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 160 (|has| |#1| (-38 (-412 (-569))))) (($ (-412 (-569)) $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ |#1| $) 149) (($ $ |#1|) 148))) -(((-1251 |#1|) (-140) (-1057)) (T -1251)) -((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1251 *4)) (-4 *4 (-1057)) (-5 *2 (-1275 *4)))) (-1894 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-5 *2 (-1181 *3)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1057)) (-4 *1 (-1251 *3)))) (-3003 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-1565 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *3)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *4)))) (-2401 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-2452 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-1525 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)))) (-3517 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) (-3059 (*1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173)))) (-3346 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173)))) (-1869 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)))) (-1466 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)) (-5 *2 (-776)))) (-1726 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-1960 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-1960 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)))) (-3405 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| -1435 *3) (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *3)))) (-3818 (*1 *2 *1 *1) (-12 (-4 *3 (-457)) (-4 *3 (-1057)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1251 *3)))) (-1869 (*1 *2 *3 *2) (-12 (-5 *3 (-412 *1)) (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569))))))) -(-13 (-955 |t#1| (-776) (-1090)) (-289 |t#1| |t#1|) (-289 $ $) (-234) (-232 |t#1|) (-10 -8 (-15 -3678 ((-1275 |t#1|) $ (-776))) (-15 -1894 ((-1181 |t#1|) $)) (-15 -3103 ($ (-1181 |t#1|))) (-15 -3003 ($ $ (-776))) (-15 -1565 ((-3 $ "failed") $ (-776))) (-15 -2976 ((-2 (|:| -4007 $) (|:| -2054 $)) $ $)) (-15 -4226 ((-2 (|:| -4007 $) (|:| -2054 $)) $ (-776))) (-15 -2401 ($ $ (-776))) (-15 -2452 ($ $ (-776))) (-15 -1525 ($ $ $)) (-15 -3517 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1160)) (-6 (-1160)) |%noBranch|) (IF (|has| |t#1| (-173)) (PROGN (-15 -3059 (|t#1| $)) (-15 -3346 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-561)) (PROGN (-6 (-289 (-412 $) (-412 $))) (-15 -1869 ((-412 $) (-412 $) (-412 $))) (-15 -1466 ((-776) $ $)) (-15 -1726 ($ $ $)) (-15 -1960 ((-3 $ "failed") $ $)) (-15 -1960 ((-3 (-412 $) "failed") (-412 $) $)) (-15 -3405 ($ $ $)) (-15 -3514 ((-2 (|:| -1435 |t#1|) (|:| -4007 $) (|:| -2054 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-457)) (-15 -3818 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-367)) (PROGN (-6 (-310)) (-6 -4443) (-15 -1869 (|t#1| (-412 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (-15 -3579 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-1046 (-412 (-569)))) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 #2=(-1090)) . T) ((-621 |#1|) . T) ((-621 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-619 (-541)) -12 (|has| (-1090) (-619 (-541))) (|has| |#1| (-619 (-541)))) ((-619 (-898 (-383))) -12 (|has| (-1090) (-619 (-898 (-383)))) (|has| |#1| (-619 (-898 (-383))))) ((-619 (-898 (-569))) -12 (|has| (-1090) (-619 (-898 (-569)))) (|has| |#1| (-619 (-898 (-569))))) ((-232 |#1|) . T) ((-234) . T) ((-289 (-412 $) (-412 $)) |has| |#1| (-561)) ((-289 |#1| |#1|) . T) ((-289 $ $) . T) ((-293) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-312 $) . T) ((-329 |#1| #0#) . T) ((-381 |#1|) . T) ((-416 |#1|) . T) ((-457) -2776 (|has| |#1| (-915)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-519 #2# |#1|) . T) ((-519 #2# $) . T) ((-519 $ $) . T) ((-561) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-644 (-569)) |has| |#1| (-644 (-569))) ((-644 |#1|) . T) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367))) ((-731) . T) ((-906 #2#) . T) ((-906 (-1185)) |has| |#1| (-906 (-1185))) ((-892 (-383)) -12 (|has| (-1090) (-892 (-383))) (|has| |#1| (-892 (-383)))) ((-892 (-569)) -12 (|has| (-1090) (-892 (-569))) (|has| |#1| (-892 (-569)))) ((-955 |#1| #0# #2#) . T) ((-915) |has| |#1| (-915)) ((-926) |has| |#1| (-367)) ((-1046 (-412 (-569))) |has| |#1| (-1046 (-412 (-569)))) ((-1046 (-569)) |has| |#1| (-1046 (-569))) ((-1046 #2#) . T) ((-1046 |#1|) . T) ((-1059 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-915)) (|has| |#1| (-561)) (|has| |#1| (-457)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1160) |has| |#1| (-1160)) ((-1229) |has| |#1| (-915))) -((-1712 (((-649 (-1090)) $) 34)) (-1883 (($ $) 31)) (-3923 (($ |#2| |#3|) NIL) (($ $ (-1090) |#3|) 28) (($ $ (-649 (-1090)) (-649 |#3|)) 27)) (-1849 (($ $) 14)) (-1857 ((|#2| $) 12)) (-4339 ((|#3| $) 10))) -(((-1252 |#1| |#2| |#3|) (-10 -8 (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 |#3|))) (-15 -3923 (|#1| |#1| (-1090) |#3|)) (-15 -1883 (|#1| |#1|)) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4339 (|#3| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1857 (|#2| |#1|))) (-1253 |#2| |#3|) (-1057) (-797)) (T -1252)) -NIL -(-10 -8 (-15 -1712 ((-649 (-1090)) |#1|)) (-15 -3923 (|#1| |#1| (-649 (-1090)) (-649 |#3|))) (-15 -3923 (|#1| |#1| (-1090) |#3|)) (-15 -1883 (|#1| |#1|)) (-15 -3923 (|#1| |#2| |#3|)) (-15 -4339 (|#3| |#1|)) (-15 -1849 (|#1| |#1|)) (-15 -1857 (|#2| |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-2300 (((-1165 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-1677 (((-112) $) 85)) (-1466 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2349 (((-112) $) 35)) (-3003 (($ $ (-927)) 113)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| |#2|) 73) (($ $ (-1090) |#2|) 88) (($ $ (-649 (-1090)) (-649 |#2|)) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3166 (($ $ |#2|) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1869 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4339 ((|#2| $) 76)) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-4383 ((|#1| $ |#2|) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-3091 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-1253 |#1| |#2|) (-140) (-1057) (-797)) (T -1253)) -((-2300 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-1165 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1869 (*1 *2 *1 *3) (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (-5 *2 (-1185)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) (-3003 (*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-1466 (*1 *2 *1 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-2917 (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-2917 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-3091 (*1 *2 *1 *3) (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3796 (*2 (-1185)))) (-4 *2 (-1057)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) (-1725 (*1 *2 *1 *3) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1165 *3))))) -(-13 (-981 |t#1| |t#2| (-1090)) (-10 -8 (-15 -2300 ((-1165 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1869 (|t#1| $ |t#2|)) (-15 -2672 ((-1185) $)) (-15 -2170 (|t#1| $)) (-15 -3003 ($ $ (-927))) (-15 -1466 (|t#2| $)) (-15 -1466 (|t#2| $ |t#2|)) (-15 -2917 ($ $ |t#2|)) (-15 -2917 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3796 (|t#1| (-1185)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3091 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3166 ($ $ |t#2|)) (IF (|has| |t#2| (-1120)) (-6 (-289 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-234)) (IF (|has| |t#1| (-906 (-1185))) (-6 (-906 (-1185))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1725 ((-1165 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #0#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-289 $ $) |has| |#2| (-1120)) ((-293) |has| |#1| (-561)) ((-561) |has| |#1| (-561)) ((-651 #0#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #0#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| |#2| (-1090)) . T) ((-1059 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #0#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-1830 ((|#2| |#2|) 12)) (-3764 (((-423 |#2|) |#2|) 14)) (-3367 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))) 30))) -(((-1254 |#1| |#2|) (-10 -7 (-15 -3764 ((-423 |#2|) |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -3367 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))))) (-561) (-13 (-1251 |#1|) (-561) (-10 -8 (-15 -1870 ($ $ $))))) (T -1254)) -((-3367 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-569)))) (-4 *4 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $))))) (-4 *3 (-561)) (-5 *1 (-1254 *3 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-561)) (-5 *1 (-1254 *3 *2)) (-4 *2 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $))))))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1254 *4 *3)) (-4 *3 (-13 (-1251 *4) (-561) (-10 -8 (-15 -1870 ($ $ $)))))))) -(-10 -7 (-15 -3764 ((-423 |#2|) |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -3367 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-569)))))) -((-1346 (((-1260 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1260 |#1| |#3| |#5|)) 24))) -(((-1255 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1346 ((-1260 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1260 |#1| |#3| |#5|)))) (-1057) (-1057) (-1185) (-1185) |#1| |#2|) (T -1255)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1260 *5 *7 *9)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1260 *6 *8 *10)) (-5 *1 (-1255 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1185))))) -(-10 -7 (-15 -1346 ((-1260 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1260 |#1| |#3| |#5|)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-412 (-569))) 73) (($ $ (-1090) (-412 (-569))) 88) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-1256 |#1|) (-140) (-1057)) (T -1256)) -((-3323 (*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))) (-4 *4 (-1057)) (-4 *1 (-1256 *4)))) (-3003 (*1 *1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1256 *3)) (-4 *3 (-1057)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) (-3579 (*1 *1 *1 *2) (-2776 (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057)) (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))) -(-13 (-1253 |t#1| (-412 (-569))) (-10 -8 (-15 -3323 ($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |t#1|))))) (-15 -3003 ($ $ (-412 (-569)))) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (IF (|has| |t#1| (-15 -3579 (|t#1| |t#1| (-1185)))) (IF (|has| |t#1| (-15 -1712 ((-649 (-1185)) |t#1|))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1210)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1010)) (-6 (-1210))) |%noBranch|) (IF (|has| |t#1| (-367)) (-6 (-367)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1229) |has| |#1| (-367)) ((-1253 |#1| #0#) . T)) -((-4143 (((-112) $) 12)) (-4381 (((-3 |#3| "failed") $) 17)) (-3150 ((|#3| $) 14))) -(((-1257 |#1| |#2| |#3|) (-10 -8 (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|))) (-1258 |#2| |#3|) (-1057) (-1235 |#2|)) (T -1257)) -NIL -(-10 -8 (-15 -4381 ((-3 |#3| "failed") |#1|)) (-15 -3150 (|#3| |#1|)) (-15 -4143 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) 110) (($ $ (-412 (-569)) (-412 (-569))) 109)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 174 (|has| |#1| (-367)))) (-3764 (((-423 $) $) 175 (|has| |#1| (-367)))) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) 165 (|has| |#1| (-367)))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 183)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#2| "failed") $) 194)) (-3150 ((|#2| $) 195)) (-2368 (($ $ $) 169 (|has| |#1| (-367)))) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-3646 (((-412 (-569)) $) 191)) (-2379 (($ $ $) 168 (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) |#2|) 192)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 163 (|has| |#1| (-367)))) (-1473 (((-112) $) 176 (|has| |#1| (-367)))) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) 112) (((-412 (-569)) $ (-412 (-569))) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113) (($ $ (-412 (-569))) 182)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 172 (|has| |#1| (-367)))) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-412 (-569))) 73) (($ $ (-1090) (-412 (-569))) 88) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-1839 (($ (-649 $)) 161 (|has| |#1| (-367))) (($ $ $) 160 (|has| |#1| (-367)))) (-4029 ((|#2| $) 190)) (-4380 (((-3 |#2| "failed") $) 188)) (-1784 ((|#2| $) 189)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 177 (|has| |#1| (-367)))) (-3579 (($ $) 181 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 180 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 162 (|has| |#1| (-367)))) (-1870 (($ (-649 $)) 159 (|has| |#1| (-367))) (($ $ $) 158 (|has| |#1| (-367)))) (-3800 (((-423 $) $) 173 (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 170 (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 164 (|has| |#1| (-367)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) 166 (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) 116) (($ $ $) 93 (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 167 (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 59 (|has| |#1| (-173))) (($ |#2|) 193) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367))) (($ $ $) 179 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 178 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-1258 |#1| |#2|) (-140) (-1057) (-1235 |t#1|)) (T -1258)) -((-4339 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3)) (-5 *2 (-412 (-569))))) (-1797 (*1 *1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1057)) (-4 *1 (-1258 *4 *3)) (-4 *3 (-1235 *4)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3)) (-5 *2 (-412 (-569))))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3)))) (-4380 (*1 *2 *1) (|partial| -12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3))))) -(-13 (-1256 |t#1|) (-1046 |t#2|) (-621 |t#2|) (-10 -8 (-15 -1797 ($ (-412 (-569)) |t#2|)) (-15 -3646 ((-412 (-569)) $)) (-15 -4029 (|t#2| $)) (-15 -4339 ((-412 (-569)) $)) (-15 -1784 (|t#2| $)) (-15 -4380 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-412 (-569))) . T) ((-25) . T) ((-38 #1=(-412 (-569))) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 |#2|) . T) ((-621 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) ((-244) |has| |#1| (-367)) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-412 (-569)) (-1120)) ((-293) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-310) |has| |#1| (-367)) ((-367) |has| |#1| (-367)) ((-457) |has| |#1| (-367)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-651 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-722 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367))) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-926) |has| |#1| (-367)) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1046 |#2|) . T) ((-1059 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1064 #1#) -2776 (|has| |#1| (-367)) (|has| |#1| (-38 (-412 (-569))))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-367)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1229) |has| |#1| (-367)) ((-1253 |#1| #0#) . T) ((-1256 |#1|) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 104)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) 116) (($ $ (-412 (-569)) (-412 (-569))) 118)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) 54)) (-2771 (($ $) 192 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 168 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) 188 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 164 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) 65)) (-4118 (($ $) 196 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 172 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL)) (-3150 ((|#2| $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) 85)) (-3646 (((-412 (-569)) $) 13)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) |#2|) 11)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) 74)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) 113) (((-412 (-569)) $ (-412 (-569))) 114)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 130) (($ $ (-412 (-569))) 128)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) 33) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 125)) (-2662 (($ $) 162 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4029 ((|#2| $) 12)) (-4380 (((-3 |#2| "failed") $) 44)) (-1784 ((|#2| $) 45)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) 101 (|has| |#1| (-367)))) (-3579 (($ $) 146 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 151 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) 122)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) 160 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) 108) (($ $ $) 94 (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) 138 (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-4339 (((-412 (-569)) $) 16)) (-4128 (($ $) 198 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 174 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 194 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 170 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 190 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 166 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 120)) (-3796 (((-867) $) NIL) (($ (-569)) 37) (($ |#1|) 27 (|has| |#1| (-173))) (($ |#2|) 34) (($ (-412 (-569))) 139 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) 107)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) 127 T CONST)) (-2170 ((|#1| $) 106)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) 204 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 180 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) 200 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 176 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 208 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 184 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 210 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 186 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 206 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 182 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 202 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 178 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 21 T CONST)) (-1815 (($) 17 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) 72)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) 100 (|has| |#1| (-367)))) (-3024 (($ $) 142) (($ $ $) 78)) (-3012 (($ $ $) 76)) (** (($ $ (-927)) NIL) (($ $ (-776)) 82) (($ $ (-569)) 157 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 158 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1259 |#1| |#2|) (-1258 |#1| |#2|) (-1057) (-1235 |#1|)) (T -1259)) -NIL -(-1258 |#1| |#2|) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 11)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) NIL (|has| |#1| (-561)))) (-2917 (($ $ (-412 (-569))) NIL) (($ $ (-412 (-569)) (-412 (-569))) NIL)) (-2300 (((-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|))) $) NIL)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-1830 (($ $) NIL (|has| |#1| (-367)))) (-3764 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2227 (((-112) $ $) NIL (|has| |#1| (-367)))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-776) (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#1|)))) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-1239 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1267 |#1| |#2| |#3|) "failed") $) 22)) (-3150 (((-1239 |#1| |#2| |#3|) $) NIL) (((-1267 |#1| |#2| |#3|) $) NIL)) (-2368 (($ $ $) NIL (|has| |#1| (-367)))) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3646 (((-412 (-569)) $) 69)) (-2379 (($ $ $) NIL (|has| |#1| (-367)))) (-1797 (($ (-412 (-569)) (-1239 |#1| |#2| |#3|)) NIL)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) NIL (|has| |#1| (-367)))) (-1473 (((-112) $) NIL (|has| |#1| (-367)))) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-412 (-569)) $) NIL) (((-412 (-569)) $ (-412 (-569))) NIL)) (-2349 (((-112) $) NIL)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) NIL) (($ $ (-412 (-569))) NIL)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-412 (-569))) 30) (($ $ (-1090) (-412 (-569))) NIL) (($ $ (-649 (-1090)) (-649 (-412 (-569)))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-1839 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-4029 (((-1239 |#1| |#2| |#3|) $) 72)) (-4380 (((-3 (-1239 |#1| |#2| |#3|) "failed") $) NIL)) (-1784 (((-1239 |#1| |#2| |#3|) $) NIL)) (-3435 (((-1167) $) NIL)) (-1817 (($ $) NIL (|has| |#1| (-367)))) (-3579 (($ $) 39 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) NIL (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 40 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) NIL (|has| |#1| (-367)))) (-1870 (($ (-649 $)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3800 (((-423 $) $) NIL (|has| |#1| (-367)))) (-3964 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-367))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) NIL (|has| |#1| (-367)))) (-3166 (($ $ (-412 (-569))) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4020 (((-3 (-649 $) "failed") (-649 $) $) NIL (|has| |#1| (-367)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))))) (-2431 (((-776) $) NIL (|has| |#1| (-367)))) (-1869 ((|#1| $ (-412 (-569))) NIL) (($ $ $) NIL (|has| (-412 (-569)) (-1120)))) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) NIL (|has| |#1| (-367)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $ (-1271 |#2|)) 38)) (-4339 (((-412 (-569)) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) NIL)) (-3796 (((-867) $) 109) (($ (-569)) NIL) (($ |#1|) NIL (|has| |#1| (-173))) (($ (-1239 |#1| |#2| |#3|)) 16) (($ (-1267 |#1| |#2| |#3|)) 17) (($ (-1271 |#2|)) 36) (($ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561)))) (-4383 ((|#1| $ (-412 (-569))) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 12)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-412 (-569))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-412 (-569))))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 32 T CONST)) (-1815 (($) 26 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-412 (-569)) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 34)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ (-569)) NIL (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1260 |#1| |#2| |#3|) (-13 (-1258 |#1| (-1239 |#1| |#2| |#3|)) (-1046 (-1267 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1260)) -((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1258 |#1| (-1239 |#1| |#2| |#3|)) (-1046 (-1267 |#1| |#2| |#3|)) (-621 (-1271 |#2|)) (-10 -8 (-15 -3517 ($ $ (-1271 |#2|))) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 37)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL)) (-4355 (($ $) NIL)) (-3039 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 (-569) "failed") $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-569)))) (((-3 (-412 (-569)) "failed") $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-412 (-569))))) (((-3 (-1260 |#2| |#3| |#4|) "failed") $) 22)) (-3150 (((-569) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-569)))) (((-412 (-569)) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-1046 (-412 (-569))))) (((-1260 |#2| |#3| |#4|) $) NIL)) (-1883 (($ $) 41)) (-3086 (((-3 $ "failed") $) 27)) (-2642 (($ $) NIL (|has| (-1260 |#2| |#3| |#4|) (-457)))) (-2870 (($ $ (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|) $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) 11)) (-2198 (((-112) $) NIL)) (-3923 (($ (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) 25)) (-2272 (((-322 |#2| |#3| |#4|) $) NIL)) (-2492 (($ (-1 (-322 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) $) NIL)) (-1346 (($ (-1 (-1260 |#2| |#3| |#4|) (-1260 |#2| |#3| |#4|)) $) NIL)) (-3013 (((-3 (-848 |#2|) "failed") $) 90)) (-1849 (($ $) NIL)) (-1857 (((-1260 |#2| |#3| |#4|) $) 20)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1828 (((-112) $) NIL)) (-1835 (((-1260 |#2| |#3| |#4|) $) NIL)) (-2407 (((-3 $ "failed") $ (-1260 |#2| |#3| |#4|)) NIL (|has| (-1260 |#2| |#3| |#4|) (-561))) (((-3 $ "failed") $ $) NIL)) (-1426 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1167))) "failed") $) 74)) (-4339 (((-322 |#2| |#3| |#4|) $) 17)) (-3833 (((-1260 |#2| |#3| |#4|) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-457)))) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ (-1260 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-412 (-569))) NIL (-2776 (|has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569)))) (|has| (-1260 |#2| |#3| |#4|) (-1046 (-412 (-569))))))) (-2512 (((-649 (-1260 |#2| |#3| |#4|)) $) NIL)) (-4383 (((-1260 |#2| |#3| |#4|) $ (-322 |#2| |#3| |#4|)) NIL)) (-2239 (((-3 $ "failed") $) NIL (|has| (-1260 |#2| |#3| |#4|) (-145)))) (-2721 (((-776)) NIL T CONST)) (-3184 (($ $ $ (-776)) NIL (|has| (-1260 |#2| |#3| |#4|) (-173)))) (-1520 (((-112) $ $) NIL)) (-2664 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ (-1260 |#2| |#3| |#4|)) NIL (|has| (-1260 |#2| |#3| |#4|) (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ (-1260 |#2| |#3| |#4|)) NIL) (($ (-1260 |#2| |#3| |#4|) $) NIL) (($ (-412 (-569)) $) NIL (|has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| (-1260 |#2| |#3| |#4|) (-38 (-412 (-569))))))) -(((-1261 |#1| |#2| |#3| |#4|) (-13 (-329 (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -1426 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1167))) "failed") $)))) (-13 (-1046 (-569)) (-644 (-569)) (-457)) (-13 (-27) (-1210) (-435 |#1|)) (-1185) |#2|) (T -1261)) -((-3013 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *2 (-848 *4)) (-5 *1 (-1261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4))) (-1426 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 *4 *5 *6)) (|:| |%expon| (-322 *4 *5 *6)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))))) (|:| |%type| (-1167)))) (-5 *1 (-1261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) (-14 *6 *4)))) -(-13 (-329 (-1260 |#2| |#3| |#4|) (-322 |#2| |#3| |#4|)) (-561) (-10 -8 (-15 -3013 ((-3 (-848 |#2|) "failed") $)) (-15 -1426 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1260 |#2| |#3| |#4|)) (|:| |%expon| (-322 |#2| |#3| |#4|)) (|:| |%expTerms| (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| |#2|)))))) (|:| |%type| (-1167))) "failed") $)))) -((-2188 ((|#2| $) 34)) (-2563 ((|#2| $) 18)) (-1568 (($ $) 52)) (-2790 (($ $ (-569)) 85)) (-3914 (((-112) $ (-776)) 46)) (-2052 ((|#2| $ |#2|) 82)) (-1344 ((|#2| $ |#2|) 78)) (-3943 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1803 (($ $ (-649 $)) 81)) (-2550 ((|#2| $) 17)) (-3525 (($ $) NIL) (($ $ (-776)) 59)) (-2280 (((-649 $) $) 31)) (-1534 (((-112) $ $) 69)) (-2314 (((-112) $ (-776)) 45)) (-4254 (((-112) $ (-776)) 43)) (-1887 (((-112) $) 33)) (-1724 ((|#2| $) 25) (($ $ (-776)) 64)) (-1869 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3966 (((-112) $) 23)) (-1641 (($ $) 55)) (-4142 (($ $) 86)) (-1490 (((-776) $) 58)) (-4322 (($ $) 57)) (-2443 (($ $ $) 77) (($ |#2| $) NIL)) (-4001 (((-649 $) $) 32)) (-2920 (((-112) $ $) 67)) (-2428 (((-776) $) 51))) -(((-1262 |#1| |#2|) (-10 -8 (-15 -2790 (|#1| |#1| (-569))) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -1344 (|#2| |#1| |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -4142 (|#1| |#1|)) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -2563 (|#2| |#1|)) (-15 -2550 (|#2| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -1869 (|#2| |#1| "first")) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2052 (|#2| |#1| |#2|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1803 (|#1| |#1| (-649 |#1|))) (-15 -1534 ((-112) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776)))) (-1263 |#2|) (-1225)) (T -1262)) -NIL -(-10 -8 (-15 -2790 (|#1| |#1| (-569))) (-15 -3943 (|#2| |#1| "last" |#2|)) (-15 -1344 (|#2| |#1| |#2|)) (-15 -3943 (|#1| |#1| "rest" |#1|)) (-15 -3943 (|#2| |#1| "first" |#2|)) (-15 -4142 (|#1| |#1|)) (-15 -1641 (|#1| |#1|)) (-15 -1490 ((-776) |#1|)) (-15 -4322 (|#1| |#1|)) (-15 -2563 (|#2| |#1|)) (-15 -2550 (|#2| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-776))) (-15 -1869 (|#2| |#1| "last")) (-15 -1724 (|#2| |#1|)) (-15 -3525 (|#1| |#1| (-776))) (-15 -1869 (|#1| |#1| "rest")) (-15 -3525 (|#1| |#1|)) (-15 -1869 (|#2| |#1| "first")) (-15 -2443 (|#1| |#2| |#1|)) (-15 -2443 (|#1| |#1| |#1|)) (-15 -2052 (|#2| |#1| |#2|)) (-15 -3943 (|#2| |#1| "value" |#2|)) (-15 -1803 (|#1| |#1| (-649 |#1|))) (-15 -1534 ((-112) |#1| |#1|)) (-15 -3966 ((-112) |#1|)) (-15 -1869 (|#2| |#1| "value")) (-15 -2188 (|#2| |#1|)) (-15 -1887 ((-112) |#1|)) (-15 -2280 ((-649 |#1|) |#1|)) (-15 -4001 ((-649 |#1|) |#1|)) (-15 -2920 ((-112) |#1| |#1|)) (-15 -2428 ((-776) |#1|)) (-15 -3914 ((-112) |#1| (-776))) (-15 -2314 ((-112) |#1| (-776))) (-15 -4254 ((-112) |#1| (-776)))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-2188 ((|#1| $) 49)) (-2563 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2790 (($ $ (-569)) 53 (|has| $ (-6 -4448)))) (-3914 (((-112) $ (-776)) 8)) (-2052 ((|#1| $ |#1|) 40 (|has| $ (-6 -4448)))) (-2530 (($ $ $) 57 (|has| $ (-6 -4448)))) (-1344 ((|#1| $ |#1|) 55 (|has| $ (-6 -4448)))) (-2747 ((|#1| $ |#1|) 59 (|has| $ (-6 -4448)))) (-3943 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4448))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4448))) (($ $ "rest" $) 56 (|has| $ (-6 -4448))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4448)))) (-1803 (($ $ (-649 $)) 42 (|has| $ (-6 -4448)))) (-2550 ((|#1| $) 67)) (-4427 (($) 7 T CONST)) (-3525 (($ $) 74) (($ $ (-776)) 72)) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-2280 (((-649 $) $) 51)) (-1534 (((-112) $ $) 43 (|has| |#1| (-1108)))) (-2314 (((-112) $ (-776)) 9)) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36)) (-4254 (((-112) $ (-776)) 10)) (-2275 (((-649 |#1|) $) 46)) (-1887 (((-112) $) 50)) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-1724 ((|#1| $) 71) (($ $ (-776)) 69)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 77) (($ $ (-776)) 75)) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2602 (((-569) $ $) 45)) (-3966 (((-112) $) 47)) (-1641 (($ $) 63)) (-4142 (($ $) 60 (|has| $ (-6 -4448)))) (-1490 (((-776) $) 64)) (-4322 (($ $) 65)) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3962 (($ $) 13)) (-2866 (($ $ $) 62 (|has| $ (-6 -4448))) (($ $ |#1|) 61 (|has| $ (-6 -4448)))) (-2443 (($ $ $) 79) (($ |#1| $) 78)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-4001 (((-649 $) $) 52)) (-4280 (((-112) $ $) 44 (|has| |#1| (-1108)))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1263 |#1|) (-140) (-1225)) (T -1263)) -((-2443 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2443 (*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-3525 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1869 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1869 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-4322 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) (-1641 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2866 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-4142 (*1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2747 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2530 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3943 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) (-1344 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-3943 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3)) (-4 *3 (-1225))))) -(-13 (-1018 |t#1|) (-10 -8 (-15 -2443 ($ $ $)) (-15 -2443 ($ |t#1| $)) (-15 -3513 (|t#1| $)) (-15 -1869 (|t#1| $ "first")) (-15 -3513 ($ $ (-776))) (-15 -3525 ($ $)) (-15 -1869 ($ $ "rest")) (-15 -3525 ($ $ (-776))) (-15 -1724 (|t#1| $)) (-15 -1869 (|t#1| $ "last")) (-15 -1724 ($ $ (-776))) (-15 -1568 ($ $)) (-15 -2550 (|t#1| $)) (-15 -2563 (|t#1| $)) (-15 -4322 ($ $)) (-15 -1490 ((-776) $)) (-15 -1641 ($ $)) (IF (|has| $ (-6 -4448)) (PROGN (-15 -2866 ($ $ $)) (-15 -2866 ($ $ |t#1|)) (-15 -4142 ($ $)) (-15 -2747 (|t#1| $ |t#1|)) (-15 -3943 (|t#1| $ "first" |t#1|)) (-15 -2530 ($ $ $)) (-15 -3943 ($ $ "rest" $)) (-15 -1344 (|t#1| $ |t#1|)) (-15 -3943 (|t#1| $ "last" |t#1|)) (-15 -2790 ($ $ (-569)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1108)) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-618 (-867)))) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-494 |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-1018 |#1|) . T) ((-1108) |has| |#1| (-1108)) ((-1225) . T)) -((-1346 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1264 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|))) (-1057) (-1057) (-1266 |#1|) (-1266 |#2|)) (T -1264)) -((-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) (-4 *2 (-1266 *6)) (-5 *1 (-1264 *5 *6 *4 *2)) (-4 *4 (-1266 *5))))) -(-10 -7 (-15 -1346 (|#4| (-1 |#2| |#1|) |#3|))) -((-4143 (((-112) $) 17)) (-2771 (($ $) 106)) (-2626 (($ $) 82)) (-2746 (($ $) 102)) (-2601 (($ $) 78)) (-4118 (($ $) 110)) (-2647 (($ $) 86)) (-2662 (($ $) 76)) (-4389 (($ $) 74)) (-4128 (($ $) 112)) (-2661 (($ $) 88)) (-2783 (($ $) 108)) (-2635 (($ $) 84)) (-2758 (($ $) 104)) (-2614 (($ $) 80)) (-3796 (((-867) $) 62) (($ (-569)) NIL) (($ (-412 (-569))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4161 (($ $) 118)) (-2701 (($ $) 94)) (-4140 (($ $) 114)) (-2675 (($ $) 90)) (-4183 (($ $) 122)) (-2723 (($ $) 98)) (-1503 (($ $) 124)) (-2734 (($ $) 100)) (-4175 (($ $) 120)) (-2712 (($ $) 96)) (-4151 (($ $) 116)) (-2689 (($ $) 92)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-412 (-569))) 72))) -(((-1265 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -4143 ((-112) |#1|)) (-15 -3796 ((-867) |#1|))) (-1266 |#2|) (-1057)) (T -1265)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-412 (-569)))) (-15 -2626 (|#1| |#1|)) (-15 -2601 (|#1| |#1|)) (-15 -2647 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -2635 (|#1| |#1|)) (-15 -2614 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -2712 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -2675 (|#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2758 (|#1| |#1|)) (-15 -2783 (|#1| |#1|)) (-15 -4128 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -2746 (|#1| |#1|)) (-15 -2771 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -1503 (|#1| |#1|)) (-15 -4183 (|#1| |#1|)) (-15 -4140 (|#1| |#1|)) (-15 -4161 (|#1| |#1|)) (-15 -2662 (|#1| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3796 (|#1| |#2|)) (-15 -3796 (|#1| |#1|)) (-15 -3796 (|#1| (-412 (-569)))) (-15 -3796 (|#1| (-569))) (-15 ** (|#1| |#1| (-776))) (-15 ** (|#1| |#1| (-927))) (-15 -4143 ((-112) |#1|)) (-15 -3796 ((-867) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-1712 (((-649 (-1090)) $) 86)) (-2672 (((-1185) $) 115)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 63 (|has| |#1| (-561)))) (-4355 (($ $) 64 (|has| |#1| (-561)))) (-3039 (((-112) $) 66 (|has| |#1| (-561)))) (-2917 (($ $ (-776)) 110) (($ $ (-776) (-776)) 109)) (-2300 (((-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 117)) (-2771 (($ $) 147 (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) 130 (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) 20)) (-3813 (($ $) 129 (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) 146 (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) 131 (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 167) (($ (-1165 |#1|)) 165)) (-4118 (($ $) 145 (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) 132 (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) 18 T CONST)) (-1883 (($ $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-3938 (($ $) 164)) (-3278 (((-958 |#1|) $ (-776)) 162) (((-958 |#1|) $ (-776) (-776)) 161)) (-1677 (((-112) $) 85)) (-1312 (($) 157 (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $) 112) (((-776) $ (-776)) 111)) (-2349 (((-112) $) 35)) (-3742 (($ $ (-569)) 128 (|has| |#1| (-38 (-412 (-569)))))) (-3003 (($ $ (-927)) 113)) (-2148 (($ (-1 |#1| (-569)) $) 163)) (-2198 (((-112) $) 74)) (-3923 (($ |#1| (-776)) 73) (($ $ (-1090) (-776)) 88) (($ $ (-649 (-1090)) (-649 (-776))) 87)) (-1346 (($ (-1 |#1| |#1|) $) 75)) (-2662 (($ $) 154 (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) 77)) (-1857 ((|#1| $) 78)) (-3435 (((-1167) $) 10)) (-3579 (($ $) 159 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 158 (-2776 (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-965)) (|has| |#1| (-1210)) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-38 (-412 (-569)))))))) (-3547 (((-1128) $) 11)) (-3166 (($ $ (-776)) 107)) (-2407 (((-3 $ "failed") $ $) 62 (|has| |#1| (-561)))) (-4389 (($ $) 155 (|has| |#1| (-38 (-412 (-569)))))) (-1725 (((-1165 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1869 ((|#1| $ (-776)) 116) (($ $ $) 93 (|has| (-776) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) 101 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185) (-776)) 100 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1185))) 99 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185)) 98 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 96 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-4339 (((-776) $) 76)) (-4128 (($ $) 144 (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) 133 (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) 143 (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) 134 (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) 142 (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) 135 (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 84)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ (-412 (-569))) 69 (|has| |#1| (-38 (-412 (-569))))) (($ $) 61 (|has| |#1| (-561))) (($ |#1|) 59 (|has| |#1| (-173)))) (-2512 (((-1165 |#1|) $) 166)) (-4383 ((|#1| $ (-776)) 71)) (-2239 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2721 (((-776)) 32 T CONST)) (-2170 ((|#1| $) 114)) (-1520 (((-112) $ $) 9)) (-4161 (($ $) 153 (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) 141 (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) 65 (|has| |#1| (-561)))) (-4140 (($ $) 152 (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) 140 (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) 151 (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) 139 (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-776)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) 150 (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) 138 (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) 149 (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) 137 (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) 148 (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) 136 (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) 105 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185) (-776)) 104 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-649 (-1185))) 103 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-1185)) 102 (-12 (|has| |#1| (-906 (-1185))) (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (($ $ (-776)) 97 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 70 (|has| |#1| (-367)))) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ |#1|) 160 (|has| |#1| (-367))) (($ $ $) 156 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 127 (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-412 (-569)) $) 68 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) 67 (|has| |#1| (-38 (-412 (-569))))))) -(((-1266 |#1|) (-140) (-1057)) (T -1266)) -((-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 (-2 (|:| |k| (-776)) (|:| |c| *3)))) (-4 *3 (-1057)) (-4 *1 (-1266 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-5 *2 (-1165 *3)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-4 *1 (-1266 *3)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)))) (-2148 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1266 *3)) (-4 *3 (-1057)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057)) (-5 *2 (-958 *4)))) (-3278 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057)) (-5 *2 (-958 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) (-3579 (*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) (-3579 (*1 *1 *1 *2) (-2776 (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) (-4 *3 (-38 (-412 (-569)))))) (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569))))))))) -(-13 (-1253 |t#1| (-776)) (-10 -8 (-15 -3323 ($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |t#1|))))) (-15 -2512 ((-1165 |t#1|) $)) (-15 -3323 ($ (-1165 |t#1|))) (-15 -3938 ($ $)) (-15 -2148 ($ (-1 |t#1| (-569)) $)) (-15 -3278 ((-958 |t#1|) $ (-776))) (-15 -3278 ((-958 |t#1|) $ (-776) (-776))) (IF (|has| |t#1| (-367)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-412 (-569)))) (PROGN (-15 -3579 ($ $)) (IF (|has| |t#1| (-15 -3579 (|t#1| |t#1| (-1185)))) (IF (|has| |t#1| (-15 -1712 ((-649 (-1185)) |t#1|))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1210)) (IF (|has| |t#1| (-965)) (IF (|has| |t#1| (-29 (-569))) (-15 -3579 ($ $ (-1185))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1010)) (-6 (-1210))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-776)) . T) ((-25) . T) ((-38 #1=(-412 (-569))) |has| |#1| (-38 (-412 (-569)))) ((-38 |#1|) |has| |#1| (-173)) ((-38 $) |has| |#1| (-561)) ((-35) |has| |#1| (-38 (-412 (-569)))) ((-95) |has| |#1| (-38 (-412 (-569)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-412 (-569)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-621 #1#) |has| |#1| (-38 (-412 (-569)))) ((-621 (-569)) . T) ((-621 |#1|) |has| |#1| (-173)) ((-621 $) |has| |#1| (-561)) ((-618 (-867)) . T) ((-173) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-234) |has| |#1| (-15 * (|#1| (-776) |#1|))) ((-287) |has| |#1| (-38 (-412 (-569)))) ((-289 $ $) |has| (-776) (-1120)) ((-293) |has| |#1| (-561)) ((-498) |has| |#1| (-38 (-412 (-569)))) ((-561) |has| |#1| (-561)) ((-651 #1#) |has| |#1| (-38 (-412 (-569)))) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #1#) |has| |#1| (-38 (-412 (-569)))) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #1#) |has| |#1| (-38 (-412 (-569)))) ((-645 |#1|) |has| |#1| (-173)) ((-645 $) |has| |#1| (-561)) ((-722 #1#) |has| |#1| (-38 (-412 (-569)))) ((-722 |#1|) |has| |#1| (-173)) ((-722 $) |has| |#1| (-561)) ((-731) . T) ((-906 (-1185)) -12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185)))) ((-981 |#1| #0# (-1090)) . T) ((-1010) |has| |#1| (-38 (-412 (-569)))) ((-1059 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1059 |#1|) . T) ((-1059 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1064 #1#) |has| |#1| (-38 (-412 (-569)))) ((-1064 |#1|) . T) ((-1064 $) -2776 (|has| |#1| (-561)) (|has| |#1| (-173))) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1210) |has| |#1| (-38 (-412 (-569)))) ((-1213) |has| |#1| (-38 (-412 (-569)))) ((-1253 |#1| #0#) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-1712 (((-649 (-1090)) $) NIL)) (-2672 (((-1185) $) 92)) (-2020 (((-1248 |#2| |#1|) $ (-776)) 73)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) NIL (|has| |#1| (-561)))) (-4355 (($ $) NIL (|has| |#1| (-561)))) (-3039 (((-112) $) 144 (|has| |#1| (-561)))) (-2917 (($ $ (-776)) 129) (($ $ (-776) (-776)) 132)) (-2300 (((-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|))) $) 43)) (-2771 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2626 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2208 (((-3 $ "failed") $ $) NIL)) (-3813 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2746 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2601 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3323 (($ (-1165 (-2 (|:| |k| (-776)) (|:| |c| |#1|)))) 52) (($ (-1165 |#1|)) NIL)) (-4118 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2647 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4427 (($) NIL T CONST)) (-3490 (($ $) 136)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-3938 (($ $) 142)) (-3278 (((-958 |#1|) $ (-776)) 63) (((-958 |#1|) $ (-776) (-776)) 65)) (-1677 (((-112) $) NIL)) (-1312 (($) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1466 (((-776) $) NIL) (((-776) $ (-776)) NIL)) (-2349 (((-112) $) NIL)) (-2868 (($ $) 119)) (-3742 (($ $ (-569)) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1655 (($ (-569) (-569) $) 138)) (-3003 (($ $ (-927)) 141)) (-2148 (($ (-1 |#1| (-569)) $) 113)) (-2198 (((-112) $) NIL)) (-3923 (($ |#1| (-776)) 16) (($ $ (-1090) (-776)) NIL) (($ $ (-649 (-1090)) (-649 (-776))) NIL)) (-1346 (($ (-1 |#1| |#1|) $) 100)) (-2662 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1849 (($ $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-1597 (($ $) 117)) (-3374 (($ $) 115)) (-2892 (($ (-569) (-569) $) 140)) (-3579 (($ $) 152 (|has| |#1| (-38 (-412 (-569))))) (($ $ (-1185)) 158 (-2776 (-12 (|has| |#1| (-15 -3579 (|#1| |#1| (-1185)))) (|has| |#1| (-15 -1712 ((-649 (-1185)) |#1|))) (|has| |#1| (-38 (-412 (-569))))) (-12 (|has| |#1| (-29 (-569))) (|has| |#1| (-38 (-412 (-569)))) (|has| |#1| (-965)) (|has| |#1| (-1210))))) (($ $ (-1271 |#2|)) 153 (|has| |#1| (-38 (-412 (-569)))))) (-3547 (((-1128) $) NIL)) (-2347 (($ $ (-569) (-569)) 123)) (-3166 (($ $ (-776)) 125)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-561)))) (-4389 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4230 (($ $) 121)) (-1725 (((-1165 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-776)))))) (-1869 ((|#1| $ (-776)) 97) (($ $ $) 134 (|has| (-776) (-1120)))) (-3517 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) 110 (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $ (-1271 |#2|)) 105)) (-4339 (((-776) $) NIL)) (-4128 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2661 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2783 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2635 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2758 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2614 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2007 (($ $) 127)) (-3796 (((-867) $) NIL) (($ (-569)) 26) (($ (-412 (-569))) 150 (|has| |#1| (-38 (-412 (-569))))) (($ $) NIL (|has| |#1| (-561))) (($ |#1|) 25 (|has| |#1| (-173))) (($ (-1248 |#2| |#1|)) 83) (($ (-1271 |#2|)) 22)) (-2512 (((-1165 |#1|) $) NIL)) (-4383 ((|#1| $ (-776)) 96)) (-2239 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2721 (((-776)) NIL T CONST)) (-2170 ((|#1| $) 93)) (-1520 (((-112) $ $) NIL)) (-4161 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2701 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2664 (((-112) $ $) NIL (|has| |#1| (-561)))) (-4140 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2675 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4183 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2723 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-3091 ((|#1| $ (-776)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-776)))) (|has| |#1| (-15 -3796 (|#1| (-1185))))))) (-1503 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2734 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4175 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2712 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-4151 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-2689 (($ $) NIL (|has| |#1| (-38 (-412 (-569)))))) (-1804 (($) 18 T CONST)) (-1815 (($) 13 T CONST)) (-2832 (($ $ (-649 (-1185)) (-649 (-776))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185) (-776)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-649 (-1185))) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-1185)) NIL (-12 (|has| |#1| (-15 * (|#1| (-776) |#1|))) (|has| |#1| (-906 (-1185))))) (($ $ (-776)) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-776) |#1|))))) (-2920 (((-112) $ $) NIL)) (-3035 (($ $ |#1|) NIL (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) 109)) (-3012 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL) (($ $ |#1|) 147 (|has| |#1| (-367))) (($ $ $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569)))))) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-412 (-569)) $) NIL (|has| |#1| (-38 (-412 (-569))))) (($ $ (-412 (-569))) NIL (|has| |#1| (-38 (-412 (-569))))))) -(((-1267 |#1| |#2| |#3|) (-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (-15 -3374 ($ $)) (-15 -1597 ($ $)) (-15 -2868 ($ $)) (-15 -4230 ($ $)) (-15 -2347 ($ $ (-569) (-569))) (-15 -3490 ($ $)) (-15 -1655 ($ (-569) (-569) $)) (-15 -2892 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) (-1057) (-1185) |#1|) (T -1267)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3) (-5 *1 (-1267 *3 *4 *5)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1267 *4 *5 *6)) (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4))) (-3796 (*1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *5 *3))) (-3374 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-1597 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-2868 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-4230 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-2347 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3))) (-3490 (*1 *1 *1) (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) (-14 *4 *2))) (-1655 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3))) (-2892 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) (-14 *5 *3))) (-3579 (*1 *1 *1 *2) (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(-13 (-1266 |#1|) (-10 -8 (-15 -3796 ($ (-1248 |#2| |#1|))) (-15 -2020 ((-1248 |#2| |#1|) $ (-776))) (-15 -3796 ($ (-1271 |#2|))) (-15 -3517 ($ $ (-1271 |#2|))) (-15 -3374 ($ $)) (-15 -1597 ($ $)) (-15 -2868 ($ $)) (-15 -4230 ($ $)) (-15 -2347 ($ $ (-569) (-569))) (-15 -3490 ($ $)) (-15 -1655 ($ (-569) (-569) $)) (-15 -2892 ($ (-569) (-569) $)) (IF (|has| |#1| (-38 (-412 (-569)))) (-15 -3579 ($ $ (-1271 |#2|))) |%noBranch|))) -((-1990 (((-1 (-1165 |#1|) (-649 (-1165 |#1|))) (-1 |#2| (-649 |#2|))) 24)) (-2175 (((-1 (-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3564 (((-1 (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2|)) 13)) (-1951 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3403 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1697 ((|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|)) 60)) (-1502 (((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))) 66)) (-1753 ((|#2| |#2| |#2|) 43))) -(((-1268 |#1| |#2|) (-10 -7 (-15 -3564 ((-1 (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2|))) (-15 -2175 ((-1 (-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1990 ((-1 (-1165 |#1|) (-649 (-1165 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -1753 (|#2| |#2| |#2|)) (-15 -3403 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1951 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1697 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -1502 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))))) (-38 (-412 (-569))) (-1266 |#1|)) (T -1268)) -((-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6)))) (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1266 *5)) (-5 *2 (-649 *6)) (-5 *1 (-1268 *5 *6)))) (-1697 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5)) (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1266 *5)) (-5 *1 (-1268 *5 *2)))) (-1951 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2)) (-4 *4 (-38 (-412 (-569)))))) (-1753 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1268 *3 *2)) (-4 *2 (-1266 *3)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1266 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-649 (-1165 *4)))) (-5 *1 (-1268 *4 *5)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1266 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-1165 *4) (-1165 *4))) (-5 *1 (-1268 *4 *5)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1266 *4)) (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-1165 *4))) (-5 *1 (-1268 *4 *5))))) -(-10 -7 (-15 -3564 ((-1 (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2|))) (-15 -2175 ((-1 (-1165 |#1|) (-1165 |#1|) (-1165 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1990 ((-1 (-1165 |#1|) (-649 (-1165 |#1|))) (-1 |#2| (-649 |#2|)))) (-15 -1753 (|#2| |#2| |#2|)) (-15 -3403 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1951 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1697 (|#2| (-1 |#2| (-649 |#2|)) (-649 |#1|))) (-15 -1502 ((-649 |#2|) (-649 |#1|) (-649 (-1 |#2| (-649 |#2|)))))) -((-3047 ((|#2| |#4| (-776)) 34)) (-1452 ((|#4| |#2|) 29)) (-1709 ((|#4| (-412 |#2|)) 53 (|has| |#1| (-561)))) (-2946 (((-1 |#4| (-649 |#4|)) |#3|) 46))) -(((-1269 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1452 (|#4| |#2|)) (-15 -3047 (|#2| |#4| (-776))) (-15 -2946 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -1709 (|#4| (-412 |#2|))) |%noBranch|)) (-1057) (-1251 |#1|) (-661 |#2|) (-1266 |#1|)) (T -1269)) -((-1709 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-561)) (-4 *4 (-1057)) (-4 *2 (-1266 *4)) (-5 *1 (-1269 *4 *5 *6 *2)) (-4 *6 (-661 *5)))) (-2946 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *5 (-1251 *4)) (-5 *2 (-1 *6 (-649 *6))) (-5 *1 (-1269 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1266 *4)))) (-3047 (*1 *2 *3 *4) (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-1269 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1266 *5)))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-1057)) (-4 *3 (-1251 *4)) (-4 *2 (-1266 *4)) (-5 *1 (-1269 *4 *3 *5 *2)) (-4 *5 (-661 *3))))) -(-10 -7 (-15 -1452 (|#4| |#2|)) (-15 -3047 (|#2| |#4| (-776))) (-15 -2946 ((-1 |#4| (-649 |#4|)) |#3|)) (IF (|has| |#1| (-561)) (-15 -1709 (|#4| (-412 |#2|))) |%noBranch|)) -NIL -(((-1270) (-140)) (T -1270)) -NIL -(-13 (-10 -7 (-6 -3057))) -((-2417 (((-112) $ $) NIL)) (-2672 (((-1185)) 12)) (-3435 (((-1167) $) 18)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 11) (((-1185) $) 8)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) 15))) -(((-1271 |#1|) (-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -3796 ((-1185) $)) (-15 -2672 ((-1185))))) (-1185)) (T -1271)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2))) (-2672 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2)))) -(-13 (-1108) (-618 (-1185)) (-10 -8 (-15 -3796 ((-1185) $)) (-15 -2672 ((-1185))))) -((-3467 (($ (-776)) 19)) (-1367 (((-694 |#2|) $ $) 41)) (-3420 ((|#2| $) 51)) (-3845 ((|#2| $) 50)) (-3040 ((|#2| $ $) 36)) (-3260 (($ $ $) 47)) (-3024 (($ $) 23) (($ $ $) 29)) (-3012 (($ $ $) 15)) (* (($ (-569) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1272 |#1| |#2|) (-10 -8 (-15 -3420 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -1367 ((-694 |#2|) |#1| |#1|)) (-15 -3040 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3467 (|#1| (-776))) (-15 -3012 (|#1| |#1| |#1|))) (-1273 |#2|) (-1225)) (T -1272)) -NIL -(-10 -8 (-15 -3420 (|#2| |#1|)) (-15 -3845 (|#2| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -1367 ((-694 |#2|) |#1| |#1|)) (-15 -3040 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-569) |#1|)) (-15 -3024 (|#1| |#1| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3467 (|#1| (-776))) (-15 -3012 (|#1| |#1| |#1|))) -((-2417 (((-112) $ $) 19 (|has| |#1| (-1108)))) (-3467 (($ (-776)) 113 (|has| |#1| (-23)))) (-2002 (((-1280) $ (-569) (-569)) 41 (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4448))) (($ $) 89 (-12 (|has| |#1| (-855)) (|has| $ (-6 -4448))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) 8)) (-3943 ((|#1| $ (-569) |#1|) 53 (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) 59 (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4447)))) (-4427 (($) 7 T CONST)) (-2507 (($ $) 91 (|has| $ (-6 -4448)))) (-2251 (($ $) 101)) (-3550 (($ $) 79 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-1698 (($ |#1| $) 78 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) 54 (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) 52)) (-4036 (((-569) (-1 (-112) |#1|) $) 98) (((-569) |#1| $) 97 (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) 96 (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 31 (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) 106 (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) 70)) (-2314 (((-112) $ (-776)) 9)) (-4426 (((-569) $) 44 (|has| (-569) (-855)))) (-3380 (($ $ $) 88 (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) 30 (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-3256 (((-569) $) 45 (|has| (-569) (-855)))) (-2839 (($ $ $) 87 (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3420 ((|#1| $) 103 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-4254 (((-112) $ (-776)) 10)) (-3845 ((|#1| $) 104 (-12 (|has| |#1| (-1057)) (|has| |#1| (-1010))))) (-3435 (((-1167) $) 22 (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) 61) (($ $ $ (-569)) 60)) (-1696 (((-649 (-569)) $) 47)) (-1414 (((-112) (-569) $) 48)) (-3547 (((-1128) $) 21 (|has| |#1| (-1108)))) (-3513 ((|#1| $) 43 (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-1682 (($ $ |#1|) 42 (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) 27 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) 26 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) 24 (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) 14)) (-1957 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) 49)) (-3162 (((-112) $) 11)) (-3635 (($) 12)) (-1869 ((|#1| $ (-569) |#1|) 51) ((|#1| $ (-569)) 50) (($ $ (-1242 (-569))) 64)) (-3040 ((|#1| $ $) 107 (|has| |#1| (-1057)))) (-4328 (($ $ (-569)) 63) (($ $ (-1242 (-569))) 62)) (-3260 (($ $ $) 105 (|has| |#1| (-1057)))) (-3560 (((-776) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4447))) (((-776) |#1| $) 29 (-12 (|has| |#1| (-1108)) (|has| $ (-6 -4447))))) (-2785 (($ $ $ (-569)) 92 (|has| $ (-6 -4448)))) (-3962 (($ $) 13)) (-1410 (((-541) $) 80 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 71)) (-2443 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-649 $)) 66)) (-3796 (((-867) $) 18 (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) 23 (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) 85 (|has| |#1| (-855)))) (-2956 (((-112) $ $) 84 (|has| |#1| (-855)))) (-2920 (((-112) $ $) 20 (|has| |#1| (-1108)))) (-2966 (((-112) $ $) 86 (|has| |#1| (-855)))) (-2944 (((-112) $ $) 83 (|has| |#1| (-855)))) (-3024 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3012 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-569) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-731))) (($ $ |#1|) 108 (|has| |#1| (-731)))) (-2428 (((-776) $) 6 (|has| $ (-6 -4447))))) -(((-1273 |#1|) (-140) (-1225)) (T -1273)) -((-3012 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-25)))) (-3467 (*1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1273 *3)) (-4 *3 (-23)) (-4 *3 (-1225)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21)))) (-3024 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) (-1367 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-1057)) (-5 *2 (-694 *3)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010)) (-4 *2 (-1057)))) (-3420 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010)) (-4 *2 (-1057))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3012 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3467 ($ (-776))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3024 ($ $)) (-15 -3024 ($ $ $)) (-15 * ($ (-569) $))) |%noBranch|) (IF (|has| |t#1| (-731)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1057)) (PROGN (-15 -3040 (|t#1| $ $)) (-15 -1367 ((-694 |t#1|) $ $)) (-15 -3260 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1010)) (IF (|has| |t#1| (-1057)) (PROGN (-15 -3845 (|t#1| $)) (-15 -3420 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-618 (-867)) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855)) (|has| |#1| (-618 (-867)))) ((-151 |#1|) . T) ((-619 (-541)) |has| |#1| (-619 (-541))) ((-289 #0=(-569) |#1|) . T) ((-291 #0# |#1|) . T) ((-312 |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-377 |#1|) . T) ((-494 |#1|) . T) ((-609 #0# |#1|) . T) ((-519 |#1| |#1|) -12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))) ((-656 |#1|) . T) ((-19 |#1|) . T) ((-855) |has| |#1| (-855)) ((-1108) -2776 (|has| |#1| (-1108)) (|has| |#1| (-855))) ((-1225) . T)) -((-1610 (((-1275 |#2|) (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|) 13)) (-3598 ((|#2| (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|) 15)) (-1346 (((-3 (-1275 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1275 |#1|)) 30) (((-1275 |#2|) (-1 |#2| |#1|) (-1275 |#1|)) 18))) -(((-1274 |#1| |#2|) (-10 -7 (-15 -1610 ((-1275 |#2|) (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -1346 ((-1275 |#2|) (-1 |#2| |#1|) (-1275 |#1|))) (-15 -1346 ((-3 (-1275 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1275 |#1|)))) (-1225) (-1225)) (T -1274)) -((-1346 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1275 *6)) (-5 *1 (-1274 *5 *6)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1275 *6)) (-5 *1 (-1274 *5 *6)))) (-3598 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) (-4 *2 (-1225)) (-5 *1 (-1274 *5 *2)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1275 *6)) (-4 *6 (-1225)) (-4 *5 (-1225)) (-5 *2 (-1275 *5)) (-5 *1 (-1274 *6 *5))))) -(-10 -7 (-15 -1610 ((-1275 |#2|) (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -3598 (|#2| (-1 |#2| |#1| |#2|) (-1275 |#1|) |#2|)) (-15 -1346 ((-1275 |#2|) (-1 |#2| |#1|) (-1275 |#1|))) (-15 -1346 ((-3 (-1275 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1275 |#1|)))) -((-2417 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-3467 (($ (-776)) NIL (|has| |#1| (-23)))) (-3504 (($ (-649 |#1|)) 11)) (-2002 (((-1280) $ (-569) (-569)) NIL (|has| $ (-6 -4448)))) (-1317 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-855)))) (-2951 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4448))) (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-855))))) (-3358 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-855)))) (-3914 (((-112) $ (-776)) NIL)) (-3943 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448))) ((|#1| $ (-1242 (-569)) |#1|) NIL (|has| $ (-6 -4448)))) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-4427 (($) NIL T CONST)) (-2507 (($ $) NIL (|has| $ (-6 -4448)))) (-2251 (($ $) NIL)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-1698 (($ |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-3598 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4447))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4447)))) (-3846 ((|#1| $ (-569) |#1|) NIL (|has| $ (-6 -4448)))) (-3776 ((|#1| $ (-569)) NIL)) (-4036 (((-569) (-1 (-112) |#1|) $) NIL) (((-569) |#1| $) NIL (|has| |#1| (-1108))) (((-569) |#1| $ (-569)) NIL (|has| |#1| (-1108)))) (-2882 (((-649 |#1|) $) 16 (|has| $ (-6 -4447)))) (-1367 (((-694 |#1|) $ $) NIL (|has| |#1| (-1057)))) (-4300 (($ (-776) |#1|) NIL)) (-2314 (((-112) $ (-776)) NIL)) (-4426 (((-569) $) NIL (|has| (-569) (-855)))) (-3380 (($ $ $) NIL (|has| |#1| (-855)))) (-4198 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-855)))) (-2009 (((-649 |#1|) $) NIL (|has| $ (-6 -4447)))) (-2004 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-3256 (((-569) $) 12 (|has| (-569) (-855)))) (-2839 (($ $ $) NIL (|has| |#1| (-855)))) (-3834 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3420 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-4254 (((-112) $ (-776)) NIL)) (-3845 ((|#1| $) NIL (-12 (|has| |#1| (-1010)) (|has| |#1| (-1057))))) (-3435 (((-1167) $) NIL (|has| |#1| (-1108)))) (-4298 (($ |#1| $ (-569)) NIL) (($ $ $ (-569)) NIL)) (-1696 (((-649 (-569)) $) NIL)) (-1414 (((-112) (-569) $) NIL)) (-3547 (((-1128) $) NIL (|has| |#1| (-1108)))) (-3513 ((|#1| $) NIL (|has| (-569) (-855)))) (-1574 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1682 (($ $ |#1|) NIL (|has| $ (-6 -4448)))) (-3208 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 (-297 |#1|))) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-297 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108)))) (($ $ (-649 |#1|) (-649 |#1|)) NIL (-12 (|has| |#1| (-312 |#1|)) (|has| |#1| (-1108))))) (-3790 (((-112) $ $) NIL)) (-1957 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-4199 (((-649 |#1|) $) NIL)) (-3162 (((-112) $) NIL)) (-3635 (($) NIL)) (-1869 ((|#1| $ (-569) |#1|) NIL) ((|#1| $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3040 ((|#1| $ $) NIL (|has| |#1| (-1057)))) (-4328 (($ $ (-569)) NIL) (($ $ (-1242 (-569))) NIL)) (-3260 (($ $ $) NIL (|has| |#1| (-1057)))) (-3560 (((-776) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447))) (((-776) |#1| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#1| (-1108))))) (-2785 (($ $ $ (-569)) NIL (|has| $ (-6 -4448)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) 20 (|has| |#1| (-619 (-541))))) (-3809 (($ (-649 |#1|)) 10)) (-2443 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-649 $)) NIL)) (-3796 (((-867) $) NIL (|has| |#1| (-618 (-867))))) (-1520 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-1980 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4447)))) (-2978 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2956 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2920 (((-112) $ $) NIL (|has| |#1| (-1108)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-855)))) (-2944 (((-112) $ $) NIL (|has| |#1| (-855)))) (-3024 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3012 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-569) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-731))) (($ $ |#1|) NIL (|has| |#1| (-731)))) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1275 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -3504 ($ (-649 |#1|))))) (-1225)) (T -1275)) -((-3504 (*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1275 *3))))) -(-13 (-1273 |#1|) (-10 -8 (-15 -3504 ($ (-649 |#1|))))) -((-2417 (((-112) $ $) NIL)) (-1751 (((-1167) $ (-1167)) 107) (((-1167) $ (-1167) (-1167)) 105) (((-1167) $ (-1167) (-649 (-1167))) 104)) (-2223 (($) 69)) (-3989 (((-1280) $ (-473) (-927)) 54)) (-3157 (((-1280) $ (-927) (-1167)) 89) (((-1280) $ (-927) (-879)) 90)) (-2915 (((-1280) $ (-927) (-383) (-383)) 57)) (-3331 (((-1280) $ (-1167)) 84)) (-3118 (((-1280) $ (-927) (-1167)) 94)) (-4092 (((-1280) $ (-927) (-383) (-383)) 58)) (-1461 (((-1280) $ (-927) (-927)) 55)) (-1727 (((-1280) $) 85)) (-1315 (((-1280) $ (-927) (-1167)) 93)) (-1555 (((-1280) $ (-473) (-927)) 41)) (-4317 (((-1280) $ (-927) (-1167)) 92)) (-3350 (((-649 (-265)) $) 29) (($ $ (-649 (-265))) 30)) (-4204 (((-1280) $ (-776) (-776)) 52)) (-3633 (($ $) 70) (($ (-473) (-649 (-265))) 71)) (-3435 (((-1167) $) NIL)) (-2006 (((-569) $) 48)) (-3547 (((-1128) $) NIL)) (-2001 (((-1275 (-3 (-473) "undefined")) $) 47)) (-3895 (((-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $) 46)) (-3667 (((-1280) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569)) 83)) (-1945 (((-649 (-949 (-226))) $) NIL)) (-2844 (((-473) $ (-927)) 43)) (-2992 (((-1280) $ (-776) (-776) (-927) (-927)) 50)) (-1702 (((-1280) $ (-1167)) 95)) (-2542 (((-1280) $ (-927) (-1167)) 91)) (-3796 (((-867) $) 102)) (-4133 (((-1280) $) 96)) (-1520 (((-112) $ $) NIL)) (-1953 (((-1280) $ (-927) (-1167)) 87) (((-1280) $ (-927) (-879)) 88)) (-2920 (((-112) $ $) NIL))) -(((-1276) (-13 (-1108) (-10 -8 (-15 -1945 ((-649 (-949 (-226))) $)) (-15 -2223 ($)) (-15 -3633 ($ $)) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -3633 ($ (-473) (-649 (-265)))) (-15 -3667 ((-1280) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -3895 ((-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -2001 ((-1275 (-3 (-473) "undefined")) $)) (-15 -3331 ((-1280) $ (-1167))) (-15 -1555 ((-1280) $ (-473) (-927))) (-15 -2844 ((-473) $ (-927))) (-15 -1953 ((-1280) $ (-927) (-1167))) (-15 -1953 ((-1280) $ (-927) (-879))) (-15 -3157 ((-1280) $ (-927) (-1167))) (-15 -3157 ((-1280) $ (-927) (-879))) (-15 -4317 ((-1280) $ (-927) (-1167))) (-15 -1315 ((-1280) $ (-927) (-1167))) (-15 -2542 ((-1280) $ (-927) (-1167))) (-15 -1702 ((-1280) $ (-1167))) (-15 -4133 ((-1280) $)) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -4092 ((-1280) $ (-927) (-383) (-383))) (-15 -2915 ((-1280) $ (-927) (-383) (-383))) (-15 -3118 ((-1280) $ (-927) (-1167))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -3989 ((-1280) $ (-473) (-927))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -1727 ((-1280) $)) (-15 -2006 ((-569) $)) (-15 -3796 ((-867) $))))) (T -1276)) -((-3796 (*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1276)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1276)))) (-2223 (*1 *1) (-5 *1 (-1276))) (-3633 (*1 *1 *1) (-5 *1 (-1276))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276)))) (-3633 (*1 *1 *2 *3) (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1276)))) (-3667 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569))))) (-5 *1 (-1276)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-1275 (-3 (-473) "undefined"))) (-5 *1 (-1276)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1555 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1276)))) (-1953 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1953 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4317 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1315 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2542 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2992 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4092 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2915 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3118 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-3989 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276)))) (-1751 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276)))) (-1751 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1276)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1276))))) -(-13 (-1108) (-10 -8 (-15 -1945 ((-649 (-949 (-226))) $)) (-15 -2223 ($)) (-15 -3633 ($ $)) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -3633 ($ (-473) (-649 (-265)))) (-15 -3667 ((-1280) $ (-927) (-226) (-226) (-226) (-226) (-569) (-569) (-569) (-569) (-879) (-569) (-879) (-569))) (-15 -3895 ((-1275 (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) (|:| |axesColor| (-879)) (|:| -3157 (-569)) (|:| |unitsColor| (-879)) (|:| |showing| (-569)))) $)) (-15 -2001 ((-1275 (-3 (-473) "undefined")) $)) (-15 -3331 ((-1280) $ (-1167))) (-15 -1555 ((-1280) $ (-473) (-927))) (-15 -2844 ((-473) $ (-927))) (-15 -1953 ((-1280) $ (-927) (-1167))) (-15 -1953 ((-1280) $ (-927) (-879))) (-15 -3157 ((-1280) $ (-927) (-1167))) (-15 -3157 ((-1280) $ (-927) (-879))) (-15 -4317 ((-1280) $ (-927) (-1167))) (-15 -1315 ((-1280) $ (-927) (-1167))) (-15 -2542 ((-1280) $ (-927) (-1167))) (-15 -1702 ((-1280) $ (-1167))) (-15 -4133 ((-1280) $)) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -4092 ((-1280) $ (-927) (-383) (-383))) (-15 -2915 ((-1280) $ (-927) (-383) (-383))) (-15 -3118 ((-1280) $ (-927) (-1167))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -3989 ((-1280) $ (-473) (-927))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -1727 ((-1280) $)) (-15 -2006 ((-569) $)) (-15 -3796 ((-867) $)))) -((-2417 (((-112) $ $) NIL)) (-1432 (((-1280) $ (-383)) 169) (((-1280) $ (-383) (-383) (-383)) 170)) (-1751 (((-1167) $ (-1167)) 179) (((-1167) $ (-1167) (-1167)) 177) (((-1167) $ (-1167) (-649 (-1167))) 176)) (-2218 (($) 67)) (-3352 (((-1280) $ (-383) (-383) (-383) (-383) (-383)) 141) (((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $) 139) (((-1280) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) 140) (((-1280) $ (-569) (-569) (-383) (-383) (-383)) 144) (((-1280) $ (-383) (-383)) 145) (((-1280) $ (-383) (-383) (-383)) 152)) (-3227 (((-383)) 122) (((-383) (-383)) 123)) (-1359 (((-383)) 117) (((-383) (-383)) 119)) (-2902 (((-383)) 120) (((-383) (-383)) 121)) (-3863 (((-383)) 126) (((-383) (-383)) 127)) (-3475 (((-383)) 124) (((-383) (-383)) 125)) (-2915 (((-1280) $ (-383) (-383)) 171)) (-3331 (((-1280) $ (-1167)) 153)) (-3849 (((-1141 (-226)) $) 68) (($ $ (-1141 (-226))) 69)) (-3837 (((-1280) $ (-1167)) 187)) (-1593 (((-1280) $ (-1167)) 188)) (-4323 (((-1280) $ (-383) (-383)) 151) (((-1280) $ (-569) (-569)) 168)) (-1461 (((-1280) $ (-927) (-927)) 160)) (-1727 (((-1280) $) 137)) (-2864 (((-1280) $ (-1167)) 186)) (-2446 (((-1280) $ (-1167)) 134)) (-3350 (((-649 (-265)) $) 70) (($ $ (-649 (-265))) 71)) (-4204 (((-1280) $ (-776) (-776)) 159)) (-1889 (((-1280) $ (-776) (-949 (-226))) 193)) (-2420 (($ $) 73) (($ (-1141 (-226)) (-1167)) 74) (($ (-1141 (-226)) (-649 (-265))) 75)) (-2172 (((-1280) $ (-383) (-383) (-383)) 131)) (-3435 (((-1167) $) NIL)) (-2006 (((-569) $) 128)) (-3686 (((-1280) $ (-383)) 174)) (-2965 (((-1280) $ (-383)) 191)) (-3547 (((-1128) $) NIL)) (-1446 (((-1280) $ (-383)) 190)) (-2816 (((-1280) $ (-1167)) 136)) (-2992 (((-1280) $ (-776) (-776) (-927) (-927)) 158)) (-2232 (((-1280) $ (-1167)) 133)) (-1702 (((-1280) $ (-1167)) 135)) (-3925 (((-1280) $ (-157) (-157)) 157)) (-3796 (((-867) $) 166)) (-4133 (((-1280) $) 138)) (-1856 (((-1280) $ (-1167)) 189)) (-1520 (((-112) $ $) NIL)) (-1953 (((-1280) $ (-1167)) 132)) (-2920 (((-112) $ $) NIL))) -(((-1277) (-13 (-1108) (-10 -8 (-15 -1359 ((-383))) (-15 -1359 ((-383) (-383))) (-15 -2902 ((-383))) (-15 -2902 ((-383) (-383))) (-15 -3227 ((-383))) (-15 -3227 ((-383) (-383))) (-15 -3475 ((-383))) (-15 -3475 ((-383) (-383))) (-15 -3863 ((-383))) (-15 -3863 ((-383) (-383))) (-15 -2218 ($)) (-15 -2420 ($ $)) (-15 -2420 ($ (-1141 (-226)) (-1167))) (-15 -2420 ($ (-1141 (-226)) (-649 (-265)))) (-15 -3849 ((-1141 (-226)) $)) (-15 -3849 ($ $ (-1141 (-226)))) (-15 -1889 ((-1280) $ (-776) (-949 (-226)))) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -3331 ((-1280) $ (-1167))) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -3352 ((-1280) $ (-383) (-383) (-383) (-383) (-383))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -3352 ((-1280) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3352 ((-1280) $ (-569) (-569) (-383) (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383) (-383))) (-15 -1702 ((-1280) $ (-1167))) (-15 -1953 ((-1280) $ (-1167))) (-15 -2232 ((-1280) $ (-1167))) (-15 -2446 ((-1280) $ (-1167))) (-15 -2816 ((-1280) $ (-1167))) (-15 -4323 ((-1280) $ (-383) (-383))) (-15 -4323 ((-1280) $ (-569) (-569))) (-15 -1432 ((-1280) $ (-383))) (-15 -1432 ((-1280) $ (-383) (-383) (-383))) (-15 -2915 ((-1280) $ (-383) (-383))) (-15 -2864 ((-1280) $ (-1167))) (-15 -1446 ((-1280) $ (-383))) (-15 -2965 ((-1280) $ (-383))) (-15 -3837 ((-1280) $ (-1167))) (-15 -1593 ((-1280) $ (-1167))) (-15 -1856 ((-1280) $ (-1167))) (-15 -2172 ((-1280) $ (-383) (-383) (-383))) (-15 -3686 ((-1280) $ (-383))) (-15 -1727 ((-1280) $)) (-15 -3925 ((-1280) $ (-157) (-157))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -4133 ((-1280) $)) (-15 -2006 ((-569) $))))) (T -1277)) -((-1359 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-1359 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-2902 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-2902 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3227 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3227 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3475 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3863 (*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) (-2218 (*1 *1) (-5 *1 (-1277))) (-2420 (*1 *1 *1) (-5 *1 (-1277))) (-2420 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1167)) (-5 *1 (-1277)))) (-2420 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1277)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277)))) (-3849 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277)))) (-1889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277)))) (-3350 (*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277)))) (-4204 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1461 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3331 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2992 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3352 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1953 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2232 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2816 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-4323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-4323 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1432 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1432 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2915 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1446 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3837 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1593 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1856 (*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2172 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277)))) (-3925 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1280)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1277)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277)))) (-2006 (*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1277))))) -(-13 (-1108) (-10 -8 (-15 -1359 ((-383))) (-15 -1359 ((-383) (-383))) (-15 -2902 ((-383))) (-15 -2902 ((-383) (-383))) (-15 -3227 ((-383))) (-15 -3227 ((-383) (-383))) (-15 -3475 ((-383))) (-15 -3475 ((-383) (-383))) (-15 -3863 ((-383))) (-15 -3863 ((-383) (-383))) (-15 -2218 ($)) (-15 -2420 ($ $)) (-15 -2420 ($ (-1141 (-226)) (-1167))) (-15 -2420 ($ (-1141 (-226)) (-649 (-265)))) (-15 -3849 ((-1141 (-226)) $)) (-15 -3849 ($ $ (-1141 (-226)))) (-15 -1889 ((-1280) $ (-776) (-949 (-226)))) (-15 -3350 ((-649 (-265)) $)) (-15 -3350 ($ $ (-649 (-265)))) (-15 -4204 ((-1280) $ (-776) (-776))) (-15 -1461 ((-1280) $ (-927) (-927))) (-15 -3331 ((-1280) $ (-1167))) (-15 -2992 ((-1280) $ (-776) (-776) (-927) (-927))) (-15 -3352 ((-1280) $ (-383) (-383) (-383) (-383) (-383))) (-15 -3352 ((-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))) $)) (-15 -3352 ((-1280) $ (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) (|:| |deltaX| (-226)) (|:| |deltaY| (-226))))) (-15 -3352 ((-1280) $ (-569) (-569) (-383) (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383))) (-15 -3352 ((-1280) $ (-383) (-383) (-383))) (-15 -1702 ((-1280) $ (-1167))) (-15 -1953 ((-1280) $ (-1167))) (-15 -2232 ((-1280) $ (-1167))) (-15 -2446 ((-1280) $ (-1167))) (-15 -2816 ((-1280) $ (-1167))) (-15 -4323 ((-1280) $ (-383) (-383))) (-15 -4323 ((-1280) $ (-569) (-569))) (-15 -1432 ((-1280) $ (-383))) (-15 -1432 ((-1280) $ (-383) (-383) (-383))) (-15 -2915 ((-1280) $ (-383) (-383))) (-15 -2864 ((-1280) $ (-1167))) (-15 -1446 ((-1280) $ (-383))) (-15 -2965 ((-1280) $ (-383))) (-15 -3837 ((-1280) $ (-1167))) (-15 -1593 ((-1280) $ (-1167))) (-15 -1856 ((-1280) $ (-1167))) (-15 -2172 ((-1280) $ (-383) (-383) (-383))) (-15 -3686 ((-1280) $ (-383))) (-15 -1727 ((-1280) $)) (-15 -3925 ((-1280) $ (-157) (-157))) (-15 -1751 ((-1167) $ (-1167))) (-15 -1751 ((-1167) $ (-1167) (-1167))) (-15 -1751 ((-1167) $ (-1167) (-649 (-1167)))) (-15 -4133 ((-1280) $)) (-15 -2006 ((-569) $)))) -((-1403 (((-649 (-1167)) (-649 (-1167))) 104) (((-649 (-1167))) 96)) (-2822 (((-649 (-1167))) 94)) (-3146 (((-649 (-927)) (-649 (-927))) 69) (((-649 (-927))) 64)) (-1507 (((-649 (-776)) (-649 (-776))) 61) (((-649 (-776))) 55)) (-2908 (((-1280)) 71)) (-4271 (((-927) (-927)) 87) (((-927)) 86)) (-1379 (((-927) (-927)) 85) (((-927)) 84)) (-3108 (((-879) (-879)) 81) (((-879)) 80)) (-2504 (((-226)) 91) (((-226) (-383)) 93)) (-2770 (((-927)) 88) (((-927) (-927)) 89)) (-2878 (((-927) (-927)) 83) (((-927)) 82)) (-4152 (((-879) (-879)) 75) (((-879)) 73)) (-3823 (((-879) (-879)) 77) (((-879)) 76)) (-2217 (((-879) (-879)) 79) (((-879)) 78))) -(((-1278) (-10 -7 (-15 -4152 ((-879))) (-15 -4152 ((-879) (-879))) (-15 -3823 ((-879))) (-15 -3823 ((-879) (-879))) (-15 -2217 ((-879))) (-15 -2217 ((-879) (-879))) (-15 -3108 ((-879))) (-15 -3108 ((-879) (-879))) (-15 -2878 ((-927))) (-15 -2878 ((-927) (-927))) (-15 -1507 ((-649 (-776)))) (-15 -1507 ((-649 (-776)) (-649 (-776)))) (-15 -3146 ((-649 (-927)))) (-15 -3146 ((-649 (-927)) (-649 (-927)))) (-15 -2908 ((-1280))) (-15 -1403 ((-649 (-1167)))) (-15 -1403 ((-649 (-1167)) (-649 (-1167)))) (-15 -2822 ((-649 (-1167)))) (-15 -1379 ((-927))) (-15 -4271 ((-927))) (-15 -1379 ((-927) (-927))) (-15 -4271 ((-927) (-927))) (-15 -2770 ((-927) (-927))) (-15 -2770 ((-927))) (-15 -2504 ((-226) (-383))) (-15 -2504 ((-226))))) (T -1278)) -((-2504 (*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1278)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1278)))) (-2770 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-4271 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-1379 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-4271 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-1379 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-2822 (*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) (-1403 (*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) (-2908 (*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1278)))) (-3146 (*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278)))) (-3146 (*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278)))) (-1507 (*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-2878 (*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-3108 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-2217 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-2217 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-3823 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-3823 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-4152 (*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) (-4152 (*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))) -(-10 -7 (-15 -4152 ((-879))) (-15 -4152 ((-879) (-879))) (-15 -3823 ((-879))) (-15 -3823 ((-879) (-879))) (-15 -2217 ((-879))) (-15 -2217 ((-879) (-879))) (-15 -3108 ((-879))) (-15 -3108 ((-879) (-879))) (-15 -2878 ((-927))) (-15 -2878 ((-927) (-927))) (-15 -1507 ((-649 (-776)))) (-15 -1507 ((-649 (-776)) (-649 (-776)))) (-15 -3146 ((-649 (-927)))) (-15 -3146 ((-649 (-927)) (-649 (-927)))) (-15 -2908 ((-1280))) (-15 -1403 ((-649 (-1167)))) (-15 -1403 ((-649 (-1167)) (-649 (-1167)))) (-15 -2822 ((-649 (-1167)))) (-15 -1379 ((-927))) (-15 -4271 ((-927))) (-15 -1379 ((-927) (-927))) (-15 -4271 ((-927) (-927))) (-15 -2770 ((-927) (-927))) (-15 -2770 ((-927))) (-15 -2504 ((-226) (-383))) (-15 -2504 ((-226)))) -((-3333 (((-473) (-649 (-649 (-949 (-226)))) (-649 (-265))) 22) (((-473) (-649 (-649 (-949 (-226))))) 21) (((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 20)) (-3136 (((-1276) (-649 (-649 (-949 (-226)))) (-649 (-265))) 33) (((-1276) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265))) 32)) (-3796 (((-1276) (-473)) 48))) -(((-1279) (-10 -7 (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3796 ((-1276) (-473))))) (T -1279)) -((-3796 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1276)) (-5 *1 (-1279)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-1279)))) (-3136 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-1279)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1279)))) (-3333 (*1 *2 *3) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473)) (-5 *1 (-1279)))) (-3333 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1279))))) -(-10 -7 (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))))) (-15 -3333 ((-473) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-879) (-879) (-927) (-649 (-265)))) (-15 -3136 ((-1276) (-649 (-649 (-949 (-226)))) (-649 (-265)))) (-15 -3796 ((-1276) (-473)))) -((-2579 (($) 6)) (-3796 (((-867) $) 9))) -(((-1280) (-13 (-618 (-867)) (-10 -8 (-15 -2579 ($))))) (T -1280)) -((-2579 (*1 *1) (-5 *1 (-1280)))) -(-13 (-618 (-867)) (-10 -8 (-15 -2579 ($)))) -((-3035 (($ $ |#2|) 10))) -(((-1281 |#1| |#2|) (-10 -8 (-15 -3035 (|#1| |#1| |#2|))) (-1282 |#2|) (-367)) (T -1281)) -NIL -(-10 -8 (-15 -3035 (|#1| |#1| |#2|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-2377 (((-134)) 33)) (-3796 (((-867) $) 12)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-2920 (((-112) $ $) 6)) (-3035 (($ $ |#1|) 34)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1282 |#1|) (-140) (-367)) (T -1282)) -((-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-367)))) (-2377 (*1 *2) (-12 (-4 *1 (-1282 *3)) (-4 *3 (-367)) (-5 *2 (-134))))) -(-13 (-722 |t#1|) (-10 -8 (-15 -3035 ($ $ |t#1|)) (-15 -2377 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-653 |#1|) . T) ((-645 |#1|) . T) ((-722 |#1|) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1108) . T)) -((-3877 (((-649 (-1219 |#1|)) (-1185) (-1219 |#1|)) 83)) (-3609 (((-1165 (-1165 (-958 |#1|))) (-1185) (-1165 (-958 |#1|))) 63)) (-3660 (((-1 (-1165 (-1219 |#1|)) (-1165 (-1219 |#1|))) (-776) (-1219 |#1|) (-1165 (-1219 |#1|))) 74)) (-2291 (((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776)) 65)) (-2279 (((-1 (-1181 (-958 |#1|)) (-958 |#1|)) (-1185)) 32)) (-3871 (((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776)) 64))) -(((-1283 |#1|) (-10 -7 (-15 -2291 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3871 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3609 ((-1165 (-1165 (-958 |#1|))) (-1185) (-1165 (-958 |#1|)))) (-15 -2279 ((-1 (-1181 (-958 |#1|)) (-958 |#1|)) (-1185))) (-15 -3877 ((-649 (-1219 |#1|)) (-1185) (-1219 |#1|))) (-15 -3660 ((-1 (-1165 (-1219 |#1|)) (-1165 (-1219 |#1|))) (-776) (-1219 |#1|) (-1165 (-1219 |#1|))))) (-367)) (T -1283)) -((-3660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1219 *6)) (-5 *2 (-1 (-1165 *4) (-1165 *4))) (-5 *1 (-1283 *6)) (-5 *5 (-1165 *4)))) (-3877 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-649 (-1219 *5))) (-5 *1 (-1283 *5)) (-5 *4 (-1219 *5)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1 (-1181 (-958 *4)) (-958 *4))) (-5 *1 (-1283 *4)) (-4 *4 (-367)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-1165 (-1165 (-958 *5)))) (-5 *1 (-1283 *5)) (-5 *4 (-1165 (-958 *5))))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4)))) (-5 *1 (-1283 *4)) (-4 *4 (-367)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4)))) (-5 *1 (-1283 *4)) (-4 *4 (-367))))) -(-10 -7 (-15 -2291 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3871 ((-1 (-1165 (-958 |#1|)) (-1165 (-958 |#1|))) (-776))) (-15 -3609 ((-1165 (-1165 (-958 |#1|))) (-1185) (-1165 (-958 |#1|)))) (-15 -2279 ((-1 (-1181 (-958 |#1|)) (-958 |#1|)) (-1185))) (-15 -3877 ((-649 (-1219 |#1|)) (-1185) (-1219 |#1|))) (-15 -3660 ((-1 (-1165 (-1219 |#1|)) (-1165 (-1219 |#1|))) (-776) (-1219 |#1|) (-1165 (-1219 |#1|))))) -((-3615 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|) 82)) (-4002 (((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|)))) 81))) -(((-1284 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|))) (-353) (-1251 |#1|) (-1251 |#2|) (-414 |#2| |#3|)) (T -1284)) -((-3615 (*1 *2 *3) (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3)) (-5 *2 (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-694 *3)))) (-5 *1 (-1284 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5)))) (-4002 (*1 *2) (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4)) (-5 *2 (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-694 *4)))) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5))))) -(-10 -7 (-15 -4002 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))))) (-15 -3615 ((-2 (|:| -2403 (-694 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-694 |#2|))) |#2|))) -((-2417 (((-112) $ $) NIL)) (-3069 (((-1143) $) 11)) (-1638 (((-1143) $) 9)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 17) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1285) (-13 (-1091) (-10 -8 (-15 -1638 ((-1143) $)) (-15 -3069 ((-1143) $))))) (T -1285)) -((-1638 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285))))) -(-13 (-1091) (-10 -8 (-15 -1638 ((-1143) $)) (-15 -3069 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-2385 (((-1143) $) 9)) (-3796 (((-867) $) 15) (($ (-1190)) NIL) (((-1190) $) NIL)) (-1520 (((-112) $ $) NIL)) (-2920 (((-112) $ $) NIL))) -(((-1286) (-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $))))) (T -1286)) -((-2385 (*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1286))))) -(-13 (-1091) (-10 -8 (-15 -2385 ((-1143) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 58)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) NIL)) (-2349 (((-112) $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-3796 (((-867) $) 81) (($ (-569)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-173)))) (-2721 (((-776)) NIL T CONST)) (-3284 (((-1280) (-776)) 16)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 37 T CONST)) (-1815 (($) 84 T CONST)) (-2920 (((-112) $ $) 87)) (-3035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-367)))) (-3024 (($ $) 89) (($ $ $) NIL)) (-3012 (($ $ $) 63)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-173))) (($ $ |#1|) NIL (|has| |#1| (-173))))) -(((-1287 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1057) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776))))) (-1057) (-855) (-798) (-955 |#1| |#3| |#2|) (-649 |#2|) (-649 (-776)) (-776)) (T -1287)) -((-3035 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1057)) (-4 *3 (-855)) (-4 *4 (-798)) (-14 *6 (-649 *3)) (-5 *1 (-1287 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3)) (-14 *7 (-649 (-776))) (-14 *8 (-776)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) (-14 *8 (-649 *5)) (-5 *2 (-1280)) (-5 *1 (-1287 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5)) (-14 *9 (-649 *3)) (-14 *10 *3)))) -(-13 (-1057) (-495 |#4|) (-10 -8 (IF (|has| |#1| (-173)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-367)) (-15 -3035 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3284 ((-1280) (-776))))) -((-2417 (((-112) $ $) NIL)) (-1923 (((-649 (-2 (|:| -4133 $) (|:| -1721 (-649 |#4|)))) (-649 |#4|)) NIL)) (-1806 (((-649 $) (-649 |#4|)) 96)) (-1712 (((-649 |#3|) $) NIL)) (-1731 (((-112) $) NIL)) (-2800 (((-112) $) NIL (|has| |#1| (-561)))) (-2501 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2950 ((|#4| |#4| $) NIL)) (-3358 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-3914 (((-112) $ (-776)) NIL)) (-1417 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4427 (($) NIL T CONST)) (-3503 (((-112) $) NIL (|has| |#1| (-561)))) (-1717 (((-112) $ $) NIL (|has| |#1| (-561)))) (-2039 (((-112) $ $) NIL (|has| |#1| (-561)))) (-1964 (((-112) $) NIL (|has| |#1| (-561)))) (-4149 (((-649 |#4|) (-649 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2459 (((-649 |#4|) (-649 |#4|) $) 28 (|has| |#1| (-561)))) (-3459 (((-649 |#4|) (-649 |#4|) $) NIL (|has| |#1| (-561)))) (-4381 (((-3 $ "failed") (-649 |#4|)) NIL)) (-3150 (($ (-649 |#4|)) NIL)) (-3525 (((-3 $ "failed") $) 78)) (-2548 ((|#4| |#4| $) 83)) (-3550 (($ $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-1698 (($ |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-2054 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-2288 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3604 ((|#4| |#4| $) NIL)) (-3598 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4447))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4447))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1694 (((-2 (|:| -4133 (-649 |#4|)) (|:| -1721 (-649 |#4|))) $) NIL)) (-2882 (((-649 |#4|) $) NIL (|has| $ (-6 -4447)))) (-2140 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3372 ((|#3| $) 84)) (-2314 (((-112) $ (-776)) NIL)) (-2009 (((-649 |#4|) $) 32 (|has| $ (-6 -4447)))) (-2004 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108))))) (-3644 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-649 |#4|)) 38)) (-3834 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4448)))) (-1346 (($ (-1 |#4| |#4|) $) NIL)) (-1328 (((-649 |#3|) $) NIL)) (-1512 (((-112) |#3| $) NIL)) (-4254 (((-112) $ (-776)) NIL)) (-3435 (((-1167) $) NIL)) (-1724 (((-3 |#4| "failed") $) NIL)) (-1586 (((-649 |#4|) $) 54)) (-2310 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1341 ((|#4| |#4| $) 82)) (-2151 (((-112) $ $) 93)) (-1846 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-561)))) (-4046 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4348 ((|#4| |#4| $) NIL)) (-3547 (((-1128) $) NIL)) (-3513 (((-3 |#4| "failed") $) 77)) (-1574 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1589 (((-3 $ "failed") $ |#4|) NIL)) (-3166 (($ $ |#4|) NIL)) (-3208 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-1725 (($ $ (-649 |#4|) (-649 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-297 |#4|)) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108)))) (($ $ (-649 (-297 |#4|))) NIL (-12 (|has| |#4| (-312 |#4|)) (|has| |#4| (-1108))))) (-3790 (((-112) $ $) NIL)) (-3162 (((-112) $) 75)) (-3635 (($) 46)) (-4339 (((-776) $) NIL)) (-3560 (((-776) |#4| $) NIL (-12 (|has| $ (-6 -4447)) (|has| |#4| (-1108)))) (((-776) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3962 (($ $) NIL)) (-1410 (((-541) $) NIL (|has| |#4| (-619 (-541))))) (-3809 (($ (-649 |#4|)) NIL)) (-3381 (($ $ |#3|) NIL)) (-2963 (($ $ |#3|) NIL)) (-4039 (($ $) NIL)) (-3112 (($ $ |#3|) NIL)) (-3796 (((-867) $) NIL) (((-649 |#4|) $) 63)) (-1873 (((-776) $) NIL (|has| |#3| (-372)))) (-2425 (((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-649 |#4|)) 45)) (-2794 (((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-649 $) (-649 |#4|)) 74)) (-1520 (((-112) $ $) NIL)) (-3494 (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3310 (-649 |#4|))) "failed") (-649 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2546 (((-112) $ (-1 (-112) |#4| (-649 |#4|))) NIL)) (-1980 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4447)))) (-3183 (((-649 |#3|) $) NIL)) (-4269 (((-112) |#3| $) NIL)) (-2920 (((-112) $ $) NIL)) (-2428 (((-776) $) NIL (|has| $ (-6 -4447))))) -(((-1288 |#1| |#2| |#3| |#4|) (-13 (-1218 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3644 ((-3 $ "failed") (-649 |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|))) (-15 -2794 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2794 ((-649 $) (-649 |#4|))))) (-561) (-798) (-855) (-1073 |#1| |#2| |#3|)) (T -1288)) -((-3644 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8)))) (-3644 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1288 *3 *4 *5 *6)))) (-2425 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8)))) (-2425 (*1 *1 *2) (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1288 *3 *4 *5 *6)))) (-2794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1288 *6 *7 *8 *9))) (-5 *1 (-1288 *6 *7 *8 *9)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1288 *4 *5 *6 *7))) (-5 *1 (-1288 *4 *5 *6 *7))))) -(-13 (-1218 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3644 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3644 ((-3 $ "failed") (-649 |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2425 ((-3 $ "failed") (-649 |#4|))) (-15 -2794 ((-649 $) (-649 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2794 ((-649 $) (-649 |#4|))))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2208 (((-3 $ "failed") $ $) 20)) (-4427 (($) 18 T CONST)) (-3086 (((-3 $ "failed") $) 37)) (-2349 (((-112) $) 35)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#1|) 45)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1289 |#1|) (-140) (-1057)) (T -1289)) -NIL -(-13 (-1057) (-111 |t#1| |t#1|) (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-173)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-173)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 |#1|) |has| |#1| (-173)) ((-722 |#1|) |has| |#1| (-173)) ((-731) . T) ((-1059 |#1|) . T) ((-1064 |#1|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T)) -((-2417 (((-112) $ $) 67)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 52)) (-1604 (($ $ (-776)) 46)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ (-776)) 24 (|has| |#2| (-173))) (($ $ $) 25 (|has| |#2| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ $) 70) (($ $ (-824 |#1|)) 56) (($ $ |#1|) 60)) (-4381 (((-3 (-824 |#1|) "failed") $) NIL)) (-3150 (((-824 |#1|) $) NIL)) (-1883 (($ $) 39)) (-3086 (((-3 $ "failed") $) NIL)) (-2423 (((-112) $) NIL)) (-2782 (($ $) NIL)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 |#1|) |#2|) 38)) (-2325 (($ $) 40)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 12)) (-3702 (((-824 |#1|) $) NIL)) (-2357 (((-824 |#1|) $) 41)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-3714 (($ $ $) 69) (($ $ (-824 |#1|)) 58) (($ $ |#1|) 62)) (-3379 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1849 (((-824 |#1|) $) 35)) (-1857 ((|#2| $) 37)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4339 (((-776) $) 43)) (-4041 (((-112) $) 47)) (-3709 ((|#2| $) NIL)) (-3796 (((-867) $) NIL) (($ (-824 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-569)) NIL)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-824 |#1|)) NIL)) (-1435 ((|#2| $ $) 76) ((|#2| $ (-824 |#1|)) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 13 T CONST)) (-1815 (($) 19 T CONST)) (-3717 (((-649 (-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2920 (((-112) $ $) 44)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 28)) (** (($ $ (-776)) NIL) (($ $ (-927)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-824 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1290 |#1| |#2|) (-13 (-386 |#2| (-824 |#1|)) (-1296 |#1| |#2|)) (-855) (-1057)) (T -1290)) -NIL -(-13 (-386 |#2| (-824 |#1|)) (-1296 |#1| |#2|)) -((-2662 ((|#3| |#3| (-776)) 30)) (-4389 ((|#3| |#3| (-776)) 36)) (-2098 ((|#3| |#3| |#3| (-776)) 37))) -(((-1291 |#1| |#2| |#3|) (-10 -7 (-15 -4389 (|#3| |#3| (-776))) (-15 -2662 (|#3| |#3| (-776))) (-15 -2098 (|#3| |#3| |#3| (-776)))) (-13 (-1057) (-722 (-412 (-569)))) (-855) (-1296 |#2| |#1|)) (T -1291)) -((-2098 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))) (-2662 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))) (-4389 (*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4))))) -(-10 -7 (-15 -4389 (|#3| |#3| (-776))) (-15 -2662 (|#3| |#3| (-776))) (-15 -2098 (|#3| |#3| |#3| (-776)))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3105 (((-649 |#1|) $) 47)) (-2208 (((-3 $ "failed") $ $) 20)) (-2660 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4427 (($) 18 T CONST)) (-1768 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4381 (((-3 (-824 |#1|) "failed") $) 71)) (-3150 (((-824 |#1|) $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2423 (((-112) $) 52)) (-2782 (($ $) 51)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 57)) (-3348 (($ (-824 |#1|) |#2|) 58)) (-2325 (($ $) 56)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-3702 (((-824 |#1|) $) 68)) (-1346 (($ (-1 |#2| |#2|) $) 48)) (-3714 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4041 (((-112) $) 54)) (-3709 ((|#2| $) 53)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1435 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1292 |#1| |#2|) (-140) (-855) (-1057)) (T -1292)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-824 *3)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4))))) (-1435 (*1 *2 *1 *3) (-12 (-5 *3 (-824 *4)) (-4 *1 (-1292 *4 *2)) (-4 *4 (-855)) (-4 *2 (-1057)))) (-1435 (*1 *2 *1 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) (-3714 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3714 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-3714 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-1768 (*1 *1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-1768 (*1 *1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3348 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1292 *4 *3)) (-4 *3 (-1057)))) (-2198 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-112)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-3796 (*1 *1 *2) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-112)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) (-2423 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-112)))) (-2782 (*1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) (-2660 (*1 *1 *1 *1) (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)) (-4 *3 (-173)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-4 *4 (-173)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-649 *3))))) -(-13 (-1057) (-1289 |t#2|) (-1046 (-824 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3702 ((-824 |t#1|) $)) (-15 -3571 ((-2 (|:| |k| (-824 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1435 (|t#2| $ (-824 |t#1|))) (-15 -1435 (|t#2| $ $)) (-15 -3714 ($ $ |t#1|)) (-15 -3714 ($ $ (-824 |t#1|))) (-15 -3714 ($ $ $)) (-15 -1768 ($ $ |t#1|)) (-15 -1768 ($ $ (-824 |t#1|))) (-15 -1768 ($ $ $)) (-15 -3348 ($ (-824 |t#1|) |t#2|)) (-15 -2198 ((-112) $)) (-15 -2325 ($ $)) (-15 -3796 ($ |t#1|)) (-15 -4041 ((-112) $)) (-15 -3709 (|t#2| $)) (-15 -2423 ((-112) $)) (-15 -2782 ($ $)) (IF (|has| |t#2| (-173)) (PROGN (-15 -2660 ($ $ $)) (-15 -2660 ($ $ (-776)))) |%noBranch|) (-15 -1346 ($ (-1 |t#2| |t#2|) $)) (-15 -3105 ((-649 |t#1|) $)) (IF (|has| |t#2| (-6 -4440)) (-6 -4440) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1046 #0#) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1289 |#2|) . T)) -((-1476 (((-112) $) 15)) (-4269 (((-112) $) 14)) (-1679 (($ $) 19) (($ $ (-776)) 21))) -(((-1293 |#1| |#2|) (-10 -8 (-15 -1679 (|#1| |#1| (-776))) (-15 -1679 (|#1| |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|))) (-1294 |#2|) (-367)) (T -1293)) -NIL -(-10 -8 (-15 -1679 (|#1| |#1| (-776))) (-15 -1679 (|#1| |#1|)) (-15 -1476 ((-112) |#1|)) (-15 -4269 ((-112) |#1|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-2194 (((-2 (|:| -2736 $) (|:| -4434 $) (|:| |associate| $)) $) 47)) (-4355 (($ $) 46)) (-3039 (((-112) $) 44)) (-1476 (((-112) $) 104)) (-3322 (((-776)) 100)) (-2208 (((-3 $ "failed") $ $) 20)) (-1830 (($ $) 81)) (-3764 (((-423 $) $) 80)) (-2227 (((-112) $ $) 65)) (-4427 (($) 18 T CONST)) (-4381 (((-3 |#1| "failed") $) 111)) (-3150 ((|#1| $) 112)) (-2368 (($ $ $) 61)) (-3086 (((-3 $ "failed") $) 37)) (-2379 (($ $ $) 62)) (-1865 (((-2 (|:| -1435 (-649 $)) (|:| -2332 $)) (-649 $)) 57)) (-3701 (($ $ (-776)) 97 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372)))) (($ $) 96 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-1473 (((-112) $) 79)) (-1466 (((-838 (-927)) $) 94 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2349 (((-112) $) 35)) (-3817 (((-3 (-649 $) "failed") (-649 $) $) 58)) (-1839 (($ $ $) 52) (($ (-649 $)) 51)) (-3435 (((-1167) $) 10)) (-1817 (($ $) 78)) (-3020 (((-112) $) 103)) (-3547 (((-1128) $) 11)) (-2219 (((-1181 $) (-1181 $) (-1181 $)) 50)) (-1870 (($ $ $) 54) (($ (-649 $)) 53)) (-3800 (((-423 $) $) 82)) (-1898 (((-838 (-927))) 101)) (-3964 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2332 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2407 (((-3 $ "failed") $ $) 48)) (-4020 (((-3 (-649 $) "failed") (-649 $) $) 56)) (-2431 (((-776) $) 64)) (-2084 (((-2 (|:| -4007 $) (|:| -2054 $)) $ $) 63)) (-2166 (((-3 (-776) "failed") $ $) 95 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2377 (((-134)) 109)) (-4339 (((-838 (-927)) $) 102)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ $) 49) (($ (-412 (-569))) 74) (($ |#1|) 110)) (-2239 (((-3 $ "failed") $) 93 (-2776 (|has| |#1| (-145)) (|has| |#1| (-372))))) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-2664 (((-112) $ $) 45)) (-4269 (((-112) $) 105)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-1679 (($ $) 99 (|has| |#1| (-372))) (($ $ (-776)) 98 (|has| |#1| (-372)))) (-2920 (((-112) $ $) 6)) (-3035 (($ $ $) 73) (($ $ |#1|) 108)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36) (($ $ (-569)) 77)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ $ (-412 (-569))) 76) (($ (-412 (-569)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1294 |#1|) (-140) (-367)) (T -1294)) -((-4269 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-3020 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-1898 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) (-3322 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-776)))) (-1679 (*1 *1 *1) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-367)) (-4 *2 (-372)))) (-1679 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-4 *3 (-372))))) -(-13 (-367) (-1046 |t#1|) (-1282 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-407)) |%noBranch|) (-15 -4269 ((-112) $)) (-15 -1476 ((-112) $)) (-15 -3020 ((-112) $)) (-15 -4339 ((-838 (-927)) $)) (-15 -1898 ((-838 (-927)))) (-15 -3322 ((-776))) (IF (|has| |t#1| (-372)) (PROGN (-6 (-407)) (-15 -1679 ($ $)) (-15 -1679 ($ $ (-776)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-412 (-569))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-621 #0#) . T) ((-621 (-569)) . T) ((-621 |#1|) . T) ((-621 $) . T) ((-618 (-867)) . T) ((-173) . T) ((-244) . T) ((-293) . T) ((-310) . T) ((-367) . T) ((-407) -2776 (|has| |#1| (-372)) (|has| |#1| (-145))) ((-457) . T) ((-561) . T) ((-651 #0#) . T) ((-651 (-569)) . T) ((-651 |#1|) . T) ((-651 $) . T) ((-653 #0#) . T) ((-653 |#1|) . T) ((-653 $) . T) ((-645 #0#) . T) ((-645 |#1|) . T) ((-645 $) . T) ((-722 #0#) . T) ((-722 |#1|) . T) ((-722 $) . T) ((-731) . T) ((-926) . T) ((-1046 |#1|) . T) ((-1059 #0#) . T) ((-1059 |#1|) . T) ((-1059 $) . T) ((-1064 #0#) . T) ((-1064 |#1|) . T) ((-1064 $) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1229) . T) ((-1282 |#1|) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 98)) (-1604 (($ $ (-776)) 102)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ $) NIL (|has| |#2| (-173))) (($ $ (-776)) NIL (|has| |#2| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-4381 (((-3 (-824 |#1|) "failed") $) NIL) (((-3 (-899 |#1|) "failed") $) NIL)) (-3150 (((-824 |#1|) $) NIL) (((-899 |#1|) $) NIL)) (-1883 (($ $) 101)) (-3086 (((-3 $ "failed") $) NIL)) (-2423 (((-112) $) 90)) (-2782 (($ $) 93)) (-2103 (($ $ $ (-776)) 103)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 |#1|) |#2|) NIL) (($ (-899 |#1|) |#2|) 29)) (-2325 (($ $) 120)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3702 (((-824 |#1|) $) NIL)) (-2357 (((-824 |#1|) $) NIL)) (-1346 (($ (-1 |#2| |#2|) $) NIL)) (-3714 (($ $ |#1|) NIL) (($ $ (-824 |#1|)) NIL) (($ $ $) NIL)) (-2662 (($ $ (-776)) 113 (|has| |#2| (-722 (-412 (-569)))))) (-3379 (((-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1849 (((-899 |#1|) $) 83)) (-1857 ((|#2| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4389 (($ $ (-776)) 110 (|has| |#2| (-722 (-412 (-569)))))) (-4339 (((-776) $) 99)) (-4041 (((-112) $) 84)) (-3709 ((|#2| $) 88)) (-3796 (((-867) $) 69) (($ (-569)) NIL) (($ |#2|) 60) (($ (-824 |#1|)) NIL) (($ |#1|) 71) (($ (-899 |#1|)) NIL) (($ (-669 |#1| |#2|)) 48) (((-1290 |#1| |#2|) $) 76) (((-1299 |#1| |#2|) $) 81)) (-2512 (((-649 |#2|) $) NIL)) (-4383 ((|#2| $ (-899 |#1|)) NIL)) (-1435 ((|#2| $ (-824 |#1|)) NIL) ((|#2| $ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 21 T CONST)) (-1815 (($) 28 T CONST)) (-3717 (((-649 (-2 (|:| |k| (-899 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3740 (((-3 (-669 |#1| |#2|) "failed") $) 119)) (-2920 (((-112) $ $) 77)) (-3024 (($ $) 112) (($ $ $) 111)) (-3012 (($ $ $) 20)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-899 |#1|)) NIL))) -(((-1295 |#1| |#2|) (-13 (-1296 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -3796 ($ (-669 |#1| |#2|))) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1299 |#1| |#2|) $)) (-15 -3740 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -2103 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4389 ($ $ (-776))) (-15 -2662 ($ $ (-776)))) |%noBranch|))) (-855) (-173)) (T -1295)) -((-3796 (*1 *1 *2) (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) (-5 *1 (-1295 *3 *4)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-3740 (*1 *2 *1) (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-2103 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173)))) (-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173))))) -(-13 (-1296 |#1| |#2|) (-386 |#2| (-899 |#1|)) (-10 -8 (-15 -3796 ($ (-669 |#1| |#2|))) (-15 -3796 ((-1290 |#1| |#2|) $)) (-15 -3796 ((-1299 |#1| |#2|) $)) (-15 -3740 ((-3 (-669 |#1| |#2|) "failed") $)) (-15 -2103 ($ $ $ (-776))) (IF (|has| |#2| (-722 (-412 (-569)))) (PROGN (-15 -4389 ($ $ (-776))) (-15 -2662 ($ $ (-776)))) |%noBranch|))) -((-2417 (((-112) $ $) 7)) (-4143 (((-112) $) 17)) (-3105 (((-649 |#1|) $) 47)) (-1604 (($ $ (-776)) 80)) (-2208 (((-3 $ "failed") $ $) 20)) (-2660 (($ $ $) 50 (|has| |#2| (-173))) (($ $ (-776)) 49 (|has| |#2| (-173)))) (-4427 (($) 18 T CONST)) (-1768 (($ $ |#1|) 61) (($ $ (-824 |#1|)) 60) (($ $ $) 59)) (-4381 (((-3 (-824 |#1|) "failed") $) 71)) (-3150 (((-824 |#1|) $) 72)) (-3086 (((-3 $ "failed") $) 37)) (-2423 (((-112) $) 52)) (-2782 (($ $) 51)) (-2349 (((-112) $) 35)) (-2198 (((-112) $) 57)) (-3348 (($ (-824 |#1|) |#2|) 58)) (-2325 (($ $) 56)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) 67)) (-3702 (((-824 |#1|) $) 68)) (-2357 (((-824 |#1|) $) 82)) (-1346 (($ (-1 |#2| |#2|) $) 48)) (-3714 (($ $ |#1|) 64) (($ $ (-824 |#1|)) 63) (($ $ $) 62)) (-3435 (((-1167) $) 10)) (-3547 (((-1128) $) 11)) (-4339 (((-776) $) 81)) (-4041 (((-112) $) 54)) (-3709 ((|#2| $) 53)) (-3796 (((-867) $) 12) (($ (-569)) 33) (($ |#2|) 75) (($ (-824 |#1|)) 70) (($ |#1|) 55)) (-1435 ((|#2| $ (-824 |#1|)) 66) ((|#2| $ $) 65)) (-2721 (((-776)) 32 T CONST)) (-1520 (((-112) $ $) 9)) (-1804 (($) 19 T CONST)) (-1815 (($) 34 T CONST)) (-2920 (((-112) $ $) 6)) (-3024 (($ $) 23) (($ $ $) 22)) (-3012 (($ $ $) 15)) (** (($ $ (-927)) 28) (($ $ (-776)) 36)) (* (($ (-927) $) 14) (($ (-776) $) 16) (($ (-569) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1296 |#1| |#2|) (-140) (-855) (-1057)) (T -1296)) -((-2357 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-824 *3)))) (-4339 (*1 *2 *1) (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *2 (-776)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))))) -(-13 (-1292 |t#1| |t#2|) (-10 -8 (-15 -2357 ((-824 |t#1|) $)) (-15 -4339 ((-776) $)) (-15 -1604 ($ $ (-776))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-173)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-621 (-569)) . T) ((-621 #0=(-824 |#1|)) . T) ((-621 |#2|) . T) ((-618 (-867)) . T) ((-651 (-569)) . T) ((-651 |#2|) . T) ((-651 $) . T) ((-653 |#2|) . T) ((-653 $) . T) ((-645 |#2|) |has| |#2| (-173)) ((-722 |#2|) |has| |#2| (-173)) ((-731) . T) ((-1046 #0#) . T) ((-1059 |#2|) . T) ((-1064 |#2|) . T) ((-1057) . T) ((-1066) . T) ((-1120) . T) ((-1108) . T) ((-1289 |#2|) . T) ((-1292 |#1| |#2|) . T)) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-3105 (((-649 (-1185)) $) NIL)) (-2490 (($ (-1290 (-1185) |#1|)) NIL)) (-1604 (($ $ (-776)) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ $) NIL (|has| |#1| (-173))) (($ $ (-776)) NIL (|has| |#1| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ (-1185)) NIL) (($ $ (-824 (-1185))) NIL) (($ $ $) NIL)) (-4381 (((-3 (-824 (-1185)) "failed") $) NIL)) (-3150 (((-824 (-1185)) $) NIL)) (-3086 (((-3 $ "failed") $) NIL)) (-2423 (((-112) $) NIL)) (-2782 (($ $) NIL)) (-2349 (((-112) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 (-1185)) |#1|) NIL)) (-2325 (($ $) NIL)) (-3571 (((-2 (|:| |k| (-824 (-1185))) (|:| |c| |#1|)) $) NIL)) (-3702 (((-824 (-1185)) $) NIL)) (-2357 (((-824 (-1185)) $) NIL)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3714 (($ $ (-1185)) NIL) (($ $ (-824 (-1185))) NIL) (($ $ $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1380 (((-1290 (-1185) |#1|) $) NIL)) (-4339 (((-776) $) NIL)) (-4041 (((-112) $) NIL)) (-3709 ((|#1| $) NIL)) (-3796 (((-867) $) NIL) (($ (-569)) NIL) (($ |#1|) NIL) (($ (-824 (-1185))) NIL) (($ (-1185)) NIL)) (-1435 ((|#1| $ (-824 (-1185))) NIL) ((|#1| $ $) NIL)) (-2721 (((-776)) NIL T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) NIL T CONST)) (-4035 (((-649 (-2 (|:| |k| (-1185)) (|:| |c| $))) $) NIL)) (-1815 (($) NIL T CONST)) (-2920 (((-112) $ $) NIL)) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) NIL)) (** (($ $ (-927)) NIL) (($ $ (-776)) NIL)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1185) $) NIL))) -(((-1297 |#1|) (-13 (-1296 (-1185) |#1|) (-10 -8 (-15 -1380 ((-1290 (-1185) |#1|) $)) (-15 -2490 ($ (-1290 (-1185) |#1|))) (-15 -4035 ((-649 (-2 (|:| |k| (-1185)) (|:| |c| $))) $)))) (-1057)) (T -1297)) -((-1380 (*1 *2 *1) (-12 (-5 *2 (-1290 (-1185) *3)) (-5 *1 (-1297 *3)) (-4 *3 (-1057)))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-1290 (-1185) *3)) (-4 *3 (-1057)) (-5 *1 (-1297 *3)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| (-1185)) (|:| |c| (-1297 *3))))) (-5 *1 (-1297 *3)) (-4 *3 (-1057))))) -(-13 (-1296 (-1185) |#1|) (-10 -8 (-15 -1380 ((-1290 (-1185) |#1|) $)) (-15 -2490 ($ (-1290 (-1185) |#1|))) (-15 -4035 ((-649 (-2 (|:| |k| (-1185)) (|:| |c| $))) $)))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL)) (-4427 (($) NIL T CONST)) (-4381 (((-3 |#2| "failed") $) NIL)) (-3150 ((|#2| $) NIL)) (-1883 (($ $) NIL)) (-3086 (((-3 $ "failed") $) 42)) (-2423 (((-112) $) 35)) (-2782 (($ $) 37)) (-2349 (((-112) $) NIL)) (-3366 (((-776) $) NIL)) (-2572 (((-649 $) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ |#2| |#1|) NIL)) (-3702 ((|#2| $) 24)) (-2357 ((|#2| $) 22)) (-1346 (($ (-1 |#1| |#1|) $) NIL)) (-3379 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1849 ((|#2| $) NIL)) (-1857 ((|#1| $) NIL)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-4041 (((-112) $) 32)) (-3709 ((|#1| $) 33)) (-3796 (((-867) $) 65) (($ (-569)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2512 (((-649 |#1|) $) NIL)) (-4383 ((|#1| $ |#2|) NIL)) (-1435 ((|#1| $ |#2|) 28)) (-2721 (((-776)) 14 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 29 T CONST)) (-1815 (($) 11 T CONST)) (-3717 (((-649 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2920 (((-112) $ $) 30)) (-3035 (($ $ |#1|) 67 (|has| |#1| (-367)))) (-3024 (($ $) NIL) (($ $ $) NIL)) (-3012 (($ $ $) 50)) (** (($ $ (-927)) NIL) (($ $ (-776)) 52)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2428 (((-776) $) 16))) -(((-1298 |#1| |#2|) (-13 (-1057) (-1289 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2428 ((-776) $)) (-15 -2357 (|#2| $)) (-15 -3702 (|#2| $)) (-15 -1883 ($ $)) (-15 -1435 (|#1| $ |#2|)) (-15 -4041 ((-112) $)) (-15 -3709 (|#1| $)) (-15 -2423 ((-112) $)) (-15 -2782 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -3035 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) (-1057) (-851)) (T -1298)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))) (-1346 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-1298 *3 *4)) (-4 *4 (-851)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-851)))) (-2357 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057)))) (-3702 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057)))) (-1435 (*1 *2 *1 *3) (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-851)))) (-3709 (*1 *2 *1) (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851)))) (-2423 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-851)))) (-2782 (*1 *1 *1) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1057)) (-4 *3 (-851))))) -(-13 (-1057) (-1289 |#1|) (-386 |#1| |#2|) (-621 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2428 ((-776) $)) (-15 -2357 (|#2| $)) (-15 -3702 (|#2| $)) (-15 -1883 ($ $)) (-15 -1435 (|#1| $ |#2|)) (-15 -4041 ((-112) $)) (-15 -3709 (|#1| $)) (-15 -2423 ((-112) $)) (-15 -2782 ($ $)) (-15 -1346 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-367)) (-15 -3035 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4440)) (-6 -4440) |%noBranch|) (IF (|has| |#1| (-6 -4444)) (-6 -4444) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|))) -((-2417 (((-112) $ $) 27)) (-4143 (((-112) $) NIL)) (-3105 (((-649 |#1|) $) 132)) (-2490 (($ (-1290 |#1| |#2|)) 50)) (-1604 (($ $ (-776)) 38)) (-2208 (((-3 $ "failed") $ $) NIL)) (-2660 (($ $ $) 54 (|has| |#2| (-173))) (($ $ (-776)) 52 (|has| |#2| (-173)))) (-4427 (($) NIL T CONST)) (-1768 (($ $ |#1|) 114) (($ $ (-824 |#1|)) 115) (($ $ $) 26)) (-4381 (((-3 (-824 |#1|) "failed") $) NIL)) (-3150 (((-824 |#1|) $) NIL)) (-3086 (((-3 $ "failed") $) 122)) (-2423 (((-112) $) 117)) (-2782 (($ $) 118)) (-2349 (((-112) $) NIL)) (-2198 (((-112) $) NIL)) (-3348 (($ (-824 |#1|) |#2|) 20)) (-2325 (($ $) NIL)) (-3571 (((-2 (|:| |k| (-824 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3702 (((-824 |#1|) $) 123)) (-2357 (((-824 |#1|) $) 126)) (-1346 (($ (-1 |#2| |#2|) $) 131)) (-3714 (($ $ |#1|) 112) (($ $ (-824 |#1|)) 113) (($ $ $) 62)) (-3435 (((-1167) $) NIL)) (-3547 (((-1128) $) NIL)) (-1380 (((-1290 |#1| |#2|) $) 94)) (-4339 (((-776) $) 129)) (-4041 (((-112) $) 81)) (-3709 ((|#2| $) 32)) (-3796 (((-867) $) 73) (($ (-569)) 87) (($ |#2|) 85) (($ (-824 |#1|)) 18) (($ |#1|) 84)) (-1435 ((|#2| $ (-824 |#1|)) 116) ((|#2| $ $) 28)) (-2721 (((-776)) 120 T CONST)) (-1520 (((-112) $ $) NIL)) (-1804 (($) 15 T CONST)) (-4035 (((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1815 (($) 33 T CONST)) (-2920 (((-112) $ $) 14)) (-3024 (($ $) 98) (($ $ $) 101)) (-3012 (($ $ $) 61)) (** (($ $ (-927)) NIL) (($ $ (-776)) 55)) (* (($ (-927) $) NIL) (($ (-776) $) 53) (($ (-569) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1299 |#1| |#2|) (-13 (-1296 |#1| |#2|) (-10 -8 (-15 -1380 ((-1290 |#1| |#2|) $)) (-15 -2490 ($ (-1290 |#1| |#2|))) (-15 -4035 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-855) (-1057)) (T -1299)) -((-1380 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) (-5 *1 (-1299 *3 *4)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1299 *3 *4))))) (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))))) -(-13 (-1296 |#1| |#2|) (-10 -8 (-15 -1380 ((-1290 |#1| |#2|) $)) (-15 -2490 ($ (-1290 |#1| |#2|))) (-15 -4035 ((-649 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1541 (((-649 (-1165 |#1|)) (-1 (-649 (-1165 |#1|)) (-649 (-1165 |#1|))) (-569)) 20) (((-1165 |#1|) (-1 (-1165 |#1|) (-1165 |#1|))) 13))) -(((-1300 |#1|) (-10 -7 (-15 -1541 ((-1165 |#1|) (-1 (-1165 |#1|) (-1165 |#1|)))) (-15 -1541 ((-649 (-1165 |#1|)) (-1 (-649 (-1165 |#1|)) (-649 (-1165 |#1|))) (-569)))) (-1225)) (T -1300)) -((-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-649 (-1165 *5)) (-649 (-1165 *5)))) (-5 *4 (-569)) (-5 *2 (-649 (-1165 *5))) (-5 *1 (-1300 *5)) (-4 *5 (-1225)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1 (-1165 *4) (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1300 *4)) (-4 *4 (-1225))))) -(-10 -7 (-15 -1541 ((-1165 |#1|) (-1 (-1165 |#1|) (-1165 |#1|)))) (-15 -1541 ((-649 (-1165 |#1|)) (-1 (-649 (-1165 |#1|)) (-649 (-1165 |#1|))) (-569)))) -((-4040 (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|))) 174) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112)) 173) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112)) 172) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 171) (((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-1054 |#1| |#2|)) 156)) (-2335 (((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|))) 85) (((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112)) 84) (((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112)) 83)) (-3764 (((-649 (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1054 |#1| |#2|)) 73)) (-2539 (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|))) 140) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 139) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 138) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112)) 137) (((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|)) 132)) (-2284 (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|))) 145) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112)) 144) (((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112)) 143) (((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|)) 142)) (-1410 (((-649 (-785 |#1| (-869 |#3|))) (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) 111) (((-1181 (-1032 (-412 |#1|))) (-1181 |#1|)) 102) (((-958 (-1032 (-412 |#1|))) (-785 |#1| (-869 |#3|))) 109) (((-958 (-1032 (-412 |#1|))) (-958 |#1|)) 107) (((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|))) 33))) -(((-1301 |#1| |#2| |#3|) (-10 -7 (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-1054 |#1| |#2|))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -3764 ((-649 (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1054 |#1| |#2|))) (-15 -1410 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-958 |#1|))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1410 ((-1181 (-1032 (-412 |#1|))) (-1181 |#1|))) (-15 -1410 ((-649 (-785 |#1| (-869 |#3|))) (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))))) (-13 (-853) (-310) (-147) (-1030)) (-649 (-1185)) (-649 (-1185))) (T -1301)) -((-1410 (*1 *2 *3) (-12 (-5 *3 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-1181 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *6))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185))) (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-785 *4 (-869 *5))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-2284 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2284 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2539 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-4040 (*1 *2 *3) (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) (-5 *1 (-1301 *4 *5 *6)) (-5 *3 (-649 (-958 *4))) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-4040 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-4040 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-4040 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-1054 *4 *5))) (-5 *1 (-1301 *4 *5 *6)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) (-2335 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7)) (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185)))))) -(-10 -7 (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)) (-112))) (-15 -2335 ((-649 (-1054 |#1| |#2|)) (-649 (-958 |#1|)))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-1054 |#1| |#2|))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)) (-112))) (-15 -4040 ((-649 (-2 (|:| -2740 (-1181 |#1|)) (|:| -2415 (-649 (-958 |#1|))))) (-649 (-958 |#1|)))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2539 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-1054 |#1| |#2|))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)) (-112))) (-15 -2284 ((-649 (-649 (-1032 (-412 |#1|)))) (-649 (-958 |#1|)))) (-15 -3764 ((-649 (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))) (-1054 |#1| |#2|))) (-15 -1410 ((-785 |#1| (-869 |#3|)) (-785 |#1| (-869 |#2|)))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-958 |#1|))) (-15 -1410 ((-958 (-1032 (-412 |#1|))) (-785 |#1| (-869 |#3|)))) (-15 -1410 ((-1181 (-1032 (-412 |#1|))) (-1181 |#1|))) (-15 -1410 ((-649 (-785 |#1| (-869 |#3|))) (-1154 |#1| (-536 (-869 |#3|)) (-869 |#3|) (-785 |#1| (-869 |#3|)))))) -((-3707 (((-3 (-1275 (-412 (-569))) "failed") (-1275 |#1|) |#1|) 21)) (-2234 (((-112) (-1275 |#1|)) 12)) (-3949 (((-3 (-1275 (-569)) "failed") (-1275 |#1|)) 16))) -(((-1302 |#1|) (-10 -7 (-15 -2234 ((-112) (-1275 |#1|))) (-15 -3949 ((-3 (-1275 (-569)) "failed") (-1275 |#1|))) (-15 -3707 ((-3 (-1275 (-412 (-569))) "failed") (-1275 |#1|) |#1|))) (-644 (-569))) (T -1302)) -((-3707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1275 (-412 (-569)))) (-5 *1 (-1302 *4)))) (-3949 (*1 *2 *3) (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-1275 (-569))) (-5 *1 (-1302 *4)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112)) (-5 *1 (-1302 *4))))) -(-10 -7 (-15 -2234 ((-112) (-1275 |#1|))) (-15 -3949 ((-3 (-1275 (-569)) "failed") (-1275 |#1|))) (-15 -3707 ((-3 (-1275 (-412 (-569))) "failed") (-1275 |#1|) |#1|))) -((-2417 (((-112) $ $) NIL)) (-4143 (((-112) $) 11)) (-2208 (((-3 $ "failed") $ $) NIL)) (-3473 (((-776)) 8)) (-4427 (($) NIL T CONST)) (-3086 (((-3 $ "failed") $) 58)) (-3406 (($) 49)) (-2349 (((-112) $) 57)) (-3885 (((-3 $ "failed") $) 40)) (-2731 (((-927) $) 15)) (-3435 (((-1167) $) NIL)) (-2307 (($) 32 T CONST)) (-2150 (($ (-927)) 50)) (-3547 (((-1128) $) NIL)) (-1410 (((-569) $) 13)) (-3796 (((-867) $) 27) (($ (-569)) 24)) (-2721 (((-776)) 9 T CONST)) (-1520 (((-112) $ $) 60)) (-1804 (($) 29 T CONST)) (-1815 (($) 31 T CONST)) (-2920 (((-112) $ $) 38)) (-3024 (($ $) 52) (($ $ $) 47)) (-3012 (($ $ $) 35)) (** (($ $ (-927)) NIL) (($ $ (-776)) 54)) (* (($ (-927) $) NIL) (($ (-776) $) NIL) (($ (-569) $) 44) (($ $ $) 43))) -(((-1303 |#1|) (-13 (-173) (-372) (-619 (-569)) (-1160)) (-927)) (T -1303)) -NIL -(-13 (-173) (-372) (-619 (-569)) (-1160)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3227965 3227970 3227975 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3227950 3227955 3227960 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3227935 3227940 3227945 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3227920 3227925 3227930 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1303 3227063 3227795 3227872 "ZMOD" 3227877 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1302 3226173 3226337 3226546 "ZLINDEP" 3226895 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1301 3215473 3217241 3219213 "ZDSOLVE" 3224303 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1300 3214719 3214860 3215049 "YSTREAM" 3215319 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1299 3212493 3214020 3214224 "XRPOLY" 3214562 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1298 3209046 3210364 3210939 "XPR" 3211965 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1297 3206767 3208377 3208581 "XPOLY" 3208877 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1296 3204420 3205788 3205843 "XPOLYC" 3206131 NIL XPOLYC (NIL T T) -9 NIL 3206244 NIL) (-1295 3200796 3202937 3203325 "XPBWPOLY" 3204078 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1294 3196491 3198786 3198828 "XF" 3199449 NIL XF (NIL T) -9 NIL 3199849 NIL) (-1293 3196112 3196200 3196369 "XF-" 3196374 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1292 3191308 3192597 3192652 "XFALG" 3194824 NIL XFALG (NIL T T) -9 NIL 3195613 NIL) (-1291 3190441 3190545 3190750 "XEXPPKG" 3191200 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1290 3188550 3190291 3190387 "XDPOLY" 3190392 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1289 3187357 3187957 3188000 "XALG" 3188005 NIL XALG (NIL T) -9 NIL 3188116 NIL) (-1288 3180799 3185334 3185828 "WUTSET" 3186949 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1287 3179055 3179851 3180174 "WP" 3180610 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1286 3178657 3178877 3178947 "WHILEAST" 3179007 T WHILEAST (NIL) -8 NIL NIL NIL) (-1285 3178129 3178374 3178468 "WHEREAST" 3178585 T WHEREAST (NIL) -8 NIL NIL NIL) (-1284 3177015 3177213 3177508 "WFFINTBS" 3177926 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1283 3174919 3175346 3175808 "WEIER" 3176587 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1282 3173965 3174415 3174457 "VSPACE" 3174593 NIL VSPACE (NIL T) -9 NIL 3174667 NIL) (-1281 3173803 3173830 3173921 "VSPACE-" 3173926 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1280 3173612 3173654 3173722 "VOID" 3173757 T VOID (NIL) -8 NIL NIL NIL) (-1279 3171748 3172107 3172513 "VIEW" 3173228 T VIEW (NIL) -7 NIL NIL NIL) (-1278 3168172 3168811 3169548 "VIEWDEF" 3171033 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1277 3157476 3159720 3161893 "VIEW3D" 3166021 T VIEW3D (NIL) -8 NIL NIL NIL) (-1276 3149727 3151387 3152966 "VIEW2D" 3155919 T VIEW2D (NIL) -8 NIL NIL NIL) (-1275 3145080 3149497 3149589 "VECTOR" 3149670 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1274 3143657 3143916 3144234 "VECTOR2" 3144810 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1273 3137131 3141438 3141481 "VECTCAT" 3142476 NIL VECTCAT (NIL T) -9 NIL 3143063 NIL) (-1272 3136145 3136399 3136789 "VECTCAT-" 3136794 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1271 3135599 3135796 3135916 "VARIABLE" 3136060 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1270 3135532 3135537 3135567 "UTYPE" 3135572 T UTYPE (NIL) -9 NIL NIL NIL) (-1269 3134362 3134516 3134778 "UTSODETL" 3135358 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1268 3131802 3132262 3132786 "UTSODE" 3133903 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1267 3123639 3129428 3129917 "UTS" 3131371 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1266 3114513 3119880 3119923 "UTSCAT" 3121035 NIL UTSCAT (NIL T) -9 NIL 3121793 NIL) (-1265 3111860 3112583 3113572 "UTSCAT-" 3113577 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1264 3111487 3111530 3111663 "UTS2" 3111811 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1263 3105713 3108325 3108368 "URAGG" 3110438 NIL URAGG (NIL T) -9 NIL 3111161 NIL) (-1262 3102652 3103515 3104638 "URAGG-" 3104643 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1261 3098361 3101287 3101752 "UPXSSING" 3102316 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1260 3090427 3097608 3097881 "UPXS" 3098146 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1259 3083500 3090331 3090403 "UPXSCONS" 3090408 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1258 3073245 3080038 3080100 "UPXSCCA" 3080674 NIL UPXSCCA (NIL T T) -9 NIL 3080907 NIL) (-1257 3072883 3072968 3073142 "UPXSCCA-" 3073147 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1256 3062480 3069046 3069089 "UPXSCAT" 3069737 NIL UPXSCAT (NIL T) -9 NIL 3070346 NIL) (-1255 3061910 3061989 3062168 "UPXS2" 3062395 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1254 3060564 3060817 3061168 "UPSQFREE" 3061653 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1253 3053985 3057042 3057097 "UPSCAT" 3058258 NIL UPSCAT (NIL T T) -9 NIL 3059032 NIL) (-1252 3053189 3053396 3053723 "UPSCAT-" 3053728 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1251 3038844 3046612 3046655 "UPOLYC" 3048756 NIL UPOLYC (NIL T) -9 NIL 3049977 NIL) (-1250 3030172 3032598 3035745 "UPOLYC-" 3035750 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1249 3029799 3029842 3029975 "UPOLYC2" 3030123 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1248 3021610 3029482 3029611 "UP" 3029718 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1247 3020949 3021056 3021220 "UPMP" 3021499 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1246 3020502 3020583 3020722 "UPDIVP" 3020862 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1245 3019070 3019319 3019635 "UPDECOMP" 3020251 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1244 3018301 3018413 3018599 "UPCDEN" 3018954 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1243 3017820 3017889 3018038 "UP2" 3018226 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1242 3016287 3017024 3017301 "UNISEG" 3017578 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1241 3015502 3015629 3015834 "UNISEG2" 3016130 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1240 3014562 3014742 3014968 "UNIFACT" 3015318 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1239 2998494 3013739 3013990 "ULS" 3014369 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1238 2986492 2998398 2998470 "ULSCONS" 2998475 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1237 2968509 2980494 2980556 "ULSCCAT" 2981194 NIL ULSCCAT (NIL T T) -9 NIL 2981483 NIL) (-1236 2967559 2967804 2968192 "ULSCCAT-" 2968197 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 2956933 2963413 2963456 "ULSCAT" 2964319 NIL ULSCAT (NIL T) -9 NIL 2965050 NIL) (-1234 2956363 2956442 2956621 "ULS2" 2956848 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1233 2955490 2956000 2956107 "UINT8" 2956218 T UINT8 (NIL) -8 NIL NIL 2956303) (-1232 2954616 2955126 2955233 "UINT64" 2955344 T UINT64 (NIL) -8 NIL NIL 2955429) (-1231 2953742 2954252 2954359 "UINT32" 2954470 T UINT32 (NIL) -8 NIL NIL 2954555) (-1230 2952868 2953378 2953485 "UINT16" 2953596 T UINT16 (NIL) -8 NIL NIL 2953681) (-1229 2951171 2952128 2952158 "UFD" 2952370 T UFD (NIL) -9 NIL 2952484 NIL) (-1228 2950965 2951011 2951106 "UFD-" 2951111 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1227 2950047 2950230 2950446 "UDVO" 2950771 T UDVO (NIL) -7 NIL NIL NIL) (-1226 2947863 2948272 2948743 "UDPO" 2949611 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1225 2947796 2947801 2947831 "TYPE" 2947836 T TYPE (NIL) -9 NIL NIL NIL) (-1224 2947556 2947751 2947782 "TYPEAST" 2947787 T TYPEAST (NIL) -8 NIL NIL NIL) (-1223 2946527 2946729 2946969 "TWOFACT" 2947350 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1222 2945550 2945936 2946171 "TUPLE" 2946327 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1221 2943241 2943760 2944299 "TUBETOOL" 2945033 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1220 2942090 2942295 2942536 "TUBE" 2943034 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1219 2936819 2941062 2941345 "TS" 2941842 NIL TS (NIL T) -8 NIL NIL NIL) (-1218 2925459 2929578 2929675 "TSETCAT" 2934944 NIL TSETCAT (NIL T T T T) -9 NIL 2936475 NIL) (-1217 2920191 2921791 2923682 "TSETCAT-" 2923687 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1216 2914830 2915677 2916606 "TRMANIP" 2919327 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1215 2914271 2914334 2914497 "TRIMAT" 2914762 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1214 2912137 2912374 2912731 "TRIGMNIP" 2914020 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1213 2911657 2911770 2911800 "TRIGCAT" 2912013 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1212 2911326 2911405 2911546 "TRIGCAT-" 2911551 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1211 2908171 2910184 2910465 "TREE" 2911080 NIL TREE (NIL T) -8 NIL NIL NIL) (-1210 2907445 2907973 2908003 "TRANFUN" 2908038 T TRANFUN (NIL) -9 NIL 2908104 NIL) (-1209 2906724 2906915 2907195 "TRANFUN-" 2907200 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1208 2906528 2906560 2906621 "TOPSP" 2906685 T TOPSP (NIL) -7 NIL NIL NIL) (-1207 2905876 2905991 2906145 "TOOLSIGN" 2906409 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1206 2904510 2905053 2905292 "TEXTFILE" 2905659 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1205 2902422 2902963 2903392 "TEX" 2904103 T TEX (NIL) -8 NIL NIL NIL) (-1204 2902203 2902234 2902306 "TEX1" 2902385 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1203 2901851 2901914 2902004 "TEMUTL" 2902135 T TEMUTL (NIL) -7 NIL NIL NIL) (-1202 2900005 2900285 2900610 "TBCMPPK" 2901574 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1201 2891782 2898165 2898221 "TBAGG" 2898621 NIL TBAGG (NIL T T) -9 NIL 2898832 NIL) (-1200 2886852 2888340 2890094 "TBAGG-" 2890099 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1199 2886236 2886343 2886488 "TANEXP" 2886741 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1198 2879626 2886093 2886186 "TABLE" 2886191 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1197 2879038 2879137 2879275 "TABLEAU" 2879523 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1196 2873646 2874866 2876114 "TABLBUMP" 2877824 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1195 2872868 2873015 2873196 "SYSTEM" 2873487 T SYSTEM (NIL) -8 NIL NIL NIL) (-1194 2869327 2870026 2870809 "SYSSOLP" 2872119 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1193 2869125 2869282 2869313 "SYSPTR" 2869318 T SYSPTR (NIL) -8 NIL NIL NIL) (-1192 2868169 2868674 2868793 "SYSNNI" 2868979 NIL SYSNNI (NIL NIL) -8 NIL NIL 2869064) (-1191 2867476 2867935 2868014 "SYSINT" 2868074 NIL SYSINT (NIL NIL) -8 NIL NIL 2868119) (-1190 2863808 2864754 2865464 "SYNTAX" 2866788 T SYNTAX (NIL) -8 NIL NIL NIL) (-1189 2860966 2861568 2862200 "SYMTAB" 2863198 T SYMTAB (NIL) -8 NIL NIL NIL) (-1188 2856215 2857117 2858100 "SYMS" 2860005 T SYMS (NIL) -8 NIL NIL NIL) (-1187 2853450 2855673 2855903 "SYMPOLY" 2856020 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1186 2852967 2853042 2853165 "SYMFUNC" 2853362 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1185 2848987 2850279 2851092 "SYMBOL" 2852176 T SYMBOL (NIL) -8 NIL NIL NIL) (-1184 2842526 2844215 2845935 "SWITCH" 2847289 T SWITCH (NIL) -8 NIL NIL NIL) (-1183 2835760 2841347 2841650 "SUTS" 2842281 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1182 2827826 2835007 2835280 "SUPXS" 2835545 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1181 2819585 2827444 2827570 "SUP" 2827735 NIL SUP (NIL T) -8 NIL NIL NIL) (-1180 2818744 2818871 2819088 "SUPFRACF" 2819453 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1179 2818365 2818424 2818537 "SUP2" 2818679 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1178 2816813 2817087 2817443 "SUMRF" 2818064 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1177 2816148 2816214 2816406 "SUMFS" 2816734 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1176 2800115 2815325 2815576 "SULS" 2815955 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1175 2799717 2799937 2800007 "SUCHTAST" 2800067 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1174 2799012 2799242 2799382 "SUCH" 2799625 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1173 2792878 2793918 2794877 "SUBSPACE" 2798100 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1172 2792308 2792398 2792562 "SUBRESP" 2792766 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1171 2785674 2786973 2788284 "STTF" 2791044 NIL STTF (NIL T) -7 NIL NIL NIL) (-1170 2779847 2780967 2782114 "STTFNC" 2784574 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1169 2771158 2773029 2774823 "STTAYLOR" 2778088 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1168 2764288 2771022 2771105 "STRTBL" 2771110 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1167 2759652 2764243 2764274 "STRING" 2764279 T STRING (NIL) -8 NIL NIL NIL) (-1166 2754513 2759025 2759055 "STRICAT" 2759114 T STRICAT (NIL) -9 NIL 2759176 NIL) (-1165 2747266 2752132 2752743 "STREAM" 2753937 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1164 2746776 2746853 2746997 "STREAM3" 2747183 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1163 2745758 2745941 2746176 "STREAM2" 2746589 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1162 2745446 2745498 2745591 "STREAM1" 2745700 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1161 2744462 2744643 2744874 "STINPROD" 2745262 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1160 2744014 2744224 2744254 "STEP" 2744334 T STEP (NIL) -9 NIL 2744412 NIL) (-1159 2743201 2743503 2743651 "STEPAST" 2743888 T STEPAST (NIL) -8 NIL NIL NIL) (-1158 2736633 2743100 2743177 "STBL" 2743182 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1157 2731759 2735854 2735897 "STAGG" 2736050 NIL STAGG (NIL T) -9 NIL 2736139 NIL) (-1156 2729461 2730063 2730935 "STAGG-" 2730940 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1155 2727608 2729231 2729323 "STACK" 2729404 NIL STACK (NIL T) -8 NIL NIL NIL) (-1154 2720303 2725749 2726205 "SREGSET" 2727238 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1153 2712728 2714097 2715610 "SRDCMPK" 2718909 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1152 2705645 2710168 2710198 "SRAGG" 2711501 T SRAGG (NIL) -9 NIL 2712109 NIL) (-1151 2704662 2704917 2705296 "SRAGG-" 2705301 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1150 2699122 2703609 2704030 "SQMATRIX" 2704288 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1149 2692807 2695840 2696567 "SPLTREE" 2698467 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1148 2688770 2689463 2690109 "SPLNODE" 2692233 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1147 2687817 2688050 2688080 "SPFCAT" 2688524 T SPFCAT (NIL) -9 NIL NIL NIL) (-1146 2686554 2686764 2687028 "SPECOUT" 2687575 T SPECOUT (NIL) -7 NIL NIL NIL) (-1145 2677664 2679536 2679566 "SPADXPT" 2684242 T SPADXPT (NIL) -9 NIL 2686406 NIL) (-1144 2677425 2677465 2677534 "SPADPRSR" 2677617 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1143 2675474 2677380 2677411 "SPADAST" 2677416 T SPADAST (NIL) -8 NIL NIL NIL) (-1142 2667419 2669192 2669235 "SPACEC" 2673608 NIL SPACEC (NIL T) -9 NIL 2675424 NIL) (-1141 2665549 2667351 2667400 "SPACE3" 2667405 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1140 2664301 2664472 2664763 "SORTPAK" 2665354 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1139 2662393 2662696 2663108 "SOLVETRA" 2663965 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1138 2661443 2661665 2661926 "SOLVESER" 2662166 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1137 2656747 2657635 2658630 "SOLVERAD" 2660495 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1136 2652562 2653171 2653900 "SOLVEFOR" 2656114 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1135 2646832 2651911 2652008 "SNTSCAT" 2652013 NIL SNTSCAT (NIL T T T T) -9 NIL 2652083 NIL) (-1134 2640938 2645155 2645546 "SMTS" 2646522 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1133 2635623 2640826 2640903 "SMP" 2640908 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1132 2633782 2634083 2634481 "SMITH" 2635320 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1131 2626495 2630691 2630794 "SMATCAT" 2632145 NIL SMATCAT (NIL NIL T T T) -9 NIL 2632695 NIL) (-1130 2623435 2624258 2625436 "SMATCAT-" 2625441 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1129 2621101 2622671 2622714 "SKAGG" 2622975 NIL SKAGG (NIL T) -9 NIL 2623110 NIL) (-1128 2617412 2620517 2620712 "SINT" 2620899 T SINT (NIL) -8 NIL NIL 2621072) (-1127 2617184 2617222 2617288 "SIMPAN" 2617368 T SIMPAN (NIL) -7 NIL NIL NIL) (-1126 2616463 2616719 2616859 "SIG" 2617066 T SIG (NIL) -8 NIL NIL NIL) (-1125 2615301 2615522 2615797 "SIGNRF" 2616222 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1124 2614134 2614285 2614569 "SIGNEF" 2615130 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1123 2613440 2613717 2613841 "SIGAST" 2614032 T SIGAST (NIL) -8 NIL NIL NIL) (-1122 2611130 2611584 2612090 "SHP" 2612981 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1121 2604982 2611031 2611107 "SHDP" 2611112 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1120 2604555 2604747 2604777 "SGROUP" 2604870 T SGROUP (NIL) -9 NIL 2604932 NIL) (-1119 2604413 2604439 2604512 "SGROUP-" 2604517 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1118 2601248 2601946 2602669 "SGCF" 2603712 T SGCF (NIL) -7 NIL NIL NIL) (-1117 2595616 2600695 2600792 "SFRTCAT" 2600797 NIL SFRTCAT (NIL T T T T) -9 NIL 2600836 NIL) (-1116 2589037 2590055 2591191 "SFRGCD" 2594599 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1115 2582163 2583236 2584422 "SFQCMPK" 2587970 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1114 2581783 2581872 2581983 "SFORT" 2582104 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1113 2580901 2581623 2581744 "SEXOF" 2581749 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1112 2580008 2580782 2580850 "SEX" 2580855 T SEX (NIL) -8 NIL NIL NIL) (-1111 2575521 2576236 2576331 "SEXCAT" 2579268 NIL SEXCAT (NIL T T T T T) -9 NIL 2579846 NIL) (-1110 2572674 2575455 2575503 "SET" 2575508 NIL SET (NIL T) -8 NIL NIL NIL) (-1109 2570898 2571387 2571692 "SETMN" 2572415 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1108 2570394 2570546 2570576 "SETCAT" 2570752 T SETCAT (NIL) -9 NIL 2570862 NIL) (-1107 2570086 2570164 2570294 "SETCAT-" 2570299 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1106 2566447 2568547 2568590 "SETAGG" 2569460 NIL SETAGG (NIL T) -9 NIL 2569800 NIL) (-1105 2565905 2566021 2566258 "SETAGG-" 2566263 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1104 2565348 2565601 2565702 "SEQAST" 2565826 T SEQAST (NIL) -8 NIL NIL NIL) (-1103 2564547 2564841 2564902 "SEGXCAT" 2565188 NIL SEGXCAT (NIL T T) -9 NIL 2565308 NIL) (-1102 2563553 2564213 2564395 "SEG" 2564400 NIL SEG (NIL T) -8 NIL NIL NIL) (-1101 2562532 2562746 2562789 "SEGCAT" 2563311 NIL SEGCAT (NIL T) -9 NIL 2563532 NIL) (-1100 2561464 2561895 2562103 "SEGBIND" 2562359 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1099 2561085 2561144 2561257 "SEGBIND2" 2561399 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1098 2560658 2560886 2560963 "SEGAST" 2561030 T SEGAST (NIL) -8 NIL NIL NIL) (-1097 2559877 2560003 2560207 "SEG2" 2560502 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1096 2559287 2559812 2559859 "SDVAR" 2559864 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1095 2551814 2559057 2559187 "SDPOL" 2559192 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1094 2550407 2550673 2550992 "SCPKG" 2551529 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1093 2549571 2549743 2549935 "SCOPE" 2550237 T SCOPE (NIL) -8 NIL NIL NIL) (-1092 2548791 2548925 2549104 "SCACHE" 2549426 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1091 2548437 2548623 2548653 "SASTCAT" 2548658 T SASTCAT (NIL) -9 NIL 2548671 NIL) (-1090 2547924 2548272 2548348 "SAOS" 2548383 T SAOS (NIL) -8 NIL NIL NIL) (-1089 2547489 2547524 2547697 "SAERFFC" 2547883 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1088 2541428 2547386 2547466 "SAE" 2547471 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1087 2541021 2541056 2541215 "SAEFACT" 2541387 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1086 2539342 2539656 2540057 "RURPK" 2540687 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1085 2537979 2538285 2538590 "RULESET" 2539176 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1084 2535202 2535732 2536190 "RULE" 2537660 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1083 2534814 2534996 2535079 "RULECOLD" 2535154 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1082 2534604 2534632 2534703 "RTVALUE" 2534765 T RTVALUE (NIL) -8 NIL NIL NIL) (-1081 2534075 2534321 2534415 "RSTRCAST" 2534532 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1080 2528923 2529718 2530638 "RSETGCD" 2533274 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1079 2518153 2523232 2523329 "RSETCAT" 2527448 NIL RSETCAT (NIL T T T T) -9 NIL 2528545 NIL) (-1078 2516080 2516619 2517443 "RSETCAT-" 2517448 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1077 2508466 2509842 2511362 "RSDCMPK" 2514679 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1076 2506445 2506912 2506986 "RRCC" 2508072 NIL RRCC (NIL T T) -9 NIL 2508416 NIL) (-1075 2505796 2505970 2506249 "RRCC-" 2506254 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1074 2505239 2505492 2505593 "RPTAST" 2505717 T RPTAST (NIL) -8 NIL NIL NIL) (-1073 2479085 2488444 2488511 "RPOLCAT" 2499177 NIL RPOLCAT (NIL T T T) -9 NIL 2502337 NIL) (-1072 2470583 2472923 2476045 "RPOLCAT-" 2476050 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1071 2461514 2468794 2469276 "ROUTINE" 2470123 T ROUTINE (NIL) -8 NIL NIL NIL) (-1070 2458312 2461140 2461280 "ROMAN" 2461396 T ROMAN (NIL) -8 NIL NIL NIL) (-1069 2456556 2457172 2457432 "ROIRC" 2458117 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1068 2452788 2455072 2455102 "RNS" 2455406 T RNS (NIL) -9 NIL 2455680 NIL) (-1067 2451297 2451680 2452214 "RNS-" 2452289 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1066 2450700 2451108 2451138 "RNG" 2451143 T RNG (NIL) -9 NIL 2451164 NIL) (-1065 2449703 2450065 2450267 "RNGBIND" 2450551 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1064 2449102 2449490 2449533 "RMODULE" 2449538 NIL RMODULE (NIL T) -9 NIL 2449565 NIL) (-1063 2447938 2448032 2448368 "RMCAT2" 2449003 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1062 2444788 2447284 2447581 "RMATRIX" 2447700 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1061 2437615 2439875 2439990 "RMATCAT" 2443349 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2444331 NIL) (-1060 2436990 2437137 2437444 "RMATCAT-" 2437449 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1059 2436391 2436612 2436655 "RLINSET" 2436849 NIL RLINSET (NIL T) -9 NIL 2436940 NIL) (-1058 2435958 2436033 2436161 "RINTERP" 2436310 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1057 2435016 2435570 2435600 "RING" 2435656 T RING (NIL) -9 NIL 2435748 NIL) (-1056 2434808 2434852 2434949 "RING-" 2434954 NIL RING- (NIL T) -8 NIL NIL NIL) (-1055 2433649 2433886 2434144 "RIDIST" 2434572 T RIDIST (NIL) -7 NIL NIL NIL) (-1054 2424938 2433117 2433323 "RGCHAIN" 2433497 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1053 2424288 2424694 2424735 "RGBCSPC" 2424793 NIL RGBCSPC (NIL T) -9 NIL 2424845 NIL) (-1052 2423446 2423827 2423868 "RGBCMDL" 2424100 NIL RGBCMDL (NIL T) -9 NIL 2424214 NIL) (-1051 2420440 2421054 2421724 "RF" 2422810 NIL RF (NIL T) -7 NIL NIL NIL) (-1050 2420086 2420149 2420252 "RFFACTOR" 2420371 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1049 2419811 2419846 2419943 "RFFACT" 2420045 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1048 2417928 2418292 2418674 "RFDIST" 2419451 T RFDIST (NIL) -7 NIL NIL NIL) (-1047 2417381 2417473 2417636 "RETSOL" 2417830 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1046 2417017 2417097 2417140 "RETRACT" 2417273 NIL RETRACT (NIL T) -9 NIL 2417360 NIL) (-1045 2416866 2416891 2416978 "RETRACT-" 2416983 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1044 2416468 2416688 2416758 "RETAST" 2416818 T RETAST (NIL) -8 NIL NIL NIL) (-1043 2409206 2416121 2416248 "RESULT" 2416363 T RESULT (NIL) -8 NIL NIL NIL) (-1042 2407797 2408475 2408674 "RESRING" 2409109 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1041 2407433 2407482 2407580 "RESLATC" 2407734 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1040 2407138 2407173 2407280 "REPSQ" 2407392 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1039 2404560 2405140 2405742 "REP" 2406558 T REP (NIL) -7 NIL NIL NIL) (-1038 2404257 2404292 2404403 "REPDB" 2404519 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1037 2398157 2399546 2400769 "REP2" 2403069 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1036 2394534 2395215 2396023 "REP1" 2397384 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1035 2387230 2392675 2393131 "REGSET" 2394164 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1034 2385995 2386378 2386628 "REF" 2387015 NIL REF (NIL T) -8 NIL NIL NIL) (-1033 2385372 2385475 2385642 "REDORDER" 2385879 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1032 2381340 2384585 2384812 "RECLOS" 2385200 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1031 2380392 2380573 2380788 "REALSOLV" 2381147 T REALSOLV (NIL) -7 NIL NIL NIL) (-1030 2380238 2380279 2380309 "REAL" 2380314 T REAL (NIL) -9 NIL 2380349 NIL) (-1029 2376721 2377523 2378407 "REAL0Q" 2379403 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1028 2372322 2373310 2374371 "REAL0" 2375702 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1027 2371793 2372039 2372133 "RDUCEAST" 2372250 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1026 2371198 2371270 2371477 "RDIV" 2371715 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1025 2370266 2370440 2370653 "RDIST" 2371020 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1024 2368863 2369150 2369522 "RDETRS" 2369974 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1023 2366675 2367129 2367667 "RDETR" 2368405 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1022 2365300 2365578 2365975 "RDEEFS" 2366391 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1021 2363809 2364115 2364540 "RDEEF" 2364988 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1020 2357870 2360790 2360820 "RCFIELD" 2362115 T RCFIELD (NIL) -9 NIL 2362846 NIL) (-1019 2355934 2356438 2357134 "RCFIELD-" 2357209 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1018 2352203 2354035 2354078 "RCAGG" 2355162 NIL RCAGG (NIL T) -9 NIL 2355627 NIL) (-1017 2351831 2351925 2352088 "RCAGG-" 2352093 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1016 2351166 2351278 2351443 "RATRET" 2351715 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1015 2350719 2350786 2350907 "RATFACT" 2351094 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1014 2350027 2350147 2350299 "RANDSRC" 2350589 T RANDSRC (NIL) -7 NIL NIL NIL) (-1013 2349761 2349805 2349878 "RADUTIL" 2349976 T RADUTIL (NIL) -7 NIL NIL NIL) (-1012 2342875 2348592 2348903 "RADIX" 2349484 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1011 2334494 2342717 2342847 "RADFF" 2342852 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1010 2334141 2334216 2334246 "RADCAT" 2334406 T RADCAT (NIL) -9 NIL NIL NIL) (-1009 2333923 2333971 2334071 "RADCAT-" 2334076 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1008 2332021 2333693 2333785 "QUEUE" 2333866 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1007 2328558 2331954 2332002 "QUAT" 2332007 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1006 2328189 2328232 2328363 "QUATCT2" 2328509 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1005 2321638 2324983 2325025 "QUATCAT" 2325816 NIL QUATCAT (NIL T) -9 NIL 2326582 NIL) (-1004 2317777 2318814 2320204 "QUATCAT-" 2320300 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1003 2315242 2316853 2316896 "QUAGG" 2317277 NIL QUAGG (NIL T) -9 NIL 2317452 NIL) (-1002 2314844 2315064 2315134 "QQUTAST" 2315194 T QQUTAST (NIL) -8 NIL NIL NIL) (-1001 2313737 2314237 2314411 "QFORM" 2314716 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1000 2304730 2309969 2310011 "QFCAT" 2310679 NIL QFCAT (NIL T) -9 NIL 2311680 NIL) (-999 2300300 2301501 2303093 "QFCAT-" 2303188 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-998 2299934 2299977 2300106 "QFCAT2" 2300251 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2299394 2299504 2299634 "QEQUAT" 2299824 T QEQUAT (NIL) -8 NIL NIL NIL) (-996 2292540 2293613 2294797 "QCMPACK" 2298327 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-995 2290089 2290537 2290965 "QALGSET" 2292195 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-994 2289334 2289508 2289740 "QALGSET2" 2289909 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-993 2288024 2288248 2288565 "PWFFINTB" 2289107 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-992 2286206 2286374 2286728 "PUSHVAR" 2287838 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-991 2282124 2283178 2283219 "PTRANFN" 2285103 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-990 2280526 2280817 2281139 "PTPACK" 2281835 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-989 2280158 2280215 2280324 "PTFUNC2" 2280463 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-988 2274635 2279030 2279071 "PTCAT" 2279367 NIL PTCAT (NIL T) -9 NIL 2279520 NIL) (-987 2274293 2274328 2274452 "PSQFR" 2274594 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-986 2272888 2273186 2273520 "PSEUDLIN" 2273991 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-985 2259651 2262022 2264346 "PSETPK" 2270648 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-984 2252669 2255409 2255505 "PSETCAT" 2258526 NIL PSETCAT (NIL T T T T) -9 NIL 2259340 NIL) (-983 2250505 2251139 2251960 "PSETCAT-" 2251965 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-982 2249854 2250019 2250047 "PSCURVE" 2250315 T PSCURVE (NIL) -9 NIL 2250482 NIL) (-981 2245852 2247368 2247433 "PSCAT" 2248277 NIL PSCAT (NIL T T T) -9 NIL 2248517 NIL) (-980 2244915 2245131 2245531 "PSCAT-" 2245536 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-979 2243620 2244280 2244485 "PRTITION" 2244730 T PRTITION (NIL) -8 NIL NIL NIL) (-978 2243095 2243341 2243433 "PRTDAST" 2243548 T PRTDAST (NIL) -8 NIL NIL NIL) (-977 2232185 2234399 2236587 "PRS" 2240957 NIL PRS (NIL T T) -7 NIL NIL NIL) (-976 2229996 2231535 2231575 "PRQAGG" 2231758 NIL PRQAGG (NIL T) -9 NIL 2231860 NIL) (-975 2229200 2229505 2229533 "PROPLOG" 2229780 T PROPLOG (NIL) -9 NIL 2229946 NIL) (-974 2228804 2228861 2228984 "PROPFUN2" 2229123 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-973 2228311 2228393 2228527 "PROPFUN1" 2228703 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-972 2226492 2227058 2227355 "PROPFRML" 2228047 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-971 2225961 2226068 2226196 "PROPERTY" 2226384 T PROPERTY (NIL) -8 NIL NIL NIL) (-970 2220019 2224127 2224947 "PRODUCT" 2225187 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-969 2217297 2219477 2219711 "PR" 2219830 NIL PR (NIL T T) -8 NIL NIL NIL) (-968 2217093 2217125 2217184 "PRINT" 2217258 T PRINT (NIL) -7 NIL NIL NIL) (-967 2216433 2216550 2216702 "PRIMES" 2216973 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-966 2214498 2214899 2215365 "PRIMELT" 2216012 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-965 2214227 2214276 2214304 "PRIMCAT" 2214428 T PRIMCAT (NIL) -9 NIL NIL NIL) (-964 2210342 2214165 2214210 "PRIMARR" 2214215 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-963 2209349 2209527 2209755 "PRIMARR2" 2210160 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-962 2208992 2209048 2209159 "PREASSOC" 2209287 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-961 2208467 2208600 2208628 "PPCURVE" 2208833 T PPCURVE (NIL) -9 NIL 2208969 NIL) (-960 2208062 2208262 2208345 "PORTNUM" 2208404 T PORTNUM (NIL) -8 NIL NIL NIL) (-959 2205421 2205820 2206412 "POLYROOT" 2207643 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-958 2199603 2205025 2205185 "POLY" 2205294 NIL POLY (NIL T) -8 NIL NIL NIL) (-957 2198986 2199044 2199278 "POLYLIFT" 2199539 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-956 2195261 2195710 2196339 "POLYCATQ" 2198531 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-955 2181973 2187101 2187166 "POLYCAT" 2190680 NIL POLYCAT (NIL T T T) -9 NIL 2192558 NIL) (-954 2175422 2177284 2179668 "POLYCAT-" 2179673 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-953 2175009 2175077 2175197 "POLY2UP" 2175348 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-952 2174641 2174698 2174807 "POLY2" 2174946 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-951 2173326 2173565 2173841 "POLUTIL" 2174415 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-950 2171681 2171958 2172289 "POLTOPOL" 2173048 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-949 2167146 2171617 2171663 "POINT" 2171668 NIL POINT (NIL T) -8 NIL NIL NIL) (-948 2165333 2165690 2166065 "PNTHEORY" 2166791 T PNTHEORY (NIL) -7 NIL NIL NIL) (-947 2163791 2164088 2164487 "PMTOOLS" 2165031 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-946 2163384 2163462 2163579 "PMSYM" 2163707 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-945 2162892 2162961 2163136 "PMQFCAT" 2163309 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-944 2162247 2162357 2162513 "PMPRED" 2162769 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-943 2161640 2161726 2161888 "PMPREDFS" 2162148 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-942 2160304 2160512 2160890 "PMPLCAT" 2161402 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-941 2159836 2159915 2160067 "PMLSAGG" 2160219 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-940 2159309 2159385 2159567 "PMKERNEL" 2159754 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-939 2158926 2159001 2159114 "PMINS" 2159228 NIL PMINS (NIL T) -7 NIL NIL NIL) (-938 2158368 2158437 2158646 "PMFS" 2158851 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-937 2157596 2157714 2157919 "PMDOWN" 2158245 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-936 2156763 2156921 2157102 "PMASS" 2157435 T PMASS (NIL) -7 NIL NIL NIL) (-935 2156036 2156146 2156309 "PMASSFS" 2156650 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-934 2155691 2155759 2155853 "PLOTTOOL" 2155962 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-933 2150298 2151502 2152650 "PLOT" 2154563 T PLOT (NIL) -8 NIL NIL NIL) (-932 2146102 2147146 2148067 "PLOT3D" 2149397 T PLOT3D (NIL) -8 NIL NIL NIL) (-931 2145014 2145191 2145426 "PLOT1" 2145906 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-930 2120403 2125080 2129931 "PLEQN" 2140280 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-929 2119721 2119843 2120023 "PINTERP" 2120268 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-928 2119414 2119461 2119564 "PINTERPA" 2119668 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-927 2118635 2119183 2119270 "PI" 2119310 T PI (NIL) -8 NIL NIL 2119377) (-926 2116932 2117907 2117935 "PID" 2118117 T PID (NIL) -9 NIL 2118251 NIL) (-925 2116683 2116720 2116795 "PICOERCE" 2116889 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-924 2116003 2116142 2116318 "PGROEB" 2116539 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-923 2111590 2112404 2113309 "PGE" 2115118 T PGE (NIL) -7 NIL NIL NIL) (-922 2109713 2109960 2110326 "PGCD" 2111307 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-921 2109051 2109154 2109315 "PFRPAC" 2109597 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-920 2105691 2107599 2107952 "PFR" 2108730 NIL PFR (NIL T) -8 NIL NIL NIL) (-919 2104080 2104324 2104649 "PFOTOOLS" 2105438 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-918 2102613 2102852 2103203 "PFOQ" 2103837 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-917 2101114 2101326 2101682 "PFO" 2102397 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-916 2097667 2101003 2101072 "PF" 2101077 NIL PF (NIL NIL) -8 NIL NIL NIL) (-915 2095001 2096272 2096300 "PFECAT" 2096885 T PFECAT (NIL) -9 NIL 2097269 NIL) (-914 2094446 2094600 2094814 "PFECAT-" 2094819 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-913 2093049 2093301 2093602 "PFBRU" 2094195 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-912 2090915 2091267 2091699 "PFBR" 2092700 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-911 2086797 2088291 2088967 "PERM" 2090272 NIL PERM (NIL T) -8 NIL NIL NIL) (-910 2082031 2083004 2083874 "PERMGRP" 2085960 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-909 2080137 2081094 2081135 "PERMCAT" 2081581 NIL PERMCAT (NIL T) -9 NIL 2081886 NIL) (-908 2079790 2079831 2079955 "PERMAN" 2080090 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-907 2077278 2079455 2079577 "PENDTREE" 2079701 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-906 2075302 2076070 2076111 "PDRING" 2076768 NIL PDRING (NIL T) -9 NIL 2077054 NIL) (-905 2074405 2074623 2074985 "PDRING-" 2074990 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-904 2071620 2072398 2073066 "PDEPROB" 2073757 T PDEPROB (NIL) -8 NIL NIL NIL) (-903 2069165 2069669 2070224 "PDEPACK" 2071085 T PDEPACK (NIL) -7 NIL NIL NIL) (-902 2068077 2068267 2068518 "PDECOMP" 2068964 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-901 2065656 2066499 2066527 "PDECAT" 2067314 T PDECAT (NIL) -9 NIL 2068027 NIL) (-900 2065407 2065440 2065530 "PCOMP" 2065617 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-899 2063585 2064208 2064505 "PBWLB" 2065136 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-898 2056058 2057658 2058996 "PATTERN" 2062268 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-897 2055690 2055747 2055856 "PATTERN2" 2055995 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-896 2053447 2053835 2054292 "PATTERN1" 2055279 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-895 2050815 2051396 2051877 "PATRES" 2053012 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-894 2050379 2050446 2050578 "PATRES2" 2050742 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-893 2048262 2048667 2049074 "PATMATCH" 2050046 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-892 2047772 2047981 2048022 "PATMAB" 2048129 NIL PATMAB (NIL T) -9 NIL 2048212 NIL) (-891 2046290 2046626 2046884 "PATLRES" 2047577 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-890 2045836 2045959 2046000 "PATAB" 2046005 NIL PATAB (NIL T) -9 NIL 2046177 NIL) (-889 2043317 2043849 2044422 "PARTPERM" 2045283 T PARTPERM (NIL) -7 NIL NIL NIL) (-888 2042938 2043001 2043103 "PARSURF" 2043248 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-887 2042570 2042627 2042736 "PARSU2" 2042875 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-886 2042334 2042374 2042441 "PARSER" 2042523 T PARSER (NIL) -7 NIL NIL NIL) (-885 2041955 2042018 2042120 "PARSCURV" 2042265 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-884 2041587 2041644 2041753 "PARSC2" 2041892 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-883 2041226 2041284 2041381 "PARPCURV" 2041523 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-882 2040858 2040915 2041024 "PARPC2" 2041163 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-881 2039919 2040231 2040413 "PARAMAST" 2040696 T PARAMAST (NIL) -8 NIL NIL NIL) (-880 2039439 2039525 2039644 "PAN2EXPR" 2039820 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-879 2038216 2038560 2038788 "PALETTE" 2039231 T PALETTE (NIL) -8 NIL NIL NIL) (-878 2036609 2037221 2037581 "PAIR" 2037902 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-877 2030477 2035866 2036061 "PADICRC" 2036463 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-876 2023704 2029821 2030006 "PADICRAT" 2030324 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-875 2022019 2023641 2023686 "PADIC" 2023691 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-874 2019129 2020693 2020733 "PADICCT" 2021314 NIL PADICCT (NIL NIL) -9 NIL 2021596 NIL) (-873 2018086 2018286 2018554 "PADEPAC" 2018916 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-872 2017298 2017431 2017637 "PADE" 2017948 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-871 2015685 2016506 2016786 "OWP" 2017102 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-870 2015178 2015391 2015488 "OVERSET" 2015608 T OVERSET (NIL) -8 NIL NIL NIL) (-869 2014224 2014783 2014955 "OVAR" 2015046 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-868 2013488 2013609 2013770 "OUT" 2014083 T OUT (NIL) -7 NIL NIL NIL) (-867 2002360 2004597 2006797 "OUTFORM" 2011308 T OUTFORM (NIL) -8 NIL NIL NIL) (-866 2001696 2001957 2002084 "OUTBFILE" 2002253 T OUTBFILE (NIL) -8 NIL NIL NIL) (-865 2001003 2001168 2001196 "OUTBCON" 2001514 T OUTBCON (NIL) -9 NIL 2001680 NIL) (-864 2000604 2000716 2000873 "OUTBCON-" 2000878 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-863 1999984 2000333 2000422 "OSI" 2000535 T OSI (NIL) -8 NIL NIL NIL) (-862 1999514 1999852 1999880 "OSGROUP" 1999885 T OSGROUP (NIL) -9 NIL 1999907 NIL) (-861 1998259 1998486 1998771 "ORTHPOL" 1999261 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-860 1995810 1998094 1998215 "OREUP" 1998220 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-859 1993213 1995501 1995628 "ORESUP" 1995752 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-858 1990741 1991241 1991802 "OREPCTO" 1992702 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-857 1984427 1986628 1986669 "OREPCAT" 1989017 NIL OREPCAT (NIL T) -9 NIL 1990121 NIL) (-856 1981574 1982356 1983414 "OREPCAT-" 1983419 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-855 1980725 1981023 1981051 "ORDSET" 1981360 T ORDSET (NIL) -9 NIL 1981524 NIL) (-854 1980156 1980304 1980528 "ORDSET-" 1980533 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-853 1978721 1979512 1979540 "ORDRING" 1979742 T ORDRING (NIL) -9 NIL 1979867 NIL) (-852 1978366 1978460 1978604 "ORDRING-" 1978609 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-851 1977746 1978209 1978237 "ORDMON" 1978242 T ORDMON (NIL) -9 NIL 1978263 NIL) (-850 1976908 1977055 1977250 "ORDFUNS" 1977595 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-849 1976246 1976665 1976693 "ORDFIN" 1976758 T ORDFIN (NIL) -9 NIL 1976832 NIL) (-848 1972805 1974832 1975241 "ORDCOMP" 1975870 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-847 1972071 1972198 1972384 "ORDCOMP2" 1972665 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-846 1968652 1969562 1970376 "OPTPROB" 1971277 T OPTPROB (NIL) -8 NIL NIL NIL) (-845 1965454 1966093 1966797 "OPTPACK" 1967968 T OPTPACK (NIL) -7 NIL NIL NIL) (-844 1963141 1963907 1963935 "OPTCAT" 1964754 T OPTCAT (NIL) -9 NIL 1965404 NIL) (-843 1962525 1962818 1962923 "OPSIG" 1963056 T OPSIG (NIL) -8 NIL NIL NIL) (-842 1962293 1962332 1962398 "OPQUERY" 1962479 T OPQUERY (NIL) -7 NIL NIL NIL) (-841 1959424 1960604 1961108 "OP" 1961822 NIL OP (NIL T) -8 NIL NIL NIL) (-840 1958798 1959024 1959065 "OPERCAT" 1959277 NIL OPERCAT (NIL T) -9 NIL 1959374 NIL) (-839 1958553 1958609 1958726 "OPERCAT-" 1958731 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-838 1955366 1957350 1957719 "ONECOMP" 1958217 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-837 1954671 1954786 1954960 "ONECOMP2" 1955238 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-836 1954090 1954196 1954326 "OMSERVER" 1954561 T OMSERVER (NIL) -7 NIL NIL NIL) (-835 1950952 1953530 1953570 "OMSAGG" 1953631 NIL OMSAGG (NIL T) -9 NIL 1953695 NIL) (-834 1949575 1949838 1950120 "OMPKG" 1950690 T OMPKG (NIL) -7 NIL NIL NIL) (-833 1949005 1949108 1949136 "OM" 1949435 T OM (NIL) -9 NIL NIL NIL) (-832 1947552 1948554 1948723 "OMLO" 1948886 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-831 1946512 1946659 1946879 "OMEXPR" 1947378 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-830 1945803 1946058 1946194 "OMERR" 1946396 T OMERR (NIL) -8 NIL NIL NIL) (-829 1944954 1945224 1945384 "OMERRK" 1945663 T OMERRK (NIL) -8 NIL NIL NIL) (-828 1944405 1944631 1944739 "OMENC" 1944866 T OMENC (NIL) -8 NIL NIL NIL) (-827 1938300 1939485 1940656 "OMDEV" 1943254 T OMDEV (NIL) -8 NIL NIL NIL) (-826 1937369 1937540 1937734 "OMCONN" 1938126 T OMCONN (NIL) -8 NIL NIL NIL) (-825 1935890 1936866 1936894 "OINTDOM" 1936899 T OINTDOM (NIL) -9 NIL 1936920 NIL) (-824 1933228 1934578 1934915 "OFMONOID" 1935585 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-823 1932639 1933165 1933210 "ODVAR" 1933215 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-822 1930062 1932384 1932539 "ODR" 1932544 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-821 1922643 1929838 1929964 "ODPOL" 1929969 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-820 1916465 1922515 1922620 "ODP" 1922625 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-819 1915231 1915446 1915721 "ODETOOLS" 1916239 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-818 1912198 1912856 1913572 "ODESYS" 1914564 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-817 1907080 1907988 1909013 "ODERTRIC" 1911273 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-816 1906506 1906588 1906782 "ODERED" 1906992 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-815 1903394 1903942 1904619 "ODERAT" 1905929 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-814 1900351 1900818 1901415 "ODEPRRIC" 1902923 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-813 1898294 1898890 1899376 "ODEPROB" 1899885 T ODEPROB (NIL) -8 NIL NIL NIL) (-812 1894814 1895299 1895946 "ODEPRIM" 1897773 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-811 1894063 1894165 1894425 "ODEPAL" 1894706 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-810 1890225 1891016 1891880 "ODEPACK" 1893219 T ODEPACK (NIL) -7 NIL NIL NIL) (-809 1889286 1889393 1889615 "ODEINT" 1890114 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-808 1883387 1884812 1886259 "ODEIFTBL" 1887859 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-807 1878785 1879571 1880523 "ODEEF" 1882546 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-806 1878134 1878223 1878446 "ODECONST" 1878690 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-805 1876259 1876920 1876948 "ODECAT" 1877553 T ODECAT (NIL) -9 NIL 1878084 NIL) (-804 1873114 1875964 1876086 "OCT" 1876169 NIL OCT (NIL T) -8 NIL NIL NIL) (-803 1872752 1872795 1872922 "OCTCT2" 1873065 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-802 1867401 1869836 1869876 "OC" 1870973 NIL OC (NIL T) -9 NIL 1871831 NIL) (-801 1864628 1865376 1866366 "OC-" 1866460 NIL OC- (NIL T T) -8 NIL NIL NIL) (-800 1863980 1864448 1864476 "OCAMON" 1864481 T OCAMON (NIL) -9 NIL 1864502 NIL) (-799 1863511 1863852 1863880 "OASGP" 1863885 T OASGP (NIL) -9 NIL 1863905 NIL) (-798 1862772 1863261 1863289 "OAMONS" 1863329 T OAMONS (NIL) -9 NIL 1863372 NIL) (-797 1862186 1862619 1862647 "OAMON" 1862652 T OAMON (NIL) -9 NIL 1862672 NIL) (-796 1861444 1861962 1861990 "OAGROUP" 1861995 T OAGROUP (NIL) -9 NIL 1862015 NIL) (-795 1861134 1861184 1861272 "NUMTUBE" 1861388 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-794 1854707 1856225 1857761 "NUMQUAD" 1859618 T NUMQUAD (NIL) -7 NIL NIL NIL) (-793 1850463 1851451 1852476 "NUMODE" 1853702 T NUMODE (NIL) -7 NIL NIL NIL) (-792 1847818 1848698 1848726 "NUMINT" 1849649 T NUMINT (NIL) -9 NIL 1850413 NIL) (-791 1846766 1846963 1847181 "NUMFMT" 1847620 T NUMFMT (NIL) -7 NIL NIL NIL) (-790 1833125 1836070 1838602 "NUMERIC" 1844273 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-789 1827495 1832574 1832669 "NTSCAT" 1832674 NIL NTSCAT (NIL T T T T) -9 NIL 1832713 NIL) (-788 1826689 1826854 1827047 "NTPOLFN" 1827334 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-787 1814766 1823514 1824326 "NSUP" 1825910 NIL NSUP (NIL T) -8 NIL NIL NIL) (-786 1814398 1814455 1814564 "NSUP2" 1814703 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-785 1804624 1814172 1814305 "NSMP" 1814310 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-784 1803056 1803357 1803714 "NREP" 1804312 NIL NREP (NIL T) -7 NIL NIL NIL) (-783 1801647 1801899 1802257 "NPCOEF" 1802799 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-782 1800713 1800828 1801044 "NORMRETR" 1801528 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-781 1798754 1799044 1799453 "NORMPK" 1800421 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-780 1798439 1798467 1798591 "NORMMA" 1798720 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-779 1798239 1798396 1798425 "NONE" 1798430 T NONE (NIL) -8 NIL NIL NIL) (-778 1798028 1798057 1798126 "NONE1" 1798203 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-777 1797525 1797587 1797766 "NODE1" 1797960 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-776 1795810 1796661 1796916 "NNI" 1797263 T NNI (NIL) -8 NIL NIL 1797498) (-775 1794230 1794543 1794907 "NLINSOL" 1795478 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-774 1790471 1791466 1792365 "NIPROB" 1793351 T NIPROB (NIL) -8 NIL NIL NIL) (-773 1789228 1789462 1789764 "NFINTBAS" 1790233 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-772 1788402 1788878 1788919 "NETCLT" 1789091 NIL NETCLT (NIL T) -9 NIL 1789173 NIL) (-771 1787110 1787341 1787622 "NCODIV" 1788170 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-770 1786872 1786909 1786984 "NCNTFRAC" 1787067 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-769 1785052 1785416 1785836 "NCEP" 1786497 NIL NCEP (NIL T) -7 NIL NIL NIL) (-768 1783903 1784676 1784704 "NASRING" 1784814 T NASRING (NIL) -9 NIL 1784894 NIL) (-767 1783698 1783742 1783836 "NASRING-" 1783841 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-766 1782805 1783330 1783358 "NARNG" 1783475 T NARNG (NIL) -9 NIL 1783566 NIL) (-765 1782497 1782564 1782698 "NARNG-" 1782703 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-764 1781376 1781583 1781818 "NAGSP" 1782282 T NAGSP (NIL) -7 NIL NIL NIL) (-763 1772648 1774332 1776005 "NAGS" 1779723 T NAGS (NIL) -7 NIL NIL NIL) (-762 1771196 1771504 1771835 "NAGF07" 1772337 T NAGF07 (NIL) -7 NIL NIL NIL) (-761 1765734 1767025 1768332 "NAGF04" 1769909 T NAGF04 (NIL) -7 NIL NIL NIL) (-760 1758702 1760316 1761949 "NAGF02" 1764121 T NAGF02 (NIL) -7 NIL NIL NIL) (-759 1753926 1755026 1756143 "NAGF01" 1757605 T NAGF01 (NIL) -7 NIL NIL NIL) (-758 1747554 1749120 1750705 "NAGE04" 1752361 T NAGE04 (NIL) -7 NIL NIL NIL) (-757 1738723 1740844 1742974 "NAGE02" 1745444 T NAGE02 (NIL) -7 NIL NIL NIL) (-756 1734676 1735623 1736587 "NAGE01" 1737779 T NAGE01 (NIL) -7 NIL NIL NIL) (-755 1732471 1733005 1733563 "NAGD03" 1734138 T NAGD03 (NIL) -7 NIL NIL NIL) (-754 1724221 1726149 1728103 "NAGD02" 1730537 T NAGD02 (NIL) -7 NIL NIL NIL) (-753 1718032 1719457 1720897 "NAGD01" 1722801 T NAGD01 (NIL) -7 NIL NIL NIL) (-752 1714241 1715063 1715900 "NAGC06" 1717215 T NAGC06 (NIL) -7 NIL NIL NIL) (-751 1712706 1713038 1713394 "NAGC05" 1713905 T NAGC05 (NIL) -7 NIL NIL NIL) (-750 1712082 1712201 1712345 "NAGC02" 1712582 T NAGC02 (NIL) -7 NIL NIL NIL) (-749 1711041 1711624 1711664 "NAALG" 1711743 NIL NAALG (NIL T) -9 NIL 1711804 NIL) (-748 1710876 1710905 1710995 "NAALG-" 1711000 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-747 1704826 1705934 1707121 "MULTSQFR" 1709772 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-746 1704145 1704220 1704404 "MULTFACT" 1704738 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-745 1696869 1700782 1700835 "MTSCAT" 1701905 NIL MTSCAT (NIL T T) -9 NIL 1702420 NIL) (-744 1696581 1696635 1696727 "MTHING" 1696809 NIL MTHING (NIL T) -7 NIL NIL NIL) (-743 1696373 1696406 1696466 "MSYSCMD" 1696541 T MSYSCMD (NIL) -7 NIL NIL NIL) (-742 1692455 1695128 1695448 "MSET" 1696086 NIL MSET (NIL T) -8 NIL NIL NIL) (-741 1689524 1692016 1692057 "MSETAGG" 1692062 NIL MSETAGG (NIL T) -9 NIL 1692096 NIL) (-740 1685365 1686903 1687648 "MRING" 1688824 NIL MRING (NIL T T) -8 NIL NIL NIL) (-739 1684931 1684998 1685129 "MRF2" 1685292 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-738 1684549 1684584 1684728 "MRATFAC" 1684890 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-737 1682161 1682456 1682887 "MPRFF" 1684254 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-736 1676458 1682015 1682112 "MPOLY" 1682117 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-735 1675948 1675983 1676191 "MPCPF" 1676417 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-734 1675462 1675505 1675689 "MPC3" 1675899 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1674657 1674738 1674959 "MPC2" 1675377 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-732 1672958 1673295 1673685 "MONOTOOL" 1674317 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-731 1672183 1672500 1672528 "MONOID" 1672747 T MONOID (NIL) -9 NIL 1672894 NIL) (-730 1671729 1671848 1672029 "MONOID-" 1672034 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-729 1662204 1668155 1668214 "MONOGEN" 1668888 NIL MONOGEN (NIL T T) -9 NIL 1669344 NIL) (-728 1659422 1660157 1661157 "MONOGEN-" 1661276 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-727 1658255 1658701 1658729 "MONADWU" 1659121 T MONADWU (NIL) -9 NIL 1659359 NIL) (-726 1657627 1657786 1658034 "MONADWU-" 1658039 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-725 1656986 1657230 1657258 "MONAD" 1657465 T MONAD (NIL) -9 NIL 1657577 NIL) (-724 1656671 1656749 1656881 "MONAD-" 1656886 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-723 1654960 1655584 1655863 "MOEBIUS" 1656424 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-722 1654238 1654642 1654682 "MODULE" 1654687 NIL MODULE (NIL T) -9 NIL 1654726 NIL) (-721 1653806 1653902 1654092 "MODULE-" 1654097 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-720 1651486 1652170 1652497 "MODRING" 1653630 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-719 1648430 1649591 1650112 "MODOP" 1651015 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-718 1647018 1647497 1647774 "MODMONOM" 1648293 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-717 1637060 1645309 1645723 "MODMON" 1646655 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-716 1634216 1635904 1636180 "MODFIELD" 1636935 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1633193 1633497 1633687 "MMLFORM" 1634046 T MMLFORM (NIL) -8 NIL NIL NIL) (-714 1632719 1632762 1632941 "MMAP" 1633144 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-713 1630798 1631565 1631606 "MLO" 1632029 NIL MLO (NIL T) -9 NIL 1632271 NIL) (-712 1628164 1628680 1629282 "MLIFT" 1630279 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-711 1627555 1627639 1627793 "MKUCFUNC" 1628075 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-710 1627154 1627224 1627347 "MKRECORD" 1627478 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-709 1626201 1626363 1626591 "MKFUNC" 1626965 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-708 1625589 1625693 1625849 "MKFLCFN" 1626084 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-707 1624866 1624968 1625153 "MKBCFUNC" 1625482 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-706 1621573 1624420 1624556 "MINT" 1624750 T MINT (NIL) -8 NIL NIL NIL) (-705 1620385 1620628 1620905 "MHROWRED" 1621328 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-704 1615765 1618920 1619325 "MFLOAT" 1620000 T MFLOAT (NIL) -8 NIL NIL NIL) (-703 1615122 1615198 1615369 "MFINFACT" 1615677 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-702 1611437 1612285 1613169 "MESH" 1614258 T MESH (NIL) -7 NIL NIL NIL) (-701 1609827 1610139 1610492 "MDDFACT" 1611124 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-700 1606622 1608986 1609027 "MDAGG" 1609282 NIL MDAGG (NIL T) -9 NIL 1609425 NIL) (-699 1596362 1605915 1606122 "MCMPLX" 1606435 T MCMPLX (NIL) -8 NIL NIL NIL) (-698 1595499 1595645 1595846 "MCDEN" 1596211 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-697 1593389 1593659 1594039 "MCALCFN" 1595229 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-696 1592314 1592554 1592787 "MAYBE" 1593195 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-695 1589926 1590449 1591011 "MATSTOR" 1591785 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-694 1585883 1589298 1589546 "MATRIX" 1589711 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-693 1581647 1582356 1583092 "MATLIN" 1585240 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-692 1571753 1574939 1575016 "MATCAT" 1579896 NIL MATCAT (NIL T T T) -9 NIL 1581313 NIL) (-691 1568109 1569130 1570486 "MATCAT-" 1570491 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-690 1566703 1566856 1567189 "MATCAT2" 1567944 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-689 1564815 1565139 1565523 "MAPPKG3" 1566378 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-688 1563796 1563969 1564191 "MAPPKG2" 1564639 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-687 1562295 1562579 1562906 "MAPPKG1" 1563502 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-686 1561374 1561701 1561878 "MAPPAST" 1562138 T MAPPAST (NIL) -8 NIL NIL NIL) (-685 1560985 1561043 1561166 "MAPHACK3" 1561310 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-684 1560577 1560638 1560752 "MAPHACK2" 1560917 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-683 1560014 1560118 1560260 "MAPHACK1" 1560468 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-682 1558093 1558714 1559018 "MAGMA" 1559742 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-681 1557572 1557817 1557908 "MACROAST" 1558022 T MACROAST (NIL) -8 NIL NIL NIL) (-680 1553990 1555811 1556272 "M3D" 1557144 NIL M3D (NIL T) -8 NIL NIL NIL) (-679 1548096 1552359 1552400 "LZSTAGG" 1553182 NIL LZSTAGG (NIL T) -9 NIL 1553477 NIL) (-678 1544053 1545227 1546684 "LZSTAGG-" 1546689 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-677 1541140 1541944 1542431 "LWORD" 1543598 NIL LWORD (NIL T) -8 NIL NIL NIL) (-676 1540716 1540944 1541019 "LSTAST" 1541085 T LSTAST (NIL) -8 NIL NIL NIL) (-675 1533882 1540487 1540621 "LSQM" 1540626 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-674 1533106 1533245 1533473 "LSPP" 1533737 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-673 1530918 1531219 1531675 "LSMP" 1532795 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-672 1527697 1528371 1529101 "LSMP1" 1530220 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-671 1521574 1526864 1526905 "LSAGG" 1526967 NIL LSAGG (NIL T) -9 NIL 1527045 NIL) (-670 1518269 1519193 1520406 "LSAGG-" 1520411 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-669 1515868 1517413 1517662 "LPOLY" 1518064 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-668 1515450 1515535 1515658 "LPEFRAC" 1515777 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-667 1513771 1514544 1514797 "LO" 1515282 NIL LO (NIL T T T) -8 NIL NIL NIL) (-666 1513423 1513535 1513563 "LOGIC" 1513674 T LOGIC (NIL) -9 NIL 1513755 NIL) (-665 1513285 1513308 1513379 "LOGIC-" 1513384 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-664 1512478 1512618 1512811 "LODOOPS" 1513141 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-663 1509901 1512394 1512460 "LODO" 1512465 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-662 1508439 1508674 1509027 "LODOF" 1509648 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-661 1504657 1507088 1507129 "LODOCAT" 1507567 NIL LODOCAT (NIL T) -9 NIL 1507778 NIL) (-660 1504390 1504448 1504575 "LODOCAT-" 1504580 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-659 1501710 1504231 1504349 "LODO2" 1504354 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-658 1499145 1501647 1501692 "LODO1" 1501697 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-657 1498026 1498191 1498496 "LODEEF" 1498968 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-656 1493265 1496156 1496197 "LNAGG" 1497144 NIL LNAGG (NIL T) -9 NIL 1497588 NIL) (-655 1492412 1492626 1492968 "LNAGG-" 1492973 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-654 1488548 1489337 1489976 "LMOPS" 1491827 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-653 1487951 1488339 1488380 "LMODULE" 1488385 NIL LMODULE (NIL T) -9 NIL 1488411 NIL) (-652 1485149 1487596 1487719 "LMDICT" 1487861 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-651 1484555 1484776 1484817 "LLINSET" 1485008 NIL LLINSET (NIL T) -9 NIL 1485099 NIL) (-650 1484254 1484463 1484523 "LITERAL" 1484528 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-649 1477417 1483188 1483492 "LIST" 1483983 NIL LIST (NIL T) -8 NIL NIL NIL) (-648 1476942 1477016 1477155 "LIST3" 1477337 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-647 1475949 1476127 1476355 "LIST2" 1476760 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-646 1474083 1474395 1474794 "LIST2MAP" 1475596 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-645 1473679 1473916 1473957 "LINSET" 1473962 NIL LINSET (NIL T) -9 NIL 1473996 NIL) (-644 1472340 1473010 1473051 "LINEXP" 1473306 NIL LINEXP (NIL T) -9 NIL 1473455 NIL) (-643 1470987 1471247 1471544 "LINDEP" 1472092 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-642 1467754 1468473 1469250 "LIMITRF" 1470242 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-641 1466057 1466353 1466762 "LIMITPS" 1467449 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-640 1460485 1465568 1465796 "LIE" 1465878 NIL LIE (NIL T T) -8 NIL NIL NIL) (-639 1459433 1459902 1459942 "LIECAT" 1460082 NIL LIECAT (NIL T) -9 NIL 1460233 NIL) (-638 1459274 1459301 1459389 "LIECAT-" 1459394 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-637 1451770 1458723 1458888 "LIB" 1459129 T LIB (NIL) -8 NIL NIL NIL) (-636 1447405 1448288 1449223 "LGROBP" 1450887 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-635 1445403 1445677 1446027 "LF" 1447126 NIL LF (NIL T T) -7 NIL NIL NIL) (-634 1444243 1444935 1444963 "LFCAT" 1445170 T LFCAT (NIL) -9 NIL 1445309 NIL) (-633 1441145 1441775 1442463 "LEXTRIPK" 1443607 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-632 1437889 1438715 1439218 "LEXP" 1440725 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-631 1437365 1437610 1437702 "LETAST" 1437817 T LETAST (NIL) -8 NIL NIL NIL) (-630 1435763 1436076 1436477 "LEADCDET" 1437047 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-629 1434953 1435027 1435256 "LAZM3PK" 1435684 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-628 1429870 1433030 1433568 "LAUPOL" 1434465 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-627 1429449 1429493 1429654 "LAPLACE" 1429820 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-626 1427388 1428550 1428801 "LA" 1429282 NIL LA (NIL T T T) -8 NIL NIL NIL) (-625 1426382 1426966 1427007 "LALG" 1427069 NIL LALG (NIL T) -9 NIL 1427128 NIL) (-624 1426096 1426155 1426291 "LALG-" 1426296 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-623 1425931 1425955 1425996 "KVTFROM" 1426058 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-622 1424854 1425298 1425483 "KTVLOGIC" 1425766 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-621 1424689 1424713 1424754 "KRCFROM" 1424816 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-620 1423593 1423780 1424079 "KOVACIC" 1424489 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-619 1423428 1423452 1423493 "KONVERT" 1423555 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-618 1423263 1423287 1423328 "KOERCE" 1423390 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-617 1421093 1421856 1422233 "KERNEL" 1422919 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-616 1420589 1420670 1420802 "KERNEL2" 1421007 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-615 1414359 1419128 1419182 "KDAGG" 1419559 NIL KDAGG (NIL T T) -9 NIL 1419765 NIL) (-614 1413888 1414012 1414217 "KDAGG-" 1414222 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-613 1407036 1413549 1413704 "KAFILE" 1413766 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-612 1401464 1406547 1406775 "JORDAN" 1406857 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-611 1400843 1401113 1401234 "JOINAST" 1401363 T JOINAST (NIL) -8 NIL NIL NIL) (-610 1400689 1400748 1400803 "JAVACODE" 1400808 T JAVACODE (NIL) -8 NIL NIL NIL) (-609 1396941 1398894 1398948 "IXAGG" 1399877 NIL IXAGG (NIL T T) -9 NIL 1400336 NIL) (-608 1395860 1396166 1396585 "IXAGG-" 1396590 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-607 1391390 1395782 1395841 "IVECTOR" 1395846 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-606 1390156 1390393 1390659 "ITUPLE" 1391157 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-605 1388658 1388835 1389130 "ITRIGMNP" 1389978 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-604 1387403 1387607 1387890 "ITFUN3" 1388434 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-603 1387035 1387092 1387201 "ITFUN2" 1387340 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-602 1386194 1386515 1386689 "ITFORM" 1386881 T ITFORM (NIL) -8 NIL NIL NIL) (-601 1384155 1385214 1385492 "ITAYLOR" 1385949 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-600 1373100 1378292 1379455 "ISUPS" 1383025 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-599 1372204 1372344 1372580 "ISUMP" 1372947 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-598 1367579 1372149 1372190 "ISTRING" 1372195 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-597 1367055 1367300 1367392 "ISAST" 1367507 T ISAST (NIL) -8 NIL NIL NIL) (-596 1366264 1366346 1366562 "IRURPK" 1366969 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-595 1365200 1365401 1365641 "IRSN" 1366044 T IRSN (NIL) -7 NIL NIL NIL) (-594 1363271 1363626 1364055 "IRRF2F" 1364838 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-593 1363018 1363056 1363132 "IRREDFFX" 1363227 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-592 1361633 1361892 1362191 "IROOT" 1362751 NIL IROOT (NIL T) -7 NIL NIL NIL) (-591 1358237 1359317 1360009 "IR" 1360973 NIL IR (NIL T) -8 NIL NIL NIL) (-590 1357442 1357730 1357881 "IRFORM" 1358106 T IRFORM (NIL) -8 NIL NIL NIL) (-589 1355055 1355550 1356116 "IR2" 1356920 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-588 1354155 1354268 1354482 "IR2F" 1354938 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-587 1353946 1353980 1354040 "IPRNTPK" 1354115 T IPRNTPK (NIL) -7 NIL NIL NIL) (-586 1350527 1353835 1353904 "IPF" 1353909 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-585 1348854 1350452 1350509 "IPADIC" 1350514 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-584 1348166 1348414 1348544 "IP4ADDR" 1348744 T IP4ADDR (NIL) -8 NIL NIL NIL) (-583 1347540 1347795 1347927 "IOMODE" 1348054 T IOMODE (NIL) -8 NIL NIL NIL) (-582 1346613 1347137 1347264 "IOBFILE" 1347433 T IOBFILE (NIL) -8 NIL NIL NIL) (-581 1346101 1346517 1346545 "IOBCON" 1346550 T IOBCON (NIL) -9 NIL 1346571 NIL) (-580 1345612 1345670 1345853 "INVLAPLA" 1346037 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-579 1335260 1337614 1340000 "INTTR" 1343276 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-578 1331595 1332337 1333202 "INTTOOLS" 1334445 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-577 1331181 1331272 1331389 "INTSLPE" 1331498 T INTSLPE (NIL) -7 NIL NIL NIL) (-576 1329134 1331104 1331163 "INTRVL" 1331168 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-575 1326736 1327248 1327823 "INTRF" 1328619 NIL INTRF (NIL T) -7 NIL NIL NIL) (-574 1326147 1326244 1326386 "INTRET" 1326634 NIL INTRET (NIL T) -7 NIL NIL NIL) (-573 1324144 1324533 1325003 "INTRAT" 1325755 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-572 1321407 1321990 1322609 "INTPM" 1323629 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-571 1318152 1318751 1319489 "INTPAF" 1320793 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-570 1313331 1314293 1315344 "INTPACK" 1317121 T INTPACK (NIL) -7 NIL NIL NIL) (-569 1310279 1313128 1313237 "INT" 1313242 T INT (NIL) -8 NIL NIL NIL) (-568 1309531 1309683 1309891 "INTHERTR" 1310121 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-567 1308970 1309050 1309238 "INTHERAL" 1309445 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-566 1306816 1307259 1307716 "INTHEORY" 1308533 T INTHEORY (NIL) -7 NIL NIL NIL) (-565 1298222 1299843 1301615 "INTG0" 1305168 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-564 1278795 1283585 1288395 "INTFTBL" 1293432 T INTFTBL (NIL) -8 NIL NIL NIL) (-563 1278044 1278182 1278355 "INTFACT" 1278654 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-562 1275471 1275917 1276474 "INTEF" 1277598 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-561 1273838 1274577 1274605 "INTDOM" 1274906 T INTDOM (NIL) -9 NIL 1275113 NIL) (-560 1273207 1273381 1273623 "INTDOM-" 1273628 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-559 1269595 1271523 1271577 "INTCAT" 1272376 NIL INTCAT (NIL T) -9 NIL 1272697 NIL) (-558 1269067 1269170 1269298 "INTBIT" 1269487 T INTBIT (NIL) -7 NIL NIL NIL) (-557 1267766 1267920 1268227 "INTALG" 1268912 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-556 1267249 1267339 1267496 "INTAF" 1267670 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-555 1260592 1267059 1267199 "INTABL" 1267204 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-554 1259933 1260399 1260464 "INT8" 1260498 T INT8 (NIL) -8 NIL NIL 1260543) (-553 1259273 1259739 1259804 "INT64" 1259838 T INT64 (NIL) -8 NIL NIL 1259883) (-552 1258613 1259079 1259144 "INT32" 1259178 T INT32 (NIL) -8 NIL NIL 1259223) (-551 1257953 1258419 1258484 "INT16" 1258518 T INT16 (NIL) -8 NIL NIL 1258563) (-550 1252863 1255576 1255604 "INS" 1256538 T INS (NIL) -9 NIL 1257203 NIL) (-549 1250103 1250874 1251848 "INS-" 1251921 NIL INS- (NIL T) -8 NIL NIL NIL) (-548 1248878 1249105 1249403 "INPSIGN" 1249856 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-547 1247996 1248113 1248310 "INPRODPF" 1248758 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-546 1246890 1247007 1247244 "INPRODFF" 1247876 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-545 1245890 1246042 1246302 "INNMFACT" 1246726 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-544 1245087 1245184 1245372 "INMODGCD" 1245789 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-543 1243595 1243840 1244164 "INFSP" 1244832 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-542 1242779 1242896 1243079 "INFPROD0" 1243475 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-541 1239634 1240844 1241359 "INFORM" 1242272 T INFORM (NIL) -8 NIL NIL NIL) (-540 1239244 1239304 1239402 "INFORM1" 1239569 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-539 1238767 1238856 1238970 "INFINITY" 1239150 T INFINITY (NIL) -7 NIL NIL NIL) (-538 1237943 1238487 1238588 "INETCLTS" 1238686 T INETCLTS (NIL) -8 NIL NIL NIL) (-537 1236559 1236809 1237130 "INEP" 1237691 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-536 1235808 1236456 1236521 "INDE" 1236526 NIL INDE (NIL T) -8 NIL NIL NIL) (-535 1235372 1235440 1235557 "INCRMAPS" 1235735 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-534 1234190 1234641 1234847 "INBFILE" 1235186 T INBFILE (NIL) -8 NIL NIL NIL) (-533 1229490 1230426 1231370 "INBFF" 1233278 NIL INBFF (NIL T) -7 NIL NIL NIL) (-532 1228398 1228667 1228695 "INBCON" 1229208 T INBCON (NIL) -9 NIL 1229474 NIL) (-531 1227650 1227873 1228149 "INBCON-" 1228154 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-530 1227129 1227374 1227465 "INAST" 1227579 T INAST (NIL) -8 NIL NIL NIL) (-529 1226556 1226808 1226914 "IMPTAST" 1227043 T IMPTAST (NIL) -8 NIL NIL NIL) (-528 1223002 1226400 1226504 "IMATRIX" 1226509 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-527 1221710 1221833 1222149 "IMATQF" 1222858 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-526 1219930 1220157 1220494 "IMATLIN" 1221466 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-525 1214508 1219854 1219912 "ILIST" 1219917 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-524 1212413 1214368 1214481 "IIARRAY2" 1214486 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-523 1207811 1212324 1212388 "IFF" 1212393 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-522 1207158 1207428 1207544 "IFAST" 1207715 T IFAST (NIL) -8 NIL NIL NIL) (-521 1202153 1206450 1206638 "IFARRAY" 1207015 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-520 1201333 1202057 1202130 "IFAMON" 1202135 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-519 1200917 1200982 1201036 "IEVALAB" 1201243 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-518 1200592 1200660 1200820 "IEVALAB-" 1200825 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-517 1200223 1200506 1200569 "IDPO" 1200574 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-516 1199473 1200112 1200187 "IDPOAMS" 1200192 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-515 1198780 1199362 1199437 "IDPOAM" 1199442 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-514 1197839 1198115 1198168 "IDPC" 1198581 NIL IDPC (NIL T T) -9 NIL 1198730 NIL) (-513 1197308 1197731 1197804 "IDPAM" 1197809 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-512 1196684 1197200 1197273 "IDPAG" 1197278 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-511 1196329 1196520 1196595 "IDENT" 1196629 T IDENT (NIL) -8 NIL NIL NIL) (-510 1192584 1193432 1194327 "IDECOMP" 1195486 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-509 1185422 1186507 1187554 "IDEAL" 1191620 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-508 1184582 1184694 1184894 "ICDEN" 1185306 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-507 1183653 1184062 1184209 "ICARD" 1184455 T ICARD (NIL) -8 NIL NIL NIL) (-506 1181713 1182026 1182431 "IBPTOOLS" 1183330 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-505 1177320 1181333 1181446 "IBITS" 1181632 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-504 1174043 1174619 1175314 "IBATOOL" 1176737 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-503 1171822 1172284 1172817 "IBACHIN" 1173578 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-502 1169651 1171668 1171771 "IARRAY2" 1171776 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-501 1165757 1169577 1169634 "IARRAY1" 1169639 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-500 1159866 1164169 1164650 "IAN" 1165296 T IAN (NIL) -8 NIL NIL NIL) (-499 1159377 1159434 1159607 "IALGFACT" 1159803 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-498 1158905 1159018 1159046 "HYPCAT" 1159253 T HYPCAT (NIL) -9 NIL NIL NIL) (-497 1158443 1158560 1158746 "HYPCAT-" 1158751 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-496 1158038 1158238 1158321 "HOSTNAME" 1158380 T HOSTNAME (NIL) -8 NIL NIL NIL) (-495 1157883 1157920 1157961 "HOMOTOP" 1157966 NIL HOMOTOP (NIL T) -9 NIL 1157999 NIL) (-494 1154515 1155893 1155934 "HOAGG" 1156915 NIL HOAGG (NIL T) -9 NIL 1157594 NIL) (-493 1153109 1153508 1154034 "HOAGG-" 1154039 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-492 1147111 1152702 1152852 "HEXADEC" 1152979 T HEXADEC (NIL) -8 NIL NIL NIL) (-491 1145859 1146081 1146344 "HEUGCD" 1146888 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-490 1144935 1145696 1145826 "HELLFDIV" 1145831 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-489 1143114 1144712 1144800 "HEAP" 1144879 NIL HEAP (NIL T) -8 NIL NIL NIL) (-488 1142377 1142666 1142800 "HEADAST" 1143000 T HEADAST (NIL) -8 NIL NIL NIL) (-487 1136243 1142292 1142354 "HDP" 1142359 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-486 1130231 1135878 1136030 "HDMP" 1136144 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-485 1129555 1129695 1129859 "HB" 1130087 T HB (NIL) -7 NIL NIL NIL) (-484 1122941 1129401 1129505 "HASHTBL" 1129510 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-483 1122417 1122662 1122754 "HASAST" 1122869 T HASAST (NIL) -8 NIL NIL NIL) (-482 1120195 1122039 1122221 "HACKPI" 1122255 T HACKPI (NIL) -8 NIL NIL NIL) (-481 1115863 1120048 1120161 "GTSET" 1120166 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-480 1109278 1115741 1115839 "GSTBL" 1115844 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-479 1101556 1108309 1108574 "GSERIES" 1109069 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-478 1100697 1101114 1101142 "GROUP" 1101345 T GROUP (NIL) -9 NIL 1101479 NIL) (-477 1100063 1100222 1100473 "GROUP-" 1100478 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-476 1098430 1098751 1099138 "GROEBSOL" 1099740 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-475 1097344 1097632 1097683 "GRMOD" 1098212 NIL GRMOD (NIL T T) -9 NIL 1098380 NIL) (-474 1097112 1097148 1097276 "GRMOD-" 1097281 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-473 1092402 1093466 1094466 "GRIMAGE" 1096132 T GRIMAGE (NIL) -8 NIL NIL NIL) (-472 1090868 1091129 1091453 "GRDEF" 1092098 T GRDEF (NIL) -7 NIL NIL NIL) (-471 1090312 1090428 1090569 "GRAY" 1090747 T GRAY (NIL) -7 NIL NIL NIL) (-470 1089499 1089905 1089956 "GRALG" 1090109 NIL GRALG (NIL T T) -9 NIL 1090202 NIL) (-469 1089160 1089233 1089396 "GRALG-" 1089401 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-468 1085937 1088745 1088923 "GPOLSET" 1089067 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-467 1085291 1085348 1085606 "GOSPER" 1085874 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-466 1081023 1081729 1082255 "GMODPOL" 1084990 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-465 1080028 1080212 1080450 "GHENSEL" 1080835 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-464 1074184 1075027 1076047 "GENUPS" 1079112 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-463 1073881 1073932 1074021 "GENUFACT" 1074127 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-462 1073293 1073370 1073535 "GENPGCD" 1073799 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-461 1072767 1072802 1073015 "GENMFACT" 1073252 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-460 1071333 1071590 1071897 "GENEEZ" 1072510 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-459 1065479 1070944 1071106 "GDMP" 1071256 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-458 1054821 1059250 1060356 "GCNAALG" 1064462 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-457 1053148 1054010 1054038 "GCDDOM" 1054293 T GCDDOM (NIL) -9 NIL 1054450 NIL) (-456 1052618 1052745 1052960 "GCDDOM-" 1052965 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-455 1051290 1051475 1051779 "GB" 1052397 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-454 1039906 1042236 1044628 "GBINTERN" 1048981 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-453 1037743 1038035 1038456 "GBF" 1039581 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-452 1036524 1036689 1036956 "GBEUCLID" 1037559 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-451 1035873 1035998 1036147 "GAUSSFAC" 1036395 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-450 1034240 1034542 1034856 "GALUTIL" 1035592 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-449 1032548 1032822 1033146 "GALPOLYU" 1033967 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-448 1029913 1030203 1030610 "GALFACTU" 1032245 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-447 1021718 1023218 1024826 "GALFACT" 1028345 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-446 1019106 1019764 1019792 "FVFUN" 1020948 T FVFUN (NIL) -9 NIL 1021668 NIL) (-445 1018372 1018554 1018582 "FVC" 1018873 T FVC (NIL) -9 NIL 1019056 NIL) (-444 1018015 1018197 1018265 "FUNDESC" 1018324 T FUNDESC (NIL) -8 NIL NIL NIL) (-443 1017630 1017812 1017893 "FUNCTION" 1017967 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-442 1015374 1015952 1016418 "FT" 1017184 T FT (NIL) -8 NIL NIL NIL) (-441 1014165 1014675 1014878 "FTEM" 1015191 T FTEM (NIL) -8 NIL NIL NIL) (-440 1012456 1012745 1013142 "FSUPFACT" 1013856 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-439 1010853 1011142 1011474 "FST" 1012144 T FST (NIL) -8 NIL NIL NIL) (-438 1010052 1010158 1010346 "FSRED" 1010735 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-437 1008751 1009007 1009354 "FSPRMELT" 1009767 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-436 1006057 1006495 1006981 "FSPECF" 1008314 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-435 987695 996026 996067 "FS" 999951 NIL FS (NIL T) -9 NIL 1002240 NIL) (-434 976338 979331 983388 "FS-" 983688 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 975866 975920 976090 "FSINT" 976279 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-432 974158 974859 975162 "FSERIES" 975645 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-431 973200 973316 973540 "FSCINT" 974038 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-430 969408 972144 972185 "FSAGG" 972555 NIL FSAGG (NIL T) -9 NIL 972814 NIL) (-429 967170 967771 968567 "FSAGG-" 968662 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-428 966212 966355 966582 "FSAGG2" 967023 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-427 963894 964174 964721 "FS2UPS" 965930 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-426 963528 963571 963700 "FS2" 963845 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-425 962406 962577 962879 "FS2EXPXP" 963353 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-424 961832 961947 962099 "FRUTIL" 962286 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-423 953245 957327 958685 "FR" 960506 NIL FR (NIL T) -8 NIL NIL NIL) (-422 948214 950888 950928 "FRNAALG" 952324 NIL FRNAALG (NIL T) -9 NIL 952931 NIL) (-421 943887 944963 946238 "FRNAALG-" 946988 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-420 943525 943568 943695 "FRNAAF2" 943838 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-419 941900 942374 942670 "FRMOD" 943337 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-418 939643 940275 940593 "FRIDEAL" 941691 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-417 938834 938921 939212 "FRIDEAL2" 939550 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-416 937967 938381 938422 "FRETRCT" 938427 NIL FRETRCT (NIL T) -9 NIL 938603 NIL) (-415 937079 937310 937661 "FRETRCT-" 937666 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-414 934167 935377 935436 "FRAMALG" 936318 NIL FRAMALG (NIL T T) -9 NIL 936610 NIL) (-413 932301 932756 933386 "FRAMALG-" 933609 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-412 926220 931774 932051 "FRAC" 932056 NIL FRAC (NIL T) -8 NIL NIL NIL) (-411 925856 925913 926020 "FRAC2" 926157 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-410 925492 925549 925656 "FR2" 925793 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-409 920005 922898 922926 "FPS" 924045 T FPS (NIL) -9 NIL 924602 NIL) (-408 919454 919563 919727 "FPS-" 919873 NIL FPS- (NIL T) -8 NIL NIL NIL) (-407 916756 918425 918453 "FPC" 918678 T FPC (NIL) -9 NIL 918820 NIL) (-406 916549 916589 916686 "FPC-" 916691 NIL FPC- (NIL T) -8 NIL NIL NIL) (-405 915339 916037 916078 "FPATMAB" 916083 NIL FPATMAB (NIL T) -9 NIL 916235 NIL) (-404 913012 913515 913941 "FPARFRAC" 914976 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-403 908406 908904 909586 "FORTRAN" 912444 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-402 906122 906622 907161 "FORT" 907887 T FORT (NIL) -7 NIL NIL NIL) (-401 903798 904360 904388 "FORTFN" 905448 T FORTFN (NIL) -9 NIL 906072 NIL) (-400 903562 903612 903640 "FORTCAT" 903699 T FORTCAT (NIL) -9 NIL 903761 NIL) (-399 901668 902178 902568 "FORMULA" 903192 T FORMULA (NIL) -8 NIL NIL NIL) (-398 901456 901486 901555 "FORMULA1" 901632 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-397 900979 901031 901204 "FORDER" 901398 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-396 900075 900239 900432 "FOP" 900806 T FOP (NIL) -7 NIL NIL NIL) (-395 898656 899355 899529 "FNLA" 899957 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-394 897385 897800 897828 "FNCAT" 898288 T FNCAT (NIL) -9 NIL 898548 NIL) (-393 896924 897344 897372 "FNAME" 897377 T FNAME (NIL) -8 NIL NIL NIL) (-392 895487 896450 896478 "FMTC" 896483 T FMTC (NIL) -9 NIL 896519 NIL) (-391 894233 895423 895469 "FMONOID" 895474 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-390 891061 892229 892270 "FMONCAT" 893487 NIL FMONCAT (NIL T) -9 NIL 894092 NIL) (-389 890253 890803 890952 "FM" 890957 NIL FM (NIL T T) -8 NIL NIL NIL) (-388 887677 888323 888351 "FMFUN" 889495 T FMFUN (NIL) -9 NIL 890203 NIL) (-387 886946 887127 887155 "FMC" 887445 T FMC (NIL) -9 NIL 887627 NIL) (-386 884025 884885 884939 "FMCAT" 886134 NIL FMCAT (NIL T T) -9 NIL 886629 NIL) (-385 882891 883791 883891 "FM1" 883970 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-384 880665 881081 881575 "FLOATRP" 882442 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-383 874239 878394 879015 "FLOAT" 880064 T FLOAT (NIL) -8 NIL NIL NIL) (-382 871677 872177 872755 "FLOATCP" 873706 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-381 870417 871255 871296 "FLINEXP" 871301 NIL FLINEXP (NIL T) -9 NIL 871394 NIL) (-380 869571 869806 870134 "FLINEXP-" 870139 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-379 868647 868791 869015 "FLASORT" 869423 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-378 865763 866631 866683 "FLALG" 867910 NIL FLALG (NIL T T) -9 NIL 868377 NIL) (-377 859499 863249 863290 "FLAGG" 864552 NIL FLAGG (NIL T) -9 NIL 865204 NIL) (-376 858225 858564 859054 "FLAGG-" 859059 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-375 857267 857410 857637 "FLAGG2" 858078 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-374 854118 855126 855185 "FINRALG" 856313 NIL FINRALG (NIL T T) -9 NIL 856821 NIL) (-373 853278 853507 853846 "FINRALG-" 853851 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-372 852658 852897 852925 "FINITE" 853121 T FINITE (NIL) -9 NIL 853228 NIL) (-371 845015 847202 847242 "FINAALG" 850909 NIL FINAALG (NIL T) -9 NIL 852362 NIL) (-370 840347 841397 842541 "FINAALG-" 843920 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-369 839715 840102 840205 "FILE" 840277 NIL FILE (NIL T) -8 NIL NIL NIL) (-368 838373 838711 838765 "FILECAT" 839449 NIL FILECAT (NIL T T) -9 NIL 839665 NIL) (-367 836089 837617 837645 "FIELD" 837685 T FIELD (NIL) -9 NIL 837765 NIL) (-366 834709 835094 835605 "FIELD-" 835610 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-365 832559 833344 833691 "FGROUP" 834395 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-364 831649 831813 832033 "FGLMICPK" 832391 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-363 827481 831574 831631 "FFX" 831636 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-362 827082 827143 827278 "FFSLPE" 827414 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-361 823072 823854 824650 "FFPOLY" 826318 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-360 822576 822612 822821 "FFPOLY2" 823030 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-359 818420 822495 822558 "FFP" 822563 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-358 813818 818331 818395 "FF" 818400 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-357 808944 813161 813351 "FFNBX" 813672 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-356 803872 808079 808337 "FFNBP" 808798 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-355 798505 803156 803367 "FFNB" 803705 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-354 797337 797535 797850 "FFINTBAS" 798302 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-353 793406 795626 795654 "FFIELDC" 796274 T FFIELDC (NIL) -9 NIL 796650 NIL) (-352 792068 792439 792936 "FFIELDC-" 792941 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-351 791637 791683 791807 "FFHOM" 792010 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-350 789332 789819 790336 "FFF" 791152 NIL FFF (NIL T) -7 NIL NIL NIL) (-349 784950 789074 789175 "FFCGX" 789275 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-348 780572 784682 784789 "FFCGP" 784893 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-347 775755 780299 780407 "FFCG" 780508 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-346 757151 766232 766318 "FFCAT" 771483 NIL FFCAT (NIL T T T) -9 NIL 772934 NIL) (-345 752348 753396 754710 "FFCAT-" 755940 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-344 751759 751802 752037 "FFCAT2" 752299 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 741082 744731 745951 "FEXPR" 750611 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-342 740082 740517 740558 "FEVALAB" 740642 NIL FEVALAB (NIL T) -9 NIL 740903 NIL) (-341 739241 739451 739789 "FEVALAB-" 739794 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-340 737807 738624 738827 "FDIV" 739140 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-339 734827 735568 735683 "FDIVCAT" 737251 NIL FDIVCAT (NIL T T T T) -9 NIL 737688 NIL) (-338 734589 734616 734786 "FDIVCAT-" 734791 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-337 733809 733896 734173 "FDIV2" 734496 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-336 732783 733104 733306 "FCTRDATA" 733627 T FCTRDATA (NIL) -8 NIL NIL NIL) (-335 731469 731728 732017 "FCPAK1" 732514 T FCPAK1 (NIL) -7 NIL NIL NIL) (-334 730568 730969 731110 "FCOMP" 731360 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-333 714273 717718 721256 "FC" 727050 T FC (NIL) -8 NIL NIL NIL) (-332 706636 710664 710704 "FAXF" 712506 NIL FAXF (NIL T) -9 NIL 713198 NIL) (-331 703912 704570 705395 "FAXF-" 705860 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-330 698964 703288 703464 "FARRAY" 703769 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-329 693858 695925 695978 "FAMR" 697001 NIL FAMR (NIL T T) -9 NIL 697461 NIL) (-328 692748 693050 693485 "FAMR-" 693490 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-327 691917 692670 692723 "FAMONOID" 692728 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-326 689703 690413 690466 "FAMONC" 691407 NIL FAMONC (NIL T T) -9 NIL 691793 NIL) (-325 688367 689457 689594 "FAGROUP" 689599 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-324 686162 686481 686884 "FACUTIL" 688048 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-323 685261 685446 685668 "FACTFUNC" 685972 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-322 677683 684564 684763 "EXPUPXS" 685117 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-321 675166 675706 676292 "EXPRTUBE" 677117 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-320 671437 672029 672759 "EXPRODE" 674505 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-319 656922 670086 670515 "EXPR" 671041 NIL EXPR (NIL T) -8 NIL NIL NIL) (-318 651476 652063 652869 "EXPR2UPS" 656220 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-317 651108 651165 651274 "EXPR2" 651413 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-316 642496 650259 650550 "EXPEXPAN" 650944 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-315 642296 642453 642482 "EXIT" 642487 T EXIT (NIL) -8 NIL NIL NIL) (-314 641776 642020 642111 "EXITAST" 642225 T EXITAST (NIL) -8 NIL NIL NIL) (-313 641403 641465 641578 "EVALCYC" 641708 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-312 640944 641062 641103 "EVALAB" 641273 NIL EVALAB (NIL T) -9 NIL 641377 NIL) (-311 640425 640547 640768 "EVALAB-" 640773 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-310 637793 639095 639123 "EUCDOM" 639678 T EUCDOM (NIL) -9 NIL 640028 NIL) (-309 636198 636640 637230 "EUCDOM-" 637235 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-308 623736 626496 629246 "ESTOOLS" 633468 T ESTOOLS (NIL) -7 NIL NIL NIL) (-307 623368 623425 623534 "ESTOOLS2" 623673 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-306 623119 623161 623241 "ESTOOLS1" 623320 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-305 617156 618764 618792 "ES" 621560 T ES (NIL) -9 NIL 622970 NIL) (-304 612103 613390 615207 "ES-" 615371 NIL ES- (NIL T) -8 NIL NIL NIL) (-303 608477 609238 610018 "ESCONT" 611343 T ESCONT (NIL) -7 NIL NIL NIL) (-302 608222 608254 608336 "ESCONT1" 608439 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-301 607897 607947 608047 "ES2" 608166 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-300 607527 607585 607694 "ES1" 607833 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-299 606743 606872 607048 "ERROR" 607371 T ERROR (NIL) -7 NIL NIL NIL) (-298 600135 606602 606693 "EQTBL" 606698 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-297 592638 595449 596898 "EQ" 598719 NIL -2091 (NIL T) -8 NIL NIL NIL) (-296 592270 592327 592436 "EQ2" 592575 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-295 587560 588608 589701 "EP" 591209 NIL EP (NIL T) -7 NIL NIL NIL) (-294 586160 586451 586757 "ENV" 587274 T ENV (NIL) -8 NIL NIL NIL) (-293 585254 585808 585836 "ENTIRER" 585841 T ENTIRER (NIL) -9 NIL 585887 NIL) (-292 581721 583209 583579 "EMR" 585053 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-291 580865 581050 581104 "ELTAGG" 581484 NIL ELTAGG (NIL T T) -9 NIL 581695 NIL) (-290 580584 580646 580787 "ELTAGG-" 580792 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-289 580373 580402 580456 "ELTAB" 580540 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-288 579499 579645 579844 "ELFUTS" 580224 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-287 579241 579297 579325 "ELEMFUN" 579430 T ELEMFUN (NIL) -9 NIL NIL NIL) (-286 579111 579132 579200 "ELEMFUN-" 579205 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-285 573955 577211 577252 "ELAGG" 578192 NIL ELAGG (NIL T) -9 NIL 578655 NIL) (-284 572240 572674 573337 "ELAGG-" 573342 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-283 571552 571689 571845 "ELABOR" 572104 T ELABOR (NIL) -8 NIL NIL NIL) (-282 570213 570492 570786 "ELABEXPR" 571278 T ELABEXPR (NIL) -8 NIL NIL NIL) (-281 563077 564880 565707 "EFUPXS" 569489 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-280 556527 558328 559138 "EFULS" 562353 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-279 554012 554370 554842 "EFSTRUC" 556159 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-278 543803 545369 546917 "EF" 552527 NIL EF (NIL T T) -7 NIL NIL NIL) (-277 542877 543288 543437 "EAB" 543674 T EAB (NIL) -8 NIL NIL NIL) (-276 542059 542836 542864 "E04UCFA" 542869 T E04UCFA (NIL) -8 NIL NIL NIL) (-275 541241 542018 542046 "E04NAFA" 542051 T E04NAFA (NIL) -8 NIL NIL NIL) (-274 540423 541200 541228 "E04MBFA" 541233 T E04MBFA (NIL) -8 NIL NIL NIL) (-273 539605 540382 540410 "E04JAFA" 540415 T E04JAFA (NIL) -8 NIL NIL NIL) (-272 538789 539564 539592 "E04GCFA" 539597 T E04GCFA (NIL) -8 NIL NIL NIL) (-271 537973 538748 538776 "E04FDFA" 538781 T E04FDFA (NIL) -8 NIL NIL NIL) (-270 537155 537932 537960 "E04DGFA" 537965 T E04DGFA (NIL) -8 NIL NIL NIL) (-269 531328 532680 534044 "E04AGNT" 535811 T E04AGNT (NIL) -7 NIL NIL NIL) (-268 530008 530514 530554 "DVARCAT" 531029 NIL DVARCAT (NIL T) -9 NIL 531228 NIL) (-267 529212 529424 529738 "DVARCAT-" 529743 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-266 522349 529011 529140 "DSMP" 529145 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-265 517130 518294 519362 "DROPT" 521301 T DROPT (NIL) -8 NIL NIL NIL) (-264 516795 516854 516952 "DROPT1" 517065 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-263 511910 513036 514173 "DROPT0" 515678 T DROPT0 (NIL) -7 NIL NIL NIL) (-262 510255 510580 510966 "DRAWPT" 511544 T DRAWPT (NIL) -7 NIL NIL NIL) (-261 504842 505765 506844 "DRAW" 509229 NIL DRAW (NIL T) -7 NIL NIL NIL) (-260 504475 504528 504646 "DRAWHACK" 504783 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-259 503206 503475 503766 "DRAWCX" 504204 T DRAWCX (NIL) -7 NIL NIL NIL) (-258 502721 502790 502941 "DRAWCURV" 503132 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-257 493189 495151 497266 "DRAWCFUN" 500626 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-256 489953 491882 491923 "DQAGG" 492552 NIL DQAGG (NIL T) -9 NIL 492826 NIL) (-255 478077 484546 484629 "DPOLCAT" 486481 NIL DPOLCAT (NIL T T T T) -9 NIL 487026 NIL) (-254 472913 474262 476220 "DPOLCAT-" 476225 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-253 466035 472774 472872 "DPMO" 472877 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-252 459060 465815 465982 "DPMM" 465987 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-251 458538 458752 458850 "DOMTMPLT" 458982 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-250 457971 458340 458420 "DOMCTOR" 458478 T DOMCTOR (NIL) -8 NIL NIL NIL) (-249 457183 457451 457602 "DOMAIN" 457840 T DOMAIN (NIL) -8 NIL NIL NIL) (-248 451171 456818 456970 "DMP" 457084 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-247 450771 450827 450971 "DLP" 451109 NIL DLP (NIL T) -7 NIL NIL NIL) (-246 444593 450098 450288 "DLIST" 450613 NIL DLIST (NIL T) -8 NIL NIL NIL) (-245 441390 443446 443487 "DLAGG" 444037 NIL DLAGG (NIL T) -9 NIL 444267 NIL) (-244 440066 440730 440758 "DIVRING" 440850 T DIVRING (NIL) -9 NIL 440933 NIL) (-243 439303 439493 439793 "DIVRING-" 439798 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-242 437405 437762 438168 "DISPLAY" 438917 T DISPLAY (NIL) -7 NIL NIL NIL) (-241 431293 437319 437382 "DIRPROD" 437387 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-240 430141 430344 430609 "DIRPROD2" 431086 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-239 418916 424922 424975 "DIRPCAT" 425385 NIL DIRPCAT (NIL NIL T) -9 NIL 426225 NIL) (-238 416242 416884 417765 "DIRPCAT-" 418102 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-237 415529 415689 415875 "DIOSP" 416076 T DIOSP (NIL) -7 NIL NIL NIL) (-236 412184 414441 414482 "DIOPS" 414916 NIL DIOPS (NIL T) -9 NIL 415145 NIL) (-235 411733 411847 412038 "DIOPS-" 412043 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-234 410556 411184 411212 "DIFRING" 411399 T DIFRING (NIL) -9 NIL 411509 NIL) (-233 410202 410279 410431 "DIFRING-" 410436 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-232 407938 409210 409251 "DIFEXT" 409614 NIL DIFEXT (NIL T) -9 NIL 409908 NIL) (-231 406223 406651 407317 "DIFEXT-" 407322 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-230 403498 405755 405796 "DIAGG" 405801 NIL DIAGG (NIL T) -9 NIL 405821 NIL) (-229 402882 403039 403291 "DIAGG-" 403296 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-228 398299 401841 402118 "DHMATRIX" 402651 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-227 393911 394820 395830 "DFSFUN" 397309 T DFSFUN (NIL) -7 NIL NIL NIL) (-226 388990 392842 393154 "DFLOAT" 393619 T DFLOAT (NIL) -8 NIL NIL NIL) (-225 387253 387534 387923 "DFINTTLS" 388698 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-224 384282 385274 385674 "DERHAM" 386919 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-223 382083 384057 384146 "DEQUEUE" 384226 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-222 381337 381470 381653 "DEGRED" 381945 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-221 377767 378512 379358 "DEFINTRF" 380565 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-220 375322 375791 376383 "DEFINTEF" 377286 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-219 374672 374942 375057 "DEFAST" 375227 T DEFAST (NIL) -8 NIL NIL NIL) (-218 368674 374265 374415 "DECIMAL" 374542 T DECIMAL (NIL) -8 NIL NIL NIL) (-217 366186 366644 367150 "DDFACT" 368218 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-216 365782 365825 365976 "DBLRESP" 366137 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-215 363654 364015 364375 "DBASE" 365549 NIL DBASE (NIL T) -8 NIL NIL NIL) (-214 362896 363134 363280 "DATAARY" 363553 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-213 362002 362855 362883 "D03FAFA" 362888 T D03FAFA (NIL) -8 NIL NIL NIL) (-212 361109 361961 361989 "D03EEFA" 361994 T D03EEFA (NIL) -8 NIL NIL NIL) (-211 359059 359525 360014 "D03AGNT" 360640 T D03AGNT (NIL) -7 NIL NIL NIL) (-210 358348 359018 359046 "D02EJFA" 359051 T D02EJFA (NIL) -8 NIL NIL NIL) (-209 357637 358307 358335 "D02CJFA" 358340 T D02CJFA (NIL) -8 NIL NIL NIL) (-208 356926 357596 357624 "D02BHFA" 357629 T D02BHFA (NIL) -8 NIL NIL NIL) (-207 356215 356885 356913 "D02BBFA" 356918 T D02BBFA (NIL) -8 NIL NIL NIL) (-206 349412 351001 352607 "D02AGNT" 354629 T D02AGNT (NIL) -7 NIL NIL NIL) (-205 347180 347703 348249 "D01WGTS" 348886 T D01WGTS (NIL) -7 NIL NIL NIL) (-204 346247 347139 347167 "D01TRNS" 347172 T D01TRNS (NIL) -8 NIL NIL NIL) (-203 345315 346206 346234 "D01GBFA" 346239 T D01GBFA (NIL) -8 NIL NIL NIL) (-202 344383 345274 345302 "D01FCFA" 345307 T D01FCFA (NIL) -8 NIL NIL NIL) (-201 343451 344342 344370 "D01ASFA" 344375 T D01ASFA (NIL) -8 NIL NIL NIL) (-200 342519 343410 343438 "D01AQFA" 343443 T D01AQFA (NIL) -8 NIL NIL NIL) (-199 341587 342478 342506 "D01APFA" 342511 T D01APFA (NIL) -8 NIL NIL NIL) (-198 340655 341546 341574 "D01ANFA" 341579 T D01ANFA (NIL) -8 NIL NIL NIL) (-197 339723 340614 340642 "D01AMFA" 340647 T D01AMFA (NIL) -8 NIL NIL NIL) (-196 338791 339682 339710 "D01ALFA" 339715 T D01ALFA (NIL) -8 NIL NIL NIL) (-195 337859 338750 338778 "D01AKFA" 338783 T D01AKFA (NIL) -8 NIL NIL NIL) (-194 336927 337818 337846 "D01AJFA" 337851 T D01AJFA (NIL) -8 NIL NIL NIL) (-193 330222 331775 333336 "D01AGNT" 335386 T D01AGNT (NIL) -7 NIL NIL NIL) (-192 329559 329687 329839 "CYCLOTOM" 330090 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-191 326294 327007 327734 "CYCLES" 328852 T CYCLES (NIL) -7 NIL NIL NIL) (-190 325606 325740 325911 "CVMP" 326155 NIL CVMP (NIL T) -7 NIL NIL NIL) (-189 323447 323705 324074 "CTRIGMNP" 325334 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-188 322883 323241 323314 "CTOR" 323394 T CTOR (NIL) -8 NIL NIL NIL) (-187 322392 322614 322715 "CTORKIND" 322802 T CTORKIND (NIL) -8 NIL NIL NIL) (-186 321683 321999 322027 "CTORCAT" 322209 T CTORCAT (NIL) -9 NIL 322322 NIL) (-185 321281 321392 321551 "CTORCAT-" 321556 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-184 320743 320955 321063 "CTORCALL" 321205 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-183 320117 320216 320369 "CSTTOOLS" 320640 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-182 315916 316573 317331 "CRFP" 319429 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-181 315391 315637 315729 "CRCEAST" 315844 T CRCEAST (NIL) -8 NIL NIL NIL) (-180 314438 314623 314851 "CRAPACK" 315195 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-179 313822 313923 314127 "CPMATCH" 314314 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-178 313547 313575 313681 "CPIMA" 313788 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-177 309895 310567 311286 "COORDSYS" 312882 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-176 309307 309428 309570 "CONTOUR" 309773 T CONTOUR (NIL) -8 NIL NIL NIL) (-175 305198 307310 307802 "CONTFRAC" 308847 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-174 305078 305099 305127 "CONDUIT" 305164 T CONDUIT (NIL) -9 NIL NIL NIL) (-173 304166 304720 304748 "COMRING" 304753 T COMRING (NIL) -9 NIL 304805 NIL) (-172 303220 303524 303708 "COMPPROP" 304002 T COMPPROP (NIL) -8 NIL NIL NIL) (-171 302881 302916 303044 "COMPLPAT" 303179 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-170 293172 302690 302799 "COMPLEX" 302804 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-169 292808 292865 292972 "COMPLEX2" 293109 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-168 292147 292268 292428 "COMPILER" 292668 T COMPILER (NIL) -8 NIL NIL NIL) (-167 291865 291900 291998 "COMPFACT" 292106 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275945 285939 285979 "COMPCAT" 286983 NIL COMPCAT (NIL T) -9 NIL 288331 NIL) (-165 265457 268384 272011 "COMPCAT-" 272367 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265186 265214 265317 "COMMUPC" 265423 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264980 265014 265073 "COMMONOP" 265147 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264536 264731 264818 "COMM" 264913 T COMM (NIL) -8 NIL NIL NIL) (-161 264112 264340 264415 "COMMAAST" 264481 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263361 263555 263583 "COMBOPC" 263921 T COMBOPC (NIL) -9 NIL 264096 NIL) (-159 262257 262467 262709 "COMBINAT" 263151 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258714 259288 259915 "COMBF" 261679 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257472 257830 258065 "COLOR" 258499 T COLOR (NIL) -8 NIL NIL NIL) (-156 256948 257193 257285 "COLONAST" 257400 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256588 256635 256760 "CMPLXRT" 256895 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256036 256288 256387 "CLLCTAST" 256509 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251535 252566 253646 "CLIP" 254976 T CLIP (NIL) -7 NIL NIL NIL) (-152 249876 250636 250876 "CLIF" 251362 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246051 248022 248063 "CLAGG" 248992 NIL CLAGG (NIL T) -9 NIL 249528 NIL) (-150 244473 244930 245513 "CLAGG-" 245518 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244017 244102 244242 "CINTSLPE" 244382 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241518 241989 242537 "CHVAR" 243545 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240692 241246 241274 "CHARZ" 241279 T CHARZ (NIL) -9 NIL 241294 NIL) (-146 240446 240486 240564 "CHARPOL" 240646 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239504 240091 240119 "CHARNZ" 240166 T CHARNZ (NIL) -9 NIL 240222 NIL) (-144 237410 238158 238511 "CHAR" 239171 T CHAR (NIL) -8 NIL NIL NIL) (-143 237136 237197 237225 "CFCAT" 237336 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236377 236488 236671 "CDEN" 237020 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232342 235530 235810 "CCLASS" 236117 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231593 231750 231927 "CATEGORY" 232185 T -10 (NIL) -8 NIL NIL NIL) (-139 231166 231512 231560 "CATCTOR" 231565 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230617 230869 230967 "CATAST" 231088 T CATAST (NIL) -8 NIL NIL NIL) (-137 230093 230338 230430 "CASEAST" 230545 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225102 226122 226875 "CARTEN" 229396 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224210 224358 224579 "CARTEN2" 224949 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222526 223360 223617 "CARD" 223973 T CARD (NIL) -8 NIL NIL NIL) (-133 222102 222330 222405 "CAPSLAST" 222471 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221606 221814 221842 "CACHSET" 221974 T CACHSET (NIL) -9 NIL 222052 NIL) (-131 221076 221398 221426 "CABMON" 221476 T CABMON (NIL) -9 NIL 221532 NIL) (-130 220549 220780 220890 "BYTEORD" 220986 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219531 220083 220225 "BYTE" 220388 T BYTE (NIL) -8 NIL NIL 220510) (-128 214881 219036 219208 "BYTEBUF" 219379 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212390 214573 214680 "BTREE" 214807 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209839 212038 212160 "BTOURN" 212300 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207209 209309 209350 "BTCAT" 209418 NIL BTCAT (NIL T) -9 NIL 209495 NIL) (-124 206876 206956 207105 "BTCAT-" 207110 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202141 206019 206047 "BTAGG" 206269 T BTAGG (NIL) -9 NIL 206430 NIL) (-122 201631 201756 201962 "BTAGG-" 201967 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198626 200909 201124 "BSTREE" 201448 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197764 197890 198074 "BRILL" 198482 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194416 196490 196531 "BRAGG" 197180 NIL BRAGG (NIL T) -9 NIL 197438 NIL) (-118 192945 193351 193906 "BRAGG-" 193911 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192474 "BPADICRT" 192792 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164525 170115 170264 "BINARY" 170391 T BINARY (NIL) -8 NIL NIL NIL) (-107 162305 163780 163821 "BGAGG" 164081 NIL BGAGG (NIL T) -9 NIL 164218 NIL) (-106 162136 162168 162259 "BGAGG-" 162264 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161207 161520 161725 "BFUNCT" 161951 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159897 160075 160363 "BEZOUT" 161031 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156366 158749 159079 "BBTREE" 159600 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156100 156153 156181 "BASTYPE" 156300 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155952 155981 156054 "BASTYPE-" 156059 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155386 155462 155614 "BALFACT" 155863 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154242 154801 154987 "AUTOMOR" 155231 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153968 153973 153999 "ATTREG" 154004 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152220 152665 153017 "ATTRBUT" 153634 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151828 152048 152114 "ATTRAST" 152172 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151364 151477 151503 "ATRIG" 151704 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151173 151214 151301 "ATRIG-" 151306 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150818 151004 151030 "ASTCAT" 151035 T ASTCAT (NIL) -9 NIL 151065 NIL) (-92 150545 150604 150723 "ASTCAT-" 150728 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148694 150321 150409 "ASTACK" 150488 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147199 147496 147861 "ASSOCEQ" 148376 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146231 146858 146982 "ASP9" 147106 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145994 146179 146218 "ASP8" 146223 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144862 145599 145741 "ASP80" 145883 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143760 144497 144629 "ASP7" 144761 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142714 143437 143555 "ASP78" 143673 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141683 142394 142511 "ASP77" 142628 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140595 141321 141452 "ASP74" 141583 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139495 140230 140362 "ASP73" 140494 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138599 139321 139421 "ASP6" 139426 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137544 138276 138394 "ASP55" 138512 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136493 137218 137337 "ASP50" 137456 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135581 136194 136304 "ASP4" 136414 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134669 135282 135392 "ASP49" 135502 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133453 134208 134376 "ASP42" 134558 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132229 132986 133156 "ASP41" 133340 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131179 131906 132024 "ASP35" 132142 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130944 131127 131166 "ASP34" 131171 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130681 130748 130824 "ASP33" 130899 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129574 130316 130448 "ASP31" 130580 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129339 129522 129561 "ASP30" 129566 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129074 129143 129219 "ASP29" 129294 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128839 129022 129061 "ASP28" 129066 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128604 128787 128826 "ASP27" 128831 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127688 128302 128413 "ASP24" 128524 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126764 127490 127602 "ASP20" 127607 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125852 126465 126575 "ASP1" 126685 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124794 125526 125645 "ASP19" 125764 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124531 124598 124674 "ASP12" 124749 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123383 124130 124274 "ASP10" 124418 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121234 123227 123318 "ARRAY2" 123323 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116999 120882 120996 "ARRAY1" 121151 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116031 116204 116425 "ARRAY12" 116822 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110343 112261 112336 "ARR2CAT" 114966 NIL ARR2CAT (NIL T T T) -9 NIL 115724 NIL) (-56 107777 108521 109475 "ARR2CAT-" 109480 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107094 107404 107529 "ARITY" 107670 T ARITY (NIL) -8 NIL NIL NIL) (-54 105870 106022 106321 "APPRULE" 106930 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105521 105569 105688 "APPLYORE" 105816 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104875 105114 105234 "ANY" 105419 T ANY (NIL) -8 NIL NIL NIL) (-51 104153 104276 104433 "ANY1" 104749 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101683 102590 102917 "ANTISYM" 103877 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101175 101390 101486 "ANON" 101605 T ANON (NIL) -8 NIL NIL NIL) (-48 95424 99714 100168 "AN" 100739 T AN (NIL) -8 NIL NIL NIL) (-47 91322 92710 92761 "AMR" 93509 NIL AMR (NIL T T) -9 NIL 94109 NIL) (-46 90434 90655 91018 "AMR-" 91023 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74873 90351 90412 "ALIST" 90417 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74467 74636 "ALGSC" 74791 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-1347 (((-1240 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1240 |#1| |#3| |#5|)) 23))) +(((-1235 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1347 ((-1240 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1240 |#1| |#3| |#5|)))) (-1058) (-1058) (-1186) (-1186) |#1| |#2|) (T -1235)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5 *7 *9)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1240 *6 *8 *10)) (-5 *1 (-1235 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1186))))) +(-10 -7 (-15 -1347 ((-1240 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1240 |#1| |#3| |#5|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 (-1091)) $) 86)) (-2676 (((-1186) $) 115)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-3667 (($ $ (-570)) 110) (($ $ (-570) (-570)) 109)) (-1919 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 117)) (-2774 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 174 (|has| |#1| (-368)))) (-2555 (((-424 $) $) 175 (|has| |#1| (-368)))) (-3815 (($ $) 129 (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) 165 (|has| |#1| (-368)))) (-2749 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 185)) (-4119 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) 18 T CONST)) (-2372 (($ $ $) 169 (|has| |#1| (-368)))) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-3660 (((-413 (-959 |#1|)) $ (-570)) 183 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 182 (|has| |#1| (-562)))) (-2380 (($ $ $) 168 (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 163 (|has| |#1| (-368)))) (-3701 (((-112) $) 176 (|has| |#1| (-368)))) (-2465 (((-112) $) 85)) (-1313 (($) 157 (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-570) $) 112) (((-570) $ (-570)) 111)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 128 (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) 113)) (-3989 (($ (-1 |#1| (-570)) $) 184)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 172 (|has| |#1| (-368)))) (-2343 (((-112) $) 74)) (-3925 (($ |#1| (-570)) 73) (($ $ (-1091) (-570)) 88) (($ $ (-650 (-1091)) (-650 (-570))) 87)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-2665 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-1841 (($ (-650 $)) 161 (|has| |#1| (-368))) (($ $ $) 160 (|has| |#1| (-368)))) (-4122 (((-1168) $) 10)) (-1820 (($ $) 177 (|has| |#1| (-368)))) (-1840 (($ $) 181 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 180 (-2779 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1211)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 162 (|has| |#1| (-368)))) (-1869 (($ (-650 $)) 159 (|has| |#1| (-368))) (($ $ $) 158 (|has| |#1| (-368)))) (-3801 (((-424 $) $) 173 (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-368)))) (-3500 (($ $ (-570)) 107)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 164 (|has| |#1| (-368)))) (-4390 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-570)))))) (-3788 (((-777) $) 166 (|has| |#1| (-368)))) (-1872 ((|#1| $ (-570)) 116) (($ $ $) 93 (|has| (-570) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 167 (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186) (-777)) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186))) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186)) 98 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-777)) 96 (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-3324 (((-570) $) 76)) (-4129 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3326 ((|#1| $ (-570)) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-2172 ((|#1| $) 114)) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-4141 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-570)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186) (-777)) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186))) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-1186)) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-570) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 179 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 178 (|has| |#1| (-368))) (($ $ $) 156 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 127 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-1236 |#1|) (-141) (-1058)) (T -1236)) +((-3325 (*1 *1 *2) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) (-4 *3 (-1058)) (-4 *1 (-1236 *3)))) (-3989 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1236 *3)) (-4 *3 (-1058)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1236 *4)) (-4 *4 (-1058)) (-4 *4 (-562)) (-5 *2 (-413 (-959 *4))))) (-3660 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-4 *1 (-1236 *4)) (-4 *4 (-1058)) (-4 *4 (-562)) (-5 *2 (-413 (-959 *4))))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) (-1840 (*1 *1 *1 *2) (-2779 (-12 (-5 *2 (-1186)) (-4 *1 (-1236 *3)) (-4 *3 (-1058)) (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1211)) (-4 *3 (-38 (-413 (-570)))))) (-12 (-5 *2 (-1186)) (-4 *1 (-1236 *3)) (-4 *3 (-1058)) (-12 (|has| *3 (-15 -1709 ((-650 *2) *3))) (|has| *3 (-15 -1840 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570))))))))) +(-13 (-1254 |t#1| (-570)) (-10 -8 (-15 -3325 ($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |t#1|))))) (-15 -3989 ($ (-1 |t#1| (-570)) $)) (IF (|has| |t#1| (-562)) (PROGN (-15 -3660 ((-413 (-959 |t#1|)) $ (-570))) (-15 -3660 ((-413 (-959 |t#1|)) $ (-570) (-570)))) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $)) (IF (|has| |t#1| (-15 -1840 (|t#1| |t#1| (-1186)))) (IF (|has| |t#1| (-15 -1709 ((-650 (-1186)) |t#1|))) (-15 -1840 ($ $ (-1186))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1211)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-570))) (-15 -1840 ($ $ (-1186))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1011)) (-6 (-1211))) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-570)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-570) |#1|))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 $ $) |has| (-570) (-1121)) ((-294) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-368) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-723 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1211) |has| |#1| (-38 (-413 (-570)))) ((-1214) |has| |#1| (-38 (-413 (-570)))) ((-1230) |has| |#1| (-368)) ((-1254 |#1| #0#) . T)) +((-1359 (((-112) $) 12)) (-4382 (((-3 |#3| "failed") $) 17) (((-3 (-1186) "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL)) (-3152 ((|#3| $) 14) (((-1186) $) NIL) (((-413 (-570)) $) NIL) (((-570) $) NIL))) +(((-1237 |#1| |#2| |#3|) (-10 -8 (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-1186) "failed") |#1|)) (-15 -3152 ((-1186) |#1|)) (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3152 (|#3| |#1|)) (-15 -1359 ((-112) |#1|))) (-1238 |#2| |#3|) (-1058) (-1267 |#2|)) (T -1237)) +NIL +(-10 -8 (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -4382 ((-3 (-1186) "failed") |#1|)) (-15 -3152 ((-1186) |#1|)) (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3152 (|#3| |#1|)) (-15 -1359 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3356 ((|#2| $) 242 (-1760 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-1709 (((-650 (-1091)) $) 86)) (-2676 (((-1186) $) 115)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-3667 (($ $ (-570)) 110) (($ $ (-570) (-570)) 109)) (-1919 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 117)) (-1893 ((|#2| $) 278)) (-3907 (((-3 |#2| "failed") $) 274)) (-1776 ((|#2| $) 275)) (-2774 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) 20)) (-2900 (((-424 (-1182 $)) (-1182 $)) 251 (-1760 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3696 (($ $) 174 (|has| |#1| (-368)))) (-2555 (((-424 $) $) 175 (|has| |#1| (-368)))) (-3815 (($ $) 129 (|has| |#1| (-38 (-413 (-570)))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 248 (-1760 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-4073 (((-112) $ $) 165 (|has| |#1| (-368)))) (-2749 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-2579 (((-570) $) 260 (-1760 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-3325 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 185)) (-4119 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#2| "failed") $) 281) (((-3 (-570) "failed") $) 271 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) 269 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-1186) "failed") $) 253 (-1760 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-3152 ((|#2| $) 282) (((-570) $) 270 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-413 (-570)) $) 268 (-1760 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-1186) $) 252 (-1760 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-1962 (($ $) 277) (($ (-570) $) 276)) (-2372 (($ $ $) 169 (|has| |#1| (-368)))) (-1885 (($ $) 72)) (-2004 (((-695 |#2|) (-695 $)) 232 (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) 231 (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 230 (-1760 (|has| |#2| (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) 229 (-1760 (|has| |#2| (-645 (-570))) (|has| |#1| (-368))))) (-2229 (((-3 $ "failed") $) 37)) (-3660 (((-413 (-959 |#1|)) $ (-570)) 183 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 182 (|has| |#1| (-562)))) (-3408 (($) 244 (-1760 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-2380 (($ $ $) 168 (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 163 (|has| |#1| (-368)))) (-3701 (((-112) $) 176 (|has| |#1| (-368)))) (-2135 (((-112) $) 258 (-1760 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-2465 (((-112) $) 85)) (-1313 (($) 157 (|has| |#1| (-38 (-413 (-570)))))) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 236 (-1760 (|has| |#2| (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 235 (-1760 (|has| |#2| (-893 (-570))) (|has| |#1| (-368))))) (-4202 (((-570) $) 112) (((-570) $ (-570)) 111)) (-2481 (((-112) $) 35)) (-4004 (($ $) 240 (|has| |#1| (-368)))) (-4400 ((|#2| $) 238 (|has| |#1| (-368)))) (-3309 (($ $ (-570)) 128 (|has| |#1| (-38 (-413 (-570)))))) (-3641 (((-3 $ "failed") $) 272 (-1760 (|has| |#2| (-1161)) (|has| |#1| (-368))))) (-3367 (((-112) $) 259 (-1760 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-2964 (($ $ (-928)) 113)) (-3989 (($ (-1 |#1| (-570)) $) 184)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 172 (|has| |#1| (-368)))) (-2343 (((-112) $) 74)) (-3925 (($ |#1| (-570)) 73) (($ $ (-1091) (-570)) 88) (($ $ (-650 (-1091)) (-650 (-570))) 87)) (-3382 (($ $ $) 262 (-1760 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2876 (($ $ $) 263 (-1760 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-1347 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-368)))) (-2665 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-1841 (($ (-650 $)) 161 (|has| |#1| (-368))) (($ $ $) 160 (|has| |#1| (-368)))) (-1788 (($ (-570) |#2|) 279)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 177 (|has| |#1| (-368)))) (-1840 (($ $) 181 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 180 (-2779 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1211)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-2310 (($) 273 (-1760 (|has| |#2| (-1161)) (|has| |#1| (-368))) CONST)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 162 (|has| |#1| (-368)))) (-1869 (($ (-650 $)) 159 (|has| |#1| (-368))) (($ $ $) 158 (|has| |#1| (-368)))) (-2545 (($ $) 243 (-1760 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-4140 ((|#2| $) 246 (-1760 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-3484 (((-424 (-1182 $)) (-1182 $)) 249 (-1760 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3623 (((-424 (-1182 $)) (-1182 $)) 250 (-1760 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3801 (((-424 $) $) 173 (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-368)))) (-3500 (($ $ (-570)) 107)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 164 (|has| |#1| (-368)))) (-4390 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) |#2|) 223 (-1760 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 |#2|)) 222 (-1760 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-298 |#2|))) 221 (-1760 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-298 |#2|)) 220 (-1760 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ |#2| |#2|) 219 (-1760 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-650 |#2|) (-650 |#2|)) 218 (-1760 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368))))) (-3788 (((-777) $) 166 (|has| |#1| (-368)))) (-1872 ((|#1| $ (-570)) 116) (($ $ $) 93 (|has| (-570) (-1121))) (($ $ |#2|) 217 (-1760 (|has| |#2| (-290 |#2| |#2|)) (|has| |#1| (-368))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 167 (|has| |#1| (-368)))) (-3519 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) 227 (|has| |#1| (-368))) (($ $ (-777)) 96 (-2779 (-1760 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 94 (-2779 (-1760 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) 101 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186) (-777)) 100 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-650 (-1186))) 99 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186)) 98 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))))) (-2397 (($ $) 241 (|has| |#1| (-368)))) (-4413 ((|#2| $) 239 (|has| |#1| (-368)))) (-3324 (((-570) $) 76)) (-4129 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-1411 (((-227) $) 257 (-1760 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-384) $) 256 (-1760 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-542) $) 255 (-1760 (|has| |#2| (-620 (-542))) (|has| |#1| (-368)))) (((-899 (-384)) $) 234 (-1760 (|has| |#2| (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) 233 (-1760 (|has| |#2| (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 247 (-1760 (-1760 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#1| (-368))))) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 280) (($ (-1186)) 254 (-1760 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368)))) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3326 ((|#1| $ (-570)) 71)) (-2917 (((-3 $ "failed") $) 60 (-2779 (-1760 (-2779 (|has| |#2| (-146)) (-1760 (|has| $ (-146)) (|has| |#2| (-916)))) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2862 (((-777)) 32 T CONST)) (-2172 ((|#1| $) 114)) (-1442 ((|#2| $) 245 (-1760 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-4141 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-570)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-2216 (($ $) 261 (-1760 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) 225 (|has| |#1| (-368))) (($ $ (-777)) 97 (-2779 (-1760 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 95 (-2779 (-1760 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) 105 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186) (-777)) 104 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-650 (-1186))) 103 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))))) (($ $ (-1186)) 102 (-2779 (-1760 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))))) (-2981 (((-112) $ $) 265 (-1760 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2959 (((-112) $ $) 266 (-1760 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2923 (((-112) $ $) 6)) (-2969 (((-112) $ $) 264 (-1760 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2948 (((-112) $ $) 267 (-1760 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 179 (|has| |#1| (-368))) (($ |#2| |#2|) 237 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 178 (|has| |#1| (-368))) (($ $ $) 156 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 127 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-368))) (($ |#2| $) 215 (|has| |#1| (-368))) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-1238 |#1| |#2|) (-141) (-1058) (-1267 |t#1|)) (T -1238)) +((-3324 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1267 *3)) (-5 *2 (-570)))) (-1788 (*1 *1 *2 *3) (-12 (-5 *2 (-570)) (-4 *4 (-1058)) (-4 *1 (-1238 *4 *3)) (-4 *3 (-1267 *4)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1267 *3)))) (-1962 (*1 *1 *1) (-12 (-4 *1 (-1238 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1267 *2)))) (-1962 (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-1238 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1267 *3)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1267 *3)))) (-3907 (*1 *2 *1) (|partial| -12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1267 *3))))) +(-13 (-1236 |t#1|) (-1047 |t#2|) (-622 |t#2|) (-10 -8 (-15 -1788 ($ (-570) |t#2|)) (-15 -3324 ((-570) $)) (-15 -1893 (|t#2| $)) (-15 -1962 ($ $)) (-15 -1962 ($ (-570) $)) (-15 -1776 (|t#2| $)) (-15 -3907 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-368)) (-6 (-1001 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-570)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-368)) ((-38 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-368)) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2779 (-12 (|has| |#1| (-368)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2779 (-12 (|has| |#1| (-368)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-622 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 #2=(-1186)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) ((-622 |#1|) |has| |#1| (-174)) ((-622 |#2|) . T) ((-622 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-620 (-227)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) ((-620 (-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) ((-620 (-542)) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-620 (-899 (-570))))) ((-233 |#2|) |has| |#1| (-368)) ((-235) -2779 (-12 (|has| |#1| (-368)) (|has| |#2| (-235))) (|has| |#1| (-15 * (|#1| (-570) |#1|)))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 |#2| $) -12 (|has| |#1| (-368)) (|has| |#2| (-290 |#2| |#2|))) ((-290 $ $) |has| (-570) (-1121)) ((-294) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-313 |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))) ((-368) |has| |#1| (-368)) ((-343 |#2|) |has| |#1| (-368)) ((-382 |#2|) |has| |#1| (-368)) ((-406 |#2|) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-520 (-1186) |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-520 (-1186) |#2|))) ((-520 |#2| |#2|) -12 (|has| |#1| (-368)) (|has| |#2| (-313 |#2|))) ((-562) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 |#2|) |has| |#1| (-368)) ((-652 $) . T) ((-654 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 |#2|) |has| |#1| (-368)) ((-654 $) . T) ((-646 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 |#2|) |has| |#1| (-368)) ((-646 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-645 (-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-645 (-570)))) ((-645 |#2|) |has| |#1| (-368)) ((-723 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 |#2|) |has| |#1| (-368)) ((-723 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-797) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-798) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-800) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-801) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-826) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-854) -12 (|has| |#1| (-368)) (|has| |#2| (-826))) ((-856) -2779 (-12 (|has| |#1| (-368)) (|has| |#2| (-856))) (-12 (|has| |#1| (-368)) (|has| |#2| (-826)))) ((-907 (-1186)) -2779 (-12 (|has| |#1| (-368)) (|has| |#2| (-907 (-1186)))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))) ((-893 (-384)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-384)))) ((-893 (-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-893 (-570)))) ((-891 |#2|) |has| |#1| (-368)) ((-916) -12 (|has| |#1| (-368)) (|has| |#2| (-916))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1001 |#2|) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1031) -12 (|has| |#1| (-368)) (|has| |#2| (-1031))) ((-1047 (-413 (-570))) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))) ((-1047 (-570)) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-570)))) ((-1047 #2#) -12 (|has| |#1| (-368)) (|has| |#2| (-1047 (-1186)))) ((-1047 |#2|) . T) ((-1060 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 |#2|) |has| |#1| (-368)) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 |#2|) |has| |#1| (-368)) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) -12 (|has| |#1| (-368)) (|has| |#2| (-1161))) ((-1211) |has| |#1| (-38 (-413 (-570)))) ((-1214) |has| |#1| (-38 (-413 (-570)))) ((-1226) |has| |#1| (-368)) ((-1230) |has| |#1| (-368)) ((-1236 |#1|) . T) ((-1254 |#1| #0#) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 81)) (-3356 ((|#2| $) NIL (-12 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 100)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-570)) 109) (($ $ (-570) (-570)) 111)) (-1919 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) 51)) (-1893 ((|#2| $) 11)) (-3907 (((-3 |#2| "failed") $) 35)) (-1776 ((|#2| $) 36)) (-2774 (($ $) 206 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 182 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) 202 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 178 (|has| |#1| (-38 (-413 (-570)))))) (-2579 (((-570) $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-3325 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) 59)) (-4119 (($ $) 210 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 186 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) 157) (((-3 (-570) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-1186) "failed") $) NIL (-12 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-3152 ((|#2| $) 156) (((-570) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-413 (-570)) $) NIL (-12 (|has| |#2| (-1047 (-570))) (|has| |#1| (-368)))) (((-1186) $) NIL (-12 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368))))) (-1962 (($ $) 65) (($ (-570) $) 28)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2004 (((-695 |#2|) (-695 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| |#2| (-645 (-570))) (|has| |#1| (-368))))) (-2229 (((-3 $ "failed") $) 88)) (-3660 (((-413 (-959 |#1|)) $ (-570)) 124 (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) 126 (|has| |#1| (-562)))) (-3408 (($) NIL (-12 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2135 (((-112) $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-2465 (((-112) $) 74)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| |#2| (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| |#2| (-893 (-570))) (|has| |#1| (-368))))) (-4202 (((-570) $) 105) (((-570) $ (-570)) 107)) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL (|has| |#1| (-368)))) (-4400 ((|#2| $) 165 (|has| |#1| (-368)))) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3641 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1161)) (|has| |#1| (-368))))) (-3367 (((-112) $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-2964 (($ $ (-928)) 148)) (-3989 (($ (-1 |#1| (-570)) $) 144)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-570)) 20) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-3382 (($ $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2876 (($ $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-1347 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-368)))) (-2665 (($ $) 176 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-1788 (($ (-570) |#2|) 10)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 159 (|has| |#1| (-368)))) (-1840 (($ $) 228 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 233 (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211)))))) (-2310 (($) NIL (-12 (|has| |#2| (-1161)) (|has| |#1| (-368))) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2545 (($ $) NIL (-12 (|has| |#2| (-311)) (|has| |#1| (-368))))) (-4140 ((|#2| $) NIL (-12 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| |#2| (-916)) (|has| |#1| (-368))))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-570)) 138)) (-2410 (((-3 $ "failed") $ $) 128 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) 174 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) |#2|) NIL (-12 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 |#2|)) NIL (-12 (|has| |#2| (-520 (-1186) |#2|)) (|has| |#1| (-368)))) (($ $ (-650 (-298 |#2|))) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-298 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368)))) (($ $ (-650 |#2|) (-650 |#2|)) NIL (-12 (|has| |#2| (-313 |#2|)) (|has| |#1| (-368))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-570)) 103) (($ $ $) 90 (|has| (-570) (-1121))) (($ $ |#2|) NIL (-12 (|has| |#2| (-290 |#2| |#2|)) (|has| |#1| (-368))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-2779 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 149 (-2779 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) 153 (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-2397 (($ $) NIL (|has| |#1| (-368)))) (-4413 ((|#2| $) 166 (|has| |#1| (-368)))) (-3324 (((-570) $) 12)) (-4129 (($ $) 212 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 188 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 208 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 184 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 204 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 180 (|has| |#1| (-38 (-413 (-570)))))) (-1411 (((-227) $) NIL (-12 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-384) $) NIL (-12 (|has| |#2| (-1031)) (|has| |#1| (-368)))) (((-542) $) NIL (-12 (|has| |#2| (-620 (-542))) (|has| |#1| (-368)))) (((-899 (-384)) $) NIL (-12 (|has| |#2| (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) NIL (-12 (|has| |#2| (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916)) (|has| |#1| (-368))))) (-2115 (($ $) 136)) (-3798 (((-868) $) 267) (($ (-570)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1186)) NIL (-12 (|has| |#2| (-1047 (-1186))) (|has| |#1| (-368)))) (($ (-413 (-570))) 169 (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3326 ((|#1| $ (-570)) 85)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916)) (|has| |#1| (-368))) (-12 (|has| |#2| (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2862 (((-777)) 155 T CONST)) (-2172 ((|#1| $) 102)) (-1442 ((|#2| $) NIL (-12 (|has| |#2| (-551)) (|has| |#1| (-368))))) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) 218 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 194 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) 214 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 190 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 222 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 198 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-570)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 224 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 200 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 220 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 196 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 216 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 192 (|has| |#1| (-38 (-413 (-570)))))) (-2216 (($ $) NIL (-12 (|has| |#2| (-826)) (|has| |#1| (-368))))) (-1809 (($) 13 T CONST)) (-1817 (($) 18 T CONST)) (-2835 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-368))) (($ $ (-1 |#2| |#2|) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-2779 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) NIL (-2779 (-12 (|has| |#2| (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#2| (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-2981 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2959 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2923 (((-112) $ $) 72)) (-2969 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-2948 (((-112) $ $) NIL (-12 (|has| |#2| (-856)) (|has| |#1| (-368))))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 163 (|has| |#1| (-368))) (($ |#2| |#2|) 164 (|has| |#1| (-368)))) (-3026 (($ $) 227) (($ $ $) 78)) (-3014 (($ $ $) 76)) (** (($ $ (-928)) NIL) (($ $ (-777)) 84) (($ $ (-570)) 160 (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 172 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-368))) (($ |#2| $) 161 (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1239 |#1| |#2|) (-1238 |#1| |#2|) (-1058) (-1267 |#1|)) (T -1239)) +NIL +(-1238 |#1| |#2|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3356 (((-1268 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 10)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-2318 (($ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-2234 (((-112) $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3667 (($ $ (-570)) NIL) (($ $ (-570) (-570)) NIL)) (-1919 (((-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|))) $) NIL)) (-1893 (((-1268 |#1| |#2| |#3|) $) NIL)) (-3907 (((-3 (-1268 |#1| |#2| |#3|) "failed") $) NIL)) (-1776 (((-1268 |#1| |#2| |#3|) $) NIL)) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2579 (((-570) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-3325 (($ (-1166 (-2 (|:| |k| (-570)) (|:| |c| |#1|)))) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-1268 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1186) "failed") $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-3 (-413 (-570)) "failed") $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-3 (-570) "failed") $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-3152 (((-1268 |#1| |#2| |#3|) $) NIL) (((-1186) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (((-413 (-570)) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368)))) (((-570) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))))) (-1962 (($ $) NIL) (($ (-570) $) NIL)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-1268 |#1| |#2| |#3|)) (-695 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 (-1268 |#1| |#2| |#3|))) (|:| |vec| (-1276 (-1268 |#1| |#2| |#3|)))) (-695 $) (-1276 $)) NIL (|has| |#1| (-368))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368)))) (((-695 (-570)) (-695 $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-645 (-570))) (|has| |#1| (-368))))) (-2229 (((-3 $ "failed") $) NIL)) (-3660 (((-413 (-959 |#1|)) $ (-570)) NIL (|has| |#1| (-562))) (((-413 (-959 |#1|)) $ (-570) (-570)) NIL (|has| |#1| (-562)))) (-3408 (($) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2135 (((-112) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-893 (-384))) (|has| |#1| (-368)))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-893 (-570))) (|has| |#1| (-368))))) (-4202 (((-570) $) NIL) (((-570) $ (-570)) NIL)) (-2481 (((-112) $) NIL)) (-4004 (($ $) NIL (|has| |#1| (-368)))) (-4400 (((-1268 |#1| |#2| |#3|) $) NIL (|has| |#1| (-368)))) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3641 (((-3 $ "failed") $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))))) (-3367 (((-112) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-2964 (($ $ (-928)) NIL)) (-3989 (($ (-1 |#1| (-570)) $) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-570)) 18) (($ $ (-1091) (-570)) NIL) (($ $ (-650 (-1091)) (-650 (-570))) NIL)) (-3382 (($ $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2876 (($ $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-368)))) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-1788 (($ (-570) (-1268 |#1| |#2| |#3|)) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1840 (($ $) 27 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 28 (|has| |#1| (-38 (-413 (-570)))))) (-2310 (($) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1161)) (|has| |#1| (-368))) CONST)) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2545 (($ $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-311)) (|has| |#1| (-368))))) (-4140 (((-1268 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-570)) NIL)) (-2410 (((-3 $ "failed") $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-570))))) (($ $ (-1186) (-1268 |#1| |#2| |#3|)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-520 (-1186) (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1186)) (-650 (-1268 |#1| |#2| |#3|))) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-520 (-1186) (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-298 (-1268 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-313 (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-298 (-1268 |#1| |#2| |#3|))) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-313 (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-313 (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368)))) (($ $ (-650 (-1268 |#1| |#2| |#3|)) (-650 (-1268 |#1| |#2| |#3|))) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-313 (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-570)) NIL) (($ $ $) NIL (|has| (-570) (-1121))) (($ $ (-1268 |#1| |#2| |#3|)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-290 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|))) (|has| |#1| (-368))))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-1 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-1272 |#2|)) 26) (($ $ (-777)) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) 25 (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-2397 (($ $) NIL (|has| |#1| (-368)))) (-4413 (((-1268 |#1| |#2| |#3|) $) NIL (|has| |#1| (-368)))) (-3324 (((-570) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1411 (((-542) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-620 (-542))) (|has| |#1| (-368)))) (((-384) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-227) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1031)) (|has| |#1| (-368)))) (((-899 (-384)) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-620 (-899 (-384)))) (|has| |#1| (-368)))) (((-899 (-570)) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-620 (-899 (-570)))) (|has| |#1| (-368))))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1268 |#1| |#2| |#3|)) NIL) (($ (-1272 |#2|)) 24) (($ (-1186)) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-1186))) (|has| |#1| (-368)))) (($ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562)))) (($ (-413 (-570))) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-1047 (-570))) (|has| |#1| (-368))) (|has| |#1| (-38 (-413 (-570))))))) (-3326 ((|#1| $ (-570)) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-146)) (|has| |#1| (-368))) (|has| |#1| (-146))))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 11)) (-1442 (((-1268 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-551)) (|has| |#1| (-368))))) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-916)) (|has| |#1| (-368))) (|has| |#1| (-562))))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-570)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-570)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2216 (($ $) NIL (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))))) (-1809 (($) 20 T CONST)) (-1817 (($) 15 T CONST)) (-2835 (($ $ (-1 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|))) NIL (|has| |#1| (-368))) (($ $ (-1 (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|)) (-777)) NIL (|has| |#1| (-368))) (($ $ (-777)) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-235)) (|has| |#1| (-368))) (|has| |#1| (-15 * (|#1| (-570) |#1|))))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186) (-777)) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-650 (-1186))) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186)))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-907 (-1186))) (|has| |#1| (-368))) (-12 (|has| |#1| (-15 * (|#1| (-570) |#1|))) (|has| |#1| (-907 (-1186))))))) (-2981 (((-112) $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2959 (((-112) $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2923 (((-112) $ $) NIL)) (-2969 (((-112) $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-2948 (((-112) $ $) NIL (-2779 (-12 (|has| (-1268 |#1| |#2| |#3|) (-826)) (|has| |#1| (-368))) (-12 (|has| (-1268 |#1| |#2| |#3|) (-856)) (|has| |#1| (-368)))))) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368))) (($ (-1268 |#1| |#2| |#3|) (-1268 |#1| |#2| |#3|)) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 22)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1268 |#1| |#2| |#3|)) NIL (|has| |#1| (-368))) (($ (-1268 |#1| |#2| |#3|) $) NIL (|has| |#1| (-368))) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1240 |#1| |#2| |#3|) (-13 (-1238 |#1| (-1268 |#1| |#2| |#3|)) (-10 -8 (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1240)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1240 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1240 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1240 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1238 |#1| (-1268 |#1| |#2| |#3|)) (-10 -8 (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-2024 (((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112)) 13)) (-2795 (((-424 |#1|) |#1|) 26)) (-3801 (((-424 |#1|) |#1|) 24))) +(((-1241 |#1|) (-10 -7 (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2795 ((-424 |#1|) |#1|)) (-15 -2024 ((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112)))) (-1252 (-570))) (T -1241)) +((-2024 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) (-5 *1 (-1241 *3)) (-4 *3 (-1252 (-570))))) (-2795 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1241 *3)) (-4 *3 (-1252 (-570))))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-1241 *3)) (-4 *3 (-1252 (-570)))))) +(-10 -7 (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2795 ((-424 |#1|) |#1|)) (-15 -2024 ((-2 (|:| |contp| (-570)) (|:| -1629 (-650 (-2 (|:| |irr| |#1|) (|:| -2306 (-570)))))) |#1| (-112)))) +((-1347 (((-1166 |#2|) (-1 |#2| |#1|) (-1243 |#1|)) 23 (|has| |#1| (-854))) (((-1243 |#2|) (-1 |#2| |#1|) (-1243 |#1|)) 17))) +(((-1242 |#1| |#2|) (-10 -7 (-15 -1347 ((-1243 |#2|) (-1 |#2| |#1|) (-1243 |#1|))) (IF (|has| |#1| (-854)) (-15 -1347 ((-1166 |#2|) (-1 |#2| |#1|) (-1243 |#1|))) |%noBranch|)) (-1226) (-1226)) (T -1242)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5)) (-4 *5 (-854)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1166 *6)) (-5 *1 (-1242 *5 *6)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1243 *6)) (-5 *1 (-1242 *5 *6))))) +(-10 -7 (-15 -1347 ((-1243 |#2|) (-1 |#2| |#1|) (-1243 |#1|))) (IF (|has| |#1| (-854)) (-15 -1347 ((-1166 |#2|) (-1 |#2| |#1|) (-1243 |#1|))) |%noBranch|)) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2825 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1347 (((-1166 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-854)))) (-1918 ((|#1| $) 15)) (-1491 ((|#1| $) 12)) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-1501 (((-570) $) 19)) (-3549 ((|#1| $) 18)) (-1815 ((|#1| $) 13)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3245 (((-112) $) 17)) (-1381 (((-1166 |#1|) $) 41 (|has| |#1| (-854))) (((-1166 |#1|) (-650 $)) 40 (|has| |#1| (-854)))) (-1411 (($ |#1|) 26)) (-3798 (($ (-1103 |#1|)) 25) (((-868) $) 37 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3648 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2690 (($ $ (-570)) 14)) (-2923 (((-112) $ $) 30 (|has| |#1| (-1109))))) +(((-1243 |#1|) (-13 (-1102 |#1|) (-10 -8 (-15 -3648 ($ |#1|)) (-15 -2825 ($ |#1|)) (-15 -3798 ($ (-1103 |#1|))) (-15 -3245 ((-112) $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-1166 |#1|))) |%noBranch|))) (-1226)) (T -1243)) +((-3648 (*1 *1 *2) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1226)))) (-2825 (*1 *1 *2) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1226)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1103 *3)) (-4 *3 (-1226)) (-5 *1 (-1243 *3)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1226))))) +(-13 (-1102 |#1|) (-10 -8 (-15 -3648 ($ |#1|)) (-15 -2825 ($ |#1|)) (-15 -3798 ($ (-1103 |#1|))) (-15 -3245 ((-112) $)) (IF (|has| |#1| (-1109)) (-6 (-1109)) |%noBranch|) (IF (|has| |#1| (-854)) (-6 (-1104 |#1| (-1166 |#1|))) |%noBranch|))) +((-1347 (((-1249 |#3| |#4|) (-1 |#4| |#2|) (-1249 |#1| |#2|)) 15))) +(((-1244 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 ((-1249 |#3| |#4|) (-1 |#4| |#2|) (-1249 |#1| |#2|)))) (-1186) (-1058) (-1186) (-1058)) (T -1244)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1249 *5 *6)) (-14 *5 (-1186)) (-4 *6 (-1058)) (-4 *8 (-1058)) (-5 *2 (-1249 *7 *8)) (-5 *1 (-1244 *5 *6 *7 *8)) (-14 *7 (-1186))))) +(-10 -7 (-15 -1347 ((-1249 |#3| |#4|) (-1 |#4| |#2|) (-1249 |#1| |#2|)))) +((-2899 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3606 ((|#1| |#3|) 13)) (-3860 ((|#3| |#3|) 19))) +(((-1245 |#1| |#2| |#3|) (-10 -7 (-15 -3606 (|#1| |#3|)) (-15 -3860 (|#3| |#3|)) (-15 -2899 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-562) (-1001 |#1|) (-1252 |#2|)) (T -1245)) +((-2899 (*1 *2 *3) (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1245 *4 *5 *3)) (-4 *3 (-1252 *5)))) (-3860 (*1 *2 *2) (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-1245 *3 *4 *2)) (-4 *2 (-1252 *4)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-1245 *2 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -3606 (|#1| |#3|)) (-15 -3860 (|#3| |#3|)) (-15 -2899 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1859 (((-3 |#2| "failed") |#2| (-777) |#1|) 37)) (-2074 (((-3 |#2| "failed") |#2| (-777)) 38)) (-1888 (((-3 (-2 (|:| -4399 |#2|) (|:| -4411 |#2|)) "failed") |#2|) 52)) (-1852 (((-650 |#2|) |#2|) 54)) (-2382 (((-3 |#2| "failed") |#2| |#2|) 48))) +(((-1246 |#1| |#2|) (-10 -7 (-15 -2074 ((-3 |#2| "failed") |#2| (-777))) (-15 -1859 ((-3 |#2| "failed") |#2| (-777) |#1|)) (-15 -2382 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1888 ((-3 (-2 (|:| -4399 |#2|) (|:| -4411 |#2|)) "failed") |#2|)) (-15 -1852 ((-650 |#2|) |#2|))) (-13 (-562) (-148)) (-1252 |#1|)) (T -1246)) +((-1852 (*1 *2 *3) (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-650 *3)) (-5 *1 (-1246 *4 *3)) (-4 *3 (-1252 *4)))) (-1888 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-2 (|:| -4399 *3) (|:| -4411 *3))) (-5 *1 (-1246 *4 *3)) (-4 *3 (-1252 *4)))) (-2382 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1246 *3 *2)) (-4 *2 (-1252 *3)))) (-1859 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-1246 *4 *2)) (-4 *2 (-1252 *4)))) (-2074 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-1246 *4 *2)) (-4 *2 (-1252 *4))))) +(-10 -7 (-15 -2074 ((-3 |#2| "failed") |#2| (-777))) (-15 -1859 ((-3 |#2| "failed") |#2| (-777) |#1|)) (-15 -2382 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1888 ((-3 (-2 (|:| -4399 |#2|) (|:| -4411 |#2|)) "failed") |#2|)) (-15 -1852 ((-650 |#2|) |#2|))) +((-3990 (((-3 (-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|) 30))) +(((-1247 |#1| |#2|) (-10 -7 (-15 -3990 ((-3 (-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|))) (-562) (-1252 |#1|)) (T -1247)) +((-3990 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-1247 *4 *3)) (-4 *3 (-1252 *4))))) +(-10 -7 (-15 -3990 ((-3 (-2 (|:| -1310 |#2|) (|:| -2423 |#2|)) "failed") |#2| |#2|))) +((-2292 ((|#2| |#2| |#2|) 22)) (-2533 ((|#2| |#2| |#2|) 36)) (-1658 ((|#2| |#2| |#2| (-777) (-777)) 44))) +(((-1248 |#1| |#2|) (-10 -7 (-15 -2292 (|#2| |#2| |#2|)) (-15 -2533 (|#2| |#2| |#2|)) (-15 -1658 (|#2| |#2| |#2| (-777) (-777)))) (-1058) (-1252 |#1|)) (T -1248)) +((-1658 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-1248 *4 *2)) (-4 *2 (-1252 *4)))) (-2533 (*1 *2 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-1248 *3 *2)) (-4 *2 (-1252 *3)))) (-2292 (*1 *2 *2 *2) (-12 (-4 *3 (-1058)) (-5 *1 (-1248 *3 *2)) (-4 *2 (-1252 *3))))) +(-10 -7 (-15 -2292 (|#2| |#2| |#2|)) (-15 -2533 (|#2| |#2| |#2|)) (-15 -1658 (|#2| |#2| |#2| (-777) (-777)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2012 (((-1276 |#2|) $ (-777)) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-3832 (($ (-1182 |#2|)) NIL)) (-3768 (((-1182 $) $ (-1091)) NIL) (((-1182 |#2|) $) NIL)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#2| (-562)))) (-2318 (($ $) NIL (|has| |#2| (-562)))) (-2234 (((-112) $) NIL (|has| |#2| (-562)))) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1091))) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-1485 (($ $ $) NIL (|has| |#2| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3696 (($ $) NIL (|has| |#2| (-458)))) (-2555 (((-424 $) $) NIL (|has| |#2| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-4073 (((-112) $ $) NIL (|has| |#2| (-368)))) (-3100 (($ $ (-777)) NIL)) (-4146 (($ $ (-777)) NIL)) (-2651 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-458)))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL) (((-3 (-413 (-570)) "failed") $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) NIL (|has| |#2| (-1047 (-570)))) (((-3 (-1091) "failed") $) NIL)) (-3152 ((|#2| $) NIL) (((-413 (-570)) $) NIL (|has| |#2| (-1047 (-413 (-570))))) (((-570) $) NIL (|has| |#2| (-1047 (-570)))) (((-1091) $) NIL)) (-2865 (($ $ $ (-1091)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-2372 (($ $ $) NIL (|has| |#2| (-368)))) (-1885 (($ $) NIL)) (-2004 (((-695 (-570)) (-695 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) NIL (|has| |#2| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#2|)) (|:| |vec| (-1276 |#2|))) (-695 $) (-1276 $)) NIL) (((-695 |#2|) (-695 $)) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2380 (($ $ $) NIL (|has| |#2| (-368)))) (-3770 (($ $ $) NIL)) (-3858 (($ $ $) NIL (|has| |#2| (-562)))) (-1874 (((-2 (|:| -1436 |#2|) (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#2| (-368)))) (-1908 (($ $) NIL (|has| |#2| (-458))) (($ $ (-1091)) NIL (|has| |#2| (-458)))) (-1867 (((-650 $) $) NIL)) (-3701 (((-112) $) NIL (|has| |#2| (-916)))) (-3155 (($ $ |#2| (-777) $) NIL)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) NIL (-12 (|has| (-1091) (-893 (-384))) (|has| |#2| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) NIL (-12 (|has| (-1091) (-893 (-570))) (|has| |#2| (-893 (-570)))))) (-4202 (((-777) $ $) NIL (|has| |#2| (-562)))) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-3641 (((-3 $ "failed") $) NIL (|has| |#2| (-1161)))) (-1699 (($ (-1182 |#2|) (-1091)) NIL) (($ (-1182 $) (-1091)) NIL)) (-2964 (($ $ (-777)) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3925 (($ |#2| (-777)) 18) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1091)) NIL) (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL)) (-2302 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-2550 (($ (-1 (-777) (-777)) $) NIL)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-3713 (((-1182 |#2|) $) NIL)) (-4372 (((-3 (-1091) "failed") $) NIL)) (-1851 (($ $) NIL)) (-1860 ((|#2| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-4122 (((-1168) $) NIL)) (-3627 (((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777)) NIL)) (-4193 (((-3 (-650 $) "failed") $) NIL)) (-3607 (((-3 (-650 $) "failed") $) NIL)) (-1657 (((-3 (-2 (|:| |var| (-1091)) (|:| -3283 (-777))) "failed") $) NIL)) (-1840 (($ $) NIL (|has| |#2| (-38 (-413 (-570)))))) (-2310 (($) NIL (|has| |#2| (-1161)) CONST)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 ((|#2| $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#2| (-458)))) (-1869 (($ (-650 $)) NIL (|has| |#2| (-458))) (($ $ $) NIL (|has| |#2| (-458)))) (-3750 (($ $ (-777) |#2| $) NIL)) (-3484 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) NIL (|has| |#2| (-916)))) (-3801 (((-424 $) $) NIL (|has| |#2| (-916)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#2| (-368)))) (-2410 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-562))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#2| (-368)))) (-1725 (($ $ (-650 (-298 $))) NIL) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#2|) NIL) (($ $ (-650 (-1091)) (-650 |#2|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-650 (-1091)) (-650 $)) NIL)) (-3788 (((-777) $) NIL (|has| |#2| (-368)))) (-1872 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) NIL (|has| |#2| (-562))) ((|#2| (-413 $) |#2|) NIL (|has| |#2| (-368))) (((-413 $) $ (-413 $)) NIL (|has| |#2| (-562)))) (-2575 (((-3 $ "failed") $ (-777)) NIL)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#2| (-368)))) (-3511 (($ $ (-1091)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3519 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3324 (((-777) $) NIL) (((-777) $ (-1091)) NIL) (((-650 (-777)) $ (-650 (-1091))) NIL)) (-1411 (((-899 (-384)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#2| (-620 (-899 (-384)))))) (((-899 (-570)) $) NIL (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#2| (-620 (-899 (-570)))))) (((-542) $) NIL (-12 (|has| (-1091) (-620 (-542))) (|has| |#2| (-620 (-542)))))) (-1427 ((|#2| $) NIL (|has| |#2| (-458))) (($ $ (-1091)) NIL (|has| |#2| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-916))))) (-3276 (((-3 $ "failed") $ $) NIL (|has| |#2| (-562))) (((-3 (-413 $) "failed") (-413 $) $) NIL (|has| |#2| (-562)))) (-3798 (((-868) $) 13) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-1091)) NIL) (($ (-1272 |#1|)) 20) (($ (-413 (-570))) NIL (-2779 (|has| |#2| (-38 (-413 (-570)))) (|has| |#2| (-1047 (-413 (-570)))))) (($ $) NIL (|has| |#2| (-562)))) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-777)) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2917 (((-3 $ "failed") $) NIL (-2779 (-12 (|has| $ (-146)) (|has| |#2| (-916))) (|has| |#2| (-146))))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| |#2| (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL (|has| |#2| (-562)))) (-1809 (($) NIL T CONST)) (-1817 (($) 14 T CONST)) (-2835 (($ $ (-1091)) NIL) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) NIL) (($ $ (-1186)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1186) (-777)) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) NIL (|has| |#2| (-907 (-1186)))) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#2|) NIL (|has| |#2| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-413 (-570))) NIL (|has| |#2| (-38 (-413 (-570))))) (($ (-413 (-570)) $) NIL (|has| |#2| (-38 (-413 (-570))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1249 |#1| |#2|) (-13 (-1252 |#2|) (-622 (-1272 |#1|)) (-10 -8 (-15 -3750 ($ $ (-777) |#2| $)))) (-1186) (-1058)) (T -1249)) +((-3750 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1249 *4 *3)) (-14 *4 (-1186)) (-4 *3 (-1058))))) +(-13 (-1252 |#2|) (-622 (-1272 |#1|)) (-10 -8 (-15 -3750 ($ $ (-777) |#2| $)))) +((-1347 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1250 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|))) (-1058) (-1252 |#1|) (-1058) (-1252 |#3|)) (T -1250)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *2 (-1252 *6)) (-5 *1 (-1250 *5 *4 *6 *2)) (-4 *4 (-1252 *5))))) +(-10 -7 (-15 -1347 (|#4| (-1 |#3| |#1|) |#2|))) +((-2012 (((-1276 |#2|) $ (-777)) 129)) (-1709 (((-650 (-1091)) $) 16)) (-3832 (($ (-1182 |#2|)) 80)) (-1818 (((-777) $) NIL) (((-777) $ (-650 (-1091))) 21)) (-2900 (((-424 (-1182 $)) (-1182 $)) 204)) (-3696 (($ $) 194)) (-2555 (((-424 $) $) 192)) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 95)) (-3100 (($ $ (-777)) 84)) (-4146 (($ $ (-777)) 86)) (-2651 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-4382 (((-3 |#2| "failed") $) 132) (((-3 (-413 (-570)) "failed") $) NIL) (((-3 (-570) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL)) (-3152 ((|#2| $) 130) (((-413 (-570)) $) NIL) (((-570) $) NIL) (((-1091) $) NIL)) (-3858 (($ $ $) 170)) (-1874 (((-2 (|:| -1436 |#2|) (|:| -1310 $) (|:| -2423 $)) $ $) 172)) (-4202 (((-777) $ $) 189)) (-3641 (((-3 $ "failed") $) 138)) (-3925 (($ |#2| (-777)) NIL) (($ $ (-1091) (-777)) 59) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-2302 (((-777) $) NIL) (((-777) $ (-1091)) 54) (((-650 (-777)) $ (-650 (-1091))) 55)) (-3713 (((-1182 |#2|) $) 72)) (-4372 (((-3 (-1091) "failed") $) 52)) (-3627 (((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777)) 83)) (-1840 (($ $) 219)) (-2310 (($) 134)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 201)) (-3484 (((-424 (-1182 $)) (-1182 $)) 101)) (-3623 (((-424 (-1182 $)) (-1182 $)) 99)) (-3801 (((-424 $) $) 120)) (-1725 (($ $ (-650 (-298 $))) 51) (($ $ (-298 $)) NIL) (($ $ $ $) NIL) (($ $ (-650 $) (-650 $)) NIL) (($ $ (-1091) |#2|) 39) (($ $ (-650 (-1091)) (-650 |#2|)) 36) (($ $ (-1091) $) 32) (($ $ (-650 (-1091)) (-650 $)) 30)) (-3788 (((-777) $) 207)) (-1872 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-413 $) (-413 $) (-413 $)) 164) ((|#2| (-413 $) |#2|) 206) (((-413 $) $ (-413 $)) 188)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 212)) (-3519 (($ $ (-1091)) 157) (($ $ (-650 (-1091))) NIL) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL) (($ $ (-777)) NIL) (($ $) 155) (($ $ (-1186)) NIL) (($ $ (-650 (-1186))) NIL) (($ $ (-1186) (-777)) NIL) (($ $ (-650 (-1186)) (-650 (-777))) NIL) (($ $ (-1 |#2| |#2|) (-777)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3324 (((-777) $) NIL) (((-777) $ (-1091)) 17) (((-650 (-777)) $ (-650 (-1091))) 23)) (-1427 ((|#2| $) NIL) (($ $ (-1091)) 140)) (-3276 (((-3 $ "failed") $ $) 180) (((-3 (-413 $) "failed") (-413 $) $) 176)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#2|) NIL) (($ (-1091)) 64) (($ (-413 (-570))) NIL) (($ $) NIL))) +(((-1251 |#1| |#2|) (-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -1872 ((-413 |#1|) |#1| (-413 |#1|))) (-15 -3788 ((-777) |#1|)) (-15 -1854 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -1872 (|#2| (-413 |#1|) |#2|)) (-15 -2651 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1436 |#2|) (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -3276 ((-3 (-413 |#1|) "failed") (-413 |#1|) |#1|)) (-15 -3276 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4202 ((-777) |#1| |#1|)) (-15 -1872 ((-413 |#1|) (-413 |#1|) (-413 |#1|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4146 (|#1| |#1| (-777))) (-15 -3100 (|#1| |#1| (-777))) (-15 -3627 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| (-777))) (-15 -3832 (|#1| (-1182 |#2|))) (-15 -3713 ((-1182 |#2|) |#1|)) (-15 -2012 ((-1276 |#2|) |#1| (-777))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -1872 (|#1| |#1| |#1|)) (-15 -1872 (|#2| |#1| |#2|)) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2900 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3623 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3484 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -1427 (|#1| |#1| (-1091))) (-15 -1709 ((-650 (-1091)) |#1|)) (-15 -1818 ((-777) |#1| (-650 (-1091)))) (-15 -1818 ((-777) |#1|)) (-15 -3925 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -3925 (|#1| |#1| (-1091) (-777))) (-15 -2302 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -2302 ((-777) |#1| (-1091))) (-15 -4372 ((-3 (-1091) "failed") |#1|)) (-15 -3324 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -3324 ((-777) |#1| (-1091))) (-15 -3798 (|#1| (-1091))) (-15 -4382 ((-3 (-1091) "failed") |#1|)) (-15 -3152 ((-1091) |#1|)) (-15 -1725 (|#1| |#1| (-650 (-1091)) (-650 |#1|))) (-15 -1725 (|#1| |#1| (-1091) |#1|)) (-15 -1725 (|#1| |#1| (-650 (-1091)) (-650 |#2|))) (-15 -1725 (|#1| |#1| (-1091) |#2|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3324 ((-777) |#1|)) (-15 -3925 (|#1| |#2| (-777))) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -2302 ((-777) |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -3519 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1091) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1091)))) (-15 -3519 (|#1| |#1| (-1091))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) (-1252 |#2|) (-1058)) (T -1251)) +NIL +(-10 -8 (-15 -3798 (|#1| |#1|)) (-15 -1311 ((-1182 |#1|) (-1182 |#1|) (-1182 |#1|))) (-15 -2555 ((-424 |#1|) |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -2310 (|#1|)) (-15 -3641 ((-3 |#1| "failed") |#1|)) (-15 -1872 ((-413 |#1|) |#1| (-413 |#1|))) (-15 -3788 ((-777) |#1|)) (-15 -1854 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -1840 (|#1| |#1|)) (-15 -1872 (|#2| (-413 |#1|) |#2|)) (-15 -2651 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1436 |#2|) (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| |#1|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -3276 ((-3 (-413 |#1|) "failed") (-413 |#1|) |#1|)) (-15 -3276 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4202 ((-777) |#1| |#1|)) (-15 -1872 ((-413 |#1|) (-413 |#1|) (-413 |#1|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4146 (|#1| |#1| (-777))) (-15 -3100 (|#1| |#1| (-777))) (-15 -3627 ((-2 (|:| -1310 |#1|) (|:| -2423 |#1|)) |#1| (-777))) (-15 -3832 (|#1| (-1182 |#2|))) (-15 -3713 ((-1182 |#2|) |#1|)) (-15 -2012 ((-1276 |#2|) |#1| (-777))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3519 (|#1| |#1| (-1 |#2| |#2|) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1186) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1186)))) (-15 -3519 (|#1| |#1| (-1186))) (-15 -3519 (|#1| |#1|)) (-15 -3519 (|#1| |#1| (-777))) (-15 -1872 (|#1| |#1| |#1|)) (-15 -1872 (|#2| |#1| |#2|)) (-15 -3801 ((-424 |#1|) |#1|)) (-15 -2900 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3623 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -3484 ((-424 (-1182 |#1|)) (-1182 |#1|))) (-15 -4226 ((-3 (-650 (-1182 |#1|)) "failed") (-650 (-1182 |#1|)) (-1182 |#1|))) (-15 -1427 (|#1| |#1| (-1091))) (-15 -1709 ((-650 (-1091)) |#1|)) (-15 -1818 ((-777) |#1| (-650 (-1091)))) (-15 -1818 ((-777) |#1|)) (-15 -3925 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -3925 (|#1| |#1| (-1091) (-777))) (-15 -2302 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -2302 ((-777) |#1| (-1091))) (-15 -4372 ((-3 (-1091) "failed") |#1|)) (-15 -3324 ((-650 (-777)) |#1| (-650 (-1091)))) (-15 -3324 ((-777) |#1| (-1091))) (-15 -3798 (|#1| (-1091))) (-15 -4382 ((-3 (-1091) "failed") |#1|)) (-15 -3152 ((-1091) |#1|)) (-15 -1725 (|#1| |#1| (-650 (-1091)) (-650 |#1|))) (-15 -1725 (|#1| |#1| (-1091) |#1|)) (-15 -1725 (|#1| |#1| (-650 (-1091)) (-650 |#2|))) (-15 -1725 (|#1| |#1| (-1091) |#2|)) (-15 -1725 (|#1| |#1| (-650 |#1|) (-650 |#1|))) (-15 -1725 (|#1| |#1| |#1| |#1|)) (-15 -1725 (|#1| |#1| (-298 |#1|))) (-15 -1725 (|#1| |#1| (-650 (-298 |#1|)))) (-15 -3324 ((-777) |#1|)) (-15 -3925 (|#1| |#2| (-777))) (-15 -4382 ((-3 (-570) "failed") |#1|)) (-15 -3152 ((-570) |#1|)) (-15 -4382 ((-3 (-413 (-570)) "failed") |#1|)) (-15 -3152 ((-413 (-570)) |#1|)) (-15 -3152 (|#2| |#1|)) (-15 -4382 ((-3 |#2| "failed") |#1|)) (-15 -3798 (|#1| |#2|)) (-15 -2302 ((-777) |#1|)) (-15 -1427 (|#2| |#1|)) (-15 -3519 (|#1| |#1| (-650 (-1091)) (-650 (-777)))) (-15 -3519 (|#1| |#1| (-1091) (-777))) (-15 -3519 (|#1| |#1| (-650 (-1091)))) (-15 -3519 (|#1| |#1| (-1091))) (-15 -3798 (|#1| (-570))) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2012 (((-1276 |#1|) $ (-777)) 240)) (-1709 (((-650 (-1091)) $) 112)) (-3832 (($ (-1182 |#1|)) 238)) (-3768 (((-1182 $) $ (-1091)) 127) (((-1182 |#1|) $) 126)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 89 (|has| |#1| (-562)))) (-2318 (($ $) 90 (|has| |#1| (-562)))) (-2234 (((-112) $) 92 (|has| |#1| (-562)))) (-1818 (((-777) $) 114) (((-777) $ (-650 (-1091))) 113)) (-2620 (((-3 $ "failed") $ $) 20)) (-1485 (($ $ $) 225 (|has| |#1| (-562)))) (-2900 (((-424 (-1182 $)) (-1182 $)) 102 (|has| |#1| (-916)))) (-3696 (($ $) 100 (|has| |#1| (-458)))) (-2555 (((-424 $) $) 99 (|has| |#1| (-458)))) (-4226 (((-3 (-650 (-1182 $)) "failed") (-650 (-1182 $)) (-1182 $)) 105 (|has| |#1| (-916)))) (-4073 (((-112) $ $) 210 (|has| |#1| (-368)))) (-3100 (($ $ (-777)) 233)) (-4146 (($ $ (-777)) 232)) (-2651 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-458)))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 166) (((-3 (-413 (-570)) "failed") $) 163 (|has| |#1| (-1047 (-413 (-570))))) (((-3 (-570) "failed") $) 161 (|has| |#1| (-1047 (-570)))) (((-3 (-1091) "failed") $) 138)) (-3152 ((|#1| $) 165) (((-413 (-570)) $) 164 (|has| |#1| (-1047 (-413 (-570))))) (((-570) $) 162 (|has| |#1| (-1047 (-570)))) (((-1091) $) 139)) (-2865 (($ $ $ (-1091)) 110 (|has| |#1| (-174))) ((|#1| $ $) 228 (|has| |#1| (-174)))) (-2372 (($ $ $) 214 (|has| |#1| (-368)))) (-1885 (($ $) 156)) (-2004 (((-695 (-570)) (-695 $)) 136 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 (-570))) (|:| |vec| (-1276 (-570)))) (-695 $) (-1276 $)) 135 (|has| |#1| (-645 (-570)))) (((-2 (|:| -2568 (-695 |#1|)) (|:| |vec| (-1276 |#1|))) (-695 $) (-1276 $)) 134) (((-695 |#1|) (-695 $)) 133)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 213 (|has| |#1| (-368)))) (-3770 (($ $ $) 231)) (-3858 (($ $ $) 222 (|has| |#1| (-562)))) (-1874 (((-2 (|:| -1436 |#1|) (|:| -1310 $) (|:| -2423 $)) $ $) 221 (|has| |#1| (-562)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 208 (|has| |#1| (-368)))) (-1908 (($ $) 178 (|has| |#1| (-458))) (($ $ (-1091)) 107 (|has| |#1| (-458)))) (-1867 (((-650 $) $) 111)) (-3701 (((-112) $) 98 (|has| |#1| (-916)))) (-3155 (($ $ |#1| (-777) $) 174)) (-2125 (((-896 (-384) $) $ (-899 (-384)) (-896 (-384) $)) 86 (-12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384))))) (((-896 (-570) $) $ (-899 (-570)) (-896 (-570) $)) 85 (-12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))))) (-4202 (((-777) $ $) 226 (|has| |#1| (-562)))) (-2481 (((-112) $) 35)) (-1700 (((-777) $) 171)) (-3641 (((-3 $ "failed") $) 206 (|has| |#1| (-1161)))) (-1699 (($ (-1182 |#1|) (-1091)) 119) (($ (-1182 $) (-1091)) 118)) (-2964 (($ $ (-777)) 237)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 217 (|has| |#1| (-368)))) (-2717 (((-650 $) $) 128)) (-2343 (((-112) $) 154)) (-3925 (($ |#1| (-777)) 155) (($ $ (-1091) (-777)) 121) (($ $ (-650 (-1091)) (-650 (-777))) 120)) (-1941 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $ (-1091)) 122) (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 235)) (-2302 (((-777) $) 172) (((-777) $ (-1091)) 124) (((-650 (-777)) $ (-650 (-1091))) 123)) (-2550 (($ (-1 (-777) (-777)) $) 173)) (-1347 (($ (-1 |#1| |#1|) $) 153)) (-3713 (((-1182 |#1|) $) 239)) (-4372 (((-3 (-1091) "failed") $) 125)) (-1851 (($ $) 151)) (-1860 ((|#1| $) 150)) (-1841 (($ (-650 $)) 96 (|has| |#1| (-458))) (($ $ $) 95 (|has| |#1| (-458)))) (-4122 (((-1168) $) 10)) (-3627 (((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777)) 234)) (-4193 (((-3 (-650 $) "failed") $) 116)) (-3607 (((-3 (-650 $) "failed") $) 117)) (-1657 (((-3 (-2 (|:| |var| (-1091)) (|:| -3283 (-777))) "failed") $) 115)) (-1840 (($ $) 218 (|has| |#1| (-38 (-413 (-570)))))) (-2310 (($) 205 (|has| |#1| (-1161)) CONST)) (-3551 (((-1129) $) 11)) (-1830 (((-112) $) 168)) (-1838 ((|#1| $) 169)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 97 (|has| |#1| (-458)))) (-1869 (($ (-650 $)) 94 (|has| |#1| (-458))) (($ $ $) 93 (|has| |#1| (-458)))) (-3484 (((-424 (-1182 $)) (-1182 $)) 104 (|has| |#1| (-916)))) (-3623 (((-424 (-1182 $)) (-1182 $)) 103 (|has| |#1| (-916)))) (-3801 (((-424 $) $) 101 (|has| |#1| (-916)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 215 (|has| |#1| (-368)))) (-2410 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-562))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 209 (|has| |#1| (-368)))) (-1725 (($ $ (-650 (-298 $))) 147) (($ $ (-298 $)) 146) (($ $ $ $) 145) (($ $ (-650 $) (-650 $)) 144) (($ $ (-1091) |#1|) 143) (($ $ (-650 (-1091)) (-650 |#1|)) 142) (($ $ (-1091) $) 141) (($ $ (-650 (-1091)) (-650 $)) 140)) (-3788 (((-777) $) 211 (|has| |#1| (-368)))) (-1872 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-413 $) (-413 $) (-413 $)) 227 (|has| |#1| (-562))) ((|#1| (-413 $) |#1|) 219 (|has| |#1| (-368))) (((-413 $) $ (-413 $)) 207 (|has| |#1| (-562)))) (-2575 (((-3 $ "failed") $ (-777)) 236)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 212 (|has| |#1| (-368)))) (-3511 (($ $ (-1091)) 109 (|has| |#1| (-174))) ((|#1| $) 229 (|has| |#1| (-174)))) (-3519 (($ $ (-1091)) 46) (($ $ (-650 (-1091))) 45) (($ $ (-1091) (-777)) 44) (($ $ (-650 (-1091)) (-650 (-777))) 43) (($ $ (-777)) 255) (($ $) 253) (($ $ (-1186)) 252 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 251 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 250 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 249 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3324 (((-777) $) 152) (((-777) $ (-1091)) 132) (((-650 (-777)) $ (-650 (-1091))) 131)) (-1411 (((-899 (-384)) $) 84 (-12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384)))))) (((-899 (-570)) $) 83 (-12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570)))))) (((-542) $) 82 (-12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))))) (-1427 ((|#1| $) 177 (|has| |#1| (-458))) (($ $ (-1091)) 108 (|has| |#1| (-458)))) (-2409 (((-3 (-1276 $) "failed") (-695 $)) 106 (-1760 (|has| $ (-146)) (|has| |#1| (-916))))) (-3276 (((-3 $ "failed") $ $) 224 (|has| |#1| (-562))) (((-3 (-413 $) "failed") (-413 $) $) 223 (|has| |#1| (-562)))) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 167) (($ (-1091)) 137) (($ (-413 (-570))) 80 (-2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570)))))) (($ $) 87 (|has| |#1| (-562)))) (-2479 (((-650 |#1|) $) 170)) (-3326 ((|#1| $ (-777)) 157) (($ $ (-1091) (-777)) 130) (($ $ (-650 (-1091)) (-650 (-777))) 129)) (-2917 (((-3 $ "failed") $) 81 (-2779 (-1760 (|has| $ (-146)) (|has| |#1| (-916))) (|has| |#1| (-146))))) (-2862 (((-777)) 32 T CONST)) (-1484 (($ $ $ (-777)) 175 (|has| |#1| (-174)))) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 91 (|has| |#1| (-562)))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-1091)) 42) (($ $ (-650 (-1091))) 41) (($ $ (-1091) (-777)) 40) (($ $ (-650 (-1091)) (-650 (-777))) 39) (($ $ (-777)) 256) (($ $) 254) (($ $ (-1186)) 248 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186))) 247 (|has| |#1| (-907 (-1186)))) (($ $ (-1186) (-777)) 246 (|has| |#1| (-907 (-1186)))) (($ $ (-650 (-1186)) (-650 (-777))) 245 (|has| |#1| (-907 (-1186)))) (($ $ (-1 |#1| |#1|) (-777)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 158 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 160 (|has| |#1| (-38 (-413 (-570))))) (($ (-413 (-570)) $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ |#1| $) 149) (($ $ |#1|) 148))) +(((-1252 |#1|) (-141) (-1058)) (T -1252)) +((-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-1252 *4)) (-4 *4 (-1058)) (-5 *2 (-1276 *4)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1058)) (-5 *2 (-1182 *3)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1058)) (-4 *1 (-1252 *3)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) (-2575 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) (-1941 (*1 *2 *1 *1) (-12 (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1252 *3)))) (-3627 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1252 *4)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) (-3770 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)))) (-3519 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-174)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-174)))) (-1872 (*1 *2 *2 *2) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)) (-4 *3 (-562)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1058)) (-4 *3 (-562)) (-5 *2 (-777)))) (-1485 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-3276 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-3276 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-413 *1)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)) (-4 *3 (-562)))) (-3858 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1436 *3) (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1252 *3)))) (-2651 (*1 *2 *1 *1) (-12 (-4 *3 (-458)) (-4 *3 (-1058)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1252 *3)))) (-1872 (*1 *2 *3 *2) (-12 (-5 *3 (-413 *1)) (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570))))))) +(-13 (-956 |t#1| (-777) (-1091)) (-290 |t#1| |t#1|) (-290 $ $) (-235) (-233 |t#1|) (-10 -8 (-15 -2012 ((-1276 |t#1|) $ (-777))) (-15 -3713 ((-1182 |t#1|) $)) (-15 -3832 ($ (-1182 |t#1|))) (-15 -2964 ($ $ (-777))) (-15 -2575 ((-3 $ "failed") $ (-777))) (-15 -1941 ((-2 (|:| -1310 $) (|:| -2423 $)) $ $)) (-15 -3627 ((-2 (|:| -1310 $) (|:| -2423 $)) $ (-777))) (-15 -3100 ($ $ (-777))) (-15 -4146 ($ $ (-777))) (-15 -3770 ($ $ $)) (-15 -3519 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1161)) (-6 (-1161)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -3511 (|t#1| $)) (-15 -2865 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-562)) (PROGN (-6 (-290 (-413 $) (-413 $))) (-15 -1872 ((-413 $) (-413 $) (-413 $))) (-15 -4202 ((-777) $ $)) (-15 -1485 ($ $ $)) (-15 -3276 ((-3 $ "failed") $ $)) (-15 -3276 ((-3 (-413 $) "failed") (-413 $) $)) (-15 -3858 ($ $ $)) (-15 -1874 ((-2 (|:| -1436 |t#1|) (|:| -1310 $) (|:| -2423 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-458)) (-15 -2651 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-368)) (PROGN (-6 (-311)) (-6 -4444) (-15 -1872 (|t#1| (-413 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (-15 -1840 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-777)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -2779 (|has| |#1| (-1047 (-413 (-570)))) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 #2=(-1091)) . T) ((-622 |#1|) . T) ((-622 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-620 (-542)) -12 (|has| (-1091) (-620 (-542))) (|has| |#1| (-620 (-542)))) ((-620 (-899 (-384))) -12 (|has| (-1091) (-620 (-899 (-384)))) (|has| |#1| (-620 (-899 (-384))))) ((-620 (-899 (-570))) -12 (|has| (-1091) (-620 (-899 (-570)))) (|has| |#1| (-620 (-899 (-570))))) ((-233 |#1|) . T) ((-235) . T) ((-290 (-413 $) (-413 $)) |has| |#1| (-562)) ((-290 |#1| |#1|) . T) ((-290 $ $) . T) ((-294) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-313 $) . T) ((-330 |#1| #0#) . T) ((-382 |#1|) . T) ((-417 |#1|) . T) ((-458) -2779 (|has| |#1| (-916)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-520 #2# |#1|) . T) ((-520 #2# $) . T) ((-520 $ $) . T) ((-562) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-652 #1#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-645 (-570)) |has| |#1| (-645 (-570))) ((-645 |#1|) . T) ((-723 #1#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368))) ((-732) . T) ((-907 #2#) . T) ((-907 (-1186)) |has| |#1| (-907 (-1186))) ((-893 (-384)) -12 (|has| (-1091) (-893 (-384))) (|has| |#1| (-893 (-384)))) ((-893 (-570)) -12 (|has| (-1091) (-893 (-570))) (|has| |#1| (-893 (-570)))) ((-956 |#1| #0# #2#) . T) ((-916) |has| |#1| (-916)) ((-927) |has| |#1| (-368)) ((-1047 (-413 (-570))) |has| |#1| (-1047 (-413 (-570)))) ((-1047 (-570)) |has| |#1| (-1047 (-570))) ((-1047 #2#) . T) ((-1047 |#1|) . T) ((-1060 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-916)) (|has| |#1| (-562)) (|has| |#1| (-458)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1161) |has| |#1| (-1161)) ((-1230) |has| |#1| (-916))) +((-1709 (((-650 (-1091)) $) 34)) (-1885 (($ $) 31)) (-3925 (($ |#2| |#3|) NIL) (($ $ (-1091) |#3|) 28) (($ $ (-650 (-1091)) (-650 |#3|)) 27)) (-1851 (($ $) 14)) (-1860 ((|#2| $) 12)) (-3324 ((|#3| $) 10))) +(((-1253 |#1| |#2| |#3|) (-10 -8 (-15 -1709 ((-650 (-1091)) |#1|)) (-15 -3925 (|#1| |#1| (-650 (-1091)) (-650 |#3|))) (-15 -3925 (|#1| |#1| (-1091) |#3|)) (-15 -1885 (|#1| |#1|)) (-15 -3925 (|#1| |#2| |#3|)) (-15 -3324 (|#3| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1860 (|#2| |#1|))) (-1254 |#2| |#3|) (-1058) (-798)) (T -1253)) +NIL +(-10 -8 (-15 -1709 ((-650 (-1091)) |#1|)) (-15 -3925 (|#1| |#1| (-650 (-1091)) (-650 |#3|))) (-15 -3925 (|#1| |#1| (-1091) |#3|)) (-15 -1885 (|#1| |#1|)) (-15 -3925 (|#1| |#2| |#3|)) (-15 -3324 (|#3| |#1|)) (-15 -1851 (|#1| |#1|)) (-15 -1860 (|#2| |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 (-1091)) $) 86)) (-2676 (((-1186) $) 115)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-3667 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-1919 (((-1166 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-2465 (((-112) $) 85)) (-4202 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-2481 (((-112) $) 35)) (-2964 (($ $ (-928)) 113)) (-2343 (((-112) $) 74)) (-3925 (($ |#1| |#2|) 73) (($ $ (-1091) |#2|) 88) (($ $ (-650 (-1091)) (-650 |#2|)) 87)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3500 (($ $ |#2|) 107)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-1725 (((-1166 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1872 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1121)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186) (-777)) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-650 (-1186))) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186)) 98 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-777)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3324 ((|#2| $) 76)) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3326 ((|#1| $ |#2|) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-2172 ((|#1| $) 114)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-3093 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186) (-777)) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-650 (-1186))) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1186)) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-1254 |#1| |#2|) (-141) (-1058) (-798)) (T -1254)) +((-1919 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-1166 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1872 (*1 *2 *1 *3) (-12 (-4 *1 (-1254 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (-5 *2 (-1186)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-1254 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-4202 (*1 *2 *1 *2) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3667 (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3667 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-3093 (*1 *2 *1 *3) (-12 (-4 *1 (-1254 *2 *3)) (-4 *3 (-798)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3798 (*2 (-1186)))) (-4 *2 (-1058)))) (-3500 (*1 *1 *1 *2) (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) (-1725 (*1 *2 *1 *3) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1166 *3))))) +(-13 (-982 |t#1| |t#2| (-1091)) (-10 -8 (-15 -1919 ((-1166 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1872 (|t#1| $ |t#2|)) (-15 -2676 ((-1186) $)) (-15 -2172 (|t#1| $)) (-15 -2964 ($ $ (-928))) (-15 -4202 (|t#2| $)) (-15 -4202 (|t#2| $ |t#2|)) (-15 -3667 ($ $ |t#2|)) (-15 -3667 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3798 (|t#1| (-1186)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3093 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3500 ($ $ |t#2|)) (IF (|has| |t#2| (-1121)) (-6 (-290 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-235)) (IF (|has| |t#1| (-907 (-1186))) (-6 (-907 (-1186))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1725 ((-1166 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #0#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-290 $ $) |has| |#2| (-1121)) ((-294) |has| |#1| (-562)) ((-562) |has| |#1| (-562)) ((-652 #0#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #0#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| |#2| (-1091)) . T) ((-1060 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #0#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-3696 ((|#2| |#2|) 12)) (-2555 (((-424 |#2|) |#2|) 14)) (-1823 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570)))) 30))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -2555 ((-424 |#2|) |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -1823 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570)))))) (-562) (-13 (-1252 |#1|) (-562) (-10 -8 (-15 -1869 ($ $ $))))) (T -1255)) +((-1823 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-570)))) (-4 *4 (-13 (-1252 *3) (-562) (-10 -8 (-15 -1869 ($ $ $))))) (-4 *3 (-562)) (-5 *1 (-1255 *3 *4)))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-562)) (-5 *1 (-1255 *3 *2)) (-4 *2 (-13 (-1252 *3) (-562) (-10 -8 (-15 -1869 ($ $ $))))))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-1255 *4 *3)) (-4 *3 (-13 (-1252 *4) (-562) (-10 -8 (-15 -1869 ($ $ $)))))))) +(-10 -7 (-15 -2555 ((-424 |#2|) |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -1823 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-570)))))) +((-1347 (((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)) 24))) +(((-1256 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1347 ((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)))) (-1058) (-1058) (-1186) (-1186) |#1| |#2|) (T -1256)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1261 *5 *7 *9)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1261 *6 *8 *10)) (-5 *1 (-1256 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1186))))) +(-10 -7 (-15 -1347 ((-1261 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1261 |#1| |#3| |#5|)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 (-1091)) $) 86)) (-2676 (((-1186) $) 115)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) 110) (($ $ (-413 (-570)) (-413 (-570))) 109)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 117)) (-2774 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 174 (|has| |#1| (-368)))) (-2555 (((-424 $) $) 175 (|has| |#1| (-368)))) (-3815 (($ $) 129 (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) 165 (|has| |#1| (-368)))) (-2749 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) 183)) (-4119 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) 18 T CONST)) (-2372 (($ $ $) 169 (|has| |#1| (-368)))) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 168 (|has| |#1| (-368)))) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 163 (|has| |#1| (-368)))) (-3701 (((-112) $) 176 (|has| |#1| (-368)))) (-2465 (((-112) $) 85)) (-1313 (($) 157 (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) 112) (((-413 (-570)) $ (-413 (-570))) 111)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 128 (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) 113) (($ $ (-413 (-570))) 182)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 172 (|has| |#1| (-368)))) (-2343 (((-112) $) 74)) (-3925 (($ |#1| (-413 (-570))) 73) (($ $ (-1091) (-413 (-570))) 88) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) 87)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-2665 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-1841 (($ (-650 $)) 161 (|has| |#1| (-368))) (($ $ $) 160 (|has| |#1| (-368)))) (-4122 (((-1168) $) 10)) (-1820 (($ $) 177 (|has| |#1| (-368)))) (-1840 (($ $) 181 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 180 (-2779 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1211)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 162 (|has| |#1| (-368)))) (-1869 (($ (-650 $)) 159 (|has| |#1| (-368))) (($ $ $) 158 (|has| |#1| (-368)))) (-3801 (((-424 $) $) 173 (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) 107)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 164 (|has| |#1| (-368)))) (-4390 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) 166 (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) 116) (($ $ $) 93 (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 167 (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 98 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 96 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3324 (((-413 (-570)) $) 76)) (-4129 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-2172 ((|#1| $) 114)) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-4141 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 179 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 178 (|has| |#1| (-368))) (($ $ $) 156 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 127 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-1257 |#1|) (-141) (-1058)) (T -1257)) +((-3325 (*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4)))) (-4 *4 (-1058)) (-4 *1 (-1257 *4)))) (-2964 (*1 *1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1257 *3)) (-4 *3 (-1058)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) (-1840 (*1 *1 *1 *2) (-2779 (-12 (-5 *2 (-1186)) (-4 *1 (-1257 *3)) (-4 *3 (-1058)) (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1211)) (-4 *3 (-38 (-413 (-570)))))) (-12 (-5 *2 (-1186)) (-4 *1 (-1257 *3)) (-4 *3 (-1058)) (-12 (|has| *3 (-15 -1709 ((-650 *2) *3))) (|has| *3 (-15 -1840 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570))))))))) +(-13 (-1254 |t#1| (-413 (-570))) (-10 -8 (-15 -3325 ($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |t#1|))))) (-15 -2964 ($ $ (-413 (-570)))) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $)) (IF (|has| |t#1| (-15 -1840 (|t#1| |t#1| (-1186)))) (IF (|has| |t#1| (-15 -1709 ((-650 (-1186)) |t#1|))) (-15 -1840 ($ $ (-1186))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1211)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-570))) (-15 -1840 ($ $ (-1186))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1011)) (-6 (-1211))) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-413 (-570))) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 $ $) |has| (-413 (-570)) (-1121)) ((-294) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-368) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-723 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1211) |has| |#1| (-38 (-413 (-570)))) ((-1214) |has| |#1| (-38 (-413 (-570)))) ((-1230) |has| |#1| (-368)) ((-1254 |#1| #0#) . T)) +((-1359 (((-112) $) 12)) (-4382 (((-3 |#3| "failed") $) 17)) (-3152 ((|#3| $) 14))) +(((-1258 |#1| |#2| |#3|) (-10 -8 (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3152 (|#3| |#1|)) (-15 -1359 ((-112) |#1|))) (-1259 |#2| |#3|) (-1058) (-1236 |#2|)) (T -1258)) +NIL +(-10 -8 (-15 -4382 ((-3 |#3| "failed") |#1|)) (-15 -3152 (|#3| |#1|)) (-15 -1359 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 (-1091)) $) 86)) (-2676 (((-1186) $) 115)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) 110) (($ $ (-413 (-570)) (-413 (-570))) 109)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 117)) (-2774 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 174 (|has| |#1| (-368)))) (-2555 (((-424 $) $) 175 (|has| |#1| (-368)))) (-3815 (($ $) 129 (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) 165 (|has| |#1| (-368)))) (-2749 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) 183)) (-4119 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#2| "failed") $) 194)) (-3152 ((|#2| $) 195)) (-2372 (($ $ $) 169 (|has| |#1| (-368)))) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-2987 (((-413 (-570)) $) 191)) (-2380 (($ $ $) 168 (|has| |#1| (-368)))) (-1800 (($ (-413 (-570)) |#2|) 192)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 163 (|has| |#1| (-368)))) (-3701 (((-112) $) 176 (|has| |#1| (-368)))) (-2465 (((-112) $) 85)) (-1313 (($) 157 (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) 112) (((-413 (-570)) $ (-413 (-570))) 111)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 128 (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) 113) (($ $ (-413 (-570))) 182)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 172 (|has| |#1| (-368)))) (-2343 (((-112) $) 74)) (-3925 (($ |#1| (-413 (-570))) 73) (($ $ (-1091) (-413 (-570))) 88) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) 87)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-2665 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-1841 (($ (-650 $)) 161 (|has| |#1| (-368))) (($ $ $) 160 (|has| |#1| (-368)))) (-2903 ((|#2| $) 190)) (-2596 (((-3 |#2| "failed") $) 188)) (-1788 ((|#2| $) 189)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 177 (|has| |#1| (-368)))) (-1840 (($ $) 181 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 180 (-2779 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1211)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 162 (|has| |#1| (-368)))) (-1869 (($ (-650 $)) 159 (|has| |#1| (-368))) (($ $ $) 158 (|has| |#1| (-368)))) (-3801 (((-424 $) $) 173 (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 170 (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) 107)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 164 (|has| |#1| (-368)))) (-4390 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) 166 (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) 116) (($ $ $) 93 (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 167 (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 98 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 96 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3324 (((-413 (-570)) $) 76)) (-4129 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 193) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-2172 ((|#1| $) 114)) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-4141 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186) (-777)) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-650 (-1186))) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-1186)) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368))) (($ $ $) 179 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 178 (|has| |#1| (-368))) (($ $ $) 156 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 127 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-1259 |#1| |#2|) (-141) (-1058) (-1236 |t#1|)) (T -1259)) +((-3324 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1236 *3)) (-5 *2 (-413 (-570))))) (-1800 (*1 *1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-4 *4 (-1058)) (-4 *1 (-1259 *4 *3)) (-4 *3 (-1236 *4)))) (-2987 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1236 *3)) (-5 *2 (-413 (-570))))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1236 *3)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1236 *3)))) (-2596 (*1 *2 *1) (|partial| -12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1236 *3))))) +(-13 (-1257 |t#1|) (-1047 |t#2|) (-622 |t#2|) (-10 -8 (-15 -1800 ($ (-413 (-570)) |t#2|)) (-15 -2987 ((-413 (-570)) $)) (-15 -2903 (|t#2| $)) (-15 -3324 ((-413 (-570)) $)) (-15 -1788 (|t#2| $)) (-15 -2596 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-413 (-570))) . T) ((-25) . T) ((-38 #1=(-413 (-570))) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 |#2|) . T) ((-622 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) ((-245) |has| |#1| (-368)) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 $ $) |has| (-413 (-570)) (-1121)) ((-294) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-311) |has| |#1| (-368)) ((-368) |has| |#1| (-368)) ((-458) |has| |#1| (-368)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-652 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-723 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368))) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-927) |has| |#1| (-368)) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1047 |#2|) . T) ((-1060 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1065 #1#) -2779 (|has| |#1| (-368)) (|has| |#1| (-38 (-413 (-570))))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-368)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1211) |has| |#1| (-38 (-413 (-570)))) ((-1214) |has| |#1| (-38 (-413 (-570)))) ((-1230) |has| |#1| (-368)) ((-1254 |#1| #0#) . T) ((-1257 |#1|) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 104)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) 116) (($ $ (-413 (-570)) (-413 (-570))) 118)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) 54)) (-2774 (($ $) 192 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 168 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) 188 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 164 (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) 65)) (-4119 (($ $) 196 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 172 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL)) (-3152 ((|#2| $) NIL)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) 85)) (-2987 (((-413 (-570)) $) 13)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-1800 (($ (-413 (-570)) |#2|) 11)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2465 (((-112) $) 74)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) 113) (((-413 (-570)) $ (-413 (-570))) 114)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) 130) (($ $ (-413 (-570))) 128)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-413 (-570))) 33) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) 125)) (-2665 (($ $) 162 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2903 ((|#2| $) 12)) (-2596 (((-3 |#2| "failed") $) 44)) (-1788 ((|#2| $) 45)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) 101 (|has| |#1| (-368)))) (-1840 (($ $) 146 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 151 (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211)))))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) 122)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) 160 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) 108) (($ $ $) 94 (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) 138 (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-3324 (((-413 (-570)) $) 16)) (-4129 (($ $) 198 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 174 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 194 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 170 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 190 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 166 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 120)) (-3798 (((-868) $) NIL) (($ (-570)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-413 (-570))) 139 (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) 107)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) 127 T CONST)) (-2172 ((|#1| $) 106)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) 204 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 180 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) 200 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 176 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 208 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 184 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 210 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 186 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 206 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 182 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 202 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 178 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 21 T CONST)) (-1817 (($) 17 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2923 (((-112) $ $) 72)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) 100 (|has| |#1| (-368)))) (-3026 (($ $) 142) (($ $ $) 78)) (-3014 (($ $ $) 76)) (** (($ $ (-928)) NIL) (($ $ (-777)) 82) (($ $ (-570)) 157 (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 158 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1260 |#1| |#2|) (-1259 |#1| |#2|) (-1058) (-1236 |#1|)) (T -1260)) +NIL +(-1259 |#1| |#2|) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 11)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) NIL (|has| |#1| (-562)))) (-3667 (($ $ (-413 (-570))) NIL) (($ $ (-413 (-570)) (-413 (-570))) NIL)) (-1919 (((-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|))) $) NIL)) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-368)))) (-2555 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4073 (((-112) $ $) NIL (|has| |#1| (-368)))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-777) (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#1|)))) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-1240 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1268 |#1| |#2| |#3|) "failed") $) 22)) (-3152 (((-1240 |#1| |#2| |#3|) $) NIL) (((-1268 |#1| |#2| |#3|) $) NIL)) (-2372 (($ $ $) NIL (|has| |#1| (-368)))) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2987 (((-413 (-570)) $) 69)) (-2380 (($ $ $) NIL (|has| |#1| (-368)))) (-1800 (($ (-413 (-570)) (-1240 |#1| |#2| |#3|)) NIL)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) NIL (|has| |#1| (-368)))) (-3701 (((-112) $) NIL (|has| |#1| (-368)))) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-413 (-570)) $) NIL) (((-413 (-570)) $ (-413 (-570))) NIL)) (-2481 (((-112) $) NIL)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) NIL) (($ $ (-413 (-570))) NIL)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-413 (-570))) 30) (($ $ (-1091) (-413 (-570))) NIL) (($ $ (-650 (-1091)) (-650 (-413 (-570)))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-1841 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-2903 (((-1240 |#1| |#2| |#3|) $) 72)) (-2596 (((-3 (-1240 |#1| |#2| |#3|) "failed") $) NIL)) (-1788 (((-1240 |#1| |#2| |#3|) $) NIL)) (-4122 (((-1168) $) NIL)) (-1820 (($ $) NIL (|has| |#1| (-368)))) (-1840 (($ $) 39 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) NIL (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 40 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) NIL (|has| |#1| (-368)))) (-1869 (($ (-650 $)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3801 (((-424 $) $) NIL (|has| |#1| (-368)))) (-3429 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-368))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) NIL (|has| |#1| (-368)))) (-3500 (($ $ (-413 (-570))) NIL)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-3260 (((-3 (-650 $) "failed") (-650 $) $) NIL (|has| |#1| (-368)))) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))))) (-3788 (((-777) $) NIL (|has| |#1| (-368)))) (-1872 ((|#1| $ (-413 (-570))) NIL) (($ $ $) NIL (|has| (-413 (-570)) (-1121)))) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) NIL (|has| |#1| (-368)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $ (-1272 |#2|)) 38)) (-3324 (((-413 (-570)) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) NIL)) (-3798 (((-868) $) 109) (($ (-570)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1240 |#1| |#2| |#3|)) 16) (($ (-1268 |#1| |#2| |#3|)) 17) (($ (-1272 |#2|)) 36) (($ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562)))) (-3326 ((|#1| $ (-413 (-570))) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 12)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-413 (-570))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-413 (-570))))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 32 T CONST)) (-1817 (($) 26 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-413 (-570)) |#1|))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 34)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ (-570)) NIL (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1261 |#1| |#2| |#3|) (-13 (-1259 |#1| (-1240 |#1| |#2| |#3|)) (-1047 (-1268 |#1| |#2| |#3|)) (-622 (-1272 |#2|)) (-10 -8 (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1261)) +((-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1261 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1259 |#1| (-1240 |#1| |#2| |#3|)) (-1047 (-1268 |#1| |#2| |#3|)) (-622 (-1272 |#2|)) (-10 -8 (-15 -3519 ($ $ (-1272 |#2|))) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 37)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL)) (-2318 (($ $) NIL)) (-2234 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 (-570) "failed") $) NIL (|has| (-1261 |#2| |#3| |#4|) (-1047 (-570)))) (((-3 (-413 (-570)) "failed") $) NIL (|has| (-1261 |#2| |#3| |#4|) (-1047 (-413 (-570))))) (((-3 (-1261 |#2| |#3| |#4|) "failed") $) 22)) (-3152 (((-570) $) NIL (|has| (-1261 |#2| |#3| |#4|) (-1047 (-570)))) (((-413 (-570)) $) NIL (|has| (-1261 |#2| |#3| |#4|) (-1047 (-413 (-570))))) (((-1261 |#2| |#3| |#4|) $) NIL)) (-1885 (($ $) 41)) (-2229 (((-3 $ "failed") $) 27)) (-1908 (($ $) NIL (|has| (-1261 |#2| |#3| |#4|) (-458)))) (-3155 (($ $ (-1261 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|) $) NIL)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) 11)) (-2343 (((-112) $) NIL)) (-3925 (($ (-1261 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) 25)) (-2302 (((-323 |#2| |#3| |#4|) $) NIL)) (-2550 (($ (-1 (-323 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) $) NIL)) (-1347 (($ (-1 (-1261 |#2| |#3| |#4|) (-1261 |#2| |#3| |#4|)) $) NIL)) (-2477 (((-3 (-849 |#2|) "failed") $) 90)) (-1851 (($ $) NIL)) (-1860 (((-1261 |#2| |#3| |#4|) $) 20)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1830 (((-112) $) NIL)) (-1838 (((-1261 |#2| |#3| |#4|) $) NIL)) (-2410 (((-3 $ "failed") $ (-1261 |#2| |#3| |#4|)) NIL (|has| (-1261 |#2| |#3| |#4|) (-562))) (((-3 $ "failed") $ $) NIL)) (-2750 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1261 |#2| |#3| |#4|)) (|:| |%expon| (-323 |#2| |#3| |#4|)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#2|)))))) (|:| |%type| (-1168))) "failed") $) 74)) (-3324 (((-323 |#2| |#3| |#4|) $) 17)) (-1427 (((-1261 |#2| |#3| |#4|) $) NIL (|has| (-1261 |#2| |#3| |#4|) (-458)))) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ (-1261 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-413 (-570))) NIL (-2779 (|has| (-1261 |#2| |#3| |#4|) (-38 (-413 (-570)))) (|has| (-1261 |#2| |#3| |#4|) (-1047 (-413 (-570))))))) (-2479 (((-650 (-1261 |#2| |#3| |#4|)) $) NIL)) (-3326 (((-1261 |#2| |#3| |#4|) $ (-323 |#2| |#3| |#4|)) NIL)) (-2917 (((-3 $ "failed") $) NIL (|has| (-1261 |#2| |#3| |#4|) (-146)))) (-2862 (((-777)) NIL T CONST)) (-1484 (($ $ $ (-777)) NIL (|has| (-1261 |#2| |#3| |#4|) (-174)))) (-1319 (((-112) $ $) NIL)) (-3258 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ (-1261 |#2| |#3| |#4|)) NIL (|has| (-1261 |#2| |#3| |#4|) (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ (-1261 |#2| |#3| |#4|)) NIL) (($ (-1261 |#2| |#3| |#4|) $) NIL) (($ (-413 (-570)) $) NIL (|has| (-1261 |#2| |#3| |#4|) (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| (-1261 |#2| |#3| |#4|) (-38 (-413 (-570))))))) +(((-1262 |#1| |#2| |#3| |#4|) (-13 (-330 (-1261 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) (-562) (-10 -8 (-15 -2477 ((-3 (-849 |#2|) "failed") $)) (-15 -2750 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1261 |#2| |#3| |#4|)) (|:| |%expon| (-323 |#2| |#3| |#4|)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#2|)))))) (|:| |%type| (-1168))) "failed") $)))) (-13 (-1047 (-570)) (-645 (-570)) (-458)) (-13 (-27) (-1211) (-436 |#1|)) (-1186) |#2|) (T -1262)) +((-2477 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *2 (-849 *4)) (-5 *1 (-1262 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1211) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4))) (-2750 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1261 *4 *5 *6)) (|:| |%expon| (-323 *4 *5 *6)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4)))))) (|:| |%type| (-1168)))) (-5 *1 (-1262 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1211) (-436 *3))) (-14 *5 (-1186)) (-14 *6 *4)))) +(-13 (-330 (-1261 |#2| |#3| |#4|) (-323 |#2| |#3| |#4|)) (-562) (-10 -8 (-15 -2477 ((-3 (-849 |#2|) "failed") $)) (-15 -2750 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1261 |#2| |#3| |#4|)) (|:| |%expon| (-323 |#2| |#3| |#4|)) (|:| |%expTerms| (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| |#2|)))))) (|:| |%type| (-1168))) "failed") $)))) +((-2190 ((|#2| $) 34)) (-2566 ((|#2| $) 18)) (-1568 (($ $) 52)) (-2008 (($ $ (-570)) 85)) (-3636 (((-112) $ (-777)) 46)) (-3470 ((|#2| $ |#2|) 82)) (-2631 ((|#2| $ |#2|) 78)) (-3945 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2068 (($ $ (-650 $)) 81)) (-2553 ((|#2| $) 17)) (-3527 (($ $) NIL) (($ $ (-777)) 59)) (-1713 (((-650 $) $) 31)) (-3471 (((-112) $ $) 69)) (-3846 (((-112) $ (-777)) 45)) (-2063 (((-112) $ (-777)) 43)) (-4142 (((-112) $) 33)) (-1723 ((|#2| $) 25) (($ $ (-777)) 64)) (-1872 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3680 (((-112) $) 23)) (-3566 (($ $) 55)) (-2447 (($ $) 86)) (-1497 (((-777) $) 58)) (-2360 (($ $) 57)) (-2445 (($ $ $) 77) (($ |#2| $) NIL)) (-1974 (((-650 $) $) 32)) (-2923 (((-112) $ $) 67)) (-2431 (((-777) $) 51))) +(((-1263 |#1| |#2|) (-10 -8 (-15 -2008 (|#1| |#1| (-570))) (-15 -3945 (|#2| |#1| "last" |#2|)) (-15 -2631 (|#2| |#1| |#2|)) (-15 -3945 (|#1| |#1| "rest" |#1|)) (-15 -3945 (|#2| |#1| "first" |#2|)) (-15 -2447 (|#1| |#1|)) (-15 -3566 (|#1| |#1|)) (-15 -1497 ((-777) |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2566 (|#2| |#1|)) (-15 -2553 (|#2| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "last")) (-15 -1723 (|#2| |#1|)) (-15 -3527 (|#1| |#1| (-777))) (-15 -1872 (|#1| |#1| "rest")) (-15 -3527 (|#1| |#1|)) (-15 -1872 (|#2| |#1| "first")) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#1|)) (-15 -3470 (|#2| |#1| |#2|)) (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -2068 (|#1| |#1| (-650 |#1|))) (-15 -3471 ((-112) |#1| |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -1872 (|#2| |#1| "value")) (-15 -2190 (|#2| |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -1713 ((-650 |#1|) |#1|)) (-15 -1974 ((-650 |#1|) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777)))) (-1264 |#2|) (-1226)) (T -1263)) +NIL +(-10 -8 (-15 -2008 (|#1| |#1| (-570))) (-15 -3945 (|#2| |#1| "last" |#2|)) (-15 -2631 (|#2| |#1| |#2|)) (-15 -3945 (|#1| |#1| "rest" |#1|)) (-15 -3945 (|#2| |#1| "first" |#2|)) (-15 -2447 (|#1| |#1|)) (-15 -3566 (|#1| |#1|)) (-15 -1497 ((-777) |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2566 (|#2| |#1|)) (-15 -2553 (|#2| |#1|)) (-15 -1568 (|#1| |#1|)) (-15 -1723 (|#1| |#1| (-777))) (-15 -1872 (|#2| |#1| "last")) (-15 -1723 (|#2| |#1|)) (-15 -3527 (|#1| |#1| (-777))) (-15 -1872 (|#1| |#1| "rest")) (-15 -3527 (|#1| |#1|)) (-15 -1872 (|#2| |#1| "first")) (-15 -2445 (|#1| |#2| |#1|)) (-15 -2445 (|#1| |#1| |#1|)) (-15 -3470 (|#2| |#1| |#2|)) (-15 -3945 (|#2| |#1| "value" |#2|)) (-15 -2068 (|#1| |#1| (-650 |#1|))) (-15 -3471 ((-112) |#1| |#1|)) (-15 -3680 ((-112) |#1|)) (-15 -1872 (|#2| |#1| "value")) (-15 -2190 (|#2| |#1|)) (-15 -4142 ((-112) |#1|)) (-15 -1713 ((-650 |#1|) |#1|)) (-15 -1974 ((-650 |#1|) |#1|)) (-15 -2923 ((-112) |#1| |#1|)) (-15 -2431 ((-777) |#1|)) (-15 -3636 ((-112) |#1| (-777))) (-15 -3846 ((-112) |#1| (-777))) (-15 -2063 ((-112) |#1| (-777)))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-2190 ((|#1| $) 49)) (-2566 ((|#1| $) 66)) (-1568 (($ $) 68)) (-2008 (($ $ (-570)) 53 (|has| $ (-6 -4449)))) (-3636 (((-112) $ (-777)) 8)) (-3470 ((|#1| $ |#1|) 40 (|has| $ (-6 -4449)))) (-1716 (($ $ $) 57 (|has| $ (-6 -4449)))) (-2631 ((|#1| $ |#1|) 55 (|has| $ (-6 -4449)))) (-3246 ((|#1| $ |#1|) 59 (|has| $ (-6 -4449)))) (-3945 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4449))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4449))) (($ $ "rest" $) 56 (|has| $ (-6 -4449))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4449)))) (-2068 (($ $ (-650 $)) 42 (|has| $ (-6 -4449)))) (-2553 ((|#1| $) 67)) (-3734 (($) 7 T CONST)) (-3527 (($ $) 74) (($ $ (-777)) 72)) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1713 (((-650 $) $) 51)) (-3471 (((-112) $ $) 43 (|has| |#1| (-1109)))) (-3846 (((-112) $ (-777)) 9)) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36)) (-2063 (((-112) $ (-777)) 10)) (-2278 (((-650 |#1|) $) 46)) (-4142 (((-112) $) 50)) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-1723 ((|#1| $) 71) (($ $ (-777)) 69)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 77) (($ $ (-777)) 75)) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3536 (((-570) $ $) 45)) (-3680 (((-112) $) 47)) (-3566 (($ $) 63)) (-2447 (($ $) 60 (|has| $ (-6 -4449)))) (-1497 (((-777) $) 64)) (-2360 (($ $) 65)) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3964 (($ $) 13)) (-2832 (($ $ $) 62 (|has| $ (-6 -4449))) (($ $ |#1|) 61 (|has| $ (-6 -4449)))) (-2445 (($ $ $) 79) (($ |#1| $) 78)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1974 (((-650 $) $) 52)) (-2650 (((-112) $ $) 44 (|has| |#1| (-1109)))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1264 |#1|) (-141) (-1226)) (T -1264)) +((-2445 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2445 (*1 *1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) (-3527 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-1872 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) (-3527 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-1872 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) (-1568 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2360 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1226)) (-5 *2 (-777)))) (-3566 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2832 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2832 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2447 (*1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-3246 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-3945 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-1716 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-3945 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4449)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) (-2631 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-3945 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) (-2008 (*1 *1 *1 *2) (-12 (-5 *2 (-570)) (|has| *1 (-6 -4449)) (-4 *1 (-1264 *3)) (-4 *3 (-1226))))) +(-13 (-1019 |t#1|) (-10 -8 (-15 -2445 ($ $ $)) (-15 -2445 ($ |t#1| $)) (-15 -3515 (|t#1| $)) (-15 -1872 (|t#1| $ "first")) (-15 -3515 ($ $ (-777))) (-15 -3527 ($ $)) (-15 -1872 ($ $ "rest")) (-15 -3527 ($ $ (-777))) (-15 -1723 (|t#1| $)) (-15 -1872 (|t#1| $ "last")) (-15 -1723 ($ $ (-777))) (-15 -1568 ($ $)) (-15 -2553 (|t#1| $)) (-15 -2566 (|t#1| $)) (-15 -2360 ($ $)) (-15 -1497 ((-777) $)) (-15 -3566 ($ $)) (IF (|has| $ (-6 -4449)) (PROGN (-15 -2832 ($ $ $)) (-15 -2832 ($ $ |t#1|)) (-15 -2447 ($ $)) (-15 -3246 (|t#1| $ |t#1|)) (-15 -3945 (|t#1| $ "first" |t#1|)) (-15 -1716 ($ $ $)) (-15 -3945 ($ $ "rest" $)) (-15 -2631 (|t#1| $ |t#1|)) (-15 -3945 (|t#1| $ "last" |t#1|)) (-15 -2008 ($ $ (-570)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1109)) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-619 (-868)))) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-495 |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-1019 |#1|) . T) ((-1109) |has| |#1| (-1109)) ((-1226) . T)) +((-1347 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1347 (|#4| (-1 |#2| |#1|) |#3|))) (-1058) (-1058) (-1267 |#1|) (-1267 |#2|)) (T -1265)) +((-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) (-4 *2 (-1267 *6)) (-5 *1 (-1265 *5 *6 *4 *2)) (-4 *4 (-1267 *5))))) +(-10 -7 (-15 -1347 (|#4| (-1 |#2| |#1|) |#3|))) +((-1359 (((-112) $) 17)) (-2774 (($ $) 106)) (-2629 (($ $) 82)) (-2749 (($ $) 102)) (-2604 (($ $) 78)) (-4119 (($ $) 110)) (-2648 (($ $) 86)) (-2665 (($ $) 76)) (-4390 (($ $) 74)) (-4129 (($ $) 112)) (-2664 (($ $) 88)) (-2786 (($ $) 108)) (-2636 (($ $) 84)) (-2761 (($ $) 104)) (-2616 (($ $) 80)) (-3798 (((-868) $) 62) (($ (-570)) NIL) (($ (-413 (-570))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4165 (($ $) 118)) (-2704 (($ $) 94)) (-4141 (($ $) 114)) (-2678 (($ $) 90)) (-4186 (($ $) 122)) (-2726 (($ $) 98)) (-1504 (($ $) 124)) (-2737 (($ $) 100)) (-4176 (($ $) 120)) (-2715 (($ $) 96)) (-4153 (($ $) 116)) (-2692 (($ $) 92)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-413 (-570))) 72))) +(((-1266 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -2629 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -2636 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2715 (|#1| |#1|)) (-15 -2737 (|#1| |#1|)) (-15 -2726 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4176 (|#1| |#1|)) (-15 -1504 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -4390 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -1359 ((-112) |#1|)) (-15 -3798 ((-868) |#1|))) (-1267 |#2|) (-1058)) (T -1266)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-413 (-570)))) (-15 -2629 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2648 (|#1| |#1|)) (-15 -2664 (|#1| |#1|)) (-15 -2636 (|#1| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -2715 (|#1| |#1|)) (-15 -2737 (|#1| |#1|)) (-15 -2726 (|#1| |#1|)) (-15 -2678 (|#1| |#1|)) (-15 -2704 (|#1| |#1|)) (-15 -2761 (|#1| |#1|)) (-15 -2786 (|#1| |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4119 (|#1| |#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2774 (|#1| |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4176 (|#1| |#1|)) (-15 -1504 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -4141 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -2665 (|#1| |#1|)) (-15 -4390 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3798 (|#1| |#2|)) (-15 -3798 (|#1| |#1|)) (-15 -3798 (|#1| (-413 (-570)))) (-15 -3798 (|#1| (-570))) (-15 ** (|#1| |#1| (-777))) (-15 ** (|#1| |#1| (-928))) (-15 -1359 ((-112) |#1|)) (-15 -3798 ((-868) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1709 (((-650 (-1091)) $) 86)) (-2676 (((-1186) $) 115)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 63 (|has| |#1| (-562)))) (-2318 (($ $) 64 (|has| |#1| (-562)))) (-2234 (((-112) $) 66 (|has| |#1| (-562)))) (-3667 (($ $ (-777)) 110) (($ $ (-777) (-777)) 109)) (-1919 (((-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|))) $) 117)) (-2774 (($ $) 147 (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) 130 (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) 20)) (-3815 (($ $) 129 (|has| |#1| (-38 (-413 (-570)))))) (-2749 (($ $) 146 (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) 131 (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|)))) 167) (($ (-1166 |#1|)) 165)) (-4119 (($ $) 145 (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) 132 (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) 18 T CONST)) (-1885 (($ $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-2657 (($ $) 164)) (-3280 (((-959 |#1|) $ (-777)) 162) (((-959 |#1|) $ (-777) (-777)) 161)) (-2465 (((-112) $) 85)) (-1313 (($) 157 (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-777) $) 112) (((-777) $ (-777)) 111)) (-2481 (((-112) $) 35)) (-3309 (($ $ (-570)) 128 (|has| |#1| (-38 (-413 (-570)))))) (-2964 (($ $ (-928)) 113)) (-3989 (($ (-1 |#1| (-570)) $) 163)) (-2343 (((-112) $) 74)) (-3925 (($ |#1| (-777)) 73) (($ $ (-1091) (-777)) 88) (($ $ (-650 (-1091)) (-650 (-777))) 87)) (-1347 (($ (-1 |#1| |#1|) $) 75)) (-2665 (($ $) 154 (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) 77)) (-1860 ((|#1| $) 78)) (-4122 (((-1168) $) 10)) (-1840 (($ $) 159 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 158 (-2779 (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-966)) (|has| |#1| (-1211)) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-38 (-413 (-570)))))))) (-3551 (((-1129) $) 11)) (-3500 (($ $ (-777)) 107)) (-2410 (((-3 $ "failed") $ $) 62 (|has| |#1| (-562)))) (-4390 (($ $) 155 (|has| |#1| (-38 (-413 (-570)))))) (-1725 (((-1166 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-777)))))) (-1872 ((|#1| $ (-777)) 116) (($ $ $) 93 (|has| (-777) (-1121)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) 101 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186) (-777)) 100 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-650 (-1186))) 99 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186)) 98 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-777)) 96 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-3324 (((-777) $) 76)) (-4129 (($ $) 144 (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) 133 (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) 143 (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) 134 (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) 142 (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) 135 (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 84)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ (-413 (-570))) 69 (|has| |#1| (-38 (-413 (-570))))) (($ $) 61 (|has| |#1| (-562))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2479 (((-1166 |#1|) $) 166)) (-3326 ((|#1| $ (-777)) 71)) (-2917 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2862 (((-777)) 32 T CONST)) (-2172 ((|#1| $) 114)) (-1319 (((-112) $ $) 9)) (-4165 (($ $) 153 (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) 141 (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) 65 (|has| |#1| (-562)))) (-4141 (($ $) 152 (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) 140 (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) 151 (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) 139 (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-777)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-777)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) 150 (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) 138 (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) 149 (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) 137 (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) 148 (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) 136 (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) 105 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186) (-777)) 104 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-650 (-1186))) 103 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-1186)) 102 (-12 (|has| |#1| (-907 (-1186))) (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (($ $ (-777)) 97 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 70 (|has| |#1| (-368)))) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ |#1|) 160 (|has| |#1| (-368))) (($ $ $) 156 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 127 (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-413 (-570)) $) 68 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) 67 (|has| |#1| (-38 (-413 (-570))))))) +(((-1267 |#1|) (-141) (-1058)) (T -1267)) +((-3325 (*1 *1 *2) (-12 (-5 *2 (-1166 (-2 (|:| |k| (-777)) (|:| |c| *3)))) (-4 *3 (-1058)) (-4 *1 (-1267 *3)))) (-2479 (*1 *2 *1) (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1058)) (-5 *2 (-1166 *3)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-4 *1 (-1267 *3)))) (-2657 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1058)))) (-3989 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1267 *3)) (-4 *3 (-1058)))) (-3280 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-1267 *4)) (-4 *4 (-1058)) (-5 *2 (-959 *4)))) (-3280 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-4 *1 (-1267 *4)) (-4 *4 (-1058)) (-5 *2 (-959 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) (-1840 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) (-1840 (*1 *1 *1 *2) (-2779 (-12 (-5 *2 (-1186)) (-4 *1 (-1267 *3)) (-4 *3 (-1058)) (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1211)) (-4 *3 (-38 (-413 (-570)))))) (-12 (-5 *2 (-1186)) (-4 *1 (-1267 *3)) (-4 *3 (-1058)) (-12 (|has| *3 (-15 -1709 ((-650 *2) *3))) (|has| *3 (-15 -1840 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570))))))))) +(-13 (-1254 |t#1| (-777)) (-10 -8 (-15 -3325 ($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |t#1|))))) (-15 -2479 ((-1166 |t#1|) $)) (-15 -3325 ($ (-1166 |t#1|))) (-15 -2657 ($ $)) (-15 -3989 ($ (-1 |t#1| (-570)) $)) (-15 -3280 ((-959 |t#1|) $ (-777))) (-15 -3280 ((-959 |t#1|) $ (-777) (-777))) (IF (|has| |t#1| (-368)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-413 (-570)))) (PROGN (-15 -1840 ($ $)) (IF (|has| |t#1| (-15 -1840 (|t#1| |t#1| (-1186)))) (IF (|has| |t#1| (-15 -1709 ((-650 (-1186)) |t#1|))) (-15 -1840 ($ $ (-1186))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1211)) (IF (|has| |t#1| (-966)) (IF (|has| |t#1| (-29 (-570))) (-15 -1840 ($ $ (-1186))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1011)) (-6 (-1211))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-777)) . T) ((-25) . T) ((-38 #1=(-413 (-570))) |has| |#1| (-38 (-413 (-570)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-562)) ((-35) |has| |#1| (-38 (-413 (-570)))) ((-95) |has| |#1| (-38 (-413 (-570)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-413 (-570)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-622 #1#) |has| |#1| (-38 (-413 (-570)))) ((-622 (-570)) . T) ((-622 |#1|) |has| |#1| (-174)) ((-622 $) |has| |#1| (-562)) ((-619 (-868)) . T) ((-174) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-235) |has| |#1| (-15 * (|#1| (-777) |#1|))) ((-288) |has| |#1| (-38 (-413 (-570)))) ((-290 $ $) |has| (-777) (-1121)) ((-294) |has| |#1| (-562)) ((-499) |has| |#1| (-38 (-413 (-570)))) ((-562) |has| |#1| (-562)) ((-652 #1#) |has| |#1| (-38 (-413 (-570)))) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #1#) |has| |#1| (-38 (-413 (-570)))) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #1#) |has| |#1| (-38 (-413 (-570)))) ((-646 |#1|) |has| |#1| (-174)) ((-646 $) |has| |#1| (-562)) ((-723 #1#) |has| |#1| (-38 (-413 (-570)))) ((-723 |#1|) |has| |#1| (-174)) ((-723 $) |has| |#1| (-562)) ((-732) . T) ((-907 (-1186)) -12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186)))) ((-982 |#1| #0# (-1091)) . T) ((-1011) |has| |#1| (-38 (-413 (-570)))) ((-1060 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1060 |#1|) . T) ((-1060 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1065 #1#) |has| |#1| (-38 (-413 (-570)))) ((-1065 |#1|) . T) ((-1065 $) -2779 (|has| |#1| (-562)) (|has| |#1| (-174))) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1211) |has| |#1| (-38 (-413 (-570)))) ((-1214) |has| |#1| (-38 (-413 (-570)))) ((-1254 |#1| #0#) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-1709 (((-650 (-1091)) $) NIL)) (-2676 (((-1186) $) 92)) (-2238 (((-1249 |#2| |#1|) $ (-777)) 73)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) NIL (|has| |#1| (-562)))) (-2318 (($ $) NIL (|has| |#1| (-562)))) (-2234 (((-112) $) 144 (|has| |#1| (-562)))) (-3667 (($ $ (-777)) 129) (($ $ (-777) (-777)) 132)) (-1919 (((-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|))) $) 43)) (-2774 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2629 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2620 (((-3 $ "failed") $ $) NIL)) (-3815 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2749 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2604 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3325 (($ (-1166 (-2 (|:| |k| (-777)) (|:| |c| |#1|)))) 52) (($ (-1166 |#1|)) NIL)) (-4119 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2648 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3734 (($) NIL T CONST)) (-2581 (($ $) 136)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-2657 (($ $) 142)) (-3280 (((-959 |#1|) $ (-777)) 63) (((-959 |#1|) $ (-777) (-777)) 65)) (-2465 (((-112) $) NIL)) (-1313 (($) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4202 (((-777) $) NIL) (((-777) $ (-777)) NIL)) (-2481 (((-112) $) NIL)) (-3052 (($ $) 119)) (-3309 (($ $ (-570)) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2294 (($ (-570) (-570) $) 138)) (-2964 (($ $ (-928)) 141)) (-3989 (($ (-1 |#1| (-570)) $) 113)) (-2343 (((-112) $) NIL)) (-3925 (($ |#1| (-777)) 16) (($ $ (-1091) (-777)) NIL) (($ $ (-650 (-1091)) (-650 (-777))) NIL)) (-1347 (($ (-1 |#1| |#1|) $) 100)) (-2665 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1851 (($ $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-2275 (($ $) 117)) (-4301 (($ $) 115)) (-1688 (($ (-570) (-570) $) 140)) (-1840 (($ $) 152 (|has| |#1| (-38 (-413 (-570))))) (($ $ (-1186)) 158 (-2779 (-12 (|has| |#1| (-15 -1840 (|#1| |#1| (-1186)))) (|has| |#1| (-15 -1709 ((-650 (-1186)) |#1|))) (|has| |#1| (-38 (-413 (-570))))) (-12 (|has| |#1| (-29 (-570))) (|has| |#1| (-38 (-413 (-570)))) (|has| |#1| (-966)) (|has| |#1| (-1211))))) (($ $ (-1272 |#2|)) 153 (|has| |#1| (-38 (-413 (-570)))))) (-3551 (((-1129) $) NIL)) (-3559 (($ $ (-570) (-570)) 123)) (-3500 (($ $ (-777)) 125)) (-2410 (((-3 $ "failed") $ $) NIL (|has| |#1| (-562)))) (-4390 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2802 (($ $) 121)) (-1725 (((-1166 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-777)))))) (-1872 ((|#1| $ (-777)) 97) (($ $ $) 134 (|has| (-777) (-1121)))) (-3519 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) 110 (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $ (-1272 |#2|)) 105)) (-3324 (((-777) $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2664 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2786 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2636 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2761 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2616 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2115 (($ $) 127)) (-3798 (((-868) $) NIL) (($ (-570)) 26) (($ (-413 (-570))) 150 (|has| |#1| (-38 (-413 (-570))))) (($ $) NIL (|has| |#1| (-562))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1249 |#2| |#1|)) 83) (($ (-1272 |#2|)) 22)) (-2479 (((-1166 |#1|) $) NIL)) (-3326 ((|#1| $ (-777)) 96)) (-2917 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2862 (((-777)) NIL T CONST)) (-2172 ((|#1| $) 93)) (-1319 (((-112) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2704 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3258 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4141 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2678 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4186 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2726 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-3093 ((|#1| $ (-777)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-777)))) (|has| |#1| (-15 -3798 (|#1| (-1186))))))) (-1504 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2737 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4176 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2715 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-4153 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-2692 (($ $) NIL (|has| |#1| (-38 (-413 (-570)))))) (-1809 (($) 18 T CONST)) (-1817 (($) 13 T CONST)) (-2835 (($ $ (-650 (-1186)) (-650 (-777))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186) (-777)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-650 (-1186))) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-1186)) NIL (-12 (|has| |#1| (-15 * (|#1| (-777) |#1|))) (|has| |#1| (-907 (-1186))))) (($ $ (-777)) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-777) |#1|))))) (-2923 (((-112) $ $) NIL)) (-3037 (($ $ |#1|) NIL (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) 109)) (-3014 (($ $ $) 20)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL) (($ $ |#1|) 147 (|has| |#1| (-368))) (($ $ $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570)))))) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-413 (-570)) $) NIL (|has| |#1| (-38 (-413 (-570))))) (($ $ (-413 (-570))) NIL (|has| |#1| (-38 (-413 (-570))))))) +(((-1268 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-10 -8 (-15 -3798 ($ (-1249 |#2| |#1|))) (-15 -2238 ((-1249 |#2| |#1|) $ (-777))) (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (-15 -4301 ($ $)) (-15 -2275 ($ $)) (-15 -3052 ($ $)) (-15 -2802 ($ $)) (-15 -3559 ($ $ (-570) (-570))) (-15 -2581 ($ $)) (-15 -2294 ($ (-570) (-570) $)) (-15 -1688 ($ (-570) (-570) $)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) (-1058) (-1186) |#1|) (T -1268)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-1249 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3) (-5 *1 (-1268 *3 *4 *5)))) (-2238 (*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1249 *5 *4)) (-5 *1 (-1268 *4 *5 *6)) (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-3519 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) (-14 *5 *3))) (-4301 (*1 *1 *1) (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-3052 (*1 *1 *1) (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-2802 (*1 *1 *1) (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-3559 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) (-14 *4 *2))) (-2294 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3))) (-1688 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) (-14 *5 *3))) (-1840 (*1 *1 *1 *2) (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(-13 (-1267 |#1|) (-10 -8 (-15 -3798 ($ (-1249 |#2| |#1|))) (-15 -2238 ((-1249 |#2| |#1|) $ (-777))) (-15 -3798 ($ (-1272 |#2|))) (-15 -3519 ($ $ (-1272 |#2|))) (-15 -4301 ($ $)) (-15 -2275 ($ $)) (-15 -3052 ($ $)) (-15 -2802 ($ $)) (-15 -3559 ($ $ (-570) (-570))) (-15 -2581 ($ $)) (-15 -2294 ($ (-570) (-570) $)) (-15 -1688 ($ (-570) (-570) $)) (IF (|has| |#1| (-38 (-413 (-570)))) (-15 -1840 ($ $ (-1272 |#2|))) |%noBranch|))) +((-4241 (((-1 (-1166 |#1|) (-650 (-1166 |#1|))) (-1 |#2| (-650 |#2|))) 24)) (-1884 (((-1 (-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3005 (((-1 (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2|)) 13)) (-3433 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1761 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2104 ((|#2| (-1 |#2| (-650 |#2|)) (-650 |#1|)) 60)) (-3202 (((-650 |#2|) (-650 |#1|) (-650 (-1 |#2| (-650 |#2|)))) 66)) (-2173 ((|#2| |#2| |#2|) 43))) +(((-1269 |#1| |#2|) (-10 -7 (-15 -3005 ((-1 (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2|))) (-15 -1884 ((-1 (-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4241 ((-1 (-1166 |#1|) (-650 (-1166 |#1|))) (-1 |#2| (-650 |#2|)))) (-15 -2173 (|#2| |#2| |#2|)) (-15 -1761 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3433 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2104 (|#2| (-1 |#2| (-650 |#2|)) (-650 |#1|))) (-15 -3202 ((-650 |#2|) (-650 |#1|) (-650 (-1 |#2| (-650 |#2|)))))) (-38 (-413 (-570))) (-1267 |#1|)) (T -1269)) +((-3202 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 (-1 *6 (-650 *6)))) (-4 *5 (-38 (-413 (-570)))) (-4 *6 (-1267 *5)) (-5 *2 (-650 *6)) (-5 *1 (-1269 *5 *6)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-650 *2))) (-5 *4 (-650 *5)) (-4 *5 (-38 (-413 (-570)))) (-4 *2 (-1267 *5)) (-5 *1 (-1269 *5 *2)))) (-3433 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1267 *4)) (-5 *1 (-1269 *4 *2)) (-4 *4 (-38 (-413 (-570)))))) (-1761 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1267 *4)) (-5 *1 (-1269 *4 *2)) (-4 *4 (-38 (-413 (-570)))))) (-2173 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1267 *3)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-650 *5))) (-4 *5 (-1267 *4)) (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-650 (-1166 *4)))) (-5 *1 (-1269 *4 *5)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1267 *4)) (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-1166 *4) (-1166 *4))) (-5 *1 (-1269 *4 *5)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1267 *4)) (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-1166 *4))) (-5 *1 (-1269 *4 *5))))) +(-10 -7 (-15 -3005 ((-1 (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2|))) (-15 -1884 ((-1 (-1166 |#1|) (-1166 |#1|) (-1166 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4241 ((-1 (-1166 |#1|) (-650 (-1166 |#1|))) (-1 |#2| (-650 |#2|)))) (-15 -2173 (|#2| |#2| |#2|)) (-15 -1761 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3433 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2104 (|#2| (-1 |#2| (-650 |#2|)) (-650 |#1|))) (-15 -3202 ((-650 |#2|) (-650 |#1|) (-650 (-1 |#2| (-650 |#2|)))))) +((-3771 ((|#2| |#4| (-777)) 34)) (-2228 ((|#4| |#2|) 29)) (-1625 ((|#4| (-413 |#2|)) 53 (|has| |#1| (-562)))) (-3364 (((-1 |#4| (-650 |#4|)) |#3|) 46))) +(((-1270 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2228 (|#4| |#2|)) (-15 -3771 (|#2| |#4| (-777))) (-15 -3364 ((-1 |#4| (-650 |#4|)) |#3|)) (IF (|has| |#1| (-562)) (-15 -1625 (|#4| (-413 |#2|))) |%noBranch|)) (-1058) (-1252 |#1|) (-662 |#2|) (-1267 |#1|)) (T -1270)) +((-1625 (*1 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-562)) (-4 *4 (-1058)) (-4 *2 (-1267 *4)) (-5 *1 (-1270 *4 *5 *6 *2)) (-4 *6 (-662 *5)))) (-3364 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *5 (-1252 *4)) (-5 *2 (-1 *6 (-650 *6))) (-5 *1 (-1270 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-1267 *4)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-4 *2 (-1252 *5)) (-5 *1 (-1270 *5 *2 *6 *3)) (-4 *6 (-662 *2)) (-4 *3 (-1267 *5)))) (-2228 (*1 *2 *3) (-12 (-4 *4 (-1058)) (-4 *3 (-1252 *4)) (-4 *2 (-1267 *4)) (-5 *1 (-1270 *4 *3 *5 *2)) (-4 *5 (-662 *3))))) +(-10 -7 (-15 -2228 (|#4| |#2|)) (-15 -3771 (|#2| |#4| (-777))) (-15 -3364 ((-1 |#4| (-650 |#4|)) |#3|)) (IF (|has| |#1| (-562)) (-15 -1625 (|#4| (-413 |#2|))) |%noBranch|)) +NIL +(((-1271) (-141)) (T -1271)) +NIL +(-13 (-10 -7 (-6 -3059))) +((-2419 (((-112) $ $) NIL)) (-2676 (((-1186)) 12)) (-4122 (((-1168) $) 18)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 11) (((-1186) $) 8)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) 15))) +(((-1272 |#1|) (-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -3798 ((-1186) $)) (-15 -2676 ((-1186))))) (-1186)) (T -1272)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1272 *3)) (-14 *3 *2))) (-2676 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1272 *3)) (-14 *3 *2)))) +(-13 (-1109) (-619 (-1186)) (-10 -8 (-15 -3798 ((-1186) $)) (-15 -2676 ((-1186))))) +((-3469 (($ (-777)) 19)) (-1368 (((-695 |#2|) $ $) 41)) (-1757 ((|#2| $) 51)) (-3847 ((|#2| $) 50)) (-2331 ((|#2| $ $) 36)) (-2597 (($ $ $) 47)) (-3026 (($ $) 23) (($ $ $) 29)) (-3014 (($ $ $) 15)) (* (($ (-570) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1273 |#1| |#2|) (-10 -8 (-15 -1757 (|#2| |#1|)) (-15 -3847 (|#2| |#1|)) (-15 -2597 (|#1| |#1| |#1|)) (-15 -1368 ((-695 |#2|) |#1| |#1|)) (-15 -2331 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3469 (|#1| (-777))) (-15 -3014 (|#1| |#1| |#1|))) (-1274 |#2|) (-1226)) (T -1273)) +NIL +(-10 -8 (-15 -1757 (|#2| |#1|)) (-15 -3847 (|#2| |#1|)) (-15 -2597 (|#1| |#1| |#1|)) (-15 -1368 ((-695 |#2|) |#1| |#1|)) (-15 -2331 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-570) |#1|)) (-15 -3026 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -3469 (|#1| (-777))) (-15 -3014 (|#1| |#1| |#1|))) +((-2419 (((-112) $ $) 19 (|has| |#1| (-1109)))) (-3469 (($ (-777)) 113 (|has| |#1| (-23)))) (-2926 (((-1281) $ (-570) (-570)) 41 (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4449))) (($ $) 89 (-12 (|has| |#1| (-856)) (|has| $ (-6 -4449))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) 8)) (-3945 ((|#1| $ (-570) |#1|) 53 (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) 59 (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4448)))) (-3734 (($) 7 T CONST)) (-1500 (($ $) 91 (|has| $ (-6 -4449)))) (-2256 (($ $) 101)) (-3552 (($ $) 79 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-1697 (($ |#1| $) 78 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) 54 (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) 52)) (-4039 (((-570) (-1 (-112) |#1|) $) 98) (((-570) |#1| $) 97 (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) 96 (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) 31 (|has| $ (-6 -4448)))) (-1368 (((-695 |#1|) $ $) 106 (|has| |#1| (-1058)))) (-4300 (($ (-777) |#1|) 70)) (-3846 (((-112) $ (-777)) 9)) (-1720 (((-570) $) 44 (|has| (-570) (-856)))) (-3382 (($ $ $) 88 (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) 30 (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-3434 (((-570) $) 45 (|has| (-570) (-856)))) (-2876 (($ $ $) 87 (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1757 ((|#1| $) 103 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-2063 (((-112) $ (-777)) 10)) (-3847 ((|#1| $) 104 (-12 (|has| |#1| (-1058)) (|has| |#1| (-1011))))) (-4122 (((-1168) $) 22 (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) 61) (($ $ $ (-570)) 60)) (-2044 (((-650 (-570)) $) 47)) (-1480 (((-112) (-570) $) 48)) (-3551 (((-1129) $) 21 (|has| |#1| (-1109)))) (-3515 ((|#1| $) 43 (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2973 (($ $ |#1|) 42 (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) 27 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) 26 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) 24 (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) 14)) (-2821 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) 49)) (-4303 (((-112) $) 11)) (-4359 (($) 12)) (-1872 ((|#1| $ (-570) |#1|) 51) ((|#1| $ (-570)) 50) (($ $ (-1243 (-570))) 64)) (-2331 ((|#1| $ $) 107 (|has| |#1| (-1058)))) (-4331 (($ $ (-570)) 63) (($ $ (-1243 (-570))) 62)) (-2597 (($ $ $) 105 (|has| |#1| (-1058)))) (-3562 (((-777) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4448))) (((-777) |#1| $) 29 (-12 (|has| |#1| (-1109)) (|has| $ (-6 -4448))))) (-2662 (($ $ $ (-570)) 92 (|has| $ (-6 -4449)))) (-3964 (($ $) 13)) (-1411 (((-542) $) 80 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 71)) (-2445 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-650 $)) 66)) (-3798 (((-868) $) 18 (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) 23 (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) 85 (|has| |#1| (-856)))) (-2959 (((-112) $ $) 84 (|has| |#1| (-856)))) (-2923 (((-112) $ $) 20 (|has| |#1| (-1109)))) (-2969 (((-112) $ $) 86 (|has| |#1| (-856)))) (-2948 (((-112) $ $) 83 (|has| |#1| (-856)))) (-3026 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3014 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-570) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-732))) (($ $ |#1|) 108 (|has| |#1| (-732)))) (-2431 (((-777) $) 6 (|has| $ (-6 -4448))))) +(((-1274 |#1|) (-141) (-1226)) (T -1274)) +((-3014 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-25)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1274 *3)) (-4 *3 (-23)) (-4 *3 (-1226)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-21)))) (-3026 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-4 *1 (-1274 *3)) (-4 *3 (-1226)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) (-2331 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1058)))) (-1368 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1226)) (-4 *3 (-1058)) (-5 *2 (-695 *3)))) (-2597 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1058)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1011)) (-4 *2 (-1058)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1011)) (-4 *2 (-1058))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3014 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3469 ($ (-777))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3026 ($ $)) (-15 -3026 ($ $ $)) (-15 * ($ (-570) $))) |%noBranch|) (IF (|has| |t#1| (-732)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1058)) (PROGN (-15 -2331 (|t#1| $ $)) (-15 -1368 ((-695 |t#1|) $ $)) (-15 -2597 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1011)) (IF (|has| |t#1| (-1058)) (PROGN (-15 -3847 (|t#1| $)) (-15 -1757 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-619 (-868)) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856)) (|has| |#1| (-619 (-868)))) ((-152 |#1|) . T) ((-620 (-542)) |has| |#1| (-620 (-542))) ((-290 #0=(-570) |#1|) . T) ((-292 #0# |#1|) . T) ((-313 |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-378 |#1|) . T) ((-495 |#1|) . T) ((-610 #0# |#1|) . T) ((-520 |#1| |#1|) -12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))) ((-657 |#1|) . T) ((-19 |#1|) . T) ((-856) |has| |#1| (-856)) ((-1109) -2779 (|has| |#1| (-1109)) (|has| |#1| (-856))) ((-1226) . T)) +((-4292 (((-1276 |#2|) (-1 |#2| |#1| |#2|) (-1276 |#1|) |#2|) 13)) (-3600 ((|#2| (-1 |#2| |#1| |#2|) (-1276 |#1|) |#2|) 15)) (-1347 (((-3 (-1276 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1276 |#1|)) 30) (((-1276 |#2|) (-1 |#2| |#1|) (-1276 |#1|)) 18))) +(((-1275 |#1| |#2|) (-10 -7 (-15 -4292 ((-1276 |#2|) (-1 |#2| |#1| |#2|) (-1276 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-1276 |#1|) |#2|)) (-15 -1347 ((-1276 |#2|) (-1 |#2| |#1|) (-1276 |#1|))) (-15 -1347 ((-3 (-1276 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1276 |#1|)))) (-1226) (-1226)) (T -1275)) +((-1347 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1276 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1276 *6)) (-5 *1 (-1275 *5 *6)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1276 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1276 *6)) (-5 *1 (-1275 *5 *6)))) (-3600 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1276 *5)) (-4 *5 (-1226)) (-4 *2 (-1226)) (-5 *1 (-1275 *5 *2)))) (-4292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1276 *6)) (-4 *6 (-1226)) (-4 *5 (-1226)) (-5 *2 (-1276 *5)) (-5 *1 (-1275 *6 *5))))) +(-10 -7 (-15 -4292 ((-1276 |#2|) (-1 |#2| |#1| |#2|) (-1276 |#1|) |#2|)) (-15 -3600 (|#2| (-1 |#2| |#1| |#2|) (-1276 |#1|) |#2|)) (-15 -1347 ((-1276 |#2|) (-1 |#2| |#1|) (-1276 |#1|))) (-15 -1347 ((-3 (-1276 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1276 |#1|)))) +((-2419 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-3469 (($ (-777)) NIL (|has| |#1| (-23)))) (-3506 (($ (-650 |#1|)) 11)) (-2926 (((-1281) $ (-570) (-570)) NIL (|has| $ (-6 -4449)))) (-2163 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-856)))) (-2632 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4449))) (($ $) NIL (-12 (|has| $ (-6 -4449)) (|has| |#1| (-856))))) (-3360 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-856)))) (-3636 (((-112) $ (-777)) NIL)) (-3945 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449))) ((|#1| $ (-1243 (-570)) |#1|) NIL (|has| $ (-6 -4449)))) (-1418 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3734 (($) NIL T CONST)) (-1500 (($ $) NIL (|has| $ (-6 -4449)))) (-2256 (($ $) NIL)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-1697 (($ |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-3600 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4448))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4448)))) (-3849 ((|#1| $ (-570) |#1|) NIL (|has| $ (-6 -4449)))) (-3778 ((|#1| $ (-570)) NIL)) (-4039 (((-570) (-1 (-112) |#1|) $) NIL) (((-570) |#1| $) NIL (|has| |#1| (-1109))) (((-570) |#1| $ (-570)) NIL (|has| |#1| (-1109)))) (-2885 (((-650 |#1|) $) 16 (|has| $ (-6 -4448)))) (-1368 (((-695 |#1|) $ $) NIL (|has| |#1| (-1058)))) (-4300 (($ (-777) |#1|) NIL)) (-3846 (((-112) $ (-777)) NIL)) (-1720 (((-570) $) NIL (|has| (-570) (-856)))) (-3382 (($ $ $) NIL (|has| |#1| (-856)))) (-2735 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-856)))) (-2282 (((-650 |#1|) $) NIL (|has| $ (-6 -4448)))) (-1935 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-3434 (((-570) $) 12 (|has| (-570) (-856)))) (-2876 (($ $ $) NIL (|has| |#1| (-856)))) (-3837 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1757 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-2063 (((-112) $ (-777)) NIL)) (-3847 ((|#1| $) NIL (-12 (|has| |#1| (-1011)) (|has| |#1| (-1058))))) (-4122 (((-1168) $) NIL (|has| |#1| (-1109)))) (-4299 (($ |#1| $ (-570)) NIL) (($ $ $ (-570)) NIL)) (-2044 (((-650 (-570)) $) NIL)) (-1480 (((-112) (-570) $) NIL)) (-3551 (((-1129) $) NIL (|has| |#1| (-1109)))) (-3515 ((|#1| $) NIL (|has| (-570) (-856)))) (-4089 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2973 (($ $ |#1|) NIL (|has| $ (-6 -4449)))) (-3116 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 (-298 |#1|))) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-298 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109)))) (($ $ (-650 |#1|) (-650 |#1|)) NIL (-12 (|has| |#1| (-313 |#1|)) (|has| |#1| (-1109))))) (-3123 (((-112) $ $) NIL)) (-2821 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2880 (((-650 |#1|) $) NIL)) (-4303 (((-112) $) NIL)) (-4359 (($) NIL)) (-1872 ((|#1| $ (-570) |#1|) NIL) ((|#1| $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-2331 ((|#1| $ $) NIL (|has| |#1| (-1058)))) (-4331 (($ $ (-570)) NIL) (($ $ (-1243 (-570))) NIL)) (-2597 (($ $ $) NIL (|has| |#1| (-1058)))) (-3562 (((-777) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448))) (((-777) |#1| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#1| (-1109))))) (-2662 (($ $ $ (-570)) NIL (|has| $ (-6 -4449)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) 20 (|has| |#1| (-620 (-542))))) (-3811 (($ (-650 |#1|)) 10)) (-2445 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-650 $)) NIL)) (-3798 (((-868) $) NIL (|has| |#1| (-619 (-868))))) (-1319 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-1431 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4448)))) (-2981 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2959 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2923 (((-112) $ $) NIL (|has| |#1| (-1109)))) (-2969 (((-112) $ $) NIL (|has| |#1| (-856)))) (-2948 (((-112) $ $) NIL (|has| |#1| (-856)))) (-3026 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3014 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-570) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-732))) (($ $ |#1|) NIL (|has| |#1| (-732)))) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1276 |#1|) (-13 (-1274 |#1|) (-10 -8 (-15 -3506 ($ (-650 |#1|))))) (-1226)) (T -1276)) +((-3506 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-1276 *3))))) +(-13 (-1274 |#1|) (-10 -8 (-15 -3506 ($ (-650 |#1|))))) +((-2419 (((-112) $ $) NIL)) (-1751 (((-1168) $ (-1168)) 107) (((-1168) $ (-1168) (-1168)) 105) (((-1168) $ (-1168) (-650 (-1168))) 104)) (-1780 (($) 69)) (-3991 (((-1281) $ (-474) (-928)) 54)) (-3159 (((-1281) $ (-928) (-1168)) 89) (((-1281) $ (-928) (-880)) 90)) (-2918 (((-1281) $ (-928) (-384) (-384)) 57)) (-3333 (((-1281) $ (-1168)) 84)) (-3120 (((-1281) $ (-928) (-1168)) 94)) (-2298 (((-1281) $ (-928) (-384) (-384)) 58)) (-3831 (((-1281) $ (-928) (-928)) 55)) (-1726 (((-1281) $) 85)) (-1969 (((-1281) $ (-928) (-1168)) 93)) (-3984 (((-1281) $ (-474) (-928)) 41)) (-3958 (((-1281) $ (-928) (-1168)) 92)) (-3352 (((-650 (-266)) $) 29) (($ $ (-650 (-266))) 30)) (-2165 (((-1281) $ (-777) (-777)) 52)) (-4148 (($ $) 70) (($ (-474) (-650 (-266))) 71)) (-4122 (((-1168) $) NIL)) (-2009 (((-570) $) 48)) (-3551 (((-1129) $) NIL)) (-2830 (((-1276 (-3 (-474) "undefined")) $) 47)) (-2309 (((-1276 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3958 (-570)) (|:| -3721 (-570)) (|:| |spline| (-570)) (|:| -3671 (-570)) (|:| |axesColor| (-880)) (|:| -3159 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570)))) $) 46)) (-2188 (((-1281) $ (-928) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-880) (-570) (-880) (-570)) 83)) (-2853 (((-650 (-950 (-227))) $) NIL)) (-2209 (((-474) $ (-928)) 43)) (-4243 (((-1281) $ (-777) (-777) (-928) (-928)) 50)) (-2267 (((-1281) $ (-1168)) 95)) (-3721 (((-1281) $ (-928) (-1168)) 91)) (-3798 (((-868) $) 102)) (-4135 (((-1281) $) 96)) (-1319 (((-112) $ $) NIL)) (-3671 (((-1281) $ (-928) (-1168)) 87) (((-1281) $ (-928) (-880)) 88)) (-2923 (((-112) $ $) NIL))) +(((-1277) (-13 (-1109) (-10 -8 (-15 -2853 ((-650 (-950 (-227))) $)) (-15 -1780 ($)) (-15 -4148 ($ $)) (-15 -3352 ((-650 (-266)) $)) (-15 -3352 ($ $ (-650 (-266)))) (-15 -4148 ($ (-474) (-650 (-266)))) (-15 -2188 ((-1281) $ (-928) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-880) (-570) (-880) (-570))) (-15 -2309 ((-1276 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3958 (-570)) (|:| -3721 (-570)) (|:| |spline| (-570)) (|:| -3671 (-570)) (|:| |axesColor| (-880)) (|:| -3159 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570)))) $)) (-15 -2830 ((-1276 (-3 (-474) "undefined")) $)) (-15 -3333 ((-1281) $ (-1168))) (-15 -3984 ((-1281) $ (-474) (-928))) (-15 -2209 ((-474) $ (-928))) (-15 -3671 ((-1281) $ (-928) (-1168))) (-15 -3671 ((-1281) $ (-928) (-880))) (-15 -3159 ((-1281) $ (-928) (-1168))) (-15 -3159 ((-1281) $ (-928) (-880))) (-15 -3958 ((-1281) $ (-928) (-1168))) (-15 -1969 ((-1281) $ (-928) (-1168))) (-15 -3721 ((-1281) $ (-928) (-1168))) (-15 -2267 ((-1281) $ (-1168))) (-15 -4135 ((-1281) $)) (-15 -4243 ((-1281) $ (-777) (-777) (-928) (-928))) (-15 -2298 ((-1281) $ (-928) (-384) (-384))) (-15 -2918 ((-1281) $ (-928) (-384) (-384))) (-15 -3120 ((-1281) $ (-928) (-1168))) (-15 -2165 ((-1281) $ (-777) (-777))) (-15 -3991 ((-1281) $ (-474) (-928))) (-15 -3831 ((-1281) $ (-928) (-928))) (-15 -1751 ((-1168) $ (-1168))) (-15 -1751 ((-1168) $ (-1168) (-1168))) (-15 -1751 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -1726 ((-1281) $)) (-15 -2009 ((-570) $)) (-15 -3798 ((-868) $))))) (T -1277)) +((-3798 (*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1277)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-650 (-950 (-227)))) (-5 *1 (-1277)))) (-1780 (*1 *1) (-5 *1 (-1277))) (-4148 (*1 *1 *1) (-5 *1 (-1277))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1277)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1277)))) (-4148 (*1 *1 *2 *3) (-12 (-5 *2 (-474)) (-5 *3 (-650 (-266))) (-5 *1 (-1277)))) (-2188 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-928)) (-5 *4 (-227)) (-5 *5 (-570)) (-5 *6 (-880)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-1276 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3958 (-570)) (|:| -3721 (-570)) (|:| |spline| (-570)) (|:| -3671 (-570)) (|:| |axesColor| (-880)) (|:| -3159 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570))))) (-5 *1 (-1277)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-1276 (-3 (-474) "undefined"))) (-5 *1 (-1277)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3984 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-928)) (-5 *2 (-474)) (-5 *1 (-1277)))) (-3671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3159 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3159 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3958 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-1969 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3721 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2267 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1277)))) (-4243 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2298 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2918 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3120 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2165 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3991 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-3831 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1277)))) (-1751 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1277)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1277)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1277))))) +(-13 (-1109) (-10 -8 (-15 -2853 ((-650 (-950 (-227))) $)) (-15 -1780 ($)) (-15 -4148 ($ $)) (-15 -3352 ((-650 (-266)) $)) (-15 -3352 ($ $ (-650 (-266)))) (-15 -4148 ($ (-474) (-650 (-266)))) (-15 -2188 ((-1281) $ (-928) (-227) (-227) (-227) (-227) (-570) (-570) (-570) (-570) (-880) (-570) (-880) (-570))) (-15 -2309 ((-1276 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3958 (-570)) (|:| -3721 (-570)) (|:| |spline| (-570)) (|:| -3671 (-570)) (|:| |axesColor| (-880)) (|:| -3159 (-570)) (|:| |unitsColor| (-880)) (|:| |showing| (-570)))) $)) (-15 -2830 ((-1276 (-3 (-474) "undefined")) $)) (-15 -3333 ((-1281) $ (-1168))) (-15 -3984 ((-1281) $ (-474) (-928))) (-15 -2209 ((-474) $ (-928))) (-15 -3671 ((-1281) $ (-928) (-1168))) (-15 -3671 ((-1281) $ (-928) (-880))) (-15 -3159 ((-1281) $ (-928) (-1168))) (-15 -3159 ((-1281) $ (-928) (-880))) (-15 -3958 ((-1281) $ (-928) (-1168))) (-15 -1969 ((-1281) $ (-928) (-1168))) (-15 -3721 ((-1281) $ (-928) (-1168))) (-15 -2267 ((-1281) $ (-1168))) (-15 -4135 ((-1281) $)) (-15 -4243 ((-1281) $ (-777) (-777) (-928) (-928))) (-15 -2298 ((-1281) $ (-928) (-384) (-384))) (-15 -2918 ((-1281) $ (-928) (-384) (-384))) (-15 -3120 ((-1281) $ (-928) (-1168))) (-15 -2165 ((-1281) $ (-777) (-777))) (-15 -3991 ((-1281) $ (-474) (-928))) (-15 -3831 ((-1281) $ (-928) (-928))) (-15 -1751 ((-1168) $ (-1168))) (-15 -1751 ((-1168) $ (-1168) (-1168))) (-15 -1751 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -1726 ((-1281) $)) (-15 -2009 ((-570) $)) (-15 -3798 ((-868) $)))) +((-2419 (((-112) $ $) NIL)) (-1531 (((-1281) $ (-384)) 169) (((-1281) $ (-384) (-384) (-384)) 170)) (-1751 (((-1168) $ (-1168)) 179) (((-1168) $ (-1168) (-1168)) 177) (((-1168) $ (-1168) (-650 (-1168))) 176)) (-2392 (($) 67)) (-1965 (((-1281) $ (-384) (-384) (-384) (-384) (-384)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1281) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1281) $ (-570) (-570) (-384) (-384) (-384)) 144) (((-1281) $ (-384) (-384)) 145) (((-1281) $ (-384) (-384) (-384)) 152)) (-3497 (((-384)) 122) (((-384) (-384)) 123)) (-2985 (((-384)) 117) (((-384) (-384)) 119)) (-1714 (((-384)) 120) (((-384) (-384)) 121)) (-3149 (((-384)) 126) (((-384) (-384)) 127)) (-1906 (((-384)) 124) (((-384) (-384)) 125)) (-2918 (((-1281) $ (-384) (-384)) 171)) (-3333 (((-1281) $ (-1168)) 153)) (-4384 (((-1142 (-227)) $) 68) (($ $ (-1142 (-227))) 69)) (-1631 (((-1281) $ (-1168)) 187)) (-1976 (((-1281) $ (-1168)) 188)) (-4386 (((-1281) $ (-384) (-384)) 151) (((-1281) $ (-570) (-570)) 168)) (-3831 (((-1281) $ (-928) (-928)) 160)) (-1726 (((-1281) $) 137)) (-2593 (((-1281) $ (-1168)) 186)) (-1622 (((-1281) $ (-1168)) 134)) (-3352 (((-650 (-266)) $) 70) (($ $ (-650 (-266))) 71)) (-2165 (((-1281) $ (-777) (-777)) 159)) (-4344 (((-1281) $ (-777) (-950 (-227))) 193)) (-4143 (($ $) 73) (($ (-1142 (-227)) (-1168)) 74) (($ (-1142 (-227)) (-650 (-266))) 75)) (-1540 (((-1281) $ (-384) (-384) (-384)) 131)) (-4122 (((-1168) $) NIL)) (-2009 (((-570) $) 128)) (-1564 (((-1281) $ (-384)) 174)) (-3376 (((-1281) $ (-384)) 191)) (-3551 (((-1129) $) NIL)) (-2402 (((-1281) $ (-384)) 190)) (-2857 (((-1281) $ (-1168)) 136)) (-4243 (((-1281) $ (-777) (-777) (-928) (-928)) 158)) (-3419 (((-1281) $ (-1168)) 133)) (-2267 (((-1281) $ (-1168)) 135)) (-2191 (((-1281) $ (-158) (-158)) 157)) (-3798 (((-868) $) 166)) (-4135 (((-1281) $) 138)) (-3185 (((-1281) $ (-1168)) 189)) (-1319 (((-112) $ $) NIL)) (-3671 (((-1281) $ (-1168)) 132)) (-2923 (((-112) $ $) NIL))) +(((-1278) (-13 (-1109) (-10 -8 (-15 -2985 ((-384))) (-15 -2985 ((-384) (-384))) (-15 -1714 ((-384))) (-15 -1714 ((-384) (-384))) (-15 -3497 ((-384))) (-15 -3497 ((-384) (-384))) (-15 -1906 ((-384))) (-15 -1906 ((-384) (-384))) (-15 -3149 ((-384))) (-15 -3149 ((-384) (-384))) (-15 -2392 ($)) (-15 -4143 ($ $)) (-15 -4143 ($ (-1142 (-227)) (-1168))) (-15 -4143 ($ (-1142 (-227)) (-650 (-266)))) (-15 -4384 ((-1142 (-227)) $)) (-15 -4384 ($ $ (-1142 (-227)))) (-15 -4344 ((-1281) $ (-777) (-950 (-227)))) (-15 -3352 ((-650 (-266)) $)) (-15 -3352 ($ $ (-650 (-266)))) (-15 -2165 ((-1281) $ (-777) (-777))) (-15 -3831 ((-1281) $ (-928) (-928))) (-15 -3333 ((-1281) $ (-1168))) (-15 -4243 ((-1281) $ (-777) (-777) (-928) (-928))) (-15 -1965 ((-1281) $ (-384) (-384) (-384) (-384) (-384))) (-15 -1965 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1965 ((-1281) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1965 ((-1281) $ (-570) (-570) (-384) (-384) (-384))) (-15 -1965 ((-1281) $ (-384) (-384))) (-15 -1965 ((-1281) $ (-384) (-384) (-384))) (-15 -2267 ((-1281) $ (-1168))) (-15 -3671 ((-1281) $ (-1168))) (-15 -3419 ((-1281) $ (-1168))) (-15 -1622 ((-1281) $ (-1168))) (-15 -2857 ((-1281) $ (-1168))) (-15 -4386 ((-1281) $ (-384) (-384))) (-15 -4386 ((-1281) $ (-570) (-570))) (-15 -1531 ((-1281) $ (-384))) (-15 -1531 ((-1281) $ (-384) (-384) (-384))) (-15 -2918 ((-1281) $ (-384) (-384))) (-15 -2593 ((-1281) $ (-1168))) (-15 -2402 ((-1281) $ (-384))) (-15 -3376 ((-1281) $ (-384))) (-15 -1631 ((-1281) $ (-1168))) (-15 -1976 ((-1281) $ (-1168))) (-15 -3185 ((-1281) $ (-1168))) (-15 -1540 ((-1281) $ (-384) (-384) (-384))) (-15 -1564 ((-1281) $ (-384))) (-15 -1726 ((-1281) $)) (-15 -2191 ((-1281) $ (-158) (-158))) (-15 -1751 ((-1168) $ (-1168))) (-15 -1751 ((-1168) $ (-1168) (-1168))) (-15 -1751 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -4135 ((-1281) $)) (-15 -2009 ((-570) $))))) (T -1278)) +((-2985 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-2985 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-1714 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-3497 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-1906 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-1906 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-3149 (*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) (-2392 (*1 *1) (-5 *1 (-1278))) (-4143 (*1 *1 *1) (-5 *1 (-1278))) (-4143 (*1 *1 *2 *3) (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1168)) (-5 *1 (-1278)))) (-4143 (*1 *1 *2 *3) (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-650 (-266))) (-5 *1 (-1278)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1278)))) (-4384 (*1 *1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1278)))) (-4344 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-777)) (-5 *4 (-950 (-227))) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278)))) (-2165 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3831 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3333 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-4243 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1965 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1278)))) (-1965 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1965 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-570)) (-5 *4 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1965 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2267 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1622 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-4386 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-4386 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1531 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1531 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2918 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2593 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2402 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3376 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1976 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1540 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1564 (*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2191 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1281)) (-5 *1 (-1278)))) (-1751 (*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278)))) (-1751 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278)))) (-1751 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1278)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1278)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1278))))) +(-13 (-1109) (-10 -8 (-15 -2985 ((-384))) (-15 -2985 ((-384) (-384))) (-15 -1714 ((-384))) (-15 -1714 ((-384) (-384))) (-15 -3497 ((-384))) (-15 -3497 ((-384) (-384))) (-15 -1906 ((-384))) (-15 -1906 ((-384) (-384))) (-15 -3149 ((-384))) (-15 -3149 ((-384) (-384))) (-15 -2392 ($)) (-15 -4143 ($ $)) (-15 -4143 ($ (-1142 (-227)) (-1168))) (-15 -4143 ($ (-1142 (-227)) (-650 (-266)))) (-15 -4384 ((-1142 (-227)) $)) (-15 -4384 ($ $ (-1142 (-227)))) (-15 -4344 ((-1281) $ (-777) (-950 (-227)))) (-15 -3352 ((-650 (-266)) $)) (-15 -3352 ($ $ (-650 (-266)))) (-15 -2165 ((-1281) $ (-777) (-777))) (-15 -3831 ((-1281) $ (-928) (-928))) (-15 -3333 ((-1281) $ (-1168))) (-15 -4243 ((-1281) $ (-777) (-777) (-928) (-928))) (-15 -1965 ((-1281) $ (-384) (-384) (-384) (-384) (-384))) (-15 -1965 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -1965 ((-1281) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1965 ((-1281) $ (-570) (-570) (-384) (-384) (-384))) (-15 -1965 ((-1281) $ (-384) (-384))) (-15 -1965 ((-1281) $ (-384) (-384) (-384))) (-15 -2267 ((-1281) $ (-1168))) (-15 -3671 ((-1281) $ (-1168))) (-15 -3419 ((-1281) $ (-1168))) (-15 -1622 ((-1281) $ (-1168))) (-15 -2857 ((-1281) $ (-1168))) (-15 -4386 ((-1281) $ (-384) (-384))) (-15 -4386 ((-1281) $ (-570) (-570))) (-15 -1531 ((-1281) $ (-384))) (-15 -1531 ((-1281) $ (-384) (-384) (-384))) (-15 -2918 ((-1281) $ (-384) (-384))) (-15 -2593 ((-1281) $ (-1168))) (-15 -2402 ((-1281) $ (-384))) (-15 -3376 ((-1281) $ (-384))) (-15 -1631 ((-1281) $ (-1168))) (-15 -1976 ((-1281) $ (-1168))) (-15 -3185 ((-1281) $ (-1168))) (-15 -1540 ((-1281) $ (-384) (-384) (-384))) (-15 -1564 ((-1281) $ (-384))) (-15 -1726 ((-1281) $)) (-15 -2191 ((-1281) $ (-158) (-158))) (-15 -1751 ((-1168) $ (-1168))) (-15 -1751 ((-1168) $ (-1168) (-1168))) (-15 -1751 ((-1168) $ (-1168) (-650 (-1168)))) (-15 -4135 ((-1281) $)) (-15 -2009 ((-570) $)))) +((-4373 (((-650 (-1168)) (-650 (-1168))) 104) (((-650 (-1168))) 96)) (-2094 (((-650 (-1168))) 94)) (-4263 (((-650 (-928)) (-650 (-928))) 69) (((-650 (-928))) 64)) (-3545 (((-650 (-777)) (-650 (-777))) 61) (((-650 (-777))) 55)) (-4025 (((-1281)) 71)) (-4273 (((-928) (-928)) 87) (((-928)) 86)) (-1690 (((-928) (-928)) 85) (((-928)) 84)) (-1562 (((-880) (-880)) 81) (((-880)) 80)) (-1312 (((-227)) 91) (((-227) (-384)) 93)) (-3905 (((-928)) 88) (((-928) (-928)) 89)) (-2811 (((-928) (-928)) 83) (((-928)) 82)) (-3975 (((-880) (-880)) 75) (((-880)) 73)) (-3066 (((-880) (-880)) 77) (((-880)) 76)) (-2296 (((-880) (-880)) 79) (((-880)) 78))) +(((-1279) (-10 -7 (-15 -3975 ((-880))) (-15 -3975 ((-880) (-880))) (-15 -3066 ((-880))) (-15 -3066 ((-880) (-880))) (-15 -2296 ((-880))) (-15 -2296 ((-880) (-880))) (-15 -1562 ((-880))) (-15 -1562 ((-880) (-880))) (-15 -2811 ((-928))) (-15 -2811 ((-928) (-928))) (-15 -3545 ((-650 (-777)))) (-15 -3545 ((-650 (-777)) (-650 (-777)))) (-15 -4263 ((-650 (-928)))) (-15 -4263 ((-650 (-928)) (-650 (-928)))) (-15 -4025 ((-1281))) (-15 -4373 ((-650 (-1168)))) (-15 -4373 ((-650 (-1168)) (-650 (-1168)))) (-15 -2094 ((-650 (-1168)))) (-15 -1690 ((-928))) (-15 -4273 ((-928))) (-15 -1690 ((-928) (-928))) (-15 -4273 ((-928) (-928))) (-15 -3905 ((-928) (-928))) (-15 -3905 ((-928))) (-15 -1312 ((-227) (-384))) (-15 -1312 ((-227))))) (T -1279)) +((-1312 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1279)))) (-1312 (*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-1279)))) (-3905 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-4273 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-4273 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-1690 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-2094 (*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1279)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1279)))) (-4373 (*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1279)))) (-4025 (*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1279)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1279)))) (-4263 (*1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1279)))) (-3545 (*1 *2 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1279)))) (-3545 (*1 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1279)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-2811 (*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-1562 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-2296 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-3066 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) (-3975 (*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279))))) +(-10 -7 (-15 -3975 ((-880))) (-15 -3975 ((-880) (-880))) (-15 -3066 ((-880))) (-15 -3066 ((-880) (-880))) (-15 -2296 ((-880))) (-15 -2296 ((-880) (-880))) (-15 -1562 ((-880))) (-15 -1562 ((-880) (-880))) (-15 -2811 ((-928))) (-15 -2811 ((-928) (-928))) (-15 -3545 ((-650 (-777)))) (-15 -3545 ((-650 (-777)) (-650 (-777)))) (-15 -4263 ((-650 (-928)))) (-15 -4263 ((-650 (-928)) (-650 (-928)))) (-15 -4025 ((-1281))) (-15 -4373 ((-650 (-1168)))) (-15 -4373 ((-650 (-1168)) (-650 (-1168)))) (-15 -2094 ((-650 (-1168)))) (-15 -1690 ((-928))) (-15 -4273 ((-928))) (-15 -1690 ((-928) (-928))) (-15 -4273 ((-928) (-928))) (-15 -3905 ((-928) (-928))) (-15 -3905 ((-928))) (-15 -1312 ((-227) (-384))) (-15 -1312 ((-227)))) +((-2789 (((-474) (-650 (-650 (-950 (-227)))) (-650 (-266))) 22) (((-474) (-650 (-650 (-950 (-227))))) 21) (((-474) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266))) 20)) (-1461 (((-1277) (-650 (-650 (-950 (-227)))) (-650 (-266))) 33) (((-1277) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266))) 32)) (-3798 (((-1277) (-474)) 48))) +(((-1280) (-10 -7 (-15 -2789 ((-474) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -2789 ((-474) (-650 (-650 (-950 (-227)))))) (-15 -2789 ((-474) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -1461 ((-1277) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -1461 ((-1277) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -3798 ((-1277) (-474))))) (T -1280)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *2 (-1277)) (-5 *1 (-1280)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-1280)))) (-1461 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-1280)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266))) (-5 *2 (-474)) (-5 *1 (-1280)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-474)) (-5 *1 (-1280)))) (-2789 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880)) (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-474)) (-5 *1 (-1280))))) +(-10 -7 (-15 -2789 ((-474) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -2789 ((-474) (-650 (-650 (-950 (-227)))))) (-15 -2789 ((-474) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -1461 ((-1277) (-650 (-650 (-950 (-227)))) (-880) (-880) (-928) (-650 (-266)))) (-15 -1461 ((-1277) (-650 (-650 (-950 (-227)))) (-650 (-266)))) (-15 -3798 ((-1277) (-474)))) +((-2582 (($) 6)) (-3798 (((-868) $) 9))) +(((-1281) (-13 (-619 (-868)) (-10 -8 (-15 -2582 ($))))) (T -1281)) +((-2582 (*1 *1) (-5 *1 (-1281)))) +(-13 (-619 (-868)) (-10 -8 (-15 -2582 ($)))) +((-3037 (($ $ |#2|) 10))) +(((-1282 |#1| |#2|) (-10 -8 (-15 -3037 (|#1| |#1| |#2|))) (-1283 |#2|) (-368)) (T -1282)) +NIL +(-10 -8 (-15 -3037 (|#1| |#1| |#2|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3374 (((-135)) 33)) (-3798 (((-868) $) 12)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-2923 (((-112) $ $) 6)) (-3037 (($ $ |#1|) 34)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1283 |#1|) (-141) (-368)) (T -1283)) +((-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-368)))) (-3374 (*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-368)) (-5 *2 (-135))))) +(-13 (-723 |t#1|) (-10 -8 (-15 -3037 ($ $ |t#1|)) (-15 -3374 ((-135))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-654 |#1|) . T) ((-646 |#1|) . T) ((-723 |#1|) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1109) . T)) +((-4103 (((-650 (-1220 |#1|)) (-1186) (-1220 |#1|)) 83)) (-1613 (((-1166 (-1166 (-959 |#1|))) (-1186) (-1166 (-959 |#1|))) 63)) (-2855 (((-1 (-1166 (-1220 |#1|)) (-1166 (-1220 |#1|))) (-777) (-1220 |#1|) (-1166 (-1220 |#1|))) 74)) (-3472 (((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777)) 65)) (-1611 (((-1 (-1182 (-959 |#1|)) (-959 |#1|)) (-1186)) 32)) (-2412 (((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777)) 64))) +(((-1284 |#1|) (-10 -7 (-15 -3472 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -2412 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -1613 ((-1166 (-1166 (-959 |#1|))) (-1186) (-1166 (-959 |#1|)))) (-15 -1611 ((-1 (-1182 (-959 |#1|)) (-959 |#1|)) (-1186))) (-15 -4103 ((-650 (-1220 |#1|)) (-1186) (-1220 |#1|))) (-15 -2855 ((-1 (-1166 (-1220 |#1|)) (-1166 (-1220 |#1|))) (-777) (-1220 |#1|) (-1166 (-1220 |#1|))))) (-368)) (T -1284)) +((-2855 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-777)) (-4 *6 (-368)) (-5 *4 (-1220 *6)) (-5 *2 (-1 (-1166 *4) (-1166 *4))) (-5 *1 (-1284 *6)) (-5 *5 (-1166 *4)))) (-4103 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-650 (-1220 *5))) (-5 *1 (-1284 *5)) (-5 *4 (-1220 *5)))) (-1611 (*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1 (-1182 (-959 *4)) (-959 *4))) (-5 *1 (-1284 *4)) (-4 *4 (-368)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-1166 (-1166 (-959 *5)))) (-5 *1 (-1284 *5)) (-5 *4 (-1166 (-959 *5))))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4)))) (-5 *1 (-1284 *4)) (-4 *4 (-368)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4)))) (-5 *1 (-1284 *4)) (-4 *4 (-368))))) +(-10 -7 (-15 -3472 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -2412 ((-1 (-1166 (-959 |#1|)) (-1166 (-959 |#1|))) (-777))) (-15 -1613 ((-1166 (-1166 (-959 |#1|))) (-1186) (-1166 (-959 |#1|)))) (-15 -1611 ((-1 (-1182 (-959 |#1|)) (-959 |#1|)) (-1186))) (-15 -4103 ((-650 (-1220 |#1|)) (-1186) (-1220 |#1|))) (-15 -2855 ((-1 (-1166 (-1220 |#1|)) (-1166 (-1220 |#1|))) (-777) (-1220 |#1|) (-1166 (-1220 |#1|))))) +((-2708 (((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|) 82)) (-2061 (((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|)))) 81))) +(((-1285 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2061 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -2708 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|))) (-354) (-1252 |#1|) (-1252 |#2|) (-415 |#2| |#3|)) (T -1285)) +((-2708 (*1 *2 *3) (-12 (-4 *4 (-354)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 *3)) (-5 *2 (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-695 *3)))) (-5 *1 (-1285 *4 *3 *5 *6)) (-4 *6 (-415 *3 *5)))) (-2061 (*1 *2) (-12 (-4 *3 (-354)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 *4)) (-5 *2 (-2 (|:| -2077 (-695 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-695 *4)))) (-5 *1 (-1285 *3 *4 *5 *6)) (-4 *6 (-415 *4 *5))))) +(-10 -7 (-15 -2061 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))))) (-15 -2708 ((-2 (|:| -2077 (-695 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-695 |#2|))) |#2|))) +((-2419 (((-112) $ $) NIL)) (-1945 (((-1144) $) 11)) (-3232 (((-1144) $) 9)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 17) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1286) (-13 (-1092) (-10 -8 (-15 -3232 ((-1144) $)) (-15 -1945 ((-1144) $))))) (T -1286)) +((-3232 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1286)))) (-1945 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1286))))) +(-13 (-1092) (-10 -8 (-15 -3232 ((-1144) $)) (-15 -1945 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-2388 (((-1144) $) 9)) (-3798 (((-868) $) 15) (($ (-1191)) NIL) (((-1191) $) NIL)) (-1319 (((-112) $ $) NIL)) (-2923 (((-112) $ $) NIL))) +(((-1287) (-13 (-1092) (-10 -8 (-15 -2388 ((-1144) $))))) (T -1287)) +((-2388 (*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1287))))) +(-13 (-1092) (-10 -8 (-15 -2388 ((-1144) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 58)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) NIL)) (-2481 (((-112) $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3798 (((-868) $) 81) (($ (-570)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2862 (((-777)) NIL T CONST)) (-2754 (((-1281) (-777)) 16)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 37 T CONST)) (-1817 (($) 84 T CONST)) (-2923 (((-112) $ $) 87)) (-3037 (((-3 $ "failed") $ $) NIL (|has| |#1| (-368)))) (-3026 (($ $) 89) (($ $ $) NIL)) (-3014 (($ $ $) 63)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1288 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1058) (-496 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -3037 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2754 ((-1281) (-777))))) (-1058) (-856) (-799) (-956 |#1| |#3| |#2|) (-650 |#2|) (-650 (-777)) (-777)) (T -1288)) +((-3037 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-368)) (-4 *2 (-1058)) (-4 *3 (-856)) (-4 *4 (-799)) (-14 *6 (-650 *3)) (-5 *1 (-1288 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-956 *2 *4 *3)) (-14 *7 (-650 (-777))) (-14 *8 (-777)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) (-14 *8 (-650 *5)) (-5 *2 (-1281)) (-5 *1 (-1288 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-956 *4 *6 *5)) (-14 *9 (-650 *3)) (-14 *10 *3)))) +(-13 (-1058) (-496 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (-15 -3037 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2754 ((-1281) (-777))))) +((-2419 (((-112) $ $) NIL)) (-2324 (((-650 (-2 (|:| -4135 $) (|:| -1718 (-650 |#4|)))) (-650 |#4|)) NIL)) (-2242 (((-650 $) (-650 |#4|)) 96)) (-1709 (((-650 |#3|) $) NIL)) (-4006 (((-112) $) NIL)) (-1797 (((-112) $) NIL (|has| |#1| (-562)))) (-2208 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2530 ((|#4| |#4| $) NIL)) (-3360 (((-2 (|:| |under| $) (|:| -4140 $) (|:| |upper| $)) $ |#3|) NIL)) (-3636 (((-112) $ (-777)) NIL)) (-1418 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3734 (($) NIL T CONST)) (-2262 (((-112) $) NIL (|has| |#1| (-562)))) (-2082 (((-112) $ $) NIL (|has| |#1| (-562)))) (-4427 (((-112) $ $) NIL (|has| |#1| (-562)))) (-2418 (((-112) $) NIL (|has| |#1| (-562)))) (-1886 (((-650 |#4|) (-650 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-3572 (((-650 |#4|) (-650 |#4|) $) 28 (|has| |#1| (-562)))) (-1651 (((-650 |#4|) (-650 |#4|) $) NIL (|has| |#1| (-562)))) (-4382 (((-3 $ "failed") (-650 |#4|)) NIL)) (-3152 (($ (-650 |#4|)) NIL)) (-3527 (((-3 $ "failed") $) 78)) (-3099 ((|#4| |#4| $) 83)) (-3552 (($ $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-1697 (($ |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-2423 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-3153 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-3600 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4448))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4448))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3072 (((-2 (|:| -4135 (-650 |#4|)) (|:| -1718 (-650 |#4|))) $) NIL)) (-2885 (((-650 |#4|) $) NIL (|has| $ (-6 -4448)))) (-4347 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4211 ((|#3| $) 84)) (-3846 (((-112) $ (-777)) NIL)) (-2282 (((-650 |#4|) $) 32 (|has| $ (-6 -4448)))) (-1935 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109))))) (-2873 (((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-650 |#4|)) 38)) (-3837 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4449)))) (-1347 (($ (-1 |#4| |#4|) $) NIL)) (-3952 (((-650 |#3|) $) NIL)) (-2875 (((-112) |#3| $) NIL)) (-2063 (((-112) $ (-777)) NIL)) (-4122 (((-1168) $) NIL)) (-1723 (((-3 |#4| "failed") $) NIL)) (-2500 (((-650 |#4|) $) 54)) (-1560 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2458 ((|#4| |#4| $) 82)) (-4181 (((-112) $ $) 93)) (-1701 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-562)))) (-1871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2962 ((|#4| |#4| $) NIL)) (-3551 (((-1129) $) NIL)) (-3515 (((-3 |#4| "failed") $) 77)) (-4089 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2730 (((-3 $ "failed") $ |#4|) NIL)) (-3500 (($ $ |#4|) NIL)) (-3116 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1725 (($ $ (-650 |#4|) (-650 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-298 |#4|)) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109)))) (($ $ (-650 (-298 |#4|))) NIL (-12 (|has| |#4| (-313 |#4|)) (|has| |#4| (-1109))))) (-3123 (((-112) $ $) NIL)) (-4303 (((-112) $) 75)) (-4359 (($) 46)) (-3324 (((-777) $) NIL)) (-3562 (((-777) |#4| $) NIL (-12 (|has| $ (-6 -4448)) (|has| |#4| (-1109)))) (((-777) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-3964 (($ $) NIL)) (-1411 (((-542) $) NIL (|has| |#4| (-620 (-542))))) (-3811 (($ (-650 |#4|)) NIL)) (-3677 (($ $ |#3|) NIL)) (-3158 (($ $ |#3|) NIL)) (-4381 (($ $) NIL)) (-4074 (($ $ |#3|) NIL)) (-3798 (((-868) $) NIL) (((-650 |#4|) $) 63)) (-2136 (((-777) $) NIL (|has| |#3| (-373)))) (-3402 (((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-650 |#4|)) 45)) (-2404 (((-650 $) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-650 $) (-650 |#4|)) 74)) (-1319 (((-112) $ $) NIL)) (-2797 (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3312 (-650 |#4|))) "failed") (-650 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2863 (((-112) $ (-1 (-112) |#4| (-650 |#4|))) NIL)) (-1431 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4448)))) (-1399 (((-650 |#3|) $) NIL)) (-4059 (((-112) |#3| $) NIL)) (-2923 (((-112) $ $) NIL)) (-2431 (((-777) $) NIL (|has| $ (-6 -4448))))) +(((-1289 |#1| |#2| |#3| |#4|) (-13 (-1219 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2873 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2873 ((-3 $ "failed") (-650 |#4|))) (-15 -3402 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3402 ((-3 $ "failed") (-650 |#4|))) (-15 -2404 ((-650 $) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2404 ((-650 $) (-650 |#4|))))) (-562) (-799) (-856) (-1074 |#1| |#2| |#3|)) (T -1289)) +((-2873 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1289 *5 *6 *7 *8)))) (-2873 (*1 *1 *2) (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1289 *3 *4 *5 *6)))) (-3402 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1289 *5 *6 *7 *8)))) (-3402 (*1 *1 *2) (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1289 *3 *4 *5 *6)))) (-2404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-650 (-1289 *6 *7 *8 *9))) (-5 *1 (-1289 *6 *7 *8 *9)))) (-2404 (*1 *2 *3) (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-1289 *4 *5 *6 *7))) (-5 *1 (-1289 *4 *5 *6 *7))))) +(-13 (-1219 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2873 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2873 ((-3 $ "failed") (-650 |#4|))) (-15 -3402 ((-3 $ "failed") (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3402 ((-3 $ "failed") (-650 |#4|))) (-15 -2404 ((-650 $) (-650 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2404 ((-650 $) (-650 |#4|))))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-2620 (((-3 $ "failed") $ $) 20)) (-3734 (($) 18 T CONST)) (-2229 (((-3 $ "failed") $) 37)) (-2481 (((-112) $) 35)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#1|) 45)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1290 |#1|) (-141) (-1058)) (T -1290)) +NIL +(-13 (-1058) (-111 |t#1| |t#1|) (-622 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 |#1|) |has| |#1| (-174)) ((-723 |#1|) |has| |#1| (-174)) ((-732) . T) ((-1060 |#1|) . T) ((-1065 |#1|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T)) +((-2419 (((-112) $ $) 67)) (-1359 (((-112) $) NIL)) (-3107 (((-650 |#1|) $) 52)) (-1755 (($ $ (-777)) 46)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3151 (($ $ (-777)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3734 (($) NIL T CONST)) (-2276 (($ $ $) 70) (($ $ (-825 |#1|)) 56) (($ $ |#1|) 60)) (-4382 (((-3 (-825 |#1|) "failed") $) NIL)) (-3152 (((-825 |#1|) $) NIL)) (-1885 (($ $) 39)) (-2229 (((-3 $ "failed") $) NIL)) (-4418 (((-112) $) NIL)) (-2455 (($ $) NIL)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3350 (($ (-825 |#1|) |#2|) 38)) (-1660 (($ $) 40)) (-2347 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) 12)) (-2446 (((-825 |#1|) $) NIL)) (-2193 (((-825 |#1|) $) 41)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-2223 (($ $ $) 69) (($ $ (-825 |#1|)) 58) (($ $ |#1|) 62)) (-3560 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1851 (((-825 |#1|) $) 35)) (-1860 ((|#2| $) 37)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-3324 (((-777) $) 43)) (-1473 (((-112) $) 47)) (-3711 ((|#2| $) NIL)) (-3798 (((-868) $) NIL) (($ (-825 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-570)) NIL)) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-825 |#1|)) NIL)) (-1436 ((|#2| $ $) 76) ((|#2| $ (-825 |#1|)) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 13 T CONST)) (-1817 (($) 19 T CONST)) (-4425 (((-650 (-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2923 (((-112) $ $) 44)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 28)) (** (($ $ (-777)) NIL) (($ $ (-928)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-825 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1291 |#1| |#2|) (-13 (-387 |#2| (-825 |#1|)) (-1297 |#1| |#2|)) (-856) (-1058)) (T -1291)) +NIL +(-13 (-387 |#2| (-825 |#1|)) (-1297 |#1| |#2|)) +((-2665 ((|#3| |#3| (-777)) 30)) (-4390 ((|#3| |#3| (-777)) 36)) (-2538 ((|#3| |#3| |#3| (-777)) 37))) +(((-1292 |#1| |#2| |#3|) (-10 -7 (-15 -4390 (|#3| |#3| (-777))) (-15 -2665 (|#3| |#3| (-777))) (-15 -2538 (|#3| |#3| |#3| (-777)))) (-13 (-1058) (-723 (-413 (-570)))) (-856) (-1297 |#2| |#1|)) (T -1292)) +((-2538 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) (-4 *5 (-856)) (-5 *1 (-1292 *4 *5 *2)) (-4 *2 (-1297 *5 *4)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) (-4 *5 (-856)) (-5 *1 (-1292 *4 *5 *2)) (-4 *2 (-1297 *5 *4)))) (-4390 (*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) (-4 *5 (-856)) (-5 *1 (-1292 *4 *5 *2)) (-4 *2 (-1297 *5 *4))))) +(-10 -7 (-15 -4390 (|#3| |#3| (-777))) (-15 -2665 (|#3| |#3| (-777))) (-15 -2538 (|#3| |#3| |#3| (-777)))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3107 (((-650 |#1|) $) 47)) (-2620 (((-3 $ "failed") $ $) 20)) (-3151 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-777)) 49 (|has| |#2| (-174)))) (-3734 (($) 18 T CONST)) (-2276 (($ $ |#1|) 61) (($ $ (-825 |#1|)) 60) (($ $ $) 59)) (-4382 (((-3 (-825 |#1|) "failed") $) 71)) (-3152 (((-825 |#1|) $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-4418 (((-112) $) 52)) (-2455 (($ $) 51)) (-2481 (((-112) $) 35)) (-2343 (((-112) $) 57)) (-3350 (($ (-825 |#1|) |#2|) 58)) (-1660 (($ $) 56)) (-2347 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) 67)) (-2446 (((-825 |#1|) $) 68)) (-1347 (($ (-1 |#2| |#2|) $) 48)) (-2223 (($ $ |#1|) 64) (($ $ (-825 |#1|)) 63) (($ $ $) 62)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-1473 (((-112) $) 54)) (-3711 ((|#2| $) 53)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#2|) 75) (($ (-825 |#1|)) 70) (($ |#1|) 55)) (-1436 ((|#2| $ (-825 |#1|)) 66) ((|#2| $ $) 65)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1293 |#1| |#2|) (-141) (-856) (-1058)) (T -1293)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1293 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-825 *3)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-2 (|:| |k| (-825 *3)) (|:| |c| *4))))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (-825 *4)) (-4 *1 (-1293 *4 *2)) (-4 *4 (-856)) (-4 *2 (-1058)))) (-1436 (*1 *2 *1 *1) (-12 (-4 *1 (-1293 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) (-2223 (*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2223 (*1 *1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-2223 (*1 *1 *1 *1) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2276 (*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-3350 (*1 *1 *2 *3) (-12 (-5 *2 (-825 *4)) (-4 *4 (-856)) (-4 *1 (-1293 *4 *3)) (-4 *3 (-1058)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-112)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-3798 (*1 *1 *2) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-112)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) (-4418 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-112)))) (-2455 (*1 *1 *1) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)) (-4 *3 (-174)))) (-3151 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-4 *4 (-174)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-650 *3))))) +(-13 (-1058) (-1290 |t#2|) (-1047 (-825 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2446 ((-825 |t#1|) $)) (-15 -2347 ((-2 (|:| |k| (-825 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1436 (|t#2| $ (-825 |t#1|))) (-15 -1436 (|t#2| $ $)) (-15 -2223 ($ $ |t#1|)) (-15 -2223 ($ $ (-825 |t#1|))) (-15 -2223 ($ $ $)) (-15 -2276 ($ $ |t#1|)) (-15 -2276 ($ $ (-825 |t#1|))) (-15 -2276 ($ $ $)) (-15 -3350 ($ (-825 |t#1|) |t#2|)) (-15 -2343 ((-112) $)) (-15 -1660 ($ $)) (-15 -3798 ($ |t#1|)) (-15 -1473 ((-112) $)) (-15 -3711 (|t#2| $)) (-15 -4418 ((-112) $)) (-15 -2455 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -3151 ($ $ $)) (-15 -3151 ($ $ (-777)))) |%noBranch|) (-15 -1347 ($ (-1 |t#2| |t#2|) $)) (-15 -3107 ((-650 |t#1|) $)) (IF (|has| |t#2| (-6 -4441)) (-6 -4441) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 #0=(-825 |#1|)) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-652 $) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-646 |#2|) |has| |#2| (-174)) ((-723 |#2|) |has| |#2| (-174)) ((-732) . T) ((-1047 #0#) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1290 |#2|) . T)) +((-2714 (((-112) $) 15)) (-4059 (((-112) $) 14)) (-2663 (($ $) 19) (($ $ (-777)) 21))) +(((-1294 |#1| |#2|) (-10 -8 (-15 -2663 (|#1| |#1| (-777))) (-15 -2663 (|#1| |#1|)) (-15 -2714 ((-112) |#1|)) (-15 -4059 ((-112) |#1|))) (-1295 |#2|) (-368)) (T -1294)) +NIL +(-10 -8 (-15 -2663 (|#1| |#1| (-777))) (-15 -2663 (|#1| |#1|)) (-15 -2714 ((-112) |#1|)) (-15 -4059 ((-112) |#1|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-1966 (((-2 (|:| -1738 $) (|:| -4435 $) (|:| |associate| $)) $) 47)) (-2318 (($ $) 46)) (-2234 (((-112) $) 44)) (-2714 (((-112) $) 104)) (-3254 (((-777)) 100)) (-2620 (((-3 $ "failed") $ $) 20)) (-3696 (($ $) 81)) (-2555 (((-424 $) $) 80)) (-4073 (((-112) $ $) 65)) (-3734 (($) 18 T CONST)) (-4382 (((-3 |#1| "failed") $) 111)) (-3152 ((|#1| $) 112)) (-2372 (($ $ $) 61)) (-2229 (((-3 $ "failed") $) 37)) (-2380 (($ $ $) 62)) (-2851 (((-2 (|:| -1436 (-650 $)) (|:| -2335 $)) (-650 $)) 57)) (-3640 (($ $ (-777)) 97 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373)))) (($ $) 96 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3701 (((-112) $) 79)) (-4202 (((-839 (-928)) $) 94 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2481 (((-112) $) 35)) (-2546 (((-3 (-650 $) "failed") (-650 $) $) 58)) (-1841 (($ $ $) 52) (($ (-650 $)) 51)) (-4122 (((-1168) $) 10)) (-1820 (($ $) 78)) (-3288 (((-112) $) 103)) (-3551 (((-1129) $) 11)) (-1311 (((-1182 $) (-1182 $) (-1182 $)) 50)) (-1869 (($ $ $) 54) (($ (-650 $)) 53)) (-3801 (((-424 $) $) 82)) (-2877 (((-839 (-928))) 101)) (-3429 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2335 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2410 (((-3 $ "failed") $ $) 48)) (-3260 (((-3 (-650 $) "failed") (-650 $) $) 56)) (-3788 (((-777) $) 64)) (-1854 (((-2 (|:| -1310 $) (|:| -2423 $)) $ $) 63)) (-2174 (((-3 (-777) "failed") $ $) 95 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-3374 (((-135)) 109)) (-3324 (((-839 (-928)) $) 102)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ $) 49) (($ (-413 (-570))) 74) (($ |#1|) 110)) (-2917 (((-3 $ "failed") $) 93 (-2779 (|has| |#1| (-146)) (|has| |#1| (-373))))) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-3258 (((-112) $ $) 45)) (-4059 (((-112) $) 105)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2663 (($ $) 99 (|has| |#1| (-373))) (($ $ (-777)) 98 (|has| |#1| (-373)))) (-2923 (((-112) $ $) 6)) (-3037 (($ $ $) 73) (($ $ |#1|) 108)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36) (($ $ (-570)) 77)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ $ (-413 (-570))) 76) (($ (-413 (-570)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1295 |#1|) (-141) (-368)) (T -1295)) +((-4059 (*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-112)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-112)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-112)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928))))) (-2877 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928))))) (-3254 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-777)))) (-2663 (*1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-368)) (-4 *2 (-373)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-4 *3 (-373))))) +(-13 (-368) (-1047 |t#1|) (-1283 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-408)) |%noBranch|) (-15 -4059 ((-112) $)) (-15 -2714 ((-112) $)) (-15 -3288 ((-112) $)) (-15 -3324 ((-839 (-928)) $)) (-15 -2877 ((-839 (-928)))) (-15 -3254 ((-777))) (IF (|has| |t#1| (-373)) (PROGN (-6 (-408)) (-15 -2663 ($ $)) (-15 -2663 ($ $ (-777)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-413 (-570))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2779 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-622 #0#) . T) ((-622 (-570)) . T) ((-622 |#1|) . T) ((-622 $) . T) ((-619 (-868)) . T) ((-174) . T) ((-245) . T) ((-294) . T) ((-311) . T) ((-368) . T) ((-408) -2779 (|has| |#1| (-373)) (|has| |#1| (-146))) ((-458) . T) ((-562) . T) ((-652 #0#) . T) ((-652 (-570)) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-654 #0#) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-646 #0#) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-723 #0#) . T) ((-723 |#1|) . T) ((-723 $) . T) ((-732) . T) ((-927) . T) ((-1047 |#1|) . T) ((-1060 #0#) . T) ((-1060 |#1|) . T) ((-1060 $) . T) ((-1065 #0#) . T) ((-1065 |#1|) . T) ((-1065 $) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1230) . T) ((-1283 |#1|) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3107 (((-650 |#1|) $) 98)) (-1755 (($ $ (-777)) 102)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3151 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-777)) NIL (|has| |#2| (-174)))) (-3734 (($) NIL T CONST)) (-2276 (($ $ |#1|) NIL) (($ $ (-825 |#1|)) NIL) (($ $ $) NIL)) (-4382 (((-3 (-825 |#1|) "failed") $) NIL) (((-3 (-900 |#1|) "failed") $) NIL)) (-3152 (((-825 |#1|) $) NIL) (((-900 |#1|) $) NIL)) (-1885 (($ $) 101)) (-2229 (((-3 $ "failed") $) NIL)) (-4418 (((-112) $) 90)) (-2455 (($ $) 93)) (-3053 (($ $ $ (-777)) 103)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3350 (($ (-825 |#1|) |#2|) NIL) (($ (-900 |#1|) |#2|) 29)) (-1660 (($ $) 120)) (-2347 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2446 (((-825 |#1|) $) NIL)) (-2193 (((-825 |#1|) $) NIL)) (-1347 (($ (-1 |#2| |#2|) $) NIL)) (-2223 (($ $ |#1|) NIL) (($ $ (-825 |#1|)) NIL) (($ $ $) NIL)) (-2665 (($ $ (-777)) 113 (|has| |#2| (-723 (-413 (-570)))))) (-3560 (((-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1851 (((-900 |#1|) $) 83)) (-1860 ((|#2| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-4390 (($ $ (-777)) 110 (|has| |#2| (-723 (-413 (-570)))))) (-3324 (((-777) $) 99)) (-1473 (((-112) $) 84)) (-3711 ((|#2| $) 88)) (-3798 (((-868) $) 69) (($ (-570)) NIL) (($ |#2|) 60) (($ (-825 |#1|)) NIL) (($ |#1|) 71) (($ (-900 |#1|)) NIL) (($ (-670 |#1| |#2|)) 48) (((-1291 |#1| |#2|) $) 76) (((-1300 |#1| |#2|) $) 81)) (-2479 (((-650 |#2|) $) NIL)) (-3326 ((|#2| $ (-900 |#1|)) NIL)) (-1436 ((|#2| $ (-825 |#1|)) NIL) ((|#2| $ $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 21 T CONST)) (-1817 (($) 28 T CONST)) (-4425 (((-650 (-2 (|:| |k| (-900 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1917 (((-3 (-670 |#1| |#2|) "failed") $) 119)) (-2923 (((-112) $ $) 77)) (-3026 (($ $) 112) (($ $ $) 111)) (-3014 (($ $ $) 20)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-900 |#1|)) NIL))) +(((-1296 |#1| |#2|) (-13 (-1297 |#1| |#2|) (-387 |#2| (-900 |#1|)) (-10 -8 (-15 -3798 ($ (-670 |#1| |#2|))) (-15 -3798 ((-1291 |#1| |#2|) $)) (-15 -3798 ((-1300 |#1| |#2|) $)) (-15 -1917 ((-3 (-670 |#1| |#2|) "failed") $)) (-15 -3053 ($ $ $ (-777))) (IF (|has| |#2| (-723 (-413 (-570)))) (PROGN (-15 -4390 ($ $ (-777))) (-15 -2665 ($ $ (-777)))) |%noBranch|))) (-856) (-174)) (T -1296)) +((-3798 (*1 *1 *2) (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) (-5 *1 (-1296 *3 *4)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-1917 (*1 *2 *1) (|partial| -12 (-5 *2 (-670 *3 *4)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-3053 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)))) (-4390 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1296 *3 *4)) (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1296 *3 *4)) (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174))))) +(-13 (-1297 |#1| |#2|) (-387 |#2| (-900 |#1|)) (-10 -8 (-15 -3798 ($ (-670 |#1| |#2|))) (-15 -3798 ((-1291 |#1| |#2|) $)) (-15 -3798 ((-1300 |#1| |#2|) $)) (-15 -1917 ((-3 (-670 |#1| |#2|) "failed") $)) (-15 -3053 ($ $ $ (-777))) (IF (|has| |#2| (-723 (-413 (-570)))) (PROGN (-15 -4390 ($ $ (-777))) (-15 -2665 ($ $ (-777)))) |%noBranch|))) +((-2419 (((-112) $ $) 7)) (-1359 (((-112) $) 17)) (-3107 (((-650 |#1|) $) 47)) (-1755 (($ $ (-777)) 80)) (-2620 (((-3 $ "failed") $ $) 20)) (-3151 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-777)) 49 (|has| |#2| (-174)))) (-3734 (($) 18 T CONST)) (-2276 (($ $ |#1|) 61) (($ $ (-825 |#1|)) 60) (($ $ $) 59)) (-4382 (((-3 (-825 |#1|) "failed") $) 71)) (-3152 (((-825 |#1|) $) 72)) (-2229 (((-3 $ "failed") $) 37)) (-4418 (((-112) $) 52)) (-2455 (($ $) 51)) (-2481 (((-112) $) 35)) (-2343 (((-112) $) 57)) (-3350 (($ (-825 |#1|) |#2|) 58)) (-1660 (($ $) 56)) (-2347 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) 67)) (-2446 (((-825 |#1|) $) 68)) (-2193 (((-825 |#1|) $) 82)) (-1347 (($ (-1 |#2| |#2|) $) 48)) (-2223 (($ $ |#1|) 64) (($ $ (-825 |#1|)) 63) (($ $ $) 62)) (-4122 (((-1168) $) 10)) (-3551 (((-1129) $) 11)) (-3324 (((-777) $) 81)) (-1473 (((-112) $) 54)) (-3711 ((|#2| $) 53)) (-3798 (((-868) $) 12) (($ (-570)) 33) (($ |#2|) 75) (($ (-825 |#1|)) 70) (($ |#1|) 55)) (-1436 ((|#2| $ (-825 |#1|)) 66) ((|#2| $ $) 65)) (-2862 (((-777)) 32 T CONST)) (-1319 (((-112) $ $) 9)) (-1809 (($) 19 T CONST)) (-1817 (($) 34 T CONST)) (-2923 (((-112) $ $) 6)) (-3026 (($ $) 23) (($ $ $) 22)) (-3014 (($ $ $) 15)) (** (($ $ (-928)) 28) (($ $ (-777)) 36)) (* (($ (-928) $) 14) (($ (-777) $) 16) (($ (-570) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1297 |#1| |#2|) (-141) (-856) (-1058)) (T -1297)) +((-2193 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-825 *3)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *2 (-777)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))))) +(-13 (-1293 |t#1| |t#2|) (-10 -8 (-15 -2193 ((-825 |t#1|) $)) (-15 -3324 ((-777) $)) (-15 -1755 ($ $ (-777))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-622 (-570)) . T) ((-622 #0=(-825 |#1|)) . T) ((-622 |#2|) . T) ((-619 (-868)) . T) ((-652 (-570)) . T) ((-652 |#2|) . T) ((-652 $) . T) ((-654 |#2|) . T) ((-654 $) . T) ((-646 |#2|) |has| |#2| (-174)) ((-723 |#2|) |has| |#2| (-174)) ((-732) . T) ((-1047 #0#) . T) ((-1060 |#2|) . T) ((-1065 |#2|) . T) ((-1058) . T) ((-1067) . T) ((-1121) . T) ((-1109) . T) ((-1290 |#2|) . T) ((-1293 |#1| |#2|) . T)) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-3107 (((-650 (-1186)) $) NIL)) (-3736 (($ (-1291 (-1186) |#1|)) NIL)) (-1755 (($ $ (-777)) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3151 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-777)) NIL (|has| |#1| (-174)))) (-3734 (($) NIL T CONST)) (-2276 (($ $ (-1186)) NIL) (($ $ (-825 (-1186))) NIL) (($ $ $) NIL)) (-4382 (((-3 (-825 (-1186)) "failed") $) NIL)) (-3152 (((-825 (-1186)) $) NIL)) (-2229 (((-3 $ "failed") $) NIL)) (-4418 (((-112) $) NIL)) (-2455 (($ $) NIL)) (-2481 (((-112) $) NIL)) (-2343 (((-112) $) NIL)) (-3350 (($ (-825 (-1186)) |#1|) NIL)) (-1660 (($ $) NIL)) (-2347 (((-2 (|:| |k| (-825 (-1186))) (|:| |c| |#1|)) $) NIL)) (-2446 (((-825 (-1186)) $) NIL)) (-2193 (((-825 (-1186)) $) NIL)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-2223 (($ $ (-1186)) NIL) (($ $ (-825 (-1186))) NIL) (($ $ $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1381 (((-1291 (-1186) |#1|) $) NIL)) (-3324 (((-777) $) NIL)) (-1473 (((-112) $) NIL)) (-3711 ((|#1| $) NIL)) (-3798 (((-868) $) NIL) (($ (-570)) NIL) (($ |#1|) NIL) (($ (-825 (-1186))) NIL) (($ (-1186)) NIL)) (-1436 ((|#1| $ (-825 (-1186))) NIL) ((|#1| $ $) NIL)) (-2862 (((-777)) NIL T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) NIL T CONST)) (-2185 (((-650 (-2 (|:| |k| (-1186)) (|:| |c| $))) $) NIL)) (-1817 (($) NIL T CONST)) (-2923 (((-112) $ $) NIL)) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) NIL)) (** (($ $ (-928)) NIL) (($ $ (-777)) NIL)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1186) $) NIL))) +(((-1298 |#1|) (-13 (-1297 (-1186) |#1|) (-10 -8 (-15 -1381 ((-1291 (-1186) |#1|) $)) (-15 -3736 ($ (-1291 (-1186) |#1|))) (-15 -2185 ((-650 (-2 (|:| |k| (-1186)) (|:| |c| $))) $)))) (-1058)) (T -1298)) +((-1381 (*1 *2 *1) (-12 (-5 *2 (-1291 (-1186) *3)) (-5 *1 (-1298 *3)) (-4 *3 (-1058)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-1291 (-1186) *3)) (-4 *3 (-1058)) (-5 *1 (-1298 *3)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| (-1186)) (|:| |c| (-1298 *3))))) (-5 *1 (-1298 *3)) (-4 *3 (-1058))))) +(-13 (-1297 (-1186) |#1|) (-10 -8 (-15 -1381 ((-1291 (-1186) |#1|) $)) (-15 -3736 ($ (-1291 (-1186) |#1|))) (-15 -2185 ((-650 (-2 (|:| |k| (-1186)) (|:| |c| $))) $)))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) NIL)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3734 (($) NIL T CONST)) (-4382 (((-3 |#2| "failed") $) NIL)) (-3152 ((|#2| $) NIL)) (-1885 (($ $) NIL)) (-2229 (((-3 $ "failed") $) 42)) (-4418 (((-112) $) 35)) (-2455 (($ $) 37)) (-2481 (((-112) $) NIL)) (-1700 (((-777) $) NIL)) (-2717 (((-650 $) $) NIL)) (-2343 (((-112) $) NIL)) (-3350 (($ |#2| |#1|) NIL)) (-2446 ((|#2| $) 24)) (-2193 ((|#2| $) 22)) (-1347 (($ (-1 |#1| |#1|) $) NIL)) (-3560 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1851 ((|#2| $) NIL)) (-1860 ((|#1| $) NIL)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1473 (((-112) $) 32)) (-3711 ((|#1| $) 33)) (-3798 (((-868) $) 65) (($ (-570)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2479 (((-650 |#1|) $) NIL)) (-3326 ((|#1| $ |#2|) NIL)) (-1436 ((|#1| $ |#2|) 28)) (-2862 (((-777)) 14 T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 29 T CONST)) (-1817 (($) 11 T CONST)) (-4425 (((-650 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2923 (((-112) $ $) 30)) (-3037 (($ $ |#1|) 67 (|has| |#1| (-368)))) (-3026 (($ $) NIL) (($ $ $) NIL)) (-3014 (($ $ $) 50)) (** (($ $ (-928)) NIL) (($ $ (-777)) 52)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2431 (((-777) $) 16))) +(((-1299 |#1| |#2|) (-13 (-1058) (-1290 |#1|) (-387 |#1| |#2|) (-622 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2431 ((-777) $)) (-15 -2193 (|#2| $)) (-15 -2446 (|#2| $)) (-15 -1885 ($ $)) (-15 -1436 (|#1| $ |#2|)) (-15 -1473 ((-112) $)) (-15 -3711 (|#1| $)) (-15 -4418 ((-112) $)) (-15 -2455 ($ $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-368)) (-15 -3037 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|))) (-1058) (-852)) (T -1299)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))) (-1885 (*1 *1 *1) (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))) (-1347 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-1299 *3 *4)) (-4 *4 (-852)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-852)))) (-2193 (*1 *2 *1) (-12 (-4 *2 (-852)) (-5 *1 (-1299 *3 *2)) (-4 *3 (-1058)))) (-2446 (*1 *2 *1) (-12 (-4 *2 (-852)) (-5 *1 (-1299 *3 *2)) (-4 *3 (-1058)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *2 (-1058)) (-5 *1 (-1299 *2 *3)) (-4 *3 (-852)))) (-1473 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-852)))) (-3711 (*1 *2 *1) (-12 (-4 *2 (-1058)) (-5 *1 (-1299 *2 *3)) (-4 *3 (-852)))) (-4418 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-852)))) (-2455 (*1 *1 *1) (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852)))) (-3037 (*1 *1 *1 *2) (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-368)) (-4 *2 (-1058)) (-4 *3 (-852))))) +(-13 (-1058) (-1290 |#1|) (-387 |#1| |#2|) (-622 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2431 ((-777) $)) (-15 -2193 (|#2| $)) (-15 -2446 (|#2| $)) (-15 -1885 ($ $)) (-15 -1436 (|#1| $ |#2|)) (-15 -1473 ((-112) $)) (-15 -3711 (|#1| $)) (-15 -4418 ((-112) $)) (-15 -2455 ($ $)) (-15 -1347 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-368)) (-15 -3037 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4441)) (-6 -4441) |%noBranch|) (IF (|has| |#1| (-6 -4445)) (-6 -4445) |%noBranch|) (IF (|has| |#1| (-6 -4446)) (-6 -4446) |%noBranch|))) +((-2419 (((-112) $ $) 27)) (-1359 (((-112) $) NIL)) (-3107 (((-650 |#1|) $) 132)) (-3736 (($ (-1291 |#1| |#2|)) 50)) (-1755 (($ $ (-777)) 38)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3151 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-777)) 52 (|has| |#2| (-174)))) (-3734 (($) NIL T CONST)) (-2276 (($ $ |#1|) 114) (($ $ (-825 |#1|)) 115) (($ $ $) 26)) (-4382 (((-3 (-825 |#1|) "failed") $) NIL)) (-3152 (((-825 |#1|) $) NIL)) (-2229 (((-3 $ "failed") $) 122)) (-4418 (((-112) $) 117)) (-2455 (($ $) 118)) (-2481 (((-112) $) NIL)) (-2343 (((-112) $) NIL)) (-3350 (($ (-825 |#1|) |#2|) 20)) (-1660 (($ $) NIL)) (-2347 (((-2 (|:| |k| (-825 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2446 (((-825 |#1|) $) 123)) (-2193 (((-825 |#1|) $) 126)) (-1347 (($ (-1 |#2| |#2|) $) 131)) (-2223 (($ $ |#1|) 112) (($ $ (-825 |#1|)) 113) (($ $ $) 62)) (-4122 (((-1168) $) NIL)) (-3551 (((-1129) $) NIL)) (-1381 (((-1291 |#1| |#2|) $) 94)) (-3324 (((-777) $) 129)) (-1473 (((-112) $) 81)) (-3711 ((|#2| $) 32)) (-3798 (((-868) $) 73) (($ (-570)) 87) (($ |#2|) 85) (($ (-825 |#1|)) 18) (($ |#1|) 84)) (-1436 ((|#2| $ (-825 |#1|)) 116) ((|#2| $ $) 28)) (-2862 (((-777)) 120 T CONST)) (-1319 (((-112) $ $) NIL)) (-1809 (($) 15 T CONST)) (-2185 (((-650 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1817 (($) 33 T CONST)) (-2923 (((-112) $ $) 14)) (-3026 (($ $) 98) (($ $ $) 101)) (-3014 (($ $ $) 61)) (** (($ $ (-928)) NIL) (($ $ (-777)) 55)) (* (($ (-928) $) NIL) (($ (-777) $) 53) (($ (-570) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1300 |#1| |#2|) (-13 (-1297 |#1| |#2|) (-10 -8 (-15 -1381 ((-1291 |#1| |#2|) $)) (-15 -3736 ($ (-1291 |#1| |#2|))) (-15 -2185 ((-650 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-856) (-1058)) (T -1300)) +((-1381 (*1 *2 *1) (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-1291 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) (-5 *1 (-1300 *3 *4)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-650 (-2 (|:| |k| *3) (|:| |c| (-1300 *3 *4))))) (-5 *1 (-1300 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))))) +(-13 (-1297 |#1| |#2|) (-10 -8 (-15 -1381 ((-1291 |#1| |#2|) $)) (-15 -3736 ($ (-1291 |#1| |#2|))) (-15 -2185 ((-650 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-1542 (((-650 (-1166 |#1|)) (-1 (-650 (-1166 |#1|)) (-650 (-1166 |#1|))) (-570)) 20) (((-1166 |#1|) (-1 (-1166 |#1|) (-1166 |#1|))) 13))) +(((-1301 |#1|) (-10 -7 (-15 -1542 ((-1166 |#1|) (-1 (-1166 |#1|) (-1166 |#1|)))) (-15 -1542 ((-650 (-1166 |#1|)) (-1 (-650 (-1166 |#1|)) (-650 (-1166 |#1|))) (-570)))) (-1226)) (T -1301)) +((-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-650 (-1166 *5)) (-650 (-1166 *5)))) (-5 *4 (-570)) (-5 *2 (-650 (-1166 *5))) (-5 *1 (-1301 *5)) (-4 *5 (-1226)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-1 (-1166 *4) (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1301 *4)) (-4 *4 (-1226))))) +(-10 -7 (-15 -1542 ((-1166 |#1|) (-1 (-1166 |#1|) (-1166 |#1|)))) (-15 -1542 ((-650 (-1166 |#1|)) (-1 (-650 (-1166 |#1|)) (-650 (-1166 |#1|))) (-570)))) +((-1358 (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|))) 174) (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112)) 173) (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112)) 172) (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112) (-112)) 171) (((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-1055 |#1| |#2|)) 156)) (-1360 (((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|))) 85) (((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112)) 84) (((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112) (-112)) 83)) (-2555 (((-650 (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) (-1055 |#1| |#2|)) 73)) (-3371 (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|))) 140) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112)) 139) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112)) 138) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112) (-112)) 137) (((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|)) 132)) (-4026 (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|))) 145) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112)) 144) (((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112)) 143) (((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|)) 142)) (-1411 (((-650 (-786 |#1| (-870 |#3|))) (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) 111) (((-1182 (-1033 (-413 |#1|))) (-1182 |#1|)) 102) (((-959 (-1033 (-413 |#1|))) (-786 |#1| (-870 |#3|))) 109) (((-959 (-1033 (-413 |#1|))) (-959 |#1|)) 107) (((-786 |#1| (-870 |#3|)) (-786 |#1| (-870 |#2|))) 33))) +(((-1302 |#1| |#2| |#3|) (-10 -7 (-15 -1360 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112) (-112))) (-15 -1360 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112))) (-15 -1360 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-1055 |#1| |#2|))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -2555 ((-650 (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) (-1055 |#1| |#2|))) (-15 -1411 ((-786 |#1| (-870 |#3|)) (-786 |#1| (-870 |#2|)))) (-15 -1411 ((-959 (-1033 (-413 |#1|))) (-959 |#1|))) (-15 -1411 ((-959 (-1033 (-413 |#1|))) (-786 |#1| (-870 |#3|)))) (-15 -1411 ((-1182 (-1033 (-413 |#1|))) (-1182 |#1|))) (-15 -1411 ((-650 (-786 |#1| (-870 |#3|))) (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))))) (-13 (-854) (-311) (-148) (-1031)) (-650 (-1186)) (-650 (-1186))) (T -1302)) +((-1411 (*1 *2 *3) (-12 (-5 *3 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6)))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-786 *4 (-870 *6)))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-1182 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-1182 (-1033 (-413 *4)))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-786 *4 (-870 *6))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186))) (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-786 *4 (-870 *5))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-786 *4 (-870 *6))) (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6))))) (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-4026 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-4026 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-4026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-4026 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-3371 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-3371 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-3371 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *4)) (|:| -1861 (-650 (-959 *4)))))) (-5 *1 (-1302 *4 *5 *6)) (-5 *3 (-650 (-959 *4))) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) (-5 *1 (-1302 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1358 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) (-5 *1 (-1302 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1358 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) (-5 *1 (-1302 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-2 (|:| -3922 (-1182 *4)) (|:| -1861 (-650 (-959 *4)))))) (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-1055 *4 *5))) (-5 *1 (-1302 *4 *5 *6)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) (-1360 (*1 *2 *3 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) (-1360 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1302 *5 *6 *7)) (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186)))))) +(-10 -7 (-15 -1360 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112) (-112))) (-15 -1360 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)) (-112))) (-15 -1360 ((-650 (-1055 |#1| |#2|)) (-650 (-959 |#1|)))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-1055 |#1| |#2|))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)) (-112))) (-15 -1358 ((-650 (-2 (|:| -3922 (-1182 |#1|)) (|:| -1861 (-650 (-959 |#1|))))) (-650 (-959 |#1|)))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112) (-112))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -3371 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-1055 |#1| |#2|))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112) (-112))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)) (-112))) (-15 -4026 ((-650 (-650 (-1033 (-413 |#1|)))) (-650 (-959 |#1|)))) (-15 -2555 ((-650 (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))) (-1055 |#1| |#2|))) (-15 -1411 ((-786 |#1| (-870 |#3|)) (-786 |#1| (-870 |#2|)))) (-15 -1411 ((-959 (-1033 (-413 |#1|))) (-959 |#1|))) (-15 -1411 ((-959 (-1033 (-413 |#1|))) (-786 |#1| (-870 |#3|)))) (-15 -1411 ((-1182 (-1033 (-413 |#1|))) (-1182 |#1|))) (-15 -1411 ((-650 (-786 |#1| (-870 |#3|))) (-1155 |#1| (-537 (-870 |#3|)) (-870 |#3|) (-786 |#1| (-870 |#3|)))))) +((-2951 (((-3 (-1276 (-413 (-570))) "failed") (-1276 |#1|) |#1|) 21)) (-3656 (((-112) (-1276 |#1|)) 12)) (-2400 (((-3 (-1276 (-570)) "failed") (-1276 |#1|)) 16))) +(((-1303 |#1|) (-10 -7 (-15 -3656 ((-112) (-1276 |#1|))) (-15 -2400 ((-3 (-1276 (-570)) "failed") (-1276 |#1|))) (-15 -2951 ((-3 (-1276 (-413 (-570))) "failed") (-1276 |#1|) |#1|))) (-645 (-570))) (T -1303)) +((-2951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-1276 (-413 (-570)))) (-5 *1 (-1303 *4)))) (-2400 (*1 *2 *3) (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-1276 (-570))) (-5 *1 (-1303 *4)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1276 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-112)) (-5 *1 (-1303 *4))))) +(-10 -7 (-15 -3656 ((-112) (-1276 |#1|))) (-15 -2400 ((-3 (-1276 (-570)) "failed") (-1276 |#1|))) (-15 -2951 ((-3 (-1276 (-413 (-570))) "failed") (-1276 |#1|) |#1|))) +((-2419 (((-112) $ $) NIL)) (-1359 (((-112) $) 11)) (-2620 (((-3 $ "failed") $ $) NIL)) (-3475 (((-777)) 8)) (-3734 (($) NIL T CONST)) (-2229 (((-3 $ "failed") $) 58)) (-3408 (($) 49)) (-2481 (((-112) $) 57)) (-3641 (((-3 $ "failed") $) 40)) (-2484 (((-928) $) 15)) (-4122 (((-1168) $) NIL)) (-2310 (($) 32 T CONST)) (-2155 (($ (-928)) 50)) (-3551 (((-1129) $) NIL)) (-1411 (((-570) $) 13)) (-3798 (((-868) $) 27) (($ (-570)) 24)) (-2862 (((-777)) 9 T CONST)) (-1319 (((-112) $ $) 60)) (-1809 (($) 29 T CONST)) (-1817 (($) 31 T CONST)) (-2923 (((-112) $ $) 38)) (-3026 (($ $) 52) (($ $ $) 47)) (-3014 (($ $ $) 35)) (** (($ $ (-928)) NIL) (($ $ (-777)) 54)) (* (($ (-928) $) NIL) (($ (-777) $) NIL) (($ (-570) $) 44) (($ $ $) 43))) +(((-1304 |#1|) (-13 (-174) (-373) (-620 (-570)) (-1161)) (-928)) (T -1304)) +NIL +(-13 (-174) (-373) (-620 (-570)) (-1161)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3227975 3227980 3227985 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3227960 3227965 3227970 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3227945 3227950 3227955 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3227930 3227935 3227940 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1304 3227073 3227805 3227882 "ZMOD" 3227887 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1303 3226183 3226347 3226556 "ZLINDEP" 3226905 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1302 3215483 3217251 3219223 "ZDSOLVE" 3224313 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1301 3214729 3214870 3215059 "YSTREAM" 3215329 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1300 3212503 3214030 3214234 "XRPOLY" 3214572 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1299 3209056 3210374 3210949 "XPR" 3211975 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1298 3206777 3208387 3208591 "XPOLY" 3208887 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1297 3204430 3205798 3205853 "XPOLYC" 3206141 NIL XPOLYC (NIL T T) -9 NIL 3206254 NIL) (-1296 3200806 3202947 3203335 "XPBWPOLY" 3204088 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1295 3196501 3198796 3198838 "XF" 3199459 NIL XF (NIL T) -9 NIL 3199859 NIL) (-1294 3196122 3196210 3196379 "XF-" 3196384 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1293 3191318 3192607 3192662 "XFALG" 3194834 NIL XFALG (NIL T T) -9 NIL 3195623 NIL) (-1292 3190451 3190555 3190760 "XEXPPKG" 3191210 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1291 3188560 3190301 3190397 "XDPOLY" 3190402 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1290 3187367 3187967 3188010 "XALG" 3188015 NIL XALG (NIL T) -9 NIL 3188126 NIL) (-1289 3180809 3185344 3185838 "WUTSET" 3186959 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1288 3179065 3179861 3180184 "WP" 3180620 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1287 3178667 3178887 3178957 "WHILEAST" 3179017 T WHILEAST (NIL) -8 NIL NIL NIL) (-1286 3178139 3178384 3178478 "WHEREAST" 3178595 T WHEREAST (NIL) -8 NIL NIL NIL) (-1285 3177025 3177223 3177518 "WFFINTBS" 3177936 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1284 3174929 3175356 3175818 "WEIER" 3176597 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1283 3173975 3174425 3174467 "VSPACE" 3174603 NIL VSPACE (NIL T) -9 NIL 3174677 NIL) (-1282 3173813 3173840 3173931 "VSPACE-" 3173936 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1281 3173622 3173664 3173732 "VOID" 3173767 T VOID (NIL) -8 NIL NIL NIL) (-1280 3171758 3172117 3172523 "VIEW" 3173238 T VIEW (NIL) -7 NIL NIL NIL) (-1279 3168182 3168821 3169558 "VIEWDEF" 3171043 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1278 3157486 3159730 3161903 "VIEW3D" 3166031 T VIEW3D (NIL) -8 NIL NIL NIL) (-1277 3149737 3151397 3152976 "VIEW2D" 3155929 T VIEW2D (NIL) -8 NIL NIL NIL) (-1276 3145090 3149507 3149599 "VECTOR" 3149680 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1275 3143667 3143926 3144244 "VECTOR2" 3144820 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1274 3137141 3141448 3141491 "VECTCAT" 3142486 NIL VECTCAT (NIL T) -9 NIL 3143073 NIL) (-1273 3136155 3136409 3136799 "VECTCAT-" 3136804 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1272 3135609 3135806 3135926 "VARIABLE" 3136070 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1271 3135542 3135547 3135577 "UTYPE" 3135582 T UTYPE (NIL) -9 NIL NIL NIL) (-1270 3134372 3134526 3134788 "UTSODETL" 3135368 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1269 3131812 3132272 3132796 "UTSODE" 3133913 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1268 3123649 3129438 3129927 "UTS" 3131381 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1267 3114523 3119890 3119933 "UTSCAT" 3121045 NIL UTSCAT (NIL T) -9 NIL 3121803 NIL) (-1266 3111870 3112593 3113582 "UTSCAT-" 3113587 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1265 3111497 3111540 3111673 "UTS2" 3111821 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1264 3105723 3108335 3108378 "URAGG" 3110448 NIL URAGG (NIL T) -9 NIL 3111171 NIL) (-1263 3102662 3103525 3104648 "URAGG-" 3104653 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1262 3098371 3101297 3101762 "UPXSSING" 3102326 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1261 3090437 3097618 3097891 "UPXS" 3098156 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1260 3083510 3090341 3090413 "UPXSCONS" 3090418 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1259 3073255 3080048 3080110 "UPXSCCA" 3080684 NIL UPXSCCA (NIL T T) -9 NIL 3080917 NIL) (-1258 3072893 3072978 3073152 "UPXSCCA-" 3073157 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1257 3062490 3069056 3069099 "UPXSCAT" 3069747 NIL UPXSCAT (NIL T) -9 NIL 3070356 NIL) (-1256 3061920 3061999 3062178 "UPXS2" 3062405 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1255 3060574 3060827 3061178 "UPSQFREE" 3061663 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1254 3053995 3057052 3057107 "UPSCAT" 3058268 NIL UPSCAT (NIL T T) -9 NIL 3059042 NIL) (-1253 3053199 3053406 3053733 "UPSCAT-" 3053738 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1252 3038854 3046622 3046665 "UPOLYC" 3048766 NIL UPOLYC (NIL T) -9 NIL 3049987 NIL) (-1251 3030182 3032608 3035755 "UPOLYC-" 3035760 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1250 3029809 3029852 3029985 "UPOLYC2" 3030133 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1249 3021620 3029492 3029621 "UP" 3029728 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1248 3020959 3021066 3021230 "UPMP" 3021509 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1247 3020512 3020593 3020732 "UPDIVP" 3020872 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1246 3019080 3019329 3019645 "UPDECOMP" 3020261 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1245 3018311 3018423 3018609 "UPCDEN" 3018964 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1244 3017830 3017899 3018048 "UP2" 3018236 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1243 3016297 3017034 3017311 "UNISEG" 3017588 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1242 3015512 3015639 3015844 "UNISEG2" 3016140 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1241 3014572 3014752 3014978 "UNIFACT" 3015328 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1240 2998504 3013749 3014000 "ULS" 3014379 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1239 2986502 2998408 2998480 "ULSCONS" 2998485 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1238 2968519 2980504 2980566 "ULSCCAT" 2981204 NIL ULSCCAT (NIL T T) -9 NIL 2981493 NIL) (-1237 2967569 2967814 2968202 "ULSCCAT-" 2968207 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1236 2956943 2963423 2963466 "ULSCAT" 2964329 NIL ULSCAT (NIL T) -9 NIL 2965060 NIL) (-1235 2956373 2956452 2956631 "ULS2" 2956858 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1234 2955500 2956010 2956117 "UINT8" 2956228 T UINT8 (NIL) -8 NIL NIL 2956313) (-1233 2954626 2955136 2955243 "UINT64" 2955354 T UINT64 (NIL) -8 NIL NIL 2955439) (-1232 2953752 2954262 2954369 "UINT32" 2954480 T UINT32 (NIL) -8 NIL NIL 2954565) (-1231 2952878 2953388 2953495 "UINT16" 2953606 T UINT16 (NIL) -8 NIL NIL 2953691) (-1230 2951181 2952138 2952168 "UFD" 2952380 T UFD (NIL) -9 NIL 2952494 NIL) (-1229 2950975 2951021 2951116 "UFD-" 2951121 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1228 2950057 2950240 2950456 "UDVO" 2950781 T UDVO (NIL) -7 NIL NIL NIL) (-1227 2947873 2948282 2948753 "UDPO" 2949621 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1226 2947806 2947811 2947841 "TYPE" 2947846 T TYPE (NIL) -9 NIL NIL NIL) (-1225 2947566 2947761 2947792 "TYPEAST" 2947797 T TYPEAST (NIL) -8 NIL NIL NIL) (-1224 2946537 2946739 2946979 "TWOFACT" 2947360 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1223 2945560 2945946 2946181 "TUPLE" 2946337 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1222 2943251 2943770 2944309 "TUBETOOL" 2945043 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1221 2942100 2942305 2942546 "TUBE" 2943044 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1220 2936829 2941072 2941355 "TS" 2941852 NIL TS (NIL T) -8 NIL NIL NIL) (-1219 2925469 2929588 2929685 "TSETCAT" 2934954 NIL TSETCAT (NIL T T T T) -9 NIL 2936485 NIL) (-1218 2920201 2921801 2923692 "TSETCAT-" 2923697 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1217 2914840 2915687 2916616 "TRMANIP" 2919337 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1216 2914281 2914344 2914507 "TRIMAT" 2914772 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1215 2912147 2912384 2912741 "TRIGMNIP" 2914030 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1214 2911667 2911780 2911810 "TRIGCAT" 2912023 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1213 2911336 2911415 2911556 "TRIGCAT-" 2911561 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1212 2908181 2910194 2910475 "TREE" 2911090 NIL TREE (NIL T) -8 NIL NIL NIL) (-1211 2907455 2907983 2908013 "TRANFUN" 2908048 T TRANFUN (NIL) -9 NIL 2908114 NIL) (-1210 2906734 2906925 2907205 "TRANFUN-" 2907210 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1209 2906538 2906570 2906631 "TOPSP" 2906695 T TOPSP (NIL) -7 NIL NIL NIL) (-1208 2905886 2906001 2906155 "TOOLSIGN" 2906419 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1207 2904520 2905063 2905302 "TEXTFILE" 2905669 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1206 2902432 2902973 2903402 "TEX" 2904113 T TEX (NIL) -8 NIL NIL NIL) (-1205 2902213 2902244 2902316 "TEX1" 2902395 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1204 2901861 2901924 2902014 "TEMUTL" 2902145 T TEMUTL (NIL) -7 NIL NIL NIL) (-1203 2900015 2900295 2900620 "TBCMPPK" 2901584 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1202 2891792 2898175 2898231 "TBAGG" 2898631 NIL TBAGG (NIL T T) -9 NIL 2898842 NIL) (-1201 2886862 2888350 2890104 "TBAGG-" 2890109 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1200 2886246 2886353 2886498 "TANEXP" 2886751 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1199 2879636 2886103 2886196 "TABLE" 2886201 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1198 2879048 2879147 2879285 "TABLEAU" 2879533 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1197 2873656 2874876 2876124 "TABLBUMP" 2877834 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1196 2872878 2873025 2873206 "SYSTEM" 2873497 T SYSTEM (NIL) -8 NIL NIL NIL) (-1195 2869337 2870036 2870819 "SYSSOLP" 2872129 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1194 2869135 2869292 2869323 "SYSPTR" 2869328 T SYSPTR (NIL) -8 NIL NIL NIL) (-1193 2868179 2868684 2868803 "SYSNNI" 2868989 NIL SYSNNI (NIL NIL) -8 NIL NIL 2869074) (-1192 2867486 2867945 2868024 "SYSINT" 2868084 NIL SYSINT (NIL NIL) -8 NIL NIL 2868129) (-1191 2863818 2864764 2865474 "SYNTAX" 2866798 T SYNTAX (NIL) -8 NIL NIL NIL) (-1190 2860976 2861578 2862210 "SYMTAB" 2863208 T SYMTAB (NIL) -8 NIL NIL NIL) (-1189 2856225 2857127 2858110 "SYMS" 2860015 T SYMS (NIL) -8 NIL NIL NIL) (-1188 2853460 2855683 2855913 "SYMPOLY" 2856030 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1187 2852977 2853052 2853175 "SYMFUNC" 2853372 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1186 2848997 2850289 2851102 "SYMBOL" 2852186 T SYMBOL (NIL) -8 NIL NIL NIL) (-1185 2842536 2844225 2845945 "SWITCH" 2847299 T SWITCH (NIL) -8 NIL NIL NIL) (-1184 2835770 2841357 2841660 "SUTS" 2842291 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1183 2827836 2835017 2835290 "SUPXS" 2835555 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1182 2819595 2827454 2827580 "SUP" 2827745 NIL SUP (NIL T) -8 NIL NIL NIL) (-1181 2818754 2818881 2819098 "SUPFRACF" 2819463 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1180 2818375 2818434 2818547 "SUP2" 2818689 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1179 2816823 2817097 2817453 "SUMRF" 2818074 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1178 2816158 2816224 2816416 "SUMFS" 2816744 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1177 2800125 2815335 2815586 "SULS" 2815965 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1176 2799727 2799947 2800017 "SUCHTAST" 2800077 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1175 2799022 2799252 2799392 "SUCH" 2799635 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1174 2792888 2793928 2794887 "SUBSPACE" 2798110 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1173 2792318 2792408 2792572 "SUBRESP" 2792776 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1172 2785684 2786983 2788294 "STTF" 2791054 NIL STTF (NIL T) -7 NIL NIL NIL) (-1171 2779857 2780977 2782124 "STTFNC" 2784584 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1170 2771168 2773039 2774833 "STTAYLOR" 2778098 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1169 2764298 2771032 2771115 "STRTBL" 2771120 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1168 2759662 2764253 2764284 "STRING" 2764289 T STRING (NIL) -8 NIL NIL NIL) (-1167 2754523 2759035 2759065 "STRICAT" 2759124 T STRICAT (NIL) -9 NIL 2759186 NIL) (-1166 2747276 2752142 2752753 "STREAM" 2753947 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1165 2746786 2746863 2747007 "STREAM3" 2747193 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1164 2745768 2745951 2746186 "STREAM2" 2746599 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1163 2745456 2745508 2745601 "STREAM1" 2745710 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1162 2744472 2744653 2744884 "STINPROD" 2745272 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1161 2744024 2744234 2744264 "STEP" 2744344 T STEP (NIL) -9 NIL 2744422 NIL) (-1160 2743211 2743513 2743661 "STEPAST" 2743898 T STEPAST (NIL) -8 NIL NIL NIL) (-1159 2736643 2743110 2743187 "STBL" 2743192 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1158 2731769 2735864 2735907 "STAGG" 2736060 NIL STAGG (NIL T) -9 NIL 2736149 NIL) (-1157 2729471 2730073 2730945 "STAGG-" 2730950 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1156 2727618 2729241 2729333 "STACK" 2729414 NIL STACK (NIL T) -8 NIL NIL NIL) (-1155 2720313 2725759 2726215 "SREGSET" 2727248 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1154 2712738 2714107 2715620 "SRDCMPK" 2718919 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1153 2705655 2710178 2710208 "SRAGG" 2711511 T SRAGG (NIL) -9 NIL 2712119 NIL) (-1152 2704672 2704927 2705306 "SRAGG-" 2705311 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1151 2699132 2703619 2704040 "SQMATRIX" 2704298 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1150 2692817 2695850 2696577 "SPLTREE" 2698477 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1149 2688780 2689473 2690119 "SPLNODE" 2692243 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1148 2687827 2688060 2688090 "SPFCAT" 2688534 T SPFCAT (NIL) -9 NIL NIL NIL) (-1147 2686564 2686774 2687038 "SPECOUT" 2687585 T SPECOUT (NIL) -7 NIL NIL NIL) (-1146 2677674 2679546 2679576 "SPADXPT" 2684252 T SPADXPT (NIL) -9 NIL 2686416 NIL) (-1145 2677435 2677475 2677544 "SPADPRSR" 2677627 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1144 2675484 2677390 2677421 "SPADAST" 2677426 T SPADAST (NIL) -8 NIL NIL NIL) (-1143 2667429 2669202 2669245 "SPACEC" 2673618 NIL SPACEC (NIL T) -9 NIL 2675434 NIL) (-1142 2665559 2667361 2667410 "SPACE3" 2667415 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1141 2664311 2664482 2664773 "SORTPAK" 2665364 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1140 2662403 2662706 2663118 "SOLVETRA" 2663975 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1139 2661453 2661675 2661936 "SOLVESER" 2662176 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1138 2656757 2657645 2658640 "SOLVERAD" 2660505 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1137 2652572 2653181 2653910 "SOLVEFOR" 2656124 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1136 2646842 2651921 2652018 "SNTSCAT" 2652023 NIL SNTSCAT (NIL T T T T) -9 NIL 2652093 NIL) (-1135 2640948 2645165 2645556 "SMTS" 2646532 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1134 2635633 2640836 2640913 "SMP" 2640918 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1133 2633792 2634093 2634491 "SMITH" 2635330 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1132 2626505 2630701 2630804 "SMATCAT" 2632155 NIL SMATCAT (NIL NIL T T T) -9 NIL 2632705 NIL) (-1131 2623445 2624268 2625446 "SMATCAT-" 2625451 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1130 2621111 2622681 2622724 "SKAGG" 2622985 NIL SKAGG (NIL T) -9 NIL 2623120 NIL) (-1129 2617437 2620584 2620768 "SINT" 2620920 T SINT (NIL) -8 NIL NIL 2621082) (-1128 2617209 2617247 2617313 "SIMPAN" 2617393 T SIMPAN (NIL) -7 NIL NIL NIL) (-1127 2616488 2616744 2616884 "SIG" 2617091 T SIG (NIL) -8 NIL NIL NIL) (-1126 2615326 2615547 2615822 "SIGNRF" 2616247 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1125 2614159 2614310 2614594 "SIGNEF" 2615155 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1124 2613465 2613742 2613866 "SIGAST" 2614057 T SIGAST (NIL) -8 NIL NIL NIL) (-1123 2611155 2611609 2612115 "SHP" 2613006 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1122 2605007 2611056 2611132 "SHDP" 2611137 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1121 2604580 2604772 2604802 "SGROUP" 2604895 T SGROUP (NIL) -9 NIL 2604957 NIL) (-1120 2604438 2604464 2604537 "SGROUP-" 2604542 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1119 2601273 2601971 2602694 "SGCF" 2603737 T SGCF (NIL) -7 NIL NIL NIL) (-1118 2595641 2600720 2600817 "SFRTCAT" 2600822 NIL SFRTCAT (NIL T T T T) -9 NIL 2600861 NIL) (-1117 2589062 2590080 2591216 "SFRGCD" 2594624 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1116 2582188 2583261 2584447 "SFQCMPK" 2587995 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1115 2581808 2581897 2582008 "SFORT" 2582129 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1114 2580926 2581648 2581769 "SEXOF" 2581774 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1113 2580033 2580807 2580875 "SEX" 2580880 T SEX (NIL) -8 NIL NIL NIL) (-1112 2575546 2576261 2576356 "SEXCAT" 2579293 NIL SEXCAT (NIL T T T T T) -9 NIL 2579871 NIL) (-1111 2572699 2575480 2575528 "SET" 2575533 NIL SET (NIL T) -8 NIL NIL NIL) (-1110 2570923 2571412 2571717 "SETMN" 2572440 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1109 2570419 2570571 2570601 "SETCAT" 2570777 T SETCAT (NIL) -9 NIL 2570887 NIL) (-1108 2570111 2570189 2570319 "SETCAT-" 2570324 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1107 2566472 2568572 2568615 "SETAGG" 2569485 NIL SETAGG (NIL T) -9 NIL 2569825 NIL) (-1106 2565930 2566046 2566283 "SETAGG-" 2566288 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1105 2565373 2565626 2565727 "SEQAST" 2565851 T SEQAST (NIL) -8 NIL NIL NIL) (-1104 2564572 2564866 2564927 "SEGXCAT" 2565213 NIL SEGXCAT (NIL T T) -9 NIL 2565333 NIL) (-1103 2563578 2564238 2564420 "SEG" 2564425 NIL SEG (NIL T) -8 NIL NIL NIL) (-1102 2562557 2562771 2562814 "SEGCAT" 2563336 NIL SEGCAT (NIL T) -9 NIL 2563557 NIL) (-1101 2561489 2561920 2562128 "SEGBIND" 2562384 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1100 2561110 2561169 2561282 "SEGBIND2" 2561424 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1099 2560683 2560911 2560988 "SEGAST" 2561055 T SEGAST (NIL) -8 NIL NIL NIL) (-1098 2559902 2560028 2560232 "SEG2" 2560527 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1097 2559312 2559837 2559884 "SDVAR" 2559889 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1096 2551839 2559082 2559212 "SDPOL" 2559217 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1095 2550432 2550698 2551017 "SCPKG" 2551554 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1094 2549596 2549768 2549960 "SCOPE" 2550262 T SCOPE (NIL) -8 NIL NIL NIL) (-1093 2548816 2548950 2549129 "SCACHE" 2549451 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1092 2548462 2548648 2548678 "SASTCAT" 2548683 T SASTCAT (NIL) -9 NIL 2548696 NIL) (-1091 2547949 2548297 2548373 "SAOS" 2548408 T SAOS (NIL) -8 NIL NIL NIL) (-1090 2547514 2547549 2547722 "SAERFFC" 2547908 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1089 2541453 2547411 2547491 "SAE" 2547496 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1088 2541046 2541081 2541240 "SAEFACT" 2541412 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1087 2539367 2539681 2540082 "RURPK" 2540712 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1086 2538004 2538310 2538615 "RULESET" 2539201 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1085 2535227 2535757 2536215 "RULE" 2537685 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1084 2534839 2535021 2535104 "RULECOLD" 2535179 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1083 2534629 2534657 2534728 "RTVALUE" 2534790 T RTVALUE (NIL) -8 NIL NIL NIL) (-1082 2534100 2534346 2534440 "RSTRCAST" 2534557 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1081 2528948 2529743 2530663 "RSETGCD" 2533299 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1080 2518178 2523257 2523354 "RSETCAT" 2527473 NIL RSETCAT (NIL T T T T) -9 NIL 2528570 NIL) (-1079 2516105 2516644 2517468 "RSETCAT-" 2517473 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1078 2508491 2509867 2511387 "RSDCMPK" 2514704 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1077 2506470 2506937 2507011 "RRCC" 2508097 NIL RRCC (NIL T T) -9 NIL 2508441 NIL) (-1076 2505821 2505995 2506274 "RRCC-" 2506279 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1075 2505264 2505517 2505618 "RPTAST" 2505742 T RPTAST (NIL) -8 NIL NIL NIL) (-1074 2479110 2488469 2488536 "RPOLCAT" 2499202 NIL RPOLCAT (NIL T T T) -9 NIL 2502362 NIL) (-1073 2470608 2472948 2476070 "RPOLCAT-" 2476075 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1072 2461539 2468819 2469301 "ROUTINE" 2470148 T ROUTINE (NIL) -8 NIL NIL NIL) (-1071 2458337 2461165 2461305 "ROMAN" 2461421 T ROMAN (NIL) -8 NIL NIL NIL) (-1070 2456581 2457197 2457457 "ROIRC" 2458142 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1069 2452813 2455097 2455127 "RNS" 2455431 T RNS (NIL) -9 NIL 2455705 NIL) (-1068 2451322 2451705 2452239 "RNS-" 2452314 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1067 2450725 2451133 2451163 "RNG" 2451168 T RNG (NIL) -9 NIL 2451189 NIL) (-1066 2449728 2450090 2450292 "RNGBIND" 2450576 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1065 2449127 2449515 2449558 "RMODULE" 2449563 NIL RMODULE (NIL T) -9 NIL 2449590 NIL) (-1064 2447963 2448057 2448393 "RMCAT2" 2449028 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1063 2444813 2447309 2447606 "RMATRIX" 2447725 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1062 2437640 2439900 2440015 "RMATCAT" 2443374 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2444356 NIL) (-1061 2437015 2437162 2437469 "RMATCAT-" 2437474 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1060 2436416 2436637 2436680 "RLINSET" 2436874 NIL RLINSET (NIL T) -9 NIL 2436965 NIL) (-1059 2435983 2436058 2436186 "RINTERP" 2436335 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1058 2435041 2435595 2435625 "RING" 2435681 T RING (NIL) -9 NIL 2435773 NIL) (-1057 2434833 2434877 2434974 "RING-" 2434979 NIL RING- (NIL T) -8 NIL NIL NIL) (-1056 2433674 2433911 2434169 "RIDIST" 2434597 T RIDIST (NIL) -7 NIL NIL NIL) (-1055 2424963 2433142 2433348 "RGCHAIN" 2433522 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1054 2424313 2424719 2424760 "RGBCSPC" 2424818 NIL RGBCSPC (NIL T) -9 NIL 2424870 NIL) (-1053 2423471 2423852 2423893 "RGBCMDL" 2424125 NIL RGBCMDL (NIL T) -9 NIL 2424239 NIL) (-1052 2420465 2421079 2421749 "RF" 2422835 NIL RF (NIL T) -7 NIL NIL NIL) (-1051 2420111 2420174 2420277 "RFFACTOR" 2420396 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1050 2419836 2419871 2419968 "RFFACT" 2420070 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1049 2417953 2418317 2418699 "RFDIST" 2419476 T RFDIST (NIL) -7 NIL NIL NIL) (-1048 2417406 2417498 2417661 "RETSOL" 2417855 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1047 2417042 2417122 2417165 "RETRACT" 2417298 NIL RETRACT (NIL T) -9 NIL 2417385 NIL) (-1046 2416891 2416916 2417003 "RETRACT-" 2417008 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1045 2416493 2416713 2416783 "RETAST" 2416843 T RETAST (NIL) -8 NIL NIL NIL) (-1044 2409231 2416146 2416273 "RESULT" 2416388 T RESULT (NIL) -8 NIL NIL NIL) (-1043 2407822 2408500 2408699 "RESRING" 2409134 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1042 2407458 2407507 2407605 "RESLATC" 2407759 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1041 2407163 2407198 2407305 "REPSQ" 2407417 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1040 2404585 2405165 2405767 "REP" 2406583 T REP (NIL) -7 NIL NIL NIL) (-1039 2404282 2404317 2404428 "REPDB" 2404544 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1038 2398182 2399571 2400794 "REP2" 2403094 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1037 2394559 2395240 2396048 "REP1" 2397409 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1036 2387255 2392700 2393156 "REGSET" 2394189 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1035 2386020 2386403 2386653 "REF" 2387040 NIL REF (NIL T) -8 NIL NIL NIL) (-1034 2385397 2385500 2385667 "REDORDER" 2385904 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1033 2381365 2384610 2384837 "RECLOS" 2385225 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1032 2380417 2380598 2380813 "REALSOLV" 2381172 T REALSOLV (NIL) -7 NIL NIL NIL) (-1031 2380263 2380304 2380334 "REAL" 2380339 T REAL (NIL) -9 NIL 2380374 NIL) (-1030 2376746 2377548 2378432 "REAL0Q" 2379428 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1029 2372347 2373335 2374396 "REAL0" 2375727 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1028 2371818 2372064 2372158 "RDUCEAST" 2372275 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1027 2371223 2371295 2371502 "RDIV" 2371740 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1026 2370291 2370465 2370678 "RDIST" 2371045 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1025 2368888 2369175 2369547 "RDETRS" 2369999 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1024 2366700 2367154 2367692 "RDETR" 2368430 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1023 2365325 2365603 2366000 "RDEEFS" 2366416 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1022 2363834 2364140 2364565 "RDEEF" 2365013 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1021 2357895 2360815 2360845 "RCFIELD" 2362140 T RCFIELD (NIL) -9 NIL 2362871 NIL) (-1020 2355959 2356463 2357159 "RCFIELD-" 2357234 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1019 2352228 2354060 2354103 "RCAGG" 2355187 NIL RCAGG (NIL T) -9 NIL 2355652 NIL) (-1018 2351856 2351950 2352113 "RCAGG-" 2352118 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1017 2351191 2351303 2351468 "RATRET" 2351740 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1016 2350744 2350811 2350932 "RATFACT" 2351119 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1015 2350052 2350172 2350324 "RANDSRC" 2350614 T RANDSRC (NIL) -7 NIL NIL NIL) (-1014 2349786 2349830 2349903 "RADUTIL" 2350001 T RADUTIL (NIL) -7 NIL NIL NIL) (-1013 2342900 2348617 2348928 "RADIX" 2349509 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1012 2334519 2342742 2342872 "RADFF" 2342877 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1011 2334166 2334241 2334271 "RADCAT" 2334431 T RADCAT (NIL) -9 NIL NIL NIL) (-1010 2333948 2333996 2334096 "RADCAT-" 2334101 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1009 2332046 2333718 2333810 "QUEUE" 2333891 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1008 2328583 2331979 2332027 "QUAT" 2332032 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1007 2328214 2328257 2328388 "QUATCT2" 2328534 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1006 2321663 2325008 2325050 "QUATCAT" 2325841 NIL QUATCAT (NIL T) -9 NIL 2326607 NIL) (-1005 2317802 2318839 2320229 "QUATCAT-" 2320325 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1004 2315267 2316878 2316921 "QUAGG" 2317302 NIL QUAGG (NIL T) -9 NIL 2317477 NIL) (-1003 2314869 2315089 2315159 "QQUTAST" 2315219 T QQUTAST (NIL) -8 NIL NIL NIL) (-1002 2313762 2314262 2314436 "QFORM" 2314741 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1001 2304755 2309994 2310036 "QFCAT" 2310704 NIL QFCAT (NIL T) -9 NIL 2311705 NIL) (-1000 2300322 2301523 2303117 "QFCAT-" 2303213 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-999 2299956 2299999 2300128 "QFCAT2" 2300273 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-998 2299416 2299526 2299656 "QEQUAT" 2299846 T QEQUAT (NIL) -8 NIL NIL NIL) (-997 2292562 2293635 2294819 "QCMPACK" 2298349 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-996 2290111 2290559 2290987 "QALGSET" 2292217 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-995 2289356 2289530 2289762 "QALGSET2" 2289931 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-994 2288046 2288270 2288587 "PWFFINTB" 2289129 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-993 2286228 2286396 2286750 "PUSHVAR" 2287860 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-992 2282146 2283200 2283241 "PTRANFN" 2285125 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-991 2280548 2280839 2281161 "PTPACK" 2281857 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-990 2280180 2280237 2280346 "PTFUNC2" 2280485 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-989 2274657 2279052 2279093 "PTCAT" 2279389 NIL PTCAT (NIL T) -9 NIL 2279542 NIL) (-988 2274315 2274350 2274474 "PSQFR" 2274616 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-987 2272910 2273208 2273542 "PSEUDLIN" 2274013 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-986 2259673 2262044 2264368 "PSETPK" 2270670 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-985 2252691 2255431 2255527 "PSETCAT" 2258548 NIL PSETCAT (NIL T T T T) -9 NIL 2259362 NIL) (-984 2250527 2251161 2251982 "PSETCAT-" 2251987 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-983 2249876 2250041 2250069 "PSCURVE" 2250337 T PSCURVE (NIL) -9 NIL 2250504 NIL) (-982 2245874 2247390 2247455 "PSCAT" 2248299 NIL PSCAT (NIL T T T) -9 NIL 2248539 NIL) (-981 2244937 2245153 2245553 "PSCAT-" 2245558 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-980 2243642 2244302 2244507 "PRTITION" 2244752 T PRTITION (NIL) -8 NIL NIL NIL) (-979 2243117 2243363 2243455 "PRTDAST" 2243570 T PRTDAST (NIL) -8 NIL NIL NIL) (-978 2232207 2234421 2236609 "PRS" 2240979 NIL PRS (NIL T T) -7 NIL NIL NIL) (-977 2230018 2231557 2231597 "PRQAGG" 2231780 NIL PRQAGG (NIL T) -9 NIL 2231882 NIL) (-976 2229354 2229659 2229687 "PROPLOG" 2229826 T PROPLOG (NIL) -9 NIL 2229941 NIL) (-975 2228958 2229015 2229138 "PROPFUN2" 2229277 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-974 2228465 2228547 2228681 "PROPFUN1" 2228857 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-973 2226646 2227212 2227509 "PROPFRML" 2228201 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-972 2226115 2226222 2226350 "PROPERTY" 2226538 T PROPERTY (NIL) -8 NIL NIL NIL) (-971 2220173 2224281 2225101 "PRODUCT" 2225341 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-970 2217451 2219631 2219865 "PR" 2219984 NIL PR (NIL T T) -8 NIL NIL NIL) (-969 2217247 2217279 2217338 "PRINT" 2217412 T PRINT (NIL) -7 NIL NIL NIL) (-968 2216587 2216704 2216856 "PRIMES" 2217127 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-967 2214652 2215053 2215519 "PRIMELT" 2216166 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-966 2214381 2214430 2214458 "PRIMCAT" 2214582 T PRIMCAT (NIL) -9 NIL NIL NIL) (-965 2210496 2214319 2214364 "PRIMARR" 2214369 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-964 2209503 2209681 2209909 "PRIMARR2" 2210314 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-963 2209146 2209202 2209313 "PREASSOC" 2209441 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-962 2208621 2208754 2208782 "PPCURVE" 2208987 T PPCURVE (NIL) -9 NIL 2209123 NIL) (-961 2208216 2208416 2208499 "PORTNUM" 2208558 T PORTNUM (NIL) -8 NIL NIL NIL) (-960 2205575 2205974 2206566 "POLYROOT" 2207797 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-959 2199757 2205179 2205339 "POLY" 2205448 NIL POLY (NIL T) -8 NIL NIL NIL) (-958 2199140 2199198 2199432 "POLYLIFT" 2199693 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-957 2195415 2195864 2196493 "POLYCATQ" 2198685 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-956 2182127 2187255 2187320 "POLYCAT" 2190834 NIL POLYCAT (NIL T T T) -9 NIL 2192712 NIL) (-955 2175576 2177438 2179822 "POLYCAT-" 2179827 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-954 2175163 2175231 2175351 "POLY2UP" 2175502 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-953 2174795 2174852 2174961 "POLY2" 2175100 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-952 2173480 2173719 2173995 "POLUTIL" 2174569 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-951 2171835 2172112 2172443 "POLTOPOL" 2173202 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-950 2167300 2171771 2171817 "POINT" 2171822 NIL POINT (NIL T) -8 NIL NIL NIL) (-949 2165487 2165844 2166219 "PNTHEORY" 2166945 T PNTHEORY (NIL) -7 NIL NIL NIL) (-948 2163945 2164242 2164641 "PMTOOLS" 2165185 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-947 2163538 2163616 2163733 "PMSYM" 2163861 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-946 2163046 2163115 2163290 "PMQFCAT" 2163463 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-945 2162401 2162511 2162667 "PMPRED" 2162923 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-944 2161794 2161880 2162042 "PMPREDFS" 2162302 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-943 2160458 2160666 2161044 "PMPLCAT" 2161556 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-942 2159990 2160069 2160221 "PMLSAGG" 2160373 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-941 2159463 2159539 2159721 "PMKERNEL" 2159908 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-940 2159080 2159155 2159268 "PMINS" 2159382 NIL PMINS (NIL T) -7 NIL NIL NIL) (-939 2158522 2158591 2158800 "PMFS" 2159005 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-938 2157750 2157868 2158073 "PMDOWN" 2158399 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-937 2156917 2157075 2157256 "PMASS" 2157589 T PMASS (NIL) -7 NIL NIL NIL) (-936 2156190 2156300 2156463 "PMASSFS" 2156804 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-935 2155845 2155913 2156007 "PLOTTOOL" 2156116 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-934 2150452 2151656 2152804 "PLOT" 2154717 T PLOT (NIL) -8 NIL NIL NIL) (-933 2146256 2147300 2148221 "PLOT3D" 2149551 T PLOT3D (NIL) -8 NIL NIL NIL) (-932 2145168 2145345 2145580 "PLOT1" 2146060 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-931 2120557 2125234 2130085 "PLEQN" 2140434 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-930 2119875 2119997 2120177 "PINTERP" 2120422 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-929 2119568 2119615 2119718 "PINTERPA" 2119822 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-928 2118789 2119337 2119424 "PI" 2119464 T PI (NIL) -8 NIL NIL 2119531) (-927 2117086 2118061 2118089 "PID" 2118271 T PID (NIL) -9 NIL 2118405 NIL) (-926 2116837 2116874 2116949 "PICOERCE" 2117043 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-925 2116157 2116296 2116472 "PGROEB" 2116693 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-924 2111744 2112558 2113463 "PGE" 2115272 T PGE (NIL) -7 NIL NIL NIL) (-923 2109867 2110114 2110480 "PGCD" 2111461 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-922 2109205 2109308 2109469 "PFRPAC" 2109751 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-921 2105845 2107753 2108106 "PFR" 2108884 NIL PFR (NIL T) -8 NIL NIL NIL) (-920 2104234 2104478 2104803 "PFOTOOLS" 2105592 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-919 2102767 2103006 2103357 "PFOQ" 2103991 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-918 2101268 2101480 2101836 "PFO" 2102551 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-917 2097821 2101157 2101226 "PF" 2101231 NIL PF (NIL NIL) -8 NIL NIL NIL) (-916 2095155 2096426 2096454 "PFECAT" 2097039 T PFECAT (NIL) -9 NIL 2097423 NIL) (-915 2094600 2094754 2094968 "PFECAT-" 2094973 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-914 2093203 2093455 2093756 "PFBRU" 2094349 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-913 2091069 2091421 2091853 "PFBR" 2092854 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-912 2086951 2088445 2089121 "PERM" 2090426 NIL PERM (NIL T) -8 NIL NIL NIL) (-911 2082185 2083158 2084028 "PERMGRP" 2086114 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-910 2080291 2081248 2081289 "PERMCAT" 2081735 NIL PERMCAT (NIL T) -9 NIL 2082040 NIL) (-909 2079944 2079985 2080109 "PERMAN" 2080244 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-908 2077432 2079609 2079731 "PENDTREE" 2079855 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-907 2075456 2076224 2076265 "PDRING" 2076922 NIL PDRING (NIL T) -9 NIL 2077208 NIL) (-906 2074559 2074777 2075139 "PDRING-" 2075144 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-905 2071774 2072552 2073220 "PDEPROB" 2073911 T PDEPROB (NIL) -8 NIL NIL NIL) (-904 2069319 2069823 2070378 "PDEPACK" 2071239 T PDEPACK (NIL) -7 NIL NIL NIL) (-903 2068231 2068421 2068672 "PDECOMP" 2069118 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-902 2065810 2066653 2066681 "PDECAT" 2067468 T PDECAT (NIL) -9 NIL 2068181 NIL) (-901 2065561 2065594 2065684 "PCOMP" 2065771 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-900 2063739 2064362 2064659 "PBWLB" 2065290 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-899 2056212 2057812 2059150 "PATTERN" 2062422 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-898 2055844 2055901 2056010 "PATTERN2" 2056149 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-897 2053601 2053989 2054446 "PATTERN1" 2055433 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-896 2050969 2051550 2052031 "PATRES" 2053166 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-895 2050533 2050600 2050732 "PATRES2" 2050896 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-894 2048416 2048821 2049228 "PATMATCH" 2050200 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-893 2047926 2048135 2048176 "PATMAB" 2048283 NIL PATMAB (NIL T) -9 NIL 2048366 NIL) (-892 2046444 2046780 2047038 "PATLRES" 2047731 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-891 2045990 2046113 2046154 "PATAB" 2046159 NIL PATAB (NIL T) -9 NIL 2046331 NIL) (-890 2043471 2044003 2044576 "PARTPERM" 2045437 T PARTPERM (NIL) -7 NIL NIL NIL) (-889 2043092 2043155 2043257 "PARSURF" 2043402 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-888 2042724 2042781 2042890 "PARSU2" 2043029 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-887 2042488 2042528 2042595 "PARSER" 2042677 T PARSER (NIL) -7 NIL NIL NIL) (-886 2042109 2042172 2042274 "PARSCURV" 2042419 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-885 2041741 2041798 2041907 "PARSC2" 2042046 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-884 2041380 2041438 2041535 "PARPCURV" 2041677 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-883 2041012 2041069 2041178 "PARPC2" 2041317 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-882 2040073 2040385 2040567 "PARAMAST" 2040850 T PARAMAST (NIL) -8 NIL NIL NIL) (-881 2039593 2039679 2039798 "PAN2EXPR" 2039974 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-880 2038370 2038714 2038942 "PALETTE" 2039385 T PALETTE (NIL) -8 NIL NIL NIL) (-879 2036763 2037375 2037735 "PAIR" 2038056 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-878 2030631 2036020 2036215 "PADICRC" 2036617 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-877 2023858 2029975 2030160 "PADICRAT" 2030478 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-876 2022173 2023795 2023840 "PADIC" 2023845 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-875 2019283 2020847 2020887 "PADICCT" 2021468 NIL PADICCT (NIL NIL) -9 NIL 2021750 NIL) (-874 2018240 2018440 2018708 "PADEPAC" 2019070 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-873 2017452 2017585 2017791 "PADE" 2018102 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-872 2015839 2016660 2016940 "OWP" 2017256 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-871 2015332 2015545 2015642 "OVERSET" 2015762 T OVERSET (NIL) -8 NIL NIL NIL) (-870 2014378 2014937 2015109 "OVAR" 2015200 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-869 2013642 2013763 2013924 "OUT" 2014237 T OUT (NIL) -7 NIL NIL NIL) (-868 2002514 2004751 2006951 "OUTFORM" 2011462 T OUTFORM (NIL) -8 NIL NIL NIL) (-867 2001850 2002111 2002238 "OUTBFILE" 2002407 T OUTBFILE (NIL) -8 NIL NIL NIL) (-866 2001157 2001322 2001350 "OUTBCON" 2001668 T OUTBCON (NIL) -9 NIL 2001834 NIL) (-865 2000758 2000870 2001027 "OUTBCON-" 2001032 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-864 2000138 2000487 2000576 "OSI" 2000689 T OSI (NIL) -8 NIL NIL NIL) (-863 1999668 2000006 2000034 "OSGROUP" 2000039 T OSGROUP (NIL) -9 NIL 2000061 NIL) (-862 1998413 1998640 1998925 "ORTHPOL" 1999415 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-861 1995964 1998248 1998369 "OREUP" 1998374 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-860 1993367 1995655 1995782 "ORESUP" 1995906 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-859 1990895 1991395 1991956 "OREPCTO" 1992856 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-858 1984581 1986782 1986823 "OREPCAT" 1989171 NIL OREPCAT (NIL T) -9 NIL 1990275 NIL) (-857 1981728 1982510 1983568 "OREPCAT-" 1983573 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-856 1980879 1981177 1981205 "ORDSET" 1981514 T ORDSET (NIL) -9 NIL 1981678 NIL) (-855 1980310 1980458 1980682 "ORDSET-" 1980687 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-854 1978875 1979666 1979694 "ORDRING" 1979896 T ORDRING (NIL) -9 NIL 1980021 NIL) (-853 1978520 1978614 1978758 "ORDRING-" 1978763 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-852 1977900 1978363 1978391 "ORDMON" 1978396 T ORDMON (NIL) -9 NIL 1978417 NIL) (-851 1977062 1977209 1977404 "ORDFUNS" 1977749 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-850 1976400 1976819 1976847 "ORDFIN" 1976912 T ORDFIN (NIL) -9 NIL 1976986 NIL) (-849 1972959 1974986 1975395 "ORDCOMP" 1976024 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-848 1972225 1972352 1972538 "ORDCOMP2" 1972819 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-847 1968806 1969716 1970530 "OPTPROB" 1971431 T OPTPROB (NIL) -8 NIL NIL NIL) (-846 1965608 1966247 1966951 "OPTPACK" 1968122 T OPTPACK (NIL) -7 NIL NIL NIL) (-845 1963295 1964061 1964089 "OPTCAT" 1964908 T OPTCAT (NIL) -9 NIL 1965558 NIL) (-844 1962679 1962972 1963077 "OPSIG" 1963210 T OPSIG (NIL) -8 NIL NIL NIL) (-843 1962447 1962486 1962552 "OPQUERY" 1962633 T OPQUERY (NIL) -7 NIL NIL NIL) (-842 1959578 1960758 1961262 "OP" 1961976 NIL OP (NIL T) -8 NIL NIL NIL) (-841 1958952 1959178 1959219 "OPERCAT" 1959431 NIL OPERCAT (NIL T) -9 NIL 1959528 NIL) (-840 1958707 1958763 1958880 "OPERCAT-" 1958885 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-839 1955520 1957504 1957873 "ONECOMP" 1958371 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-838 1954825 1954940 1955114 "ONECOMP2" 1955392 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1954244 1954350 1954480 "OMSERVER" 1954715 T OMSERVER (NIL) -7 NIL NIL NIL) (-836 1951106 1953684 1953724 "OMSAGG" 1953785 NIL OMSAGG (NIL T) -9 NIL 1953849 NIL) (-835 1949729 1949992 1950274 "OMPKG" 1950844 T OMPKG (NIL) -7 NIL NIL NIL) (-834 1949159 1949262 1949290 "OM" 1949589 T OM (NIL) -9 NIL NIL NIL) (-833 1947706 1948708 1948877 "OMLO" 1949040 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-832 1946666 1946813 1947033 "OMEXPR" 1947532 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-831 1945957 1946212 1946348 "OMERR" 1946550 T OMERR (NIL) -8 NIL NIL NIL) (-830 1945108 1945378 1945538 "OMERRK" 1945817 T OMERRK (NIL) -8 NIL NIL NIL) (-829 1944559 1944785 1944893 "OMENC" 1945020 T OMENC (NIL) -8 NIL NIL NIL) (-828 1938454 1939639 1940810 "OMDEV" 1943408 T OMDEV (NIL) -8 NIL NIL NIL) (-827 1937523 1937694 1937888 "OMCONN" 1938280 T OMCONN (NIL) -8 NIL NIL NIL) (-826 1936044 1937020 1937048 "OINTDOM" 1937053 T OINTDOM (NIL) -9 NIL 1937074 NIL) (-825 1933382 1934732 1935069 "OFMONOID" 1935739 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-824 1932793 1933319 1933364 "ODVAR" 1933369 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-823 1930216 1932538 1932693 "ODR" 1932698 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-822 1922797 1929992 1930118 "ODPOL" 1930123 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-821 1916619 1922669 1922774 "ODP" 1922779 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-820 1915385 1915600 1915875 "ODETOOLS" 1916393 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-819 1912352 1913010 1913726 "ODESYS" 1914718 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-818 1907234 1908142 1909167 "ODERTRIC" 1911427 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-817 1906660 1906742 1906936 "ODERED" 1907146 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-816 1903548 1904096 1904773 "ODERAT" 1906083 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-815 1900505 1900972 1901569 "ODEPRRIC" 1903077 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-814 1898448 1899044 1899530 "ODEPROB" 1900039 T ODEPROB (NIL) -8 NIL NIL NIL) (-813 1894968 1895453 1896100 "ODEPRIM" 1897927 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-812 1894217 1894319 1894579 "ODEPAL" 1894860 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-811 1890379 1891170 1892034 "ODEPACK" 1893373 T ODEPACK (NIL) -7 NIL NIL NIL) (-810 1889440 1889547 1889769 "ODEINT" 1890268 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-809 1883541 1884966 1886413 "ODEIFTBL" 1888013 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-808 1878939 1879725 1880677 "ODEEF" 1882700 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-807 1878288 1878377 1878600 "ODECONST" 1878844 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-806 1876413 1877074 1877102 "ODECAT" 1877707 T ODECAT (NIL) -9 NIL 1878238 NIL) (-805 1873268 1876118 1876240 "OCT" 1876323 NIL OCT (NIL T) -8 NIL NIL NIL) (-804 1872906 1872949 1873076 "OCTCT2" 1873219 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-803 1867555 1869990 1870030 "OC" 1871127 NIL OC (NIL T) -9 NIL 1871985 NIL) (-802 1864782 1865530 1866520 "OC-" 1866614 NIL OC- (NIL T T) -8 NIL NIL NIL) (-801 1864134 1864602 1864630 "OCAMON" 1864635 T OCAMON (NIL) -9 NIL 1864656 NIL) (-800 1863665 1864006 1864034 "OASGP" 1864039 T OASGP (NIL) -9 NIL 1864059 NIL) (-799 1862926 1863415 1863443 "OAMONS" 1863483 T OAMONS (NIL) -9 NIL 1863526 NIL) (-798 1862340 1862773 1862801 "OAMON" 1862806 T OAMON (NIL) -9 NIL 1862826 NIL) (-797 1861598 1862116 1862144 "OAGROUP" 1862149 T OAGROUP (NIL) -9 NIL 1862169 NIL) (-796 1861288 1861338 1861426 "NUMTUBE" 1861542 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-795 1854861 1856379 1857915 "NUMQUAD" 1859772 T NUMQUAD (NIL) -7 NIL NIL NIL) (-794 1850617 1851605 1852630 "NUMODE" 1853856 T NUMODE (NIL) -7 NIL NIL NIL) (-793 1847972 1848852 1848880 "NUMINT" 1849803 T NUMINT (NIL) -9 NIL 1850567 NIL) (-792 1846920 1847117 1847335 "NUMFMT" 1847774 T NUMFMT (NIL) -7 NIL NIL NIL) (-791 1833279 1836224 1838756 "NUMERIC" 1844427 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-790 1827649 1832728 1832823 "NTSCAT" 1832828 NIL NTSCAT (NIL T T T T) -9 NIL 1832867 NIL) (-789 1826843 1827008 1827201 "NTPOLFN" 1827488 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-788 1814920 1823668 1824480 "NSUP" 1826064 NIL NSUP (NIL T) -8 NIL NIL NIL) (-787 1814552 1814609 1814718 "NSUP2" 1814857 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-786 1804778 1814326 1814459 "NSMP" 1814464 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-785 1803210 1803511 1803868 "NREP" 1804466 NIL NREP (NIL T) -7 NIL NIL NIL) (-784 1801801 1802053 1802411 "NPCOEF" 1802953 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-783 1800867 1800982 1801198 "NORMRETR" 1801682 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-782 1798908 1799198 1799607 "NORMPK" 1800575 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-781 1798593 1798621 1798745 "NORMMA" 1798874 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-780 1798393 1798550 1798579 "NONE" 1798584 T NONE (NIL) -8 NIL NIL NIL) (-779 1798182 1798211 1798280 "NONE1" 1798357 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-778 1797679 1797741 1797920 "NODE1" 1798114 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-777 1795964 1796815 1797070 "NNI" 1797417 T NNI (NIL) -8 NIL NIL 1797652) (-776 1794384 1794697 1795061 "NLINSOL" 1795632 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-775 1790625 1791620 1792519 "NIPROB" 1793505 T NIPROB (NIL) -8 NIL NIL NIL) (-774 1789382 1789616 1789918 "NFINTBAS" 1790387 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-773 1788556 1789032 1789073 "NETCLT" 1789245 NIL NETCLT (NIL T) -9 NIL 1789327 NIL) (-772 1787264 1787495 1787776 "NCODIV" 1788324 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-771 1787026 1787063 1787138 "NCNTFRAC" 1787221 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-770 1785206 1785570 1785990 "NCEP" 1786651 NIL NCEP (NIL T) -7 NIL NIL NIL) (-769 1784057 1784830 1784858 "NASRING" 1784968 T NASRING (NIL) -9 NIL 1785048 NIL) (-768 1783852 1783896 1783990 "NASRING-" 1783995 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-767 1782959 1783484 1783512 "NARNG" 1783629 T NARNG (NIL) -9 NIL 1783720 NIL) (-766 1782651 1782718 1782852 "NARNG-" 1782857 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-765 1781530 1781737 1781972 "NAGSP" 1782436 T NAGSP (NIL) -7 NIL NIL NIL) (-764 1772802 1774486 1776159 "NAGS" 1779877 T NAGS (NIL) -7 NIL NIL NIL) (-763 1771350 1771658 1771989 "NAGF07" 1772491 T NAGF07 (NIL) -7 NIL NIL NIL) (-762 1765888 1767179 1768486 "NAGF04" 1770063 T NAGF04 (NIL) -7 NIL NIL NIL) (-761 1758856 1760470 1762103 "NAGF02" 1764275 T NAGF02 (NIL) -7 NIL NIL NIL) (-760 1754080 1755180 1756297 "NAGF01" 1757759 T NAGF01 (NIL) -7 NIL NIL NIL) (-759 1747708 1749274 1750859 "NAGE04" 1752515 T NAGE04 (NIL) -7 NIL NIL NIL) (-758 1738877 1740998 1743128 "NAGE02" 1745598 T NAGE02 (NIL) -7 NIL NIL NIL) (-757 1734830 1735777 1736741 "NAGE01" 1737933 T NAGE01 (NIL) -7 NIL NIL NIL) (-756 1732625 1733159 1733717 "NAGD03" 1734292 T NAGD03 (NIL) -7 NIL NIL NIL) (-755 1724375 1726303 1728257 "NAGD02" 1730691 T NAGD02 (NIL) -7 NIL NIL NIL) (-754 1718186 1719611 1721051 "NAGD01" 1722955 T NAGD01 (NIL) -7 NIL NIL NIL) (-753 1714395 1715217 1716054 "NAGC06" 1717369 T NAGC06 (NIL) -7 NIL NIL NIL) (-752 1712860 1713192 1713548 "NAGC05" 1714059 T NAGC05 (NIL) -7 NIL NIL NIL) (-751 1712236 1712355 1712499 "NAGC02" 1712736 T NAGC02 (NIL) -7 NIL NIL NIL) (-750 1711195 1711778 1711818 "NAALG" 1711897 NIL NAALG (NIL T) -9 NIL 1711958 NIL) (-749 1711030 1711059 1711149 "NAALG-" 1711154 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-748 1704980 1706088 1707275 "MULTSQFR" 1709926 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-747 1704299 1704374 1704558 "MULTFACT" 1704892 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-746 1697023 1700936 1700989 "MTSCAT" 1702059 NIL MTSCAT (NIL T T) -9 NIL 1702574 NIL) (-745 1696735 1696789 1696881 "MTHING" 1696963 NIL MTHING (NIL T) -7 NIL NIL NIL) (-744 1696527 1696560 1696620 "MSYSCMD" 1696695 T MSYSCMD (NIL) -7 NIL NIL NIL) (-743 1692609 1695282 1695602 "MSET" 1696240 NIL MSET (NIL T) -8 NIL NIL NIL) (-742 1689678 1692170 1692211 "MSETAGG" 1692216 NIL MSETAGG (NIL T) -9 NIL 1692250 NIL) (-741 1685519 1687057 1687802 "MRING" 1688978 NIL MRING (NIL T T) -8 NIL NIL NIL) (-740 1685085 1685152 1685283 "MRF2" 1685446 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-739 1684703 1684738 1684882 "MRATFAC" 1685044 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-738 1682315 1682610 1683041 "MPRFF" 1684408 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-737 1676612 1682169 1682266 "MPOLY" 1682271 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-736 1676102 1676137 1676345 "MPCPF" 1676571 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-735 1675616 1675659 1675843 "MPC3" 1676053 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-734 1674811 1674892 1675113 "MPC2" 1675531 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-733 1673112 1673449 1673839 "MONOTOOL" 1674471 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-732 1672337 1672654 1672682 "MONOID" 1672901 T MONOID (NIL) -9 NIL 1673048 NIL) (-731 1671883 1672002 1672183 "MONOID-" 1672188 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-730 1662358 1668309 1668368 "MONOGEN" 1669042 NIL MONOGEN (NIL T T) -9 NIL 1669498 NIL) (-729 1659576 1660311 1661311 "MONOGEN-" 1661430 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-728 1658409 1658855 1658883 "MONADWU" 1659275 T MONADWU (NIL) -9 NIL 1659513 NIL) (-727 1657781 1657940 1658188 "MONADWU-" 1658193 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-726 1657140 1657384 1657412 "MONAD" 1657619 T MONAD (NIL) -9 NIL 1657731 NIL) (-725 1656825 1656903 1657035 "MONAD-" 1657040 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-724 1655114 1655738 1656017 "MOEBIUS" 1656578 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-723 1654392 1654796 1654836 "MODULE" 1654841 NIL MODULE (NIL T) -9 NIL 1654880 NIL) (-722 1653960 1654056 1654246 "MODULE-" 1654251 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-721 1651640 1652324 1652651 "MODRING" 1653784 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-720 1648584 1649745 1650266 "MODOP" 1651169 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-719 1647172 1647651 1647928 "MODMONOM" 1648447 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-718 1637214 1645463 1645877 "MODMON" 1646809 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-717 1634370 1636058 1636334 "MODFIELD" 1637089 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-716 1633347 1633651 1633841 "MMLFORM" 1634200 T MMLFORM (NIL) -8 NIL NIL NIL) (-715 1632873 1632916 1633095 "MMAP" 1633298 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-714 1630952 1631719 1631760 "MLO" 1632183 NIL MLO (NIL T) -9 NIL 1632425 NIL) (-713 1628318 1628834 1629436 "MLIFT" 1630433 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-712 1627709 1627793 1627947 "MKUCFUNC" 1628229 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-711 1627308 1627378 1627501 "MKRECORD" 1627632 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-710 1626355 1626517 1626745 "MKFUNC" 1627119 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-709 1625743 1625847 1626003 "MKFLCFN" 1626238 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-708 1625020 1625122 1625307 "MKBCFUNC" 1625636 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-707 1621727 1624574 1624710 "MINT" 1624904 T MINT (NIL) -8 NIL NIL NIL) (-706 1620539 1620782 1621059 "MHROWRED" 1621482 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-705 1615919 1619074 1619479 "MFLOAT" 1620154 T MFLOAT (NIL) -8 NIL NIL NIL) (-704 1615276 1615352 1615523 "MFINFACT" 1615831 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-703 1611591 1612439 1613323 "MESH" 1614412 T MESH (NIL) -7 NIL NIL NIL) (-702 1609981 1610293 1610646 "MDDFACT" 1611278 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-701 1606776 1609140 1609181 "MDAGG" 1609436 NIL MDAGG (NIL T) -9 NIL 1609579 NIL) (-700 1596516 1606069 1606276 "MCMPLX" 1606589 T MCMPLX (NIL) -8 NIL NIL NIL) (-699 1595653 1595799 1596000 "MCDEN" 1596365 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-698 1593543 1593813 1594193 "MCALCFN" 1595383 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-697 1592468 1592708 1592941 "MAYBE" 1593349 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-696 1590080 1590603 1591165 "MATSTOR" 1591939 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-695 1586037 1589452 1589700 "MATRIX" 1589865 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-694 1581801 1582510 1583246 "MATLIN" 1585394 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-693 1571907 1575093 1575170 "MATCAT" 1580050 NIL MATCAT (NIL T T T) -9 NIL 1581467 NIL) (-692 1568263 1569284 1570640 "MATCAT-" 1570645 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-691 1566857 1567010 1567343 "MATCAT2" 1568098 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-690 1564969 1565293 1565677 "MAPPKG3" 1566532 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-689 1563950 1564123 1564345 "MAPPKG2" 1564793 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-688 1562449 1562733 1563060 "MAPPKG1" 1563656 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-687 1561528 1561855 1562032 "MAPPAST" 1562292 T MAPPAST (NIL) -8 NIL NIL NIL) (-686 1561139 1561197 1561320 "MAPHACK3" 1561464 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-685 1560731 1560792 1560906 "MAPHACK2" 1561071 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-684 1560168 1560272 1560414 "MAPHACK1" 1560622 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-683 1558247 1558868 1559172 "MAGMA" 1559896 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-682 1557726 1557971 1558062 "MACROAST" 1558176 T MACROAST (NIL) -8 NIL NIL NIL) (-681 1554144 1555965 1556426 "M3D" 1557298 NIL M3D (NIL T) -8 NIL NIL NIL) (-680 1548250 1552513 1552554 "LZSTAGG" 1553336 NIL LZSTAGG (NIL T) -9 NIL 1553631 NIL) (-679 1544207 1545381 1546838 "LZSTAGG-" 1546843 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-678 1541294 1542098 1542585 "LWORD" 1543752 NIL LWORD (NIL T) -8 NIL NIL NIL) (-677 1540870 1541098 1541173 "LSTAST" 1541239 T LSTAST (NIL) -8 NIL NIL NIL) (-676 1534036 1540641 1540775 "LSQM" 1540780 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-675 1533260 1533399 1533627 "LSPP" 1533891 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-674 1531072 1531373 1531829 "LSMP" 1532949 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-673 1527851 1528525 1529255 "LSMP1" 1530374 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-672 1521728 1527018 1527059 "LSAGG" 1527121 NIL LSAGG (NIL T) -9 NIL 1527199 NIL) (-671 1518423 1519347 1520560 "LSAGG-" 1520565 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-670 1516022 1517567 1517816 "LPOLY" 1518218 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-669 1515604 1515689 1515812 "LPEFRAC" 1515931 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-668 1513925 1514698 1514951 "LO" 1515436 NIL LO (NIL T T T) -8 NIL NIL NIL) (-667 1513577 1513689 1513717 "LOGIC" 1513828 T LOGIC (NIL) -9 NIL 1513909 NIL) (-666 1513439 1513462 1513533 "LOGIC-" 1513538 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-665 1512632 1512772 1512965 "LODOOPS" 1513295 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-664 1510055 1512548 1512614 "LODO" 1512619 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-663 1508593 1508828 1509181 "LODOF" 1509802 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-662 1504811 1507242 1507283 "LODOCAT" 1507721 NIL LODOCAT (NIL T) -9 NIL 1507932 NIL) (-661 1504544 1504602 1504729 "LODOCAT-" 1504734 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-660 1501864 1504385 1504503 "LODO2" 1504508 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-659 1499299 1501801 1501846 "LODO1" 1501851 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-658 1498180 1498345 1498650 "LODEEF" 1499122 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-657 1493419 1496310 1496351 "LNAGG" 1497298 NIL LNAGG (NIL T) -9 NIL 1497742 NIL) (-656 1492566 1492780 1493122 "LNAGG-" 1493127 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-655 1488702 1489491 1490130 "LMOPS" 1491981 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-654 1488105 1488493 1488534 "LMODULE" 1488539 NIL LMODULE (NIL T) -9 NIL 1488565 NIL) (-653 1485303 1487750 1487873 "LMDICT" 1488015 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-652 1484709 1484930 1484971 "LLINSET" 1485162 NIL LLINSET (NIL T) -9 NIL 1485253 NIL) (-651 1484408 1484617 1484677 "LITERAL" 1484682 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-650 1477571 1483342 1483646 "LIST" 1484137 NIL LIST (NIL T) -8 NIL NIL NIL) (-649 1477096 1477170 1477309 "LIST3" 1477491 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-648 1476103 1476281 1476509 "LIST2" 1476914 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-647 1474237 1474549 1474948 "LIST2MAP" 1475750 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-646 1473833 1474070 1474111 "LINSET" 1474116 NIL LINSET (NIL T) -9 NIL 1474150 NIL) (-645 1472494 1473164 1473205 "LINEXP" 1473460 NIL LINEXP (NIL T) -9 NIL 1473609 NIL) (-644 1471141 1471401 1471698 "LINDEP" 1472246 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-643 1467908 1468627 1469404 "LIMITRF" 1470396 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-642 1466211 1466507 1466916 "LIMITPS" 1467603 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-641 1460639 1465722 1465950 "LIE" 1466032 NIL LIE (NIL T T) -8 NIL NIL NIL) (-640 1459587 1460056 1460096 "LIECAT" 1460236 NIL LIECAT (NIL T) -9 NIL 1460387 NIL) (-639 1459428 1459455 1459543 "LIECAT-" 1459548 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-638 1451924 1458877 1459042 "LIB" 1459283 T LIB (NIL) -8 NIL NIL NIL) (-637 1447559 1448442 1449377 "LGROBP" 1451041 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-636 1445557 1445831 1446181 "LF" 1447280 NIL LF (NIL T T) -7 NIL NIL NIL) (-635 1444397 1445089 1445117 "LFCAT" 1445324 T LFCAT (NIL) -9 NIL 1445463 NIL) (-634 1441299 1441929 1442617 "LEXTRIPK" 1443761 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-633 1438043 1438869 1439372 "LEXP" 1440879 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-632 1437519 1437764 1437856 "LETAST" 1437971 T LETAST (NIL) -8 NIL NIL NIL) (-631 1435917 1436230 1436631 "LEADCDET" 1437201 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-630 1435107 1435181 1435410 "LAZM3PK" 1435838 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-629 1430024 1433184 1433722 "LAUPOL" 1434619 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-628 1429603 1429647 1429808 "LAPLACE" 1429974 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-627 1427542 1428704 1428955 "LA" 1429436 NIL LA (NIL T T T) -8 NIL NIL NIL) (-626 1426536 1427120 1427161 "LALG" 1427223 NIL LALG (NIL T) -9 NIL 1427282 NIL) (-625 1426250 1426309 1426445 "LALG-" 1426450 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-624 1426085 1426109 1426150 "KVTFROM" 1426212 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-623 1425008 1425452 1425637 "KTVLOGIC" 1425920 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-622 1424843 1424867 1424908 "KRCFROM" 1424970 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-621 1423747 1423934 1424233 "KOVACIC" 1424643 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-620 1423582 1423606 1423647 "KONVERT" 1423709 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-619 1423417 1423441 1423482 "KOERCE" 1423544 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-618 1421247 1422010 1422387 "KERNEL" 1423073 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-617 1420743 1420824 1420956 "KERNEL2" 1421161 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-616 1414513 1419282 1419336 "KDAGG" 1419713 NIL KDAGG (NIL T T) -9 NIL 1419919 NIL) (-615 1414042 1414166 1414371 "KDAGG-" 1414376 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1407190 1413703 1413858 "KAFILE" 1413920 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-613 1401618 1406701 1406929 "JORDAN" 1407011 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-612 1400997 1401267 1401388 "JOINAST" 1401517 T JOINAST (NIL) -8 NIL NIL NIL) (-611 1400843 1400902 1400957 "JAVACODE" 1400962 T JAVACODE (NIL) -8 NIL NIL NIL) (-610 1397095 1399048 1399102 "IXAGG" 1400031 NIL IXAGG (NIL T T) -9 NIL 1400490 NIL) (-609 1396014 1396320 1396739 "IXAGG-" 1396744 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-608 1391544 1395936 1395995 "IVECTOR" 1396000 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-607 1390310 1390547 1390813 "ITUPLE" 1391311 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-606 1388812 1388989 1389284 "ITRIGMNP" 1390132 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-605 1387557 1387761 1388044 "ITFUN3" 1388588 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-604 1387189 1387246 1387355 "ITFUN2" 1387494 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-603 1386348 1386669 1386843 "ITFORM" 1387035 T ITFORM (NIL) -8 NIL NIL NIL) (-602 1384309 1385368 1385646 "ITAYLOR" 1386103 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-601 1373254 1378446 1379609 "ISUPS" 1383179 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-600 1372358 1372498 1372734 "ISUMP" 1373101 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-599 1367733 1372303 1372344 "ISTRING" 1372349 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-598 1367209 1367454 1367546 "ISAST" 1367661 T ISAST (NIL) -8 NIL NIL NIL) (-597 1366418 1366500 1366716 "IRURPK" 1367123 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-596 1365354 1365555 1365795 "IRSN" 1366198 T IRSN (NIL) -7 NIL NIL NIL) (-595 1363425 1363780 1364209 "IRRF2F" 1364992 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-594 1363172 1363210 1363286 "IRREDFFX" 1363381 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-593 1361787 1362046 1362345 "IROOT" 1362905 NIL IROOT (NIL T) -7 NIL NIL NIL) (-592 1358391 1359471 1360163 "IR" 1361127 NIL IR (NIL T) -8 NIL NIL NIL) (-591 1357596 1357884 1358035 "IRFORM" 1358260 T IRFORM (NIL) -8 NIL NIL NIL) (-590 1355209 1355704 1356270 "IR2" 1357074 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-589 1354309 1354422 1354636 "IR2F" 1355092 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-588 1354100 1354134 1354194 "IPRNTPK" 1354269 T IPRNTPK (NIL) -7 NIL NIL NIL) (-587 1350681 1353989 1354058 "IPF" 1354063 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-586 1349008 1350606 1350663 "IPADIC" 1350668 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-585 1348320 1348568 1348698 "IP4ADDR" 1348898 T IP4ADDR (NIL) -8 NIL NIL NIL) (-584 1347694 1347949 1348081 "IOMODE" 1348208 T IOMODE (NIL) -8 NIL NIL NIL) (-583 1346767 1347291 1347418 "IOBFILE" 1347587 T IOBFILE (NIL) -8 NIL NIL NIL) (-582 1346255 1346671 1346699 "IOBCON" 1346704 T IOBCON (NIL) -9 NIL 1346725 NIL) (-581 1345766 1345824 1346007 "INVLAPLA" 1346191 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-580 1335414 1337768 1340154 "INTTR" 1343430 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-579 1331749 1332491 1333356 "INTTOOLS" 1334599 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-578 1331335 1331426 1331543 "INTSLPE" 1331652 T INTSLPE (NIL) -7 NIL NIL NIL) (-577 1329288 1331258 1331317 "INTRVL" 1331322 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-576 1326890 1327402 1327977 "INTRF" 1328773 NIL INTRF (NIL T) -7 NIL NIL NIL) (-575 1326301 1326398 1326540 "INTRET" 1326788 NIL INTRET (NIL T) -7 NIL NIL NIL) (-574 1324298 1324687 1325157 "INTRAT" 1325909 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-573 1321561 1322144 1322763 "INTPM" 1323783 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-572 1318306 1318905 1319643 "INTPAF" 1320947 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-571 1313485 1314447 1315498 "INTPACK" 1317275 T INTPACK (NIL) -7 NIL NIL NIL) (-570 1310433 1313282 1313391 "INT" 1313396 T INT (NIL) -8 NIL NIL NIL) (-569 1309685 1309837 1310045 "INTHERTR" 1310275 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-568 1309124 1309204 1309392 "INTHERAL" 1309599 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-567 1306970 1307413 1307870 "INTHEORY" 1308687 T INTHEORY (NIL) -7 NIL NIL NIL) (-566 1298376 1299997 1301769 "INTG0" 1305322 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-565 1278949 1283739 1288549 "INTFTBL" 1293586 T INTFTBL (NIL) -8 NIL NIL NIL) (-564 1278198 1278336 1278509 "INTFACT" 1278808 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-563 1275625 1276071 1276628 "INTEF" 1277752 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-562 1273992 1274731 1274759 "INTDOM" 1275060 T INTDOM (NIL) -9 NIL 1275267 NIL) (-561 1273361 1273535 1273777 "INTDOM-" 1273782 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-560 1269749 1271677 1271731 "INTCAT" 1272530 NIL INTCAT (NIL T) -9 NIL 1272851 NIL) (-559 1269221 1269324 1269452 "INTBIT" 1269641 T INTBIT (NIL) -7 NIL NIL NIL) (-558 1267920 1268074 1268381 "INTALG" 1269066 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-557 1267403 1267493 1267650 "INTAF" 1267824 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-556 1260746 1267213 1267353 "INTABL" 1267358 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-555 1260087 1260553 1260618 "INT8" 1260652 T INT8 (NIL) -8 NIL NIL 1260697) (-554 1259427 1259893 1259958 "INT64" 1259992 T INT64 (NIL) -8 NIL NIL 1260037) (-553 1258767 1259233 1259298 "INT32" 1259332 T INT32 (NIL) -8 NIL NIL 1259377) (-552 1258107 1258573 1258638 "INT16" 1258672 T INT16 (NIL) -8 NIL NIL 1258717) (-551 1253017 1255730 1255758 "INS" 1256692 T INS (NIL) -9 NIL 1257357 NIL) (-550 1250257 1251028 1252002 "INS-" 1252075 NIL INS- (NIL T) -8 NIL NIL NIL) (-549 1249032 1249259 1249557 "INPSIGN" 1250010 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-548 1248150 1248267 1248464 "INPRODPF" 1248912 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-547 1247044 1247161 1247398 "INPRODFF" 1248030 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-546 1246044 1246196 1246456 "INNMFACT" 1246880 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-545 1245241 1245338 1245526 "INMODGCD" 1245943 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-544 1243749 1243994 1244318 "INFSP" 1244986 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-543 1242933 1243050 1243233 "INFPROD0" 1243629 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-542 1239788 1240998 1241513 "INFORM" 1242426 T INFORM (NIL) -8 NIL NIL NIL) (-541 1239398 1239458 1239556 "INFORM1" 1239723 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-540 1238921 1239010 1239124 "INFINITY" 1239304 T INFINITY (NIL) -7 NIL NIL NIL) (-539 1238097 1238641 1238742 "INETCLTS" 1238840 T INETCLTS (NIL) -8 NIL NIL NIL) (-538 1236713 1236963 1237284 "INEP" 1237845 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-537 1235962 1236610 1236675 "INDE" 1236680 NIL INDE (NIL T) -8 NIL NIL NIL) (-536 1235526 1235594 1235711 "INCRMAPS" 1235889 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-535 1234344 1234795 1235001 "INBFILE" 1235340 T INBFILE (NIL) -8 NIL NIL NIL) (-534 1229644 1230580 1231524 "INBFF" 1233432 NIL INBFF (NIL T) -7 NIL NIL NIL) (-533 1228552 1228821 1228849 "INBCON" 1229362 T INBCON (NIL) -9 NIL 1229628 NIL) (-532 1227804 1228027 1228303 "INBCON-" 1228308 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-531 1227283 1227528 1227619 "INAST" 1227733 T INAST (NIL) -8 NIL NIL NIL) (-530 1226710 1226962 1227068 "IMPTAST" 1227197 T IMPTAST (NIL) -8 NIL NIL NIL) (-529 1223156 1226554 1226658 "IMATRIX" 1226663 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-528 1221864 1221987 1222303 "IMATQF" 1223012 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-527 1220084 1220311 1220648 "IMATLIN" 1221620 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-526 1214662 1220008 1220066 "ILIST" 1220071 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-525 1212567 1214522 1214635 "IIARRAY2" 1214640 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-524 1207965 1212478 1212542 "IFF" 1212547 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-523 1207312 1207582 1207698 "IFAST" 1207869 T IFAST (NIL) -8 NIL NIL NIL) (-522 1202307 1206604 1206792 "IFARRAY" 1207169 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-521 1201487 1202211 1202284 "IFAMON" 1202289 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-520 1201071 1201136 1201190 "IEVALAB" 1201397 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-519 1200746 1200814 1200974 "IEVALAB-" 1200979 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-518 1200377 1200660 1200723 "IDPO" 1200728 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-517 1199627 1200266 1200341 "IDPOAMS" 1200346 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-516 1198934 1199516 1199591 "IDPOAM" 1199596 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-515 1197993 1198269 1198322 "IDPC" 1198735 NIL IDPC (NIL T T) -9 NIL 1198884 NIL) (-514 1197462 1197885 1197958 "IDPAM" 1197963 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-513 1196838 1197354 1197427 "IDPAG" 1197432 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-512 1196483 1196674 1196749 "IDENT" 1196783 T IDENT (NIL) -8 NIL NIL NIL) (-511 1192738 1193586 1194481 "IDECOMP" 1195640 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-510 1185576 1186661 1187708 "IDEAL" 1191774 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-509 1184736 1184848 1185048 "ICDEN" 1185460 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-508 1183807 1184216 1184363 "ICARD" 1184609 T ICARD (NIL) -8 NIL NIL NIL) (-507 1181867 1182180 1182585 "IBPTOOLS" 1183484 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-506 1177474 1181487 1181600 "IBITS" 1181786 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-505 1174197 1174773 1175468 "IBATOOL" 1176891 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-504 1171976 1172438 1172971 "IBACHIN" 1173732 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-503 1169805 1171822 1171925 "IARRAY2" 1171930 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-502 1165911 1169731 1169788 "IARRAY1" 1169793 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-501 1160020 1164323 1164804 "IAN" 1165450 T IAN (NIL) -8 NIL NIL NIL) (-500 1159531 1159588 1159761 "IALGFACT" 1159957 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-499 1159059 1159172 1159200 "HYPCAT" 1159407 T HYPCAT (NIL) -9 NIL NIL NIL) (-498 1158597 1158714 1158900 "HYPCAT-" 1158905 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-497 1158192 1158392 1158475 "HOSTNAME" 1158534 T HOSTNAME (NIL) -8 NIL NIL NIL) (-496 1158037 1158074 1158115 "HOMOTOP" 1158120 NIL HOMOTOP (NIL T) -9 NIL 1158153 NIL) (-495 1154669 1156047 1156088 "HOAGG" 1157069 NIL HOAGG (NIL T) -9 NIL 1157748 NIL) (-494 1153263 1153662 1154188 "HOAGG-" 1154193 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-493 1147265 1152856 1153006 "HEXADEC" 1153133 T HEXADEC (NIL) -8 NIL NIL NIL) (-492 1146013 1146235 1146498 "HEUGCD" 1147042 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-491 1145089 1145850 1145980 "HELLFDIV" 1145985 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-490 1143268 1144866 1144954 "HEAP" 1145033 NIL HEAP (NIL T) -8 NIL NIL NIL) (-489 1142531 1142820 1142954 "HEADAST" 1143154 T HEADAST (NIL) -8 NIL NIL NIL) (-488 1136397 1142446 1142508 "HDP" 1142513 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-487 1130385 1136032 1136184 "HDMP" 1136298 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-486 1129709 1129849 1130013 "HB" 1130241 T HB (NIL) -7 NIL NIL NIL) (-485 1123095 1129555 1129659 "HASHTBL" 1129664 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-484 1122571 1122816 1122908 "HASAST" 1123023 T HASAST (NIL) -8 NIL NIL NIL) (-483 1120349 1122193 1122375 "HACKPI" 1122409 T HACKPI (NIL) -8 NIL NIL NIL) (-482 1116017 1120202 1120315 "GTSET" 1120320 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-481 1109432 1115895 1115993 "GSTBL" 1115998 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-480 1101710 1108463 1108728 "GSERIES" 1109223 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-479 1100851 1101268 1101296 "GROUP" 1101499 T GROUP (NIL) -9 NIL 1101633 NIL) (-478 1100217 1100376 1100627 "GROUP-" 1100632 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-477 1098584 1098905 1099292 "GROEBSOL" 1099894 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-476 1097498 1097786 1097837 "GRMOD" 1098366 NIL GRMOD (NIL T T) -9 NIL 1098534 NIL) (-475 1097266 1097302 1097430 "GRMOD-" 1097435 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-474 1092556 1093620 1094620 "GRIMAGE" 1096286 T GRIMAGE (NIL) -8 NIL NIL NIL) (-473 1091022 1091283 1091607 "GRDEF" 1092252 T GRDEF (NIL) -7 NIL NIL NIL) (-472 1090466 1090582 1090723 "GRAY" 1090901 T GRAY (NIL) -7 NIL NIL NIL) (-471 1089653 1090059 1090110 "GRALG" 1090263 NIL GRALG (NIL T T) -9 NIL 1090356 NIL) (-470 1089314 1089387 1089550 "GRALG-" 1089555 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-469 1086091 1088899 1089077 "GPOLSET" 1089221 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-468 1085445 1085502 1085760 "GOSPER" 1086028 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-467 1081177 1081883 1082409 "GMODPOL" 1085144 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-466 1080182 1080366 1080604 "GHENSEL" 1080989 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-465 1074338 1075181 1076201 "GENUPS" 1079266 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-464 1074035 1074086 1074175 "GENUFACT" 1074281 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-463 1073447 1073524 1073689 "GENPGCD" 1073953 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-462 1072921 1072956 1073169 "GENMFACT" 1073406 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-461 1071487 1071744 1072051 "GENEEZ" 1072664 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-460 1065633 1071098 1071260 "GDMP" 1071410 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-459 1054975 1059404 1060510 "GCNAALG" 1064616 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-458 1053302 1054164 1054192 "GCDDOM" 1054447 T GCDDOM (NIL) -9 NIL 1054604 NIL) (-457 1052772 1052899 1053114 "GCDDOM-" 1053119 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-456 1051444 1051629 1051933 "GB" 1052551 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-455 1040060 1042390 1044782 "GBINTERN" 1049135 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-454 1037897 1038189 1038610 "GBF" 1039735 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-453 1036678 1036843 1037110 "GBEUCLID" 1037713 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-452 1036027 1036152 1036301 "GAUSSFAC" 1036549 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-451 1034394 1034696 1035010 "GALUTIL" 1035746 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-450 1032702 1032976 1033300 "GALPOLYU" 1034121 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-449 1030067 1030357 1030764 "GALFACTU" 1032399 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-448 1021872 1023372 1024980 "GALFACT" 1028499 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-447 1019260 1019918 1019946 "FVFUN" 1021102 T FVFUN (NIL) -9 NIL 1021822 NIL) (-446 1018526 1018708 1018736 "FVC" 1019027 T FVC (NIL) -9 NIL 1019210 NIL) (-445 1018169 1018351 1018419 "FUNDESC" 1018478 T FUNDESC (NIL) -8 NIL NIL NIL) (-444 1017784 1017966 1018047 "FUNCTION" 1018121 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-443 1015528 1016106 1016572 "FT" 1017338 T FT (NIL) -8 NIL NIL NIL) (-442 1014319 1014829 1015032 "FTEM" 1015345 T FTEM (NIL) -8 NIL NIL NIL) (-441 1012610 1012899 1013296 "FSUPFACT" 1014010 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-440 1011007 1011296 1011628 "FST" 1012298 T FST (NIL) -8 NIL NIL NIL) (-439 1010206 1010312 1010500 "FSRED" 1010889 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-438 1008905 1009161 1009508 "FSPRMELT" 1009921 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-437 1006211 1006649 1007135 "FSPECF" 1008468 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-436 987849 996180 996221 "FS" 1000105 NIL FS (NIL T) -9 NIL 1002394 NIL) (-435 976492 979485 983542 "FS-" 983842 NIL FS- (NIL T T) -8 NIL NIL NIL) (-434 976020 976074 976244 "FSINT" 976433 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-433 974312 975013 975316 "FSERIES" 975799 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-432 973354 973470 973694 "FSCINT" 974192 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-431 969562 972298 972339 "FSAGG" 972709 NIL FSAGG (NIL T) -9 NIL 972968 NIL) (-430 967324 967925 968721 "FSAGG-" 968816 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-429 966366 966509 966736 "FSAGG2" 967177 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-428 964048 964328 964875 "FS2UPS" 966084 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-427 963682 963725 963854 "FS2" 963999 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-426 962560 962731 963033 "FS2EXPXP" 963507 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-425 961986 962101 962253 "FRUTIL" 962440 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-424 953399 957481 958839 "FR" 960660 NIL FR (NIL T) -8 NIL NIL NIL) (-423 948368 951042 951082 "FRNAALG" 952478 NIL FRNAALG (NIL T) -9 NIL 953085 NIL) (-422 944041 945117 946392 "FRNAALG-" 947142 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-421 943679 943722 943849 "FRNAAF2" 943992 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-420 942054 942528 942824 "FRMOD" 943491 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-419 939797 940429 940747 "FRIDEAL" 941845 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-418 938988 939075 939366 "FRIDEAL2" 939704 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-417 938121 938535 938576 "FRETRCT" 938581 NIL FRETRCT (NIL T) -9 NIL 938757 NIL) (-416 937233 937464 937815 "FRETRCT-" 937820 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-415 934321 935531 935590 "FRAMALG" 936472 NIL FRAMALG (NIL T T) -9 NIL 936764 NIL) (-414 932455 932910 933540 "FRAMALG-" 933763 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-413 926374 931928 932205 "FRAC" 932210 NIL FRAC (NIL T) -8 NIL NIL NIL) (-412 926010 926067 926174 "FRAC2" 926311 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-411 925646 925703 925810 "FR2" 925947 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-410 920159 923052 923080 "FPS" 924199 T FPS (NIL) -9 NIL 924756 NIL) (-409 919608 919717 919881 "FPS-" 920027 NIL FPS- (NIL T) -8 NIL NIL NIL) (-408 916910 918579 918607 "FPC" 918832 T FPC (NIL) -9 NIL 918974 NIL) (-407 916703 916743 916840 "FPC-" 916845 NIL FPC- (NIL T) -8 NIL NIL NIL) (-406 915493 916191 916232 "FPATMAB" 916237 NIL FPATMAB (NIL T) -9 NIL 916389 NIL) (-405 913166 913669 914095 "FPARFRAC" 915130 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-404 908560 909058 909740 "FORTRAN" 912598 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-403 906276 906776 907315 "FORT" 908041 T FORT (NIL) -7 NIL NIL NIL) (-402 903952 904514 904542 "FORTFN" 905602 T FORTFN (NIL) -9 NIL 906226 NIL) (-401 903716 903766 903794 "FORTCAT" 903853 T FORTCAT (NIL) -9 NIL 903915 NIL) (-400 901822 902332 902722 "FORMULA" 903346 T FORMULA (NIL) -8 NIL NIL NIL) (-399 901610 901640 901709 "FORMULA1" 901786 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-398 901133 901185 901358 "FORDER" 901552 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-397 900229 900393 900586 "FOP" 900960 T FOP (NIL) -7 NIL NIL NIL) (-396 898810 899509 899683 "FNLA" 900111 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-395 897539 897954 897982 "FNCAT" 898442 T FNCAT (NIL) -9 NIL 898702 NIL) (-394 897078 897498 897526 "FNAME" 897531 T FNAME (NIL) -8 NIL NIL NIL) (-393 895641 896604 896632 "FMTC" 896637 T FMTC (NIL) -9 NIL 896673 NIL) (-392 894387 895577 895623 "FMONOID" 895628 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-391 891215 892383 892424 "FMONCAT" 893641 NIL FMONCAT (NIL T) -9 NIL 894246 NIL) (-390 890407 890957 891106 "FM" 891111 NIL FM (NIL T T) -8 NIL NIL NIL) (-389 887831 888477 888505 "FMFUN" 889649 T FMFUN (NIL) -9 NIL 890357 NIL) (-388 887100 887281 887309 "FMC" 887599 T FMC (NIL) -9 NIL 887781 NIL) (-387 884179 885039 885093 "FMCAT" 886288 NIL FMCAT (NIL T T) -9 NIL 886783 NIL) (-386 883045 883945 884045 "FM1" 884124 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-385 880819 881235 881729 "FLOATRP" 882596 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-384 874393 878548 879169 "FLOAT" 880218 T FLOAT (NIL) -8 NIL NIL NIL) (-383 871831 872331 872909 "FLOATCP" 873860 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-382 870571 871409 871450 "FLINEXP" 871455 NIL FLINEXP (NIL T) -9 NIL 871548 NIL) (-381 869725 869960 870288 "FLINEXP-" 870293 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-380 868801 868945 869169 "FLASORT" 869577 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-379 865917 866785 866837 "FLALG" 868064 NIL FLALG (NIL T T) -9 NIL 868531 NIL) (-378 859653 863403 863444 "FLAGG" 864706 NIL FLAGG (NIL T) -9 NIL 865358 NIL) (-377 858379 858718 859208 "FLAGG-" 859213 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-376 857421 857564 857791 "FLAGG2" 858232 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-375 854272 855280 855339 "FINRALG" 856467 NIL FINRALG (NIL T T) -9 NIL 856975 NIL) (-374 853432 853661 854000 "FINRALG-" 854005 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-373 852812 853051 853079 "FINITE" 853275 T FINITE (NIL) -9 NIL 853382 NIL) (-372 845169 847356 847396 "FINAALG" 851063 NIL FINAALG (NIL T) -9 NIL 852516 NIL) (-371 840501 841551 842695 "FINAALG-" 844074 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-370 839869 840256 840359 "FILE" 840431 NIL FILE (NIL T) -8 NIL NIL NIL) (-369 838527 838865 838919 "FILECAT" 839603 NIL FILECAT (NIL T T) -9 NIL 839819 NIL) (-368 836243 837771 837799 "FIELD" 837839 T FIELD (NIL) -9 NIL 837919 NIL) (-367 834863 835248 835759 "FIELD-" 835764 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-366 832713 833498 833845 "FGROUP" 834549 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-365 831803 831967 832187 "FGLMICPK" 832545 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-364 827635 831728 831785 "FFX" 831790 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-363 827236 827297 827432 "FFSLPE" 827568 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-362 823226 824008 824804 "FFPOLY" 826472 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-361 822730 822766 822975 "FFPOLY2" 823184 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-360 818574 822649 822712 "FFP" 822717 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-359 813972 818485 818549 "FF" 818554 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-358 809098 813315 813505 "FFNBX" 813826 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-357 804026 808233 808491 "FFNBP" 808952 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-356 798659 803310 803521 "FFNB" 803859 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-355 797491 797689 798004 "FFINTBAS" 798456 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-354 793560 795780 795808 "FFIELDC" 796428 T FFIELDC (NIL) -9 NIL 796804 NIL) (-353 792222 792593 793090 "FFIELDC-" 793095 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-352 791791 791837 791961 "FFHOM" 792164 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-351 789486 789973 790490 "FFF" 791306 NIL FFF (NIL T) -7 NIL NIL NIL) (-350 785104 789228 789329 "FFCGX" 789429 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-349 780726 784836 784943 "FFCGP" 785047 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-348 775909 780453 780561 "FFCG" 780662 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-347 757305 766386 766472 "FFCAT" 771637 NIL FFCAT (NIL T T T) -9 NIL 773088 NIL) (-346 752502 753550 754864 "FFCAT-" 756094 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-345 751913 751956 752191 "FFCAT2" 752453 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-344 741236 744885 746105 "FEXPR" 750765 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-343 740236 740671 740712 "FEVALAB" 740796 NIL FEVALAB (NIL T) -9 NIL 741057 NIL) (-342 739395 739605 739943 "FEVALAB-" 739948 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-341 737961 738778 738981 "FDIV" 739294 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-340 734981 735722 735837 "FDIVCAT" 737405 NIL FDIVCAT (NIL T T T T) -9 NIL 737842 NIL) (-339 734743 734770 734940 "FDIVCAT-" 734945 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-338 733963 734050 734327 "FDIV2" 734650 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-337 732937 733258 733460 "FCTRDATA" 733781 T FCTRDATA (NIL) -8 NIL NIL NIL) (-336 731623 731882 732171 "FCPAK1" 732668 T FCPAK1 (NIL) -7 NIL NIL NIL) (-335 730722 731123 731264 "FCOMP" 731514 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-334 714427 717872 721410 "FC" 727204 T FC (NIL) -8 NIL NIL NIL) (-333 706790 710818 710858 "FAXF" 712660 NIL FAXF (NIL T) -9 NIL 713352 NIL) (-332 704066 704724 705549 "FAXF-" 706014 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-331 699118 703442 703618 "FARRAY" 703923 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-330 694012 696079 696132 "FAMR" 697155 NIL FAMR (NIL T T) -9 NIL 697615 NIL) (-329 692902 693204 693639 "FAMR-" 693644 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-328 692071 692824 692877 "FAMONOID" 692882 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-327 689857 690567 690620 "FAMONC" 691561 NIL FAMONC (NIL T T) -9 NIL 691947 NIL) (-326 688521 689611 689748 "FAGROUP" 689753 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-325 686316 686635 687038 "FACUTIL" 688202 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-324 685415 685600 685822 "FACTFUNC" 686126 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-323 677837 684718 684917 "EXPUPXS" 685271 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-322 675320 675860 676446 "EXPRTUBE" 677271 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-321 671591 672183 672913 "EXPRODE" 674659 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-320 657076 670240 670669 "EXPR" 671195 NIL EXPR (NIL T) -8 NIL NIL NIL) (-319 651630 652217 653023 "EXPR2UPS" 656374 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-318 651262 651319 651428 "EXPR2" 651567 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-317 642650 650413 650704 "EXPEXPAN" 651098 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-316 642450 642607 642636 "EXIT" 642641 T EXIT (NIL) -8 NIL NIL NIL) (-315 641930 642174 642265 "EXITAST" 642379 T EXITAST (NIL) -8 NIL NIL NIL) (-314 641557 641619 641732 "EVALCYC" 641862 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-313 641098 641216 641257 "EVALAB" 641427 NIL EVALAB (NIL T) -9 NIL 641531 NIL) (-312 640579 640701 640922 "EVALAB-" 640927 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-311 637947 639249 639277 "EUCDOM" 639832 T EUCDOM (NIL) -9 NIL 640182 NIL) (-310 636352 636794 637384 "EUCDOM-" 637389 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-309 623890 626650 629400 "ESTOOLS" 633622 T ESTOOLS (NIL) -7 NIL NIL NIL) (-308 623522 623579 623688 "ESTOOLS2" 623827 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-307 623273 623315 623395 "ESTOOLS1" 623474 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-306 617310 618918 618946 "ES" 621714 T ES (NIL) -9 NIL 623124 NIL) (-305 612257 613544 615361 "ES-" 615525 NIL ES- (NIL T) -8 NIL NIL NIL) (-304 608631 609392 610172 "ESCONT" 611497 T ESCONT (NIL) -7 NIL NIL NIL) (-303 608376 608408 608490 "ESCONT1" 608593 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-302 608051 608101 608201 "ES2" 608320 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-301 607681 607739 607848 "ES1" 607987 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-300 606897 607026 607202 "ERROR" 607525 T ERROR (NIL) -7 NIL NIL NIL) (-299 600289 606756 606847 "EQTBL" 606852 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-298 592792 595603 597052 "EQ" 598873 NIL -2092 (NIL T) -8 NIL NIL NIL) (-297 592424 592481 592590 "EQ2" 592729 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-296 587714 588762 589855 "EP" 591363 NIL EP (NIL T) -7 NIL NIL NIL) (-295 586314 586605 586911 "ENV" 587428 T ENV (NIL) -8 NIL NIL NIL) (-294 585408 585962 585990 "ENTIRER" 585995 T ENTIRER (NIL) -9 NIL 586041 NIL) (-293 581875 583363 583733 "EMR" 585207 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-292 581019 581204 581258 "ELTAGG" 581638 NIL ELTAGG (NIL T T) -9 NIL 581849 NIL) (-291 580738 580800 580941 "ELTAGG-" 580946 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-290 580527 580556 580610 "ELTAB" 580694 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-289 579653 579799 579998 "ELFUTS" 580378 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-288 579395 579451 579479 "ELEMFUN" 579584 T ELEMFUN (NIL) -9 NIL NIL NIL) (-287 579265 579286 579354 "ELEMFUN-" 579359 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-286 574109 577365 577406 "ELAGG" 578346 NIL ELAGG (NIL T) -9 NIL 578809 NIL) (-285 572394 572828 573491 "ELAGG-" 573496 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-284 571706 571843 571999 "ELABOR" 572258 T ELABOR (NIL) -8 NIL NIL NIL) (-283 570367 570646 570940 "ELABEXPR" 571432 T ELABEXPR (NIL) -8 NIL NIL NIL) (-282 563231 565034 565861 "EFUPXS" 569643 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-281 556681 558482 559292 "EFULS" 562507 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-280 554166 554524 554996 "EFSTRUC" 556313 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-279 543957 545523 547071 "EF" 552681 NIL EF (NIL T T) -7 NIL NIL NIL) (-278 543031 543442 543591 "EAB" 543828 T EAB (NIL) -8 NIL NIL NIL) (-277 542213 542990 543018 "E04UCFA" 543023 T E04UCFA (NIL) -8 NIL NIL NIL) (-276 541395 542172 542200 "E04NAFA" 542205 T E04NAFA (NIL) -8 NIL NIL NIL) (-275 540577 541354 541382 "E04MBFA" 541387 T E04MBFA (NIL) -8 NIL NIL NIL) (-274 539759 540536 540564 "E04JAFA" 540569 T E04JAFA (NIL) -8 NIL NIL NIL) (-273 538943 539718 539746 "E04GCFA" 539751 T E04GCFA (NIL) -8 NIL NIL NIL) (-272 538127 538902 538930 "E04FDFA" 538935 T E04FDFA (NIL) -8 NIL NIL NIL) (-271 537309 538086 538114 "E04DGFA" 538119 T E04DGFA (NIL) -8 NIL NIL NIL) (-270 531482 532834 534198 "E04AGNT" 535965 T E04AGNT (NIL) -7 NIL NIL NIL) (-269 530162 530668 530708 "DVARCAT" 531183 NIL DVARCAT (NIL T) -9 NIL 531382 NIL) (-268 529366 529578 529892 "DVARCAT-" 529897 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-267 522503 529165 529294 "DSMP" 529299 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-266 517284 518448 519516 "DROPT" 521455 T DROPT (NIL) -8 NIL NIL NIL) (-265 516949 517008 517106 "DROPT1" 517219 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-264 512064 513190 514327 "DROPT0" 515832 T DROPT0 (NIL) -7 NIL NIL NIL) (-263 510409 510734 511120 "DRAWPT" 511698 T DRAWPT (NIL) -7 NIL NIL NIL) (-262 504996 505919 506998 "DRAW" 509383 NIL DRAW (NIL T) -7 NIL NIL NIL) (-261 504629 504682 504800 "DRAWHACK" 504937 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-260 503360 503629 503920 "DRAWCX" 504358 T DRAWCX (NIL) -7 NIL NIL NIL) (-259 502875 502944 503095 "DRAWCURV" 503286 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-258 493343 495305 497420 "DRAWCFUN" 500780 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-257 490107 492036 492077 "DQAGG" 492706 NIL DQAGG (NIL T) -9 NIL 492980 NIL) (-256 478231 484700 484783 "DPOLCAT" 486635 NIL DPOLCAT (NIL T T T T) -9 NIL 487180 NIL) (-255 473067 474416 476374 "DPOLCAT-" 476379 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-254 466189 472928 473026 "DPMO" 473031 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-253 459214 465969 466136 "DPMM" 466141 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-252 458692 458906 459004 "DOMTMPLT" 459136 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-251 458125 458494 458574 "DOMCTOR" 458632 T DOMCTOR (NIL) -8 NIL NIL NIL) (-250 457337 457605 457756 "DOMAIN" 457994 T DOMAIN (NIL) -8 NIL NIL NIL) (-249 451325 456972 457124 "DMP" 457238 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-248 450925 450981 451125 "DLP" 451263 NIL DLP (NIL T) -7 NIL NIL NIL) (-247 444747 450252 450442 "DLIST" 450767 NIL DLIST (NIL T) -8 NIL NIL NIL) (-246 441544 443600 443641 "DLAGG" 444191 NIL DLAGG (NIL T) -9 NIL 444421 NIL) (-245 440220 440884 440912 "DIVRING" 441004 T DIVRING (NIL) -9 NIL 441087 NIL) (-244 439457 439647 439947 "DIVRING-" 439952 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-243 437559 437916 438322 "DISPLAY" 439071 T DISPLAY (NIL) -7 NIL NIL NIL) (-242 431447 437473 437536 "DIRPROD" 437541 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-241 430295 430498 430763 "DIRPROD2" 431240 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-240 419070 425076 425129 "DIRPCAT" 425539 NIL DIRPCAT (NIL NIL T) -9 NIL 426379 NIL) (-239 416396 417038 417919 "DIRPCAT-" 418256 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-238 415683 415843 416029 "DIOSP" 416230 T DIOSP (NIL) -7 NIL NIL NIL) (-237 412338 414595 414636 "DIOPS" 415070 NIL DIOPS (NIL T) -9 NIL 415299 NIL) (-236 411887 412001 412192 "DIOPS-" 412197 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-235 410710 411338 411366 "DIFRING" 411553 T DIFRING (NIL) -9 NIL 411663 NIL) (-234 410356 410433 410585 "DIFRING-" 410590 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-233 408092 409364 409405 "DIFEXT" 409768 NIL DIFEXT (NIL T) -9 NIL 410062 NIL) (-232 406377 406805 407471 "DIFEXT-" 407476 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-231 403652 405909 405950 "DIAGG" 405955 NIL DIAGG (NIL T) -9 NIL 405975 NIL) (-230 403036 403193 403445 "DIAGG-" 403450 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 398453 401995 402272 "DHMATRIX" 402805 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 394065 394974 395984 "DFSFUN" 397463 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 389144 392996 393308 "DFLOAT" 393773 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 387407 387688 388077 "DFINTTLS" 388852 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 384436 385428 385828 "DERHAM" 387073 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 382237 384211 384300 "DEQUEUE" 384380 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 381491 381624 381807 "DEGRED" 382099 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 377921 378666 379512 "DEFINTRF" 380719 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 375476 375945 376537 "DEFINTEF" 377440 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 374826 375096 375211 "DEFAST" 375381 T DEFAST (NIL) -8 NIL NIL NIL) (-219 368828 374419 374569 "DECIMAL" 374696 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 366340 366798 367304 "DDFACT" 368372 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 365936 365979 366130 "DBLRESP" 366291 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 363808 364169 364529 "DBASE" 365703 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 363050 363288 363434 "DATAARY" 363707 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 362156 363009 363037 "D03FAFA" 363042 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 361263 362115 362143 "D03EEFA" 362148 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 359213 359679 360168 "D03AGNT" 360794 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 358502 359172 359200 "D02EJFA" 359205 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 357791 358461 358489 "D02CJFA" 358494 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 357080 357750 357778 "D02BHFA" 357783 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 356369 357039 357067 "D02BBFA" 357072 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 349566 351155 352761 "D02AGNT" 354783 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 347334 347857 348403 "D01WGTS" 349040 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 346401 347293 347321 "D01TRNS" 347326 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 345469 346360 346388 "D01GBFA" 346393 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 344537 345428 345456 "D01FCFA" 345461 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 343605 344496 344524 "D01ASFA" 344529 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 342673 343564 343592 "D01AQFA" 343597 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 341741 342632 342660 "D01APFA" 342665 T D01APFA (NIL) -8 NIL NIL NIL) (-199 340809 341700 341728 "D01ANFA" 341733 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 339877 340768 340796 "D01AMFA" 340801 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 338945 339836 339864 "D01ALFA" 339869 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 338013 338904 338932 "D01AKFA" 338937 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 337081 337972 338000 "D01AJFA" 338005 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 330376 331929 333490 "D01AGNT" 335540 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 329713 329841 329993 "CYCLOTOM" 330244 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 326448 327161 327888 "CYCLES" 329006 T CYCLES (NIL) -7 NIL NIL NIL) (-191 325760 325894 326065 "CVMP" 326309 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 323601 323859 324228 "CTRIGMNP" 325488 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 323037 323395 323468 "CTOR" 323548 T CTOR (NIL) -8 NIL NIL NIL) (-188 322546 322768 322869 "CTORKIND" 322956 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 321837 322153 322181 "CTORCAT" 322363 T CTORCAT (NIL) -9 NIL 322476 NIL) (-186 321435 321546 321705 "CTORCAT-" 321710 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 320897 321109 321217 "CTORCALL" 321359 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 320271 320370 320523 "CSTTOOLS" 320794 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 316070 316727 317485 "CRFP" 319583 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 315545 315791 315883 "CRCEAST" 315998 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 314592 314777 315005 "CRAPACK" 315349 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 313976 314077 314281 "CPMATCH" 314468 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 313701 313729 313835 "CPIMA" 313942 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 310049 310721 311440 "COORDSYS" 313036 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 309461 309582 309724 "CONTOUR" 309927 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 305352 307464 307956 "CONTFRAC" 309001 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 305232 305253 305281 "CONDUIT" 305318 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 304320 304874 304902 "COMRING" 304907 T COMRING (NIL) -9 NIL 304959 NIL) (-173 303374 303678 303862 "COMPPROP" 304156 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 303035 303070 303198 "COMPLPAT" 303333 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 293326 302844 302953 "COMPLEX" 302958 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 292962 293019 293126 "COMPLEX2" 293263 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 292301 292422 292582 "COMPILER" 292822 T COMPILER (NIL) -8 NIL NIL NIL) (-168 292019 292054 292152 "COMPFACT" 292260 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 276099 286093 286133 "COMPCAT" 287137 NIL COMPCAT (NIL T) -9 NIL 288485 NIL) (-166 265611 268538 272165 "COMPCAT-" 272521 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 265340 265368 265471 "COMMUPC" 265577 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 265134 265168 265227 "COMMONOP" 265301 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 264690 264885 264972 "COMM" 265067 T COMM (NIL) -8 NIL NIL NIL) (-162 264266 264494 264569 "COMMAAST" 264635 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 263515 263709 263737 "COMBOPC" 264075 T COMBOPC (NIL) -9 NIL 264250 NIL) (-160 262411 262621 262863 "COMBINAT" 263305 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 258868 259442 260069 "COMBF" 261833 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 257626 257984 258219 "COLOR" 258653 T COLOR (NIL) -8 NIL NIL NIL) (-157 257102 257347 257439 "COLONAST" 257554 T COLONAST (NIL) -8 NIL NIL NIL) (-156 256742 256789 256914 "CMPLXRT" 257049 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 256190 256442 256541 "CLLCTAST" 256663 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 251689 252720 253800 "CLIP" 255130 T CLIP (NIL) -7 NIL NIL NIL) (-153 250030 250790 251030 "CLIF" 251516 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 246205 248176 248217 "CLAGG" 249146 NIL CLAGG (NIL T) -9 NIL 249682 NIL) (-151 244627 245084 245667 "CLAGG-" 245672 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 244171 244256 244396 "CINTSLPE" 244536 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 241672 242143 242691 "CHVAR" 243699 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 240846 241400 241428 "CHARZ" 241433 T CHARZ (NIL) -9 NIL 241448 NIL) (-147 240600 240640 240718 "CHARPOL" 240800 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 239658 240245 240273 "CHARNZ" 240320 T CHARNZ (NIL) -9 NIL 240376 NIL) (-145 237564 238312 238665 "CHAR" 239325 T CHAR (NIL) -8 NIL NIL NIL) (-144 237290 237351 237379 "CFCAT" 237490 T CFCAT (NIL) -9 NIL NIL NIL) (-143 236531 236642 236825 "CDEN" 237174 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 232496 235684 235964 "CCLASS" 236271 T CCLASS (NIL) -8 NIL NIL NIL) (-141 231747 231904 232081 "CATEGORY" 232339 T -10 (NIL) -8 NIL NIL NIL) (-140 231320 231666 231714 "CATCTOR" 231719 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 230771 231023 231121 "CATAST" 231242 T CATAST (NIL) -8 NIL NIL NIL) (-138 230247 230492 230584 "CASEAST" 230699 T CASEAST (NIL) -8 NIL NIL NIL) (-137 225256 226276 227029 "CARTEN" 229550 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 224364 224512 224733 "CARTEN2" 225103 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 222680 223514 223771 "CARD" 224127 T CARD (NIL) -8 NIL NIL NIL) (-134 222256 222484 222559 "CAPSLAST" 222625 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 221760 221968 221996 "CACHSET" 222128 T CACHSET (NIL) -9 NIL 222206 NIL) (-132 221230 221552 221580 "CABMON" 221630 T CABMON (NIL) -9 NIL 221686 NIL) (-131 220703 220934 221044 "BYTEORD" 221140 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 219685 220237 220379 "BYTE" 220542 T BYTE (NIL) -8 NIL NIL 220664) (-129 215035 219190 219362 "BYTEBUF" 219533 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 212544 214727 214834 "BTREE" 214961 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 209993 212192 212314 "BTOURN" 212454 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 207363 209463 209504 "BTCAT" 209572 NIL BTCAT (NIL T) -9 NIL 209649 NIL) (-125 207030 207110 207259 "BTCAT-" 207264 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 202440 206319 206347 "BTAGG" 206461 T BTAGG (NIL) -9 NIL 206571 NIL) (-123 201930 202055 202261 "BTAGG-" 202266 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 198925 201208 201423 "BSTREE" 201747 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 198063 198189 198373 "BRILL" 198781 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 194715 196789 196830 "BRAGG" 197479 NIL BRAGG (NIL T) -9 NIL 197737 NIL) (-119 193244 193650 194205 "BRAGG-" 194210 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 186471 192588 192773 "BPADICRT" 193091 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 184786 186408 186453 "BPADIC" 186458 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 184484 184514 184628 "BOUNDZRO" 184750 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 179712 180910 181822 "BOP" 183592 T BOP (NIL) -8 NIL NIL NIL) (-114 177493 177897 178372 "BOP1" 179270 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 177194 177255 177283 "BOOLE" 177394 T BOOLE (NIL) -9 NIL 177476 NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164525 170115 170264 "BINARY" 170391 T BINARY (NIL) -8 NIL NIL NIL) (-107 162305 163780 163821 "BGAGG" 164081 NIL BGAGG (NIL T) -9 NIL 164218 NIL) (-106 162136 162168 162259 "BGAGG-" 162264 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161207 161520 161725 "BFUNCT" 161951 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159897 160075 160363 "BEZOUT" 161031 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156366 158749 159079 "BBTREE" 159600 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156100 156153 156181 "BASTYPE" 156300 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155952 155981 156054 "BASTYPE-" 156059 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155386 155462 155614 "BALFACT" 155863 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154242 154801 154987 "AUTOMOR" 155231 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153968 153973 153999 "ATTREG" 154004 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152220 152665 153017 "ATTRBUT" 153634 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151828 152048 152114 "ATTRAST" 152172 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151364 151477 151503 "ATRIG" 151704 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151173 151214 151301 "ATRIG-" 151306 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150818 151004 151030 "ASTCAT" 151035 T ASTCAT (NIL) -9 NIL 151065 NIL) (-92 150545 150604 150723 "ASTCAT-" 150728 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148694 150321 150409 "ASTACK" 150488 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147199 147496 147861 "ASSOCEQ" 148376 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146231 146858 146982 "ASP9" 147106 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145994 146179 146218 "ASP8" 146223 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144862 145599 145741 "ASP80" 145883 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143760 144497 144629 "ASP7" 144761 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142714 143437 143555 "ASP78" 143673 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141683 142394 142511 "ASP77" 142628 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140595 141321 141452 "ASP74" 141583 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139495 140230 140362 "ASP73" 140494 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138599 139321 139421 "ASP6" 139426 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137544 138276 138394 "ASP55" 138512 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136493 137218 137337 "ASP50" 137456 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135581 136194 136304 "ASP4" 136414 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134669 135282 135392 "ASP49" 135502 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133453 134208 134376 "ASP42" 134558 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132229 132986 133156 "ASP41" 133340 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131179 131906 132024 "ASP35" 132142 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130944 131127 131166 "ASP34" 131171 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130681 130748 130824 "ASP33" 130899 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129574 130316 130448 "ASP31" 130580 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129339 129522 129561 "ASP30" 129566 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129074 129143 129219 "ASP29" 129294 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128839 129022 129061 "ASP28" 129066 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128604 128787 128826 "ASP27" 128831 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127688 128302 128413 "ASP24" 128524 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126764 127490 127602 "ASP20" 127607 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125852 126465 126575 "ASP1" 126685 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124794 125526 125645 "ASP19" 125764 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124531 124598 124674 "ASP12" 124749 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123383 124130 124274 "ASP10" 124418 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121234 123227 123318 "ARRAY2" 123323 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116999 120882 120996 "ARRAY1" 121151 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116031 116204 116425 "ARRAY12" 116822 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110343 112261 112336 "ARR2CAT" 114966 NIL ARR2CAT (NIL T T T) -9 NIL 115724 NIL) (-56 107777 108521 109475 "ARR2CAT-" 109480 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107094 107404 107529 "ARITY" 107670 T ARITY (NIL) -8 NIL NIL NIL) (-54 105870 106022 106321 "APPRULE" 106930 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105521 105569 105688 "APPLYORE" 105816 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104875 105114 105234 "ANY" 105419 T ANY (NIL) -8 NIL NIL NIL) (-51 104153 104276 104433 "ANY1" 104749 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101683 102590 102917 "ANTISYM" 103877 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101175 101390 101486 "ANON" 101605 T ANON (NIL) -8 NIL NIL NIL) (-48 95424 99714 100168 "AN" 100739 T AN (NIL) -8 NIL NIL NIL) (-47 91322 92710 92761 "AMR" 93509 NIL AMR (NIL T T) -9 NIL 94109 NIL) (-46 90434 90655 91018 "AMR-" 91023 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74873 90351 90412 "ALIST" 90417 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74467 74636 "ALGSC" 74791 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 5f5756b0..95cbab07 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,8547 +1,8480 @@ -(733544 . 3479376212) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) - (-4 *4 (-173)))) - ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552))) - ((*1 *1) (-5 *1 (-553))) ((*1 *1) (-5 *1 (-554))) - ((*1 *1) (-4 *1 (-731))) ((*1 *1) (-5 *1 (-1185))) - ((*1 *1) (-12 (-5 *1 (-1191 *2)) (-14 *2 (-927)))) - ((*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) - ((*1 *1) (-5 *1 (-1230))) ((*1 *1) (-5 *1 (-1231))) - ((*1 *1) (-5 *1 (-1232))) ((*1 *1) (-5 *1 (-1233)))) +(733423 . 3479388557) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) (((*1 *2 *1) - (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108)) - (-4 *2 (-855))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-402))))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-650 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-2 (|:| |k| (-900 *3)) (|:| |c| *4)))) + (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-678 *3))) (-5 *1 (-900 *3)) (-4 *3 (-856))))) +(((*1 *2 *3) + (-12 (-4 *4 (-354)) + (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -1566 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-667)))) +(((*1 *1 *2) + (-12 (-5 *2 (-413 (-570))) (-4 *1 (-560 *3)) + (-4 *3 (-13 (-410) (-1211))))) + ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211)))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) + (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-763))))) (((*1 *2) - (-12 (-4 *1 (-353)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *1) (-12 (-5 *2 (-829)) (-5 *1 (-830))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) - (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *1)))) - (-4 *1 (-1079 *4 *5 *6 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-958 (-569)))) (-5 *1 (-442)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-226))) (-5 *2 (-1112)) - (-5 *1 (-764)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-694 (-569))) (-5 *2 (-1112)) - (-5 *1 (-764))))) -(((*1 *1 *1 *1) (-4 *1 (-666)))) -(((*1 *2 *1) (-12 (-5 *2 (-590)) (-5 *1 (-283))))) -(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-649 (-649 (-949 (-226))))))) - ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-649 (-649 (-949 (-226)))))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-777)) + (-4 *3 (-13 (-732) (-373) (-10 -7 (-15 ** (*3 *3 (-570)))))) + (-5 *1 (-248 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-852))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569)))) - (-4 *5 (-892 (-569))) - (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) - (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-170 (-226))) (-5 *6 (-1167)) - (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148))) + (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5))))) + (-5 *1 (-1138 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148))) + (-5 *2 (-1175 (-650 (-320 *5)) (-650 (-298 (-320 *5))))) + (-5 *1 (-1138 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-368)) + (-5 *1 (-527 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) (-4 *2 (-310)) - (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3))))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) + (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058)))) + ((*1 *2 *3) + (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174)) + (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) + (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1001 *2)) (-4 *4 (-1252 *3)) (-4 *2 (-311)) + (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1))) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) + (-12 (-4 *3 (-562)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1))) + (-4 *1 (-436 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) ((*1 *2 *1) - (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) - (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4)) + (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-173)) (-4 *2 (|SubsetCategory| (-731) *4)) - (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561))))) -(((*1 *2 *3) (-12 (-5 *3 (-649 (-52))) (-5 *2 (-1280)) (-5 *1 (-868))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-732) *4)) + (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562))))) +(((*1 *2 *3) (-12 (-5 *3 (-650 (-52))) (-5 *2 (-1281)) (-5 *1 (-869))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) + (-5 *2 (-650 (-650 (-950 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) (-4 *4 (-1058)) + (-4 *1 (-1143 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 (-650 (-950 *3)))) (-4 *3 (-1058)) + (-4 *1 (-1143 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-112)) + (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-650 (-650 (-950 *4)))) (-5 *3 (-112)) + (-4 *1 (-1143 *4)) (-4 *4 (-1058)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-650 (-173))) + (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-650 (-650 (-950 *5)))) (-5 *3 (-650 (-173))) + (-5 *4 (-173)) (-4 *1 (-1143 *5)) (-4 *5 (-1058))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-176 *6)) + (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1267 *5)) (-4 *6 (-1252 *5))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) + (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) + (-5 *1 (-794))))) +(((*1 *1 *1 *1) (-4 *1 (-667)))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-455 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *1 *1) (-4 *1 (-666)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-569)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-423 *2)) (-4 *2 (-561))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) - (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448))))))) -(((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) - ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383))))) -(((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *4 (-1 (-1166 *3))) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058))))) +(((*1 *2 *2) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) - (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6)) - (-4 *6 (-13 (-414 *4 *5) (-1046 *4))))) + (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) + (-5 *2 (-1276 *6)) (-5 *1 (-419 *3 *4 *5 *6)) + (-4 *6 (-13 (-415 *4 *5) (-1047 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *3 (-1108)) (-5 *2 (-1133 *3 (-617 *1))) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) + (-12 (-4 *3 (-1058)) (-4 *3 (-1109)) (-5 *2 (-1134 *3 (-618 *1))) + (-4 *1 (-436 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) ((*1 *2 *1) - (-12 (-4 *3 (-173)) (-4 *2 (-38 *3)) (-5 *1 (-626 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-731) *3)))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-627 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-732) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-173)) (-4 *2 (-722 *3)) (-5 *1 (-667 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-731) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) + (-12 (-4 *3 (-174)) (-4 *2 (-723 *3)) (-5 *1 (-668 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-732) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229)) - (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-848 (-383))) (-5 *2 (-848 (-226))) (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1)))) - (-4 *1 (-371 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-458 *3 *4 *5 *6)) - (|:| -2403 (-649 (-458 *3 *4 *5 *6))))) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) + (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-950 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-258))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-59 *3)) (-4 *3 (-1226)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-59 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-618 *5))) (-4 *4 (-1109)) (-5 *2 (-618 *5)) + (-5 *1 (-579 *4 *5)) (-4 *5 (-436 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1252 *4)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1276 *1)) (-4 *1 (-372 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-695 *3)) + (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3)) + (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448))))))) (((*1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) - (-14 *4 (-649 (-1185))))) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) + (-14 *4 (-650 (-1186))))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *1) (-4 *1 (-287))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *1) (-4 *1 (-288))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-5 *1 (-632 *3 *4 *5)) - (-14 *5 (-927)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-5 *1 (-633 *3 *4 *5)) + (-14 *5 (-928)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) - (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))) + (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) + (-4 *5 (-856)) (-5 *1 (-1292 *4 *5 *2)) (-4 *2 (-1297 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) - (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173))))) -(((*1 *1 *1) (-5 *1 (-1071)))) -(((*1 *1 *1) (-5 *1 (-541)))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1043)) - (-5 *1 (-751))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-372)) (-4 *1 (-332 *3)) - (-4 *3 (-367))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-649 (-927))) (-4 *2 (-367)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-927)) (-14 *5 (-1001 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) - (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) - (-4 *4 (-1251 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-731)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) - (-4 *4 (-1057)) (-4 *5 (-855)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057)) - (-4 *2 (-855)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) - (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *2 (-855)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *2 (-955 *4 (-536 *5) *5)) - (-5 *1 (-1134 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-855)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-958 *4)) (-5 *1 (-1219 *4)) - (-4 *4 (-1057))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |h| *6) - (|:| |c1| (-412 *6)) (|:| |c2| (-412 *6)) (|:| -3676 *6))) - (-5 *1 (-1024 *5 *6)) (-5 *3 (-412 *6))))) + (-12 (-5 *2 (-777)) (-5 *1 (-1296 *3 *4)) + (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225)))) + (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7))) + (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-916)) (-4 *5 (-1252 *4)) (-5 *2 (-424 (-1182 *5))) + (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-650 (-570))) (-5 *2 (-777)) (-5 *1 (-596))))) +(((*1 *1 *1) (-5 *1 (-542)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1278)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-1174 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1278)))) + ((*1 *2 *1) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1278))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1226)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) - (-14 *3 (-649 *2)) (-14 *4 (-649 *2)) (-4 *5 (-392)))) + (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) + (-14 *3 (-650 *2)) (-14 *4 (-650 *2)) (-4 *5 (-393)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-319 *5)) (-4 *5 (-392)) - (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))))) + (|partial| -12 (-5 *2 (-320 *5)) (-4 *5 (-393)) + (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) + (|partial| -12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))) + (|partial| -12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) + (|partial| -12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-570))) (-4 *1 (-402)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-959 (-384))) (-4 *1 (-402)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-570))) (-4 *1 (-402)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-320 (-384))) (-4 *1 (-402)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446)))) + (|partial| -12 (-5 *2 (-1276 (-413 (-959 (-570))))) (-4 *1 (-447)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446)))) + (|partial| -12 (-5 *2 (-1276 (-413 (-959 (-384))))) (-4 *1 (-447)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446)))) + (|partial| -12 (-5 *2 (-1276 (-959 (-570)))) (-4 *1 (-447)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446)))) + (|partial| -12 (-5 *2 (-1276 (-959 (-384)))) (-4 *1 (-447)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446)))) + (|partial| -12 (-5 *2 (-1276 (-320 (-570)))) (-4 *1 (-447)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446)))) + (|partial| -12 (-5 *2 (-1276 (-320 (-384)))) (-4 *1 (-447)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5)) - (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-782 *4 *5 *6 *3 *7)) - (-4 *3 (-1251 *6)) (-14 *7 (-927)))) + (|partial| -12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1252 *5)) + (-5 *2 (-1182 (-1182 *4))) (-5 *1 (-783 *4 *5 *6 *3 *7)) + (-4 *3 (-1252 *6)) (-14 *7 (-928)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *1 (-984 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1046 *2)) (-4 *2 (-1225)))) + (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *1 (-985 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1047 *2)) (-4 *2 (-1226)))) ((*1 *1 *2) - (|partial| -2776 - (-12 (-5 *2 (-958 *3)) - (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) - (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855))) - (-12 (-5 *2 (-958 *3)) - (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569))))) - (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855))) - (-12 (-5 *2 (-958 *3)) - (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569)))) - (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855))))) + (|partial| -2779 + (-12 (-5 *2 (-959 *3)) + (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) + (-1748 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856))) + (-12 (-5 *2 (-959 *3)) + (-12 (-1748 (-4 *3 (-551))) (-1748 (-4 *3 (-38 (-413 (-570))))) + (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856))) + (-12 (-5 *2 (-959 *3)) + (-12 (-1748 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570)))) + (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856))))) ((*1 *1 *2) - (|partial| -2776 - (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) - (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) - (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) - (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) + (|partial| -2779 + (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) + (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) + (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) + (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) - (-4 *2 (-1235 *3))))) + (|partial| -12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) - ((*1 *1 *1) (|partial| -4 *1 (-727)))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) - (-5 *1 (-269))))) + (-12 (-4 *1 (-1219 *2 *3 *4 *5)) (-4 *2 (-562)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) + (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *1)))) + (-4 *1 (-1080 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-760))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) +(((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-377 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-508 *2 *4 *5 *3)) - (-4 *5 (-377 *2)) (-4 *3 (-377 *4)))) + (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) + (-5 *2 (-570)) (-5 *1 (-1123 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-562))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1279))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)))) ((*1 *2 *3) - (-12 (-5 *3 (-694 *4)) (-4 *4 (-1000 *2)) (-4 *2 (-561)) - (-5 *1 (-698 *2 *4)))) + (|partial| -12 (-4 *4 (-799)) (-4 *5 (-1058)) (-4 *6 (-956 *5 *4 *2)) + (-4 *2 (-856)) (-5 *1 (-957 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *6)) (-15 -4400 (*6 $)) + (-15 -4413 (*6 $))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1000 *2)) (-4 *2 (-561)) (-5 *1 (-1244 *2 *4 *3)) - (-4 *3 (-1251 *4))))) + (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) + (-5 *2 (-1186)) (-5 *1 (-1052 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269))))) -(((*1 *2 *1) - (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) - (-5 *2 (-1181 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-752))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457)) - (-5 *1 (-924 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1108)) (-4 *5 (-1108)) - (-5 *2 (-1 *5)) (-5 *1 (-688 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982))))) + (-12 (-4 *4 (-1058)) + (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) + (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-1207 *4)) - (-4 *4 (-1057))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-1181 *4))) (-5 *3 (-1181 *4)) - (-4 *4 (-915)) (-5 *1 (-668 *4))))) + (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)) + (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058))))) +(((*1 *2 *3) (-12 (-5 *3 (-650 *2)) (-5 *1 (-1200 *2)) (-4 *2 (-368))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2 *3) - (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-457)) - (-5 *2 (-486 *4 *5)) (-5 *1 (-636 *4 *5))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) - (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) - (|:| |args| (-649 (-867))))) - (-5 *1 (-1185)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-1185))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) ((*1 *1) (-4 *1 (-550))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-569))))) - (-5 *1 (-365 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) - (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 (-776))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -1993 (-569))))) - (-5 *1 (-423 *3)) (-4 *3 (-561))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1032 *3)) - (-4 *3 (-13 (-853) (-367) (-1030))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) - (-4 *3 (-1251 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367))) - (-4 *3 (-1251 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791))))) -(((*1 *1 *1) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1) (-4 *1 (-561)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) - (-5 *2 - (-2 (|:| -4317 (-776)) (|:| |curves| (-776)) - (|:| |polygons| (-776)) (|:| |constructs| (-776))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-319 *5))) - (-5 *1 (-1137 *5)))) + (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1281)) (-5 *1 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-319 *5)))) - (-5 *1 (-1137 *5))))) + (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1281)) + (-5 *1 (-1189)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1281)) + (-5 *1 (-1189))))) (((*1 *2 *2) + (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1252 *3)) + (-4 *3 (-13 (-368) (-148) (-1047 (-570)))) (-5 *1 (-574 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 - (-995 (-412 (-569)) (-869 *3) (-241 *4 (-776)) - (-248 *3 (-412 (-569))))) - (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-994 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1108)) (-4 *5 (-1108)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-688 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1185)) (-5 *6 (-649 (-617 *3))) - (-5 *5 (-617 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *7))) - (-4 *7 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) - (-5 *1 (-562 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-564))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) - (-5 *2 (-649 (-649 (-248 *5 *6)))) (-5 *1 (-476 *5 *6 *7)) - (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))) -(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) - (-4 *4 (-855)) (-5 *1 (-1196 *4))))) + (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) + (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) + (|:| |args| (-650 (-868))))) + (-5 *1 (-1186)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-1186))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) ((*1 *1) (-4 *1 (-551))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *5 (-1168)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1044)) + (-5 *1 (-756))))) +(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168))))) (((*1 *2 *3) - (-12 (-5 *3 (-1275 (-1275 *4))) (-4 *4 (-1057)) (-5 *2 (-694 *4)) - (-5 *1 (-1037 *4))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-958 (-569))) (-5 *3 (-1185)) - (-5 *4 (-1102 (-412 (-569)))) (-5 *1 (-30))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) - ((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) - (-14 *4 (-649 (-1185))))) - ((*1 *2 *1) - (-12 (-5 *2 (-569)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) - (-14 *4 (-649 (-1185))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) - (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-277)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *8)) (-5 *4 (-649 *6)) (-4 *6 (-855)) - (-4 *8 (-955 *7 *5 *6)) (-4 *5 (-798)) (-4 *7 (-1057)) - (-5 *2 (-649 (-776))) (-5 *1 (-324 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) - ((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) - (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-475 *3 *2)) (-4 *3 (-173)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) - (-4 *4 (-1251 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) + (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) + (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-295))) + ((*1 *1) (-5 *1 (-868))) + ((*1 *1) + (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) + (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1094))) + ((*1 *1) + (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34))))) + ((*1 *1) (-5 *1 (-1189))) ((*1 *1) (-5 *1 (-1190)))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1226)) + (-4 *5 (-378 *4)) (-4 *2 (-378 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *3 (-855)) (-5 *2 (-776)))) - ((*1 *2 *1) - (-12 (-4 *1 (-981 *3 *2 *4)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *2 (-797)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-776)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1266 *3)) - (-5 *2 (-569)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3)) - (-5 *2 (-412 (-569))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-776))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))) -(((*1 *1 *1) (-4 *1 (-874 *2)))) -(((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-617 *4)) (-5 *6 (-1181 *4)) - (-4 *4 (-13 (-435 *7) (-27) (-1210))) - (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-617 *4)) (-5 *6 (-412 (-1181 *4))) - (-4 *4 (-13 (-435 *7) (-27) (-1210))) - (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) + (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *7 *2)) (-4 *6 (-1058)) + (-4 *7 (-240 *5 *6)) (-4 *2 (-240 *4 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2865 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) - (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-444)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-843)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126)) (-5 *1 (-1123)))) + (-2 (|:| -3958 (-777)) (|:| |curves| (-777)) + (|:| |polygons| (-777)) (|:| |constructs| (-777))))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570)))) + (-4 *2 (-174))))) +(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-707))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1190))) (-5 *3 (-1190)) (-5 *1 (-1126))))) -(((*1 *1 *2) - (-12 (-5 *2 (-694 *4)) (-4 *4 (-1057)) (-5 *1 (-1150 *3 *4)) - (-14 *3 (-776))))) + (-12 (-5 *2 (-1182 (-570))) (-5 *3 (-570)) (-4 *1 (-875 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1208 *3)) (-4 *3 (-1058))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-777)) (-5 *3 (-950 *4)) (-4 *1 (-1143 *4)) + (-4 *4 (-1058)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-950 (-227))) (-5 *2 (-1281)) + (-5 *1 (-1278))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4))) - (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225))))) -(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-134))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1185)) (-5 *6 (-112)) - (-4 *7 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-4 *3 (-13 (-1210) (-965) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *7 *3)) (-5 *5 (-848 *3))))) + (-12 (-4 *4 (-1252 *2)) (-4 *2 (-1230)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1252 (-413 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *2 (-650 (-171 *4))) + (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1252 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2 *3) (-12 (-5 *3 (-980)) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1277)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) + (-12 (-5 *2 (-2 (|:| -1918 (-650 *3)) (|:| -3549 (-650 *3)))) + (-5 *1 (-1227 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-445)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-844)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127)) (-5 *1 (-1124)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-650 (-1191))) (-5 *3 (-1191)) (-5 *1 (-1127))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057)) - (-5 *1 (-719 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3))))) + (-12 (-5 *2 (-1243 (-570))) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1226))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1113)) (-5 *1 (-283))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1226)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-680 *3))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-650 (-1182 *11))) (-5 *3 (-1182 *11)) + (-5 *4 (-650 *10)) (-5 *5 (-650 *8)) (-5 *6 (-650 (-777))) + (-5 *7 (-1276 (-650 (-1182 *8)))) (-4 *10 (-856)) + (-4 *8 (-311)) (-4 *11 (-956 *8 *9 *10)) (-4 *9 (-799)) + (-5 *1 (-713 *9 *10 *8 *11))))) +(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1281)) (-5 *1 (-1147))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-567)) (-5 *3 (-570))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) + (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) + (-5 *1 (-794))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-776)) (-4 *2 (-1108)) - (-5 *1 (-683 *2))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-5 *1 (-704)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-694 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-367)) (-5 *1 (-986 *5))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1165 *3))) (-5 *1 (-1165 *3)) (-4 *3 (-1225))))) -(((*1 *2) (-12 (-5 *2 (-649 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-132))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) - ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) - ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1082)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-749 *3)) (-4 *3 (-173))))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-569) (-569))) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-776) (-776))) (-4 *1 (-390 *3)) (-4 *3 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-777)) (-4 *2 (-1109)) + (-5 *1 (-684 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-118 *3)) (-14 *3 (-570)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-311)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-570))) (-5 *1 (-771 *3)) (-4 *3 (-410)))) + ((*1 *2 *1) + (-12 (-5 *2 (-176 (-413 (-570)))) (-5 *1 (-877 *3)) (-14 *3 (-570)))) + ((*1 *2 *1) + (-12 (-14 *3 (-570)) (-5 *2 (-176 (-413 (-570)))) + (-5 *1 (-878 *3 *4)) (-4 *4 (-875 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-585))))) (((*1 *2 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-1251 (-412 *3))) (-5 *2 (-927)) - (-5 *1 (-919 *4 *5)) (-4 *5 (-1251 (-412 *4)))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) - (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) - (-5 *1 (-702))))) -(((*1 *2 *1) (-12 (-5 *2 (-779)) (-5 *1 (-52))))) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) + (-4 *3 (-1109))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057)) - (-5 *1 (-1169 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) - (-4 *7 (-855)) (-4 *8 (-310)) (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) + (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-650 *3)) (-5 *1 (-1093 *3)) (-4 *3 (-133))))) +(((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112)) + (-5 *1 (-362 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *1 *1) + (-12 (-4 *2 (-311)) (-4 *3 (-1001 *2)) (-4 *4 (-1252 *3)) + (-5 *1 (-419 *2 *3 *4 *5)) (-4 *5 (-13 (-415 *3 *4) (-1047 *3)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1083)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |upol| (-1181 *8)) (|:| |Lval| (-649 *8)) - (|:| |Lfact| - (-649 (-2 (|:| -3800 (-1181 *8)) (|:| -1993 (-569))))) - (|:| |ctpol| *8))) - (-5 *1 (-747 *6 *7 *8 *9))))) + (-650 + (-2 + (|:| -2009 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -2219 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1166 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2762 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-565))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1166 *2)) (-4 *2 (-311)) (-5 *1 (-176 *2))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-97))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-327 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1109)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-391 *2)) (-4 *2 (-1109)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *2 (-1109)) (-5 *1 (-655 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1 *1) (-4 *1 (-479))) ((*1 *1 *1 *1) (-4 *1 (-767)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227)))) + (-5 *2 (-1044)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-5 *2 (-780)) (-5 *1 (-52))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-112)) + (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-482 *4 *5 *6 *7)) (|:| -3312 (-650 *7)))) + (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) + (-14 *4 *2)))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-776)) (-4 *3 (-1225)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) - ((*1 *1) (-5 *1 (-172))) - ((*1 *1) (-12 (-5 *1 (-214 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1108)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394)))) - ((*1 *1) (-5 *1 (-399))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-777)) (-4 *3 (-1226)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) + ((*1 *1) (-5 *1 (-173))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1109)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395)))) + ((*1 *1) (-5 *1 (-400))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) ((*1 *1) - (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108)) - (-4 *4 (-671 *3)))) - ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) + (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109)) + (-4 *4 (-672 *3)))) + ((*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) ((*1 *1 *2) - (-12 (-5 *1 (-1150 *3 *2)) (-14 *3 (-776)) (-4 *2 (-1057)))) - ((*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) - ((*1 *1 *1) (-5 *1 (-1185))) ((*1 *1) (-5 *1 (-1185))) - ((*1 *1) (-5 *1 (-1205)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) + (-12 (-5 *1 (-1151 *3 *2)) (-14 *3 (-777)) (-4 *2 (-1058)))) + ((*1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058)))) + ((*1 *1 *1) (-5 *1 (-1186))) ((*1 *1) (-5 *1 (-1186))) + ((*1 *1) (-5 *1 (-1206)))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-570)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-656 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3) (-12 (-5 *3 (-958 (-226))) (-5 *2 (-226)) (-5 *1 (-308))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-305)) (-4 *2 (-1225)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-617 *1))) (-5 *3 (-649 *1)) (-4 *1 (-305)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-297 *1))) (-4 *1 (-305)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-297 *1)) (-4 *1 (-305))))) -(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-649 *5)) (-4 *5 (-855)) (-5 *1 (-1196 *5))))) + (-12 (-5 *3 (-570)) (-4 *1 (-657 *2)) (-4 *2 (-1226))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-649 - (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *3)) - (|:| |logand| (-1181 *3))))) - (-5 *1 (-591 *3)) (-4 *3 (-367))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-561)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-2 (|:| -2006 *3) (|:| -2216 *4)))) - (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *1 (-1201 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1201 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-752))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) - (-5 *2 (-1275 *4)) (-5 *1 (-643 *4 *5))))) + (-12 (-5 *2 (-650 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-592 *3)) (-4 *3 (-368))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-306)) (-4 *2 (-1226)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-618 *1))) (-5 *3 (-650 *1)) (-4 *1 (-306)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-298 *1))) (-4 *1 (-306)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-298 *1)) (-4 *1 (-306))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-1186)) + (-4 *2 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *5 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1226)) + (-4 *5 (-1226)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-242 *6 *7)) (-14 *6 (-777)) + (-4 *7 (-1226)) (-4 *5 (-1226)) (-5 *2 (-242 *6 *5)) + (-5 *1 (-241 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1226)) (-4 *5 (-1226)) + (-4 *2 (-378 *5)) (-5 *1 (-376 *6 *4 *5 *2)) (-4 *4 (-378 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1109)) (-4 *5 (-1109)) + (-4 *2 (-431 *5)) (-5 *1 (-429 *6 *4 *5 *2)) (-4 *4 (-431 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-650 *6)) (-4 *6 (-1226)) + (-4 *5 (-1226)) (-5 *2 (-650 *5)) (-5 *1 (-648 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-965 *6)) (-4 *6 (-1226)) + (-4 *5 (-1226)) (-5 *2 (-965 *5)) (-5 *1 (-964 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1166 *6)) (-4 *6 (-1226)) + (-4 *3 (-1226)) (-5 *2 (-1166 *3)) (-5 *1 (-1164 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1276 *6)) (-4 *6 (-1226)) + (-4 *5 (-1226)) (-5 *2 (-1276 *5)) (-5 *1 (-1275 *6 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1148)))) (((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108))))) + (-12 (-5 *2 (-650 (-2 (|:| -2009 *3) (|:| -2219 *4)))) + (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *1 (-1202 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1202 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-4 *3 (-907 *5)) (-5 *2 (-1276 *3)) + (-5 *1 (-698 *5 *3 *6 *4)) (-4 *6 (-378 *3)) + (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448))))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384)))) + ((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-384))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-650 (-788 *3))) (-5 *1 (-788 *3)) (-4 *3 (-562)) + (-4 *3 (-1058))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-368)) (-4 *7 (-1252 *5)) (-4 *4 (-730 *5 *7)) + (-5 *2 (-2 (|:| -2568 (-695 *6)) (|:| |vec| (-1276 *5)))) + (-5 *1 (-817 *5 *6 *7 *4 *3)) (-4 *6 (-662 *5)) (-4 *3 (-662 *4))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) + (-5 *2 (-1044)) (-5 *1 (-762))))) +(((*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4411 *6) (|:| |sol?| (-112))) (-570) + *6)) + (-4 *6 (-368)) (-4 *7 (-1252 *6)) + (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) + (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1229)) - (-4 *6 (-1251 (-412 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-346 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) - (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 *3 (-649 *1))) - (-4 *1 (-1079 *4 *5 *6 *3))))) + (-12 (-5 *3 (-570)) (-4 *1 (-327 *4 *2)) (-4 *4 (-1109)) + (-4 *2 (-132))))) +(((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-898 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1108)) - (-4 *5 (-1225)) (-5 *1 (-896 *4 *5)))) + (-12 (-5 *2 (-899 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1109)) + (-4 *5 (-1226)) (-5 *1 (-897 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-898 *4)) (-5 *3 (-649 (-1 (-112) *5))) (-4 *4 (-1108)) - (-4 *5 (-1225)) (-5 *1 (-896 *4 *5)))) + (-12 (-5 *2 (-899 *4)) (-5 *3 (-650 (-1 (-112) *5))) (-4 *4 (-1109)) + (-4 *5 (-1226)) (-5 *1 (-897 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-898 *5)) (-5 *3 (-649 (-1185))) - (-5 *4 (-1 (-112) (-649 *6))) (-4 *5 (-1108)) (-4 *6 (-1225)) - (-5 *1 (-896 *5 *6)))) + (-12 (-5 *2 (-899 *5)) (-5 *3 (-650 (-1186))) + (-5 *4 (-1 (-112) (-650 *6))) (-4 *5 (-1109)) (-4 *6 (-1226)) + (-5 *1 (-897 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1225)) (-4 *4 (-1108)) - (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1226)) (-4 *4 (-1109)) + (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) (-4 *4 (-1108)) - (-5 *1 (-943 *4 *2 *5)) (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-650 (-1 (-112) *5))) (-4 *5 (-1226)) (-4 *4 (-1109)) + (-5 *1 (-944 *4 *2 *5)) (-4 *2 (-436 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1225)) - (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))) + (-12 (-5 *3 (-1186)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1226)) + (-5 *2 (-320 (-570))) (-5 *1 (-945 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-649 (-1 (-112) *5))) (-4 *5 (-1225)) - (-5 *2 (-319 (-569))) (-5 *1 (-944 *5)))) + (-12 (-5 *3 (-1186)) (-5 *4 (-650 (-1 (-112) *5))) (-4 *5 (-1226)) + (-5 *2 (-320 (-570))) (-5 *1 (-945 *5)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1 (-112) (-649 *6))) - (-4 *6 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) (-4 *4 (-1108)) - (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) - (-5 *1 (-1084 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4)))))) -(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1218 *4 *5 *3 *6)) (-4 *4 (-561)) (-4 *5 (-798)) - (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195))))) -(((*1 *2 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1108))))) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1 (-112) (-650 *6))) + (-4 *6 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) (-4 *4 (-1109)) + (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) + (-5 *1 (-1085 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) + (-4 *3 (-1252 *4)) + (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1211) (-288)))))) +(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-695 (-227))) (-5 *6 (-695 (-570))) (-5 *3 (-570)) + (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *2 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1109))))) +(((*1 *1) (-5 *1 (-295)))) +(((*1 *2 *2) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) (((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) - (-5 *1 (-850 *4 *5)) (-14 *4 (-776))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-112)) (-5 *1 (-826))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-570)) + (-5 *6 + (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384)))) + (-5 *7 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) + (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) + (-5 *1 (-794)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-570)) + (-5 *6 + (-2 (|:| |try| (-384)) (|:| |did| (-384)) (|:| -2058 (-384)))) + (-5 *7 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) + (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) + (-5 *1 (-794))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27)) + (-5 *2 (-650 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186))) + (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458)) + (-5 *1 (-925 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-585))))) +(((*1 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1279))))) +(((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1190))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3)))) + ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-440)) + (-5 *2 + (-650 + (-3 (|:| -3574 (-1186)) + (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570))))))))) + (-5 *1 (-1190))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-618 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) + (-4 *2 (-13 (-436 *5) (-27) (-1211))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1109))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-776)) (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1252 *6)) + (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) + (-4 *8 (-1252 (-413 *7))) (-5 *2 (-592 *3)) + (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1275 *4)) (-4 *4 (-1057)) (-4 *2 (-1251 *4)) - (-5 *1 (-449 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-412 (-1181 (-319 *5)))) (-5 *3 (-1275 (-319 *5))) - (-5 *4 (-569)) (-4 *5 (-561)) (-5 *1 (-1138 *5))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-384)) (-5 *1 (-207))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-458)) (-4 *4 (-856)) + (-4 *5 (-799)) (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) + (-5 *2 (-650 (-650 (-650 (-777)))))))) (((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3)))) - ((*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-170 (-226)))) - (-5 *2 (-1043)) (-5 *1 (-760))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1108)) (-5 *2 (-112)) - (-5 *1 (-1226 *3))))) -(((*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834))))) -(((*1 *1) (-5 *1 (-226))) ((*1 *1) (-5 *1 (-383)))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-676)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) - (-14 *4 (-927))))) + (-12 (-5 *2 (-650 (-1085 *3 *4 *5))) (-4 *3 (-1109)) + (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) + (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) + (-5 *1 (-1086 *3 *4 *5))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) (-5 *2 (-649 *1)) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-1108)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) + (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) (-5 *2 (-112)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) - (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) - (-5 *1 (-956 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) - (-15 -4412 (*7 $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) - (-4 *7 (-798)) + (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-112)) + (-5 *1 (-362 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-112)) + (-5 *1 (-534 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1109)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 - (-649 - (-2 (|:| -3978 (-776)) - (|:| |eqns| - (-649 - (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) - (|:| |cols| (-649 (-569)))))) - (|:| |fgb| (-649 *8))))) - (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-776))))) -(((*1 *1 *1) (-12 (-5 *1 (-613 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1) (-5 *1 (-637)))) -(((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4)))))) + (-3 (-1182 *4) + (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129))))))) + (-5 *1 (-351 *4)) (-4 *4 (-354))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-650 *5))) (-4 *5 (-1267 *4)) + (-4 *4 (-38 (-413 (-570)))) + (-5 *2 (-1 (-1166 *4) (-650 (-1166 *4)))) (-5 *1 (-1269 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-1109))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1069 (-1032 *3) (-1181 (-1032 *3)))) - (-5 *1 (-1032 *3)) (-4 *3 (-13 (-853) (-367) (-1030)))))) + (-12 + (-5 *2 + (-650 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-570))))) + (-5 *1 (-424 *3)) (-4 *3 (-562)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-777)) (-4 *3 (-354)) (-4 *5 (-1252 *3)) + (-5 *2 (-650 (-1182 *3))) (-5 *1 (-504 *3 *5 *6)) + (-4 *6 (-1252 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-4 *7 (-856)) + (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) (-4 *8 (-311)) + (-5 *2 (-650 (-777))) (-5 *1 (-748 *6 *7 *8 *9)) (-5 *5 (-777))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-531))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-1141 *4 *2)) + (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4448) (-6 -4449)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-856)) (-4 *3 (-1226)) (-5 *1 (-1141 *3 *2)) + (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4448) (-6 -4449))))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-1084 *3 *4 *5))) (-4 *3 (-1108)) - (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) - (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) - (-5 *1 (-1085 *3 *4 *5))))) + (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-112)) + (-5 *1 (-678 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-551)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) + (-5 *2 (-650 (-650 (-650 (-950 *3)))))))) +(((*1 *2 *1) + (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *2)) + (-2 (|:| -2155 *5) (|:| -3283 *2)))) + (-4 *2 (-240 (-2431 *3) (-777))) (-5 *1 (-467 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-856)) (-4 *7 (-956 *4 *2 (-870 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-650 (-283))) (-5 *1 (-283)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) + (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) + (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-849 (-227)))) (-5 *4 (-227)) (-5 *2 (-650 *4)) + (-5 *1 (-270))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-798)) - (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561)) - (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) + (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-551)) (-5 *1 (-150 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *3 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))) + (|partial| -12 (-5 *2 (-650 *3)) (-4 *3 (-1252 *5)) + (-4 *5 (-1252 *4)) (-4 *4 (-354)) (-5 *1 (-363 *4 *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *6)) - (-4 *6 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2)) - (-4 *2 (-955 (-958 *4) *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-591 *3)) (-4 *3 (-367))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-569)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569))))) + (|partial| -12 (-5 *2 (-650 (-1182 (-570)))) (-5 *3 (-1182 (-570))) + (-5 *1 (-578)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-650 (-1182 *1))) (-5 *3 (-1182 *1)) + (-4 *1 (-916))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-601 *2)) (-4 *2 (-1058))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-638))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227))) + (-5 *2 (-1278)) (-5 *1 (-260))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-694 (-412 (-958 (-569))))) - (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-694 *4)) (-4 *5 (-661 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225))))) -(((*1 *1) (-4 *1 (-353)))) -(((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) -(((*1 *2) - (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) - (-5 *1 (-462 *3 *4 *2 *5)) (-4 *5 (-955 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *2 (-915)) - (-5 *1 (-912 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-915)) (-5 *1 (-913 *2 *3)) (-4 *3 (-1251 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-4 *1 (-378 *3 *4)) - (-4 *4 (-173))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-91 *3))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1185)) - (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-580 *4 *2)) - (-4 *2 (-13 (-1210) (-965) (-1147) (-29 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-1057)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1251 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) + (-12 (-5 *3 (-320 (-227))) (-5 *2 (-413 (-570))) (-5 *1 (-309))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1228))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1227))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-637))))) -(((*1 *2 *1) (-12 (-5 *2 (-214 4 (-129))) (-5 *1 (-584))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1275 (-1185))) (-5 *3 (-1275 (-458 *4 *5 *6 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) - (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-458 *4 *5 *6 *7))) - (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-173)) (-14 *5 (-927)) - (-14 *6 (-649 *2)) (-14 *7 (-1275 (-694 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-458 *3 *4 *5 *6))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) - (-14 *6 (-1275 (-694 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-1185))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-173)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))) - (-14 *6 (-1275 (-694 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) - (-14 *4 (-927)) (-14 *5 (-649 *2)) (-14 *6 (-1275 (-694 *3))))) - ((*1 *1) - (-12 (-5 *1 (-458 *2 *3 *4 *5)) (-4 *2 (-173)) (-14 *3 (-927)) - (-14 *4 (-649 (-1185))) (-14 *5 (-1275 (-694 *2)))))) -(((*1 *2) - (-12 (-4 *1 (-353)) - (-5 *2 (-649 (-2 (|:| -3800 (-569)) (|:| -1993 (-569)))))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) - (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) - (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) + (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-436 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) - (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) - (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8))))) + (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-436 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) + (-5 *1 (-279 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-305 *4)) (-4 *4 (-306)))) + ((*1 *2 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1109)) (-5 *2 (-112)) + (-5 *1 (-435 *4 *5)) (-4 *4 (-436 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) + (-5 *1 (-437 *4 *5)) (-4 *5 (-436 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-562)) (-5 *2 (-112)) + (-5 *1 (-636 *4 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1211)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2865 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306)))) + ((*1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1) (-5 *1 (-868)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 *1)) (-4 *1 (-435 *4)) - (-4 *4 (-1108)))) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 *1)) (-4 *1 (-436 *4)) + (-4 *4 (-1109)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) - ((*1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) - (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *2 (-1220 (-932))) - (-5 *1 (-321)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) - (-5 *5 (-1102 (-226))) (-5 *6 (-569)) (-5 *7 (-1167)) - (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) - (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) - (-5 *2 (-1220 (-932))) (-5 *1 (-321)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-319 (-569))) (-5 *4 (-1 (-226) (-226))) - (-5 *5 (-1102 (-226))) (-5 *6 (-226)) (-5 *7 (-569)) (-5 *8 (-1167)) - (-5 *2 (-1220 (-932))) (-5 *1 (-321))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-776))) (-5 *3 (-112)) (-5 *1 (-1173 *4 *5)) - (-14 *4 (-927)) (-4 *5 (-1057))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *2 (-1043)) (-5 *1 (-756))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1152)))) -(((*1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-541) (-649 (-541)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-583)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131)) - (-4 *3 (-797))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) + (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109))))) (((*1 *2 *2) - (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) + (|partial| -12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) + (-5 *1 (-365 *3 *4)) (-14 *4 (-650 (-1186))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458)) + (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) + (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309))))) +(((*1 *2 *1) + (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-1074 *3 *4 *2)) (-4 *2 (-856)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) (((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-542) (-650 (-542)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-584)))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 + (-5 *3 + (-2 (|:| -2568 (-695 (-413 (-959 *4)))) + (|:| |vec| (-650 (-413 (-959 *4)))) (|:| -3979 (-777)) + (|:| |rows| (-650 (-570))) (|:| |cols| (-650 (-570))))) + (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 - (-649 - (-2 - (|:| -2006 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (|:| -2216 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1165 (-226))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3743 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-564)))) + (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *4))))))) + (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937))))) +(((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) + (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-695 *2)) (-5 *4 (-777)) + (-4 *2 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *5 (-1252 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) + (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-928)))) + ((*1 *2 *3) + (-12 (-5 *3 (-341 *4 *5 *6 *7)) (-4 *4 (-13 (-373) (-368))) + (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-4 *7 (-347 *4 *5 *6)) + (-5 *2 (-777)) (-5 *1 (-398 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-839 (-928))))) + ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) - (-5 *2 (-649 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) - (-14 *3 (-927)) (-4 *4 (-1057)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071))))) -(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353))))) + (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4)) + (-4 *4 (-1252 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) + (-4 *3 (-856)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-746 *4 *3)) (-4 *4 (-1058)) (-4 *3 (-856)) + (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) + (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) + (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) + (-5 *2 (-777)) (-5 *1 (-918 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) + (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-1252 (-413 *4))) + (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-777)) + (-5 *1 (-919 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-341 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-368)) + (-4 *7 (-1252 *6)) (-4 *4 (-1252 (-413 *7))) (-4 *8 (-347 *6 *7 *4)) + (-4 *9 (-13 (-373) (-368))) (-5 *2 (-777)) + (-5 *1 (-1027 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1058)) (-4 *3 (-562)) + (-5 *2 (-777)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-854)) (-4 *4 (-368)) (-5 *2 (-777)) + (-5 *1 (-952 *4 *5)) (-4 *5 (-1252 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-649 (-172))))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) (((*1 *1 *2 *3) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1252 *4)) (-4 *4 (-1230)) + (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1252 (-413 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(((*1 *2 *2) (-12 - (-5 *3 - (-649 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-569))))) - (-4 *2 (-561)) (-5 *1 (-423 *2)))) - ((*1 *2 *3) + (-5 *2 + (-650 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856)) + (-5 *1 (-455 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-569)) - (|:| -4360 (-649 (-2 (|:| |irr| *4) (|:| -4180 (-569))))))) - (-4 *4 (-1251 (-569))) (-5 *2 (-423 *4)) (-5 *1 (-447 *4))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2916 (-649 (-1185))) (|:| -1365 (-649 (-1185))))) - (-5 *1 (-1227))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-883 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-885 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *1 (-888 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6)) - (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) - (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3)) - (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))) -(((*1 *2 *3) - (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057))))) + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1166 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2762 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1044)) (-5 *1 (-309))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))) (((*1 *2 *1) - (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) - (-14 *4 (-776)) (-4 *5 (-173))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) - (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *7))))) + (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) (-5 *2 (-650 *1)) + (-4 *1 (-436 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-1109)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) + (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) + (-15 -4413 (*7 $)))))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *2 (-1074 *4 *5 *6)) (-5 *1 (-782 *4 *5 *6 *2 *3)) + (-4 *3 (-1080 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-950 *4))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) + (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-489)) (-5 *1 (-682)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1056))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2) - (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) - (-4 *4 (-1251 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6)) - (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-320 (-384))) (-5 *1 (-309))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-384)) (-5 *1 (-207))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1072)) (-5 *3 (-1168))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-266)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-266)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-266))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-618 *4)) (-5 *6 (-1182 *4)) + (-4 *4 (-13 (-436 *7) (-27) (-1211))) + (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-618 *4)) (-5 *6 (-413 (-1182 *4))) + (-4 *4 (-13 (-436 *7) (-27) (-1211))) + (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-335 *3)) (-4 *3 (-856))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-650 + (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) + (|:| |wcond| (-650 (-959 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) + (-5 *4 (-1168)) (-4 *5 (-13 (-311) (-148))) (-4 *8 (-956 *5 *7 *6)) + (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-570)) + (-5 *1 (-931 *5 *6 *7 *8))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) - (-4 *5 (-1251 *4)) - (-5 *2 (-2 (|:| -2679 (-412 *5)) (|:| |coeff| (-412 *5)))) - (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-569))) (-5 *5 (-1 (-1165 *4))) (-4 *4 (-367)) - (-4 *4 (-1057)) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-511)) (-5 *2 (-649 (-971))) (-5 *1 (-294))))) -(((*1 *1 *1) (-4 *1 (-634))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) + (-5 *2 (-1044)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1109)) (-4 *5 (-1109)) + (-5 *2 (-1 *5)) (-5 *1 (-689 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-635))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010) (-1210)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) - (-5 *2 (-1181 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011) (-1211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-442))))) +(((*1 *1 *1) (-5 *1 (-1072)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) - (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-297 (-412 (-958 (-170 (-569))))))) - (-5 *2 (-649 (-649 (-297 (-958 (-170 *4)))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 (-170 (-569))))) - (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-412 (-958 (-170 (-569)))))) - (-5 *2 (-649 (-297 (-958 (-170 *4))))) (-5 *1 (-382 *4)) - (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-5 *3 (-1276 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) + (-4 *1 (-730 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1252 *5)) + (-5 *2 (-695 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *3 (-1252 *4)) (-5 *1 (-815 *4 *3 *2 *5)) (-4 *2 (-662 *3)) + (-4 *5 (-662 (-413 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-413 *5)) + (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-1252 *4)) + (-5 *1 (-815 *4 *5 *2 *6)) (-4 *2 (-662 *5)) (-4 *6 (-662 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1119))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)) (-5 *3 (-1167)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-242)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-867))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-758))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1276 (-1186))) (-5 *3 (-1276 (-459 *4 *5 *6 *7))) + (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928)) + (-14 *6 (-650 (-1186))) (-14 *7 (-1276 (-695 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-459 *4 *5 *6 *7))) + (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-928)) + (-14 *6 (-650 *2)) (-14 *7 (-1276 (-695 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1276 (-459 *3 *4 *5 *6))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) + (-14 *6 (-1276 (-695 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1276 (-1186))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))) + (-14 *6 (-1276 (-695 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1186)) (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-928)) (-14 *5 (-650 *2)) (-14 *6 (-1276 (-695 *3))))) + ((*1 *1) + (-12 (-5 *1 (-459 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-928)) + (-14 *4 (-650 (-1186))) (-14 *5 (-1276 (-695 *2)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)) (-5 *3 (-1168)))) + ((*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-243)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-868))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-867) (-649 (-867)))) (-5 *1 (-114)))) + (|partial| -12 (-5 *2 (-1 (-868) (-650 (-868)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3)) + (-12 (-5 *2 (-1281)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) - (-15 -3567 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-399)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-399)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507)))) - ((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-715)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1205)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1205))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) - (-5 *2 (-649 (-649 (-649 (-776)))))))) + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 (*2 $)) + (-15 -2038 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-400)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-400)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-508)))) + ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-716)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1206)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1206))))) +(((*1 *1 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1234)))))) +(((*1 *1) (-5 *1 (-334)))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) + (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570))) + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) + (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) + (-5 *1 (-154))))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-761))))) -(((*1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057)) - (-4 *3 (-1108))))) -(((*1 *1) (-5 *1 (-333)))) -(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-762))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) (((*1 *2 *3) - (-12 (-14 *4 (-649 (-1185))) (-4 *5 (-457)) - (-5 *2 - (-2 (|:| |glbase| (-649 (-248 *4 *5))) (|:| |glval| (-649 (-569))))) - (-5 *1 (-636 *4 *5)) (-5 *3 (-649 (-248 *4 *5)))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1218 *5 *6 *7 *8)) (-4 *5 (-561)) - (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-690 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) (-4 *5 (-1108)) - (-4 *6 (-1225)) (-5 *2 (-1 *6 *5)) (-5 *1 (-646 *5 *6)))) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) (-4 *5 (-1109)) + (-4 *6 (-1226)) (-5 *2 (-1 *6 *5)) (-5 *1 (-647 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108)) - (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109)) + (-4 *2 (-1226)) (-5 *1 (-647 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 *5)) (-4 *6 (-1108)) - (-4 *5 (-1225)) (-5 *2 (-1 *5 *6)) (-5 *1 (-646 *6 *5)))) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 *5)) (-4 *6 (-1109)) + (-4 *5 (-1226)) (-5 *2 (-1 *5 *6)) (-5 *1 (-647 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-4 *5 (-1108)) - (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-4 *5 (-1109)) + (-4 *2 (-1226)) (-5 *1 (-647 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-649 *5)) (-5 *4 (-649 *6)) - (-4 *5 (-1108)) (-4 *6 (-1225)) (-5 *1 (-646 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-650 *5)) (-5 *4 (-650 *6)) + (-4 *5 (-1109)) (-4 *6 (-1226)) (-5 *1 (-647 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1108)) (-4 *2 (-1225)) (-5 *1 (-646 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-776))))) -(((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *3 (-649 (-265))) - (-5 *1 (-263)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-486 *5 *6))) (-5 *3 (-486 *5 *6)) - (-14 *5 (-649 (-1185))) (-4 *6 (-457)) (-5 *2 (-1275 *6)) - (-5 *1 (-636 *5 *6))))) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1109)) (-4 *2 (-1226)) (-5 *1 (-647 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-777))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-270))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-474)) (-5 *3 (-650 (-266))) (-5 *1 (-1277)))) + ((*1 *1 *1) (-5 *1 (-1277)))) (((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) + (-4 *2 (-693 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-570)) (-4 *6 (-368)) (-4 *6 (-373)) + (-4 *6 (-1058)) (-5 *2 (-650 (-650 (-695 *6)))) (-5 *1 (-1038 *6)) + (-5 *3 (-650 (-695 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-368)) (-4 *4 (-373)) (-4 *4 (-1058)) + (-5 *2 (-650 (-650 (-695 *4)))) (-5 *1 (-1038 *4)) + (-5 *3 (-650 (-695 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)) + (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) + (-5 *3 (-650 (-695 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-928)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058)) + (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) + (-5 *3 (-650 (-695 *5)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-650 (-266))) (-5 *1 (-1278)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1168)) (-5 *1 (-1278)))) + ((*1 *1 *1) (-5 *1 (-1278)))) +(((*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1059 *3)) (-4 *3 (-1066)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) - (-4 *3 (-1251 *4)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-530)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1159))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) - (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 *4)) (-5 *1 (-1149 *3 *4)) - (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551)))) + ((*1 *1 *1) (-4 *1 (-1069)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) - (-14 *4 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1225)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) - (-14 *4 (-649 (-1185))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-855))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-248 *3 *4)) - (-14 *3 (-649 (-1185))) (-4 *4 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-14 *3 (-649 (-1185))) - (-5 *1 (-459 *3 *4 *5)) (-4 *4 (-1057)) - (-4 *5 (-239 (-2428 *3) (-776))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-486 *3 *4)) - (-14 *3 (-649 (-1185))) (-4 *4 (-1057))))) -(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-826))))) + (-12 (-5 *2 (-650 *4)) (-5 *1 (-1150 *3 *4)) + (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-777)) (-4 *4 (-311)) (-4 *6 (-1252 *4)) + (-5 *2 (-1276 (-650 *6))) (-5 *1 (-461 *4 *6)) (-5 *5 (-650 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-705)) (-5 *1 (-309))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-758))))) +(((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-650 *5) *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) + (-5 *2 (-650 (-2 (|:| -3711 *5) (|:| -4313 *3)))) + (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6)) + (-4 *7 (-662 (-413 *6)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *1) (-4 *1 (-498))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *1) (-4 *1 (-499))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-226)) (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-979))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-109))) (-5 *1 (-176))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *1) (-5 *1 (-602)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-594 *4)) + (-4 *4 (-354))))) (((*1 *1 *2) - (-12 (-5 *2 (-694 *5)) (-4 *5 (-1057)) (-5 *1 (-1062 *3 *4 *5)) - (-14 *3 (-776)) (-14 *4 (-776))))) + (-12 (-5 *2 (-1 *3 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-99 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-552)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1168))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) - (-5 *2 (-1181 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) - (-5 *2 (-1181 *3))))) + (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4)) + (-4 *4 (-1058))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *1) (-4 *1 (-498))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *1) (-4 *1 (-499))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-694 (-569))) (-5 *5 (-112)) (-5 *7 (-694 (-226))) - (-5 *3 (-569)) (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-759))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) + (-5 *2 (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -2423 *1))) + (-4 *1 (-1074 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -2423 *1))) + (-4 *1 (-1074 *3 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *1 (-684 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))) + (-12 (-5 *1 (-685 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1252 *3)) (-5 *1 (-405 *3 *2)) + (-4 *3 (-13 (-368) (-148)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1111 *3)) (-5 *1 (-912 *3)) (-4 *3 (-373)) + (-4 *3 (-1109))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-650 (-2 (|:| |totdeg| (-777)) (|:| -1750 *3)))) + (-5 *4 (-777)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *6 (-799)) + (-4 *7 (-856)) (-5 *1 (-455 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-829)))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-570)) (-14 *4 (-777))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-561))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-776)) (-5 *2 (-1280))))) + (-12 (-5 *3 (-618 *5)) (-4 *5 (-436 *4)) (-4 *4 (-1047 (-570))) + (-4 *4 (-562)) (-5 *2 (-1182 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-618 *1)) (-4 *1 (-1058)) (-4 *1 (-306)) + (-5 *2 (-1182 *1))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-570)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1252 (-171 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) + (-4 *2 (-1267 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1252 *3)) + (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1267 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) + (-4 *2 (-1267 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) + (-5 *1 (-1162 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353)) - (-5 *1 (-533 *4))))) -(((*1 *1 *1) (-5 *1 (-226))) ((*1 *1 *1) (-5 *1 (-383))) - ((*1 *1) (-5 *1 (-383)))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-764))))) -(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569))))) -(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-308))))) + (-12 (-5 *1 (-685 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) +(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-777))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-650 (-1220 *5))) + (-5 *1 (-1284 *5)) (-5 *4 (-1220 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-828))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) + (-5 *1 (-510 *4 *5 *6 *2)) (-4 *2 (-956 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) + (-5 *2 (-650 (-777))) (-5 *1 (-784 *3 *4 *5 *6 *7)) + (-4 *3 (-1252 *6)) (-4 *7 (-956 *6 *4 *5))))) +(((*1 *1) (-5 *1 (-809)))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-384)) (-5 *3 (-1168)) (-5 *1 (-97))))) +(((*1 *2) + (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) + (-4 *4 (-1252 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) + (-4 *7 (-799)) + (-5 *2 + (-650 + (-2 (|:| -3979 (-777)) + (|:| |eqns| + (-650 + (-2 (|:| |det| *8) (|:| |rows| (-650 (-570))) + (|:| |cols| (-650 (-570)))))) + (|:| |fgb| (-650 *8))))) + (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-777))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-753))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-592 *3) *3 (-1186))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1186))) + (-4 *3 (-288)) (-4 *3 (-635)) (-4 *3 (-1047 *4)) (-4 *3 (-436 *7)) + (-5 *4 (-1186)) (-4 *7 (-620 (-899 (-570)))) (-4 *7 (-458)) + (-4 *7 (-893 (-570))) (-4 *7 (-1109)) (-5 *2 (-592 *3)) + (-5 *1 (-579 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3)) - (-4 *3 (-1251 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048))))) + (-12 (-5 *3 (-849 (-384))) (-5 *2 (-849 (-227))) (-5 *1 (-309))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) + (-4 *3 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1226))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1108)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-1108))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-570)) + (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) (-5 *3 (-227)) + (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-799)) (-4 *2 (-956 *4 *5 *6)) (-5 *1 (-455 *4 *5 *6 *2)) + (-4 *4 (-458)) (-4 *6 (-856))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-777)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) + (-4 *2 (-1252 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *1) + (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) + (-4 *3 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-562)) + (-5 *2 (-2 (|:| -2568 (-695 *5)) (|:| |vec| (-1276 (-650 (-928)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4439)) (-4 *1 (-410)))) + ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-4 *4 (-458)) + (-5 *2 (-650 (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4))))) + (-5 *1 (-296 *4))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-551)))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-542))) (-5 *2 (-1186)) (-5 *1 (-542))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-856)) (-5 *4 (-650 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-650 *4)))) + (-5 *1 (-1197 *6)) (-5 *5 (-650 *4))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -3908 (-115)) (|:| |arg| (-650 (-899 *3))))) + (-5 *1 (-899 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-899 *4))) + (-5 *1 (-899 *4)) (-4 *4 (-1109))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-311)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-413 (-570))) + (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1227 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1252 *6)) + (-4 *6 (-13 (-368) (-148) (-1047 *4))) (-5 *4 (-570)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4313 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1024 *6 *3))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-367)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 (-412 *3))) - (-4 *1 (-339 *4 *3 *5 *2)) (-4 *2 (-346 *4 *3 *5)))) + (-12 (-4 *4 (-368)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 (-413 *3))) + (-4 *1 (-340 *4 *3 *5 *2)) (-4 *2 (-347 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-367)) (-4 *4 (-1251 *2)) - (-4 *5 (-1251 (-412 *4))) (-4 *1 (-339 *2 *4 *5 *6)) - (-4 *6 (-346 *2 *4 *5)))) + (-12 (-5 *3 (-570)) (-4 *2 (-368)) (-4 *4 (-1252 *2)) + (-4 *5 (-1252 (-413 *4))) (-4 *1 (-340 *2 *4 *5 *6)) + (-4 *6 (-347 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-367)) (-4 *3 (-1251 *2)) (-4 *4 (-1251 (-412 *3))) - (-4 *1 (-339 *2 *3 *4 *5)) (-4 *5 (-346 *2 *3 *4)))) + (-12 (-4 *2 (-368)) (-4 *3 (-1252 *2)) (-4 *4 (-1252 (-413 *3))) + (-4 *1 (-340 *2 *3 *4 *5)) (-4 *5 (-347 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) - (-4 *1 (-339 *3 *4 *5 *2)) (-4 *2 (-346 *3 *4 *5)))) + (-12 (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) + (-4 *1 (-340 *3 *4 *5 *2)) (-4 *2 (-347 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-418 *4 (-412 *4) *5 *6)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-4 *3 (-367)) - (-4 *1 (-339 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2290 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-383)))) (-5 *2 (-1102 (-848 (-226)))) - (-5 *1 (-308))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34)))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) - (-5 *2 (-1043)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-4 *2 (-906 *5)) (-5 *1 (-697 *5 *2 *3 *4)) - (-4 *3 (-377 *2)) (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447))))))) -(((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1185)) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-4 *4 (-13 (-29 *6) (-1210) (-965))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4)))) - (-5 *1 (-806 *6 *4 *3)) (-4 *3 (-661 *4))))) -(((*1 *1 *1) - (-12 (-4 *2 (-310)) (-4 *3 (-1000 *2)) (-4 *4 (-1251 *3)) - (-5 *1 (-418 *2 *3 *4 *5)) (-4 *5 (-13 (-414 *3 *4) (-1046 *3)))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) + (-12 (-5 *2 (-419 *4 (-413 *4) *5 *6)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-4 *3 (-368)) + (-4 *1 (-340 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-650 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1226))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) - (-4 *4 (-13 (-561) (-1046 (-569)) (-147))) (-5 *1 (-575 *4))))) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1069)) (-4 *3 (-1211)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1185)) (-4 *5 (-619 (-898 (-569)))) - (-4 *5 (-892 (-569))) - (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-572 *5 *3)) (-4 *3 (-634)) - (-4 *3 (-13 (-27) (-1210) (-435 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1185)) (-5 *4 (-848 *2)) (-4 *2 (-1147)) - (-4 *2 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-619 (-898 (-569)))) (-4 *5 (-892 (-569))) - (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) - (-5 *1 (-572 *5 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) + (-12 (-5 *3 (-695 *8)) (-4 *8 (-956 *5 *7 *6)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) + (-4 *7 (-799)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) + (-650 + (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) + (|:| |wcond| (-650 (-959 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) + (-5 *1 (-931 *5 *6 *7 *8)) (-5 *4 (-650 *8)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) + (-12 (-5 *3 (-695 *8)) (-5 *4 (-650 (-1186))) (-4 *8 (-956 *5 *7 *6)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) + (-4 *7 (-799)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) + (-650 + (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) + (|:| |wcond| (-650 (-959 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) + (-5 *1 (-931 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5)) + (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-277))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) - (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) - (-4 *2 (-692 *3 *5 *6))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-855)) (-4 *5 (-798)) - (-4 *6 (-561)) (-4 *7 (-955 *6 *5 *3)) - (-5 *1 (-467 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1046 (-412 (-569))) (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) - (-15 -4412 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-367) (-147))) - (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4)))) - (-5 *1 (-404 *3 *4)) (-4 *4 (-1251 *3))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-958 *6)) (-5 *4 (-1185)) - (-5 *5 (-848 *7)) - (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-4 *7 (-13 (-1210) (-29 *6))) (-5 *1 (-225 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1181 *6)) (-5 *4 (-848 *6)) - (-4 *6 (-13 (-1210) (-29 *5))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-225 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) + (-650 + (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7)) + (|:| |wcond| (-650 (-959 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *4)))))))))) + (-5 *1 (-931 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *9)) (-5 *5 (-928)) (-4 *9 (-956 *6 *8 *7)) + (-4 *6 (-13 (-311) (-148))) (-4 *7 (-13 (-856) (-620 (-1186)))) + (-4 *8 (-799)) (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-541))) (-5 *2 (-1185)) (-5 *1 (-541))))) -(((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) + (-650 + (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9)) + (|:| |wcond| (-650 (-959 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *6)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *6)))))))))) + (-5 *1 (-931 *6 *7 *8 *9)) (-5 *4 (-650 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-928)) + (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) + (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 - (-3 (|:| |overq| (-1181 (-412 (-569)))) - (|:| |overan| (-1181 (-48))) (|:| -2495 (-112)))) - (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) -(((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-5 *2 (-1167))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-617 *4)) (-5 *6 (-1185)) - (-4 *4 (-13 (-435 *7) (-27) (-1210))) - (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) + (-650 + (-2 (|:| |eqzro| (-650 *9)) (|:| |neqzro| (-650 *9)) + (|:| |wcond| (-650 (-959 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *6)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *6)))))))))) + (-5 *1 (-931 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *8)) (-5 *4 (-928)) (-4 *8 (-956 *5 *7 *6)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) + (-4 *7 (-799)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-571 *7 *4 *3)) (-4 *3 (-661 *4)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-927)) - (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) - (-5 *1 (-350 *4)) (-4 *4 (-353))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1046 (-569))) (-4 *3 (-561)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-435 *3)))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-1181 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1057)) (-4 *1 (-305)))) - ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3)))) - ((*1 *2) (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367))) - (-4 *2 (-1251 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112)) - (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112)) - (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4)))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) - ((*1 *1 *1) (|partial| -4 *1 (-727)))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-297 *6)) (-5 *4 (-114)) (-4 *6 (-435 *5)) - (-4 *5 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-649 *7)) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-649 (-297 *8))) (-5 *4 (-649 (-114))) (-5 *5 (-297 *8)) - (-5 *6 (-649 *8)) (-4 *8 (-435 *7)) - (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) (-5 *5 (-297 *7)) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *6 *7)))) + (-650 + (-2 (|:| |eqzro| (-650 *8)) (|:| |neqzro| (-650 *8)) + (|:| |wcond| (-650 (-959 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *5)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *5)))))))))) + (-5 *1 (-931 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 *9)) (-5 *5 (-1168)) + (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) + (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) + (-5 *1 (-931 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *9)) (-5 *4 (-650 (-1186))) (-5 *5 (-1168)) + (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) + (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) + (-5 *1 (-931 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *8)) (-5 *4 (-1168)) (-4 *8 (-956 *5 *7 *6)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) + (-4 *7 (-799)) (-5 *2 (-570)) (-5 *1 (-931 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-114))) (-5 *6 (-649 (-297 *8))) - (-4 *8 (-435 *7)) (-5 *5 (-297 *8)) - (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-297 *5)) (-5 *4 (-114)) (-4 *5 (-435 *6)) - (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) - (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-4 *3 (-435 *6)) - (-4 *6 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *6 *3)))) + (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 *10)) (-5 *5 (-928)) + (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148))) + (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570)) + (-5 *1 (-931 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-297 *3)) (-5 *6 (-649 *3)) - (-4 *3 (-435 *7)) (-4 *7 (-13 (-561) (-619 (-541)))) (-5 *2 (-52)) - (-5 *1 (-320 *7 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-828)) (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-569)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) - (-5 *1 (-454 *5 *6 *7 *4))))) + (-12 (-5 *3 (-695 *10)) (-5 *4 (-650 (-1186))) (-5 *5 (-928)) + (-5 *6 (-1168)) (-4 *10 (-956 *7 *9 *8)) (-4 *7 (-13 (-311) (-148))) + (-4 *8 (-13 (-856) (-620 (-1186)))) (-4 *9 (-799)) (-5 *2 (-570)) + (-5 *1 (-931 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *9)) (-5 *4 (-928)) (-5 *5 (-1168)) + (-4 *9 (-956 *6 *8 *7)) (-4 *6 (-13 (-311) (-148))) + (-4 *7 (-13 (-856) (-620 (-1186)))) (-4 *8 (-799)) (-5 *2 (-570)) + (-5 *1 (-931 *6 *7 *8 *9))))) +(((*1 *1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058)) + (-4 *3 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) + (-4 *3 (-956 *7 *5 *6)) + (-5 *2 + (-2 (|:| -3283 (-777)) (|:| -1436 *3) (|:| |radicand| (-650 *3)))) + (-5 *1 (-960 *5 *6 *7 *3 *8)) (-5 *4 (-777)) + (-4 *8 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *3)) (-15 -4400 (*3 $)) (-15 -4413 (*3 $)))))))) +(((*1 *2) + (-12 (-4 *1 (-354)) + (-5 *2 (-650 (-2 (|:| -3801 (-570)) (|:| -3283 (-570)))))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) - (-5 *2 (-1043)) (-5 *1 (-761))))) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1281)) + (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1219 *4 *5 *3 *6)) (-4 *4 (-562)) (-4 *5 (-799)) + (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777))))) +(((*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1204))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-5 *1 (-705)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-695 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-368)) (-5 *1 (-987 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-368)) (-4 *6 (-1252 (-413 *2))) + (-4 *2 (-1252 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-347 *5 *2 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-435 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-435 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) - (-5 *1 (-278 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010))))) + (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-311) (-148))) + (-4 *2 (-956 *4 *6 *5)) (-5 *1 (-931 *4 *5 *6 *2)) + (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-311)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-453 *4 *5 *6 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *5)) (-5 *1 (-892 *3 *4 *5)) + (-4 *3 (-1109)) (-4 *5 (-672 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-413 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1252 *5)) + (-5 *1 (-733 *5 *2)) (-4 *5 (-368))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-1204))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-145)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-662 *3)) (-4 *3 (-1058)) (-4 *3 (-368)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-1 *5 *5)) (-4 *5 (-368)) + (-5 *1 (-665 *5 *2)) (-4 *2 (-662 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-331 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-570)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1226)) (-14 *4 *2)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-695 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-304 *4)) (-4 *4 (-305)))) - ((*1 *2 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) + (-12 (-4 *4 (-174)) (-4 *2 (-1252 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-730 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-413 (-959 *5)))) (-5 *4 (-1186)) + (-5 *2 (-959 *5)) (-5 *1 (-296 *5)) (-4 *5 (-458)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-1108)) (-5 *2 (-112)) - (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) + (-12 (-5 *3 (-695 (-413 (-959 *4)))) (-5 *2 (-959 *4)) + (-5 *1 (-296 *4)) (-4 *4 (-458)))) + ((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1252 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) - (-5 *1 (-436 *4 *5)) (-4 *5 (-435 *4)))) + (-12 (-5 *3 (-695 (-171 (-413 (-570))))) + (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *4)) + (-4 *4 (-13 (-368) (-854))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-171 (-413 (-570))))) (-5 *4 (-1186)) + (-5 *2 (-959 (-171 (-413 (-570))))) (-5 *1 (-770 *5)) + (-4 *5 (-13 (-368) (-854))))) ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-561)) (-5 *2 (-112)) - (-5 *1 (-635 *4 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210)))))) + (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-959 (-413 (-570)))) + (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *4 (-1186)) + (-5 *2 (-959 (-413 (-570)))) (-5 *1 (-785 *5)) + (-4 *5 (-13 (-368) (-854)))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-777)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-570)) (-4 *1 (-378 *3)) (-4 *3 (-1226)) + (-4 *3 (-1109)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) + (-5 *2 (-570)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-378 *4)) (-4 *4 (-1226)) + (-5 *2 (-570)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-535)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-570))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-4 *4 (-1109)) + (-5 *1 (-579 *4 *2)) (-4 *2 (-436 *4))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1186))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) +(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2077 (-650 *1)))) + (-4 *1 (-372 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-459 *3 *4 *5 *6)) + (|:| -2077 (-650 (-459 *3 *4 *5 *6))))) + (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)) - (-4 *4 (-1057))))) + (-12 (-4 *3 (-1252 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-994 *4 *2 *3 *5)) + (-4 *4 (-354)) (-4 *5 (-730 *2 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354))))) (((*1 *2 *3) - (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) - (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) + (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1275 *6)) (-5 *4 (-1275 (-569))) (-5 *5 (-569)) - (-4 *6 (-1108)) (-5 *2 (-1 *6)) (-5 *1 (-1025 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *5)) (-5 *1 (-891 *3 *4 *5)) - (-4 *3 (-1108)) (-4 *5 (-671 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1225)) - (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *2 *7)) (-4 *6 (-1057)) - (-4 *7 (-239 *4 *6)) (-4 *2 (-239 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) - (-5 *2 (-2 (|:| -3364 (-423 *3)) (|:| |special| (-423 *3)))) - (-5 *1 (-732 *5 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569)))) - (-5 *1 (-191))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-851))))) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-14 *5 (-649 (-1185))) - (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) - (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-384)) (-5 *1 (-194))))) +(((*1 *2) + (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *8)) (-5 *4 (-777)) (-4 *8 (-956 *5 *7 *6)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-13 (-856) (-620 (-1186)))) + (-4 *7 (-799)) (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) - (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) + (-650 + (-2 (|:| |det| *8) (|:| |rows| (-650 (-570))) + (|:| |cols| (-650 (-570)))))) + (-5 *1 (-931 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) + (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-959 *4))) + (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186)))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1279))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-866)) (-5 *3 (-129)) (-5 *2 (-777))))) +(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354))))) +(((*1 *2 *1) + (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) - (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) + (-2 (|:| -4271 (-419 *4 (-413 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-853) (-310) (-147) (-1030))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) - (-5 *1 (-1301 *5 *6 *7)) (-5 *3 (-649 (-958 *5))) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) + (-2 (|:| |poly| *6) (|:| -3366 (-413 *6)) + (|:| |special| (-413 *6)))) + (-5 *1 (-733 *5 *6)) (-5 *3 (-413 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) - (-5 *1 (-1301 *4 *5 *6)) (-5 *3 (-649 (-958 *4))) - (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-367)) (-4 *3 (-1057)) - (-5 *1 (-1169 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-776)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-377 *3)) (-4 *3 (-1225)) - (-4 *3 (-1108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) - (-5 *2 (-569)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225)) - (-5 *2 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-534)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-569))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |k| (-1185)) (|:| |c| (-1297 *3))))) - (-5 *1 (-1297 *3)) (-4 *3 (-1057)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |k| *3) (|:| |c| (-1299 *3 *4))))) - (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-927)) (-5 *1 (-447 *2)) - (-4 *2 (-1251 (-569))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-927)) (-5 *4 (-776)) (-5 *1 (-447 *2)) - (-4 *2 (-1251 (-569))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *1 (-447 *2)) - (-4 *2 (-1251 (-569))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) - (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-927)) (-5 *4 (-649 (-776))) (-5 *5 (-776)) - (-5 *6 (-112)) (-5 *1 (-447 *2)) (-4 *2 (-1251 (-569))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-423 *2)) (-4 *2 (-1251 *5)) - (-5 *1 (-449 *5 *2)) (-4 *5 (-1057))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) - (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6)) - (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-985 *4 *5 *6 *7))))) + (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-903 *3 *4)) + (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-777)) (-4 *5 (-368)) + (-5 *2 (-2 (|:| -4399 *3) (|:| -4411 *3))) (-5 *1 (-903 *3 *5)) + (-4 *3 (-1252 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) + (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) + (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) + (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-650 *9)) (-5 *3 (-650 *8)) (-5 *4 (-112)) + (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1154 *5 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *2 (-649 (-226))) (-5 *1 (-308))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef2| (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1165 *3)) (-4 *3 (-1108)) - (-4 *3 (-1225))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) - (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-776) *2)) (-5 *4 (-776)) (-4 *2 (-1108)) - (-5 *1 (-683 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-776) *3)) (-4 *3 (-1108)) (-5 *1 (-687 *3))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-563 *2)) (-4 *2 (-550))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) - (-5 *2 (-569)) (-5 *1 (-1122 *4 *5))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-926))))) -(((*1 *2 *3) - (-12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1251 *5)) - (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) - (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-112)) - (-5 *1 (-917 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) - (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) - (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-918 *4 *5 *6))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-649 - (-2 - (|:| -2006 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (|:| -2216 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1165 (-226))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3743 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-564))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226))) - (-5 *2 (-1277)) (-5 *1 (-259))))) + (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1185))))) + (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2)) + (-5 *2 (-384)) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) + (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) + (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) + (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-856)) (-4 *5 (-620 *2)) (-5 *2 (-384)) + (-5 *1 (-791 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) - (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) - (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-649 *11)) (-5 *5 (-649 (-1181 *9))) - (-5 *6 (-649 *9)) (-5 *7 (-649 *12)) (-5 *8 (-649 (-776))) - (-4 *11 (-855)) (-4 *9 (-310)) (-4 *12 (-955 *9 *10 *11)) - (-4 *10 (-798)) (-5 *2 (-649 (-1181 *12))) - (-5 *1 (-712 *10 *11 *9 *12)) (-5 *3 (-1181 *12))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))) - (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-654 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 - (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-694 *3)))) - (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-649 *6)) - (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) - (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))) + (-2 (|:| |dpolys| (-650 (-249 *5 *6))) + (|:| |coords| (-650 (-570))))) + (-5 *1 (-477 *5 *6 *7)) (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2 *3) (-12 (-5 *3 (-979)) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) + (-12 (-5 *2 (-618 *4)) (-5 *1 (-617 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-512)) (-5 *2 (-697 (-189))) (-5 *1 (-189))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1117 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) + (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8)) + (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856)) + (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -3665 *9)))) + (-5 *1 (-1117 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856)) + (-5 *2 (-59 (-650 (-678 *5)))) (-5 *1 (-678 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) - (|:| |expense| (-383)) (|:| |accuracy| (-383)) - (|:| |intermediateResults| (-383)))) - (-5 *2 (-1043)) (-5 *1 (-308))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-757))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-964 *3)) (-5 *1 (-1172 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *2) - (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) - (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) - (-5 *2 - (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-694 *3)))) - (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1251 (-569))) - (-5 *2 - (-2 (|:| -2403 (-694 (-569))) (|:| |basisDen| (-569)) - (|:| |basisInv| (-694 (-569))))) - (-5 *1 (-773 *3 *4)) (-4 *4 (-414 (-569) *3)))) - ((*1 *2) - (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4)) - (-5 *2 - (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-694 *4)))) - (-5 *1 (-993 *3 *4 *5 *6)) (-4 *6 (-729 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-353)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 *4)) - (-5 *2 - (-2 (|:| -2403 (-694 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-694 *4)))) - (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *6 (-414 *4 *5))))) + (-12 (-5 *3 (-320 (-384))) (-5 *2 (-320 (-227))) (-5 *1 (-309))))) +(((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1) (-5 *1 (-638)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1035 (-849 (-570)))) + (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *4)))) (-4 *4 (-1058)) + (-5 *1 (-601 *4))))) +(((*1 *1) (-5 *1 (-145)))) (((*1 *2 *1) - (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) - (-14 *3 (-927)) (-4 *4 (-1057))))) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-1058)))) + ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-618 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) (-5 *5 (-1182 *2)) + (-4 *2 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-618 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1186))) + (-5 *5 (-413 (-1182 *2))) (-4 *2 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *1 (-566 *6 *2 *7)) (-4 *7 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-249 *4 *5)) + (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-629 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4411 *4) (|:| |sol?| (-112))) + (-570) *4)) + (-4 *4 (-368)) (-4 *5 (-1252 *4)) (-5 *1 (-580 *4 *5))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-486))))) (((*1 *2 *1) - (-12 (-4 *2 (-1108)) (-5 *1 (-970 *3 *2)) (-4 *3 (-1108))))) -(((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-865)) (-5 *2 (-696 (-129))) (-5 *3 (-129))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867))))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-881)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-881)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-569)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1167)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-511)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-597)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-483)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-631)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1104)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1098)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-978)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-181)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1044)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-314)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-676)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-530)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1286)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1074)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-522)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-686)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1123)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-611)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-1285)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-681)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-219)))) - ((*1 *2 *1) (-12 (-4 *1 (-1145)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-511)) (-5 *2 (-696 (-1112))) (-5 *1 (-294))))) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-983))))) +(((*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868))))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-882)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-882)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-570)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1168)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-512)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-598)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-484)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1176)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-632)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1105)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1099)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1082)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-979)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1045)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-315)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-677)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1160)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-531)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1287)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1075)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-523)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-687)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1124)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-612)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-1286)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-682)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1146)) (-5 *2 (-530)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276))))) + (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-1247 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-570))) (-4 *3 (-1058)) (-5 *1 (-601 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1236 *3)) (-4 *3 (-1058)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-570))) (-4 *1 (-1267 *3)) (-4 *3 (-1058))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) - (-5 *2 (-412 (-569))) (-5 *1 (-1028 *4)) (-4 *4 (-1251 (-569)))))) -(((*1 *1) (-5 *1 (-1071)))) -(((*1 *2 *1) (-12 (-4 *1 (-772 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 (-650 *3)) (-5 *1 (-931 *4 *5 *6 *3)) + (-4 *3 (-956 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-215 (-507))) (-5 *1 (-842))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-1251 (-170 *3)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-226)) (-5 *5 (-569)) (-5 *2 (-1220 *3)) - (-5 *1 (-795 *3)) (-4 *3 (-982)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-112)) - (-5 *1 (-1220 *2)) (-4 *2 (-982))))) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-474)) (-5 *4 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) + (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) + (-4 *8 (-347 *5 *6 *7)) (-4 *4 (-13 (-562) (-1047 (-570)))) + (-5 *2 (-2 (|:| -4202 (-777)) (|:| -1694 *8))) + (-5 *1 (-918 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) + (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-1252 (-413 *4))) + (-4 *6 (-347 (-413 (-570)) *4 *5)) + (-5 *2 (-2 (|:| -4202 (-777)) (|:| -1694 *6))) + (-5 *1 (-919 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569))))) - (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-269))))) -(((*1 *2 *3) - (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 (-649 *4)))) - (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 *4)))))) + (-12 (-4 *4 (-458)) (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3354 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1058)) (-5 *1 (-901 *2 *3)) (-4 *2 (-1252 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) - (-14 *4 *2) (-4 *5 (-173)))) + (-12 (-5 *2 (-777)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) + (-14 *4 *2) (-4 *5 (-174)))) ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-927)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-927)))) + (-12 (-4 *4 (-174)) (-5 *2 (-928)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-928)))) ((*1 *2) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) - (-5 *2 (-927)))) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) + (-5 *2 (-928)))) ((*1 *2 *3) - (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) - (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) + (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) + (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367)) - (-5 *2 (-776)) (-5 *1 (-672 *5)))) + (-12 (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)) (-4 *5 (-368)) + (-5 *2 (-777)) (-5 *1 (-673 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) - (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-776)) - (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) + (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) + (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-5 *2 (-777)) + (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777)))) ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) - (-4 *3 (-692 *4 *5 *6)))) + (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3)) + (-4 *3 (-693 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) - (-5 *2 (-776))))) -(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2) - (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *2) - (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) - (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) - (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-310))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 (-569))) - (-5 *1 (-438 *4 *3)) (-4 *3 (-435 *4)))) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) + (-5 *2 (-777))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-334))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) + (-5 *1 (-336)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-1101 (-959 (-570)))) (-5 *2 (-334)) + (-5 *1 (-336)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-681 *3)) (-4 *3 (-1058)) + (-4 *3 (-1109))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) + (-4 *7 (-1252 (-413 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -2506 *3))) + (-5 *1 (-568 *5 *6 *7 *3)) (-4 *3 (-347 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-617 *3)) (-4 *3 (-435 *5)) - (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1181 (-412 (-569)))) - (-5 *1 (-438 *5 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4)) - (-4 *4 (-1251 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1167)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-112)) - (-5 *1 (-225 *4 *5)) (-4 *5 (-13 (-1210) (-29 *4)))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) + (-5 *2 + (-2 (|:| |answer| (-413 *6)) (|:| -2506 (-413 *6)) + (|:| |specpart| (-413 *6)) (|:| |polypart| *6))) + (-5 *1 (-569 *5 *6)) (-5 *3 (-413 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1252 *6)) + (-4 *6 (-13 (-27) (-436 *5))) (-4 *5 (-13 (-562) (-1047 (-570)))) + (-4 *8 (-1252 (-413 *7))) (-5 *2 (-592 *3)) + (-5 *1 (-558 *5 *6 *7 *8 *3)) (-4 *3 (-347 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-649 (-617 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1108)) - (-5 *1 (-578 *3 *4)))) + (-12 (-5 *2 (-650 (-618 *4))) (-4 *4 (-436 *3)) (-4 *3 (-1109)) + (-5 *1 (-579 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) + (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *2 (-112)) (-5 *1 (-269)))) - ((*1 *2 *3) (-12 (-5 *3 (-319 (-226))) (-5 *2 (-112)) (-5 *1 (-269)))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1182 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4)))) + (-5 *1 (-1224 *4)) (-5 *3 (-1182 (-1182 *4)))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-650 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) + (-4 *8 (-856)) (-5 *1 (-986 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-570)) (-4 *5 (-854)) (-4 *5 (-368)) + (-5 *2 (-777)) (-5 *1 (-952 *5 *6)) (-4 *6 (-1252 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) + (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-650 *3)) + (-5 *1 (-597 *5 *6 *7 *8 *3)) (-4 *3 (-1118 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) + (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5))) + (-14 *6 (-650 (-1186))))) ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108))))) -(((*1 *1 *2) - (-12 (-5 *2 (-319 *3)) (-4 *3 (-13 (-1057) (-855))) - (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185)))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-310)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) - (-4 *1 (-310))))) -(((*1 *2) - (-12 (-4 *3 (-1229)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) - (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-172))) ((*1 *1 *1) (-4 *1 (-550))) - ((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057)))) + (-12 (-4 *4 (-13 (-311) (-148))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *4)) (|:| -1861 (-650 (-959 *4)))))) + (-5 *1 (-1087 *4 *5)) (-5 *3 (-650 (-959 *4))) + (-14 *5 (-650 (-1186))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) + (-5 *1 (-1087 *5 *6)) (-5 *3 (-650 (-959 *5))) + (-14 *6 (-650 (-1186)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-551))) + ((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) ((*1 *1 *1) - (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) - (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) - (-5 *1 (-793))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) - (-5 *1 (-364 *3 *4)) (-14 *4 (-649 (-1185))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) - (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) - (-4 *2 (-1266 *3))))) + (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1276 *6)) (-5 *4 (-1276 (-570))) (-5 *5 (-570)) + (-4 *6 (-1109)) (-5 *2 (-1 *6)) (-5 *1 (-1026 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-569))) (-5 *4 (-569)) (-5 *2 (-52)) - (-5 *1 (-1013))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-4 *2 (-1251 *4)) - (-5 *1 (-928 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *4 (-650 (-1186))) + (-5 *2 (-695 (-320 (-227)))) (-5 *1 (-207)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-4 *6 (-907 *5)) (-5 *2 (-695 *6)) + (-5 *1 (-698 *5 *6 *3 *4)) (-4 *3 (-378 *6)) + (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448))))))) +(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-650 (-695 (-570)))) + (-5 *1 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-849 *3)) (-4 *3 (-1109))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-1058)) (-5 *2 (-1276 *4)) + (-5 *1 (-1187 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-928)) (-5 *2 (-1276 *3)) (-5 *1 (-1187 *3)) + (-4 *3 (-1058))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-650 (-112))) (-5 *7 (-695 (-227))) + (-5 *8 (-695 (-570))) (-5 *3 (-570)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1044)) (-5 *1 (-760))))) (((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1008 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-777)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-777)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1148)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) - (-5 *2 (-1275 (-569))) (-5 *1 (-1302 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-172))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) - (-4 *8 (-955 *7 *5 *6)) - (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *3))) - (-5 *1 (-959 *5 *6 *7 *8 *3)) (-5 *4 (-776)) - (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $)))))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) - (-4 *3 (-1251 *4))))) + (-12 + (-5 *3 + (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) + (-249 *4 (-413 (-570))))) + (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) + (-5 *1 (-511 *4 *5))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-868) (-868) (-868))) (-5 *4 (-570)) (-5 *2 (-868)) + (-5 *1 (-655 *5 *6 *7)) (-4 *5 (-1109)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-868)) (-5 *1 (-860 *3 *4 *5)) (-4 *3 (-1058)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-868)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-868)))) + ((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-868)) (-5 *1 (-1182 *3)) (-4 *3 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826)) + (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) - (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1226)) + (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3)) - (-4 *3 (-1225)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4449)) (-4 *1 (-120 *3)) + (-4 *3 (-1226)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4448)) (-4 *1 (-119 *3)) - (-4 *3 (-1225)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4449)) (-4 *1 (-120 *3)) + (-4 *3 (-1226)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) - (-4 *2 (-1225)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1185)) (-5 *1 (-637)))) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) + (-4 *2 (-1226)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1186)) (-5 *1 (-638)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1242 (-569))) (|has| *1 (-6 -4448)) (-4 *1 (-656 *2)) - (-4 *2 (-1225)))) + (-12 (-5 *3 (-1243 (-570))) (|has| *1 (-6 -4449)) (-4 *1 (-657 *2)) + (-4 *2 (-1226)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) - (-4 *2 (-1225)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4449)) (-4 *1 (-1019 *2)) + (-4 *2 (-1226)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1201 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-1202 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) - (-4 *2 (-1225)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) + (-4 *2 (-1226)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3)) - (-4 *3 (-1225)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4449)) (-4 *1 (-1264 *3)) + (-4 *3 (-1226)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) - (-4 *2 (-1225))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3) - (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-486 *4 *5)) - (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) + (-4 *2 (-1226))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-635))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011) (-1211)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-650 (-1 *4 (-650 *4)))) (-4 *4 (-1109)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-650 (-1 *4 (-650 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1109))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-184 *3)) (-4 *3 (-186))))) -(((*1 *1 *1) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057))))) + (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570)) + (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *9)) (-4 *9 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) + (-4 *8 (-1058)) (-4 *2 (-956 *9 *7 *5)) + (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799)) + (-4 *4 (-956 *8 *6 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-650 (-1225))) (-5 *3 (-1225)) (-5 *1 (-687))))) +(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1182 *7)) + (-4 *5 (-1058)) (-4 *7 (-1058)) (-4 *2 (-1252 *5)) + (-5 *1 (-507 *5 *2 *6 *7)) (-4 *6 (-1252 *2))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1186)) (-5 *1 (-681 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-650 *5)) (-4 *5 (-1252 *3)) (-4 *3 (-311)) + (-5 *2 (-112)) (-5 *1 (-461 *3 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-5 *1 (-997 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-5 *1 (-1116 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-777)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *2 *4)) (-4 *2 (-378 *3)) + (-4 *4 (-378 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1151 *2 *3)) (-14 *2 (-777)) (-4 *3 (-1058))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-780)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-780)) (-5 *1 (-115))))) (((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) - (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *9)) (-4 *9 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) - (-4 *8 (-1057)) (-4 *2 (-955 *9 *7 *5)) - (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) - (-4 *4 (-955 *8 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-451)) (-5 *3 (-569))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1) (-5 *1 (-867)))) -(((*1 *2) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-649 (-412 *7))) - (-4 *7 (-1251 *6)) (-5 *3 (-412 *7)) (-4 *6 (-367)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-579 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-561)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-1215 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) - (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) -(((*1 *2) - (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) - (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-834))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1044)) + (-5 *1 (-752))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-52)) (-5 *1 (-899 *4)) + (-4 *4 (-1109))))) +(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-866)) (-5 *2 (-697 (-555))) (-5 *3 (-555))))) +(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-649 (-927))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-927)) - (-4 *2 (-367)) (-14 *5 (-1001 *4 *2)))) + (-12 (-5 *3 (-650 (-928))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-928)) + (-4 *2 (-368)) (-14 *5 (-1002 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-718 *5 *6 *7)) (-4 *5 (-855)) - (-4 *6 (-239 (-2428 *4) (-776))) + (-12 (-5 *3 (-719 *5 *6 *7)) (-4 *5 (-856)) + (-4 *6 (-240 (-2431 *4) (-777))) (-14 *7 - (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) - (-2 (|:| -2150 *5) (|:| -1993 *6)))) - (-14 *4 (-649 (-1185))) (-4 *2 (-173)) - (-5 *1 (-466 *4 *2 *5 *6 *7 *8)) (-4 *8 (-955 *2 *6 (-869 *4))))) + (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *6)) + (-2 (|:| -2155 *5) (|:| -3283 *6)))) + (-14 *4 (-650 (-1186))) (-4 *2 (-174)) + (-5 *1 (-467 *4 *2 *5 *6 *7 *8)) (-4 *8 (-956 *2 *6 (-870 *4))))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855)))) + (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-561)) (-5 *1 (-628 *2 *4)) - (-4 *4 (-1251 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-713 *2)) (-4 *2 (-1057)))) + (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4)) + (-4 *4 (-1252 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-740 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-731)))) + (-12 (-5 *1 (-741 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-732)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *5)) (-5 *3 (-649 (-776))) (-4 *1 (-745 *4 *5)) - (-4 *4 (-1057)) (-4 *5 (-855)))) + (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5)) + (-4 *4 (-1058)) (-4 *5 (-856)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *2)) (-4 *4 (-1057)) - (-4 *2 (-855)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-857 *2)) (-4 *2 (-1057)))) + (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058)) + (-4 *2 (-856)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 (-776))) (-4 *1 (-955 *4 *5 *6)) - (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *6 (-855)))) + (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6)) + (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-955 *4 *5 *2)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *2 (-855)))) + (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *2 (-856)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *6)) (-5 *3 (-649 *5)) (-4 *1 (-981 *4 *5 *6)) - (-4 *4 (-1057)) (-4 *5 (-797)) (-4 *6 (-855)))) + (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 *5)) (-4 *1 (-982 *4 *5 *6)) + (-4 *4 (-1058)) (-4 *5 (-798)) (-4 *6 (-856)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-981 *4 *3 *2)) (-4 *4 (-1057)) (-4 *3 (-797)) - (-4 *2 (-855))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -2679 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7)) - (-5 *3 (-412 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-579 *7 *8))))) + (-12 (-4 *1 (-982 *4 *3 *2)) (-4 *4 (-1058)) (-4 *3 (-798)) + (-4 *2 (-856))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) - (-14 *4 (-776)) (-4 *5 (-173))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-423 *3)) (-4 *3 (-561)) (-5 *1 (-424 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-211))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-112)) (-5 *6 (-226)) - (-5 *7 (-694 (-569))) - (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1185)) - (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) (-5 *1 (-562 *5 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7)) - (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-915)) (-4 *5 (-798)) - (-4 *6 (-855)) (-5 *1 (-912 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5)) - (-4 *5 (-1251 *4)) (-4 *4 (-915)) (-5 *1 (-913 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) + (-12 (-5 *2 (-650 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) + (-14 *4 (-777)) (-4 *5 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 (-171 (-570))))) (-5 *2 (-650 (-171 *4))) + (-5 *1 (-383 *4)) (-4 *4 (-13 (-368) (-854))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570)))))) + (-5 *4 (-650 (-1186))) (-5 *2 (-650 (-650 (-171 *5)))) + (-5 *1 (-383 *5)) (-4 *5 (-13 (-368) (-854)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-1208 *4)) + (-4 *4 (-1058))))) +(((*1 *2 *3) + (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3)) + (-4 *3 (-13 (-1211) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)) (-148))) + (-5 *2 (-592 (-413 (-959 *5)))) (-5 *1 (-576 *5)) + (-5 *3 (-413 (-959 *5)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) + (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) + (-15 -4413 ((-1134 *3 (-618 $)) $)) + (-15 -3798 ($ (-1134 *3 (-618 $)))))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-694 *2)) (-5 *4 (-776)) - (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-2 (|:| |polnum| (-788 *3)) (|:| |polden| *3) (|:| -2271 (-777)))) + (-5 *1 (-788 *3)) (-4 *3 (-1058)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2271 (-777)))) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5)))) + (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5))))) + (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-1129)) (-4 *4 (-354)) + (-5 *1 (-534 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) (((*1 *1 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-832 *2 *3)) (-4 *2 (-713 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) + (-12 + (-5 *2 + (-650 + (-2 + (|:| -2009 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) + (|:| |yinit| (-650 (-227))) (|:| |intvals| (-650 (-227))) + (|:| |g| (-320 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -2219 + (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) + (|:| |expense| (-384)) (|:| |accuracy| (-384)) + (|:| |intermediateResults| (-384))))))) + (-5 *1 (-809))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186))))) + (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113)) + (-5 *1 (-403)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-650 (-650 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-650 (-3 (|:| |array| (-650 *3)) (|:| |scalar| (-1186))))) + (-5 *6 (-650 (-1186))) (-5 *3 (-1186)) (-5 *2 (-1113)) + (-5 *1 (-403)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-650 (-1186))) (-5 *5 (-1189)) (-5 *3 (-1186)) + (-5 *2 (-1113)) (-5 *1 (-403))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) - (-5 *2 (-2 (|:| |radicand| (-412 *5)) (|:| |deg| (-776)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5)))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-1242 (-569)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-561)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *1 (-591 *2)) (-4 *2 (-1046 *3)) - (-4 *2 (-367)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-635 *4 *2)) - (-4 *2 (-13 (-435 *4) (-1010) (-1210))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))) - (-4 *4 (-561)) (-5 *1 (-635 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-965)) (-5 *2 (-1185)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-965))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-541))))) -(((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-187))))) + (-12 (-4 *2 (-1252 *4)) (-5 *1 (-815 *4 *2 *3 *5)) + (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) + (-4 *5 (-662 (-413 *2)))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1058)) (-5 *1 (-833 *2 *3)) (-4 *2 (-714 *3))))) (((*1 *2 *1) - (-12 + (|partial| -12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1058)) + (-4 *2 (-1267 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458))))) +(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) + ((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) + (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-650 (-1186))) (-4 *2 (-174)) + (-4 *3 (-240 (-2431 *4) (-777))) + (-14 *6 + (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *3)) + (-2 (|:| -2155 *5) (|:| -3283 *3)))) + (-5 *1 (-467 *4 *2 *5 *3 *6 *7)) (-4 *5 (-856)) + (-4 *7 (-956 *2 *3 (-870 *4)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-295))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1186)) + (-4 *5 (-13 (-562) (-1047 (-570)) (-148))) + (-5 *2 + (-2 (|:| -2134 (-413 (-959 *5))) (|:| |coeff| (-413 (-959 *5))))) + (-5 *1 (-576 *5)) (-5 *3 (-413 (-959 *5)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *3 (-650 (-266))) + (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-474))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-479))) + ((*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-890)))) + ((*1 *1 *1) (-5 *1 (-980))) + ((*1 *1 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-928))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-650 *5) *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *6 (-1252 *5)) + (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -4313 *3)))) + (-5 *1 (-815 *5 *6 *3 *7)) (-4 *3 (-662 *6)) + (-4 *7 (-662 (-413 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-650 *5) *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *6 (-1252 *5)) + (-5 *2 (-650 (-2 (|:| |poly| *6) (|:| -4313 (-660 *6 (-413 *6)))))) + (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-650 *3)) (-5 *5 (-928)) (-4 *3 (-1252 *4)) + (-4 *4 (-311)) (-5 *1 (-466 *4 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777)) + (-14 *4 (-777)) (-4 *5 (-174))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-997 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1116 *5 *6 *7 *8 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) + (-5 *2 (-2 (|:| |radicand| (-413 *5)) (|:| |deg| (-777)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1252 (-413 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1103 (-849 (-384)))) (-5 *2 (-1103 (-849 (-227)))) + (-5 *1 (-309))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *5 (-928)) + (-5 *2 (-1281)) (-5 *1 (-474)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1281)) (-5 *1 (-474)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-880)) (-5 *5 (-928)) + (-5 *2 (-1281)) (-5 *1 (-474))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1243 (-570))) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1226))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-413 (-959 (-570))))) + (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4)) + (-4 *4 (-13 (-854) (-368))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-298 (-413 (-959 (-570)))))) + (-5 *2 (-650 (-650 (-298 (-959 *4))))) (-5 *1 (-385 *4)) + (-4 *4 (-13 (-854) (-368))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 (-298 (-959 *4)))) + (-5 *1 (-385 *4)) (-4 *4 (-13 (-854) (-368))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-298 (-413 (-959 (-570))))) + (-5 *2 (-650 (-298 (-959 *4)))) (-5 *1 (-385 *4)) + (-4 *4 (-13 (-854) (-368))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1186)) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-4 *4 (-13 (-29 *6) (-1211) (-966))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2077 (-650 *4)))) + (-5 *1 (-658 *6 *4 *3)) (-4 *3 (-662 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *2)) + (-4 *2 (-13 (-29 *6) (-1211) (-966))) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *1 (-658 *6 *2 *3)) (-4 *3 (-662 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 - (-1275 - (-2 (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) - (|:| |deltaX| (-226)) (|:| |deltaY| (-226)) (|:| -4317 (-569)) - (|:| -2542 (-569)) (|:| |spline| (-569)) (|:| -1953 (-569)) - (|:| |axesColor| (-879)) (|:| -3157 (-569)) - (|:| |unitsColor| (-879)) (|:| |showing| (-569))))) - (-5 *1 (-1276))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-855)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-285 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2) - (-12 + (-2 (|:| |particular| (-3 (-1276 *5) "failed")) + (|:| -2077 (-650 (-1276 *5))))) + (-5 *1 (-673 *5)) (-5 *4 (-1276 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368)) (-5 *2 - (-2 - (|:| -2006 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (|:| -2216 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1165 (-226))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3743 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-564)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-700 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2) - (-12 + (-2 (|:| |particular| (-3 (-1276 *5) "failed")) + (|:| -2077 (-650 (-1276 *5))))) + (-5 *1 (-673 *5)) (-5 *4 (-1276 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *5)) (-4 *5 (-368)) (-5 *2 - (-2 - (|:| -2006 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (|:| -2216 - (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) - (|:| |expense| (-383)) (|:| |accuracy| (-383)) - (|:| |intermediateResults| (-383)))))) - (-5 *1 (-808)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *5)))) - (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *2 (-649 *5)) - (-5 *1 (-217 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-2 (|:| -3800 *5) (|:| -4339 (-569))))) - (-5 *4 (-569)) (-4 *5 (-1251 *4)) (-5 *2 (-649 *5)) - (-5 *1 (-701 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-569))) (-5 *4 (-911 (-569))) - (-5 *2 (-694 (-569))) (-5 *1 (-595)))) + (-650 + (-2 (|:| |particular| (-3 (-1276 *5) "failed")) + (|:| -2077 (-650 (-1276 *5)))))) + (-5 *1 (-673 *5)) (-5 *4 (-650 (-1276 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-650 *5))) (-4 *5 (-368)) + (-5 *2 + (-650 + (-2 (|:| |particular| (-3 (-1276 *5) "failed")) + (|:| -2077 (-650 (-1276 *5)))))) + (-5 *1 (-673 *5)) (-5 *4 (-650 (-1276 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) + (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4449)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) + (-4 *7 (-13 (-378 *5) (-10 -7 (-6 -4449)))) + (-5 *2 + (-650 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2077 (-650 *7))))) + (-5 *1 (-674 *5 *6 *7 *3)) (-5 *4 (-650 *7)) + (-4 *3 (-693 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) - (-5 *1 (-595)))) + (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *1 (-778 *5 *2)) (-4 *2 (-13 (-29 *5) (-1211) (-966))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-695 *7)) (-5 *5 (-1186)) + (-4 *7 (-13 (-29 *6) (-1211) (-966))) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1276 *7)) (|:| -2077 (-650 (-1276 *7))))) + (-5 *1 (-808 *6 *7)) (-5 *4 (-1276 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-569))) (-5 *4 (-649 (-911 (-569)))) - (-5 *2 (-649 (-694 (-569)))) (-5 *1 (-595))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *3) - (-12 (-5 *3 (-591 *2)) (-4 *2 (-13 (-29 *4) (-1210))) - (-5 *1 (-588 *4 *2)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))))) + (|partial| -12 (-5 *3 (-695 *6)) (-5 *4 (-1186)) + (-4 *6 (-13 (-29 *5) (-1211) (-966))) + (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-650 (-1276 *6))) (-5 *1 (-808 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) + (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1211) (-966))) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1276 *7)) (|:| -2077 (-650 (-1276 *7))))) + (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) + (-5 *5 (-1186)) (-4 *7 (-13 (-29 *6) (-1211) (-966))) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1276 *7)) (|:| -2077 (-650 (-1276 *7))))) + (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-1186)) + (-4 *7 (-13 (-29 *6) (-1211) (-966))) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -2077 (-650 *7))) *7 "failed")) + (-5 *1 (-808 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1186)) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -2077 (-650 *3))) *3 "failed")) + (-5 *1 (-808 *6 *3)) (-4 *3 (-13 (-29 *6) (-1211) (-966))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-298 *2)) (-5 *4 (-115)) (-5 *5 (-650 *2)) + (-4 *2 (-13 (-29 *6) (-1211) (-966))) (-5 *1 (-808 *6 *2)) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-298 *2)) (-5 *5 (-650 *2)) + (-4 *2 (-13 (-29 *6) (-1211) (-966))) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *1 (-808 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-814)) (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-814)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1276 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) + (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1276 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) + (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1276 (-320 *4))) (-5 *5 (-650 (-384))) + (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1276 (-320 (-384)))) (-5 *4 (-384)) (-5 *5 (-650 *4)) + (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1276 (-320 *4))) (-5 *5 (-650 (-384))) + (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1276 (-320 *4))) (-5 *5 (-650 (-384))) + (-5 *6 (-320 (-384))) (-5 *4 (-384)) (-5 *2 (-1044)) (-5 *1 (-811)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -2077 (-650 *6))) "failed") + *7 *6)) + (-4 *6 (-368)) (-4 *7 (-662 *6)) + (-5 *2 (-2 (|:| |particular| (-1276 *6)) (|:| -2077 (-695 *6)))) + (-5 *1 (-819 *6 *7)) (-5 *3 (-695 *6)) (-5 *4 (-1276 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-905)) (-5 *2 (-1044)) (-5 *1 (-904)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-904)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168)) + (-5 *8 (-227)) (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) + (-5 *2 (-1044)) (-5 *1 (-904)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-777)) (-5 *6 (-650 (-650 (-320 *3)))) (-5 *7 (-1168)) + (-5 *5 (-650 (-320 (-384)))) (-5 *3 (-384)) (-5 *2 (-1044)) + (-5 *1 (-904)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 (-384))) + (-5 *1 (-1032)) (-5 *4 (-384)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 (-384))) (-5 *1 (-1032)) + (-5 *4 (-384)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-412 (-958 *4)))) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *4)) - (-5 *1 (-594 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-757))))) -(((*1 *1 *1) (|partial| -4 *1 (-1160)))) + (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4)) + (-5 *3 (-320 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1140 *4)) + (-5 *3 (-298 (-320 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5)) + (-5 *3 (-298 (-320 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-650 (-298 (-320 *5)))) (-5 *1 (-1140 *5)) + (-5 *3 (-320 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-1186))) + (-4 *5 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-650 (-650 (-298 (-320 *5))))) (-5 *1 (-1140 *5)) + (-5 *3 (-650 (-298 (-320 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) + (-4 *5 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) + (-5 *1 (-1195 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-1186))) (-4 *5 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-1195 *5)) + (-5 *3 (-650 (-298 (-413 (-959 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-1195 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) + (-5 *1 (-1195 *4)) (-5 *3 (-650 (-298 (-413 (-959 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-4 *5 (-562)) + (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5)) + (-5 *3 (-413 (-959 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-4 *5 (-562)) + (-5 *2 (-650 (-298 (-413 (-959 *5))))) (-5 *1 (-1195 *5)) + (-5 *3 (-298 (-413 (-959 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4))))) + (-5 *1 (-1195 *4)) (-5 *3 (-413 (-959 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-650 (-298 (-413 (-959 *4))))) + (-5 *1 (-1195 *4)) (-5 *3 (-298 (-413 (-959 *4))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 *4)))) + (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) + (-4 *7 (-1109)) (-5 *2 (-650 *1)) (-4 *1 (-1112 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1109)) (-4 *2 (-907 *4)) (-5 *1 (-698 *4 *2 *5 *3)) + (-4 *5 (-378 *2)) (-4 *3 (-13 (-378 *4) (-10 -7 (-6 -4448))))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-777)) (-4 *4 (-354)) + (-5 *1 (-534 *4))))) +(((*1 *2 *3) + (-12 (-14 *4 (-650 (-1186))) (-4 *5 (-458)) + (-5 *2 + (-2 (|:| |glbase| (-650 (-249 *4 *5))) (|:| |glval| (-650 (-570))))) + (-5 *1 (-637 *4 *5)) (-5 *3 (-650 (-249 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409)) - (-5 *2 (-927))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056))))) +(((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *5 (-1252 *4)) (-5 *2 (-650 (-659 (-413 *5)))) + (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057)) - (-5 *1 (-695 *4))))) + (-12 (-5 *3 (-650 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1227 *2)) + (-4 *2 (-1109)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-856)) + (-5 *1 (-1227 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4)))) - (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) - (-4 *7 (-1108)) (-5 *2 (-649 *1)) (-4 *1 (-1111 *3 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-441))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) - ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383))))) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) + (-5 *2 (-413 (-570))))) + ((*1 *2 *1) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551)) + (-4 *3 (-562)))) + ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-413 (-570))))) + ((*1 *2 *1) + (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) + (-5 *2 (-413 (-570))))) + ((*1 *2 *1) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551)) + (-4 *3 (-1109)))) + ((*1 *2 *1) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551)) + (-4 *3 (-1109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) + (-5 *2 (-413 (-570))))) + ((*1 *2 *3) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) (-4 *3 (-1047 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-979)))) + ((*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-1082)))) + ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-1127))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) + ((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-1107 *3)))) + ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-436 *4) (-1011) (-1211))) + (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1211))) + (-5 *1 (-606 *4 *5 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-163))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4450 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2)) + (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1252 *2)) + (-4 *4 (-693 *2 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-649 (-1219 *5))) - (-5 *1 (-1283 *5)) (-5 *4 (-1219 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1034 (-848 (-569)))) - (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *4)))) (-4 *4 (-1057)) - (-5 *1 (-600 *4))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-649 *3)) (-5 *5 (-927)) (-4 *3 (-1251 *4)) - (-4 *4 (-310)) (-5 *1 (-465 *4 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) - (-5 *2 (-649 (-1102 (-226)))) (-5 *1 (-934))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4)))) - (-5 *1 (-1283 *4)) (-4 *4 (-367))))) -(((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-181)))) - ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-686)))) - ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-978)))) - ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-1081)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-1126))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) - ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-1106 *3)))) - ((*1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1275 (-649 *3))) (-4 *4 (-310)) - (-5 *2 (-649 *3)) (-5 *1 (-460 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) - (-5 *4 (-319 (-170 (-383)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) - (-5 *4 (-319 (-383))) (-5 *1 (-333)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) - (-5 *4 (-319 (-569))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-170 (-383))))) - (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-383)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-569)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-170 (-383))))) - (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-383)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-569)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-170 (-383)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-383))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-569))) (-5 *1 (-333)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) - (-5 *4 (-319 (-699))) (-5 *1 (-333)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) - (-5 *4 (-319 (-704))) (-5 *1 (-333)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-958 (-569)))) - (-5 *4 (-319 (-706))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-699)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-704)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-319 (-706)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-699)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-704)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-319 (-706)))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-699))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-704))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1275 (-706))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-699))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-704))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-694 (-706))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-699))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-704))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-319 (-706))) (-5 *1 (-333)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-333)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-761))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) - ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34)))))) + (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8)) + (-4 *8 (-956 *5 *7 *6)) (-4 *5 (-13 (-311) (-148))) + (-4 *6 (-13 (-856) (-620 (-1186)))) (-4 *7 (-799)) (-5 *2 (-112)) + (-5 *1 (-931 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1276 *5)) (-4 *5 (-798)) (-5 *2 (-112)) + (-5 *1 (-851 *4 *5)) (-14 *4 (-777))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-649 (-617 *5))) (-5 *3 (-1185)) (-4 *5 (-435 *4)) - (-4 *4 (-1108)) (-5 *1 (-578 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-649 (-649 (-226)))) (-5 *4 (-226)) - (-5 *2 (-649 (-949 *4))) (-5 *1 (-1221)) (-5 *3 (-949 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-927)) (-4 *4 (-372)) (-4 *4 (-367)) (-5 *2 (-1181 *1)) - (-4 *1 (-332 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1181 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *3 (-367)) - (-4 *2 (-1251 *3)))) + (|partial| -12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-143 *3 *4 *2)) + (-4 *2 (-378 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4)) - (-5 *1 (-533 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1150 *4 *2)) (-14 *4 (-927)) - (-4 *2 (-13 (-1057) (-10 -7 (-6 (-4449 "*"))))) - (-5 *1 (-908 *4 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) + (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) (-4 *2 (-378 *4)) + (-5 *1 (-509 *4 *5 *2 *3)) (-4 *3 (-378 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562)) + (-5 *2 (-695 *4)) (-5 *1 (-699 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-4 *4 (-1001 *3)) (-5 *1 (-1245 *3 *4 *2)) + (-4 *2 (-1252 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2699 (-649 (-867))) (|:| -3151 (-649 (-867))) - (|:| |presup| (-649 (-867))) (|:| -4270 (-649 (-867))) - (|:| |args| (-649 (-867))))) - (-5 *1 (-1185))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-442)) (-5 *1 (-1189))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2403 (-649 *6))) - *7 *6)) - (-4 *6 (-367)) (-4 *7 (-661 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1275 *6) "failed")) - (|:| -2403 (-649 (-1275 *6))))) - (-5 *1 (-818 *6 *7)) (-5 *4 (-1275 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-425 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1210) (-435 *3))) - (-14 *4 (-1185)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-4 *2 (-13 (-27) (-1210) (-435 *3) (-10 -8 (-15 -3796 ($ *4))))) - (-4 *4 (-853)) - (-4 *5 - (-13 (-1253 *2 *4) (-367) (-1210) - (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) - (-5 *1 (-427 *3 *2 *4 *5 *6 *7)) (-4 *6 (-991 *5)) (-14 *7 (-1185))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210))) - (-5 *1 (-605 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1010) (-1210)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) - ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) - ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-1173 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277)))) - ((*1 *2 *1) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1277))))) + (-2 (|:| -3209 (-650 (-868))) (|:| -1647 (-650 (-868))) + (|:| |presup| (-650 (-868))) (|:| -4161 (-650 (-868))) + (|:| |args| (-650 (-868))))) + (-5 *1 (-1186))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-562))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *5 (-1252 *4)) (-5 *2 (-1182 (-413 *5))) (-5 *1 (-621 *4 *5)) + (-5 *3 (-413 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-148) (-27) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-1182 (-413 *6))) (-5 *1 (-621 *5 *6)) (-5 *3 (-413 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) + (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) + (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) + (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) + (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) + (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) + (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1276 *5)) (-4 *5 (-798)) (-5 *2 (-112)) + (-5 *1 (-851 *4 *5)) (-14 *4 (-777))))) (((*1 *1 *2) - (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1225)) (-4 *1 (-239 *3 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) - (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) + (-12 (-5 *2 (-1 (-1166 *3))) (-5 *1 (-1166 *3)) (-4 *3 (-1226))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1276 *4)) (-4 *4 (-1226)) (-4 *1 (-240 *3 *4))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) - (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1226)) + (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) - (-4 *2 (-1225))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1057)) - (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) - (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) - ((*1 *1 *1) (-4 *1 (-550))) - ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-4 *1 (-1003 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-1222 *3)) (-4 *3 (-1225)))) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) + (-4 *2 (-1226))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-112)) (-5 *1 (-279 *4 *3)) + (-4 *3 (-13 (-436 *4) (-1011)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) + (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) + (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) + ((*1 *1 *1) (-4 *1 (-551))) + ((*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-825 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-4 *1 (-1004 *3)) (-4 *3 (-1226)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-1223 *3)) (-4 *3 (-1226)))) ((*1 *2 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010)) - (-4 *2 (-1057))))) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1011)) + (-4 *2 (-1058))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1227 *3)) (-4 *3 (-856)) + (-4 *3 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-52)) (-5 *1 (-835))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -1863 (-694 (-412 (-958 *4)))) - (|:| |vec| (-649 (-412 (-958 *4)))) (|:| -3978 (-776)) - (|:| |rows| (-649 (-569))) (|:| |cols| (-649 (-569))))) - (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) - (-5 *2 - (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))) - (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) - (-5 *2 (-649 (-776))) (-5 *1 (-783 *3 *4 *5 *6 *7)) - (-4 *3 (-1251 *6)) (-4 *7 (-955 *6 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-511)) (-5 *2 (-696 (-188))) (-5 *1 (-188))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-5 *1 (-996 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-5 *1 (-1115 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1108)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1108))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-112)) (-5 *1 (-898 *4)) - (-4 *4 (-1108))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-226)) - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 *4)))) - (|:| |xValues| (-1102 *4)) (|:| |yValues| (-1102 *4)))) - (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 *4))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4)) - (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) + (-12 (-5 *3 (-650 (-2 (|:| -3801 *4) (|:| -3324 (-570))))) + (-4 *4 (-1252 (-570))) (-5 *2 (-743 (-777))) (-5 *1 (-448 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-424 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-1058)) + (-5 *2 (-743 (-777))) (-5 *1 (-450 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2)) + (-4 *2 (-1252 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570)) + (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043)) - (-5 *1 (-761))))) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-601 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1058))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4448)) (-4 *1 (-494 *3)) - (-4 *3 (-1225))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)) - (-4 *2 (-457)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-1251 (-569))) (-5 *2 (-649 (-569))) - (-5 *1 (-491 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *3 (-457))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))))) - ((*1 *1 *1) (-5 *1 (-383))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4449)) (-4 *1 (-495 *3)) + (-4 *3 (-1226))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *2 (-112)) (-5 *1 (-303))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-776)) - (-4 *5 (-13 (-457) (-1046 (-569)))) (-4 *5 (-561)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *5 (-617 $)) $)) - (-15 -4412 ((-1133 *5 (-617 $)) $)) - (-15 -3796 ($ (-1133 *5 (-617 $)))))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-649 (-617 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 (-48))) (-5 *3 (-617 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) - (-4 *3 (-1251 (-170 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) (-5 *1 (-418 *3 *2 *4 *5)) - (-4 *3 (-310)) (-4 *5 (-13 (-414 *2 *4) (-1046 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1000 *3)) - (-5 *1 (-419 *3 *2 *4 *5 *6)) (-4 *3 (-310)) (-4 *5 (-414 *2 *4)) - (-14 *6 (-1275 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-4 *5 (-1057)) - (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))) - (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-617 (-500)))) (-5 *1 (-500)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-617 (-500))) (-5 *1 (-500)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-649 (-617 (-500)))) - (-5 *1 (-500)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 (-500))) (-5 *3 (-617 (-500))) (-5 *1 (-500)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353)) - (-5 *1 (-533 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-729 *4 *2)) (-4 *2 (-1251 *4)) - (-5 *1 (-780 *4 *2 *5 *3)) (-4 *3 (-1251 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) - ((*1 *1 *1) (-4 *1 (-1068)))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-511))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-881))) (-5 *1 (-488))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-829)) (-5 *3 (-649 (-1185))) (-5 *1 (-830))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-319 *4)) - (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)))) + (-12 (-5 *3 (-959 (-227))) (-5 *2 (-320 (-384))) (-5 *1 (-309))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112)) + (-5 *2 (-1044)) (-5 *1 (-759))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058)) + (-5 *3 (-570))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-1058)) (-4 *1 (-1252 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3) + (-12 (-5 *3 (-570)) (|has| *1 (-6 -4439)) (-4 *1 (-410)) + (-5 *2 (-928))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) + (|:| |expense| (-384)) (|:| |accuracy| (-384)) + (|:| |intermediateResults| (-384)))) + (-5 *1 (-809))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-320 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))) -(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))) -(((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226)))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) - (-5 *1 (-753))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-512))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-882))) (-5 *1 (-489))))) +(((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227)))))) (((*1 *2 *3) - (-12 (-4 *4 (-367)) (-4 *4 (-561)) (-4 *5 (-1251 *4)) - (-5 *2 (-2 (|:| -2482 (-628 *4 *5)) (|:| -4079 (-412 *5)))) - (-5 *1 (-628 *4 *5)) (-5 *3 (-412 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-1173 *3 *4))) (-5 *1 (-1173 *3 *4)) - (-14 *3 (-927)) (-4 *4 (-1057)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-457)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1251 *3))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-649 *1)) (-4 *1 (-310))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-1199 *2)) (-4 *2 (-367))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-686)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1126))))) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) + (-5 *2 + (-3 (|:| |overq| (-1182 (-413 (-570)))) + (|:| |overan| (-1182 (-48))) (|:| -2498 (-112)))) + (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1252 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) + (-5 *2 (-1182 *3))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-650 (-1182 *4))) (-5 *3 (-1182 *4)) + (-4 *4 (-916)) (-5 *1 (-669 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1)) - (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108)))) + (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1))))) + (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1252 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-687)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1127))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) + (-5 *1 (-754))))) +(((*1 *2 *1) + (-12 (-4 *2 (-956 *3 *5 *4)) (-5 *1 (-996 *3 *4 *5 *2)) + (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799))))) (((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) - ((*1 *1 *1) (-4 *1 (-1010))) - ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1020)))) - ((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1020)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-927)))) - ((*1 *1 *1) (-4 *1 (-1020)))) -(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226))))) - ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226)))))) -(((*1 *2 *3) - (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) - (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-649 (-114)))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-151 *3)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) + ((*1 *1 *1) (-4 *1 (-1011))) + ((*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1021)))) + ((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1021)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-928)))) + ((*1 *1 *1) (-4 *1 (-1021)))) +(((*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227)))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3)) + (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2)) + (-4 *2 (-693 *3 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-649 (-2 (|:| -1993 (-776)) (|:| -2170 *4) (|:| |num| *4)))) - (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)))) + (-5 *2 (-650 (-2 (|:| -3283 (-777)) (|:| -2172 *4) (|:| |num| *4)))) + (-4 *4 (-1252 *3)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-112)) (-5 *1 (-442)))) + (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-112)) (-5 *1 (-443)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-5 *3 (-649 (-1185))) (-5 *4 (-112)) (-5 *1 (-442)))) + (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-5 *3 (-650 (-1186))) (-5 *4 (-112)) (-5 *1 (-443)))) ((*1 *2 *1) - (-12 (-5 *2 (-1165 *3)) (-5 *1 (-606 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)))) + (-12 (-5 *2 (-1166 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) - (-4 *4 (-173)))) + (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-174)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) - (-4 *4 (-173)))) + (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-174)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-677 *3)) (-4 *3 (-855)) (-5 *1 (-669 *3 *4)) - (-4 *4 (-173)))) + (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-5 *1 (-670 *3 *4)) + (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 (-649 *3)))) (-4 *3 (-1108)) - (-5 *1 (-680 *3)))) + (-12 (-5 *2 (-650 (-650 (-650 *3)))) (-4 *3 (-1109)) + (-5 *1 (-681 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-718 *2 *3 *4)) (-4 *2 (-855)) (-4 *3 (-1108)) + (-12 (-5 *1 (-719 *2 *3 *4)) (-4 *2 (-856)) (-4 *3 (-1109)) (-14 *4 - (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3)) - (-2 (|:| -2150 *2) (|:| -1993 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-843)))) + (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *3)) + (-2 (|:| -2155 *2) (|:| -3283 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-844)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225)))) + (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1226)) (-4 *3 (-1226)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 *4)))) - (-4 *4 (-1108)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 *4)))) + (-4 *4 (-1109)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *5)) (-4 *5 (-13 (-1108) (-34))) - (-5 *2 (-649 (-1148 *3 *5))) (-5 *1 (-1148 *3 *5)) - (-4 *3 (-13 (-1108) (-34))))) + (-12 (-5 *4 (-650 *5)) (-4 *5 (-13 (-1109) (-34))) + (-5 *2 (-650 (-1149 *3 *5))) (-5 *1 (-1149 *3 *5)) + (-4 *3 (-13 (-1109) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| |val| *4) (|:| -3663 *5)))) - (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) - (-5 *2 (-649 (-1148 *4 *5))) (-5 *1 (-1148 *4 *5)))) + (-12 (-5 *3 (-650 (-2 (|:| |val| *4) (|:| -3665 *5)))) + (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) + (-5 *2 (-650 (-1149 *4 *5))) (-5 *1 (-1149 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3663 *4))) - (-4 *3 (-13 (-1108) (-34))) (-4 *4 (-13 (-1108) (-34))) - (-5 *1 (-1148 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3665 *4))) + (-4 *3 (-13 (-1109) (-34))) (-4 *4 (-13 (-1109) (-34))) + (-5 *1 (-1149 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34))))) + (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-13 (-1108) (-34))) - (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))))) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-13 (-1109) (-34))) + (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-649 (-1148 *2 *3))) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34))) (-5 *1 (-1149 *2 *3)))) + (-12 (-5 *4 (-650 (-1149 *2 *3))) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34))) (-5 *1 (-1150 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-649 (-1149 *2 *3))) (-5 *1 (-1149 *2 *3)) - (-4 *2 (-13 (-1108) (-34))) (-4 *3 (-13 (-1108) (-34))))) + (-12 (-5 *4 (-650 (-1150 *2 *3))) (-5 *1 (-1150 *2 *3)) + (-4 *2 (-13 (-1109) (-34))) (-4 *3 (-13 (-1109) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4)))) + (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) - (-5 *1 (-206))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-756))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2))))) + (-12 (-5 *1 (-1175 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-777)) (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551))))) +(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *1 (-809 *4 *2)) (-4 *2 (-13 (-29 *4) (-1210) (-965))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1) (-5 *1 (-867))) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1211) (-966))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1) (-5 *1 (-868))) ((*1 *2 *3) - (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-704)) (-5 *1 (-308))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) (-14 *4 *2)))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) - (-4 *4 (-173))))) + (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-48))) (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1251 (-48))))) + (-12 (-5 *3 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) + (-4 *4 (-354)) (-5 *2 (-1281)) (-5 *1 (-534 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) + (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-304)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 (-227))) (-5 *2 (-650 (-1168))) (-5 *1 (-309))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1252 *4)) + (-5 *2 (-2 (|:| |ans| (-413 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1024 *4 *5)) (-5 *3 (-413 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) + (-4 *2 (-1267 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1252 *3)) + (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1267 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) + (-4 *2 (-1267 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) + (-5 *1 (-1162 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-48))) (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1252 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) - (-5 *2 (-423 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-955 (-48) *6 *5)))) + (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799)) + (-5 *2 (-424 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-956 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-48))) (-4 *5 (-855)) (-4 *6 (-798)) - (-4 *7 (-955 (-48) *6 *5)) (-5 *2 (-423 (-1181 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1181 *7)))) + (-12 (-5 *4 (-650 (-48))) (-4 *5 (-856)) (-4 *6 (-799)) + (-4 *7 (-956 (-48) *6 *5)) (-5 *2 (-424 (-1182 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1182 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1251 (-170 *4))))) + (-12 (-4 *4 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1252 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) + (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) + (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) - (-4 *3 (-1251 *4)))) + (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1252 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) - (-4 *3 (-1251 (-569))))) + (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) + (-4 *3 (-1252 (-570))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) - (-4 *3 (-1251 (-569))))) + (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) + (-4 *3 (-1252 (-570))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) - (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) + (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3)) + (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) - (-4 *3 (-1251 (-569))))) + (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) + (-4 *3 (-1252 (-570))))) ((*1 *2 *3) - (-12 (-5 *2 (-423 (-170 (-569)))) (-5 *1 (-451)) - (-5 *3 (-170 (-569))))) + (-12 (-5 *2 (-424 (-171 (-570)))) (-5 *1 (-452)) + (-5 *3 (-171 (-570))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-4 *5 (-798)) (-4 *7 (-561)) (-5 *2 (-423 *3)) - (-5 *1 (-461 *4 *5 *6 *7 *3)) (-4 *6 (-561)) - (-4 *3 (-955 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-310)) (-5 *2 (-423 (-1181 *4))) (-5 *1 (-463 *4)) - (-5 *3 (-1181 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) - (-4 *7 (-13 (-367) (-147) (-729 *5 *6))) (-5 *2 (-423 *3)) - (-5 *1 (-499 *5 *6 *7 *3)) (-4 *3 (-1251 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7))) - (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) - (-5 *2 (-423 *3)) (-5 *1 (-545 *5 *6 *7 *3)) - (-4 *3 (-955 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-423 (-1181 *7)) (-1181 *7))) - (-4 *7 (-13 (-310) (-147))) (-4 *5 (-855)) (-4 *6 (-798)) - (-4 *8 (-955 *7 *6 *5)) (-5 *2 (-423 (-1181 *8))) - (-5 *1 (-545 *5 *6 *7 *8)) (-5 *3 (-1181 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-649 *5) *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *6 (-1251 *5)) (-5 *2 (-649 (-658 (-412 *6)))) - (-5 *1 (-662 *5 *6)) (-5 *3 (-658 (-412 *6))))) + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-4 *5 (-799)) (-4 *7 (-562)) (-5 *2 (-424 *3)) + (-5 *1 (-462 *4 *5 *6 *7 *3)) (-4 *6 (-562)) + (-4 *3 (-956 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-311)) (-5 *2 (-424 (-1182 *4))) (-5 *1 (-464 *4)) + (-5 *3 (-1182 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) + (-4 *7 (-13 (-368) (-148) (-730 *5 *6))) (-5 *2 (-424 *3)) + (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-1252 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7))) + (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799)) + (-5 *2 (-424 *3)) (-5 *1 (-546 *5 *6 *7 *3)) + (-4 *3 (-956 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-424 (-1182 *7)) (-1182 *7))) + (-4 *7 (-13 (-311) (-148))) (-4 *5 (-856)) (-4 *6 (-799)) + (-4 *8 (-956 *7 *6 *5)) (-5 *2 (-424 (-1182 *8))) + (-5 *1 (-546 *5 *6 *7 *8)) (-5 *3 (-1182 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-650 *5) *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *6 (-1252 *5)) (-5 *2 (-650 (-659 (-413 *6)))) + (-5 *1 (-663 *5 *6)) (-5 *3 (-659 (-413 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5)))) - (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5))))) + (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *5 (-1252 *4)) (-5 *2 (-650 (-659 (-413 *5)))) + (-5 *1 (-663 *4 *5)) (-5 *3 (-659 (-413 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-677 *4))) - (-5 *1 (-677 *4)))) + (-12 (-5 *3 (-825 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-678 *4))) + (-5 *1 (-678 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-569)) (-5 *2 (-649 *3)) (-5 *1 (-701 *3)) - (-4 *3 (-1251 *4)))) + (-12 (-5 *4 (-570)) (-5 *2 (-650 *3)) (-5 *1 (-702 *3)) + (-4 *3 (-1252 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) (-5 *2 (-423 *3)) - (-5 *1 (-703 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) + (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) (-5 *2 (-424 *3)) + (-5 *1 (-704 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-353)) - (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7))) - (-5 *1 (-703 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) + (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-354)) + (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7))) + (-5 *1 (-704 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-798)) + (-12 (-4 *4 (-799)) (-4 *5 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-4 *6 (-310)) (-5 *2 (-423 *3)) (-5 *1 (-735 *4 *5 *6 *3)) - (-4 *3 (-955 (-958 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-798)) - (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)) - (-5 *2 (-423 *3)) (-5 *1 (-737 *4 *5 *6 *3)) - (-4 *3 (-955 (-412 (-958 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-13 (-310) (-147))) - (-5 *2 (-423 *3)) (-5 *1 (-738 *4 *5 *6 *3)) - (-4 *3 (-955 (-412 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) - (-5 *2 (-423 *3)) (-5 *1 (-746 *4 *5 *6 *3)) - (-4 *3 (-955 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-13 (-310) (-147))) - (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-423 (-1181 *7))) - (-5 *1 (-746 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3)) - (-4 *3 (-1251 (-412 (-569)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-1049 *3)) - (-4 *3 (-1251 (-412 (-958 (-569))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1251 (-412 (-569)))) - (-4 *5 (-13 (-367) (-147) (-729 (-412 (-569)) *4))) - (-5 *2 (-423 *3)) (-5 *1 (-1087 *4 *5 *3)) (-4 *3 (-1251 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1251 (-412 (-958 (-569))))) - (-4 *5 (-13 (-367) (-147) (-729 (-412 (-958 (-569))) *4))) - (-5 *2 (-423 *3)) (-5 *1 (-1089 *4 *5 *3)) (-4 *3 (-1251 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) - (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7)))) - (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229)))) - ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-776)) - (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-961)) (-5 *2 (-1102 (-226))))) - ((*1 *2 *1) (-12 (-4 *1 (-982)) (-5 *2 (-1102 (-226)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-951 *4 *3)) - (-4 *3 (-1251 *4))))) + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-4 *6 (-311)) (-5 *2 (-424 *3)) (-5 *1 (-736 *4 *5 *6 *3)) + (-4 *3 (-956 (-959 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-799)) + (-4 *5 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *6 (-562)) + (-5 *2 (-424 *3)) (-5 *1 (-738 *4 *5 *6 *3)) + (-4 *3 (-956 (-413 (-959 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-13 (-311) (-148))) + (-5 *2 (-424 *3)) (-5 *1 (-739 *4 *5 *6 *3)) + (-4 *3 (-956 (-413 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148))) + (-5 *2 (-424 *3)) (-5 *1 (-747 *4 *5 *6 *3)) + (-4 *3 (-956 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-13 (-311) (-148))) + (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-424 (-1182 *7))) + (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3)) + (-4 *3 (-1252 (-413 (-570)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-1050 *3)) + (-4 *3 (-1252 (-413 (-959 (-570))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1252 (-413 (-570)))) + (-4 *5 (-13 (-368) (-148) (-730 (-413 (-570)) *4))) + (-5 *2 (-424 *3)) (-5 *1 (-1088 *4 *5 *3)) (-4 *3 (-1252 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1252 (-413 (-959 (-570))))) + (-4 *5 (-13 (-368) (-148) (-730 (-413 (-959 (-570))) *4))) + (-5 *2 (-424 *3)) (-5 *1 (-1090 *4 *5 *3)) (-4 *3 (-1252 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458)) + (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7)))) + (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1230)))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-1241 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-1103 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-1103 (-227)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-542))))) (((*1 *1 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-14 *6 (-1275 (-694 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-927)) (-14 *5 (-649 (-1185))))) - ((*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-368)) (-14 *6 (-1276 (-695 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-928)) (-14 *5 (-650 (-1186))))) + ((*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1226)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'JINT 'X 'ELAM) (-3809) (-704)))) - (-5 *1 (-61 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'JINT 'X 'ELAM) (-3811) (-705)))) + (-5 *1 (-61 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'XC) (-704)))) - (-5 *1 (-63 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 'XC) (-705)))) + (-5 *1 (-63 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 (-3809 'X) (-3809) (-704))) (-5 *1 (-64 *3)) - (-14 *3 (-1185)))) + (-12 (-5 *2 (-344 (-3811 'X) (-3811) (-705))) (-5 *1 (-64 *3)) + (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 (-3809) (-3809 'XC) (-704))) (-5 *1 (-66 *3)) - (-14 *3 (-1185)))) + (-12 (-5 *2 (-344 (-3811) (-3811 'XC) (-705))) (-5 *1 (-66 *3)) + (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'X) (-3809 '-1541) (-704)))) - (-5 *1 (-71 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'X) (-3811 '-1542) (-705)))) + (-5 *1 (-71 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'X) (-704)))) - (-5 *1 (-74 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 'X) (-705)))) + (-5 *1 (-74 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'X 'EPS) (-3809 '-1541) (-704)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185)) - (-14 *5 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'X 'EPS) (-3811 '-1542) (-705)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186)) + (-14 *5 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'EPS) (-3809 'YA 'YB) (-704)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1185)) (-14 *4 (-1185)) - (-14 *5 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'EPS) (-3811 'YA 'YB) (-705)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1186)) (-14 *4 (-1186)) + (-14 *5 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 (-3809) (-3809 'X) (-704))) (-5 *1 (-77 *3)) - (-14 *3 (-1185)))) + (-12 (-5 *2 (-344 (-3811) (-3811 'X) (-705))) (-5 *1 (-77 *3)) + (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 (-3809) (-3809 'X) (-704))) (-5 *1 (-78 *3)) - (-14 *3 (-1185)))) + (-12 (-5 *2 (-344 (-3811) (-3811 'X) (-705))) (-5 *1 (-78 *3)) + (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'XC) (-704)))) - (-5 *1 (-79 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 'XC) (-705)))) + (-5 *1 (-79 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809) (-3809 'X) (-704)))) - (-5 *1 (-80 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811) (-3811 'X) (-705)))) + (-5 *1 (-80 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'X '-1541) (-3809) (-704)))) - (-5 *1 (-82 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'X '-1542) (-3811) (-705)))) + (-5 *1 (-82 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-694 (-343 (-3809 'X '-1541) (-3809) (-704)))) - (-5 *1 (-83 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-695 (-344 (-3811 'X '-1542) (-3811) (-705)))) + (-5 *1 (-83 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-694 (-343 (-3809 'X) (-3809) (-704)))) (-5 *1 (-84 *3)) - (-14 *3 (-1185)))) + (-12 (-5 *2 (-695 (-344 (-3811 'X) (-3811) (-705)))) (-5 *1 (-84 *3)) + (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'X) (-3809) (-704)))) - (-5 *1 (-85 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'X) (-3811) (-705)))) + (-5 *1 (-85 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-343 (-3809 'X) (-3809 '-1541) (-704)))) - (-5 *1 (-86 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-1276 (-344 (-3811 'X) (-3811 '-1542) (-705)))) + (-5 *1 (-86 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-694 (-343 (-3809 'XL 'XR 'ELAM) (-3809) (-704)))) - (-5 *1 (-87 *3)) (-14 *3 (-1185)))) + (-12 (-5 *2 (-695 (-344 (-3811 'XL 'XR 'ELAM) (-3811) (-705)))) + (-5 *1 (-87 *3)) (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 (-3809 'X) (-3809 '-1541) (-704))) (-5 *1 (-89 *3)) - (-14 *3 (-1185)))) + (-12 (-5 *2 (-344 (-3811 'X) (-3811 '-1542) (-705))) (-5 *1 (-89 *3)) + (-14 *3 (-1186)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-569)) (-14 *4 (-776)) (-4 *5 (-173)))) + (-12 (-5 *2 (-650 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-570)) (-14 *4 (-777)) (-4 *5 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-569)) (-14 *4 (-776)))) + (-12 (-5 *2 (-650 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-570)) (-14 *4 (-777)))) ((*1 *1 *2) - (-12 (-5 *2 (-1150 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) + (-12 (-5 *2 (-1151 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)))) ((*1 *1 *2) - (-12 (-5 *2 (-241 *4 *5)) (-14 *4 (-776)) (-4 *5 (-173)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)))) + (-12 (-5 *2 (-242 *4 *5)) (-14 *4 (-777)) (-4 *5 (-174)) + (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)))) ((*1 *2 *3) - (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173)) - (-5 *2 (-1275 (-694 (-412 (-958 *4))))) (-5 *1 (-190 *4)))) + (-12 (-5 *3 (-1276 (-695 *4))) (-4 *4 (-174)) + (-5 *2 (-1276 (-695 (-413 (-959 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1100 (-319 *4))) - (-4 *4 (-13 (-855) (-561) (-619 (-383)))) (-5 *2 (-1100 (-383))) - (-5 *1 (-260 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277)))) + (-12 (-5 *3 (-1101 (-320 *4))) + (-4 *4 (-13 (-856) (-562) (-620 (-384)))) (-5 *2 (-1101 (-384))) + (-5 *1 (-261 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278)))) ((*1 *2 *1) - (-12 (-4 *2 (-1251 *3)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-173)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1252 *3)) (-5 *1 (-293 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1260 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) - (-14 *5 (-1185)) (-14 *6 *4) - (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) - (-5 *1 (-316 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1261 *4 *5 *6)) (-4 *4 (-13 (-27) (-1211) (-436 *3))) + (-14 *5 (-1186)) (-14 *6 *4) + (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) + (-5 *1 (-317 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-319 *5)) (-5 *1 (-343 *3 *4 *5)) - (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-320 *5)) (-5 *1 (-344 *3 *4 *5)) + (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *2 *3) - (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *3 *4 *2)) - (-4 *3 (-332 *4)))) + (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *3 *4 *2)) + (-4 *3 (-333 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-353)) (-4 *2 (-332 *4)) (-5 *1 (-351 *2 *4 *3)) - (-4 *3 (-332 *4)))) + (-12 (-4 *4 (-354)) (-4 *2 (-333 *4)) (-5 *1 (-352 *2 *4 *3)) + (-4 *3 (-333 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) - (-5 *2 (-1299 *3 *4)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) + (-5 *2 (-1300 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) - (-5 *2 (-1290 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) + (-5 *2 (-1291 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) - (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-387)))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-704))) (-4 *1 (-387)))) + (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) + (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-388)))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-705))) (-4 *1 (-388)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) - (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-388)))) - ((*1 *2 *3) (-12 (-5 *2 (-399)) (-5 *1 (-398 *3)) (-4 *3 (-1108)))) + (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) + (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-389)))) + ((*1 *2 *3) (-12 (-5 *2 (-400)) (-5 *1 (-399 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) - (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-401)))) + (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) + (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-402)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-319 (-170 (-383))))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-298 (-320 (-171 (-384))))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-319 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-298 (-320 (-384)))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-319 (-569)))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-298 (-320 (-570)))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-383))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-320 (-384))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-569))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-320 (-570))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-319 (-699)))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-298 (-320 (-700)))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-319 (-704)))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-298 (-320 (-705)))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-297 (-319 (-706)))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-298 (-320 (-707)))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-699))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-320 (-700))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-704))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-320 (-705))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-706))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-320 (-707))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) - (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) - (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) + (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) + (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-333))) (-5 *1 (-403 *3 *4 *5 *6)) - (-14 *3 (-1185)) (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-650 (-334))) (-5 *1 (-404 *3 *4 *5 *6)) + (-14 *3 (-1186)) (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-333)) (-5 *1 (-403 *3 *4 *5 *6)) (-14 *3 (-1185)) - (-14 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-14 *5 (-649 (-1185))) (-14 *6 (-1189)))) + (-12 (-5 *2 (-334)) (-5 *1 (-404 *3 *4 *5 *6)) (-14 *3 (-1186)) + (-14 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-14 *5 (-650 (-1186))) (-14 *6 (-1190)))) ((*1 *1 *2) - (-12 (-5 *2 (-334 *4)) (-4 *4 (-13 (-855) (-21))) - (-5 *1 (-432 *3 *4)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))))) + (-12 (-5 *2 (-335 *4)) (-4 *4 (-13 (-856) (-21))) + (-5 *1 (-433 *3 *4)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))))) ((*1 *1 *2) - (-12 (-5 *1 (-432 *2 *3)) (-4 *2 (-13 (-173) (-38 (-412 (-569))))) - (-4 *3 (-13 (-855) (-21))))) + (-12 (-5 *1 (-433 *2 *3)) (-4 *2 (-13 (-174) (-38 (-413 (-570))))) + (-4 *3 (-13 (-856) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-412 (-958 (-412 *3)))) (-4 *3 (-561)) (-4 *3 (-1108)) - (-4 *1 (-435 *3)))) + (-12 (-5 *2 (-413 (-959 (-413 *3)))) (-4 *3 (-562)) (-4 *3 (-1109)) + (-4 *1 (-436 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-958 (-412 *3))) (-4 *3 (-561)) (-4 *3 (-1108)) - (-4 *1 (-435 *3)))) + (-12 (-5 *2 (-959 (-413 *3))) (-4 *3 (-562)) (-4 *3 (-1109)) + (-4 *1 (-436 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-412 *3)) (-4 *3 (-561)) (-4 *3 (-1108)) - (-4 *1 (-435 *3)))) + (-12 (-5 *2 (-413 *3)) (-4 *3 (-562)) (-4 *3 (-1109)) + (-4 *1 (-436 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-1057)) (-4 *3 (-1108)) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-439)))) - ((*1 *1 *2) (-12 (-5 *2 (-439)) (-5 *1 (-442)))) + (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-1058)) (-4 *3 (-1109)) + (-4 *1 (-436 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-440)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-440)) (-5 *1 (-443)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) - (-4 *1 (-445)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-445)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-445)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-704))) (-4 *1 (-445)))) + (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) + (-4 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-705))) (-4 *1 (-446)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1189)) (|:| -3209 (-649 (-333))))) - (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-333)) (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-4 *1 (-446)))) + (-5 *2 (-2 (|:| |localSymbols| (-1190)) (|:| -3211 (-650 (-334))))) + (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-334)) (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-4 *1 (-447)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 (-412 (-958 *3)))) (-4 *3 (-173)) - (-14 *6 (-1275 (-694 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-14 *4 (-927)) (-14 *5 (-649 (-1185))))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) - ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-473)))) + (-12 (-5 *2 (-1276 (-413 (-959 *3)))) (-4 *3 (-174)) + (-14 *6 (-1276 (-695 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-14 *4 (-928)) (-14 *5 (-650 (-1186))))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-474)))) ((*1 *1 *2) - (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-1057)) (-14 *4 (-1185)) - (-14 *5 *3) (-5 *1 (-479 *3 *4 *5)))) + (-12 (-5 *2 (-1261 *3 *4 *5)) (-4 *3 (-1058)) (-14 *4 (-1186)) + (-14 *5 *3) (-5 *1 (-480 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1133 (-569) (-617 (-500)))) (-5 *1 (-500)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-507)))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1134 (-570) (-618 (-501)))) (-5 *1 (-501)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-508)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611)))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-530)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-612)))) ((*1 *1 *2) - (-12 (-4 *3 (-173)) (-5 *1 (-612 *3 *2)) (-4 *2 (-749 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1057)))) + (-12 (-4 *3 (-174)) (-5 *1 (-613 *3 *2)) (-4 *2 (-750 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2) (-12 (-4 *1 (-622 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1058)))) ((*1 *2 *1) - (-12 (-5 *2 (-1295 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) + (-12 (-5 *2 (-1296 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) ((*1 *2 *1) - (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) + (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) ((*1 *1 *2) - (-12 (-4 *3 (-173)) (-5 *1 (-640 *3 *2)) (-4 *2 (-749 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-682 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) + (-12 (-4 *3 (-174)) (-5 *1 (-641 *3 *2)) (-4 *2 (-750 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-683 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) ((*1 *2 *1) - (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-5 *1 (-680 *3)) - (-4 *3 (-1108)))) + (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-5 *1 (-681 *3)) + (-4 *3 (-1109)))) ((*1 *1 *2) - (-12 (-5 *2 (-964 (-964 (-964 *3)))) (-4 *3 (-1108)) - (-5 *1 (-680 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) - ((*1 *1 *2) (-12 (-5 *2 (-1126)) (-5 *1 (-686)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-687 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-965 (-965 (-965 *3)))) (-4 *3 (-1109)) + (-5 *1 (-681 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) + ((*1 *1 *2) (-12 (-5 *2 (-1127)) (-5 *1 (-687)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) - (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *2)) (-4 *4 (-377 *3)) - (-4 *2 (-377 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))) - ((*1 *1 *2) (-12 (-5 *2 (-170 (-706))) (-5 *1 (-699)))) - ((*1 *1 *2) (-12 (-5 *2 (-170 (-704))) (-5 *1 (-699)))) - ((*1 *1 *2) (-12 (-5 *2 (-170 (-569))) (-5 *1 (-699)))) - ((*1 *1 *2) (-12 (-5 *2 (-170 (-383))) (-5 *1 (-699)))) - ((*1 *1 *2) (-12 (-5 *2 (-706)) (-5 *1 (-704)))) - ((*1 *2 *1) (-12 (-5 *2 (-383)) (-5 *1 (-704)))) - ((*1 *2 *3) - (-12 (-5 *3 (-319 (-569))) (-5 *2 (-319 (-706))) (-5 *1 (-706)))) - ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715)))) + (-12 (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *2)) (-4 *4 (-378 *3)) + (-4 *2 (-378 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-707))) (-5 *1 (-700)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-705))) (-5 *1 (-700)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-570))) (-5 *1 (-700)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-384))) (-5 *1 (-700)))) + ((*1 *1 *2) (-12 (-5 *2 (-707)) (-5 *1 (-705)))) + ((*1 *2 *1) (-12 (-5 *2 (-384)) (-5 *1 (-705)))) + ((*1 *2 *3) + (-12 (-5 *3 (-320 (-570))) (-5 *2 (-320 (-707))) (-5 *1 (-707)))) + ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716)))) ((*1 *2 *1) - (-12 (-4 *2 (-173)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-173)) (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-174)) (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4)))) - (-4 *3 (-1057)) (-4 *4 (-731)) (-5 *1 (-740 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-768)))) + (-12 (-5 *2 (-650 (-2 (|:| -1436 *3) (|:| -3350 *4)))) + (-4 *3 (-1058)) (-4 *4 (-732)) (-5 *1 (-741 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-769)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-319 (-226))) - (|:| -3743 (-649 (-1102 (-848 (-226))))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) - (-5 *1 (-774)))) + (-2 (|:| |fn| (-320 (-227))) + (|:| -2762 (-650 (-1103 (-849 (-227))))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) + (-5 *1 (-775)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-319 (-226))) - (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *1 (-774)))) + (-2 (|:| |fn| (-320 (-227))) + (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *1 (-775)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *1 (-774)))) - ((*1 *2 *3) (-12 (-5 *2 (-779)) (-5 *1 (-778 *3)) (-4 *3 (-1225)))) + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *1 (-775)))) + ((*1 *2 *3) (-12 (-5 *2 (-780)) (-5 *1 (-779 *3)) (-4 *3 (-1226)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *1 (-813)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-829)))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *1 (-814)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-830)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) - (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) + (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-649 (-319 (-226)))) - (|:| -2307 (-649 (-226))))))) - (-5 *1 (-846)))) + (-2 (|:| |lfn| (-650 (-320 (-227)))) + (|:| -2310 (-650 (-227))))))) + (-5 *1 (-847)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) - (-5 *1 (-846)))) + (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) + (-5 *1 (-847)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) - (-5 *1 (-846)))) - ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-863)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) - ((*1 *2 *3) - (-12 (-5 *3 (-958 (-48))) (-5 *2 (-319 (-569))) (-5 *1 (-880)))) - ((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 (-48)))) (-5 *2 (-319 (-569))) - (-5 *1 (-880)))) - ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-824 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) + (-5 *1 (-847)))) + ((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-864)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) + ((*1 *2 *3) + (-12 (-5 *3 (-959 (-48))) (-5 *2 (-320 (-570))) (-5 *1 (-881)))) + ((*1 *2 *3) + (-12 (-5 *3 (-413 (-959 (-48)))) (-5 *2 (-320 (-570))) + (-5 *1 (-881)))) + ((*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-825 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-649 (-319 (-226)))) + (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| - (-649 - (-2 (|:| |start| (-226)) (|:| |finish| (-226)) - (|:| |grid| (-776)) (|:| |boundaryType| (-569)) - (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) - (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) - (|:| |tol| (-226)))) - (-5 *1 (-904)))) + (-650 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-777)) (|:| |boundaryType| (-570)) + (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) + (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) + (|:| |tol| (-227)))) + (-5 *1 (-905)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-911 *3))) (-4 *3 (-1108)) (-5 *1 (-910 *3)))) + (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) + (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3)))) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-412 (-423 *3))) (-4 *3 (-310)) (-5 *1 (-920 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310)))) + (-12 (-5 *2 (-413 (-424 *3))) (-4 *3 (-311)) (-5 *1 (-921 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311)))) ((*1 *2 *3) - (-12 (-5 *3 (-482)) (-5 *2 (-319 *4)) (-5 *1 (-925 *4)) - (-4 *4 (-561)))) - ((*1 *2 *3) (-12 (-5 *2 (-1280)) (-5 *1 (-1041 *3)) (-4 *3 (-1225)))) - ((*1 *2 *3) (-12 (-5 *3 (-315)) (-5 *1 (-1041 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 (-483)) (-5 *2 (-320 *4)) (-5 *1 (-926 *4)) + (-4 *4 (-562)))) + ((*1 *2 *3) (-12 (-5 *2 (-1281)) (-5 *1 (-1042 *3)) (-4 *3 (-1226)))) + ((*1 *2 *3) (-12 (-5 *3 (-316)) (-5 *1 (-1042 *2)) (-4 *2 (-1226)))) ((*1 *1 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) - (-14 *6 (-649 *2)))) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) + (-14 *6 (-650 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-1051 *3)) (-4 *3 (-561)))) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-1052 *3)) (-4 *3 (-562)))) ((*1 *1 *2) - (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2)) - (-4 *2 (-955 *3 (-536 *4) *4)))) + (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2)) + (-4 *2 (-956 *3 (-537 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1057)) (-4 *2 (-855)) (-5 *1 (-1134 *3 *2 *4)) - (-4 *4 (-955 *3 (-536 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-867)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1152)))) + (-12 (-4 *3 (-1058)) (-4 *2 (-856)) (-5 *1 (-1135 *3 *2 *4)) + (-4 *4 (-956 *3 (-537 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-868)))) + ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1153)))) ((*1 *2 *3) - (-12 (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1058)))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185)) - (-14 *5 *3) (-5 *1 (-1183 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198 (-1185) (-442))) (-5 *1 (-1189)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1197 *3)) (-4 *3 (-1108)))) - ((*1 *2 *3) (-12 (-5 *2 (-1205)) (-5 *1 (-1204 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-1249 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186)) + (-14 *5 *3) (-5 *1 (-1184 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1199 (-1186) (-443))) (-5 *1 (-1190)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1198 *3)) (-4 *3 (-1109)))) + ((*1 *2 *3) (-12 (-5 *2 (-1206)) (-5 *1 (-1205 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) - (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-5 *1 (-1219 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-5 *1 (-1220 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1220 *3)) (-4 *3 (-1058)))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1240 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1102 *3)) (-4 *3 (-1225)) (-5 *1 (-1242 *3)))) + (-12 (-5 *2 (-1103 *3)) (-4 *3 (-1226)) (-5 *1 (-1243 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1268 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1248 *4 *3)) (-4 *3 (-1057)) (-14 *4 (-1185)) - (-14 *5 *3) (-5 *1 (-1267 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-867)) (-5 *1 (-1276)))) - ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *2 (-1276)) (-5 *1 (-1279)))) + (-12 (-5 *2 (-1249 *4 *3)) (-4 *3 (-1058)) (-14 *4 (-1186)) + (-14 *5 *3) (-5 *1 (-1268 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1272 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-868)) (-5 *1 (-1277)))) + ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *2 (-1277)) (-5 *1 (-1280)))) ((*1 *1 *2) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-5 *2 (-1299 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-173)))) + (-12 (-5 *2 (-1300 *3 *4)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-173)))) + (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-174)))) ((*1 *1 *2) - (-12 (-5 *2 (-669 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) - (-5 *1 (-1295 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-534)))) - ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-534))))) -(((*1 *2 *1) (-12 (-5 *1 (-1220 *2)) (-4 *2 (-982))))) -(((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) + (-12 (-5 *2 (-670 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) + (-5 *1 (-1296 *3 *4))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-1243 (-570)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-129))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) - (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) - (-5 *1 (-633 *5 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))) -(((*1 *2 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-569)) - (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6))))) + (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-980))))) (((*1 *2 *3) - (-12 (-5 *3 (-319 (-383))) (-5 *2 (-319 (-226))) (-5 *1 (-308))))) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-695 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) + ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-695 *4)) (-4 *4 (-1058)) (-5 *1 (-1151 *3 *4)) + (-14 *3 (-777))))) +(((*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) + ((*1 *2 *1) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559))))) +(((*1 *2 *1) (-12 (-4 *1 (-311)) (-5 *2 (-777))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-776)) (-5 *1 (-214 *4 *2)) (-14 *4 (-927)) - (-4 *2 (-1108))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) + (-12 (-5 *3 (-777)) (-5 *1 (-215 *4 *2)) (-14 *4 (-928)) + (-4 *2 (-1109))))) +(((*1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)) (-4 *2 (-1109)))) + ((*1 *1 *1) (-12 (-4 *1 (-701 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-570)) (-5 *1 (-320 *3)) (-4 *3 (-562)) (-4 *3 (-1109))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1148)))) +(((*1 *1 *1) + (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 *6)) (-4 *5 (-1229)) (-4 *6 (-1251 *5)) - (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-776)) (-4 *7 (-1251 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057)) - (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) - (-4 *3 (-857 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835)) (-5 *3 (-1168))))) (((*1 *2 *3) - (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1169 *4)) - (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057))))) + (-12 + (-5 *3 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *2 (-650 (-413 (-570)))) (-5 *1 (-1029 *4)) + (-4 *4 (-1252 (-570)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) + (-5 *3 (-650 (-570)))))) +(((*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) - (-4 *5 (-377 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2)) + (-4 *5 (-378 *2)) (-4 *2 (-1226)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *2 (-1108)) (-5 *1 (-214 *4 *2)) - (-14 *4 (-927)))) + (-12 (-5 *3 (-777)) (-4 *2 (-1109)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-928)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) + (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) - (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) - (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) - (-5 *2 (-1181 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-333)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776))) - (-5 *1 (-910 *4))))) + (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) + (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 - (-2 (|:| |solns| (-649 *5)) - (|:| |maps| (-649 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1136 *3 *5)) (-4 *3 (-1251 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-582)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866))))) -(((*1 *1 *2) - (-12 (-5 *2 (-418 *3 *4 *5 *6)) (-4 *6 (-1046 *4)) (-4 *3 (-310)) - (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *6 (-414 *4 *5)) - (-14 *7 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1275 *6)) (-4 *6 (-414 *4 *5)) (-4 *4 (-1000 *3)) - (-4 *5 (-1251 *4)) (-4 *3 (-310)) (-5 *1 (-419 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-649 (-569))) - (|:| |cols| (-649 (-569))))) - (-5 *4 (-694 *12)) (-5 *5 (-649 (-412 (-958 *9)))) - (-5 *6 (-649 (-649 *12))) (-5 *7 (-776)) (-5 *8 (-569)) - (-4 *9 (-13 (-310) (-147))) (-4 *12 (-955 *9 *11 *10)) - (-4 *10 (-13 (-855) (-619 (-1185)))) (-4 *11 (-798)) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) (-4 *5 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *5)))))) (-5 *1 (-776 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *4)))))) (-5 *1 (-776 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2077 (-650 *6))) + *7 *6)) + (-4 *6 (-368)) (-4 *7 (-662 *6)) (-5 *2 - (-2 (|:| |eqzro| (-649 *12)) (|:| |neqzro| (-649 *12)) - (|:| |wcond| (-649 (-958 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *9)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *9))))))))) - (-5 *1 (-930 *9 *10 *11 *12))))) + (-2 (|:| |particular| (-3 (-1276 *6) "failed")) + (|:| -2077 (-650 (-1276 *6))))) + (-5 *1 (-819 *6 *7)) (-5 *4 (-1276 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-334)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-950 *5)) (-4 *5 (-1058)) (-5 *2 (-777)) + (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5)) + (-14 *4 (-928)) (-4 *5 (-1058)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058)) + (-5 *1 (-1174 *4 *5)) (-14 *4 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) + (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-4 *2 (-1252 *5)) + (-5 *1 (-1270 *5 *2 *6 *3)) (-4 *6 (-662 *2)) (-4 *3 (-1267 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058))))) +(((*1 *2 *1) + (-12 (-5 *2 (-868)) (-5 *1 (-1166 *3)) (-4 *3 (-1109)) + (-4 *3 (-1226))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-617 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1108)) - (-4 *4 (-561)) (-5 *2 (-412 (-1181 *1))))) + (-12 (-5 *3 (-618 *1)) (-4 *1 (-436 *4)) (-4 *4 (-1109)) + (-4 *4 (-562)) (-5 *2 (-413 (-1182 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-1181 (-412 (-1181 *3)))) (-5 *1 (-565 *6 *3 *7)) - (-5 *5 (-1181 *3)) (-4 *7 (-1108)))) + (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-1182 (-413 (-1182 *3)))) (-5 *1 (-566 *6 *3 *7)) + (-5 *5 (-1182 *3)) (-4 *7 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1271 *5)) (-14 *5 (-1185)) (-4 *6 (-1057)) - (-5 *2 (-1248 *5 (-958 *6))) (-5 *1 (-953 *5 *6)) (-5 *3 (-958 *6)))) + (-12 (-5 *4 (-1272 *5)) (-14 *5 (-1186)) (-4 *6 (-1058)) + (-5 *2 (-1249 *5 (-959 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-959 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-1181 *3)))) + (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-1182 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) (-5 *2 (-1181 *1)) - (-4 *1 (-955 *4 *5 *3)))) + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) (-5 *2 (-1182 *1)) + (-4 *1 (-956 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-1057)) - (-4 *7 (-955 *6 *5 *4)) (-5 *2 (-412 (-1181 *3))) - (-5 *1 (-956 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-1058)) + (-4 *7 (-956 *6 *5 *4)) (-5 *2 (-413 (-1182 *3))) + (-5 *1 (-957 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1181 *3)) + (-12 (-5 *2 (-1182 *3)) (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))) - (-4 *7 (-955 *6 *5 *4)) (-4 *5 (-798)) (-4 *4 (-855)) - (-4 *6 (-1057)) (-5 *1 (-956 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-4 *5 (-561)) - (-5 *2 (-412 (-1181 (-412 (-958 *5))))) (-5 *1 (-1051 *5)) - (-5 *3 (-412 (-958 *5)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) - (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))) + (-4 *7 (-956 *6 *5 *4)) (-4 *5 (-799)) (-4 *4 (-856)) + (-4 *6 (-1058)) (-5 *1 (-957 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-4 *5 (-562)) + (-5 *2 (-413 (-1182 (-413 (-959 *5))))) (-5 *1 (-1052 *5)) + (-5 *3 (-413 (-959 *5)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4449)) (-4 *4 (-368)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-527 *4 *5 *6 *3)) + (-4 *3 (-693 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4449)) (-4 *4 (-562)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-4 *7 (-1001 *4)) (-4 *8 (-378 *7)) + (-4 *9 (-378 *7)) (-5 *2 (-650 *6)) + (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-693 *4 *5 *6)) + (-4 *10 (-693 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550)))) - ((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) - (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5)))) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-650 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) - (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 *7))) - (-5 *1 (-747 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) + (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-5 *2 (-650 *6)) (-5 *1 (-694 *4 *5 *6 *3)) + (-4 *3 (-693 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *3 (-457)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-423 *1)) (-4 *1 (-955 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-855)) (-4 *5 (-798)) (-4 *6 (-457)) (-5 *2 (-423 *3)) - (-5 *1 (-987 *4 *5 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-457)) - (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-423 (-1181 (-412 *7)))) - (-5 *1 (-1180 *4 *5 *6 *7)) (-5 *3 (-1181 (-412 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-423 *1)) (-4 *1 (-1229)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-423 *3)) (-5 *1 (-1254 *4 *3)) - (-4 *3 (-13 (-1251 *4) (-561) (-10 -8 (-15 -1870 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-14 *5 (-649 (-1185))) - (-5 *2 - (-649 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6))))) - (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185)))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-848 *4)) (-5 *3 (-617 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1210) (-29 *6))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-225 *6 *4))))) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) + (-5 *2 (-650 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1276 *5)) (-4 *5 (-798)) (-5 *2 (-112)) + (-5 *1 (-851 *4 *5)) (-14 *4 (-777))))) (((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-776))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) + (-650 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-799)) (-4 *3 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) + (-5 *1 (-455 *4 *5 *6 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1111 (-777))) (-5 *6 (-777)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) - (-5 *1 (-454 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) - (-4 *3 (-1251 (-170 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) - (-4 *3 (-1251 (-170 *2)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *2 (-649 *3)) (-5 *1 (-930 *4 *5 *6 *3)) - (-4 *3 (-955 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-776)) (-4 *4 (-353)) - (-5 *1 (-533 *4))))) + (-2 (|:| |contp| (-570)) + (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) + (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-695 *5))) (-4 *5 (-311)) (-4 *5 (-1058)) + (-5 *2 (-1276 (-1276 *5))) (-5 *1 (-1038 *5)) (-5 *4 (-1276 *5))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) + ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) + ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) (((*1 *2 *2) - (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) - (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-855)) (-5 *3 (-649 *6)) (-5 *5 (-649 *3)) + (-12 (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) + (-5 *2 (-487 *4 *5)) (-5 *1 (-951 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056)) + (-5 *3 (-570))))) +(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-501))))) +(((*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384))) + (-5 *2 (-1044)) (-5 *1 (-846))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-649 *5)) (|:| |f3| *5) - (|:| |f4| (-649 *5)))) - (-5 *1 (-1196 *6)) (-5 *4 (-649 *5))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1165 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020))))) + (-650 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-777)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-799)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) (-4 *5 (-856)) + (-5 *1 (-455 *3 *4 *5 *6))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-788 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-970 *3 *2)) (-4 *2 (-132)) (-4 *3 (-562)) + (-4 *3 (-1058)) (-4 *2 (-798)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-1182 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-980)) (-4 *2 (-132)) (-5 *1 (-1188 *3)) (-4 *3 (-562)) + (-4 *3 (-1058)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-1249 *4 *3)) (-14 *4 (-1186)) + (-4 *3 (-1058))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1166 *2)) (-4 *2 (-1226))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-435 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-55)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-114)))) + (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-436 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-158 *3 *4)) - (-4 *4 (-435 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-114)) (-5 *1 (-163)))) + (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-436 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-115)) (-5 *1 (-164)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-278 *3 *4)) - (-4 *4 (-13 (-435 *3) (-1010))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-304 *3)) (-4 *3 (-305)))) - ((*1 *2 *2) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) + (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-279 *3 *4)) + (-4 *4 (-13 (-436 *3) (-1011))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-305 *3)) (-4 *3 (-306)))) + ((*1 *2 *2) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-1108)) (-5 *1 (-434 *3 *4)) - (-4 *3 (-435 *4)))) + (-12 (-5 *2 (-115)) (-4 *4 (-1109)) (-5 *1 (-435 *3 *4)) + (-4 *3 (-436 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-436 *3 *4)) - (-4 *4 (-435 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-437 *3 *4)) + (-4 *4 (-436 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-561)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-13 (-435 *3) (-1010) (-1210))))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-412 (-569))))) (-5 *1 (-265)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-423 *5)) (-4 *5 (-561)) - (-5 *2 - (-2 (|:| -1993 (-776)) (|:| -1435 *5) (|:| |radicand| (-649 *5)))) - (-5 *1 (-323 *5)) (-5 *4 (-776)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-569))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) - (-5 *2 (-2 (|:| -1435 (-569)) (|:| |var| (-617 *1)))) - (-4 *1 (-435 *3))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) - (-5 *1 (-669 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-669 *3 *4)) (-5 *1 (-1295 *3 *4)) - (-4 *3 (-855)) (-4 *4 (-173))))) -(((*1 *2 *3) - (-12 (-4 *4 (-855)) (-5 *2 (-1197 (-649 *4))) (-5 *1 (-1196 *4)) - (-5 *3 (-649 *4))))) + (-12 (-5 *2 (-115)) (-4 *3 (-562)) (-5 *1 (-636 *3 *4)) + (-4 *4 (-13 (-436 *3) (-1011) (-1211))))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 (-413 (-959 *4))) (-5 *1 (-931 *4 *5 *6 *3)) + (-4 *3 (-956 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-695 *7)) (-4 *7 (-956 *4 *6 *5)) + (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 (-695 (-413 (-959 *4)))) + (-5 *1 (-931 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) + (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 (-650 (-413 (-959 *4)))) + (-5 *1 (-931 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-1046 (-412 *2)))) (-5 *2 (-569)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-561))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-532)) (-5 *3 (-128)) (-5 *2 (-776))))) -(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) + (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) (-5 *2 (-965 (-1129))) + (-5 *1 (-351 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-753))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1186)) + (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-581 *4 *2)) + (-4 *2 (-13 (-1211) (-966) (-1148) (-29 *4)))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-757))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-1200 *2)) (-4 *2 (-368))))) +(((*1 *1) (-4 *1 (-354))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) + (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-13 (-562) (-148))) (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1118))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *7 (-561)) - (-4 *3 (-955 *7 *5 *6)) + (-2 (|:| |primelt| *5) (|:| |poly| (-650 (-1182 *5))) + (|:| |prim| (-1182 *5)))) + (-5 *1 (-438 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 - (-2 (|:| -1993 (-776)) (|:| -1435 *3) (|:| |radicand| (-649 *3)))) - (-5 *1 (-959 *5 *6 *7 *3 *8)) (-5 *4 (-776)) - (-4 *8 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *3)) (-15 -4399 (*3 $)) (-15 -4412 (*3 $)))))))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1182 *3)) + (|:| |pol2| (-1182 *3)) (|:| |prim| (-1182 *3)))) + (-5 *1 (-438 *4 *3)) (-4 *3 (-27)) (-4 *3 (-436 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-959 *5)) (-5 *4 (-1186)) (-4 *5 (-13 (-368) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-570)) (|:| |coef2| (-570)) + (|:| |prim| (-1182 *5)))) + (-5 *1 (-967 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-650 (-1186))) + (-4 *5 (-13 (-368) (-148))) + (-5 *2 + (-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 *5))) + (|:| |prim| (-1182 *5)))) + (-5 *1 (-967 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-5 *5 (-1186)) + (-4 *6 (-13 (-368) (-148))) + (-5 *2 + (-2 (|:| -1436 (-650 (-570))) (|:| |poly| (-650 (-1182 *6))) + (|:| |prim| (-1182 *6)))) + (-5 *1 (-967 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306))))) (((*1 *2 *3) - (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-896 *4 *5)) (-4 *5 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1175))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1251 *6)) - (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-561) (-1046 (-569)))) - (-4 *8 (-1251 (-412 *7))) (-5 *2 (-591 *3)) - (-5 *1 (-557 *5 *6 *7 *8 *3)) (-4 *3 (-346 *6 *7 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *3 (-649 (-265))) - (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-473))))) -(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-129))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)))) - ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-776))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1007 *3)) (-4 *3 (-173)) (-5 *1 (-804 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-1275 *5)) (-4 *5 (-310)) - (-4 *5 (-1057)) (-5 *2 (-694 *5)) (-5 *1 (-1037 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *2 (-1043)) (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-649 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |k| (-899 *3)) (|:| |c| *4)))) - (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-677 *3))) (-5 *1 (-899 *3)) (-4 *3 (-855))))) + (-12 (-5 *3 (-695 (-320 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384)))) + (-5 *1 (-207))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1291 (-1186) *3)) (-4 *3 (-1058)) (-5 *1 (-1298 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1291 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *1 (-1300 *3 *4))))) (((*1 *2) - (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *2 (-1280)) - (-5 *1 (-438 *3 *4)) (-4 *4 (-435 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353)) (-5 *3 (-569)) (-5 *2 (-1198 (-927) (-776)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-173)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) + (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) + (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-552))) ((*1 *1) (-5 *1 (-553))) + ((*1 *1) (-5 *1 (-554))) ((*1 *1) (-5 *1 (-555))) + ((*1 *1) (-4 *1 (-732))) ((*1 *1) (-5 *1 (-1186))) + ((*1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-928)))) + ((*1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) + ((*1 *1) (-5 *1 (-1231))) ((*1 *1) (-5 *1 (-1232))) + ((*1 *1) (-5 *1 (-1233))) ((*1 *1) (-5 *1 (-1234)))) +(((*1 *2 *1) + (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) + (-4 *3 (-1109))))) +(((*1 *1 *1) (-4 *1 (-635))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011) (-1211)))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *3) + (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-897 *4 *5)) (-4 *5 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1176))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-130))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) +(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2)) + (-4 *2 (-662 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-158)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-763))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-758))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-120 *2)) (-4 *2 (-1226))))) (((*1 *2 *3) - (-12 (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) (-4 *3 (-619 (-383))))) + (-12 (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) (-4 *3 (-620 (-384))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-5 *2 (-170 (-383))) (-5 *1 (-790 *3)) - (-4 *3 (-619 (-383))))) + (-12 (-5 *4 (-928)) (-5 *2 (-171 (-384))) (-5 *1 (-791 *3)) + (-4 *3 (-620 (-384))))) ((*1 *2 *3) - (-12 (-5 *3 (-170 *4)) (-4 *4 (-173)) (-4 *4 (-619 (-383))) - (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-620 (-384))) + (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-170 *5)) (-5 *4 (-927)) (-4 *5 (-173)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-928)) (-4 *5 (-174)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) (-4 *4 (-619 (-383))) - (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-620 (-384))) + (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 (-383))) - (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 (-384))) + (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 (-383))) - (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 (-384))) + (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) - (-5 *1 (-790 *5))))) + (-12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) + (-5 *1 (-791 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1182 *7)) (-5 *3 (-570)) (-4 *7 (-956 *6 *4 *5)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) + (-5 *1 (-325 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) - (-4 *3 (-1251 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-694 (-569))) (-5 *3 (-649 (-569))) (-5 *1 (-1118))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 (-412 (-958 *6)))) - (-5 *3 (-412 (-958 *6))) - (-4 *6 (-13 (-561) (-1046 (-569)) (-147))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-575 *6))))) + (-12 (-4 *1 (-1252 *3)) (-4 *3 (-1058)) (-5 *2 (-1182 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) + (-5 *1 (-1138 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-13 (-311) (-148))) + (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-298 (-413 (-959 *5)))) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-298 (-320 *5)))) + (-5 *1 (-1138 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148))) + (-5 *2 (-650 (-298 (-320 *4)))) (-5 *1 (-1138 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) + (-5 *1 (-1138 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-413 (-959 *4)))) (-4 *4 (-13 (-311) (-148))) + (-5 *2 (-650 (-650 (-298 (-320 *4))))) (-5 *1 (-1138 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-298 (-413 (-959 *5))))) (-5 *4 (-650 (-1186))) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *5))))) + (-5 *1 (-1138 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) + (-4 *4 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-298 (-320 *4))))) + (-5 *1 (-1138 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-688 *4 *5)) (-4 *4 (-1108)))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1109)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-689 *4 *5)) (-4 *4 (-1109)))) ((*1 *2 *2) - (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) + (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936)))) + (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937)))) ((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) + (-12 (-4 *1 (-1293 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) ((*1 *2 *1) - (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) - (-5 *2 (-1275 (-412 (-569)))) (-5 *1 (-1302 *4))))) -(((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) - ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) - (-14 *4 (-649 (-1185))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) - (-14 *4 (-649 (-1185)))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-824 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-776)))) - ((*1 *1 *1) (-4 *1 (-407)))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-176))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-853) (-367))) (-5 *2 (-112)) (-5 *1 (-1069 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))) + (-12 (-4 *2 (-1058)) (-5 *1 (-1299 *2 *3)) (-4 *3 (-852))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1207))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-1111 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-650 *4))) (-5 *1 (-911 *4)) + (-5 *3 (-650 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1109)) (-5 *2 (-1111 (-1111 *4))) (-5 *1 (-911 *4)) + (-5 *3 (-1111 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))) (((*1 *2 *3) + (-12 (-5 *3 (-1276 (-695 *4))) (-4 *4 (-174)) + (-5 *2 (-1276 (-695 (-959 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-650 (-695 *6))) (-5 *4 (-112)) (-5 *5 (-570)) + (-5 *2 (-695 *6)) (-5 *1 (-1038 *6)) (-4 *6 (-368)) (-4 *6 (-1058)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-5 *1 (-1038 *4)) + (-4 *4 (-368)) (-4 *4 (-1058)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-5 *2 (-695 *5)) + (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-1058))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-368)) (-4 *7 (-1252 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6)) + (-2 (|:| -2134 (-413 *7)) (|:| |coeff| (-413 *7))) "failed")) + (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) + (-5 *1 (-270))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-570))) (-5 *2 (-112)) (-5 *1 (-452)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 (-383)) (-5 *1 (-206))))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1233)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1195))))) -(((*1 *2 *3) - (-12 (-5 *3 (-170 *5)) (-4 *5 (-13 (-435 *4) (-1010) (-1210))) - (-4 *4 (-561)) (-4 *2 (-13 (-435 (-170 *4)) (-1010) (-1210))) - (-5 *1 (-605 *4 *5 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-964 (-1128))) - (-5 *1 (-350 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) - ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *1)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-694 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 *4)) (-4 *4 (-1057)) (-4 *1 (-1131 *3 *4 *5 *6)) - (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) + (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) + (-249 *4 (-413 (-570))))) + (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) + (-5 *1 (-511 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-968 *3)) (-4 *3 (-551)))) + ((*1 *2 *1) (-12 (-4 *1 (-1230)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-777)) (-5 *4 (-570)) (-5 *1 (-451 *2)) (-4 *2 (-1058))))) (((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-362 *3)) (-4 *3 (-354))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *1 *1) + (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *1)))) + (-4 *1 (-1080 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1230))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-1255 *3 *2)) + (-4 *2 (-13 (-1252 *3) (-562) (-10 -8 (-15 -1869 ($ $ $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-696 (-283)))) (-5 *1 (-168))))) + (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1196))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-384))) + ((*1 *1) (-5 *1 (-384)))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-109))) (-5 *1 (-177))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-331 *3)) (-4 *3 (-1226)))) + ((*1 *2 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1226)) + (-14 *4 (-570))))) (((*1 *2 *3) - (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) - (-5 *2 (-569)) (-5 *1 (-1122 *4 *5))))) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-413 *2)) (-4 *2 (-1252 *5)) + (-5 *1 (-813 *5 *2 *3 *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *3 (-662 *2)) (-4 *6 (-662 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-413 *2))) (-4 *2 (-1252 *5)) + (-5 *1 (-813 *5 *2 *3 *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) + (-4 *6 (-662 (-413 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-928)) (-5 *2 (-1182 *3)) (-5 *1 (-1200 *3)) + (-4 *3 (-368))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-112)) + (-5 *1 (-896 *4 *5)) (-4 *5 (-1109)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-899 *5)) (-4 *5 (-1109)) (-5 *2 (-112)) + (-5 *1 (-897 *5 *3)) (-4 *3 (-1226)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) + (-4 *6 (-1226)) (-5 *2 (-112)) (-5 *1 (-897 *5 *6))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825 *3)) (-4 *3 (-856))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-2 (|:| |k| (-678 *3)) (|:| |c| *4)))) + (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))) +(((*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) - (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) - (-5 *1 (-1115 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6))))) + (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384)))) + ((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-384))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) + (-15 -4413 ((-1134 *3 (-618 $)) $)) + (-15 -3798 ($ (-1134 *3 (-618 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) + (-15 -4413 ((-1134 *3 (-618 $)) $)) + (-15 -3798 ($ (-1134 *3 (-618 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *2)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *4 (-618 $)) $)) + (-15 -4413 ((-1134 *4 (-618 $)) $)) + (-15 -3798 ($ (-1134 *4 (-618 $))))))) + (-4 *4 (-562)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-650 (-618 *2))) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *4 (-618 $)) $)) + (-15 -4413 ((-1134 *4 (-618 $)) $)) + (-15 -3798 ($ (-1134 *4 (-618 $))))))) + (-4 *4 (-562)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-321)) (-5 *3 (-226))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-1251 *4)) (-4 *4 (-1057)) - (-5 *2 (-1275 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-1275 *4)) - (-5 *1 (-819 *4 *3)) (-4 *3 (-661 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2290 *4))) (-5 *1 (-977 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *2)) (-4 *2 (-173)))) - ((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-421 *3 *2)) (-4 *3 (-422 *2)))) - ((*1 *2) (-12 (-4 *1 (-422 *2)) (-4 *2 (-173))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) - (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) - (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) + (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) + (-4 *2 (-240 *3 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-171 (-413 (-570))))) + (-5 *2 + (-650 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-570)) + (|:| |outvect| (-650 (-695 (-171 *4))))))) + (-5 *1 (-770 *4)) (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-618 *3)) + (-4 *3 (-13 (-436 *5) (-27) (-1211))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-650 (-1085 *4 *5 *2))) (-4 *4 (-1109)) + (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) + (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-650 (-1085 *5 *6 *2))) (-5 *4 (-928)) (-4 *5 (-1109)) + (-4 *6 (-13 (-1058) (-893 *5) (-620 (-899 *5)))) + (-4 *2 (-13 (-436 *6) (-893 *5) (-620 (-899 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *1) (-4 *1 (-1069))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-767)))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-618 *1))) (-4 *1 (-306))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-512)) (-4 *4 (-1109)) (-5 *1 (-936 *4 *2)) + (-4 *2 (-436 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-5 *2 (-933)) (-5 *1 (-931 *3)) - (-4 *3 (-619 (-541))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-933)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933))))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))) + (-12 (-5 *3 (-1186)) (-5 *4 (-512)) (-5 *2 (-320 (-570))) + (-5 *1 (-937))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-562)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-1236 *4)) (-4 *4 (-1058)) (-4 *4 (-562)) + (-5 *2 (-413 (-959 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-1236 *4)) (-4 *4 (-1058)) (-4 *4 (-562)) + (-5 *2 (-413 (-959 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (|has| *4 (-6 (-4450 "*"))) + (-4 *4 (-1058)) (-5 *1 (-1037 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) + (|has| *4 (-6 (-4450 "*"))) (-4 *4 (-1058)) (-5 *1 (-1037 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1113)) (-5 *3 (-780)) (-5 *1 (-52))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-949 (-226)) (-226) (-226))) - (-5 *3 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-257))))) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-367)) (-5 *2 (-694 *4)) - (-5 *1 (-819 *4 *5)) (-4 *5 (-661 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-367)) - (-5 *2 (-694 *5)) (-5 *1 (-819 *5 *6)) (-4 *6 (-661 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-927)) (-5 *4 (-226)) (-5 *5 (-569)) (-5 *6 (-879)) - (-5 *2 (-1280)) (-5 *1 (-1276))))) -(((*1 *2 *1) (-12 (-5 *2 (-696 (-1143))) (-5 *1 (-1159))))) + (-12 (-5 *3 (-1276 *4)) (-4 *4 (-645 (-570))) (-5 *2 (-112)) + (-5 *1 (-1303 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-961))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 (-1276 *4))) (-4 *4 (-1058)) (-5 *2 (-695 *4)) + (-5 *1 (-1038 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-192)) (-5 *3 (-569)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-173)))) + (-12 + (-5 *3 + (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) + (-249 *4 (-413 (-570))))) + (-14 *4 (-650 (-1186))) (-14 *5 (-777)) (-5 *2 (-112)) + (-5 *1 (-511 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-592 *3)) (-5 *1 (-432 *5 *3)) + (-4 *3 (-13 (-1211) (-29 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))) ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-617 *1))) (-4 *1 (-305))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-511)) (-4 *4 (-1108)) (-5 *1 (-935 *4 *2)) - (-4 *2 (-435 *4)))) + (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-316)) (-5 *1 (-300)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-300)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-511)) (-5 *2 (-319 (-569))) - (-5 *1 (-936))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-776)) (-4 *6 (-367)) (-5 *4 (-1219 *6)) - (-5 *2 (-1 (-1165 *4) (-1165 *4))) (-5 *1 (-1283 *6)) - (-5 *5 (-1165 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-602))) (-5 *1 (-602))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3)) - (-4 *3 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3))) - (-4 *3 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-591 *3)) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1112)) (-5 *3 (-779)) (-5 *1 (-52))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |k| (-677 *3)) (|:| |c| *4)))) - (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) - (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-960))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1108)) (-5 *2 (-895 *3 *4)) (-5 *1 (-891 *3 *4 *5)) - (-4 *3 (-1108)) (-4 *5 (-671 *4))))) + (-12 (-5 *4 (-650 (-1168))) (-5 *3 (-1168)) (-5 *2 (-316)) + (-5 *1 (-300))))) (((*1 *2) - (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *2) - (-12 (-5 *2 (-927)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1165 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1057)) - (-5 *3 (-412 (-569))) (-5 *1 (-1169 *4))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-4 *6 (-457)) - (-5 *2 (-649 (-649 *7))) (-5 *1 (-543 *6 *7 *5)) (-4 *7 (-367)) - (-4 *5 (-13 (-367) (-853)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-315)) (-5 *1 (-299)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-299)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-1167))) (-5 *3 (-1167)) (-5 *2 (-315)) - (-5 *1 (-299))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1235 *3)) - (-5 *2 (-412 (-569)))))) -(((*1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) - (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-1288 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-761))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1108) (-1046 *5))) - (-4 *5 (-892 *4)) (-4 *4 (-1108)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-937 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310))))) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1226))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) - (-4 *6 (-13 (-561) (-1046 *5))) (-4 *5 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *6)))))) (-5 *1 (-1047 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185)))) - (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *2)) (-4 *2 (-955 *3 *5 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *1 *2) - (-12 (-5 *2 (-927)) (-4 *1 (-239 *3 *4)) (-4 *4 (-1057)) - (-4 *4 (-1225)))) - ((*1 *1 *2) - (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) - (-4 *5 (-239 (-2428 *3) (-776))) - (-14 *6 - (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5)) - (-2 (|:| -2150 *2) (|:| -1993 *5)))) - (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) (-4 *2 (-855)) - (-4 *7 (-955 *4 *5 (-869 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-294))) - ((*1 *1) (-5 *1 (-867))) - ((*1 *1) - (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) - (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1093))) - ((*1 *1) - (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34))))) - ((*1 *1) (-5 *1 (-1188))) ((*1 *1) (-5 *1 (-1189)))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) + (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-473)) (-5 *3 (-649 (-265))) (-5 *1 (-1276)))) - ((*1 *1 *1) (-5 *1 (-1276)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-4 *4 (-1108)) - (-5 *1 (-578 *4 *2)) (-4 *2 (-435 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1181 *7)) - (-4 *5 (-1057)) (-4 *7 (-1057)) (-4 *2 (-1251 *5)) - (-5 *1 (-506 *5 *2 *6 *7)) (-4 *6 (-1251 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-569)) (|has| *1 (-6 -4438)) (-4 *1 (-409)) - (-5 *2 (-927))))) -(((*1 *1 *2) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-534))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *1 *1) (-4 *1 (-975)))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-753))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-649 (-319 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) - (-5 *1 (-211))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-970 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *2 (-649 (-649 (-569)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *6 *5))))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) + (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058)))) + ((*1 *2 *3) + (-12 (-4 *4 (-378 *2)) (-4 *5 (-378 *2)) (-4 *2 (-174)) + (-5 *1 (-694 *2 *4 *5 *3)) (-4 *3 (-693 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) + (-4 *5 (-240 *3 *2)) (|has| *2 (-6 (-4450 "*"))) (-4 *2 (-1058))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) + ((*1 *1 *1) (|partial| -4 *1 (-728)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-423 *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-1057)) (-5 *2 (-649 *6)) (-5 *1 (-449 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-277))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3))))) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-592 *3)) (-5 *1 (-563 *5 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1276 *4)) (-5 *3 (-695 *4)) (-4 *4 (-368)) + (-5 *1 (-673 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-368)) + (-4 *5 (-13 (-378 *4) (-10 -7 (-6 -4449)))) + (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449)))) + (-5 *1 (-674 *4 *5 *2 *3)) (-4 *3 (-693 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-650 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-368)) + (-5 *1 (-820 *2 *3)) (-4 *3 (-662 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3))))) +(((*1 *1 *1) (|partial| -4 *1 (-1161)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-408)) (-5 *2 (-777)))) + ((*1 *1 *1) (-4 *1 (-408)))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-570)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-424 *2)) (-4 *2 (-562))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) - (-5 *2 - (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-694 *3)))) - (-5 *1 (-354 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-1251 *3)) - (-5 *2 - (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-694 *3)))) - (-5 *1 (-773 *4 *5)) (-4 *5 (-414 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3)) - (-5 *2 - (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-694 *3)))) - (-5 *1 (-993 *4 *3 *5 *6)) (-4 *6 (-729 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-353)) (-4 *3 (-1251 *4)) (-4 *5 (-1251 *3)) + (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-1182 *6)) + (-5 *1 (-325 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| -2403 (-694 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-694 *3)))) - (-5 *1 (-1284 *4 *3 *5 *6)) (-4 *6 (-414 *3 *5))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1181 *4)) (-5 *1 (-533 *4)) - (-4 *4 (-353))))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) + (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-270))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 (-112) (-650 *1))) + (-4 *1 (-1080 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-956 *4 *6 *5)) (-4 *4 (-458)) + (-4 *5 (-856)) (-4 *6 (-799)) (-5 *1 (-996 *4 *5 *6 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-1141 *4 *2)) + (-4 *2 (-13 (-610 (-570) *4) (-10 -7 (-6 -4448) (-6 -4449)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-856)) (-4 *3 (-1226)) (-5 *1 (-1141 *3 *2)) + (-4 *2 (-13 (-610 (-570) *3) (-10 -7 (-6 -4448) (-6 -4449))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-777))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-413 (-959 (-171 (-570)))))) + (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-368) (-854))))) ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055)) - (-5 *3 (-569))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-112)) - (-5 *1 (-895 *4 *5)) (-4 *5 (-1108)))) + (-12 (-5 *3 (-650 (-298 (-413 (-959 (-171 (-570))))))) + (-5 *2 (-650 (-650 (-298 (-959 (-171 *4)))))) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-368) (-854))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-898 *5)) (-4 *5 (-1108)) (-5 *2 (-112)) - (-5 *1 (-896 *5 *3)) (-4 *3 (-1225)))) + (-12 (-5 *3 (-413 (-959 (-171 (-570))))) + (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-368) (-854))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) - (-4 *6 (-1225)) (-5 *2 (-112)) (-5 *1 (-896 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-367)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) - (-4 *1 (-857 *3))))) -(((*1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-372)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-4 *5 (-367)) (-5 *2 (-1165 (-1165 (-958 *5)))) - (-5 *1 (-1283 *5)) (-5 *4 (-1165 (-958 *5)))))) + (-12 (-5 *3 (-298 (-413 (-959 (-171 (-570)))))) + (-5 *2 (-650 (-298 (-959 (-171 *4))))) (-5 *1 (-383 *4)) + (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-1058)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1252 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1252 (-570))) (-5 *1 (-492 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-373))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-170 *5)) (-5 *1 (-605 *4 *5 *3)) - (-4 *5 (-13 (-435 *4) (-1010) (-1210))) - (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-776)) - (-4 *3 (-13 (-731) (-372) (-10 -7 (-15 ** (*3 *3 (-569)))))) - (-5 *1 (-247 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) + (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1)) + (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-574 *3)) (-4 *3 (-1046 (-569))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1093))) (-5 *1 (-294))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) - (-5 *2 (-1043)) (-5 *1 (-750))))) -(((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-259))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2))))) + (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1))))) +(((*1 *2 *1) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) + (-5 *2 (-2 (|:| |num| (-1276 *4)) (|:| |den| *4)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 (-487 *3 *4))) (-14 *3 (-650 (-1186))) + (-4 *4 (-458)) (-5 *1 (-637 *3 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))) + (-12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1869 *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-370 *2)) (-4 *2 (-1109)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1207))))) +(((*1 *1 *1 *1) (-4 *1 (-767)))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1226)) (-5 *1 (-184 *3 *2)) (-4 *2 (-680 *3))))) +(((*1 *1) (-5 *1 (-1189)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1168)) (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2) + (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) + (-5 *2 (-650 (-650 *4))) (-5 *1 (-346 *3 *4 *5 *6)) + (-4 *3 (-347 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-4 *3 (-373)) (-5 *2 (-650 (-650 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-331 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-522 *3 *4)) + (-14 *4 (-570))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-5 *2 (-1168))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) (-5 *2 (-650 *1)) + (-4 *1 (-436 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-1109)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-650 *1)) (-4 *1 (-956 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) + (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *3)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) + (-15 -4413 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-378 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-509 *2 *4 *5 *3)) + (-4 *5 (-378 *2)) (-4 *3 (-378 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-695 *4)) (-4 *4 (-1001 *2)) (-4 *2 (-562)) + (-5 *1 (-699 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1001 *2)) (-4 *2 (-562)) (-5 *1 (-1245 *2 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227)) + (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-4 *2 (-1109)) + (-5 *1 (-896 *4 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) + (-15 -4413 ((-1134 *3 (-618 $)) $)) + (-15 -3798 ($ (-1134 *3 (-618 $)))))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) + (-4 *6 (-13 (-562) (-1047 *5))) (-4 *5 (-562)) + (-5 *2 (-650 (-650 (-298 (-413 (-959 *6)))))) (-5 *1 (-1048 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) + (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1225)) - (-4 *2 (-1225)) (-5 *1 (-58 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1226)) + (-4 *2 (-1226)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (|has| *1 (-6 -4447)) - (-4 *1 (-151 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (|has| *1 (-6 -4448)) + (-4 *1 (-152 *2)) (-4 *2 (-1226)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) - (-4 *2 (-1225)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) + (-4 *2 (-1226)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) - (-4 *2 (-1225)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) + (-4 *2 (-1226)))) ((*1 *2 *3) - (-12 (-4 *4 (-1057)) - (-5 *2 (-2 (|:| -1814 (-1181 *4)) (|:| |deg| (-927)))) - (-5 *1 (-222 *4 *5)) (-5 *3 (-1181 *4)) (-4 *5 (-561)))) + (-12 (-4 *4 (-1058)) + (-5 *2 (-2 (|:| -1750 (-1182 *4)) (|:| |deg| (-928)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1182 *4)) (-4 *5 (-562)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) - (-4 *6 (-1225)) (-4 *2 (-1225)) (-5 *1 (-240 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777)) + (-4 *6 (-1226)) (-4 *2 (-1226)) (-5 *1 (-241 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-173)) (-5 *1 (-292 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1251 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-174)) (-5 *1 (-293 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1252 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-319 *2)) (-4 *2 (-561)) (-4 *2 (-1108)))) + ((*1 *1 *1) (-12 (-5 *1 (-320 *2)) (-4 *2 (-562)) (-4 *2 (-1109)))) ((*1 *1 *1) - (-12 (-4 *1 (-339 *2 *3 *4 *5)) (-4 *2 (-367)) (-4 *3 (-1251 *2)) - (-4 *4 (-1251 (-412 *3))) (-4 *5 (-346 *2 *3 *4)))) + (-12 (-4 *1 (-340 *2 *3 *4 *5)) (-4 *2 (-368)) (-4 *3 (-1252 *2)) + (-4 *4 (-1252 (-413 *3))) (-4 *5 (-347 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1225)) (-4 *2 (-1225)) - (-5 *1 (-375 *5 *4 *2 *6)) (-4 *4 (-377 *5)) (-4 *6 (-377 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1226)) (-4 *2 (-1226)) + (-5 *1 (-376 *5 *4 *2 *6)) (-4 *4 (-378 *5)) (-4 *6 (-378 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) - (-5 *1 (-428 *5 *4 *2 *6)) (-4 *4 (-430 *5)) (-4 *6 (-430 *2)))) - ((*1 *1 *1) (-5 *1 (-500))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1109)) (-4 *2 (-1109)) + (-5 *1 (-429 *5 *4 *2 *6)) (-4 *4 (-431 *5)) (-4 *6 (-431 *2)))) + ((*1 *1 *1) (-5 *1 (-501))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-649 *5)) (-4 *5 (-1225)) - (-4 *2 (-1225)) (-5 *1 (-647 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-650 *5)) (-4 *5 (-1226)) + (-4 *2 (-1226)) (-5 *1 (-648 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1057)) (-4 *2 (-1057)) - (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *8 (-377 *2)) - (-4 *9 (-377 *2)) (-5 *1 (-690 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-692 *5 *6 *7)) (-4 *10 (-692 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1058)) (-4 *2 (-1058)) + (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *8 (-378 *2)) + (-4 *9 (-378 *2)) (-5 *1 (-691 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-693 *5 *6 *7)) (-4 *10 (-693 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) + (-12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-717 *3 *2)) (-4 *2 (-1251 *3)))) + (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1252 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) + (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-367)) - (-4 *3 (-173)) (-4 *1 (-729 *3 *4)))) + (|partial| -12 (-5 *2 (-413 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-368)) + (-4 *3 (-174)) (-4 *1 (-730 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1252 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-964 *5)) (-4 *5 (-1225)) - (-4 *2 (-1225)) (-5 *1 (-963 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-965 *5)) (-4 *5 (-1226)) + (-4 *2 (-1226)) (-5 *1 (-964 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-1042 *3 *4 *5 *2 *6)) (-4 *2 (-955 *3 *4 *5)) - (-14 *6 (-649 *2)))) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-1043 *3 *4 *5 *2 *6)) (-4 *2 (-956 *3 *4 *5)) + (-14 *6 (-650 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1057)) (-4 *2 (-1057)) - (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) - (-4 *9 (-239 *5 *7)) (-4 *10 (-239 *6 *2)) (-4 *11 (-239 *5 *2)) - (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *12 (-1061 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1058)) (-4 *2 (-1058)) + (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7)) + (-4 *9 (-240 *5 *7)) (-4 *10 (-240 *6 *2)) (-4 *11 (-240 *5 *2)) + (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *12 (-1062 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1165 *5)) (-4 *5 (-1225)) - (-4 *2 (-1225)) (-5 *1 (-1163 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1166 *5)) (-4 *5 (-1226)) + (-4 *2 (-1226)) (-5 *1 (-1164 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1218 *5 *6 *7 *2)) (-4 *5 (-561)) (-4 *6 (-798)) - (-4 *7 (-855)) (-4 *2 (-1073 *5 *6 *7)))) + (-4 *1 (-1219 *5 *6 *7 *2)) (-4 *5 (-562)) (-4 *6 (-799)) + (-4 *7 (-856)) (-4 *2 (-1074 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) - (-4 *2 (-1225)) (-5 *1 (-1274 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1276 *5)) (-4 *5 (-1226)) + (-4 *2 (-1226)) (-5 *1 (-1275 *5 *2))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-777) *2)) (-5 *4 (-777)) (-4 *2 (-1109)) + (-5 *1 (-684 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-777) *3)) (-4 *3 (-1109)) (-5 *1 (-688 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-5 *1 (-443))))) (((*1 *2 *3) - (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4)))) - (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) -(((*1 *1) (-5 *1 (-583)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *5 (-561)) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354))))) +(((*1 *2) + (-12 (-5 *2 - (-2 (|:| |minor| (-649 (-927))) (|:| -4312 *3) - (|:| |minors| (-649 (-649 (-927)))) (|:| |ops| (-649 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5))))) -(((*1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) - (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-757))))) + (-1276 (-650 (-2 (|:| -2190 (-917 *3)) (|:| -2155 (-1129)))))) + (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) (-14 *4 (-928)))) + ((*1 *2) + (-12 (-5 *2 (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129)))))) + (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) (-14 *4 (-3 (-1182 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129)))))) + (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) (-14 *4 (-928))))) +(((*1 *1 *1) (-4 *1 (-551)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 (-383)) (-5 *1 (-206))))) -(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1118))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-681)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1027)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1074)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1104))))) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-650 (-959 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-650 (-959 *4))) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) + ((*1 *2) + (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-650 (-959 *3))))) + ((*1 *2) + (-12 (-5 *2 (-650 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 (-459 *4 *5 *6 *7))) (-5 *2 (-650 (-959 *4))) + (-5 *1 (-459 *4 *5 *6 *7)) (-4 *4 (-562)) (-4 *4 (-174)) + (-14 *5 (-928)) (-14 *6 (-650 (-1186))) (-14 *7 (-1276 (-695 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-695 *4)) (-5 *3 (-928)) (-4 *4 (-1058)) + (-5 *1 (-1037 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-650 (-695 *4))) (-5 *3 (-928)) (-4 *4 (-1058)) + (-5 *1 (-1037 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-368)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) + (-4 *1 (-858 *3))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-765))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1252 (-413 (-570)))) + (-5 *2 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570)))) + (-5 *1 (-920 *3 *4)) (-4 *4 (-1252 (-413 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1252 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3)) + (-4 *3 (-1252 (-413 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-682)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1028)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1075)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1105))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-617 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1210))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-1181 (-412 (-1181 *6)))) (-5 *1 (-565 *5 *6 *7)) - (-5 *3 (-1181 *6)) (-4 *7 (-1108)))) + (-12 (-5 *4 (-618 *6)) (-4 *6 (-13 (-436 *5) (-27) (-1211))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-1182 (-413 (-1182 *6)))) (-5 *1 (-566 *5 *6 *7)) + (-5 *3 (-1182 *6)) (-4 *7 (-1109)))) ((*1 *2 *1) - (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057)))) + (-12 (-4 *2 (-1252 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-4 *1 (-729 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) + (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1252 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1181 *11)) (-5 *6 (-649 *10)) - (-5 *7 (-649 (-776))) (-5 *8 (-649 *11)) (-4 *10 (-855)) - (-4 *11 (-310)) (-4 *9 (-798)) (-4 *5 (-955 *11 *9 *10)) - (-5 *2 (-649 (-1181 *5))) (-5 *1 (-747 *9 *10 *11 *5)) - (-5 *3 (-1181 *5)))) + (|partial| -12 (-5 *4 (-1182 *11)) (-5 *6 (-650 *10)) + (-5 *7 (-650 (-777))) (-5 *8 (-650 *11)) (-4 *10 (-856)) + (-4 *11 (-311)) (-4 *9 (-799)) (-4 *5 (-956 *11 *9 *10)) + (-5 *2 (-650 (-1182 *5))) (-5 *1 (-748 *9 *10 *11 *5)) + (-5 *3 (-1182 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-955 *3 *4 *5)) (-5 *1 (-1042 *3 *4 *5 *2 *6)) - (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-14 *6 (-649 *2))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-439)) - (-5 *2 - (-649 - (-3 (|:| -3573 (-1185)) - (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569))))))))) - (-5 *1 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-689 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-310)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-452 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-649 (-1 *4 (-649 *4)))) (-4 *4 (-1108)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-1 *4 (-649 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1108))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) - (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1100 (-848 *3))) (-4 *3 (-13 (-1210) (-965) (-29 *5))) - (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) + (-12 (-4 *2 (-956 *3 *4 *5)) (-5 *1 (-1043 *3 *4 *5 *2 *6)) + (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-14 *6 (-650 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-650 (-173))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)) (-4 *2 (-856)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-756))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799)) + (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9)) (-5 *2 - (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *5 *3)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1078 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1100 (-848 *3))) (-5 *5 (-1167)) - (-4 *3 (-13 (-1210) (-965) (-29 *6))) - (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) + (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) (-5 *2 - (-3 (|:| |f1| (-848 *3)) (|:| |f2| (-649 (-848 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-220 *6 *3)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1100 (-848 (-319 *5)))) - (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 - (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1100 (-848 (-319 *6)))) - (-5 *5 (-1167)) - (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 - (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1100 (-848 (-412 (-958 *5))))) (-5 *3 (-412 (-958 *5))) - (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-777)) (-5 *6 (-112)) (-4 *7 (-458)) (-4 *8 (-799)) + (-4 *9 (-856)) (-4 *3 (-1074 *7 *8 *9)) (-5 *2 - (-3 (|:| |f1| (-848 (-319 *5))) (|:| |f2| (-649 (-848 (-319 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1154 *7 *8 *9 *3 *4)) (-4 *4 (-1118 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1100 (-848 (-412 (-958 *6))))) (-5 *5 (-1167)) - (-5 *3 (-412 (-958 *6))) - (-4 *6 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) + (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) (-5 *2 - (-3 (|:| |f1| (-848 (-319 *6))) (|:| |f2| (-649 (-848 (-319 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-3 *3 (-649 *3))) (-5 *1 (-433 *5 *3)) - (-4 *3 (-13 (-1210) (-965) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) - (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3) (-12 (-5 *3 (-774)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) - (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) - (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-1102 (-848 (-383)))) - (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) - (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) - (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) - (-5 *5 (-383)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-1102 (-848 (-383))))) - (-5 *5 (-383)) (-5 *6 (-1071)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) - (-5 *5 (-1167)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-319 (-383))) (-5 *4 (-1100 (-848 (-383)))) - (-5 *5 (-1185)) (-5 *2 (-1043)) (-5 *1 (-570)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) - (-5 *2 (-591 (-412 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-412 *5)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147)) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-3 (-319 *5) (-649 (-319 *5)))) (-5 *1 (-594 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-745 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855)) - (-4 *3 (-38 (-412 (-569)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-958 *3)) (-4 *3 (-38 (-412 (-569)))) - (-4 *3 (-1057)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-4 *2 (-855)) - (-5 *1 (-1134 *3 *2 *4)) (-4 *4 (-955 *3 (-536 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) - (-5 *1 (-1169 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *1 (-1219 *3)) (-4 *3 (-38 (-412 (-569)))) - (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-2776 - (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057)) - (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) - (-4 *3 (-38 (-412 (-569)))))) - (-12 (-5 *2 (-1185)) (-4 *1 (-1235 *3)) (-4 *3 (-1057)) - (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) - (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) - ((*1 *1 *1 *2) - (-2776 - (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057)) - (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) - (-4 *3 (-38 (-412 (-569)))))) - (-12 (-5 *2 (-1185)) (-4 *1 (-1256 *3)) (-4 *3 (-1057)) - (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) - (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-2776 - (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057)) - (-12 (-4 *3 (-29 (-569))) (-4 *3 (-965)) (-4 *3 (-1210)) - (-4 *3 (-38 (-412 (-569)))))) - (-12 (-5 *2 (-1185)) (-4 *1 (-1266 *3)) (-4 *3 (-1057)) - (-12 (|has| *3 (-15 -1712 ((-649 *2) *3))) - (|has| *3 (-15 -3579 (*3 *3 *2))) (-4 *3 (-38 (-412 (-569)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-38 (-412 (-569)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569)))))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-798)) - (-4 *5 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *6 (-561)) - (-5 *2 (-2 (|:| -3151 (-958 *6)) (|:| -3078 (-958 *6)))) - (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-955 (-412 (-958 *6)) *4 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *3 (-958 (-569))) - (-5 *1 (-333)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1100 (-958 (-569)))) (-5 *1 (-333))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-979))))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) (((*1 *2 *2) - (-12 (-4 *3 (-1108)) (-5 *1 (-935 *3 *2)) (-4 *2 (-435 *3)))) + (-12 (-4 *3 (-1109)) (-5 *1 (-936 *3 *2)) (-4 *2 (-436 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-319 (-569))) (-5 *1 (-936))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-109)))) - ((*1 *2 *1) - (-12 (-4 *1 (-368 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1108)))) - ((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-443 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-488)))) - ((*1 *2 *1) (-12 (-4 *1 (-840 *2)) (-4 *2 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-971)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1083 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-1123)))) - ((*1 *1 *1) (-5 *1 (-1185)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-2 (|:| |k| (-824 *3)) (|:| |c| *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *1 *1) (-4 *1 (-634))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010) (-1210)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-562 *6 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-215 *4)) - (-4 *4 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) - (-15 -3567 (*2 $))))))) + (-12 (-5 *3 (-1186)) (-5 *2 (-320 (-570))) (-5 *1 (-937))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-910 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-109)))) ((*1 *2 *1) - (-12 (-5 *2 (-1280)) (-5 *1 (-215 *3)) - (-4 *3 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 (*2 $)) - (-15 -3567 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-507))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1148 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34))) - (-5 *2 (-112)) (-5 *1 (-1149 *5 *6))))) + (-12 (-4 *1 (-369 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1109)))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1168)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-444 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-489)))) + ((*1 *2 *1) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-972)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1084 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1124)))) + ((*1 *1 *1) (-5 *1 (-1186)))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-4 *3 (-562))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-570)) (-4 *3 (-174)) (-4 *5 (-378 *3)) + (-4 *6 (-378 *3)) (-5 *1 (-694 *3 *5 *6 *2)) + (-4 *2 (-693 *3 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-650 (-112))) (-5 *5 (-695 (-227))) + (-5 *6 (-695 (-570))) (-5 *7 (-227)) (-5 *3 (-570)) (-5 *2 (-1044)) + (-5 *1 (-760))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1070 (-1033 *4) (-1182 (-1033 *4)))) (-5 *3 (-868)) + (-5 *1 (-1033 *4)) (-4 *4 (-13 (-854) (-368) (-1031)))))) (((*1 *2 *3) - (-12 (-4 *4 (-855)) + (-12 (-4 *4 (-856)) (-5 *2 - (-2 (|:| |f1| (-649 *4)) (|:| |f2| (-649 (-649 (-649 *4)))) - (|:| |f3| (-649 (-649 *4))) (|:| |f4| (-649 (-649 (-649 *4)))))) - (-5 *1 (-1196 *4)) (-5 *3 (-649 (-649 (-649 *4))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1266 *4)) - (-4 *4 (-38 (-412 (-569)))) (-5 *2 (-1 (-1165 *4) (-1165 *4))) - (-5 *1 (-1268 *4 *5))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) - (-5 *1 (-753))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) - (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048))))) + (-2 (|:| |f1| (-650 *4)) (|:| |f2| (-650 (-650 (-650 *4)))) + (|:| |f3| (-650 (-650 *4))) (|:| |f4| (-650 (-650 (-650 *4)))))) + (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 (-650 *4))))))) +(((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) + (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-4 *3 (-13 (-27) (-1211) (-436 *6) (-10 -8 (-15 -3798 ($ *7))))) + (-4 *7 (-854)) + (-4 *8 + (-13 (-1254 *3 *7) (-368) (-1211) + (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) + (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8)) + (-14 *10 (-1186))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1) (-4 *1 (-1148))) ((*1 *1 *1 *1) (-4 *1 (-1148)))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) - (-4 *3 (-1108)) (-5 *2 (-776)))) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) + (-4 *3 (-1109)) (-5 *2 (-777)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) - (-4 *4 (-1225)) (-5 *2 (-776))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1266 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) - (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1266 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) - ((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) - (-14 *4 (-569))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4448)) (-4 *1 (-495 *4)) + (-4 *4 (-1226)) (-5 *2 (-777))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-650 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-777)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-799)) (-4 *6 (-956 *4 *3 *5)) (-4 *4 (-458)) (-4 *5 (-856)) + (-5 *1 (-455 *4 *3 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) + (-5 *1 (-1170 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-570)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) + (-14 *4 (-1186)) (-14 *5 *3)))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) - (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) + (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112)))) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))) +(((*1 *2 *3) + (-12 (-4 *4 (-311)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-333))) (-5 *1 (-333))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1133 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1109) (-34))) + (-5 *2 (-112)) (-5 *1 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34)))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)) - (-4 *2 (-1108))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-1203))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-867) (-867) (-867))) (-5 *4 (-569)) (-5 *2 (-867)) - (-5 *1 (-654 *5 *6 *7)) (-4 *5 (-1108)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-867)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1057)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-867)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-867)))) - ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-867)) (-5 *1 (-1181 *3)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1128))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) - (-5 *1 (-753))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 (-383)) (-5 *1 (-206))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) - (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9)))) - (-5 *1 (-996 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) - (-4 *4 (-1079 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) - (-4 *8 (-855)) (-4 *9 (-1073 *6 *7 *8)) - (-5 *2 - (-2 (|:| -4312 (-649 *9)) (|:| -3663 *4) (|:| |ineq| (-649 *9)))) - (-5 *1 (-1115 *6 *7 *8 *9 *4)) (-5 *3 (-649 *9)) - (-4 *4 (-1079 *6 *7 *8 *9))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-972 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48)))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-1108))))) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)) + (-4 *2 (-1109))))) +(((*1 *2 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-1129))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-825 *3)) (-4 *3 (-856)) (-5 *1 (-678 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226))))) +(((*1 *1 *2) + (-12 (-5 *2 (-320 *3)) (-4 *3 (-13 (-1058) (-856))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-424 *4) *4)) (-4 *4 (-562)) (-5 *2 (-424 *4)) + (-5 *1 (-425 *4)))) + ((*1 *1 *1) (-5 *1 (-933))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) + ((*1 *1 *1) (-5 *1 (-934))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) + (-5 *4 (-413 (-570))) (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) + (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) + (-5 *4 (-413 (-570))) (-5 *1 (-1030 *3)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) + (-5 *1 (-1030 *3)) (-4 *3 (-1252 (-413 (-570)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-959 (-570))) (-5 *3 (-1186)) + (-5 *4 (-1103 (-413 (-570)))) (-5 *1 (-30))))) +(((*1 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1279))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1109)) + (-5 *2 (-2 (|:| -1436 (-570)) (|:| |var| (-618 *1)))) + (-4 *1 (-436 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-695 (-570))) + (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-759))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-298 *6)) (-5 *4 (-115)) (-4 *6 (-436 *5)) + (-4 *5 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-298 *7)) (-5 *4 (-115)) (-5 *5 (-650 *7)) + (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-650 (-298 *7))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7)) + (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-650 (-298 *8))) (-5 *4 (-650 (-115))) (-5 *5 (-298 *8)) + (-5 *6 (-650 *8)) (-4 *8 (-436 *7)) + (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-650 *7)) (-5 *4 (-650 (-115))) (-5 *5 (-298 *7)) + (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-115))) (-5 *6 (-650 (-298 *8))) + (-4 *8 (-436 *7)) (-5 *5 (-298 *8)) + (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-298 *5)) (-5 *4 (-115)) (-4 *5 (-436 *6)) + (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6)) + (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-4 *3 (-436 *6)) + (-4 *6 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-115)) (-5 *5 (-298 *3)) (-5 *6 (-650 *3)) + (-4 *3 (-436 *7)) (-4 *7 (-13 (-562) (-620 (-542)))) (-5 *2 (-52)) + (-5 *1 (-321 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-535)))) + ((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-535))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) + (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) + (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-928)) (-4 *5 (-1058)) + (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1211) (-288))) + (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1252 *5))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551))))) +(((*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266)))) + ((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-649 *1)) (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-784 *4)) - (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-423 (-1181 *1))) (-5 *1 (-319 *4)) (-5 *3 (-1181 *1)) - (-4 *4 (-457)) (-4 *4 (-561)) (-4 *4 (-1108)))) - ((*1 *2 *3) - (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1225)) (-5 *2 (-776)) (-5 *1 (-183 *4 *3)) - (-4 *3 (-679 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1143)) (-5 *2 (-696 (-283))) (-5 *1 (-168))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1020)) (-5 *2 (-867))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-569)) (-4 *3 (-173)) (-4 *5 (-377 *3)) - (-4 *6 (-377 *3)) (-5 *1 (-693 *3 *5 *6 *2)) - (-4 *2 (-692 *3 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-570))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1870 *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-932))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-297 *3))) (-5 *1 (-297 *3)) (-4 *3 (-561)) - (-4 *3 (-1225))))) -(((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855)))) + (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-413 *5)) + (|:| |c2| (-413 *5)) (|:| |deg| (-777)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1252 (-413 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-4 *3 (-13 (-27) (-1211) (-436 *6) (-10 -8 (-15 -3798 ($ *7))))) + (-4 *7 (-854)) + (-4 *8 + (-13 (-1254 *3 *7) (-368) (-1211) + (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) + (-5 *1 (-428 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1168)) (-4 *9 (-992 *8)) + (-14 *10 (-1186))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-650 (-1276 *4))) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) + (-5 *2 (-650 (-1276 *3)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) + (-5 *5 (-112)) (-4 *8 (-1074 *6 *7 *4)) (-4 *9 (-1080 *6 *7 *4 *8)) + (-4 *6 (-458)) (-4 *7 (-799)) (-4 *4 (-856)) + (-5 *2 (-650 (-2 (|:| |val| *8) (|:| -3665 *9)))) + (-5 *1 (-1081 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1182 *2)) (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) + (-5 *1 (-738 *5 *4 *6 *2)) (-4 *5 (-799)) + (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) + (-4 *6 (-562))))) +(((*1 *2 *3) + (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 (-650 *4)))) + (-5 *1 (-1197 *4)) (-5 *3 (-650 (-650 *4)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1218 *2 *3 *4 *5)) (-4 *2 (-561)) - (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-1073 *2 *3 *4)))) + (|partial| -12 (-4 *1 (-1219 *2 *3 *4 *5)) (-4 *2 (-562)) + (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-1074 *2 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) + (-12 (-5 *2 (-777)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-617 *5))) (-4 *4 (-1108)) (-5 *2 (-617 *5)) - (-5 *1 (-578 *4 *5)) (-4 *5 (-435 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-326 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1108)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-390 *2)) (-4 *2 (-1108)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-1108)) (-5 *1 (-654 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-649 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-569))))) - (-5 *1 (-423 *3)) (-4 *3 (-561)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-776)) (-4 *3 (-353)) (-4 *5 (-1251 *3)) - (-5 *2 (-649 (-1181 *3))) (-5 *1 (-503 *3 *5 *6)) - (-4 *6 (-1251 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) - (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) -(((*1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) - ((*1 *1 *1) (-5 *1 (-1128)))) -(((*1 *2 *3) - (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-310) (-147))) - (-4 *2 (-955 *4 *6 *5)) (-5 *1 (-930 *4 *5 *6 *2)) - (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798))))) + (-12 (-5 *2 (-650 (-650 *6))) (-4 *6 (-956 *3 *5 *4)) + (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186)))) + (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-950 (-227)) (-227) (-227))) (-5 *1 (-703))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112)) + (-5 *2 (-1044)) (-5 *1 (-751))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(((*1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) + ((*1 *1 *1) (-5 *1 (-1129)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1148)))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) - (-4 *4 (-1057)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4)) + (-4 *4 (-1058)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) - ((*1 *1 *1) (-4 *1 (-234))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-4 *1 (-268 *3)) (-4 *3 (-855)))) - ((*1 *1 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777)))) + ((*1 *1 *1) (-4 *1 (-235))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-4 *1 (-269 *3)) (-4 *3 (-856)))) + ((*1 *1 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) - (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) - (-4 *4 (-1251 *3)))) + (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)) + (-4 *4 (-1252 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) - (-4 *3 (-1251 *2)))) + (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3)) + (-4 *3 (-1252 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-479 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-367)) (-4 *2 (-906 *3)) (-5 *1 (-591 *2)) - (-5 *3 (-1185)))) + (-12 (-4 *2 (-368)) (-4 *2 (-907 *3)) (-5 *1 (-592 *2)) + (-5 *3 (-1186)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-591 *2)) (-4 *2 (-367)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-592 *2)) (-4 *2 (-368)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) - (-4 *4 (-1108)))) + (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4)) + (-4 *4 (-1109)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108)))) + (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108)))) + (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1176 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1182 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1183 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1239 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1240 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1260 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1261 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1271 *4)) (-14 *4 (-1185)) (-5 *1 (-1267 *3 *4 *5)) - (-4 *3 (-1057)) (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) - (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-649 *3)) - (-5 *1 (-596 *5 *6 *7 *8 *3)) (-4 *3 (-1117 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) - (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) - (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5))) - (-14 *6 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-147))) - (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *4)) (|:| -2415 (-649 (-958 *4)))))) - (-5 *1 (-1086 *4 *5)) (-5 *3 (-649 (-958 *4))) - (-14 *5 (-649 (-1185))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) - (-5 *2 - (-649 (-2 (|:| -2740 (-1181 *5)) (|:| -2415 (-649 (-958 *5)))))) - (-5 *1 (-1086 *5 *6)) (-5 *3 (-649 (-958 *5))) - (-14 *6 (-649 (-1185)))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| -1435 *4) (|:| -4007 *3) (|:| -2054 *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-1073 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| -1435 *3) (|:| -4007 *1) (|:| -2054 *1))) - (-4 *1 (-1251 *3))))) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1268 *3 *4 *5)) + (-4 *3 (-1058)) (-14 *5 *3)))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1226))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-384)) (-5 *1 (-1049))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835))))) (((*1 *2 *1) - (-12 (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) (-4 *3 (-855)) - (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) - ((*1 *2 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) + (-12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) (-4 *3 (-856)) + (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) + ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) ((*1 *2 *1) - (-12 (-4 *2 (-1225)) (-5 *1 (-878 *2 *3)) (-4 *3 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) + (-12 (-4 *2 (-1226)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) - ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) - (-5 *1 (-693 *3 *4 *5 *6)) (-4 *6 (-692 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-705 *3)) - (-4 *3 (-310))))) + (-12 (-5 *2 (-777)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) + ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192))))) +(((*1 *1 *2) + (-12 (-5 *2 (-413 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-13 (-368) (-148))) + (-5 *1 (-405 *3 *4))))) (((*1 *2 *3) - (-12 (-14 *4 (-649 (-1185))) (-14 *5 (-776)) - (-5 *2 - (-649 - (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) - (-248 *4 (-412 (-569)))))) - (-5 *1 (-510 *4 *5)) - (-5 *3 - (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) - (-248 *4 (-412 (-569)))))))) + (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) + (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *2 *4)) (-4 *4 (-1252 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1252 *2)) (-4 *2 (-174)) (-5 *1 (-414 *3 *2 *4)) + (-4 *3 (-415 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-415 *2 *3)) (-4 *3 (-1252 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1252 *2)) (-5 *2 (-570)) (-5 *1 (-774 *3 *4)) + (-4 *4 (-415 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-649 (-319 (-226)))) - (|:| |constraints| - (-649 - (-2 (|:| |start| (-226)) (|:| |finish| (-226)) - (|:| |grid| (-776)) (|:| |boundaryType| (-569)) - (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) - (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) - (|:| |tol| (-226)))) - (-5 *2 (-112)) (-5 *1 (-211))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) - (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)))) - (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-1117 *5 *6 *7 *8)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *8 (-1073 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-596 *5 *6 *7 *8 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) - ((*1 *1 *1 *1) (-5 *1 (-1128)))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) + (-12 (-5 *3 (-570)) (|has| *1 (-6 -4439)) (-4 *1 (-410)) + (-5 *2 (-928))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) + ((*1 *1 *1 *1) (-5 *1 (-1129)))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-933))))) (((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1275 *3))))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-1276 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1166 *7))) (-4 *6 (-856)) + (-4 *7 (-956 *5 (-537 *6) *6)) (-4 *5 (-1058)) + (-5 *2 (-1 (-1166 *7) *7)) (-5 *1 (-1135 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-827)) (-5 *2 (-52)) (-5 *1 (-837))))) +(((*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4439)) (-4 *1 (-410)))) + ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705)))) + ((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-705))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-928)) (-4 *5 (-311)) (-4 *3 (-1252 *5)) + (-5 *2 (-2 (|:| |plist| (-650 *3)) (|:| |modulo| *5))) + (-5 *1 (-466 *5 *3)) (-5 *4 (-650 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-649 (-776))) - (-5 *1 (-910 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889))))) -(((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) - ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704)))) - ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-704))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-511)) (-5 *3 (-649 (-1190))) (-5 *1 (-1190))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *3 (-1167)) (-5 *1 (-997)))) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-176 *3)) (-4 *3 (-311)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-680 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-746 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-856)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *1 (-989 *3)) (-4 *3 (-1058)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1254 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-998)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-4 *4 (-1225)) (-5 *1 (-1065 *3 *4)) - (-4 *3 (-1101 *4)))) + (-12 (-5 *2 (-1186)) (-4 *4 (-1226)) (-5 *1 (-1066 *3 *4)) + (-4 *3 (-1102 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1102 *4)) (-4 *4 (-1225)) - (-5 *1 (-1100 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-367)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2332 *1))) - (-4 *1 (-857 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-541))) (-5 *1 (-541))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) - (-4 *8 (-855)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *9)))) - (-5 *3 (-649 *9)) (-4 *1 (-1218 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3310 (-649 *8)))) - (-5 *3 (-649 *8)) (-4 *1 (-1218 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) - (-5 *1 (-335))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-505 *2)) (-14 *2 (-569)))) - ((*1 *1 *1 *1) (-5 *1 (-1128)))) + (-12 (-5 *2 (-1186)) (-5 *3 (-1103 *4)) (-4 *4 (-1226)) + (-5 *1 (-1101 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) + ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |c| (-413 *6)) + (|:| -3678 *6))) + (-5 *1 (-1024 *5 *6)) (-5 *3 (-413 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-506 *2)) (-14 *2 (-570)))) + ((*1 *1 *1 *1) (-5 *1 (-1129)))) (((*1 *2 *2) (-12 (-5 *2 - (-509 (-412 (-569)) (-241 *4 (-776)) (-869 *3) - (-248 *3 (-412 (-569))))) - (-14 *3 (-649 (-1185))) (-14 *4 (-776)) (-5 *1 (-510 *3 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-649 (-1084 *4 *5 *2))) (-4 *4 (-1108)) - (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) - (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-649 (-1084 *5 *6 *2))) (-5 *4 (-927)) (-4 *5 (-1108)) - (-4 *6 (-13 (-1057) (-892 *5) (-619 (-898 *5)))) - (-4 *2 (-13 (-435 *6) (-892 *5) (-619 (-898 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3))))) + (-510 (-413 (-570)) (-242 *4 (-777)) (-870 *3) + (-249 *3 (-413 (-570))))) + (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-511 *3 *4))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) + ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705))))) (((*1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *2 (-1280)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1251 (-412 *5))) (-14 *7 *6)))) -(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) - ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) (-5 *3 (-569)) - (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-226) (-226) (-226) (-226))) (-5 *1 (-265)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226) (-226))) (-5 *1 (-265)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-226) (-226))) (-5 *1 (-265))))) -(((*1 *2 *3) (-12 (-5 *2 (-383)) (-5 *1 (-790 *3)) (-4 *3 (-619 *2)))) + (-12 (-4 *4 (-916)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-424 (-1182 *7))) + (-5 *1 (-913 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-916)) (-4 *5 (-1252 *4)) (-5 *2 (-424 (-1182 *5))) + (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *2) (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *5)) (-4 *5 (-436 *4)) (-4 *4 (-562)) + (-5 *2 (-868)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-311) (-148))) (-4 *4 (-13 (-856) (-620 (-1186)))) + (-4 *5 (-799)) (-5 *1 (-931 *3 *4 *5 *2)) (-4 *2 (-956 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-980)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) + ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) +(((*1 *2 *3) + (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-564 *2)) (-4 *2 (-551))))) +(((*1 *2 *3) (-12 (-5 *2 (-384)) (-5 *1 (-791 *3)) (-4 *3 (-620 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-5 *2 (-383)) (-5 *1 (-790 *3)) - (-4 *3 (-619 *2)))) + (-12 (-5 *4 (-928)) (-5 *2 (-384)) (-5 *1 (-791 *3)) + (-4 *3 (-620 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2)) - (-5 *2 (-383)) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) (-4 *4 (-620 *2)) + (-5 *2 (-384)) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) - (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) + (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-4 *4 (-619 *2)) - (-5 *2 (-383)) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-4 *4 (-620 *2)) + (-5 *2 (-384)) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) - (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) + (-4 *4 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) (-4 *5 (-855)) - (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) (-5 *3 (-226)) - (-5 *2 (-1043)) (-5 *1 (-753))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-1246 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)))) - ((*1 *1 *1 *1) (-4 *1 (-478))) - ((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-889)))) - ((*1 *1 *1) (-5 *1 (-979))) - ((*1 *1 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) - ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))) -(((*1 *2 *3) - (-12 (-5 *2 (-170 *4)) (-5 *1 (-182 *4 *3)) - (-4 *4 (-13 (-367) (-853))) (-4 *3 (-1251 *2))))) + (-12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) (-4 *5 (-856)) + (-4 *5 (-620 *2)) (-5 *2 (-384)) (-5 *1 (-791 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-354)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1252 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) + (-5 *2 (-2 (|:| -1656 *3) (|:| |nconst| *3))) (-5 *1 (-573 *5 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-384)) (-5 *1 (-207))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-171 (-320 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-171 *3)) (-5 *1 (-1215 *4 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *4)))))) +(((*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776)) - (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1226)) (-5 *2 (-777)) + (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)) - (-5 *2 (-776)))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)) + (-5 *2 (-777)))) ((*1 *2) - (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) - (-4 *3 (-332 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) - ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-390 *3)) (-4 *3 (-1108)) (-5 *2 (-776)))) + (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4)) + (-4 *3 (-333 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) + ((*1 *2) (-12 (-4 *1 (-373)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) (-5 *2 (-777)))) ((*1 *2) - (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) + (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-430 *3 *4)) + (-4 *3 (-431 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) + (-12 (-5 *2 (-777)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-776)) - (-5 *1 (-728 *3 *4 *5)) (-4 *3 (-729 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-777)) + (-5 *1 (-729 *3 *4 *5)) (-4 *3 (-730 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-826)) (-5 *2 (-52)) (-5 *1 (-836))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-112)) (-5 *6 (-694 (-226))) - (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1020)) (-5 *2 (-867))))) -(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-157))))) -(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715))))) + (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-956 *4 *5 *6)) (-5 *2 (-650 (-650 *7))) + (-5 *1 (-454 *4 *5 *6 *7)) (-5 *3 (-650 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) + (-4 *7 (-856)) (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-650 (-650 *8))) + (-5 *1 (-454 *5 *6 *7 *8)) (-5 *3 (-650 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4)))) + (-5 *1 (-1284 *4)) (-4 *4 (-368))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) + (-5 *2 (-112))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1019 *2)) (-4 *2 (-1226))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1273 *3)) (-4 *3 (-23)) (-4 *3 (-1225))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-1181 *5))) (-5 *3 (-1181 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-550)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 *3)) (-4 *3 (-1251 *5)) - (-4 *5 (-1251 *4)) (-4 *4 (-353)) (-5 *1 (-362 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-1181 (-569)))) (-5 *3 (-1181 (-569))) - (-5 *1 (-577)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-1181 *1))) (-5 *3 (-1181 *1)) - (-4 *1 (-915))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550)))) - ((*1 *1 *1) (-4 *1 (-1068)))) -(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) - (-4 *8 (-955 *5 *7 *6)) (-4 *5 (-13 (-310) (-147))) - (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-112)) - (-5 *1 (-930 *5 *6 *7 *8))))) + (-12 (-5 *2 (-777)) (-4 *1 (-1274 *3)) (-4 *3 (-23)) (-4 *3 (-1226))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-950 *4)) (-4 *4 (-1058)) (-5 *1 (-1174 *3 *4)) + (-14 *3 (-928))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) - (-4 *3 (-1251 (-412 *4)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-4 *3 (-561))))) + (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) + (-4 *3 (-1109))))) +(((*1 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-373)) (-4 *2 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-562)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5))))) +(((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4411 *6) (|:| |sol?| (-112))) (-570) + *6)) + (-4 *6 (-368)) (-4 *7 (-1252 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-413 *7)) (|:| |a0| *6)) + (-2 (|:| -2134 (-413 *7)) (|:| |coeff| (-413 *7))) "failed")) + (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-413 (-1182 (-320 *3)))) (-4 *3 (-562)) + (-5 *1 (-1139 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3) - (-12 (-4 *4 (-353)) - (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -3931 *3)))) - (-5 *1 (-217 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *2 (-423 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1098))))) -(((*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867))))) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-426 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1211) (-436 *3))) + (-14 *4 (-1186)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-4 *2 (-13 (-27) (-1211) (-436 *3) (-10 -8 (-15 -3798 ($ *4))))) + (-4 *4 (-854)) + (-4 *5 + (-13 (-1254 *2 *4) (-368) (-1211) + (-10 -8 (-15 -3519 ($ $)) (-15 -1840 ($ $))))) + (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *6 (-992 *5)) (-14 *7 (-1186))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) + (-4 *5 (-562)) (-5 *2 (-650 (-650 (-959 *5)))) (-5 *1 (-1195 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1111 (-1111 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1109)) (-5 *2 (-896 *3 *4)) (-5 *1 (-892 *3 *4 *5)) + (-4 *3 (-1109)) (-4 *5 (-672 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-653 *5)) (-4 *5 (-1057)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-857 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-654 *5)) (-4 *5 (-1058)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-858 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-694 *3)) (-4 *1 (-422 *3)) (-4 *3 (-173)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) + (-12 (-5 *2 (-695 *3)) (-4 *1 (-423 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1057)) - (-5 *1 (-858 *2 *3)) (-4 *3 (-857 *2))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *3 (-226)) - (-5 *2 (-1043)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-1181 *3)) - (-4 *3 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) - (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-412 (-1181 *3))) - (-4 *3 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) - (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1035 *5 *6 *7 *3))) (-5 *1 (-1035 *5 *6 *7 *3)) - (-4 *3 (-1073 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-649 *6)) (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *2)) (-4 *3 (-457)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1154 *5 *6 *7 *3))) (-5 *1 (-1154 *5 *6 *7 *3)) - (-4 *3 (-1073 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1058)) + (-5 *1 (-859 *2 *3)) (-4 *3 (-858 *2))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-618 *1)) (-4 *1 (-306))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-570)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856)) + (-5 *1 (-455 *5 *6 *7 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-551)) (-5 *1 (-160 *2))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-856)) (-4 *5 (-799)) + (-4 *6 (-562)) (-4 *7 (-956 *6 *5 *3)) + (-5 *1 (-468 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1047 (-413 (-570))) (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) + (-15 -4413 (*7 $)))))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1869 (-788 *3)) (|:| |coef1| (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-2 (|:| -1869 *1) (|:| |coef1| *1))) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-294))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-423 *4) *4)) (-4 *4 (-561)) (-5 *2 (-423 *4)) - (-5 *1 (-424 *4)))) - ((*1 *1 *1) (-5 *1 (-932))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) - ((*1 *1 *1) (-5 *1 (-933))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) - (-5 *4 (-412 (-569))) (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) - (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) - (-5 *4 (-412 (-569))) (-5 *1 (-1029 *3)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))) - (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-827))))) + (-12 (-5 *3 (-650 (-1 (-112) *8))) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) + (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8))))) +(((*1 *2 *1) (-12 (-5 *1 (-1221 *2)) (-4 *2 (-983))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1047 (-48))) + (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) + (-5 *2 (-424 (-1182 (-48)))) (-5 *1 (-441 *4 *5 *3)) + (-4 *3 (-1252 *5))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) - (-4 *2 (-661 *4))))) -(((*1 *2) - (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1167))))) + (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1226))))) +(((*1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-1209))))) (((*1 *2 *3) - (-12 (-5 *2 (-617 *4)) (-5 *1 (-616 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-649 (-694 *6))) (-5 *4 (-112)) (-5 *5 (-569)) - (-5 *2 (-694 *6)) (-5 *1 (-1037 *6)) (-4 *6 (-367)) (-4 *6 (-1057)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-5 *1 (-1037 *4)) - (-4 *4 (-367)) (-4 *4 (-1057)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-5 *2 (-694 *5)) - (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-1057))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590))))) + (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-4 *5 (-1252 *4)) (-5 *2 (-1281)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1252 (-413 *5))) (-14 *7 *6)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) + (-5 *3 (-650 (-570))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) + (-5 *3 (-650 (-570)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) + (-4 *3 (-654 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1) + (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1226)) (-4 *2 (-1109)) + (-4 *2 (-856))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1267 *4)) (-5 *1 (-1269 *4 *2)) + (-4 *4 (-38 (-413 (-570))))))) +(((*1 *1 *1) (-4 *1 (-1153)))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3059 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) + (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1226))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-368)) (-5 *1 (-580 *4 *2)) (-4 *2 (-1252 *4))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-311)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) + (-4 *1 (-311))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-854) (-368))) (-5 *2 (-112)) (-5 *1 (-1070 *4 *3)) + (-4 *3 (-1252 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) - (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-649 (-787 *3))) (-5 *1 (-787 *3)) (-4 *3 (-561)) - (-4 *3 (-1057))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-107 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-569) "failed") *5)) (-4 *5 (-1057)) - (-5 *2 (-569)) (-5 *1 (-548 *5 *3)) (-4 *3 (-1251 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057)) - (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-569) "failed") *4)) (-4 *4 (-1057)) - (-5 *2 (-569)) (-5 *1 (-548 *4 *3)) (-4 *3 (-1251 *4))))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828))))) (((*1 *2 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1010)) - (-4 *2 (-1057))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-776)) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) + (-5 *2 (-419 *4 (-413 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1276 *6)) (-4 *6 (-13 (-415 *4 *5) (-1047 *4))) + (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-4 *3 (-311)) + (-5 *1 (-419 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-4 *2 (-1057)) (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) - (-4 *5 (-239 *3 *2))))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-912 (-570))) (-5 *4 (-570)) (-5 *2 (-695 *4)) + (-5 *1 (-1037 *5)) (-4 *5 (-1058)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1037 *4)) + (-4 *4 (-1058)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-912 (-570)))) (-5 *4 (-570)) + (-5 *2 (-650 (-695 *4))) (-5 *1 (-1037 *5)) (-4 *5 (-1058)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-650 (-570)))) (-5 *2 (-650 (-695 (-570)))) + (-5 *1 (-1037 *4)) (-4 *4 (-1058))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1186)) + (-4 *5 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) (-5 *1 (-563 *5 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) + (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-618 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))) + (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *4 *2))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *7 (-906 *6)) - (-5 *2 (-694 *7)) (-5 *1 (-697 *6 *7 *3 *4)) (-4 *3 (-377 *7)) - (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447))))))) -(((*1 *2) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) + (-12 (-5 *1 (-650 *2)) (-4 *2 (-1109)) (-4 *2 (-1226))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *3 (-650 (-570))) + (-5 *1 (-890))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-127 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1276 *5)) (-5 *3 (-777)) (-5 *4 (-1129)) (-4 *5 (-354)) + (-5 *1 (-534 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-694 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-206))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-485))))) + (-12 (-4 *4 (-856)) (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4)) + (-5 *3 (-650 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) - (-5 *1 (-747 *4 *5 *6 *3)) (-4 *3 (-955 *6 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-853))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-1251 (-170 *3)))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) - (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8)) - (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) - (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9)))) - (-5 *1 (-1116 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6))))) + (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186))) + (-4 *5 (-458)) (-5 *2 (-650 (-249 *4 *5))) (-5 *1 (-637 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108)) - (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108))))) + (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109)) + (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109))))) (((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353)))) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353)))) - ((*1 *1) (-4 *1 (-372))) - ((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) - (-4 *4 (-353)))) - ((*1 *1 *1) (-4 *1 (-550))) ((*1 *1) (-4 *1 (-550))) - ((*1 *1 *1) (-5 *1 (-776))) - ((*1 *2 *1) (-12 (-5 *2 (-911 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354)))) + ((*1 *1) (-4 *1 (-373))) + ((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1276 *4)) (-5 *1 (-534 *4)) + (-4 *4 (-354)))) + ((*1 *1 *1) (-4 *1 (-551))) ((*1 *1) (-4 *1 (-551))) + ((*1 *1 *1) (-5 *1 (-777))) + ((*1 *2 *1) (-12 (-5 *2 (-912 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) - (-4 *4 (-1108)))) - ((*1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-550)) (-4 *2 (-561))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-412 (-958 *6)) (-1174 (-1185) (-958 *6)))) - (-5 *5 (-776)) (-4 *6 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *6))))) - (-5 *1 (-295 *6)) (-5 *4 (-694 (-412 (-958 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5)))) - (|:| |eigmult| (-776)) (|:| |eigvec| (-649 *4)))) - (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) - (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2)) - (-4 *4 (-38 (-412 (-569))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-694 *4)))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3))))) -(((*1 *1) (-5 *1 (-1093)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569)))) + (-12 (-5 *3 (-570)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4)) + (-4 *4 (-1109)))) + ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-551)) (-4 *2 (-562))))) +(((*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-854)) (-5 *1 (-307 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-650 (-115)))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1094))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2865 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) + (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-1289 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1289 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570))) + (-5 *1 (-192))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2) - (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef2| (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-2 (|:| -1870 *1) (|:| |coef2| *1))) - (-4 *1 (-1073 *3 *4 *5))))) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) + (-15 -4413 ((-1134 *3 (-618 $)) $)) + (-15 -3798 ($ (-1134 *3 (-618 $)))))))))) (((*1 *1 *1) - (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *2 (-1108)) (-4 *3 (-1108)) - (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108))))) + (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *2 (-1109)) (-4 *3 (-1109)) + (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-367)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) - (-5 *1 (-771 *3 *4)) (-4 *3 (-713 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-367)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) - (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) - (-4 *3 (-857 *5))))) -(((*1 *1 *1) (-5 *1 (-867))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) + (-5 *2 (-249 *4 *5)) (-5 *1 (-951 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *1 *1) (-5 *1 (-868))) ((*1 *2 *1) - (-12 (-4 *1 (-1111 *2 *3 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108)))) - ((*1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-1166)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1185))))) -(((*1 *2 *1) - (-12 (-4 *3 (-234)) (-4 *3 (-1057)) (-4 *4 (-855)) (-4 *5 (-268 *4)) - (-4 *6 (-798)) (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-4 *3 (-855)) (-4 *5 (-268 *3)) (-4 *6 (-798)) - (-5 *2 (-1 *1 (-776))) (-4 *1 (-255 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-268 *2)) (-4 *2 (-855))))) + (-12 (-4 *1 (-1112 *2 *3 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109)))) + ((*1 *1 *2) (-12 (-5 *2 (-570)) (-4 *1 (-1167)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1186))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-333))))) + (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-334))))) (((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) + (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) (((*1 *2 *3) - (-12 (-4 *4 (-353)) (-5 *2 (-423 *3)) (-5 *1 (-217 *4 *3)) - (-4 *3 (-1251 *4)))) + (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1281)) (-5 *1 (-1228)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 (-1186))) (-5 *2 (-1281)) (-5 *1 (-1228))))) +(((*1 *2 *1) + (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-4 *3 (-562)) + (-5 *2 (-1182 *3))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570))))) +(((*1 *2 *1) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-55))))) +(((*1 *1 *2) (-12 (-4 *1 (-672 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1186))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-3 *3 (-650 *1))) + (-4 *1 (-1080 *4 *5 *6 *3))))) +(((*1 *1) + (-12 (-4 *1 (-410)) (-1748 (|has| *1 (-6 -4439))) + (-1748 (|has| *1 (-6 -4431))))) + ((*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856)))) + ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-856)))) + ((*1 *1) (-4 *1 (-850))) ((*1 *1 *1 *1) (-4 *1 (-856)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) + (-5 *2 (-570)) (-5 *1 (-1123 *4 *5))))) +(((*1 *1) (-5 *1 (-584)))) +(((*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) - (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-776))) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) - (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-649 (-776))) (-5 *5 (-776)) (-5 *2 (-423 *3)) - (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-776)) (-5 *2 (-423 *3)) (-5 *1 (-447 *3)) - (-4 *3 (-1251 (-569))))) + (-12 (-5 *3 (-928)) (-5 *2 (-1276 *4)) (-5 *1 (-534 *4)) + (-4 *4 (-354))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1281)) + (-5 *1 (-455 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-298 *3))) (-5 *1 (-298 *3)) (-4 *3 (-562)) + (-4 *3 (-1226))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-1015 *3)) - (-4 *3 (-1251 (-412 (-569)))))) + (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1281)) (-5 *1 (-1147))))) +(((*1 *2) + (-12 (-14 *4 (-777)) (-4 *5 (-1226)) (-5 *2 (-135)) + (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-368)) (-5 *2 (-135)) (-5 *1 (-332 *3 *4)) + (-4 *3 (-333 *4)))) + ((*1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) + (-5 *2 (-570)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1058)) (-5 *2 (-928)))) + ((*1 *2) (-12 (-4 *1 (-1283 *3)) (-4 *3 (-368)) (-5 *2 (-135))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-618 *3)) (-5 *5 (-1 (-1182 *3) (-1182 *3))) + (-4 *3 (-13 (-27) (-436 *6))) (-4 *6 (-562)) (-5 *2 (-592 *3)) + (-5 *1 (-557 *6 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-928)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-368)) (-14 *5 (-1002 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 (-959 (-570)))) (-5 *4 (-650 (-1186))) + (-5 *2 (-650 (-650 (-384)))) (-5 *1 (-1032)) (-5 *5 (-384)))) ((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-310)) (-5 *2 (-423 *3)) - (-5 *1 (-747 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-866)))) - ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-866))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1185))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2))))) -(((*1 *1) - (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438))) - (-1749 (|has| *1 (-6 -4430))))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855)))) - ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-855)))) - ((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855)))) -(((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265))))) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-14 *5 (-650 (-1186))) (-5 *2 (-650 (-650 (-1033 (-413 *4))))) + (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *5))))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-959 *4))) + (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-650 (-1033 (-413 *4))))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) - (-5 *2 (-412 (-569))))) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) + (-5 *2 (-413 (-570))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) - (-4 *3 (-561)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) + (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-424 *3)) (-4 *3 (-551)) + (-4 *3 (-562)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-551)) (-5 *2 (-413 (-570))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) - (-5 *2 (-412 (-569))))) + (|partial| -12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) + (-5 *2 (-413 (-570))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) - (-4 *3 (-1108)))) + (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-839 *3)) (-4 *3 (-551)) + (-4 *3 (-1109)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) - (-4 *3 (-1108)))) + (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-849 *3)) (-4 *3 (-551)) + (-4 *3 (-1109)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) - (-5 *2 (-412 (-569))))) + (|partial| -12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) + (-5 *2 (-413 (-570))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) - (-4 *3 (-1046 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-1181 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) - (-15 -4412 ((-1133 *4 (-617 $)) $)) - (-15 -3796 ($ (-1133 *4 (-617 $)))))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-649 (-1185))) (|:| |pred| (-52)))) - (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) - (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-927)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-367)) (-14 *5 (-1001 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-1073 *3 *4 *2)) (-4 *2 (-855)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855))))) -(((*1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-827))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-569)))) - (-4 *4 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $))))) - (-4 *3 (-561)) (-5 *1 (-1254 *3 *4))))) + (|partial| -12 (-5 *2 (-413 (-570))) (-5 *1 (-1017 *3)) + (-4 *3 (-1047 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-1058)) (-5 *2 (-570)) + (-5 *1 (-449 *5 *3 *6)) (-4 *3 (-1252 *5)) + (-4 *6 (-13 (-410) (-1047 *5) (-368) (-1211) (-288))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) + (-4 *3 (-1252 *4)) + (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1211) (-288)))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-5 *2 (-776)))) - ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-776)))) - ((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-731))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-4 *1 (-909 *3))))) + (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) + (-4 *3 (-1252 *4)) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-776)) (|:| -1814 *4))) (-5 *5 (-776)) - (-4 *4 (-955 *6 *7 *8)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-454 *6 *7 *8 *4))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-62 *3)) (-14 *3 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-69 *3)) (-14 *3 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-72 *3)) (-14 *3 (-1185)))) - ((*1 *2 *1) (-12 (-4 *1 (-400)) (-5 *2 (-1280)))) - ((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-402)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) - ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-1146)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-867))) (-5 *2 (-1280)) (-5 *1 (-1146))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-694 (-569))) - (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-762))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1034 (-848 (-569)))) (-5 *1 (-600 *3)) (-4 *3 (-1057))))) -(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) + (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384))))) +(((*1 *2 *2) (-12 (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) (-4 *5 (-1252 *4)) (-5 *2 (-1 *6 (-650 *6))) + (-5 *1 (-1270 *4 *5 *3 *6)) (-4 *3 (-662 *5)) (-4 *6 (-1267 *4))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-62 *3)) (-14 *3 (-1186)))) + ((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-69 *3)) (-14 *3 (-1186)))) + ((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-72 *3)) (-14 *3 (-1186)))) + ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1281)))) + ((*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1281)) (-5 *1 (-403)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) + ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-1147)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-868))) (-5 *2 (-1281)) (-5 *1 (-1147))))) +(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1071)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1071))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1226)) (-4 *2 (-856)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-377 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1226)))) ((*1 *2 *2) - (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) - (-4 *6 (-1073 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1))) - (-4 *1 (-984 *4 *5 *3 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *1 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-762))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) - (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) - (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) - (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) - (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) - (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) - (-5 *1 (-265)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-569)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) - ((*1 *2 *1 *3) - (-12 + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) + (-4 *6 (-1074 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -4140 *1) (|:| |upper| *1))) + (-4 *1 (-985 *4 *5 *3 *6))))) +(((*1 *2 *3) + (-12 (-4 *1 (-902)) (-5 *3 - (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) - (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) - (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) - (-5 *2 (-1280)) (-5 *1 (-1277)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-226)) (|:| |phi| (-226)) (|:| -4092 (-226)) - (|:| |scaleX| (-226)) (|:| |scaleY| (-226)) (|:| |scaleZ| (-226)) - (|:| |deltaX| (-226)) (|:| |deltaY| (-226)))) - (-5 *1 (-1277)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-1210) (-965) (-29 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1276)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-265))) (-5 *1 (-1277))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) - (-4 *5 (-1251 *4)) (-5 *2 (-649 (-412 *5))) (-5 *1 (-1024 *4 *5)) - (-5 *3 (-412 *5))))) + (-2 (|:| |pde| (-650 (-320 (-227)))) + (|:| |constraints| + (-650 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-777)) (|:| |boundaryType| (-570)) + (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) + (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) + (|:| |tol| (-227)))) + (-5 *2 (-1044))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1252 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))) + ((*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-1069)) (-5 *2 (-570))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) + (-4 *3 (-562))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-562)) (-4 *2 (-458)) (-5 *1 (-978 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1277)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1277)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-266))) (-5 *1 (-1278))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-650 (-618 *6))) (-5 *4 (-1186)) (-5 *2 (-618 *6)) + (-4 *6 (-436 *5)) (-4 *5 (-1109)) (-5 *1 (-579 *5 *6))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-569)) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) - (-4 *3 (-1057)))) + (-12 (-5 *4 (-570)) (-5 *2 (-1166 *3)) (-5 *1 (-1170 *3)) + (-4 *3 (-1058)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-824 *4)) (-4 *4 (-855)) (-4 *1 (-1292 *4 *3)) - (-4 *3 (-1057))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *3 (-173)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) + (-12 (-5 *2 (-825 *4)) (-4 *4 (-856)) (-4 *1 (-1293 *4 *3)) + (-4 *3 (-1058))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1109))))) (((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) - (-4 *3 (-1251 *4)) - (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-170 (-412 (-569))))) - (-5 *2 - (-649 - (-2 (|:| |outval| (-170 *4)) (|:| |outmult| (-569)) - (|:| |outvect| (-649 (-694 (-170 *4))))))) - (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-396))))) -(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1185)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-649 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1210) (-27) (-435 *8))) - (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569)) - (-5 *2 (-649 *4)) (-5 *1 (-1022 *8 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) - ((*1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) - (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-473)) (-5 *1 (-1279)))) + (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 (-171 *4)) (-1011) (-1211))) + (-5 *1 (-606 *4 *3 *2)) (-4 *3 (-13 (-436 *4) (-1011) (-1211)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1281)) (-5 *1 (-837))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-570)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-777)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-799)) (-4 *4 (-956 *5 *6 *7)) (-4 *5 (-458)) (-4 *7 (-856)) + (-5 *1 (-455 *5 *6 *7 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227))) + (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761))))) +(((*1 *1) (-5 *1 (-565)))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-397))))) +(((*1 *1 *2) + (-12 (-5 *2 (-695 *5)) (-4 *5 (-1058)) (-5 *1 (-1063 *3 *4 *5)) + (-14 *3 (-777)) (-14 *4 (-777))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-650 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-570))))) + (-4 *2 (-562)) (-5 *1 (-424 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-473)) - (-5 *1 (-1279)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) - (-5 *2 (-473)) (-5 *1 (-1279))))) + (-12 + (-5 *3 + (-2 (|:| |contp| (-570)) + (|:| -1629 (-650 (-2 (|:| |irr| *4) (|:| -2306 (-570))))))) + (-4 *4 (-1252 (-570))) (-5 *2 (-424 *4)) (-5 *1 (-448 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243))))) +(((*1 *2 *3) + (-12 (-5 *3 (-899 *4)) (-4 *4 (-1109)) (-5 *2 (-650 *5)) + (-5 *1 (-897 *4 *5)) (-4 *5 (-1226))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-112)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-685 *5 *6 *2))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-4 *2 (-1109)) (-5 *1 (-686 *5 *6 *2))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) + (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-757))))) +(((*1 *2 *3) (-12 (-5 *3 (-394)) (-5 *2 (-1281)) (-5 *1 (-397)))) + ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-397))))) (((*1 *2 *3) - (-12 (-4 *4 (-457)) (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *2 (-649 *3)) (-5 *1 (-985 *4 *5 *6 *3)) - (-4 *3 (-1073 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) - (-5 *2 (-1043)) (-5 *1 (-751))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-372))))) -(((*1 *2 *3) (-12 (-5 *3 (-393)) (-5 *2 (-1280)) (-5 *1 (-396)))) - ((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-396))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-561)) - (-5 *2 (-867)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-55))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-412 (-569))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *3)))) + (|partial| -12 (-5 *3 (-928)) + (-5 *2 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) + (-5 *1 (-351 *4)) (-4 *4 (-354))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-650 (-928))) (-4 *2 (-368)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-928)) (-14 *5 (-1002 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *2 (-562)) (-5 *1 (-629 *2 *4)) + (-4 *4 (-1252 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-714 *2)) (-4 *2 (-1058)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-732)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 *5)) (-5 *3 (-650 (-777))) (-4 *1 (-746 *4 *5)) + (-4 *4 (-1058)) (-4 *5 (-856)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *2)) (-4 *4 (-1058)) + (-4 *2 (-856)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-4 *1 (-858 *2)) (-4 *2 (-1058)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 *6)) (-5 *3 (-650 (-777))) (-4 *1 (-956 *4 *5 *6)) + (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *6 (-856)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-777)) (-4 *1 (-956 *4 *5 *2)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *2 (-856)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-4 *2 (-956 *4 (-537 *5) *5)) + (-5 *1 (-1135 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-856)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-959 *4)) (-5 *1 (-1220 *4)) + (-4 *4 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-413 (-570))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) - (-4 *6 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *5 *6)))) + (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570))) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6)) + (-4 *6 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *6 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569))) - (-4 *7 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1243 (-570))) + (-4 *7 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569))) - (-4 *3 (-13 (-27) (-1210) (-435 *7))) - (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *7 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-570))) + (-4 *3 (-13 (-27) (-1211) (-436 *7))) + (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) - (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569))) - (-4 *8 (-13 (-27) (-1210) (-435 *7))) - (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8)) + (-5 *5 (-1243 (-413 (-570)))) (-5 *6 (-413 (-570))) + (-4 *8 (-13 (-27) (-1211) (-436 *7))) + (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569)))) - (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8))) - (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *8 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-413 (-570)))) + (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *8))) + (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) - (-4 *3 (-1057)) (-5 *1 (-600 *3)))) + (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) + (-4 *3 (-1058)) (-5 *1 (-601 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-601 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-602 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) - (-4 *3 (-1057)) (-4 *1 (-1235 *3)))) + (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) + (-4 *3 (-1058)) (-4 *1 (-1236 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-776)) - (-5 *3 (-1165 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))) - (-4 *4 (-1057)) (-4 *1 (-1256 *4)))) + (-12 (-5 *2 (-777)) + (-5 *3 (-1166 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4)))) + (-4 *4 (-1058)) (-4 *1 (-1257 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-4 *1 (-1266 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-4 *1 (-1267 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1165 (-2 (|:| |k| (-776)) (|:| |c| *3)))) - (-4 *3 (-1057)) (-4 *1 (-1266 *3))))) -(((*1 *2) - (-12 (-4 *4 (-367)) (-5 *2 (-776)) (-5 *1 (-331 *3 *4)) - (-4 *3 (-332 *4)))) - ((*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-776))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-649 (-569))) (-5 *3 (-112)) (-5 *1 (-1118))))) + (-12 (-5 *2 (-1166 (-2 (|:| |k| (-777)) (|:| |c| *3)))) + (-4 *3 (-1058)) (-4 *1 (-1267 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) + ((*1 *2 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) + (-14 *4 (-650 (-1186))))) + ((*1 *2 *1) + (-12 (-5 *2 (-570)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) + (-14 *4 (-650 (-1186))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) + (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-278)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1182 *8)) (-5 *4 (-650 *6)) (-4 *6 (-856)) + (-4 *8 (-956 *7 *5 *6)) (-4 *5 (-799)) (-4 *7 (-1058)) + (-5 *2 (-650 (-777))) (-5 *1 (-325 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928)))) + ((*1 *2 *1) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) + (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-476 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-562)) (-5 *2 (-570)) (-5 *1 (-629 *3 *4)) + (-4 *4 (-1252 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *3 (-856)) (-5 *2 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3 *2 *4)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *2 (-798)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1238 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1267 *3)) + (-5 *2 (-570)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1236 *3)) + (-5 *2 (-413 (-570))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-777))))) +(((*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) + (-4 *3 (-654 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1058)) (-5 *1 (-720 *2 *3)) + (-4 *3 (-654 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058)))) + ((*1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-174)) (-4 *2 (-1058))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-4 *4 (-353)) (-4 *5 (-332 *4)) (-4 *6 (-1251 *5)) - (-5 *2 (-649 *3)) (-5 *1 (-782 *4 *5 *6 *3 *7)) (-4 *3 (-1251 *6)) - (-14 *7 (-927))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) - (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) - (-5 *2 (-1181 (-958 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-743))))) + (|partial| -12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) + (-5 *2 (-424 (-1182 (-413 (-570))))) (-5 *1 (-441 *4 *5 *3)) + (-4 *3 (-1252 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-744))))) (((*1 *2 *3) - (-12 (-4 *1 (-346 *4 *3 *5)) (-4 *4 (-1229)) (-4 *3 (-1251 *4)) - (-4 *5 (-1251 (-412 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-570)) (-5 *1 (-206))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3346 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) -(((*1 *2 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1057)) - (-5 *1 (-324 *4 *5 *2 *6)) (-4 *6 (-955 *2 *4 *5))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-824 *3)) (-4 *3 (-855)) (-5 *1 (-677 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3) (-12 (-5 *2 (-423 *3)) (-5 *1 (-563 *3)) (-4 *3 (-550))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-853)) (-5 *1 (-306 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-649 (-569))) (-5 *2 (-776)) (-5 *1 (-595))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-481 *4 *5 *6 *7)) (|:| -3310 (-649 *7)))) - (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-853)) (-4 *4 (-367)) (-5 *2 (-776)) - (-5 *1 (-951 *4 *5)) (-4 *5 (-1251 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-752))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-628 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112))) - (-569) *4)) - (-4 *4 (-367)) (-4 *5 (-1251 *4)) (-5 *1 (-579 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-285 *3)) (-4 *3 (-1225))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-2 (|:| -2006 (-1185)) (|:| -2216 (-442))))) - (-5 *1 (-1189))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)) (-4 *5 (-368)) + (-5 *2 (-112)) (-5 *1 (-673 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-368)) (-4 *6 (-13 (-378 *5) (-10 -7 (-6 -4449)))) + (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4449)))) (-5 *2 (-112)) + (-5 *1 (-674 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1275 (-704))) (-5 *1 (-308))))) + (-12 + (-5 *3 + (-650 + (-2 (|:| -3979 (-777)) + (|:| |eqns| + (-650 + (-2 (|:| |det| *7) (|:| |rows| (-650 (-570))) + (|:| |cols| (-650 (-570)))))) + (|:| |fgb| (-650 *7))))) + (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) + (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777)) + (-5 *1 (-931 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *2) + (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *2) + (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1226))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *1 *2) - (-12 (-5 *2 (-412 (-569))) (-4 *1 (-559 *3)) - (-4 *3 (-13 (-409) (-1210))))) - ((*1 *1 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210)))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-1245 *3 *2)) - (-4 *2 (-1251 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393))))) +(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-424 *5)) (-4 *5 (-562)) + (-5 *2 + (-2 (|:| -3283 (-777)) (|:| -1436 *5) (|:| |radicand| (-650 *5)))) + (-5 *1 (-324 *5)) (-5 *4 (-777)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-570))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397))))) +(((*1 *2) + (-12 (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) + (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-649 (-694 *4))) (-5 *2 (-694 *4)) (-4 *4 (-1057)) - (-5 *1 (-1037 *4))))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-2 (|:| -2009 (-1186)) (|:| -2219 (-443))))) + (-5 *1 (-1190))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7)) + (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-916)) (-4 *5 (-799)) + (-4 *6 (-856)) (-5 *1 (-913 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-650 (-1182 *5))) (-5 *3 (-1182 *5)) + (-4 *5 (-1252 *4)) (-4 *4 (-916)) (-5 *1 (-914 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-828))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-650 (-1182 *13))) (-5 *3 (-1182 *13)) + (-5 *4 (-650 *12)) (-5 *5 (-650 *10)) (-5 *6 (-650 *13)) + (-5 *7 (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| *13))))) + (-5 *8 (-650 (-777))) (-5 *9 (-1276 (-650 (-1182 *10)))) + (-4 *12 (-856)) (-4 *10 (-311)) (-4 *13 (-956 *10 *11 *12)) + (-4 *11 (-799)) (-5 *1 (-713 *11 *12 *10 *13))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115))))) +(((*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1057)) - (-5 *1 (-858 *5 *2)) (-4 *2 (-857 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1189))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280)) - (-5 *1 (-1226 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-5 *2 (-1280)) - (-5 *1 (-1226 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-569)) (-5 *4 (-423 *2)) (-4 *2 (-955 *7 *5 *6)) - (-5 *1 (-747 *5 *6 *7 *2)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-310))))) -(((*1 *1 *1) (-5 *1 (-1071)))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-170 (-226)))) (-5 *2 (-1043)) - (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-871 *4 *5 *6 *7)) - (-4 *4 (-1057)) (-14 *5 (-649 (-1185))) (-14 *6 (-649 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-4 *5 (-855)) (-4 *6 (-798)) - (-14 *8 (-649 *5)) (-5 *2 (-1280)) - (-5 *1 (-1287 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-955 *4 *6 *5)) - (-14 *9 (-649 *3)) (-14 *10 *3)))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1058)) + (-5 *1 (-859 *5 *2)) (-4 *2 (-858 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *2 (-1280)) - (-5 *1 (-473)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1057)) (-4 *1 (-988 *3)))) + (-12 (-5 *3 (-950 (-227))) (-5 *4 (-880)) (-5 *2 (-1281)) + (-5 *1 (-474)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-989 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-949 *3)))) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-950 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-777)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-650 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-949 *3)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-950 *3)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)) (-5 *3 (-226))))) -(((*1 *1) (-5 *1 (-1071)))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-552)))))) -(((*1 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) - (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) - (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310))))) + (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)) (-5 *3 (-227))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1261 *3 *4 *5)) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368)) + (-14 *4 (-1186)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1109)) (-5 *1 (-719 *3 *2 *4)) (-4 *3 (-856)) + (-14 *4 + (-1 (-112) (-2 (|:| -2155 *3) (|:| -3283 *2)) + (-2 (|:| -2155 *3) (|:| -3283 *2))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-368) (-148))) + (-5 *2 (-650 (-2 (|:| -3283 (-777)) (|:| -2172 *4) (|:| |num| *4)))) + (-5 *1 (-405 *3 *4)) (-4 *4 (-1252 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) - (-4 *5 (-855)) (-5 *2 (-958 *4)))) + (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) + (-4 *5 (-856)) (-5 *2 (-959 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-745 *4 *5)) (-4 *4 (-1057)) - (-4 *5 (-855)) (-5 *2 (-958 *4)))) + (-12 (-5 *3 (-777)) (-4 *1 (-746 *4 *5)) (-4 *4 (-1058)) + (-4 *5 (-856)) (-5 *2 (-959 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057)) - (-5 *2 (-958 *4)))) + (-12 (-5 *3 (-777)) (-4 *1 (-1267 *4)) (-4 *4 (-1058)) + (-5 *2 (-959 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-1266 *4)) (-4 *4 (-1057)) - (-5 *2 (-958 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-911 (-569))) (-5 *4 (-569)) (-5 *2 (-694 *4)) - (-5 *1 (-1036 *5)) (-4 *5 (-1057)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-694 (-569))) (-5 *1 (-1036 *4)) - (-4 *4 (-1057)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-911 (-569)))) (-5 *4 (-569)) - (-5 *2 (-649 (-694 *4))) (-5 *1 (-1036 *5)) (-4 *5 (-1057)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-649 (-569)))) (-5 *2 (-649 (-694 (-569)))) - (-5 *1 (-1036 *4)) (-4 *4 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) - (-5 *2 (-1043)) (-5 *1 (-759))))) + (-12 (-5 *3 (-777)) (-4 *1 (-1267 *4)) (-4 *4 (-1058)) + (-5 *2 (-959 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-695 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-413 *1)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)) + (-4 *3 (-562)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-562))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1251 *2)) (-4 *2 (-1229)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1251 (-412 *4)))))) + (-12 (-5 *2 (-1182 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1102 *3)) (-4 *3 (-955 *7 *6 *4)) (-4 *6 (-798)) - (-4 *4 (-855)) (-4 *7 (-561)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) - (-5 *1 (-599 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-798)) (-4 *4 (-855)) (-4 *6 (-561)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-569)))) - (-5 *1 (-599 *5 *4 *6 *3)) (-4 *3 (-955 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1) (-5 *1 (-867))) + (-12 (-5 *5 (-1103 *3)) (-4 *3 (-956 *7 *6 *4)) (-4 *6 (-799)) + (-4 *4 (-856)) (-4 *7 (-562)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570)))) + (-5 *1 (-600 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-562)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-570)))) + (-5 *1 (-600 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1) (-5 *1 (-868))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1177 *4 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210))))) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1211))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1100 *2)) (-4 *2 (-13 (-435 *4) (-160) (-27) (-1210))) - (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1177 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)))) - (-5 *2 (-412 (-958 *5))) (-5 *1 (-1178 *5)) (-5 *3 (-958 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)))) - (-5 *2 (-3 (-412 (-958 *5)) (-319 *5))) (-5 *1 (-1178 *5)) - (-5 *3 (-412 (-958 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1100 (-958 *5))) (-5 *3 (-958 *5)) - (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-412 *3)) - (-5 *1 (-1178 *5)))) + (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-161) (-27) (-1211))) + (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1178 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)))) + (-5 *2 (-413 (-959 *5))) (-5 *1 (-1179 *5)) (-5 *3 (-959 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-4 *5 (-13 (-562) (-1047 (-570)))) + (-5 *2 (-3 (-413 (-959 *5)) (-320 *5))) (-5 *1 (-1179 *5)) + (-5 *3 (-413 (-959 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1101 (-959 *5))) (-5 *3 (-959 *5)) + (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 *3)) + (-5 *1 (-1179 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1101 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) + (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-3 *3 (-320 *5))) + (-5 *1 (-1179 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *3 *5 *6 *7)) + (-4 *3 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226)) + (-4 *7 (-1226)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1100 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) - (-4 *5 (-13 (-561) (-1046 (-569)))) (-5 *2 (-3 *3 (-319 *5))) - (-5 *1 (-1178 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-694 *5))) (-5 *4 (-569)) (-4 *5 (-367)) - (-4 *5 (-1057)) (-5 *2 (-112)) (-5 *1 (-1037 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) (-4 *4 (-1057)) - (-5 *2 (-112)) (-5 *1 (-1037 *4))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-592 *2)) (-4 *2 (-550))))) + (-12 (-5 *4 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *3 *5 *6)) + (-4 *3 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226))))) (((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-384)) (|:| |stabilityFactor| (-384)))) + (-5 *1 (-207))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-380 *4 *2)) + (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-368) (-854))) + (-5 *2 (-650 (-2 (|:| -1629 (-650 *3)) (|:| -3650 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1252 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-368) (-854))) + (-5 *2 (-650 (-2 (|:| -1629 (-650 *3)) (|:| -3650 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *5)) (-4 *5 (-367)) (-5 *2 (-649 *6)) - (-5 *1 (-537 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-121 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-319 *4)) (-4 *4 (-13 (-833) (-1057))) (-5 *2 (-1167)) - (-5 *1 (-831 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-833) (-1057))) - (-5 *2 (-1167)) (-5 *1 (-831 *5)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1182 *7)) (-4 *5 (-1058)) + (-4 *7 (-1058)) (-4 *2 (-1252 *5)) (-5 *1 (-507 *5 *2 *6 *7)) + (-4 *6 (-1252 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-827)) (-5 *4 (-319 *5)) (-4 *5 (-13 (-833) (-1057))) - (-5 *2 (-1280)) (-5 *1 (-831 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-827)) (-5 *4 (-319 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-833) (-1057))) (-5 *2 (-1280)) (-5 *1 (-831 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-833)) (-5 *2 (-1167)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-833)) (-5 *3 (-112)) (-5 *2 (-1167)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *2 (-1280)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-833)) (-5 *3 (-827)) (-5 *4 (-112)) (-5 *2 (-1280))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1206))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-649 *2) *2 *2 *2)) (-4 *2 (-1108)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1108)) (-5 *1 (-103 *2))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *6 (-226)) - (-5 *3 (-569)) (-5 *2 (-1043)) (-5 *1 (-756))))) -(((*1 *2 *1) - (-12 (-4 *1 (-700 *3)) (-4 *3 (-1108)) - (-5 *2 (-649 (-2 (|:| -2216 *3) (|:| -3560 (-776)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-52))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-1057)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1225)) - (-4 *5 (-377 *4)) (-4 *3 (-377 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058)) + (-4 *4 (-1252 *5)) (-5 *2 (-1182 *7)) (-5 *1 (-507 *5 *4 *6 *7)) + (-4 *6 (-1252 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-609 *2 *3)) (-4 *3 (-1225)) (-4 *2 (-1108)) - (-4 *2 (-855))))) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-562))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1186))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1108)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-1185)) - (-4 *2 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *5 *2))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-649 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) - (-5 *1 (-454 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) - ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) - (-4 *7 (-1251 (-412 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -4292 *3))) - (-5 *1 (-567 *5 *6 *7 *3)) (-4 *3 (-346 *5 *6 *7)))) + (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *2) + (-12 (-5 *2 (-928)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-52))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-896 *4 *3)) + (-4 *3 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-927))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058)) + (-5 *1 (-696 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-1186)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-306)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1186)) (-5 *2 (-112)) (-5 *1 (-618 *4)) + (-4 *4 (-1109)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-618 *4)) (-4 *4 (-1109)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-841 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) - (-5 *2 - (-2 (|:| |answer| (-412 *6)) (|:| -4292 (-412 *6)) - (|:| |specpart| (-412 *6)) (|:| |polypart| *6))) - (-5 *1 (-568 *5 *6)) (-5 *3 (-412 *6))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) - (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2)) - (-4 *4 (-692 *2 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) - (-4 *2 (-1251 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3))))) + (-12 (-4 *5 (-1109)) (-5 *2 (-112)) (-5 *1 (-894 *5 *3 *4)) + (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6)) (-4 *6 (-893 *5)) (-4 *5 (-1109)) + (-5 *2 (-112)) (-5 *1 (-894 *5 *6 *4)) (-4 *4 (-620 (-899 *5)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109))))) (((*1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) + (-12 (-4 *4 (-368)) (-5 *2 (-777)) (-5 *1 (-332 *3 *4)) + (-4 *3 (-333 *4)))) + ((*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-777))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1021)) (-5 *2 (-868))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569)))))) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-413 (-570)))) + (-5 *2 + (-650 + (-2 (|:| |outval| *4) (|:| |outmult| (-570)) + (|:| |outvect| (-650 (-695 *4)))))) + (-5 *1 (-785 *4)) (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1252 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1252 (-171 *2)))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-680 *2)) (-4 *2 (-1057)) (-4 *2 (-1108))))) + (-12 (-5 *1 (-681 *2)) (-4 *2 (-1058)) (-4 *2 (-1109))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1243 *3)) (-4 *3 (-1226))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206))))) -(((*1 *2 *3) - (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-367)) - (-5 *1 (-526 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) - (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) - ((*1 *2 *3) - (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) - (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) - (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-1197 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-13 (-310) (-147))) - (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) - (|:| |wcond| (-649 (-958 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))))) - (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5))))) + (-12 (-5 *2 (-950 *4)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-309))))) (((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-649 (-1185))) (-4 *2 (-173)) - (-4 *4 (-239 (-2428 *5) (-776))) + (-12 (-5 *2 (-928)) (-4 *1 (-240 *3 *4)) (-4 *4 (-1058)) + (-4 *4 (-1226)))) + ((*1 *1 *2) + (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) + (-4 *5 (-240 (-2431 *3) (-777))) (-14 *6 - (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *4)) - (-2 (|:| -2150 *3) (|:| -1993 *4)))) - (-5 *1 (-466 *5 *2 *3 *4 *6 *7)) (-4 *3 (-855)) - (-4 *7 (-955 *2 *4 (-869 *5)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) + (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *5)) + (-2 (|:| -2155 *2) (|:| -3283 *5)))) + (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) (-4 *2 (-856)) + (-4 *7 (-956 *4 *5 (-870 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222))))) +(((*1 *2) + (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-776)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-412 *6)) - (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367)) - (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5))) - (-5 *1 (-873 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-776)) (-5 *4 (-1267 *5 *6 *7)) (-4 *5 (-367)) - (-14 *6 (-1185)) (-14 *7 *5) (-5 *2 (-412 (-1248 *6 *5))) - (-5 *1 (-873 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-569)) (-4 *7 (-955 *4 *5 *6)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-454 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-927)) (-5 *1 (-1040 *2)) - (-4 *2 (-13 (-1108) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) - (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) - (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-492)))) - ((*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-777)))) ((*1 *2 *1) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569)))) - ((*1 *1 *1) (-4 *1 (-1068)))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1167)) (-4 *1 (-368 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-246 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) - ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-5 *2 (-569)) - (-5 *1 (-448 *5 *3 *6)) (-4 *3 (-1251 *5)) - (-4 *6 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) - (-4 *3 (-1251 *4)) - (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))))) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562))))) +(((*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) + ((*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1286))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-512)) (-5 *2 (-697 (-109))) (-5 *1 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-247 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1252 *9)) (-4 *7 (-799)) (-4 *8 (-856)) (-4 *9 (-311)) + (-4 *10 (-956 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-650 (-1182 *10))) + (|:| |dterm| + (-650 (-650 (-2 (|:| -2772 (-777)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-650 *6)) (|:| |nlead| (-650 *10)))) + (-5 *1 (-784 *6 *7 *8 *9 *10)) (-5 *3 (-1182 *10)) (-5 *4 (-650 *6)) + (-5 *5 (-650 *10))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1109)) (-4 *6 (-1109)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *5 (-1109))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-776)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-777)))) ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-776))))) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-777))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *1 (-629 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *2 (-1117 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-855)) (-5 *2 (-649 (-669 *4 *5))) - (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-13 (-173) (-722 (-412 (-569))))) - (-14 *6 (-927))))) -(((*1 *1) (-5 *1 (-294)))) -(((*1 *1 *1) (-5 *1 (-1071)))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-776)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) - (-4 *2 (-1251 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-333))))) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *1 (-630 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *2 (-1118 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-412 (-958 (-569))))) - (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) - (-4 *4 (-13 (-853) (-367))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-297 (-412 (-958 (-569)))))) - (-5 *2 (-649 (-649 (-297 (-958 *4))))) (-5 *1 (-384 *4)) - (-4 *4 (-13 (-853) (-367))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 (-297 (-958 *4)))) - (-5 *1 (-384 *4)) (-4 *4 (-13 (-853) (-367))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-412 (-958 (-569))))) - (-5 *2 (-649 (-297 (-958 *4)))) (-5 *1 (-384 *4)) - (-4 *4 (-13 (-853) (-367))))) + (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-650 *5) *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *6 (-1252 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1185)) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-4 *4 (-13 (-29 *6) (-1210) (-965))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2403 (-649 *4)))) - (-5 *1 (-657 *6 *4 *3)) (-4 *3 (-661 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-649 *2)) - (-4 *2 (-13 (-29 *6) (-1210) (-965))) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *1 (-657 *6 *2 *3)) (-4 *3 (-661 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1275 *5) "failed")) - (|:| -2403 (-649 (-1275 *5))))) - (-5 *1 (-672 *5)) (-5 *4 (-1275 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1275 *5) "failed")) - (|:| -2403 (-649 (-1275 *5))))) - (-5 *1 (-672 *5)) (-5 *4 (-1275 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *5)) (-4 *5 (-367)) - (-5 *2 - (-649 - (-2 (|:| |particular| (-3 (-1275 *5) "failed")) - (|:| -2403 (-649 (-1275 *5)))))) - (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-649 *5))) (-4 *5 (-367)) - (-5 *2 - (-649 - (-2 (|:| |particular| (-3 (-1275 *5) "failed")) - (|:| -2403 (-649 (-1275 *5)))))) - (-5 *1 (-672 *5)) (-5 *4 (-649 (-1275 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) - (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) - (-4 *7 (-13 (-377 *5) (-10 -7 (-6 -4448)))) - (-5 *2 - (-649 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2403 (-649 *7))))) - (-5 *1 (-673 *5 *6 *7 *3)) (-5 *4 (-649 *7)) - (-4 *3 (-692 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) (-4 *5 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-775 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-775 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *1 (-777 *5 *2)) (-4 *2 (-13 (-29 *5) (-1210) (-965))))) + (-12 (-5 *3 (-659 (-413 *7))) (-5 *4 (-1 (-650 *6) *7)) + (-5 *5 (-1 (-424 *7) *7)) + (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *7 (-1252 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-650 *5) *6)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *6 (-1252 *5)) (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-694 *7)) (-5 *5 (-1185)) - (-4 *7 (-13 (-29 *6) (-1210) (-965))) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) - (-5 *1 (-807 *6 *7)) (-5 *4 (-1275 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-694 *6)) (-5 *4 (-1185)) - (-4 *6 (-13 (-29 *5) (-1210) (-965))) - (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-649 (-1275 *6))) (-5 *1 (-807 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-649 (-297 *7))) (-5 *4 (-649 (-114))) - (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) - (-5 *1 (-807 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-649 *7)) (-5 *4 (-649 (-114))) - (-5 *5 (-1185)) (-4 *7 (-13 (-29 *6) (-1210) (-965))) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1275 *7)) (|:| -2403 (-649 (-1275 *7))))) - (-5 *1 (-807 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-297 *7)) (-5 *4 (-114)) (-5 *5 (-1185)) - (-4 *7 (-13 (-29 *6) (-1210) (-965))) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -2403 (-649 *7))) *7 "failed")) - (-5 *1 (-807 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1185)) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -2403 (-649 *3))) *3 "failed")) - (-5 *1 (-807 *6 *3)) (-4 *3 (-13 (-29 *6) (-1210) (-965))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-297 *2)) (-5 *4 (-114)) (-5 *5 (-649 *2)) - (-4 *2 (-13 (-29 *6) (-1210) (-965))) (-5 *1 (-807 *6 *2)) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-297 *2)) (-5 *5 (-649 *2)) - (-4 *2 (-13 (-29 *6) (-1210) (-965))) - (-4 *6 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *1 (-807 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-813)) (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-813)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) - (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) - (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) - (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1275 (-319 (-383)))) (-5 *4 (-383)) (-5 *5 (-649 *4)) - (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) - (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1275 (-319 *4))) (-5 *5 (-649 (-383))) - (-5 *6 (-319 (-383))) (-5 *4 (-383)) (-5 *2 (-1043)) (-5 *1 (-810)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -2403 (-649 *6))) "failed") - *7 *6)) - (-4 *6 (-367)) (-4 *7 (-661 *6)) - (-5 *2 (-2 (|:| |particular| (-1275 *6)) (|:| -2403 (-694 *6)))) - (-5 *1 (-818 *6 *7)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-1043)) (-5 *1 (-903)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-904)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-903)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167)) - (-5 *8 (-226)) (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) - (-5 *2 (-1043)) (-5 *1 (-903)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-776)) (-5 *6 (-649 (-649 (-319 *3)))) (-5 *7 (-1167)) - (-5 *5 (-649 (-319 (-383)))) (-5 *3 (-383)) (-5 *2 (-1043)) - (-5 *1 (-903)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 (-383))) - (-5 *1 (-1031)) (-5 *4 (-383)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 (-383))) (-5 *1 (-1031)) - (-5 *4 (-383)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4)) - (-5 *3 (-319 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1139 *4)) - (-5 *3 (-297 (-319 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5)) - (-5 *3 (-297 (-319 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-649 (-297 (-319 *5)))) (-5 *1 (-1139 *5)) - (-5 *3 (-319 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-1185))) - (-4 *5 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-649 (-649 (-297 (-319 *5))))) (-5 *1 (-1139 *5)) - (-5 *3 (-649 (-297 (-319 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) - (-4 *5 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) - (-5 *1 (-1194 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-1185))) (-4 *5 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *5)))))) (-5 *1 (-1194 *5)) - (-5 *3 (-649 (-297 (-412 (-958 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-561)) - (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) (-5 *1 (-1194 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 (-649 (-297 (-412 (-958 *4)))))) - (-5 *1 (-1194 *4)) (-5 *3 (-649 (-297 (-412 (-958 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-4 *5 (-561)) - (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5)) - (-5 *3 (-412 (-958 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-4 *5 (-561)) - (-5 *2 (-649 (-297 (-412 (-958 *5))))) (-5 *1 (-1194 *5)) - (-5 *3 (-297 (-412 (-958 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) - (-5 *1 (-1194 *4)) (-5 *3 (-412 (-958 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 (-297 (-412 (-958 *4))))) - (-5 *1 (-1194 *4)) (-5 *3 (-297 (-412 (-958 *4))))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) - (-5 *3 (-649 (-569)))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-694 *11)) (-5 *4 (-649 (-412 (-958 *8)))) - (-5 *5 (-776)) (-5 *6 (-1167)) (-4 *8 (-13 (-310) (-147))) - (-4 *11 (-955 *8 *10 *9)) (-4 *9 (-13 (-855) (-619 (-1185)))) - (-4 *10 (-798)) - (-5 *2 - (-2 - (|:| |rgl| - (-649 - (-2 (|:| |eqzro| (-649 *11)) (|:| |neqzro| (-649 *11)) - (|:| |wcond| (-649 (-958 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *8)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *8)))))))))) - (|:| |rgsz| (-569)))) - (-5 *1 (-930 *8 *9 *10 *11)) (-5 *7 (-569))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-193))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1248 *4 *5)) (-5 *3 (-649 *5)) (-14 *4 (-1185)) - (-4 *5 (-367)) (-5 *1 (-929 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-367)) (-5 *2 (-1181 *5)) - (-5 *1 (-929 *4 *5)) (-14 *4 (-1185)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-776)) (-4 *6 (-367)) - (-5 *2 (-412 (-958 *6))) (-5 *1 (-1058 *5 *6)) (-14 *5 (-1185))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))) -(((*1 *1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-649 *7) *7 (-1181 *7))) (-5 *5 (-1 (-423 *7) *7)) - (-4 *7 (-1251 *6)) (-4 *6 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-5 *2 (-649 (-2 (|:| |frac| (-412 *7)) (|:| -4312 *3)))) - (-5 *1 (-814 *6 *7 *3 *8)) (-4 *3 (-661 *7)) - (-4 *8 (-661 (-412 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) + (-12 (-5 *3 (-660 *7 (-413 *7))) (-5 *4 (-1 (-650 *6) *7)) + (-5 *5 (-1 (-424 *7) *7)) + (-4 *6 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *7 (-1252 *6)) (-5 *2 (-650 (-413 *7))) (-5 *1 (-818 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-659 (-413 *5))) (-4 *5 (-1252 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-1 (-424 *6) *6)) + (-4 *6 (-1252 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *5 (-413 *5))) (-4 *5 (-1252 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-650 (-413 *5))) (-5 *1 (-818 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-1 (-424 *6) *6)) + (-4 *6 (-1252 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-650 (-413 *6))) (-5 *1 (-818 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-1182 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *4 (-618 $)) $)) + (-15 -4413 ((-1134 *4 (-618 $)) $)) + (-15 -3798 ($ (-1134 *4 (-618 $)))))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-973 *2)) (-4 *2 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-928)) (-4 *5 (-562)) (-5 *2 (-695 *5)) + (-5 *1 (-963 *5 *3)) (-4 *3 (-662 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-1168)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-753))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) (-5 *2 - (-649 (-2 (|:| |frac| (-412 *6)) (|:| -4312 (-659 *6 (-412 *6)))))) - (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6)))))) + (-2 (|:| |ir| (-592 (-413 *6))) (|:| |specpart| (-413 *6)) + (|:| |polypart| *6))) + (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3549 (-650 (-1186))) (|:| -1918 (-650 (-1186))))) + (-5 *1 (-1228))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1189)))) + ((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-366 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-391 *3)) (-4 *3 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-655 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-171 (-227)))) + (-5 *2 (-1044)) (-5 *1 (-760))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1185)) - (|:| |arrayIndex| (-649 (-958 (-569)))) + (-2 (|:| |var| (-1186)) + (|:| |arrayIndex| (-650 (-959 (-570)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1185)) (|:| |rand| (-867)) + (-2 (|:| |var| (-1186)) (|:| |rand| (-868)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1184)) (|:| |thenClause| (-333)) - (|:| |elseClause| (-333)))) + (-2 (|:| |switch| (-1185)) (|:| |thenClause| (-334)) + (|:| |elseClause| (-334)))) (|:| |returnBranch| - (-2 (|:| -3162 (-112)) - (|:| -2188 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2624 (-867)))))) - (|:| |blockBranch| (-649 (-333))) - (|:| |commentBranch| (-649 (-1167))) (|:| |callBranch| (-1167)) + (-2 (|:| -4303 (-112)) + (|:| -2190 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2627 (-868)))))) + (|:| |blockBranch| (-650 (-334))) + (|:| |commentBranch| (-650 (-1168))) (|:| |callBranch| (-1168)) (|:| |forBranch| - (-2 (|:| -3743 (-1100 (-958 (-569)))) - (|:| |span| (-958 (-569))) (|:| -3586 (-333)))) - (|:| |labelBranch| (-1128)) - (|:| |loopBranch| (-2 (|:| |switch| (-1184)) (|:| -3586 (-333)))) + (-2 (|:| -2762 (-1101 (-959 (-570)))) + (|:| |span| (-959 (-570))) (|:| -3587 (-334)))) + (|:| |labelBranch| (-1129)) + (|:| |loopBranch| (-2 (|:| |switch| (-1185)) (|:| -3587 (-334)))) (|:| |commonBranch| - (-2 (|:| -3573 (-1185)) (|:| |contents| (-649 (-1185))))) - (|:| |printBranch| (-649 (-867))))) - (-5 *1 (-333))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) - (-4 *4 (-1225)) (-5 *2 (-112))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-367)) (-4 *7 (-1251 *6)) - (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) - (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-112)) (-5 *1 (-278 *4 *3)) - (-4 *3 (-13 (-435 *4) (-1010)))))) + (-2 (|:| -3574 (-1186)) (|:| |contents| (-650 (-1186))))) + (|:| |printBranch| (-650 (-868))))) + (-5 *1 (-334))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1166 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1058)) + (-5 *3 (-413 (-570))) (-5 *1 (-1170 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *2) (-12 (-5 *2 (-650 (-320 (-227)))) (-5 *1 (-270))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-455 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-959 *6)) (-5 *4 (-1186)) + (-5 *5 (-849 *7)) + (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-4 *7 (-13 (-1211) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1182 *6)) (-5 *4 (-849 *6)) + (-4 *6 (-13 (-1211) (-29 *5))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-650 (-1 *6 (-650 *6)))) + (-4 *5 (-38 (-413 (-570)))) (-4 *6 (-1267 *5)) (-5 *2 (-650 *6)) + (-5 *1 (-1269 *5 *6))))) +(((*1 *2) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-965 (-777))) (-5 *1 (-337))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) + (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) + (-5 *1 (-634 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-248 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) - (-5 *2 (-486 *4 *5)) (-5 *1 (-950 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))) + (-12 (-4 *4 (-354)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1252 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) - (-5 *2 (-418 *4 (-412 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1275 *6)) (-4 *6 (-13 (-414 *4 *5) (-1046 *4))) - (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) (-4 *3 (-310)) - (-5 *1 (-418 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6))))) + (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-806)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1044))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-365 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-390 *3)) (-4 *3 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-654 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27)) - (-5 *2 (-649 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185))) - (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-541))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) + (-12 (-4 *4 (-562)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) + ((*1 *1 *1) (-5 *1 (-868)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-542))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) - (-4 *2 - (-13 (-407) - (-10 -7 (-15 -3796 (*2 *4)) (-15 -2731 ((-927) *2)) - (-15 -2403 ((-1275 *2) (-927))) (-15 -1679 (*2 *2))))) - (-5 *1 (-360 *2 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-826)) (-5 *4 (-52)) (-5 *2 (-1280)) (-5 *1 (-836))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *3 *5)) - (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) - (-4 *5 (-661 (-412 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1251 *4)) (-5 *1 (-812 *4 *2 *5 *3)) - (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-661 *2)) - (-4 *3 (-661 (-412 *2)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-797)) (-4 *3 (-173))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-561)))) - ((*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) + (-12 (-4 *4 (-1058)) (-5 *2 (-112)) (-5 *1 (-450 *4 *3)) + (-4 *3 (-1252 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 *5)) (-4 *5 (-644 *4)) (-4 *4 (-561)) - (-5 *2 (-112)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-649 (-170 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1251 (-170 (-569)))) (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 (-413 (-959 (-570))))) (-5 *4 (-650 (-1186))) + (-5 *2 (-650 (-650 *5))) (-5 *1 (-385 *5)) + (-4 *5 (-13 (-854) (-368))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-649 (-170 *4))) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1251 (-412 (-569)))) (-5 *1 (-919 *3 *2)) - (-4 *2 (-1251 (-412 *3)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-176))) (-5 *1 (-1093))))) -(((*1 *2 *1) - (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-129)))))) + (-12 (-5 *3 (-413 (-959 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-385 *4)) + (-4 *4 (-13 (-854) (-368)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3) + (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-311)) + (-5 *2 (-413 (-424 (-959 *4)))) (-5 *1 (-1051 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-368)) (-5 *1 (-665 *4 *2)) + (-4 *2 (-662 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) (-4 *5 (-367)) - (-4 *5 (-561)) (-5 *2 (-1275 *5)) (-5 *1 (-643 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1275 *4)) (-4 *4 (-644 *5)) - (-1749 (-4 *5 (-367))) (-4 *5 (-561)) (-5 *2 (-1275 (-412 *5))) - (-5 *1 (-643 *5 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) - (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-175 *3)) (-4 *3 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-745 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-855)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *1 (-988 *3)) (-4 *3 (-1057)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *1) (-5 *1 (-1093)))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) (-5 *2 (-112)) - (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34)))))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) + (-5 *1 (-762))))) +(((*1 *1 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193)))) + (-12 (-5 *3 (-1276 (-320 (-227)))) + (-5 *2 + (-2 (|:| |additions| (-570)) (|:| |multiplications| (-570)) + (|:| |exponentiations| (-570)) (|:| |functionCalls| (-570)))) + (-5 *1 (-309))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) + (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1869 *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-443))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-533)) (-5 *3 (-129)) (-5 *2 (-777))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) + (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303)))) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5)) + (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-311))))) +(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-158))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-757))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *7)) (-4 *7 (-856)) + (-4 *8 (-956 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1276 (-413 *8)) "failed")) + (|:| -2077 (-650 (-1276 (-413 *8)))))) + (-5 *1 (-675 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-341 *5 *6 *7 *8)) (-4 *5 (-436 *4)) (-4 *6 (-1252 *5)) + (-4 *7 (-1252 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) + (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112)) + (-5 *1 (-918 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-341 (-413 (-570)) *4 *5 *6)) + (-4 *4 (-1252 (-413 (-570)))) (-4 *5 (-1252 (-413 *4))) + (-4 *6 (-347 (-413 (-570)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-919 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-442))))) +(((*1 *2 *1) (-12 (-5 *2 (-603)) (-5 *1 (-284))))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-372)) - (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-602)) (-5 *1 (-283))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-485))))) + (-12 (-5 *3 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1142 (-227))) (-5 *1 (-266))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-649 (-383))) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-473)))) + (-12 (-5 *2 (-650 (-384))) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-474)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) + (-12 (-5 *3 (-928)) (-5 *4 (-880)) (-5 *2 (-1281)) (-5 *1 (-1277)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))) -(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185))))) -(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))) -(((*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3))))) + (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-985 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *5 (-1074 *3 *4 *2))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1109)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *4 *5 *6))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798))))) (((*1 *2 *1) - (-12 (-4 *1 (-255 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *5 (-798)) (-4 *2 (-268 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210))))) - ((*1 *1 *1 *1) (-4 *1 (-798)))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1225)))) + (-12 (-4 *1 (-256 *3 *4 *2 *5)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *5 (-799)) (-4 *2 (-269 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1219 *5 *6 *7 *3)) + (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1226)))) ((*1 *1 *2) - (-12 (-5 *2 (-958 (-383))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-959 (-384))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-412 (-958 (-383)))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-413 (-959 (-384)))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-383))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-383))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-320 (-384))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-384))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-958 (-569))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-959 (-570))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-412 (-958 (-569)))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-413 (-959 (-570)))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 (-569))) (-5 *1 (-343 *3 *4 *5)) - (-4 *5 (-1046 (-569))) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) + (-12 (-5 *2 (-320 (-570))) (-5 *1 (-344 *3 *4 *5)) + (-4 *5 (-1047 (-570))) (-14 *3 (-650 (-1186))) + (-14 *4 (-650 (-1186))) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 *2)) - (-14 *4 (-649 *2)) (-4 *5 (-392)))) + (-12 (-5 *2 (-1186)) (-5 *1 (-344 *3 *4 *5)) (-14 *3 (-650 *2)) + (-14 *4 (-650 *2)) (-4 *5 (-393)))) ((*1 *1 *2) - (-12 (-5 *2 (-319 *5)) (-4 *5 (-392)) (-5 *1 (-343 *3 *4 *5)) - (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-1185))))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-569))))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-412 (-958 (-383))))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-569)))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-958 (-383)))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-694 (-319 (-383)))) (-4 *1 (-388)))) - ((*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-569)))) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-412 (-958 (-383)))) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-958 (-569))) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-958 (-383))) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-4 *1 (-401)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-569))))) (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-412 (-958 (-383))))) (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-569)))) (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-958 (-383)))) (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-569)))) (-4 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 (-319 (-383)))) (-4 *1 (-446)))) + (-12 (-5 *2 (-320 *5)) (-4 *5 (-393)) (-5 *1 (-344 *3 *4 *5)) + (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-1186))))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-570))))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-413 (-959 (-384))))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-570)))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-959 (-384)))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-695 (-320 (-384)))) (-4 *1 (-389)))) + ((*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-570)))) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-413 (-959 (-384)))) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-959 (-570))) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-959 (-384))) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-4 *1 (-402)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-413 (-959 (-570))))) (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-413 (-959 (-384))))) (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-959 (-570)))) (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-959 (-384)))) (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-320 (-570)))) (-4 *1 (-447)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 (-320 (-384)))) (-4 *1 (-447)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (|:| |mdnia| - (-2 (|:| |fn| (-319 (-226))) - (|:| -3743 (-649 (-1102 (-848 (-226))))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))))) - (-5 *1 (-774)))) + (-2 (|:| |fn| (-320 (-227))) + (|:| -2762 (-650 (-1103 (-849 (-227))))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) + (-5 *1 (-775)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *1 (-813)))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *1 (-814)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) - (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) + (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) (|:| |lsa| - (-2 (|:| |lfn| (-649 (-319 (-226)))) - (|:| -2307 (-649 (-226))))))) - (-5 *1 (-846)))) + (-2 (|:| |lfn| (-650 (-320 (-227)))) + (|:| -2310 (-650 (-227))))))) + (-5 *1 (-847)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-649 (-319 (-226)))) + (-2 (|:| |pde| (-650 (-320 (-227)))) (|:| |constraints| - (-649 - (-2 (|:| |start| (-226)) (|:| |finish| (-226)) - (|:| |grid| (-776)) (|:| |boundaryType| (-569)) - (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) - (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) - (|:| |tol| (-226)))) - (-5 *1 (-904)))) + (-650 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-777)) (|:| |boundaryType| (-570)) + (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) + (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) + (|:| |tol| (-227)))) + (-5 *1 (-905)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *1 (-984 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-1225)))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *1 (-985 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1226)))) ((*1 *1 *2) - (-2776 - (-12 (-5 *2 (-958 *3)) - (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) - (-1749 (-4 *3 (-38 (-569)))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855))) - (-12 (-5 *2 (-958 *3)) - (-12 (-1749 (-4 *3 (-550))) (-1749 (-4 *3 (-38 (-412 (-569))))) - (-4 *3 (-38 (-569))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855))) - (-12 (-5 *2 (-958 *3)) - (-12 (-1749 (-4 *3 (-1000 (-569)))) (-4 *3 (-38 (-412 (-569)))) - (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855))))) + (-2779 + (-12 (-5 *2 (-959 *3)) + (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) + (-1748 (-4 *3 (-38 (-570)))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856))) + (-12 (-5 *2 (-959 *3)) + (-12 (-1748 (-4 *3 (-551))) (-1748 (-4 *3 (-38 (-413 (-570))))) + (-4 *3 (-38 (-570))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856))) + (-12 (-5 *2 (-959 *3)) + (-12 (-1748 (-4 *3 (-1001 (-570)))) (-4 *3 (-38 (-413 (-570)))) + (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856))))) ((*1 *1 *2) - (-2776 - (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) - (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) - (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) - (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) + (-2779 + (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) + (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) + (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) + (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) ((*1 *1 *2) - (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) - (-5 *2 (-649 (-677 *5))) (-5 *1 (-677 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1167)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-265))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) - (-4 *2 (-1251 *4))))) -(((*1 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1278))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) - (-5 *2 (-1043)) (-5 *1 (-759))))) + (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-1058)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)) + (-4 *3 (-174))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97))))) +(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) + ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-650 (-570))) (-5 *3 (-112)) (-5 *1 (-1119))))) (((*1 *2) - (-12 (-4 *3 (-1057)) (-5 *2 (-964 (-717 *3 *4))) (-5 *1 (-717 *3 *4)) - (-4 *4 (-1251 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2 *3) - (-12 (-4 *2 (-1251 *4)) (-5 *1 (-814 *4 *2 *3 *5)) - (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) - (-4 *5 (-661 (-412 *2)))))) -(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-1167))))) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1252 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) + (-5 *1 (-122 *3)) (-4 *3 (-856)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 *4)) (-4 *4 (-13 (-29 *3) (-1211))) + (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-589 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-592 (-413 (-959 *3)))) + (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *1 (-595 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-368)) + (-5 *2 (-2 (|:| -3366 *3) (|:| |special| *3))) (-5 *1 (-733 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1276 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) + (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) + (-5 *3 (-650 (-695 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1276 (-1276 *5))) (-4 *5 (-368)) (-4 *5 (-1058)) + (-5 *2 (-650 (-650 (-695 *5)))) (-5 *1 (-1038 *5)) + (-5 *3 (-650 (-695 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-650 *1)) (-4 *1 (-1153)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-650 *1)) (-4 *1 (-1153))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-927)) (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-367)))) + (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1252 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-927)) (-4 *4 (-353)) - (-5 *1 (-533 *4)))) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-928)) (-4 *4 (-354)) + (-5 *1 (-534 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) - (-4 *5 (-239 *3 *2)) (-4 *2 (-1057))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-815 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-658 (-412 *6))) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5)))) - (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-412 *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-815 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6 (-412 *6))) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-2 (|:| -2403 (-649 (-412 *6))) (|:| -1863 (-694 *5)))) - (-5 *1 (-815 *5 *6)) (-5 *4 (-649 (-412 *6)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399))))) -(((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-336))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-879)) - (-5 *5 (-927)) (-5 *6 (-649 (-265))) (-5 *2 (-1276)) - (-5 *1 (-1279)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *4 (-649 (-265))) - (-5 *2 (-1276)) (-5 *1 (-1279))))) -(((*1 *1 *2) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *2 (-649 (-170 *4))) - (-5 *1 (-769 *4)) (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-855)) (-5 *1 (-1196 *3))))) -(((*1 *1) (-5 *1 (-473)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) - (-4 *3 (-166 *6)) (-4 (-958 *6) (-892 *5)) - (-4 *6 (-13 (-892 *5) (-173))) (-5 *1 (-179 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-895 *4 *1)) (-5 *3 (-898 *4)) (-4 *1 (-892 *4)) - (-4 *4 (-1108)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *6)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) - (-4 *6 (-13 (-1108) (-1046 *3))) (-4 *3 (-892 *5)) - (-5 *1 (-937 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) - (-4 *3 (-13 (-435 *6) (-619 *4) (-892 *5) (-1046 (-617 $)))) - (-5 *4 (-898 *5)) (-4 *6 (-13 (-561) (-892 *5))) - (-5 *1 (-938 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 (-569) *3)) (-5 *4 (-898 (-569))) (-4 *3 (-550)) - (-5 *1 (-939 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *6)) (-5 *3 (-617 *6)) (-4 *5 (-1108)) - (-4 *6 (-13 (-1108) (-1046 (-617 $)) (-619 *4) (-892 *5))) - (-5 *4 (-898 *5)) (-5 *1 (-940 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-891 *5 *6 *3)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) - (-4 *6 (-892 *5)) (-4 *3 (-671 *6)) (-5 *1 (-941 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-895 *6 *3) *8 (-898 *6) (-895 *6 *3))) - (-4 *8 (-855)) (-5 *2 (-895 *6 *3)) (-5 *4 (-898 *6)) - (-4 *6 (-1108)) (-4 *3 (-13 (-955 *9 *7 *8) (-619 *4))) - (-4 *7 (-798)) (-4 *9 (-13 (-1057) (-892 *6))) - (-5 *1 (-942 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) - (-4 *3 (-13 (-955 *8 *6 *7) (-619 *4))) (-5 *4 (-898 *5)) - (-4 *7 (-892 *5)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *8 (-13 (-1057) (-892 *5))) (-5 *1 (-942 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 *3)) (-4 *5 (-1108)) (-4 *3 (-1000 *6)) - (-4 *6 (-13 (-561) (-892 *5) (-619 *4))) (-5 *4 (-898 *5)) - (-5 *1 (-945 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-895 *5 (-1185))) (-5 *3 (-1185)) (-5 *4 (-898 *5)) - (-4 *5 (-1108)) (-5 *1 (-946 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-649 (-898 *7))) (-5 *5 (-1 *9 (-649 *9))) - (-5 *6 (-1 (-895 *7 *9) *9 (-898 *7) (-895 *7 *9))) (-4 *7 (-1108)) - (-4 *9 (-13 (-1057) (-619 (-898 *7)) (-1046 *8))) - (-5 *2 (-895 *7 *9)) (-5 *3 (-649 *9)) (-4 *8 (-1057)) - (-5 *1 (-947 *7 *8 *9))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-927)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-265))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *4 *5 *6)) - (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) - (-4 *2 (-13 (-855) (-21)))))) + (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) + (-4 *5 (-240 *3 *2)) (-4 *2 (-1058))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-650 (-1186))) (|:| |pred| (-52)))) + (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1252 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-717 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) +(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-561))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-569)) (-5 *2 (-649 (-2 (|:| -3800 *3) (|:| -4339 *4)))) - (-5 *1 (-701 *3)) (-4 *3 (-1251 *4))))) + (-12 (-4 *4 (-354)) (-4 *5 (-333 *4)) (-4 *6 (-1252 *5)) + (-5 *2 (-650 *3)) (-5 *1 (-783 *4 *5 *6 *3 *7)) (-4 *3 (-1252 *6)) + (-14 *7 (-928))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-650 (-618 *2))) (-5 *4 (-650 (-1186))) + (-4 *2 (-13 (-436 (-171 *5)) (-1011) (-1211))) (-4 *5 (-562)) + (-5 *1 (-606 *5 *6 *2)) (-4 *6 (-13 (-436 *5) (-1011) (-1211)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1261 *3 *4 *5)) (-4 *3 (-368)) (-14 *4 (-1186)) + (-14 *5 *3) (-5 *1 (-323 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-856)) (-5 *2 (-650 (-670 *4 *5))) + (-5 *1 (-633 *4 *5 *6)) (-4 *5 (-13 (-174) (-723 (-413 (-570))))) + (-14 *6 (-928))))) +(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-511)) (-5 *2 (-696 (-779))) (-5 *1 (-114)))) + (-12 (-5 *3 (-512)) (-5 *2 (-697 (-780))) (-5 *1 (-115)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1167)) (-5 *2 (-779)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1112)) (-5 *1 (-971))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) + (|partial| -12 (-5 *3 (-1168)) (-5 *2 (-780)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-972))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-649 (-297 *4))) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927))))) -(((*1 *2) - (-12 - (-5 *2 - (-1275 (-649 (-2 (|:| -2188 (-916 *3)) (|:| -2150 (-1128)))))) - (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) (-14 *4 (-927)))) - ((*1 *2) - (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))) - (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) (-14 *4 (-3 (-1181 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128)))))) - (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) (-14 *4 (-927))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-649 (-617 *6))) (-5 *4 (-1185)) (-5 *2 (-617 *6)) - (-4 *6 (-435 *5)) (-4 *5 (-1108)) (-5 *1 (-578 *5 *6))))) + (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))) + (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *1 *1) (-4 *1 (-875 *2)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-776)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-777)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-658 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) - (-5 *5 (-1 (-423 *7) *7)) - (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-649 *5) *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *6 (-1251 *5)) (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-659 *7 (-412 *7))) (-5 *4 (-1 (-649 *6) *7)) - (-5 *5 (-1 (-423 *7) *7)) - (-4 *6 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *7 (-1251 *6)) (-5 *2 (-649 (-412 *7))) (-5 *1 (-817 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-658 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-658 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) - (-4 *6 (-1251 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 *5 (-412 *5))) (-4 *5 (-1251 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-649 (-412 *5))) (-5 *1 (-817 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-659 *6 (-412 *6))) (-5 *4 (-1 (-423 *6) *6)) - (-4 *6 (-1251 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-649 (-412 *6))) (-5 *1 (-817 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-5 *2 (-511)) (-5 *1 (-336))))) (((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4448)) (-4 *1 (-495 *4)) + (-4 *4 (-1226)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-868))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-848 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-377 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) (-4 *2 (-377 *4)) - (-5 *1 (-508 *4 *5 *2 *3)) (-4 *3 (-377 *5)))) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1276 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562)) + (-5 *2 (-1276 *4)) (-5 *1 (-644 *4 *5))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591))))) +(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-884 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-886 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *1 (-889 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-424 *3)) (-4 *3 (-551)) (-4 *3 (-562)))) + ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-803 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-551)) (-4 *3 (-1109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1006 *3)) (-4 *3 (-174)) (-4 *3 (-551)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561)) - (-5 *2 (-694 *4)) (-5 *1 (-698 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-4 *4 (-1000 *3)) (-5 *1 (-1244 *3 *4 *2)) - (-4 *2 (-1251 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *2 (-412 (-958 *4))) (-5 *1 (-930 *4 *5 *6 *3)) - (-4 *3 (-955 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) - (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *2 (-694 (-412 (-958 *4)))) - (-5 *1 (-930 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) - (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *2 (-649 (-412 (-958 *4)))) - (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))) -(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1057)) (-4 *2 (-692 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1251 *4)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1017 *3)) (-4 *3 (-1047 (-413 (-570))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-5 *2 (-649 (-1185))) (-5 *1 (-211)) - (-5 *3 (-1185)))) + (-12 (-5 *4 (-777)) (-5 *2 (-650 (-1186))) (-5 *1 (-212)) + (-5 *3 (-1186)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 (-226))) (-5 *4 (-776)) (-5 *2 (-649 (-1185))) - (-5 *1 (-269)))) + (-12 (-5 *3 (-320 (-227))) (-5 *4 (-777)) (-5 *2 (-650 (-1186))) + (-5 *1 (-270)))) ((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) (-4 *4 (-173)) - (-5 *2 (-649 *3)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) + (-5 *2 (-650 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-649 *3)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-824 *3)) (-4 *3 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-899 *3)) (-4 *3 (-855)))) + (-12 (-5 *2 (-650 *3)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-825 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-900 *3)) (-4 *3 (-856)))) ((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-649 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1057)) (-4 *1 (-1251 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1110 (-776))) (-5 *6 (-776)) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-650 *3))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) + (-4 *5 (-1252 *4)) + (-5 *2 (-2 (|:| -2134 (-413 *5)) (|:| |coeff| (-413 *5)))) + (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-368)) (-5 *2 (-650 *3)) (-5 *1 (-952 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1168)) (-5 *5 (-695 (-227))) (-5 *6 (-227)) + (-5 *7 (-695 (-570))) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |contp| (-569)) - (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) - (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))) -(((*1 *2 *1) (-12 (-4 *1 (-394)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *2 (-2 (|:| -3906 (-114)) (|:| |w| (-226)))) (-5 *1 (-205))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-617 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1210))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-591 *3)) (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) (-5 *6 (-1181 *3)) - (-4 *3 (-13 (-435 *7) (-27) (-1210))) - (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) - (-5 *6 (-412 (-1181 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1210))) - (-4 *7 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-565 *7 *3 *8)) (-4 *8 (-1108))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-383)) (-5 *1 (-1071))))) + (-2 (|:| -1869 (-788 *3)) (|:| |coef1| (-788 *3)) + (|:| |coef2| (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-2 (|:| -1869 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1252 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 (-959 *3))) (-4 *3 (-458)) (-5 *1 (-365 *3 *4)) + (-14 *4 (-650 (-1186))))) + ((*1 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-456 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-456 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-456 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) + (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-650 (-786 *3 (-870 *4)))) (-4 *3 (-458)) + (-14 *4 (-650 (-1186))) (-5 *1 (-634 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1182 *3)) (-4 *3 (-373)) (-4 *1 (-333 *3)) + (-4 *3 (-368))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) (((*1 *2 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-694 (-958 *4))) (-5 *1 (-1036 *4)) - (-4 *4 (-1057))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-529))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) - (-5 *2 (-1043)) (-5 *1 (-753))))) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-650 *1)) (-4 *1 (-1074 *3 *4 *5))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-569)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569)))) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-570)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-876 *4)) (-14 *4 *3) - (-5 *3 (-569)))) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-877 *4)) (-14 *4 *3) + (-5 *3 (-570)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-412 (-569))) (-5 *1 (-877 *4 *5)) - (-5 *3 (-569)) (-4 *5 (-874 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-412 (-569))))) + (-12 (-14 *4 *3) (-5 *2 (-413 (-570))) (-5 *1 (-878 *4 *5)) + (-5 *3 (-570)) (-4 *5 (-875 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1021)) (-5 *2 (-413 (-570))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1076 *2 *3)) (-4 *2 (-13 (-853) (-367))) - (-4 *3 (-1251 *2)))) + (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368))) + (-4 *3 (-1252 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3796 (*2 (-1185)))) - (-4 *2 (-1057))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754))))) -(((*1 *2 *1) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *3 (-798)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3798 (*2 (-1186)))) + (-4 *2 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1230)) + (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) + (-5 *2 (-2 (|:| |num| (-695 *5)) (|:| |den| *5)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-650 (-227))) (-5 *1 (-206))))) +(((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-695 (-413 (-959 (-570))))) + (-5 *2 + (-650 + (-2 (|:| |radval| (-320 (-570))) (|:| |radmult| (-570)) + (|:| |radvect| (-650 (-695 (-320 (-570)))))))) + (-5 *1 (-1040))))) +(((*1 *2 *3) + (-12 (-5 *3 (-487 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-1058)) + (-5 *2 (-959 *5)) (-5 *1 (-951 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) + ((*1 *1 *1 *1) (-4 *1 (-551))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-777))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1044)) (-5 *1 (-759))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-927)) (-4 *3 (-367)) - (-14 *4 (-1001 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) + (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) + (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-334))) (-5 *1 (-334))))) +(((*1 *2 *2) + (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) + (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9)) + (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6)) + (-4 *8 (-378 *7)) (-4 *9 (-378 *7)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *1) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *1 *1) (|partial| -4 *1 (-727))) - ((*1 *1 *1) (|partial| -4 *1 (-731))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1076 *3 *2)) (-4 *3 (-13 (-853) (-367))) - (-4 *2 (-1251 *3)))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)) (-4 *2 (-311)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) - ((*1 *1 *1 *1) (-4 *1 (-550))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-776))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-1073 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1115 *5 *6 *7 *8 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-687 *2)) (-4 *2 (-1108)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-649 *5) (-649 *5))) (-5 *4 (-569)) - (-5 *2 (-649 *5)) (-5 *1 (-687 *5)) (-4 *5 (-1108))))) -(((*1 *2 *1) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) - (-14 *3 (-649 (-1185)))))) -(((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-371 *3))))) -(((*1 *1) (-5 *1 (-187)))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) - (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-649 (-776))))) - ((*1 *2 *1) - (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 (-776)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) + (-4 *2 (-693 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1062 *2 *3 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *2 *4)) (-4 *4 (-311))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-934))))) +(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-650 (-870 *4))) + (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-477 *4 *5 *6)) + (-4 *6 (-458))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-1191))) (-5 *1 (-1191)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-512)) (-5 *3 (-650 (-1191))) (-5 *1 (-1191))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-650 (-959 *6))) (-5 *4 (-650 (-1186))) (-4 *6 (-458)) + (-5 *2 (-650 (-650 *7))) (-5 *1 (-544 *6 *7 *5)) (-4 *7 (-368)) + (-4 *5 (-13 (-368) (-854)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-487 *4 *5))) (-14 *4 (-650 (-1186))) + (-4 *5 (-458)) + (-5 *2 + (-2 (|:| |gblist| (-650 (-249 *4 *5))) + (|:| |gvlist| (-650 (-570))))) + (-5 *1 (-637 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-5 *2 (-2 (|:| -4135 (-650 *6)) (|:| -1718 (-650 *6))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-776)) (-5 *4 (-1275 *2)) (-4 *5 (-310)) - (-4 *6 (-1000 *5)) (-4 *2 (-13 (-414 *6 *7) (-1046 *6))) - (-5 *1 (-418 *5 *6 *7 *2)) (-4 *7 (-1251 *6))))) -(((*1 *1) (-5 *1 (-187)))) -(((*1 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225))))) -(((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5)) - (-4 *4 (-1108)) (-4 *5 (-1108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))) + (-12 (-5 *3 (-570)) (-5 *4 (-424 *2)) (-4 *2 (-956 *7 *5 *6)) + (-5 *1 (-748 *5 *6 *7 *2)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-311))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *6)))) + (-5 *4 (-1035 (-849 (-570)))) (-5 *5 (-1186)) (-5 *7 (-413 (-570))) + (-4 *6 (-1058)) (-5 *2 (-868)) (-5 *1 (-601 *6))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-570)) (-5 *1 (-384))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))) +(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279))))) +(((*1 *2 *3) + (-12 (-4 *4 (-458)) + (-5 *2 + (-650 + (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))) + (|:| |geneigvec| (-650 (-695 (-413 (-959 *4)))))))) + (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4))))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-562)) (-4 *2 (-1058)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *1)))) + (-4 *1 (-1080 *4 *5 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-565))))) +(((*1 *2 *1) (-12 (-5 *2 (-337)) (-5 *1 (-251))))) (((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2) (-12 (-4 *2 (-173)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + (-12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-1207)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1207))))) +(((*1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3) + (-12 (-5 *3 (-934)) + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) + (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-934)) (-5 *4 (-413 (-570))) + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) + (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) + (-5 *1 (-154)))) ((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *2 *4)) (-4 *4 (-1251 *2)) - (-4 *2 (-173)))) - ((*1 *2) - (-12 (-4 *4 (-1251 *2)) (-4 *2 (-173)) (-5 *1 (-413 *3 *2 *4)) - (-4 *3 (-414 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-414 *2 *3)) (-4 *3 (-1251 *2)) (-4 *2 (-173)))) - ((*1 *2) - (-12 (-4 *3 (-1251 *2)) (-5 *2 (-569)) (-5 *1 (-773 *3 *4)) - (-4 *4 (-414 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *3 (-173)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) + (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) + (-5 *1 (-154)) (-5 *3 (-650 (-950 (-227)))))) ((*1 *2 *3) - (-12 (-4 *2 (-561)) (-5 *1 (-977 *2 *3)) (-4 *3 (-1251 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-173))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1093))))) -(((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-367) (-853))) - (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *5)))) - (-5 *1 (-182 *5 *3)) (-4 *3 (-1251 (-170 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-367) (-853))) - (-5 *2 (-649 (-2 (|:| -4360 (-649 *3)) (|:| -3647 *4)))) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-310)) - (-5 *2 (-412 (-423 (-958 *4)))) (-5 *1 (-1050 *4))))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 (-227))))) + (|:| |xValues| (-1103 (-227))) (|:| |yValues| (-1103 (-227))))) + (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-1072))))) (((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) - (-5 *2 (-649 (-649 (-649 (-949 *3)))))))) -(((*1 *1) (-5 *1 (-187)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-569)) (-4 *6 (-367)) (-4 *6 (-372)) - (-4 *6 (-1057)) (-5 *2 (-649 (-649 (-694 *6)))) (-5 *1 (-1037 *6)) - (-5 *3 (-649 (-694 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-367)) (-4 *4 (-372)) (-4 *4 (-1057)) - (-5 *2 (-649 (-649 (-694 *4)))) (-5 *1 (-1037 *4)) - (-5 *3 (-649 (-694 *4))))) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-413 (-570))) + (-5 *1 (-439 *4 *3)) (-4 *3 (-436 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)) - (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) - (-5 *3 (-649 (-694 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057)) - (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) - (-5 *3 (-649 (-694 *5)))))) + (-12 (-5 *4 (-618 *3)) (-4 *3 (-436 *5)) + (-4 *5 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1182 (-413 (-570)))) + (-5 *1 (-439 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-436 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-1296 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-174))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-5 *1 (-997 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-650 *7)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-5 *1 (-1116 *3 *4 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384)))) + ((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-384))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-384)))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-661 *3)) (-4 *3 (-1057)) (-4 *3 (-367)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-776)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) - (-5 *1 (-664 *5 *2)) (-4 *2 (-661 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-649 (-694 (-569)))) - (-5 *1 (-1118))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-1057)) (-4 *2 (-1251 *5)) - (-5 *1 (-1269 *5 *2 *6 *3)) (-4 *6 (-661 *2)) (-4 *3 (-1266 *5))))) -(((*1 *1 *1) (-5 *1 (-1071)))) -(((*1 *2) - (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) - (-5 *2 (-776)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-5 *3 (-1182 *1)) (-5 *4 (-1186)) (-4 *1 (-27)) + (-5 *2 (-650 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1182 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-27)) (-5 *2 (-650 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *2 (-650 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-562)) (-5 *2 (-650 *1)) (-4 *1 (-29 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3059 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) + (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-177))) (-5 *1 (-1094))))) (((*1 *2 *1) - (-12 (-4 *4 (-1108)) (-5 *2 (-112)) (-5 *1 (-891 *3 *4 *5)) - (-4 *3 (-1108)) (-4 *5 (-671 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-895 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1225)) - (-4 *5 (-377 *4)) (-4 *2 (-377 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *6 *7 *2)) (-4 *6 (-1057)) - (-4 *7 (-239 *5 *6)) (-4 *2 (-239 *4 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-1057)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-867)))) - ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-949 (-226))) (-5 *2 (-226)) (-5 *1 (-1221)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) - (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-13 (-561) (-1046 (-569)))) - (-5 *1 (-189 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 (-170 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))))) -(((*1 *1) (-5 *1 (-294)))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-756))))) + (-12 (-4 *3 (-1058)) (-5 *2 (-1276 *3)) (-5 *1 (-718 *3 *4)) + (-4 *4 (-1252 *3))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-777)) (-4 *5 (-368)) (-5 *2 (-413 *6)) + (-5 *1 (-873 *5 *4 *6)) (-4 *4 (-1267 *5)) (-4 *6 (-1252 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1268 *5 *6 *7)) (-4 *5 (-368)) + (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1249 *6 *5))) + (-5 *1 (-874 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-777)) (-5 *4 (-1268 *5 *6 *7)) (-4 *5 (-368)) + (-14 *6 (-1186)) (-14 *7 *5) (-5 *2 (-413 (-1249 *6 *5))) + (-5 *1 (-874 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) - (-4 *2 (-367)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-226)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) + (-4 *2 (-368)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225))) - (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225))))) - ((*1 *1 *1 *1) (-4 *1 (-367))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-383)))) + (-2779 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1226))) + (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1226))))) + ((*1 *1 *1 *1) (-4 *1 (-368))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-384)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1133 *3 (-617 *1))) (-4 *3 (-561)) (-4 *3 (-1108)) - (-4 *1 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-478))) + (-12 (-5 *2 (-1134 *3 (-618 *1))) (-4 *3 (-562)) (-4 *3 (-1109)) + (-4 *1 (-436 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-479))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-541))) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-542))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-173)) (-5 *1 (-626 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-731) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-627 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-732) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-173)) (-5 *1 (-626 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-731) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-639 *2)) (-4 *2 (-173)) (-4 *2 (-367)))) + (-12 (-4 *4 (-174)) (-5 *1 (-627 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-732) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-174)) (-4 *2 (-368)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-173)) (-5 *1 (-667 *2 *4 *3)) (-4 *2 (-722 *4)) - (-4 *3 (|SubsetCategory| (-731) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-668 *2 *4 *3)) (-4 *2 (-723 *4)) + (-4 *3 (|SubsetCategory| (-732) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-173)) (-5 *1 (-667 *3 *4 *2)) (-4 *3 (-722 *4)) - (-4 *2 (|SubsetCategory| (-731) *4)))) + (-12 (-4 *4 (-174)) (-5 *1 (-668 *3 *4 *2)) (-4 *3 (-723 *4)) + (-4 *2 (|SubsetCategory| (-732) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)) (-4 *2 (-367)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)) (-4 *2 (-368)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-871 *2 *3 *4 *5)) (-4 *2 (-367)) - (-4 *2 (-1057)) (-14 *3 (-649 (-1185))) (-14 *4 (-649 (-776))) - (-14 *5 (-776)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)))) + (|partial| -12 (-5 *1 (-872 *2 *3 *4 *5)) (-4 *2 (-368)) + (-4 *2 (-1058)) (-14 *3 (-650 (-1186))) (-14 *4 (-650 (-777))) + (-14 *5 (-777)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057)) - (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-367)))) + (-12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058)) + (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-368)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2)) (-4 *2 (-367)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2)) (-4 *2 (-368)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-367)) (-4 *2 (-1057)) (-4 *3 (-855)) - (-4 *4 (-798)) (-14 *6 (-649 *3)) - (-5 *1 (-1287 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-955 *2 *4 *3)) - (-14 *7 (-649 (-776))) (-14 *8 (-776)))) + (|partial| -12 (-4 *2 (-368)) (-4 *2 (-1058)) (-4 *3 (-856)) + (-4 *4 (-799)) (-14 *6 (-650 *3)) + (-5 *1 (-1288 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-956 *2 *4 *3)) + (-14 *7 (-650 (-777))) (-14 *8 (-777)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-367)) (-4 *2 (-1057)) - (-4 *3 (-851))))) -(((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *2) (-12 (-5 *2 (-1155 (-1167))) (-5 *1 (-396))))) + (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-368)) (-4 *2 (-1058)) + (-4 *3 (-852))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-986 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-570)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-705))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-792))))) +(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-776)) (-4 *5 (-173)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-776)) (-4 *5 (-173)))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-311)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-453 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 - (-5 *2 - (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) - (-248 *4 (-412 (-569))))) - (-5 *3 (-649 (-869 *4))) (-14 *4 (-649 (-1185))) (-14 *5 (-776)) - (-5 *1 (-510 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1071))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) + (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-453 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-1168)) (-4 *7 (-956 *4 *5 *6)) + (-4 *4 (-311)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-453 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))) + (-4 *2 (-13 (-856) (-21)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-551))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) + (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1267 *3))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-215 *2)) + (-12 (-5 *1 (-216 *2)) (-4 *2 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) - (-15 -3567 ((-1280) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225)))) + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) + (-15 -2038 ((-1281) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) - ((*1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1 *1) (-5 *1 (-867))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) + ((*1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-21))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) - (-15 -4412 ((-1133 *3 (-617 $)) $)) - (-15 -3796 ($ (-1133 *3 (-617 $)))))))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-112)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185))) - (-4 *5 (-457)) (-5 *2 (-649 (-248 *4 *5))) (-5 *1 (-636 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *5 (-1251 *4)) - (-5 *2 (-649 (-2 (|:| |deg| (-776)) (|:| -4312 *5)))) - (-5 *1 (-814 *4 *5 *3 *6)) (-4 *3 (-661 *5)) - (-4 *6 (-661 (-412 *5)))))) -(((*1 *1) (-4 *1 (-975)))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-760)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-393)) - (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-760))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-21))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-278))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1149 *4 *5)) (-4 *4 (-13 (-1109) (-34))) + (-4 *5 (-13 (-1109) (-34))) (-5 *2 (-112)) (-5 *1 (-1150 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-310)) (-4 *6 (-377 *5)) (-4 *4 (-377 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-1132 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))) + (-12 (-4 *5 (-1109)) (-4 *6 (-893 *5)) (-5 *2 (-892 *5 *6 (-650 *6))) + (-5 *1 (-894 *5 *6 *4)) (-5 *3 (-650 *6)) (-4 *4 (-620 (-899 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 *3))) (-5 *1 (-894 *5 *3 *4)) + (-4 *3 (-1047 (-1186))) (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-5 *2 (-650 (-298 (-959 *3)))) + (-5 *1 (-894 *5 *3 *4)) (-4 *3 (-1058)) + (-1748 (-4 *3 (-1047 (-1186)))) (-4 *3 (-893 *5)) + (-4 *4 (-620 (-899 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-5 *2 (-896 *5 *3)) (-5 *1 (-894 *5 *3 *4)) + (-1748 (-4 *3 (-1047 (-1186)))) (-1748 (-4 *3 (-1058))) + (-4 *3 (-893 *5)) (-4 *4 (-620 (-899 *5)))))) +(((*1 *1) (-4 *1 (-976)))) (((*1 *2) - (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2))) - (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5)) - (-4 *3 (-346 *4 *2 *5)))) + (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) ((*1 *2) - (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229)) - (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-649 (-617 *3))) - (|:| |vals| (-649 *3)))) - (-5 *1 (-279 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) - (-5 *2 (-848 *4)) (-5 *1 (-316 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) - (-5 *2 (-848 *4)) (-5 *1 (-1261 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1210) (-435 *3))) (-14 *5 (-1185)) - (-14 *6 *4)))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) + (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368)) + (-5 *2 (-1182 (-959 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-215 *2)) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)))) (-4 *3 (-562)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-436 *3)) (-4 *2 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) - (-15 -3567 ((-1280) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-25)) (-4 *2 (-1225)))) + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *3 (-618 $)) $)) + (-15 -4413 ((-1134 *3 (-618 $)) $)) + (-15 -3798 ($ (-1134 *3 (-618 $)))))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777)) + (-5 *1 (-455 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-216 *2)) + (-4 *2 + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) + (-15 -2038 ((-1281) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1226)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-25)) (-4 *2 (-1226)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-131)))) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *2)) - (-4 *2 (-1251 *3)))) + (-12 (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *2)) + (-4 *2 (-1252 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) - (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-541))) + (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) + (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-542))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-949 (-226))) (-5 *1 (-1221)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-25))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561)) - (-5 *2 (-412 (-958 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-1235 *4)) (-4 *4 (-1057)) (-4 *4 (-561)) - (-5 *2 (-412 (-958 *4)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1057)) - (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) - (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-4 *5 (-1057)) - (-4 *2 (-13 (-409) (-1046 *5) (-367) (-1210) (-287))) - (-5 *1 (-448 *5 *3 *2)) (-4 *3 (-1251 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-617 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4))) - (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-827))))) -(((*1 *1 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561))))) -(((*1 *2 *3) (-12 (-5 *3 (-541)) (-5 *1 (-540 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-541))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-649 (-869 *4))) - (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-476 *4 *5 *6)) - (-4 *6 (-457))))) -(((*1 *2 *3) - (-12 (-4 *4 (-457)) - (-5 *2 - (-649 - (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))) - (|:| |geneigvec| (-649 (-694 (-412 (-958 *4)))))))) - (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-927)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-797)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-412 (-569))) (-4 *1 (-1256 *3)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1206))))) -(((*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1108)) (-5 *1 (-973 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-5 *2 (-1280)) (-5 *1 (-1188)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) - (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) - (-5 *1 (-1188)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1185)) - (-5 *4 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *2 (-1280)) - (-5 *1 (-1188))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-694 *4)))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-694 *4)) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-1206))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1251 (-412 (-569)))) - (-5 *2 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569)))) - (-5 *1 (-919 *3 *4)) (-4 *4 (-1251 (-412 *3))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-25))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-570))) (-5 *5 (-1 (-1166 *4))) (-4 *4 (-368)) + (-4 *4 (-1058)) (-5 *2 (-1166 *4)) (-5 *1 (-1170 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *3 (-907 *6)) + (-5 *2 (-695 *3)) (-5 *1 (-698 *6 *3 *7 *4)) (-4 *7 (-378 *3)) + (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4448))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3354 *4))) (-5 *1 (-978 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) + ((*1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3) (-12 (-5 *3 (-542)) (-5 *1 (-541 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-542))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) + (-14 *4 (-650 (-1186))))) ((*1 *2 *3) - (-12 (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *3)) - (-4 *3 (-1251 (-412 *4)))))) -(((*1 *1) (-5 *1 (-442)))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1226)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) + (-14 *4 (-650 (-1186))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-683 *3)) (-4 *3 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-856))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1267 *4)) + (-4 *4 (-38 (-413 (-570)))) (-5 *2 (-1 (-1166 *4) (-1166 *4))) + (-5 *1 (-1269 *4 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2865 *3) (|:| |coef2| (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-337))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *1) (-5 *1 (-1091)))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *1) (-12 (-4 *1 (-773 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-413 (-570))) (-5 *1 (-309))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-912 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-368)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2335 *1))) + (-4 *1 (-858 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *2 (-569)) (-5 *1 (-205))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) + (-12 (-5 *2 (-650 (-650 (-570)))) (-5 *1 (-980)) + (-5 *3 (-650 (-570)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-235)) (-4 *3 (-1058)) (-4 *4 (-856)) (-4 *5 (-269 *4)) + (-4 *6 (-799)) (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1058)) (-4 *3 (-856)) (-4 *5 (-269 *3)) (-4 *6 (-799)) + (-5 *2 (-1 *1 (-777))) (-4 *1 (-256 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-269 *2)) (-4 *2 (-856))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-618 *4)) (-5 *6 (-1186)) + (-4 *4 (-13 (-436 *7) (-27) (-1211))) + (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) (-5 *2 - (-2 (|:| |ir| (-591 (-412 *6))) (|:| |specpart| (-412 *6)) - (|:| |polypart| *6))) - (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1112)) (-5 *1 (-282))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-776)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-649 (-2 (|:| |totdeg| (-776)) (|:| -1814 *3)))) - (-5 *4 (-776)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *6 (-798)) - (-4 *7 (-855)) (-5 *1 (-454 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-662 *4)) (-4 *3 (-1109))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1211)))) + ((*1 *2 *1) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-618 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 *8)) + (-4 *7 (-856)) (-4 *8 (-1058)) (-4 *9 (-956 *8 *6 *7)) + (-4 *6 (-799)) (-5 *2 (-1182 *8)) (-5 *1 (-325 *6 *7 *8 *9))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1259 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1236 *3)) + (-5 *2 (-413 (-570)))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-52)) (-5 *1 (-898 *4)) - (-4 *4 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1108)) (-4 *4 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *5 *4 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-511)) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-114))))) + (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1226)) + (-4 *3 (-378 *4)) (-4 *5 (-378 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) + ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))) -(((*1 *2 *3) - (-12 (-5 *3 (-658 (-412 *2))) (-4 *2 (-1251 *4)) (-5 *1 (-815 *4 *2)) - (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-659 *2 (-412 *2))) (-4 *2 (-1251 *4)) - (-5 *1 (-815 *4 *2)) - (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569)))))))) + (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1252 (-171 *2)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1275 *1)) (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) - (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4)))))) -(((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *1) - (-12 (-4 *2 (-713 *3)) (-5 *1 (-832 *2 *3)) (-4 *3 (-1057))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-955 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1057)) (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) - (-4 *1 (-1251 *3))))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570)))) + (-4 *5 (-893 (-570))) + (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-573 *5 *3)) (-4 *3 (-635)) + (-4 *3 (-13 (-27) (-1211) (-436 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1186)) (-5 *4 (-849 *2)) (-4 *2 (-1148)) + (-4 *2 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-620 (-899 (-570)))) (-4 *5 (-893 (-570))) + (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) + (-5 *1 (-573 *5 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-695 (-413 (-570)))) (-5 *2 (-650 *4)) (-5 *1 (-785 *4)) + (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-776)) (-4 *6 (-1108)) (-4 *3 (-906 *6)) - (-5 *2 (-694 *3)) (-5 *1 (-697 *6 *3 *7 *4)) (-4 *7 (-377 *3)) - (-4 *4 (-13 (-377 *6) (-10 -7 (-6 -4447))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-377 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-508 *4 *5 *6 *3)) (-4 *6 (-377 *4)) (-4 *3 (-377 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-694 *5)) (-4 *5 (-1000 *4)) (-4 *4 (-561)) - (-5 *2 (-2 (|:| |num| (-694 *4)) (|:| |den| *4))) - (-5 *1 (-698 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *6 (-1251 *5)) - (-5 *2 (-2 (|:| -4312 *7) (|:| |rh| (-649 (-412 *6))))) - (-5 *1 (-812 *5 *6 *7 *3)) (-5 *4 (-649 (-412 *6))) - (-4 *7 (-661 *6)) (-4 *3 (-661 (-412 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-1000 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1244 *4 *5 *3)) - (-4 *3 (-1251 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) + (-12 (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) (-4 *7 (-856)) + (-4 *8 (-311)) (-4 *6 (-799)) (-4 *9 (-956 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-650 (-2 (|:| -3801 (-1182 *9)) (|:| -3283 (-570))))))) + (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-431 *3)) (-4 *3 (-1109)) (-5 *2 (-777))))) +(((*1 *2 *3) (-12 (-5 *3 (-959 (-227))) (-5 *2 (-227)) (-5 *1 (-309))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4448)) (-4 *4 (-367)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-526 *4 *5 *6 *3)) - (-4 *3 (-692 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4448)) (-4 *4 (-561)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-4 *7 (-1000 *4)) (-4 *8 (-377 *7)) - (-4 *9 (-377 *7)) (-5 *2 (-649 *6)) - (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-692 *4 *5 *6)) - (-4 *10 (-692 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-649 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-5 *2 (-649 *6)) (-5 *1 (-693 *4 *5 *6 *3)) - (-4 *3 (-692 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) - (-5 *2 (-649 *7))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-5 *2 (-184 (-250))) (-5 *1 (-249))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-690 *4 *5 *6)) (-4 *4 (-1109))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-984 *3 *4 *2 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *5 (-1073 *3 *4 *2))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-170 (-226)))) - (-5 *2 (-1043)) (-5 *1 (-759))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1057)) - (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) - (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-99 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1226)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-610 *3 *2)) (-4 *3 (-1109)) + (-4 *2 (-1226))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-956 *5 *6 *7)) (-4 *5 (-458)) + (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-455 *5 *6 *7 *3))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1249 *5 *4))) + (-5 *1 (-1123 *4 *5)) (-5 *3 (-1249 *5 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *1)) (-5 *4 (-1275 *1)) (-4 *1 (-644 *5)) - (-4 *5 (-1057)) - (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-694 *1)) (-4 *1 (-644 *4)) (-4 *4 (-1057)) - (-5 *2 (-694 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) - (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *1) (-5 *1 (-1090)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225)) - (-4 *2 (-855)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4448)) - (-4 *1 (-377 *3)) (-4 *3 (-1225))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-950 (-227))) (-5 *2 (-1281)) (-5 *1 (-474))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1149 *3 *2)) (-4 *3 (-13 (-1109) (-34))) + (-4 *2 (-13 (-1109) (-34)))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) + (-4 *5 (-1252 *4)) (-5 *2 (-650 (-413 *5))) (-5 *1 (-1025 *4 *5)) + (-5 *3 (-413 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-928)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-798)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-413 (-570))) (-4 *1 (-1257 *3)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-983))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-695 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-828)) (-5 *1 (-827))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (-4 *4 (-1057)) - (-5 *1 (-1036 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) (-4 *4 (-1057)) - (-5 *1 (-1036 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-1251 *4)) (-5 *2 (-1 *6 (-649 *6))) - (-5 *1 (-1269 *4 *5 *3 *6)) (-4 *3 (-661 *5)) (-4 *6 (-1266 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-855)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -1365 (-649 *3)) (|:| -2916 (-649 *3)))) - (-5 *1 (-1226 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-4 *7 (-855)) - (-4 *9 (-955 *8 *6 *7)) (-4 *6 (-798)) (-4 *8 (-310)) - (-5 *2 (-649 (-776))) (-5 *1 (-747 *6 *7 *8 *9)) (-5 *5 (-776))))) + (-12 (-5 *2 (-650 (-618 *5))) (-5 *3 (-1186)) (-4 *5 (-436 *4)) + (-4 *4 (-1109)) (-5 *1 (-579 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *2 *3) (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1015))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1109)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-391 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-649 *5) *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) - (-5 *2 (-649 (-2 (|:| -3709 *5) (|:| -4312 *3)))) - (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) - (-4 *7 (-661 (-412 *6)))))) -(((*1 *2 *3) (-12 (-5 *3 (-496)) (-5 *2 (-696 (-584))) (-5 *1 (-584))))) + (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 (-570))) + (-5 *2 (-1276 (-413 (-570)))) (-5 *1 (-1303 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-880)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2) + (-12 (-5 *2 (-1276 (-1110 *3 *4))) (-5 *1 (-1110 *3 *4)) + (-14 *3 (-928)) (-14 *4 (-928))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-856)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-910 *3)) (-4 *3 (-1109)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *2 (-13 (-436 *4) (-1011) (-1211))) + (-5 *1 (-606 *4 *2 *3)) + (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1211)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) (((*1 *2 *1) (-12 (-5 *2 @@ -8553,3818 +8486,3679 @@ (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-333))))) -(((*1 *2 *3) - (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-569)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-776)) (-4 *5 (-173)))) - ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) - (-4 *4 (-173)))) - ((*1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1057)) (-4 *1 (-692 *3 *2 *4)) (-4 *2 (-377 *3)) - (-4 *4 (-377 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1150 *2 *3)) (-14 *2 (-776)) (-4 *3 (-1057))))) -(((*1 *1 *1) (-5 *1 (-1071)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-367)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) - (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) - (-4 *3 (-857 *5))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) - (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3) - (-12 (-4 *4 (-353)) (-5 *2 (-964 (-1181 *4))) (-5 *1 (-361 *4)) - (-5 *3 (-1181 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-867)))) - ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-968))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *4 *5 *6 *7)) - (-4 *4 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)) - (-4 *7 (-1225))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-776)) (-5 *3 (-949 *5)) (-4 *5 (-1057)) - (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5)) - (-14 *4 (-927)) (-4 *5 (-1057)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057)) - (-5 *1 (-1173 *4 *5)) (-14 *4 (-927))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4449 "*"))) (-4 *5 (-377 *2)) (-4 *6 (-377 *2)) - (-4 *2 (-1057)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1251 *2)) - (-4 *4 (-692 *2 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-649 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1108)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-649 *4))) (-4 *4 (-1108)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1108)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-649 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1108)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-653 *3)) (-4 *3 (-1057)) - (-5 *1 (-719 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-841 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-955 *5 *6 *7)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-454 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) + (-5 *1 (-334))))) (((*1 *2 *1) + (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-1221 *3)) + (-4 *3 (-983))))) +(((*1 *2 *2 *3) (-12 (-5 *2 - (-649 - (-649 - (-3 (|:| -3573 (-1185)) - (|:| -3453 (-649 (-3 (|:| S (-1185)) (|:| P (-958 (-569)))))))))) - (-5 *1 (-1189))))) + (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *4))))))) + (-5 *3 (-650 *7)) (-4 *4 (-13 (-311) (-148))) + (-4 *7 (-956 *4 *6 *5)) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-497)) (-5 *2 (-697 (-585))) (-5 *1 (-585))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-512)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1190))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1168)) (-5 *4 (-171 (-227))) (-5 *5 (-570)) + (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-677)))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) + (-14 *4 (-928))))) +(((*1 *2 *1) + (-12 (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) + (-5 *2 (-1276 *6)) (-5 *1 (-341 *3 *4 *5 *6)) + (-4 *6 (-347 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-868)))) + ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-969))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-761)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-394)) + (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-145))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-928))) (-5 *1 (-1110 *3 *4)) (-14 *3 (-928)) + (-14 *4 (-928))))) +(((*1 *2 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1226)) (-5 *2 (-1281))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1186)) (-4 *5 (-620 (-899 (-570)))) + (-4 *5 (-893 (-570))) + (-4 *5 (-13 (-1047 (-570)) (-458) (-645 (-570)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-573 *5 *3)) (-4 *3 (-635)) + (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1211) (-436 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1034 *3)) (-4 *3 (-1225))))) -(((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) - (-4 *3 (-1251 *4)) (-5 *2 (-569)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-561) (-1046 *2) (-644 *2) (-457))) - (-5 *2 (-569)) (-5 *1 (-1124 *4 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) - (-5 *1 (-1124 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-1167)) - (-4 *6 (-13 (-561) (-1046 *2) (-644 *2) (-457))) (-5 *2 (-569)) - (-5 *1 (-1124 *6 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-569)) - (-5 *1 (-1125 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1185)) (-5 *5 (-848 (-412 (-958 *6)))) - (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-569)) - (-5 *1 (-1125 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-412 (-958 *6))) (-5 *4 (-1185)) - (-5 *5 (-1167)) (-4 *6 (-457)) (-5 *2 (-569)) (-5 *1 (-1125 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1035 *3)) (-4 *3 (-1226))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705)))) + ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-705))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-650 *2) *2 *2 *2)) (-4 *2 (-1109)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1109)) (-5 *1 (-103 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *6)) (-4 *6 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-1181 *7)) (-5 *1 (-324 *4 *5 *6 *7)) - (-4 *7 (-955 *6 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-1068))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))) + (-12 (-5 *3 (-1168)) (-5 *2 (-216 (-508))) (-5 *1 (-843))))) +(((*1 *2 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058)))) + ((*1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058))))) (((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210))))) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-383)) (-5 *2 (-1280)) (-5 *1 (-1276)))) + (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1281)) (-5 *1 (-1277)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-97))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *5)) (-4 *5 (-173)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-569)) (-14 *4 (-776))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1278))))) -(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185))))) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-354))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-916))))) +(((*1 *2 *1) + (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *4 *5 *6)) (-4 *4 (-368)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-456 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-368)) + (-5 *2 + (-2 (|:| R (-695 *6)) (|:| A (-695 *6)) (|:| |Ainv| (-695 *6)))) + (-5 *1 (-987 *6)) (-5 *3 (-695 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-512)) (-5 *2 (-650 (-972))) (-5 *1 (-295))))) +(((*1 *2) + (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916)) + (-5 *1 (-463 *3 *4 *2 *5)) (-4 *5 (-956 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *2 (-916)) + (-5 *1 (-913 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-916)) (-5 *1 (-914 *2 *3)) (-4 *3 (-1252 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-458)) (-4 *3 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-455 *4 *3 *5 *6)) (-4 *6 (-956 *4 *3 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-846)) (-5 *4 (-1071)) (-5 *2 (-1043)) (-5 *1 (-845)))) - ((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845)))) + (-12 (-5 *3 (-847)) (-5 *4 (-1072)) (-5 *2 (-1044)) (-5 *1 (-846)))) + ((*1 *2 *3) (-12 (-5 *3 (-847)) (-5 *2 (-1044)) (-5 *1 (-846)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-649 (-383))) (-5 *5 (-649 (-848 (-383)))) - (-5 *6 (-649 (-319 (-383)))) (-5 *3 (-319 (-383))) (-5 *2 (-1043)) - (-5 *1 (-845)))) + (-12 (-5 *4 (-650 (-384))) (-5 *5 (-650 (-849 (-384)))) + (-5 *6 (-650 (-320 (-384)))) (-5 *3 (-320 (-384))) (-5 *2 (-1044)) + (-5 *1 (-846)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) - (-5 *5 (-649 (-848 (-383)))) (-5 *2 (-1043)) (-5 *1 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-319 (-383))) (-5 *4 (-649 (-383))) (-5 *2 (-1043)) - (-5 *1 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) - (-5 *2 (-1043)) (-5 *1 (-845))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-971))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1167) (-779))) (-5 *1 (-114))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) - ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-1275 (-694 *4))))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-1275 (-694 *4))) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) - (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 (-694 *3))))) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) + (-5 *5 (-650 (-849 (-384)))) (-5 *2 (-1044)) (-5 *1 (-846)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367)) - (-5 *2 (-1275 (-694 (-412 (-958 *5))))) (-5 *1 (-1094 *5)) - (-5 *4 (-694 (-412 (-958 *5)))))) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-384))) (-5 *2 (-1044)) + (-5 *1 (-846)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-1185))) (-4 *5 (-367)) - (-5 *2 (-1275 (-694 (-958 *5)))) (-5 *1 (-1094 *5)) - (-5 *4 (-694 (-958 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-694 *4))) (-4 *4 (-367)) - (-5 *2 (-1275 (-694 *4))) (-5 *1 (-1094 *4))))) + (-12 (-5 *3 (-650 (-320 (-384)))) (-5 *4 (-650 (-384))) + (-5 *2 (-1044)) (-5 *1 (-846))))) +(((*1 *2 *3) (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-422 *3 *2)) (-4 *3 (-423 *2)))) + ((*1 *2) (-12 (-4 *1 (-423 *2)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-1110 *4)) (-4 *4 (-1108)) (-5 *2 (-1 *4)) - (-5 *1 (-1025 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102 (-569))) (-5 *2 (-1 (-569))) (-5 *1 (-1055))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1166 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 (-227))) (-5 *4 (-650 (-1186))) + (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *4 (-650 (-1186))) + (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-1166 (-227))) (-5 *1 (-304))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-972))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1168) (-780))) (-5 *1 (-115))))) (((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-561))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-759))))) + (-12 (-4 *1 (-347 *4 *3 *5)) (-4 *4 (-1230)) (-4 *3 (-1252 *4)) + (-4 *5 (-1252 (-413 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-1211 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1229)) (-4 *5 (-1251 (-412 *2))) - (-4 *2 (-1251 *4)) (-5 *1 (-345 *3 *4 *2 *5)) - (-4 *3 (-346 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-346 *3 *2 *4)) (-4 *3 (-1229)) - (-4 *4 (-1251 (-412 *2))) (-4 *2 (-1251 *3))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) - (-5 *1 (-1169 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) - (-14 *4 (-1185)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) + (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1236 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-457)) (-4 *3 (-855)) (-4 *4 (-798)) - (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3))))) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-810 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1211) (-966)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-424 (-1182 *1))) (-5 *1 (-320 *4)) (-5 *3 (-1182 *1)) + (-4 *4 (-458)) (-4 *4 (-562)) (-4 *4 (-1109)))) + ((*1 *2 *3) + (-12 (-4 *1 (-916)) (-5 *2 (-424 (-1182 *1))) (-5 *3 (-1182 *1))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-1185))) (-5 *2 (-1280)) (-5 *1 (-1188)))) + (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-378 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-509 *4 *5 *6 *3)) (-4 *6 (-378 *4)) (-4 *3 (-378 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-695 *5)) (-4 *5 (-1001 *4)) (-4 *4 (-562)) + (-5 *2 (-2 (|:| |num| (-695 *4)) (|:| |den| *4))) + (-5 *1 (-699 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280)) - (-5 *1 (-1188)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1280)) - (-5 *1 (-1188))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-776)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-927)))) + (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *6 (-1252 *5)) + (-5 *2 (-2 (|:| -4313 *7) (|:| |rh| (-650 (-413 *6))))) + (-5 *1 (-813 *5 *6 *7 *3)) (-5 *4 (-650 (-413 *6))) + (-4 *7 (-662 *6)) (-4 *3 (-662 (-413 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-1001 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1245 *4 *5 *3)) + (-4 *3 (-1252 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-424 (-1182 (-1182 *4)))) + (-5 *1 (-1224 *4)) (-5 *3 (-1182 (-1182 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-620 (-899 *3))) (-4 *3 (-893 *3)) (-4 *3 (-458)) + (-5 *1 (-1217 *3 *2)) (-4 *2 (-620 (-899 *3))) (-4 *2 (-893 *3)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-695 (-413 (-959 (-570))))) (-5 *2 (-650 (-320 (-570)))) + (-5 *1 (-1040))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-1276 *5))) (-5 *4 (-570)) (-5 *2 (-1276 *5)) + (-5 *1 (-1038 *5)) (-4 *5 (-368)) (-4 *5 (-373)) (-4 *5 (-1058))))) +(((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-542))) (-5 *1 (-542))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-413 (-570)))) + (-5 *2 (-2 (|:| -2749 (-1166 *4)) (|:| -2761 (-1166 *4)))) + (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *5 *6)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-455 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) + (-5 *2 (-650 (-1186))) (-5 *1 (-1085 *3 *4 *5)) + (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-659 *4)) (-4 *4 (-347 *5 *6 *7)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-812 *5 *6 *7 *4))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-777)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-928)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) - (-4 *4 (-173)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-226)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-927)) (-5 *1 (-157)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) + (-4 *4 (-174)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-928)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210))) - (-5 *1 (-228 *3)))) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211))) + (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) + (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-239 *3 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) + (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225)))) + (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1226)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-297 *2)) (-4 *2 (-1120)) (-4 *2 (-1225)))) + (-12 (-5 *1 (-298 *2)) (-4 *2 (-1121)) (-4 *2 (-1226)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-365 *2)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-132)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-366 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-385 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-855)))) + (-12 (-5 *1 (-386 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856)))) ((*1 *1 *2 *3) - (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) - (-4 *6 (-239 (-2428 *3) (-776))) + (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) + (-4 *6 (-240 (-2431 *3) (-777))) (-14 *7 - (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) - (-2 (|:| -2150 *5) (|:| -1993 *6)))) - (-5 *1 (-466 *3 *4 *5 *6 *7 *2)) (-4 *5 (-855)) - (-4 *2 (-955 *4 *6 (-869 *3))))) + (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *6)) + (-2 (|:| -2155 *5) (|:| -3283 *6)))) + (-5 *1 (-467 *3 *4 *5 *6 *7 *2)) (-4 *5 (-856)) + (-4 *2 (-956 *4 *6 (-870 *3))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) + (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) - (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) + (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) + (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-541))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-689 *5 *6 *7)))) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-542))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-690 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-692 *3 *2 *4)) (-4 *3 (-1057)) (-4 *2 (-377 *3)) - (-4 *4 (-377 *3)))) + (-12 (-4 *1 (-693 *3 *2 *4)) (-4 *3 (-1058)) (-4 *2 (-378 *3)) + (-4 *4 (-378 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-692 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *2 (-377 *3)))) + (-12 (-4 *1 (-693 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *2 (-378 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-725))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-726))) ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561)) - (-5 *1 (-977 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066)))) - ((*1 *1 *1 *1) (-4 *1 (-1120))) + (-12 (-5 *2 (-1276 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-562)) + (-5 *1 (-978 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067)))) + ((*1 *1 *1 *1) (-4 *1 (-1121))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *2 (-239 *3 *4)) - (-4 *5 (-239 *3 *4)))) + (-12 (-4 *1 (-1132 *3 *4 *2 *5)) (-4 *4 (-1058)) (-4 *2 (-240 *3 *4)) + (-4 *5 (-240 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1131 *3 *4 *5 *2)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) - (-4 *2 (-239 *3 *4)))) + (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *4 (-1058)) (-4 *5 (-240 *3 *4)) + (-4 *2 (-240 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-855)) (-5 *1 (-1134 *3 *4 *2)) - (-4 *2 (-955 *3 (-536 *4) *4)))) + (-12 (-4 *3 (-1058)) (-4 *4 (-856)) (-5 *1 (-1135 *3 *4 *2)) + (-4 *2 (-956 *3 (-537 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-949 (-226))) (-5 *3 (-226)) (-5 *1 (-1221)))) + (-12 (-5 *2 (-950 (-227))) (-5 *3 (-227)) (-5 *1 (-1222)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1225)) (-4 *2 (-731)))) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-732)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-569)) (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-21)))) + (-12 (-5 *2 (-570)) (-4 *1 (-1274 *3)) (-4 *3 (-1226)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) + (-12 (-4 *1 (-1293 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-649 (-649 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-649 (-649 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-649 *3))) (-5 *1 (-1197 *3)) (-4 *3 (-1108))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-365 (-114))) (-4 *2 (-1057)) (-5 *1 (-719 *2 *4)) - (-4 *4 (-653 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-365 (-114))) (-5 *1 (-841 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-649 *3)))) - ((*1 *2 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) - (-5 *2 (-649 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-282))))) -(((*1 *2 *2) (-12 (-5 *2 (-694 (-319 (-569)))) (-5 *1 (-1039))))) + (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *2 (-1165 (-226))) (-5 *1 (-193)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-319 (-226))) (-5 *4 (-649 (-1185))) - (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185))) - (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-1165 (-226))) (-5 *1 (-303))))) -(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1058)) (-4 *7 (-1058)) + (-4 *6 (-1252 *5)) (-5 *2 (-1182 (-1182 *7))) + (-5 *1 (-507 *5 *6 *4 *7)) (-4 *4 (-1252 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) - (-5 *2 (-2 (|:| |num| (-1275 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-650 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) + (-5 *2 (-650 *3))))) +(((*1 *2) (-12 (-5 *2 (-1156 (-1168))) (-5 *1 (-397))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-561))))) + (|partial| -12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) - (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057)))) - ((*1 *2 *3) - (-12 (-4 *4 (-377 *2)) (-4 *5 (-377 *2)) (-4 *2 (-173)) - (-5 *1 (-693 *2 *4 *5 *3)) (-4 *3 (-692 *2 *4 *5)))) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) - (-4 *5 (-239 *3 *2)) (|has| *2 (-6 (-4449 "*"))) (-4 *2 (-1057))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-383)) (-5 *1 (-1048))))) -(((*1 *2 *3) - (-12 (-4 *4 (-855)) (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4)) - (-5 *3 (-649 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1181 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-103 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) - (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *1) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *3) - (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-834)) (-5 *3 (-1167))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-617 *3)) - (-4 *3 (-13 (-435 *5) (-27) (-1210))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 (-2 (|:| -2679 *3) (|:| |coeff| *3))) - (-5 *1 (-571 *5 *3 *6)) (-4 *6 (-1108))))) -(((*1 *2 *3 *2) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 - (-649 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-776)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-798)) (-4 *6 (-955 *4 *3 *5)) (-4 *4 (-457)) (-4 *5 (-855)) - (-5 *1 (-454 *4 *3 *5 *6))))) -(((*1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-1208))))) + (-650 + (-2 + (|:| -2009 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -2219 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1166 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2762 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-565)))) + ((*1 *2 *1) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) + (-5 *2 (-650 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569) - *6)) - (-4 *6 (-367)) (-4 *7 (-1251 *6)) - (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) - (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-441))))) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-562))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2) + (-12 (-4 *4 (-368)) (-5 *2 (-928)) (-5 *1 (-332 *3 *4)) + (-4 *3 (-333 *4)))) + ((*1 *2) + (-12 (-4 *4 (-368)) (-5 *2 (-839 (-928))) (-5 *1 (-332 *3 *4)) + (-4 *3 (-333 *4)))) + ((*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-928)))) + ((*1 *2) + (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-839 (-928)))))) +(((*1 *1) + (-12 (-4 *1 (-410)) (-1748 (|has| *1 (-6 -4439))) + (-1748 (|has| *1 (-6 -4431))))) + ((*1 *2 *1) (-12 (-4 *1 (-431 *2)) (-4 *2 (-1109)) (-4 *2 (-856)))) + ((*1 *1) (-4 *1 (-850))) ((*1 *1 *1 *1) (-4 *1 (-856))) + ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-985 *4 *5 *3 *6)) (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *3 (-856)) (-4 *6 (-1074 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) + (-5 *2 (-1182 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) + (-5 *2 (-1182 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) + (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-1289 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-650 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) + (-4 *6 (-799)) (-4 *7 (-856)) (-5 *1 (-1289 *5 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-397))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) + (-5 *1 (-754))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-650 (-650 (-227)))) (-5 *4 (-227)) + (-5 *2 (-650 (-950 *4))) (-5 *1 (-1222)) (-5 *3 (-950 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-798)) (-4 *2 (-955 *4 *5 *6)) (-5 *1 (-454 *4 *5 *6 *2)) - (-4 *4 (-457)) (-4 *6 (-855))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-141))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1185)) (-4 *4 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) - (-4 *1 (-435 *4)))) + (-12 (-5 *3 (-959 *5)) (-4 *5 (-1058)) (-5 *2 (-487 *4 *5)) + (-5 *1 (-951 *4 *5)) (-14 *4 (-650 (-1186)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1109)) (-5 *1 (-103 *3)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) - (-4 *1 (-435 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1120)) (-4 *3 (-1108)) - (-5 *2 (-2 (|:| |var| (-617 *1)) (|:| -1993 (-569)))) - (-4 *1 (-435 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-776)))) - (-5 *1 (-898 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-776)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) - (-4 *7 (-955 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -1993 (-569)))) - (-5 *1 (-956 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) - (-15 -4412 (*7 $)))))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-297 (-838 *3))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-838 *3)) (-5 *1 (-641 *5 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 (-838 (-958 *5)))) (-4 *5 (-457)) - (-5 *2 (-838 (-412 (-958 *5)))) (-5 *1 (-642 *5)) - (-5 *3 (-412 (-958 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) - (-4 *5 (-457)) (-5 *2 (-838 *3)) (-5 *1 (-642 *5))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1109))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) - (-4 *4 (-353)) (-5 *2 (-776)) (-5 *1 (-350 *4)))) + (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-562)) (-5 *1 (-978 *2 *3)) (-4 *3 (-1252 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-650 *7))) (-4 *1 (-1219 *4 *5 *6 *7)) + (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) ((*1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) - (-14 *4 (-927)))) + (-12 (-14 *4 *2) (-4 *5 (-1226)) (-5 *2 (-777)) + (-5 *1 (-239 *3 *4 *5)) (-4 *3 (-240 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) - (-14 *4 - (-3 (-1181 *3) - (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))))) + (-12 (-4 *4 (-1109)) (-5 *2 (-777)) (-5 *1 (-435 *3 *4)) + (-4 *3 (-436 *4)))) + ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-550 *3)) (-4 *3 (-551)))) + ((*1 *2) (-12 (-4 *1 (-769)) (-5 *2 (-777)))) ((*1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) - (-14 *4 (-927))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2)) - (-4 *2 (-1251 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-927)) (-5 *2 (-473)) (-5 *1 (-1276))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-886))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057)) - (-5 *3 (-569))))) + (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-802 *3 *4)) + (-4 *3 (-803 *4)))) + ((*1 *2) + (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-1000 *3 *4)) + (-4 *3 (-1001 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-777)) (-5 *1 (-1005 *3 *4)) + (-4 *3 (-1006 *4)))) + ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1020 *3)) (-4 *3 (-1021)))) + ((*1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-777)))) + ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-1068 *3)) (-4 *3 (-1069))))) +(((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-870 *5))) (-14 *5 (-650 (-1186))) (-4 *6 (-458)) + (-5 *2 (-650 (-650 (-249 *5 *6)))) (-5 *1 (-477 *5 *6 *7)) + (-5 *3 (-650 (-249 *5 *6))) (-4 *7 (-458))))) +(((*1 *2 *3) (-12 (-5 *3 (-413 (-570))) (-5 *2 (-227)) (-5 *1 (-309))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-249 *5 *6))) (-4 *6 (-458)) + (-5 *2 (-249 *5 *6)) (-14 *5 (-650 (-1186))) (-5 *1 (-637 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) + (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) + (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-777)) (-4 *6 (-368)) (-5 *4 (-1220 *6)) + (-5 *2 (-1 (-1166 *4) (-1166 *4))) (-5 *1 (-1284 *6)) + (-5 *5 (-1166 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-950 (-227)))) (-5 *1 (-1277))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) + (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229)) - (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) - (-5 *2 (-2 (|:| |num| (-694 *5)) (|:| |den| *5)))))) + (-12 (-4 *1 (-927)) (-5 *2 (-2 (|:| -1436 (-650 *1)) (|:| -2335 *1))) + (-5 *3 (-650 *1))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-129))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) -(((*1 *1) - (-12 (-4 *1 (-409)) (-1749 (|has| *1 (-6 -4438))) - (-1749 (|has| *1 (-6 -4430))))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-1108)) (-4 *2 (-855)))) - ((*1 *1) (-4 *1 (-849))) ((*1 *1 *1 *1) (-4 *1 (-855))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-511)) (-5 *3 (-649 (-881))) (-5 *1 (-488))))) -(((*1 *1 *1) (-5 *1 (-1071)))) + (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044)) + (-5 *1 (-760))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-424 *3)) (-4 *3 (-562)) (-5 *1 (-425 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) - (-5 *1 (-850 *4 *5)) (-14 *4 (-776))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1435 *3) (|:| |gap| (-776)) (|:| -4007 (-787 *3)) - (|:| -2054 (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-1057)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) - (-5 *2 - (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1) - (|:| -2054 *1))) - (-4 *1 (-1073 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 - (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -4007 *1) - (|:| -2054 *1))) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-569)) (-4 *6 (-798)) (-4 *7 (-855)) (-4 *8 (-310)) - (-4 *9 (-955 *8 *6 *7)) - (-5 *2 (-2 (|:| -1814 (-1181 *9)) (|:| |polval| (-1181 *8)))) - (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9)) (-5 *4 (-1181 *8))))) + (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *3)) (-4 *3 (-1080 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1207))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-510 *3 *4 *5 *6))) (-4 *3 (-368)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) + (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-650 *1)) (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-650 *1)) (-5 *3 (-650 *7)) (-4 *1 (-1080 *4 *5 *6 *7)) + (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-695 *2)) (-5 *4 (-570)) + (-4 *2 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *5 (-1252 *2)) (-5 *1 (-505 *2 *5 *6)) (-4 *6 (-415 *2 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-695 (-1182 *8))) (-4 *5 (-1058)) (-4 *8 (-1058)) + (-4 *6 (-1252 *5)) (-5 *2 (-695 *6)) (-5 *1 (-507 *5 *6 *7 *8)) + (-4 *7 (-1252 *6))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *6 (-227)) + (-5 *3 (-570)) (-5 *2 (-1044)) (-5 *1 (-757))))) +(((*1 *1 *1) + (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856)) + (-4 *4 (-269 *3)) (-4 *5 (-799))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *1 (-232 *4)) - (-4 *4 (-1057)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *1 (-233 *4)) + (-4 *4 (-1058)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-232 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-234)) (-5 *2 (-776)))) - ((*1 *1 *1) (-4 *1 (-234))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-233 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-235)) (-5 *2 (-777)))) + ((*1 *1 *1) (-4 *1 (-235))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *3 (-13 (-367) (-147))) (-5 *1 (-404 *3 *4)) - (-4 *4 (-1251 *3)))) + (-12 (-5 *2 (-777)) (-4 *3 (-13 (-368) (-148))) (-5 *1 (-405 *3 *4)) + (-4 *4 (-1252 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-367) (-147))) (-5 *1 (-404 *2 *3)) - (-4 *3 (-1251 *2)))) - ((*1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)))) + (-12 (-4 *2 (-13 (-368) (-148))) (-5 *1 (-405 *2 *3)) + (-4 *3 (-1252 *2)))) + ((*1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 (-776))) (-4 *1 (-906 *4)) - (-4 *4 (-1108)))) + (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 (-777))) (-4 *1 (-907 *4)) + (-4 *4 (-1109)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-776)) (-4 *1 (-906 *2)) (-4 *2 (-1108)))) + (-12 (-5 *3 (-777)) (-4 *1 (-907 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *1 (-906 *3)) (-4 *3 (-1108)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-1108))))) + (-12 (-5 *2 (-650 *3)) (-4 *1 (-907 *3)) (-4 *3 (-1109)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-907 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-311)) (-4 *6 (-378 *5)) (-4 *4 (-378 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-1133 *5 *6 *4 *3)) (-4 *3 (-693 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-246 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1276 (-3 (-474) "undefined"))) (-5 *1 (-1277))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-777))) (-5 *3 (-173)) (-5 *1 (-1174 *4 *5)) + (-14 *4 (-928)) (-4 *5 (-1058))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1043)) - (-5 *1 (-751))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932))))) -(((*1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-550))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *2 (-1043)) (-5 *1 (-756))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-184 (-139)))) (-5 *1 (-140))))) -(((*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278))))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-695 (-570))) (-5 *1 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-185 (-140)))) (-5 *1 (-141))))) (((*1 *2 *1) - (-12 (-4 *2 (-1101 *3)) (-5 *1 (-1065 *2 *3)) (-4 *3 (-1225)))) + (-12 (-4 *2 (-1102 *3)) (-5 *1 (-1066 *2 *3)) (-4 *3 (-1226)))) ((*1 *2 *1) - (-12 (-5 *2 (-1102 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-1225)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2) (-12 (-5 *1 (-1242 *2)) (-4 *2 (-1225))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-649 *4)) (-4 *4 (-855)) - (-5 *1 (-1196 *4))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *6)))) - (-5 *4 (-1034 (-848 (-569)))) (-5 *5 (-1185)) (-5 *7 (-412 (-569))) - (-4 *6 (-1057)) (-5 *2 (-867)) (-5 *1 (-600 *6))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-511)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *1) - (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) - (-4 *5 (-239 (-2428 *3) (-776))) - (-14 *6 - (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *5)) - (-2 (|:| -2150 *2) (|:| -1993 *5)))) - (-4 *2 (-855)) (-5 *1 (-466 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-955 *4 *5 (-869 *3)))))) -(((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))) + (-12 (-5 *2 (-1103 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-1226)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1058)) (-5 *1 (-718 *3 *2)) (-4 *2 (-1252 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) + (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) + (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-610 *4 *3)) (-4 *4 (-1109)) + (-4 *3 (-1226)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-27) (-436 *4))) (-4 *4 (-13 (-562) (-1047 (-570)))) + (-4 *7 (-1252 (-413 *6))) (-5 *1 (-558 *4 *5 *6 *7 *2)) + (-4 *2 (-347 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-544 *4 *2 *5 *6)) - (-4 *4 (-310)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-776)))))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-570)) (-5 *1 (-492 *4)) + (-4 *4 (-1252 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1069 (-1032 *4) (-1181 (-1032 *4)))) (-5 *3 (-867)) - (-5 *1 (-1032 *4)) (-4 *4 (-13 (-853) (-367) (-1030)))))) + (-12 (-5 *3 (-1168)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1211) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-1 (-112) *8))) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) - (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8))))) + (-12 (-5 *3 (-777)) (-5 *4 (-1276 *2)) (-4 *5 (-311)) + (-4 *6 (-1001 *5)) (-4 *2 (-13 (-415 *6 *7) (-1047 *6))) + (-5 *1 (-419 *5 *6 *7 *2)) (-4 *7 (-1252 *6))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-649 - (-2 (|:| -3978 (-776)) - (|:| |eqns| - (-649 - (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) - (|:| |cols| (-649 (-569)))))) - (|:| |fgb| (-649 *7))))) - (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) - (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776)) - (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112)) - (-5 *1 (-361 *4))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1227))))) -(((*1 *1) (-5 *1 (-808)))) -(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1129 *3)) (-4 *3 (-1225)) (-5 *2 (-776))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-927)) (-4 *5 (-855)) - (-5 *2 (-59 (-649 (-677 *5)))) (-5 *1 (-677 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185))))) - (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112)) - (-5 *1 (-402)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-649 (-649 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-649 (-3 (|:| |array| (-649 *3)) (|:| |scalar| (-1185))))) - (-5 *6 (-649 (-1185))) (-5 *3 (-1185)) (-5 *2 (-1112)) - (-5 *1 (-402)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-649 (-1185))) (-5 *5 (-1188)) (-5 *3 (-1185)) - (-5 *2 (-1112)) (-5 *1 (-402))))) + (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-171 (-227))) (-5 *6 (-1168)) + (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1276 (-1276 (-570)))) (-5 *1 (-472))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1168)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *4 (-1074 *6 *7 *8)) (-5 *2 (-1281)) + (-5 *1 (-782 *6 *7 *8 *4 *5)) (-4 *5 (-1080 *6 *7 *8 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-583)))) + ((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-583))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) (-5 *1 (-543 *4 *2)) + (-4 *2 (-1267 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3))) + (-4 *5 (-1252 *4)) (-4 *6 (-730 *4 *5)) (-5 *1 (-547 *4 *5 *6 *2)) + (-4 *2 (-1267 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-13 (-368) (-373) (-620 *3))) + (-5 *1 (-548 *4 *2)) (-4 *2 (-1267 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-13 (-562) (-148))) + (-5 *1 (-1162 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-5 *1 (-319 *3)) (-4 *3 (-561)) (-4 *3 (-1108))))) -(((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -4313 (-776)) (|:| |period| (-776)))) - (-5 *1 (-1165 *4)) (-4 *4 (-1225)) (-5 *3 (-776))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *3))))) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-249 *3 *4)) + (-14 *3 (-650 (-1186))) (-4 *4 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-570))) (-14 *3 (-650 (-1186))) + (-5 *1 (-460 *3 *4 *5)) (-4 *4 (-1058)) + (-4 *5 (-240 (-2431 *3) (-777))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-487 *3 *4)) + (-14 *3 (-650 (-1186))) (-4 *4 (-1058))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1166 *3)) (-4 *3 (-1109)) + (-4 *3 (-1226))))) +(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1226)) (-5 *2 (-777))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-368)) (-5 *1 (-1034 *3 *2)) (-4 *2 (-662 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-368)) (-5 *2 (-2 (|:| -4313 *3) (|:| -3908 (-650 *5)))) + (-5 *1 (-1034 *5 *3)) (-5 *4 (-650 *5)) (-4 *3 (-662 *5))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-455 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) + (-14 *4 *2)))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-949 *5)) (-5 *3 (-776)) (-4 *5 (-1057)) - (-5 *1 (-1173 *4 *5)) (-14 *4 (-927))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-5 *2 (-650 (-1149 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1109) (-34))) (-4 *5 (-13 (-1109) (-34))) + (-5 *1 (-1150 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-650 (-1149 *3 *4))) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) (((*1 *2 *1) (-12 (-5 *2 - (-649 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226))))) - (-5 *1 (-564)))) + (-650 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))) + (-5 *1 (-565)))) ((*1 *2 *1) - (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-5 *2 (-649 *3)))) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-5 *2 (-650 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-649 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226))))) - (-5 *1 (-808))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-1288 *4 *5 *6 *7))) - (-5 *1 (-1288 *4 *5 *6 *7)))) + (-650 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227))))) + (-5 *1 (-809))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-854))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1252 (-171 *3)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) (-4 *7 (-799)) + (-4 *8 (-856)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3312 (-650 *9)))) + (-5 *3 (-650 *9)) (-4 *1 (-1219 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-562)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3312 (-650 *8)))) + (-5 *3 (-650 *8)) (-4 *1 (-1219 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2865 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-354)) (-5 *2 (-424 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1252 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) + (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-777))) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) + (-4 *3 (-1252 (-570))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) - (-4 *7 (-798)) (-4 *8 (-855)) (-5 *2 (-649 (-1288 *6 *7 *8 *9))) - (-5 *1 (-1288 *6 *7 *8 *9))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *2)) (-5 *4 (-1185)) (-4 *2 (-435 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-561)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-4 *1 (-1020)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1181 *1)) (-5 *3 (-927)) (-5 *4 (-867)) - (-4 *1 (-1020)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-927)) (-4 *4 (-13 (-853) (-367))) - (-4 *1 (-1076 *4 *2)) (-4 *2 (-1251 *4))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-1263 *3)) - (-4 *3 (-1225))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) + (-12 (-5 *4 (-650 (-777))) (-5 *5 (-777)) (-5 *2 (-424 *3)) + (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-777)) (-5 *2 (-424 *3)) (-5 *1 (-448 *3)) + (-4 *3 (-1252 (-570))))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-1016 *3)) + (-4 *3 (-1252 (-413 (-570)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-424 *3)) (-5 *1 (-1241 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-978 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) + (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-269 *3)) (-4 *3 (-856)) (-5 *2 (-777))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1226)) (-5 *2 (-777)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-680 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-879)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-977 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-569)) (|has| *1 (-6 -4448)) (-4 *1 (-377 *3)) - (-4 *3 (-1225))))) -(((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880)) + (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-474)) (-5 *1 (-1280)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-474)) + (-5 *1 (-1280)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266))) + (-5 *2 (-474)) (-5 *1 (-1280))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1252 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-323 *3 *4 *5)) (-4 *3 (-368)) + (-14 *4 (-1186)) (-14 *5 *3)))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *1) (-4 *1 (-498))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *1) (-4 *1 (-499))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2)) - (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448)))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2)) - (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448))))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-112)) - (-5 *2 (-1043)) (-5 *1 (-750))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1185)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-707 *3 *5 *6 *7)) - (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225)) - (-4 *7 (-1225)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-711 *3 *5 *6)) - (-4 *3 (-619 (-541))) (-4 *5 (-1225)) (-4 *6 (-1225))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97))))) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-1037 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-650 (-695 *3))) (-4 *3 (-1058)) (-5 *1 (-1037 *3))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-1190)) (-5 *1 (-1189))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-562)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-368)) (-5 *1 (-903 *2 *4)) + (-4 *2 (-1252 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-928)) (-4 *4 (-373)) (-4 *4 (-368)) (-5 *2 (-1182 *1)) + (-4 *1 (-333 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-174)) (-4 *3 (-368)) + (-4 *2 (-1252 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4)) + (-5 *1 (-534 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-591 *3)) (-4 *3 (-367))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) - (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-695 (-570))) (-5 *5 (-112)) (-5 *7 (-695 (-227))) + (-5 *3 (-570)) (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-760))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-695 (-227))) (-5 *6 (-112)) (-5 *7 (-695 (-570))) + (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-570)) (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1 *1) (-4 *1 (-498))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1 *1) (-4 *1 (-499))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) - ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))) -(((*1 *1) (-5 *1 (-828)))) -(((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-70 APROD)))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-761))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-435 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) - ((*1 *1 *1) (-4 *1 (-160)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *1 *1) (-5 *1 (-1184))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-928)) (-5 *1 (-1041 *2)) + (-4 *2 (-13 (-1109) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186)) + (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 (-227))) (-5 *4 (-1186)) + (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-570)) (-5 *2 (-650 (-2 (|:| -3801 *3) (|:| -3324 *4)))) + (-5 *1 (-702 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-243))))) +(((*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226))))) +(((*1 *1 *1) (-5 *1 (-1185))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 (-898 *6))) - (-5 *5 (-1 (-895 *6 *8) *8 (-898 *6) (-895 *6 *8))) (-4 *6 (-1108)) - (-4 *8 (-13 (-1057) (-619 (-898 *6)) (-1046 *7))) - (-5 *2 (-895 *6 *8)) (-4 *7 (-1057)) (-5 *1 (-947 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-1181 *3))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-650 (-777)))) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-413 (-570))))) (-5 *1 (-266)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-1103 (-384)))) (-5 *1 (-266))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1 *1) (-4 *1 (-498))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1 *1) (-4 *1 (-499))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-368)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) + (-5 *2 (-777)) (-5 *1 (-527 *4 *5 *6 *3)) (-4 *3 (-693 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-4 *3 (-562)) (-5 *2 (-777)))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *4 (-174)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-5 *2 (-777)) (-5 *1 (-694 *4 *5 *6 *3)) + (-4 *3 (-693 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-4 *5 (-562)) + (-5 *2 (-777))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-354)) (-4 *6 (-1252 *5)) + (-5 *2 + (-650 + (-2 (|:| -2077 (-695 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-695 *6))))) + (-5 *1 (-504 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2077 (-695 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-695 *6)))) + (-4 *7 (-1252 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-872 *4 *5 *6 *7)) + (-4 *4 (-1058)) (-14 *5 (-650 (-1186))) (-14 *6 (-650 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-4 *5 (-856)) (-4 *6 (-799)) + (-14 *8 (-650 *5)) (-5 *2 (-1281)) + (-5 *1 (-1288 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-956 *4 *6 *5)) + (-14 *9 (-650 *3)) (-14 *10 *3)))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) + (-5 *1 (-703)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-227))) + (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-703)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1142 (-227))) (-5 *3 (-1 (-950 (-227)) (-227) (-227))) + (-5 *4 (-1103 (-227))) (-5 *5 (-650 (-266))) (-5 *1 (-703))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-825)) (-14 *5 (-1185)) (-5 *2 (-649 (-1248 *5 *4))) - (-5 *1 (-1122 *4 *5)) (-5 *3 (-1248 *5 *4))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-248 *5 *6))) (-4 *6 (-457)) - (-5 *2 (-248 *5 *6)) (-14 *5 (-649 (-1185))) (-5 *1 (-636 *5 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-21)) (-4 *2 (-1225))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-412 *2)) (-4 *2 (-1251 *5)) - (-5 *1 (-812 *5 *2 *3 *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *3 (-661 *2)) (-4 *6 (-661 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-412 *2))) (-4 *2 (-1251 *5)) - (-5 *1 (-812 *5 *2 *3 *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *3 (-661 *2)) - (-4 *6 (-661 (-412 *2)))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-649 (-112))) (-5 *5 (-694 (-226))) - (-5 *6 (-694 (-569))) (-5 *7 (-226)) (-5 *3 (-569)) (-5 *2 (-1043)) - (-5 *1 (-759))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-949 *4)) (-4 *4 (-1057)) (-5 *1 (-1173 *3 *4)) - (-14 *3 (-927))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) + (-12 (-4 *4 (-1058)) (-4 *2 (-693 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1252 *4)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1261 *4 *5 *6)) + (|:| |%expon| (-323 *4 *5 *6)) + (|:| |%expTerms| + (-650 (-2 (|:| |k| (-413 (-570))) (|:| |c| *4)))))) + (|:| |%type| (-1168)))) + (-5 *1 (-1262 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1211) (-436 *3))) + (-14 *5 (-1186)) (-14 *6 *4)))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1 *1) (-4 *1 (-498))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1 *1) (-4 *1 (-499))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-569)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569))))) -(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 (-170 (-569))))) (-5 *2 (-649 (-170 *4))) - (-5 *1 (-382 *4)) (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-412 (-958 (-170 (-569)))))) - (-5 *4 (-649 (-1185))) (-5 *2 (-649 (-649 (-170 *5)))) - (-5 *1 (-382 *5)) (-4 *5 (-13 (-367) (-853)))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015)))) + ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015))))) +(((*1 *1) (-5 *1 (-603)))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1036 *5 *6 *7 *3))) (-5 *1 (-1036 *5 *6 *7 *3)) + (-4 *3 (-1074 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-650 *6)) (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1080 *3 *4 *5 *2)) (-4 *3 (-458)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1155 *5 *6 *7 *3))) (-5 *1 (-1155 *5 *6 *7 *3)) + (-4 *3 (-1074 *5 *6 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-551)))) +(((*1 *2 *2) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) (((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) + (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *4 (-1185)) - (-5 *1 (-1188)))) + (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *4 (-1186)) + (-5 *1 (-1189)))) ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1188)))) + (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1189)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-442)) (-5 *3 (-1185)) (-5 *1 (-1189)))) + (-12 (-5 *2 (-443)) (-5 *3 (-1186)) (-5 *1 (-1190)))) ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-442)) (-5 *3 (-649 (-1185))) (-5 *1 (-1189))))) -(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-383))) (-5 *1 (-265)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-371 *2)) (-4 *2 (-561)) (-4 *2 (-173)))) - ((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561))))) -(((*1 *2 *1) (-12 (-5 *2 (-294)) (-5 *1 (-283))))) + (-12 (-5 *2 (-443)) (-5 *3 (-650 (-1186))) (-5 *1 (-1190))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-603))) (-5 *1 (-603))))) +(((*1 *2 *1) + (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) + (-4 *5 (-240 (-2431 *3) (-777))) + (-14 *6 + (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *5)) + (-2 (|:| -2155 *2) (|:| -3283 *5)))) + (-4 *2 (-856)) (-5 *1 (-467 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-956 *4 *5 (-870 *3)))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-1108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-927)) - (-5 *1 (-533 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-379 *4 *2)) - (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448))))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1226)) (-4 *2 (-856)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-378 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-856)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 *1)) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) + (-14 *3 (-928)) (-4 *4 (-1058)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-827))))) +(((*1 *2 *2) (-12 (-5 *2 (-973 *3)) (-4 *3 (-1109)) (-5 *1 (-974 *3))))) (((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457))))) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) + (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) + (-5 *1 (-1117 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-212))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) - (-5 *2 (-423 *3)) (-5 *1 (-440 *4 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) - (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9)) - (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) - (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) - (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-367)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-367)) (-4 *3 (-173)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) - (-4 *2 (-692 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-694 *2)) (-4 *2 (-367)) (-4 *2 (-1057)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1131 *2 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-239 *2 *3)) (-4 *5 (-239 *2 *3)) (-4 *3 (-367)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-1196 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-1167)) (-5 *1 (-791))))) + (-12 (-5 *3 (-320 (-227))) (-5 *2 (-320 (-413 (-570)))) + (-5 *1 (-309))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-368)) (-5 *2 (-650 (-1166 *4))) (-5 *1 (-289 *4 *5)) + (-5 *3 (-1166 *4)) (-4 *5 (-1267 *4))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-130)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-650 (-413 *6))) (-5 *3 (-413 *6)) + (-4 *6 (-1252 *5)) (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-574 *5 *6))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-413 *6)) (|:| |h| *6) + (|:| |c1| (-413 *6)) (|:| |c2| (-413 *6)) (|:| -3678 *6))) + (-5 *1 (-1025 *5 *6)) (-5 *3 (-413 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-701 *3)) (-4 *3 (-1109)) + (-5 *2 (-650 (-2 (|:| -2219 *3) (|:| -3562 (-777)))))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1058)) (-4 *4 (-1109)) (-5 *2 (-650 *1)) + (-4 *1 (-387 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-741 *3 *4))) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-732)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-956 *3 *4 *5))))) (((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1225)) (-5 *2 (-776)) - (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1108)) (-5 *2 (-776)) (-5 *1 (-434 *3 *4)) - (-4 *3 (-435 *4)))) - ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-549 *3)) (-4 *3 (-550)))) - ((*1 *2) (-12 (-4 *1 (-768)) (-5 *2 (-776)))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-801 *3 *4)) - (-4 *3 (-802 *4)))) + (|partial| -12 (-4 *4 (-1230)) (-4 *5 (-1252 (-413 *2))) + (-4 *2 (-1252 *4)) (-5 *1 (-346 *3 *4 *2 *5)) + (-4 *3 (-347 *4 *2 *5)))) ((*1 *2) - (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-999 *3 *4)) - (-4 *3 (-1000 *4)))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-776)) (-5 *1 (-1004 *3 *4)) - (-4 *3 (-1005 *4)))) - ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1019 *3)) (-4 *3 (-1020)))) - ((*1 *2) (-12 (-4 *1 (-1057)) (-5 *2 (-776)))) - ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-1067 *3)) (-4 *3 (-1068))))) -(((*1 *1) (-5 *1 (-602)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1046 (-569))) (-4 *1 (-305)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-193)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-303)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 (-226))) (-5 *2 (-649 (-1167))) (-5 *1 (-308))))) -(((*1 *1 *1) (-4 *1 (-634))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010) (-1210)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-3 (-112) (-649 *1))) - (-4 *1 (-1079 *4 *5 *6 *3))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) - (-5 *4 (-1 (-226) (-226) (-226) (-226))) - (-5 *2 (-1 (-949 (-226)) (-226) (-226))) (-5 *1 (-702))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *3 (-649 (-569))) - (-5 *1 (-889))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-569)) (-5 *5 (-1167)) (-5 *6 (-694 (-226))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-393)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754))))) + (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1230)) + (-4 *4 (-1252 (-413 *2))) (-4 *2 (-1252 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-584))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) - (-4 *2 (-692 *3 *4 *5))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2403 (-649 *1)))) - (-4 *1 (-371 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-458 *3 *4 *5 *6)) - (|:| -2403 (-649 (-458 *3 *4 *5 *6))))) - (-5 *1 (-458 *3 *4 *5 *6)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *2)) (-5 *1 (-180 *2)) (-4 *2 (-310)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-649 (-649 *4))) (-5 *2 (-649 *4)) (-4 *4 (-310)) - (-5 *1 (-180 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *8)) - (-5 *4 - (-649 - (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-694 *7))))) - (-5 *5 (-776)) (-4 *8 (-1251 *7)) (-4 *7 (-1251 *6)) (-4 *6 (-353)) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| -2403 (-694 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-694 *7)))) - (-5 *1 (-503 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) + (-650 + (-650 + (-3 (|:| -3574 (-1186)) + (|:| -2183 (-650 (-3 (|:| S (-1186)) (|:| P (-959 (-570)))))))))) + (-5 *1 (-1190))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-649 *8))) (-5 *3 (-649 *8)) - (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) - (-4 *7 (-855)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8))))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-340 *3 *4 *5 *6)) (-4 *3 (-368)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-4 *6 (-347 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-132))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-4 *1 (-237 *3)))) + ((*1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) + (-5 *2 + (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-695 *3)))) + (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-1252 *3)) + (-5 *2 + (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-695 *3)))) + (-5 *1 (-774 *4 *5)) (-4 *5 (-415 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-354)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 *3)) + (-5 *2 + (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-695 *3)))) + (-5 *1 (-994 *4 *3 *5 *6)) (-4 *6 (-730 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-354)) (-4 *3 (-1252 *4)) (-4 *5 (-1252 *3)) + (-5 *2 + (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-695 *3)))) + (-5 *1 (-1285 *4 *3 *5 *6)) (-4 *6 (-415 *3 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-306))) ((*1 *1 *1) (-4 *1 (-306)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) + (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-5 *2 (-934)) (-5 *1 (-932 *3)) + (-4 *3 (-620 (-542))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-934)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934))))) (((*1 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1108) (-34))) - (-5 *2 (-112)) (-5 *1 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34)))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1167)) (-5 *5 (-694 (-226))) (-5 *6 (-226)) - (-5 *7 (-694 (-569))) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-226))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1 *1 *1) (-5 *1 (-383))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1 *1 *1) (-5 *1 (-384))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *2) (-12 (-5 *2 (-1128)) (-5 *1 (-333))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-319 (-383))) (-5 *1 (-308))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-827))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) + (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *1) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1266 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) - (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1266 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) - (-5 *1 (-1161 *3))))) + (-12 (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) (-4 *4 (-619 *2)) - (-5 *2 (-383)) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) - (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) - (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) - (-4 *4 (-619 *2)) (-5 *2 (-383)) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-855)) (-4 *5 (-619 *2)) (-5 *2 (-383)) - (-5 *1 (-790 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) - (-4 *3 (-13 (-1210) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-4 *5 (-13 (-561) (-1046 (-569)) (-147))) - (-5 *2 (-591 (-412 (-958 *5)))) (-5 *1 (-575 *5)) - (-5 *3 (-412 (-958 *5)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1169 *4)) (-4 *4 (-1057)) - (-5 *3 (-569))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)) (-4 *2 (-367)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-367)) (-5 *1 (-664 *4 *2)) - (-4 *2 (-661 *4))))) + (-12 (-5 *3 (-1144)) (-5 *2 (-697 (-284))) (-5 *1 (-169))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1186)) + (-5 *2 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *1 (-1189))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) + ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) + ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-570)) (-5 *2 (-1221 *3)) + (-5 *1 (-796 *3)) (-4 *3 (-983)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1221 *2)) (-4 *2 (-983))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-777)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-570)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-777)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) + (-249 *4 (-413 (-570))))) + (-5 *3 (-650 (-870 *4))) (-14 *4 (-650 (-1186))) (-14 *5 (-777)) + (-5 *1 (-511 *4 *5))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-305)))) - ((*1 *1 *1) (-4 *1 (-305))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) - ((*1 *1 *1) (-5 *1 (-867)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1150 *2 *3)) (-4 *2 (-13 (-1109) (-34))) + (-4 *3 (-13 (-1109) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-1101 *3)) (-4 *3 (-1225))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1143))) (-5 *1 (-1074))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-1187 (-412 (-569)))) - (-5 *1 (-191))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) - (-5 *2 (-649 (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5))))) - (-5 *1 (-986 *5)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5))))) + (-12 (-5 *2 (-570)) (-4 *1 (-1102 *3)) (-4 *3 (-1226))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1075))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1109))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) + (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) + (-5 *1 (-794)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-570)) (-5 *6 (-1 (-1281) (-1276 *5) (-1276 *5) (-384))) + (-5 *3 (-1276 (-384))) (-5 *5 (-384)) (-5 *2 (-1281)) + (-5 *1 (-794))))) (((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-5 *2 (-649 *1)) (-4 *1 (-1142 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-591 *2)) (-4 *2 (-367))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-808))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550)))) + (-12 (-4 *3 (-368)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) + (-5 *2 (-1276 *6)) (-5 *1 (-341 *3 *4 *5 *6)) + (-4 *6 (-347 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) + (-5 *2 (-695 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792))))) +(((*1 *1 *2) + (-12 (-5 *2 (-678 *3)) (-4 *3 (-856)) (-4 *1 (-379 *3 *4)) + (-4 *4 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) + (-5 *2 (-2 (|:| |num| (-1276 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-570)) (-5 *1 (-243)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4363 *3) (|:| -1993 (-776)))) (-5 *1 (-592 *3)) - (-4 *3 (-550))))) + (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-570)) (-5 *1 (-243))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-310) (-1046 (-569)) (-644 (-569)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-809 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1210) (-965)))))) -(((*1 *2 *1) (-12 (-4 *1 (-268 *2)) (-4 *2 (-855)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) +(((*1 *2 *1) (-12 (-4 *1 (-269 *2)) (-4 *2 (-856)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-869 *3)) (-14 *3 (-649 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-997)))) + (|partial| -12 (-5 *2 (-1186)) (-5 *1 (-870 *3)) (-14 *3 (-650 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-998)))) ((*1 *2 *1) - (-12 (-4 *4 (-1225)) (-5 *2 (-1185)) (-5 *1 (-1065 *3 *4)) - (-4 *3 (-1101 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1100 *3)) (-4 *3 (-1225)))) + (-12 (-4 *4 (-1226)) (-5 *2 (-1186)) (-5 *1 (-1066 *3 *4)) + (-4 *3 (-1102 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1101 *3)) (-4 *3 (-1226)))) ((*1 *2 *1) - (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-5 *2 (-1185)))) - ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1271 *3)) (-14 *3 *2)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) (-5 *3 (-569))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-5 *2 (-1186)))) + ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1272 *3)) (-14 *3 *2)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-799)) (-4 *4 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) + (-5 *1 (-748 *5 *4 *6 *3)) (-4 *3 (-956 *6 *5 *4))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776))))) -(((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) + (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-29 *4) (-1211))) + (-5 *1 (-589 *4 *2)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-592 (-413 (-959 *4)))) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *4)) + (-5 *1 (-595 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) + (-5 *1 (-336))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-928)) (-5 *1 (-792))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-777)) (-5 *5 (-650 *3)) (-4 *3 (-311)) (-4 *6 (-856)) + (-4 *7 (-799)) (-5 *2 (-112)) (-5 *1 (-631 *6 *7 *3 *8)) + (-4 *8 (-956 *3 *7 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-561)) (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-562))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *1) (-4 *1 (-287))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *1) (-4 *1 (-288))) ((*1 *2 *3) - (-12 (-5 *3 (-423 *4)) (-4 *4 (-561)) - (-5 *2 (-649 (-2 (|:| -1435 (-776)) (|:| |logand| *4)))) - (-5 *1 (-323 *4)))) + (-12 (-5 *3 (-424 *4)) (-4 *4 (-562)) + (-5 *2 (-650 (-2 (|:| -1436 (-777)) (|:| |logand| *4)))) + (-5 *1 (-324 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *2 *1) - (-12 (-5 *2 (-669 *3 *4)) (-5 *1 (-632 *3 *4 *5)) (-4 *3 (-855)) - (-4 *4 (-13 (-173) (-722 (-412 (-569))))) (-14 *5 (-927)))) + (-12 (-5 *2 (-670 *3 *4)) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) - (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4)))) + (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) + (-4 *5 (-856)) (-5 *1 (-1292 *4 *5 *2)) (-4 *2 (-1297 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) - (-4 *4 (-722 (-412 (-569)))) (-4 *3 (-855)) (-4 *4 (-173))))) + (-12 (-5 *2 (-777)) (-5 *1 (-1296 *3 *4)) + (-4 *4 (-723 (-413 (-570)))) (-4 *3 (-856)) (-4 *4 (-174))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) - ((*1 *1 *1) (-4 *1 (-1213)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-1057)) (-4 *4 (-173)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)) - (-4 *3 (-173))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-827))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *8)) (-4 *8 (-955 *5 *7 *6)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) - (-4 *7 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) - (|:| |wcond| (-649 (-958 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) - (-5 *1 (-930 *5 *6 *7 *8)) (-5 *4 (-649 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *8)) (-5 *4 (-649 (-1185))) (-4 *8 (-955 *5 *7 *6)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) - (-4 *7 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) - (|:| |wcond| (-649 (-958 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) - (-5 *1 (-930 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-694 *7)) (-4 *7 (-955 *4 *6 *5)) - (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *7)) (|:| |neqzro| (-649 *7)) - (|:| |wcond| (-649 (-958 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *4)))))))))) - (-5 *1 (-930 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *9)) (-5 *5 (-927)) (-4 *9 (-955 *6 *8 *7)) - (-4 *6 (-13 (-310) (-147))) (-4 *7 (-13 (-855) (-619 (-1185)))) - (-4 *8 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) - (|:| |wcond| (-649 (-958 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *6)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *6)))))))))) - (-5 *1 (-930 *6 *7 *8 *9)) (-5 *4 (-649 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-927)) - (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) - (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *9)) (|:| |neqzro| (-649 *9)) - (|:| |wcond| (-649 (-958 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *6)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *6)))))))))) - (-5 *1 (-930 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *8)) (-5 *4 (-927)) (-4 *8 (-955 *5 *7 *6)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) - (-4 *7 (-798)) - (-5 *2 - (-649 - (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) - (|:| |wcond| (-649 (-958 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) - (-5 *1 (-930 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 *9)) (-5 *5 (-1167)) - (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) - (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) - (-5 *1 (-930 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *9)) (-5 *4 (-649 (-1185))) (-5 *5 (-1167)) - (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) - (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) - (-5 *1 (-930 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *8)) (-5 *4 (-1167)) (-4 *8 (-955 *5 *7 *6)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) - (-4 *7 (-798)) (-5 *2 (-569)) (-5 *1 (-930 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 *10)) (-5 *5 (-927)) - (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) - (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569)) - (-5 *1 (-930 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-694 *10)) (-5 *4 (-649 (-1185))) (-5 *5 (-927)) - (-5 *6 (-1167)) (-4 *10 (-955 *7 *9 *8)) (-4 *7 (-13 (-310) (-147))) - (-4 *8 (-13 (-855) (-619 (-1185)))) (-4 *9 (-798)) (-5 *2 (-569)) - (-5 *1 (-930 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *9)) (-5 *4 (-927)) (-5 *5 (-1167)) - (-4 *9 (-955 *6 *8 *7)) (-4 *6 (-13 (-310) (-147))) - (-4 *7 (-13 (-855) (-619 (-1185)))) (-4 *8 (-798)) (-5 *2 (-569)) - (-5 *1 (-930 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) - (-5 *1 (-335)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-1100 (-958 (-569)))) (-5 *2 (-333)) - (-5 *1 (-335)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-680 *3)) (-4 *3 (-1057)) - (-4 *3 (-1108))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-162))))) -(((*1 *2 *1) - (-12 (-5 *2 (-867)) (-5 *1 (-1165 *3)) (-4 *3 (-1108)) - (-4 *3 (-1225))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-927)) (-5 *1 (-1038 *2)) - (-4 *2 (-13 (-1108) (-10 -8 (-15 -3012 ($ $ $)))))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-649 *3)) (|:| |image| (-649 *3)))) - (-5 *1 (-911 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-1185)) (-4 *6 (-435 *5)) - (-4 *5 (-1108)) (-5 *2 (-649 (-617 *6))) (-5 *1 (-578 *5 *6))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) + ((*1 *1 *1) (-4 *1 (-1214)))) (((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) + (-12 (-4 *3 (-354)) (-4 *4 (-333 *3)) (-4 *5 (-1252 *4)) + (-5 *1 (-783 *3 *4 *5 *2 *6)) (-4 *2 (-1252 *5)) (-14 *6 (-928)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1295 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) + ((*1 *1 *1) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-368)) (-4 *2 (-373))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-570)) (|has| *1 (-6 -4449)) (-4 *1 (-378 *3)) + (-4 *3 (-1226))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-237 *3)) + (-4 *3 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1226))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1151 *4 *2)) (-14 *4 (-928)) + (-4 *2 (-13 (-1058) (-10 -7 (-6 (-4450 "*"))))) + (-5 *1 (-909 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-928)) (-5 *1 (-1039 *2)) + (-4 *2 (-13 (-1109) (-10 -8 (-15 -3014 ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) + (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) +(((*1 *1) (-5 *1 (-584)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) + (-4 *4 (-354)) (-5 *2 (-695 *4)) (-5 *1 (-351 *4))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) +(((*1 *2 *3) + (-12 (-4 *4 (-368)) (-4 *4 (-562)) (-4 *5 (-1252 *4)) + (-5 *2 (-2 (|:| -4116 (-629 *4 *5)) (|:| -3282 (-413 *5)))) + (-5 *1 (-629 *4 *5)) (-5 *3 (-413 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) + (-14 *3 (-928)) (-4 *4 (-1058)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-458)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1252 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-4 *3 (-1109)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) + (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) + (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) - ((*1 *1 *1) (-4 *1 (-1213)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) - (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *1) (-5 *1 (-564)))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-649 (-1275 *4))) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) - (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-4 *3 (-561)) - (-5 *2 (-649 (-1275 *3)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) - (-4 *2 (-457)))) - ((*1 *1 *1) - (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2)) - (-4 *4 (-1251 (-412 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-457)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)) (-4 *3 (-457)))) - ((*1 *1 *1) - (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-310)) (-4 *3 (-561)) (-5 *1 (-1172 *3 *2)) - (-4 *2 (-1251 *3))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-865)) (-5 *2 (-696 (-1233))) (-5 *3 (-1233))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) + ((*1 *1 *1) (-4 *1 (-1214)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-112)) + (-5 *1 (-266))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2134 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-368)) (-4 *7 (-1252 *6)) + (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) + (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-512)) (-5 *3 (-650 (-882))) (-5 *1 (-489))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) - (-5 *2 (-383)) (-5 *1 (-269)))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) (-5 *2 (-570)) (-5 *1 (-449 *4 *3 *5)) + (-4 *3 (-1252 *4)) + (-4 *5 (-13 (-410) (-1047 *4) (-368) (-1211) (-288)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-856)) (-4 *5 (-916)) (-4 *6 (-799)) + (-4 *8 (-956 *5 *6 *7)) (-5 *2 (-424 (-1182 *8))) + (-5 *1 (-913 *5 *6 *7 *8)) (-5 *4 (-1182 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-383)) (-5 *1 (-308))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185))))) -(((*1 *1) (-5 *1 (-511)))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1108) (-34))) (-4 *6 (-13 (-1108) (-34))) - (-5 *2 (-112)) (-5 *1 (-1148 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-4 *4 (-916)) (-4 *5 (-1252 *4)) (-5 *2 (-424 (-1182 *5))) + (-5 *1 (-914 *4 *5)) (-5 *3 (-1182 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1047 (-570))) (-4 *1 (-306)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-551)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-650 *3)) (-5 *1 (-968 *3)) (-4 *3 (-551))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-38 (-413 (-570)))) + (-4 *2 (-174))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) - ((*1 *1 *1) (-4 *1 (-1213)))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) - (-5 *1 (-761))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-457)) - (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-927)) - (-5 *2 - (-3 (-1181 *4) - (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128))))))) - (-5 *1 (-350 *4)) (-4 *4 (-353))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1043)) (-5 *3 (-1185)) (-5 *1 (-269))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) - (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) - (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) - (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *8))) - (-5 *1 (-917 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) - (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) - (-4 *6 (-346 (-412 (-569)) *4 *5)) - (-5 *2 (-2 (|:| -1466 (-776)) (|:| -1699 *6))) - (-5 *1 (-918 *4 *5 *6))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-649 - (-2 - (|:| -2006 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) - (|:| |yinit| (-649 (-226))) (|:| |intvals| (-649 (-226))) - (|:| |g| (-319 (-226))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (|:| -2216 - (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) - (|:| |expense| (-383)) (|:| |accuracy| (-383)) - (|:| |intermediateResults| (-383))))))) - (-5 *1 (-808))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-649 (-486 *4 *5))) (-5 *3 (-869 *4)) - (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) + ((*1 *1 *1) (-4 *1 (-1214)))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) + (-5 *4 (-650 (-928))) (-5 *5 (-650 (-266))) (-5 *1 (-474)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) + (-5 *4 (-650 (-928))) (-5 *1 (-474)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474)))) + ((*1 *1 *1) (-5 *1 (-474)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *1) (-5 *1 (-1072)))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-378 *2)) (-4 *2 (-1226)) + (-4 *2 (-856)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4449)) + (-4 *1 (-378 *3)) (-4 *3 (-1226))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1135 *4 *3 *5))) (-4 *4 (-38 (-413 (-570)))) + (-4 *4 (-1058)) (-4 *3 (-856)) (-5 *1 (-1135 *4 *3 *5)) + (-4 *5 (-956 *4 (-537 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1220 *4))) (-5 *3 (-1186)) (-5 *1 (-1220 *4)) + (-4 *4 (-38 (-413 (-570)))) (-4 *4 (-1058))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) - ((*1 *1 *1) (-4 *1 (-1213)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-602)) (-5 *1 (-590))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *2)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1165 *4)) (-5 *3 (-1 *4 (-569))) (-4 *4 (-1057)) - (-5 *1 (-1169 *4))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) + ((*1 *1 *1) (-4 *1 (-1214)))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-762))))) (((*1 *2 *1) - (-12 (-5 *2 (-1275 (-776))) (-5 *1 (-680 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-226)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-412 (-569))) (-5 *1 (-383))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3))))) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *2)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147))) - (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) - (-5 *1 (-1137 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147))) - (-5 *2 (-1174 (-649 (-319 *5)) (-649 (-297 (-319 *5))))) - (-5 *1 (-1137 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))) -(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-103 *3)) (-4 *3 (-1108))))) + (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 *5)) (-4 *5 (-368)) + (-4 *5 (-562)) (-5 *2 (-1276 *5)) (-5 *1 (-644 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 *5)) + (-1748 (-4 *5 (-368))) (-4 *5 (-562)) (-5 *2 (-1276 (-413 *5))) + (-5 *1 (-644 *5 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-311)) (-5 *1 (-461 *3 *2)) (-4 *2 (-1252 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-311)) (-5 *1 (-466 *3 *2)) (-4 *2 (-1252 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-311)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-777))) + (-5 *1 (-545 *3 *2 *4 *5)) (-4 *2 (-1252 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) + (-14 *4 (-650 (-1186))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) + (-14 *4 (-650 (-1186)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-650 (-650 (-650 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-650 *5)) (-4 *5 (-856)) (-5 *1 (-1197 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) + (-5 *2 (-1281)) (-5 *1 (-1189)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) + (-5 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *2 (-1281)) + (-5 *1 (-1189)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1186)) + (-5 *4 (-3 (|:| |fst| (-440)) (|:| -2582 "void"))) (-5 *2 (-1281)) + (-5 *1 (-1189))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) - ((*1 *1 *1) (-4 *1 (-1213)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-319 (-226)))) (-5 *4 (-776)) - (-5 *2 (-694 (-226))) (-5 *1 (-269))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-569)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-876 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-876 *2)) (-14 *2 (-569)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-569)) (-14 *3 *2) (-5 *1 (-877 *3 *4)) - (-4 *4 (-874 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-569)) (-5 *1 (-877 *2 *3)) (-4 *3 (-874 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-569)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-1266 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1237 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1266 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-5 *1 (-996 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-649 *7)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-5 *1 (-1115 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1167)) (-5 *4 (-170 (-226))) (-5 *5 (-569)) - (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-259))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-826))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-38 (-412 (-569)))) - (-4 *2 (-173))))) -(((*1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1057)) (-4 *3 (-1108)) - (-5 *2 (-2 (|:| |val| *1) (|:| -1993 (-569)))) (-4 *1 (-435 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-898 *3)) (|:| -1993 (-898 *3)))) - (-5 *1 (-898 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) + ((*1 *1 *1) (-4 *1 (-1214)))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-695 *7)) (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) + (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *1 (-931 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))) + (-5 *4 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *1 (-1029 *3)) (-4 *3 (-1252 (-570))) (-5 *4 (-413 (-570))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-413 (-570))) + (-5 *2 (-650 (-2 (|:| -4399 *5) (|:| -4411 *5)))) (-5 *1 (-1029 *3)) + (-4 *3 (-1252 (-570))) (-5 *4 (-2 (|:| -4399 *5) (|:| -4411 *5))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) - (-4 *7 (-955 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -1993 (-569)))) - (-5 *1 (-956 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) - (-15 -4412 (*7 $)))))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *2) - (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) - (-5 *2 (-649 (-649 *4))) (-5 *1 (-345 *3 *4 *5 *6)) - (-4 *3 (-346 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-4 *3 (-372)) (-5 *2 (-649 (-649 *3)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-569))))) + (-12 + (-5 *2 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *1 (-1030 *3)) (-4 *3 (-1252 (-413 (-570)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *1 (-1030 *3)) (-4 *3 (-1252 (-413 (-570)))) + (-5 *4 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-413 (-570))) + (-5 *2 (-650 (-2 (|:| -4399 *4) (|:| -4411 *4)))) (-5 *1 (-1030 *3)) + (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-413 (-570))) + (-5 *2 (-650 (-2 (|:| -4399 *5) (|:| -4411 *5)))) (-5 *1 (-1030 *3)) + (-4 *3 (-1252 *5)) (-5 *4 (-2 (|:| -4399 *5) (|:| -4411 *5)))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1186)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-650 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1211) (-27) (-436 *8))) + (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4411 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1022 *8 *4))))) +(((*1 *1 *1) (-4 *1 (-551)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1072))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-799)) + (-4 *3 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *5 (-562)) + (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *3 + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *6)) + (-4 *6 + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2)) + (-4 *2 (-956 (-959 *4) *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-335 *2)) (-4 *2 (-856)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) - ((*1 *1 *1) (-4 *1 (-1213)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) + ((*1 *1 *1) (-4 *1 (-1214)))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) + (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1275 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-367)) - (-4 *1 (-729 *5 *6)) (-4 *5 (-173)) (-4 *6 (-1251 *5)) - (-5 *2 (-694 *5))))) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1058)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-950 (-227))) (-5 *1 (-1222)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1058))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3906 (-114)) (|:| |arg| (-649 (-898 *3))))) - (-5 *1 (-898 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-649 (-898 *4))) - (-5 *1 (-898 *4)) (-4 *4 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1108)) (-4 *2 (-906 *4)) (-5 *1 (-697 *4 *2 *5 *3)) - (-4 *5 (-377 *2)) (-4 *3 (-13 (-377 *4) (-10 -7 (-6 -4447))))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *2 (-649 (-412 (-569)))) (-5 *1 (-1028 *4)) - (-4 *4 (-1251 (-569)))))) -(((*1 *1 *1) (-4 *1 (-634))) + (|partial| -12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1058)) + (-4 *2 (-1236 *3))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1044)) (-5 *1 (-762))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3)) + (-4 *3 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3))) + (-4 *3 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-592 *3)) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *1 *1) (-4 *1 (-635))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010) (-1210)))))) -(((*1 *1 *1) (-4 *1 (-1152)))) + (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011) (-1211)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-497)) (-5 *4 (-961)) (-5 *2 (-697 (-539))) + (-5 *1 (-539)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-961)) (-4 *3 (-1109)) (-5 *2 (-697 *1)) + (-4 *1 (-773 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-227)) (-5 *1 (-309))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-880)) (-5 *3 (-650 (-266))) (-5 *1 (-264))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1174 3 *3)) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) + ((*1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-688 *4 *3)) (-4 *4 (-1108)) - (-4 *3 (-1108))))) + (-12 (-5 *3 (-777)) (-5 *2 (-1182 *4)) (-5 *1 (-534 *4)) + (-4 *4 (-354))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-2 (|:| -3801 (-1182 *6)) (|:| -3283 (-570))))) + (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-570)) + (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-777)) (-5 *2 (-1281))))) +(((*1 *1) (-5 *1 (-1281)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) + (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-4 *1 (-844)) - (-5 *3 - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) - (-5 *2 (-1043)))) + (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270)))) ((*1 *2 *3) - (-12 (-4 *1 (-844)) - (-5 *3 - (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) - (-5 *2 (-1043))))) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-570)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-912 *3)) (-4 *3 (-1109)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) + (-4 *3 (-1252 *4)) (-5 *2 (-570)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-562) (-1047 *2) (-645 *2) (-458))) + (-5 *2 (-570)) (-5 *1 (-1125 *4 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) + (-5 *1 (-1125 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-1168)) + (-4 *6 (-13 (-562) (-1047 *2) (-645 *2) (-458))) (-5 *2 (-570)) + (-5 *1 (-1125 *6 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-570)) + (-5 *1 (-1126 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-849 (-413 (-959 *6)))) + (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-570)) + (-5 *1 (-1126 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1186)) + (-5 *5 (-1168)) (-4 *6 (-458)) (-5 *2 (-570)) (-5 *1 (-1126 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-570)) (-5 *1 (-1208 *3)) (-4 *3 (-1058))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-867)))) + ((*1 *1 *2) (-12 (-5 *2 (-394)) (-5 *1 (-867))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1186)) (-5 *2 (-443)) (-5 *1 (-1190))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-777)) (-4 *1 (-1252 *3)) (-4 *3 (-1058))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-650 (-618 *3))) + (|:| |vals| (-650 *3)))) + (-5 *1 (-280 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-237 *3)) + (-4 *3 (-1109)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-237 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-286 *2)) (-4 *2 (-1226)) (-4 *2 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109)) + (-5 *1 (-743 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) - (-5 *2 (-112)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))) + (-12 (-5 *2 (-1111 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1111 *3)) (-5 *1 (-912 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1252 *5)) (-4 *5 (-368)) + (-5 *2 (-2 (|:| -2134 (-413 *6)) (|:| |coeff| (-413 *6)))) + (-5 *1 (-580 *5 *6)) (-5 *3 (-413 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-227))) (-5 *4 (-777)) (-5 *2 (-695 (-227))) + (-5 *1 (-309))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) - (-4 *3 (-13 (-367) (-147) (-1046 (-569)))) (-5 *1 (-573 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-757))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-91 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-928)) (-4 *1 (-410)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-4 *1 (-410)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *2 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777))))) +(((*1 *1 *1) (-4 *1 (-635))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011) (-1211)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) (-12 (-5 *2 (-424 *3)) (-5 *1 (-564 *3)) (-4 *3 (-551)))) + ((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) (-5 *2 (-424 *3)) + (-5 *1 (-748 *4 *5 *6 *3)) (-4 *3 (-956 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-311)) + (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 *7))) + (-5 *1 (-748 *4 *5 *6 *7)) (-5 *3 (-1182 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-458)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-424 *1)) (-4 *1 (-956 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-856)) (-4 *5 (-799)) (-4 *6 (-458)) (-5 *2 (-424 *3)) + (-5 *1 (-988 *4 *5 *6 *3)) (-4 *3 (-956 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-458)) + (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-424 (-1182 (-413 *7)))) + (-5 *1 (-1181 *4 *5 *6 *7)) (-5 *3 (-1182 (-413 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-424 *1)) (-4 *1 (-1230)))) + ((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-424 *3)) (-5 *1 (-1255 *4 *3)) + (-4 *3 (-13 (-1252 *4) (-562) (-10 -8 (-15 -1869 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-14 *5 (-650 (-1186))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-193))))) + (-650 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6))))) + (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1058)) + (-5 *1 (-325 *4 *5 *2 *6)) (-4 *6 (-956 *2 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) + (-12 (-4 *2 (-1226)) (-5 *1 (-879 *3 *2)) (-4 *3 (-1226)))) + ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-561)) - (-4 *7 (-955 *3 *5 *6)) - (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *8) (|:| |radicand| *8))) - (-5 *1 (-959 *5 *6 *3 *7 *8)) (-5 *4 (-776)) - (-4 *8 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $)))))))) -(((*1 *1) (-5 *1 (-1280)))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-798))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 (-2 (|:| -3801 (-1182 *6)) (|:| -3283 (-570))))) + (-4 *6 (-311)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1143 *2)) (-4 *2 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-653 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-650 *1)) (-4 *1 (-311))))) +(((*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-493)))) + ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-311)))) + ((*1 *2 *1) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570)))) + ((*1 *1 *1) (-4 *1 (-1069)))) +(((*1 *2 *3) (-12 (-5 *3 (-320 (-227))) (-5 *2 (-112)) (-5 *1 (-270))))) (((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-5 *2 (-1275 *3)) (-5 *1 (-717 *3 *4)) - (-4 *4 (-1251 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-649 (-958 *4))) (-5 *3 (-649 (-1185))) (-4 *4 (-457)) - (-5 *1 (-924 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-412 (-569))) (-5 *1 (-308))))) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057)))) - ((*1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-582)))) - ((*1 *1 *2) (-12 (-5 *2 (-393)) (-5 *1 (-582))))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-368)) (-4 *5 (-562)) + (-5 *2 + (-2 (|:| |minor| (-650 (-928))) (|:| -4313 *3) + (|:| |minors| (-650 (-650 (-928)))) (|:| |ops| (-650 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-928)) (-4 *3 (-662 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1160))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-588))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-13 (-1058) (-723 (-413 (-570))))) + (-4 *5 (-856)) (-5 *1 (-1292 *4 *5 *2)) (-4 *2 (-1297 *5 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-1230)) + (-4 *6 (-1252 (-413 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-347 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-1108)) (-5 *2 (-649 *1)) - (-4 *1 (-386 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-740 *3 *4))) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-731)))) + (|partial| -12 (-4 *3 (-1058)) (-4 *3 (-1109)) + (-5 *2 (-2 (|:| |val| *1) (|:| -3283 (-570)))) (-4 *1 (-436 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-955 *3 *4 *5))))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -3283 (-899 *3)))) + (-5 *1 (-899 *3)) (-4 *3 (-1109)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) + (-4 *7 (-956 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -3283 (-570)))) + (-5 *1 (-957 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) + (-15 -4413 (*7 $)))))))) (((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 (-694 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-454 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5))))) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *2 (-1275 (-319 (-383)))) - (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 (-1275 (-569)))) (-5 *3 (-927)) (-5 *1 (-471))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1181 *1)) (-5 *3 (-1185)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-958 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1185)) (-4 *1 (-29 *3)) (-4 *3 (-561)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-561))))) -(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1148 *3 *2)) (-4 *3 (-13 (-1108) (-34))) - (-4 *2 (-13 (-1108) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1058)) (-5 *1 (-1248 *3 *2)) (-4 *2 (-1252 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) + (-5 *2 (-112)) (-5 *1 (-996 *3 *4 *5 *6)) + (-4 *6 (-956 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-319 (-226))) (-5 *2 (-319 (-412 (-569)))) - (-5 *1 (-308))))) + (-12 (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *2 (-650 *3)) (-5 *1 (-986 *4 *5 *6 *3)) + (-4 *3 (-1074 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *2)) (-5 *1 (-181 *2)) (-4 *2 (-311)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-650 (-650 *4))) (-5 *2 (-650 *4)) (-4 *4 (-311)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 *8)) + (-5 *4 + (-650 + (-2 (|:| -2077 (-695 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-695 *7))))) + (-5 *5 (-777)) (-4 *8 (-1252 *7)) (-4 *7 (-1252 *6)) (-4 *6 (-354)) + (-5 *2 + (-2 (|:| -2077 (-695 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-695 *7)))) + (-5 *1 (-504 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-798)) - (-4 *3 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) (-4 *5 (-561)) - (-5 *1 (-737 *4 *3 *5 *2)) (-4 *2 (-955 (-412 (-958 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *3 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-5 *1 (-992 *4 *5 *3 *2)) (-4 *2 (-955 (-958 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *6)) - (-4 *6 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-4 *4 (-1057)) (-4 *5 (-798)) (-5 *1 (-992 *4 *5 *6 *2)) - (-4 *2 (-955 (-958 *4) *5 *6))))) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-542))) (-5 *1 (-542))))) +(((*1 *2 *1) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1109) (-1047 *5))) + (-4 *5 (-893 *4)) (-4 *4 (-1109)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-938 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-570)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-884 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-886 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-950 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 (-950 *3))) (-4 *3 (-1058)) (-4 *1 (-1143 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-950 *3))) (-4 *1 (-1143 *3)) (-4 *3 (-1058))))) +(((*1 *2 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-384))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-246 *2)) (-4 *2 (-1226))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) + (-4 *4 (-174))))) +(((*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1203 *4 *5)) + (-4 *4 (-1109)) (-4 *5 (-1109))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *2 (-1043)) (-5 *1 (-308)))) - ((*1 *2 *3) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) + (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-650 (-320 (-227)))) + (|:| -2310 (-650 (-227))))))) + (-5 *2 (-650 (-1168))) (-5 *1 (-270))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1044))))) +(((*1 *2 *2) (-12 (-5 *2 (-1103 (-849 (-227)))) (-5 *1 (-309))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1153)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) - (-5 *2 (-1043)) (-5 *1 (-308))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-927)) (-4 *1 (-409)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-4 *1 (-409)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *2 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *1 *1) (-4 *1 (-634))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010) (-1210)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) - (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1077 *7 *8 *9 *3 *4)) (-4 *4 (-1079 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) + (-650 + (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *3)) + (|:| |logand| (-1182 *3))))) + (-5 *1 (-592 *3)) (-4 *3 (-368))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-553)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-618 *4)) (-4 *4 (-1109)) (-4 *2 (-1109)) + (-5 *1 (-617 *2 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1077 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1078 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1077 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-776)) (-5 *6 (-112)) (-4 *7 (-457)) (-4 *8 (-798)) - (-4 *9 (-855)) (-4 *3 (-1073 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1153 *7 *8 *9 *3 *4)) (-4 *4 (-1117 *7 *8 *9 *3)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1078 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-776)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) + (-12 (-5 *5 (-777)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *3 (-1074 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1153 *6 *7 *8 *3 *4)) (-4 *4 (-1117 *6 *7 *8 *3)))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1154 *6 *7 *8 *3 *4)) (-4 *4 (-1118 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-649 *4)) - (|:| |todo| (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))))) - (-5 *1 (-1153 *5 *6 *7 *3 *4)) (-4 *4 (-1117 *5 *6 *7 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1046 (-48))) - (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) - (-5 *2 (-423 (-1181 (-48)))) (-5 *1 (-440 *4 *5 *3)) - (-4 *3 (-1251 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-4 *4 (-353)) (-5 *2 (-112)) (-5 *1 (-217 *4 *3)) - (-4 *3 (-1251 *4))))) + (-2 (|:| |done| (-650 *4)) + (|:| |todo| (-650 (-2 (|:| |val| (-650 *3)) (|:| -3665 *4)))))) + (-5 *1 (-1154 *5 *6 *7 *3 *4)) (-4 *4 (-1118 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *2 (-1225)) (-5 *1 (-878 *3 *2)) (-4 *3 (-1225)))) - ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3)) - (|:| |coef2| (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-649 *7))) (-4 *1 (-1218 *4 *5 *6 *7)) - (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-855)) (-4 *5 (-915)) (-4 *6 (-798)) - (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-423 (-1181 *8))) - (-5 *1 (-912 *5 *6 *7 *8)) (-5 *4 (-1181 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) - (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5))))) -(((*1 *1 *1) (-4 *1 (-174))) - ((*1 *1 *1) - (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-958 (-569)))) (-5 *4 (-649 (-1185))) - (-5 *2 (-649 (-649 (-383)))) (-5 *1 (-1031)) (-5 *5 (-383)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) - (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) - (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-454 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-649 *2)) (-5 *1 (-1199 *2)) (-4 *2 (-367))))) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-545 *4 *2 *5 *6)) + (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777)))))) +(((*1 *1) + (-12 (-4 *3 (-1109)) (-5 *1 (-892 *2 *3 *4)) (-4 *2 (-1109)) + (-4 *4 (-672 *3)))) + ((*1 *1) (-12 (-5 *1 (-896 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-266))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) + (-12 (-4 *3 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-562) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-280 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4))))) + ((*1 *1 *1) (-5 *1 (-384))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-145))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-543 *3 *2)) + (-4 *2 (-1267 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-4 *4 (-1252 *3)) + (-4 *5 (-730 *3 *4)) (-5 *1 (-547 *3 *4 *5 *2)) (-4 *2 (-1267 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-368) (-373) (-620 (-570)))) (-5 *1 (-548 *3 *2)) + (-4 *2 (-1267 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-562) (-148))) + (-5 *1 (-1162 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-334))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-412 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1251 *5)) - (-5 *1 (-732 *5 *2)) (-4 *5 (-367))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-226)) (-5 *3 (-776)) (-5 *1 (-227)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-170 (-226))) (-5 *3 (-776)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-561)) (-5 *1 (-977 *4 *2)) - (-4 *2 (-1251 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-569)) (-5 *1 (-1165 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798)) - (-5 *2 (-112)) (-5 *1 (-995 *3 *4 *5 *6)) - (-4 *6 (-955 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) - (-4 *2 (-173))))) -(((*1 *2 *1) (-12 (-4 *1 (-514 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-855))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) + (-5 *2 (-650 (-1103 (-227)))) (-5 *1 (-935))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1153)) (-5 *3 (-570)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-933)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-933)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-950 (-227)) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) + ((*1 *1 *1) (|partial| -4 *1 (-728)))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-649 (-541))) (-5 *1 (-541))))) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-570)) (-4 *4 (-354)) + (-5 *1 (-534 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-457)) - (-5 *2 - (-649 - (-2 (|:| |eigval| (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4)))) - (|:| |eigmult| (-776)) - (|:| |eigvec| (-649 (-694 (-412 (-958 *4)))))))) - (-5 *1 (-295 *4)) (-5 *3 (-694 (-412 (-958 *4))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-412 (-569)))) - (-5 *2 (-2 (|:| -2601 (-1165 *4)) (|:| -2614 (-1165 *4)))) - (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4))))) -(((*1 *2) - (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-347 *3 *4)) (-14 *3 (-927)) - (-14 *4 (-927)))) - ((*1 *2) - (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-348 *3 *4)) (-4 *3 (-353)) - (-14 *4 (-1181 *3)))) - ((*1 *2) - (-12 (-5 *2 (-964 (-1128))) (-5 *1 (-349 *3 *4)) (-4 *3 (-353)) - (-14 *4 (-927))))) -(((*1 *2 *1) - (-12 (-4 *3 (-173)) (-4 *2 (-23)) (-5 *1 (-292 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1251 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-173)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1251 *3)) (-5 *1 (-717 *3 *2)) (-4 *3 (-1057)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-720 *3 *2 *4 *5 *6)) (-4 *3 (-173)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-874 *3)) (-5 *2 (-569))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-792)) (-5 *2 (-1043)) + (-12 (-5 *3 - (-2 (|:| |fn| (-319 (-226))) - (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-792)) (-5 *2 (-1043)) + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *2 (-1044)) (-5 *1 (-309)))) + ((*1 *2 *3) + (-12 (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-985 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) - ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) - ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) - ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) -(((*1 *1) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))) + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) + (-5 *2 (-1044)) (-5 *1 (-309))))) +(((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-928)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-928)) + (-5 *1 (-534 *4))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-570)) (-14 *3 (-777)) + (-4 *4 (-174))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-728)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-732)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-5 *2 (-649 *3)))) + (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-5 *2 (-650 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-649 *3)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-650 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1165 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-1166 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-5 *2 (-649 *3)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-649 *3)))) + (-12 (-5 *2 (-650 *3)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-732)))) + ((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-650 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1266 *3)) (-4 *3 (-1057)) (-5 *2 (-1165 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-755))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-1046 (-569)) (-457) (-644 (-569)))) - (-5 *2 (-2 (|:| -2587 *3) (|:| |nconst| *3))) (-5 *1 (-572 *5 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-830))))) -(((*1 *1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-377 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1152)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-649 (-649 *4)))) (-5 *2 (-649 (-649 *4))) - (-5 *1 (-1196 *4)) (-4 *4 (-855))))) -(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-226)) (-5 *1 (-1278)))) - ((*1 *2) (-12 (-5 *2 (-226)) (-5 *1 (-1278))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -4410 *7) (|:| |sol?| (-112))) - (-569) *7)) - (-5 *6 (-649 (-412 *8))) (-4 *7 (-367)) (-4 *8 (-1251 *7)) - (-5 *3 (-412 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-579 *7 *8))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-569)) (-5 *1 (-1118)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1275 (-569))) (-5 *3 (-649 (-569))) (-5 *4 (-569)) - (-5 *1 (-1118))))) -(((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6))))) -(((*1 *1) - (-12 (-4 *3 (-1108)) (-5 *1 (-891 *2 *3 *4)) (-4 *2 (-1108)) - (-4 *4 (-671 *3)))) - ((*1 *1) (-12 (-5 *1 (-895 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-927)) (-5 *1 (-791))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-797))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-144))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1290 (-1185) *3)) (-4 *3 (-1057)) (-5 *1 (-1297 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1290 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *1 (-1299 *3 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-766)))) -(((*1 *2 *3) - (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7))) - (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) - (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-756))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1152)) (-5 *3 (-569)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1242 *3)) (-4 *3 (-1225))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1165 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) -(((*1 *2 *1) - (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-4 *3 (-372)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) (-5 *2 (-112)) - (-5 *1 (-361 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-112)) - (-5 *1 (-533 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1251 *3)) (-5 *1 (-404 *3 *2)) - (-4 *3 (-13 (-367) (-147)))))) -(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-361 *3)) (-4 *3 (-353))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-1057)) (-5 *2 (-1275 *4)) - (-5 *1 (-1186 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-5 *2 (-1275 *3)) (-5 *1 (-1186 *3)) - (-4 *3 (-1057))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) + (-12 (-4 *1 (-1267 *3)) (-4 *3 (-1058)) (-5 *2 (-1166 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-570)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1226)) + (-4 *5 (-378 *4)) (-4 *3 (-378 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-172)))))) -(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1057)) - (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) - (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3346 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-1126)) (-5 *1 (-1123))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-649 (-949 (-226))))) (-5 *2 (-649 (-226))) - (-5 *1 (-473))))) + (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) + (-5 *2 (-849 *4)) (-5 *1 (-317 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1211) (-436 *3))) (-14 *5 (-1186)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1047 (-570)) (-645 (-570)) (-458))) + (-5 *2 (-849 *4)) (-5 *1 (-1262 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1211) (-436 *3))) (-14 *5 (-1186)) + (-14 *6 *4)))) (((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-310)) (-4 *2 (-457)) (-4 *3 (-855)) - (-4 *4 (-798)) (-5 *1 (-995 *2 *3 *4 *5)) (-4 *5 (-955 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-319 (-569))) (-5 *1 (-1127)))) - ((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-173)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-5 *1 (-693 *4 *5 *6 *2)) - (-4 *2 (-692 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-314)))) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-650 *11)) + (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -3665 *11)))))) + (-5 *6 (-777)) + (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -3665 *11)))) + (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9)) + (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799)) + (-4 *9 (-856)) (-5 *1 (-1078 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-650 *11)) + (|:| |todo| (-650 (-2 (|:| |val| *3) (|:| -3665 *11)))))) + (-5 *6 (-777)) + (-5 *2 (-650 (-2 (|:| |val| (-650 *10)) (|:| -3665 *11)))) + (-5 *3 (-650 *10)) (-5 *4 (-650 *11)) (-4 *10 (-1074 *7 *8 *9)) + (-4 *11 (-1118 *7 *8 *9 *10)) (-4 *7 (-458)) (-4 *8 (-799)) + (-4 *9 (-856)) (-5 *1 (-1154 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-650 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-436 *4) (-1011))) (-4 *4 (-562)) + (-5 *1 (-279 *4 *2))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-315)))) ((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) + (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2) + (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) + (-5 *2 (-112)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1093 *3)) (-4 *3 (-133))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-378 *2)) + (-4 *4 (-378 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-602 *3)) (-4 *3 (-1058)))) + ((*1 *2 *1) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-4 *5 (-856)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-649 (-649 (-569)))) (-5 *1 (-979)) - (-5 *3 (-649 (-569)))))) -(((*1 *1) (-5 *1 (-602)))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1092 *3)) (-4 *3 (-132))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-695 *3))))) + (-12 (-5 *3 (-1182 *6)) (-4 *6 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-1182 *7)) (-5 *1 (-325 *4 *5 *6 *7)) + (-4 *7 (-956 *6 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1182 (-959 *4))) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) + ((*1 *2) + (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-4 *3 (-368)) + (-5 *2 (-1182 (-959 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1182 (-413 (-959 *3)))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-496)) (-5 *4 (-960)) (-5 *2 (-696 (-538))) - (-5 *1 (-538)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-960)) (-4 *3 (-1108)) (-5 *2 (-696 *1)) - (-4 *1 (-772 *3))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) - (-4 *4 (-173))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383)))) - ((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-383))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-649 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-4 *3 (-561))))) + (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) + (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1281)) + (-5 *1 (-1078 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-2 (|:| |val| (-650 *8)) (|:| -3665 *9)))) + (-5 *4 (-777)) (-4 *8 (-1074 *5 *6 *7)) (-4 *9 (-1118 *5 *6 *7 *8)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-1281)) + (-5 *1 (-1154 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) - (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280)) - (-5 *1 (-1077 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) - (-5 *4 (-776)) (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-1280)) - (-5 *1 (-1153 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-569)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-776)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-798)) (-4 *4 (-955 *5 *6 *7)) (-4 *5 (-457)) (-4 *7 (-855)) - (-5 *1 (-454 *5 *6 *7 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-4 *5 (-435 *4)) - (-5 *2 (-423 (-1181 (-412 (-569))))) (-5 *1 (-440 *4 *5 *3)) - (-4 *3 (-1251 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-1216 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-649 (-958 *3))) (-4 *3 (-457)) (-5 *1 (-364 *3 *4)) - (-14 *4 (-649 (-1185))))) - ((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-455 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-455 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-455 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) - (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-649 (-785 *3 (-869 *4)))) (-4 *3 (-457)) - (-14 *4 (-649 (-1185))) (-5 *1 (-633 *3 *4))))) -(((*1 *2 *1) - (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) - (-14 *6 - (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *2)) - (-2 (|:| -2150 *5) (|:| -1993 *2)))) - (-4 *2 (-239 (-2428 *3) (-776))) (-5 *1 (-466 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-855)) (-4 *7 (-955 *4 *2 (-869 *3)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *5)) (-4 *5 (-1251 *3)) (-4 *3 (-310)) - (-5 *2 (-112)) (-5 *1 (-460 *3 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-827)) (-5 *1 (-826))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-787 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-969 *3 *2)) (-4 *2 (-131)) (-4 *3 (-561)) - (-4 *3 (-1057)) (-4 *2 (-797)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-1181 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-979)) (-4 *2 (-131)) (-5 *1 (-1187 *3)) (-4 *3 (-561)) - (-4 *3 (-1057)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-1248 *4 *3)) (-14 *4 (-1185)) - (-4 *3 (-1057))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))) - (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-112)) (-4 *7 (-1073 *4 *5 *6)) - (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-985 *4 *5 *6 *7))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) (((*1 *2 *3) - (-12 (-5 *3 (-958 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) - ((*1 *2 *3) - (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) - ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 (-412 (-569)))) (-5 *2 (-649 *1)) (-4 *1 (-1020)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 *1)) (-4 *1 (-1020)) (-5 *2 (-649 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-853) (-367))) (-4 *3 (-1251 *4)) (-5 *2 (-649 *1)) - (-4 *1 (-1076 *4 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1043)) (-5 *1 (-308)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-1043))) (-5 *2 (-1043)) (-5 *1 (-308)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *1) (-5 *1 (-1071))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 (-1165 *4))) (-5 *2 (-1165 *4)) (-5 *1 (-1162 *4)) - (-4 *4 (-1225)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) + (-12 (-4 *2 (-368)) (-4 *2 (-854)) (-5 *1 (-952 *2 *3)) + (-4 *3 (-1252 *2))))) (((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-910 *4)) - (-4 *4 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-526 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) - (-4 *7 (-1000 *4)) (-4 *2 (-692 *7 *8 *9)) - (-5 *1 (-527 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-692 *4 *5 *6)) - (-4 *8 (-377 *7)) (-4 *9 (-377 *7)))) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) ((*1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)) (-4 *2 (-310)))) - ((*1 *2 *2) - (-12 (-4 *3 (-310)) (-4 *3 (-173)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) - (-4 *2 (-692 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1061 *2 *3 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *2 *4)) (-4 *4 (-310))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4))) + (-4 *4 (-856)) (-5 *1 (-1197 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-658 *4)) (-4 *4 (-346 *5 *6 *7)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2403 (-649 *4)))) - (-5 *1 (-811 *5 *6 *7 *4))))) -(((*1 *1 *1) (-4 *1 (-666)))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) (((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 (-569)))) (-5 *1 (-471))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-236 *3)))) - ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1108))))) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-570)) (-4 *5 (-354)) (-5 *2 (-424 (-1182 (-1182 *5)))) + (-5 *1 (-1224 *5)) (-5 *3 (-1182 (-1182 *5)))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) - (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *1 (-1028 *3)) (-4 *3 (-1251 (-569))) (-5 *4 (-412 (-569))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-412 (-569))) - (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1028 *3)) - (-4 *3 (-1251 (-569))) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-649 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569)))))) - (-5 *1 (-1029 *3)) (-4 *3 (-1251 (-412 (-569)))) - (-5 *4 (-2 (|:| -4398 (-412 (-569))) (|:| -4410 (-412 (-569))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-412 (-569))) - (-5 *2 (-649 (-2 (|:| -4398 *4) (|:| -4410 *4)))) (-5 *1 (-1029 *3)) - (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-412 (-569))) - (-5 *2 (-649 (-2 (|:| -4398 *5) (|:| -4410 *5)))) (-5 *1 (-1029 *3)) - (-4 *3 (-1251 *5)) (-5 *4 (-2 (|:| -4398 *5) (|:| -4410 *5)))))) -(((*1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-776))))) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-436 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-562))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-825 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-852)) (-5 *1 (-1299 *3 *2)) (-4 *3 (-1058))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1044)) (-5 *1 (-309)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-1044))) (-5 *2 (-1044)) (-5 *1 (-309)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *1) (-5 *1 (-1072))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 (-1166 *4))) (-5 *2 (-1166 *4)) (-5 *1 (-1163 *4)) + (-4 *4 (-1226)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-570))) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-562)) (-4 *8 (-956 *7 *5 *6)) + (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *9) (|:| |radicand| *9))) + (-5 *1 (-960 *5 *6 *7 *8 *9)) (-5 *4 (-777)) + (-4 *9 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *8)) (-15 -4400 (*8 $)) (-15 -4413 (*8 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-424 *3)) (-5 *1 (-921 *3)) (-4 *3 (-311))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *1 *1) (-4 *1 (-667)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-650 *8))) (-5 *3 (-650 *8)) + (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) (-4 *6 (-799)) + (-4 *7 (-856)) (-5 *2 (-112)) (-5 *1 (-986 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) + (-5 *2 (-1044)) (-5 *1 (-752))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-227)) (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *1 *1) (-4 *1 (-551)))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-849 *4)) (-5 *3 (-618 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1211) (-29 *6))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-226 *6 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1057)) (-4 *1 (-692 *3 *4 *5)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-867)))) (-5 *1 (-867)))) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-650 (-868)))) (-5 *1 (-868)))) ((*1 *2 *1) - (-12 (-5 *2 (-1150 *3 *4)) (-5 *1 (-1001 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-367)))) + (-12 (-5 *2 (-1151 *3 *4)) (-5 *1 (-1002 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-368)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *5))) (-4 *5 (-1057)) - (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *6 (-239 *4 *5)) - (-4 *7 (-239 *3 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2679 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-367)) (-4 *7 (-1251 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) - (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) - (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4447)) (-4 *1 (-34)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-251)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-569)))) - ((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-851))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1108)) (-5 *2 (-649 *1)) - (-4 *1 (-435 *3)))) + (-12 (-5 *2 (-650 (-650 *5))) (-4 *5 (-1058)) + (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *6 (-240 *4 *5)) + (-4 *7 (-240 *3 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-486))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4448)) (-4 *1 (-34)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-252)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) - (-4 *3 (-1108)))) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-570)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-649 *1)) (-4 *1 (-955 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) - (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *3)) - (-5 *1 (-956 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) - (-15 -4412 (*7 $)))))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) - ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-704))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) - (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-1288 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-649 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1288 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1181 *7)) (-4 *5 (-1057)) - (-4 *7 (-1057)) (-4 *2 (-1251 *5)) (-5 *1 (-506 *5 *2 *6 *7)) - (-4 *6 (-1251 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057)) - (-4 *4 (-1251 *5)) (-5 *2 (-1181 *7)) (-5 *1 (-506 *5 *4 *6 *7)) - (-4 *6 (-1251 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1298 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-851))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-649 (-1181 *11))) (-5 *3 (-1181 *11)) - (-5 *4 (-649 *10)) (-5 *5 (-649 *8)) (-5 *6 (-649 (-776))) - (-5 *7 (-1275 (-649 (-1181 *8)))) (-4 *10 (-855)) - (-4 *8 (-310)) (-4 *11 (-955 *8 *9 *10)) (-4 *9 (-798)) - (-5 *1 (-712 *9 *10 *8 *11))))) + (-12 (-5 *2 (-777)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-852))))) +(((*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1226)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-319 (-226))) (-5 *2 (-412 (-569))) (-5 *1 (-308))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-649 (-265))) (-5 *1 (-1277)))) + (-12 (-4 *4 (-458)) + (-5 *2 + (-650 + (-2 (|:| |eigval| (-3 (-413 (-959 *4)) (-1175 (-1186) (-959 *4)))) + (|:| |eigmult| (-777)) + (|:| |eigvec| (-650 (-695 (-413 (-959 *4)))))))) + (-5 *1 (-296 *4)) (-5 *3 (-695 (-413 (-959 *4))))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-777)) + (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-368)) (-4 *1 (-333 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1167)) (-5 *1 (-1277)))) - ((*1 *1 *1) (-5 *1 (-1277)))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1252 *4)) (-4 *4 (-1230)) + (-4 *1 (-347 *4 *3 *5)) (-4 *5 (-1252 (-413 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-1276 *1)) (-4 *4 (-174)) + (-4 *1 (-372 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-1276 *1)) (-4 *4 (-174)) + (-4 *1 (-375 *4 *5)) (-4 *5 (-1252 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4)) + (-4 *4 (-1252 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-1118 *5 *6 *7 *8)) + (-4 *5 (-13 (-311) (-148))) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *8 (-1074 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-597 *5 *6 *7 *8 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *3 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-316)) (-5 *1 (-835))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-570)) (-4 *5 (-368)) + (-4 *5 (-1058)) (-5 *2 (-112)) (-5 *1 (-1038 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) (-4 *4 (-1058)) + (-5 *2 (-112)) (-5 *1 (-1038 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *1) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-384)) (-5 *1 (-97))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) + (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1186)) (-5 *5 (-1103 (-227))) (-5 *2 (-934)) + (-5 *1 (-932 *3)) (-4 *3 (-620 (-542))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-933)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-933)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-650 (-1 (-227) (-227)))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1103 (-227))) + (-5 *1 (-934))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *4 *5 *6 *3)) (-4 *3 (-956 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-949 (-226)) (-949 (-226)))) (-5 *1 (-265)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-332 *4)) (-4 *4 (-367)) - (-5 *2 (-694 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-1275 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-694 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-1275 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) - (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) - (-4 *5 (-1251 *4)) (-5 *2 (-1275 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-414 *4 *5)) (-4 *4 (-173)) - (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) - (-5 *2 (-1275 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-422 *4)) (-4 *4 (-173)) - (-5 *2 (-694 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-694 *5))) (-5 *3 (-694 *5)) (-4 *5 (-367)) - (-5 *2 (-1275 *5)) (-5 *1 (-1094 *5))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1043)) - (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1129 *2)) (-4 *2 (-1225))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) + (-12 (-4 *4 (-354)) (-5 *2 (-965 (-1182 *4))) (-5 *1 (-362 *4)) + (-5 *3 (-1182 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-650 (-298 *4))) (-5 *1 (-633 *3 *4 *5)) (-4 *3 (-856)) + (-4 *4 (-13 (-174) (-723 (-413 (-570))))) (-14 *5 (-928))))) (((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-226)) (-5 *2 (-1043)) (-5 *1 (-757))))) + (-12 (-5 *3 (-777)) (-5 *2 (-1 (-1166 (-959 *4)) (-1166 (-959 *4)))) + (-5 *1 (-1284 *4)) (-4 *4 (-368))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-880))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-561)))) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-329 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)) - (-4 *2 (-561)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-561))) + (|partial| -12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) + (-4 *2 (-562)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-562))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) - (-4 *3 (-377 *2)) (-4 *4 (-377 *2)) (-4 *2 (-561)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-776))) + (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) + (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-562)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-777))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-561)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) + (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-562)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-561)) - (-5 *1 (-977 *3 *4)))) + (-12 (-5 *2 (-1276 *4)) (-4 *4 (-1252 *3)) (-4 *3 (-562)) + (-5 *1 (-978 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1061 *3 *4 *2 *5 *6)) (-4 *2 (-1057)) - (-4 *5 (-239 *4 *2)) (-4 *6 (-239 *3 *2)) (-4 *2 (-561)))) + (|partial| -12 (-4 *1 (-1062 *3 *4 *2 *5 *6)) (-4 *2 (-1058)) + (-4 *5 (-240 *4 *2)) (-4 *6 (-240 *3 *2)) (-4 *2 (-562)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-649 - (-2 (|:| -3978 (-776)) - (|:| |eqns| - (-649 - (-2 (|:| |det| *7) (|:| |rows| (-649 (-569))) - (|:| |cols| (-649 (-569)))))) - (|:| |fgb| (-649 *7))))) - (-4 *7 (-955 *4 *6 *5)) (-4 *4 (-13 (-310) (-147))) - (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-776)) - (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-649 - (-2 (|:| |scalar| (-412 (-569))) (|:| |coeff| (-1181 *2)) - (|:| |logand| (-1181 *2))))) - (-5 *4 (-649 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-367)) (-5 *1 (-591 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1275 *4)) (-4 *4 (-422 *3)) (-4 *3 (-310)) - (-4 *3 (-561)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-927)) (-4 *4 (-367)) (-5 *2 (-1275 *1)) - (-4 *1 (-332 *4)))) - ((*1 *2) (-12 (-4 *3 (-367)) (-5 *2 (-1275 *1)) (-4 *1 (-332 *3)))) - ((*1 *2) - (-12 (-4 *3 (-173)) (-4 *4 (-1251 *3)) (-5 *2 (-1275 *1)) - (-4 *1 (-414 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) - (-5 *2 (-1275 *6)) (-5 *1 (-418 *3 *4 *5 *6)) - (-4 *6 (-13 (-414 *4 *5) (-1046 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-310)) (-4 *4 (-1000 *3)) (-4 *5 (-1251 *4)) - (-5 *2 (-1275 *6)) (-5 *1 (-419 *3 *4 *5 *6 *7)) - (-4 *6 (-414 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-173)) (-5 *2 (-1275 *1)) (-4 *1 (-422 *3)))) + (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-354)) (-5 *2 (-1276 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1275 (-1275 *4))) (-5 *1 (-533 *4)) - (-4 *4 (-353))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-825)) (-14 *5 (-1185)) - (-5 *2 (-649 *4)) (-5 *1 (-1122 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-569)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1225)) - (-4 *3 (-377 *4)) (-4 *5 (-377 *4))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-367)) (-5 *1 (-902 *2 *4)) - (-4 *2 (-1251 *4))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1149 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-824 *3)) (|:| |rm| (-824 *3)))) - (-5 *1 (-824 *3)) (-4 *3 (-855)))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-776)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *1 *1) (-5 *1 (-226))) - ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) + (|partial| -12 (-5 *3 (-695 *1)) (-4 *1 (-146)) (-4 *1 (-916)) + (-5 *2 (-1276 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-912 *3))) (-4 *3 (-1109)) (-5 *1 (-911 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1147))) ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-617 *1)) (-4 *1 (-305))))) -(((*1 *1 *1) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1057)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) - (-4 *3 (-653 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) - (-4 *3 (-653 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057)))) - ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057))))) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1148)))) (((*1 *2 *3) - (-12 (-4 *1 (-805)) - (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 (-1043))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-776)) (-5 *1 (-788 *2)) (-4 *2 (-38 (-412 (-569)))) - (-4 *2 (-173))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-617 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) - (-4 *2 (-13 (-435 *5) (-27) (-1210))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *1 (-571 *5 *2 *6)) (-4 *6 (-1108))))) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-1289 *4 *5 *6 *7))) + (-5 *1 (-1289 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-650 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1074 *6 *7 *8)) (-4 *6 (-562)) + (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 (-650 (-1289 *6 *7 *8 *9))) + (-5 *1 (-1289 *6 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-5 *1 (-1212 *2)) (-4 *2 (-1109))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-762))))) (((*1 *2 *3) - (-12 (-5 *3 (-933)) - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) - (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) - (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) - (-5 *1 (-153))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522)))) + (|partial| -12 (-5 *3 (-1276 *4)) (-4 *4 (-645 (-570))) + (-5 *2 (-1276 (-570))) (-5 *1 (-1303 *4))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-825 *3)) (|:| |rm| (-825 *3)))) + (-5 *1 (-825 *3)) (-4 *3 (-856)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-1276 (-695 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-695 *4)) (-4 *5 (-662 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-562)))) + ((*1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-542))))) +(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-278))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-570)) (-5 *5 (-1168)) (-5 *6 (-695 (-227))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-394)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-755))))) +(((*1 *1) (-5 *1 (-1278)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1198 (-650 *4))) (-4 *4 (-856)) + (-5 *2 (-650 (-650 *4))) (-5 *1 (-1197 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *3 *2)) - (-4 *3 (-13 (-1108) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1286))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) + (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *3 *2)) + (-4 *3 (-13 (-1109) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1287))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-709 *3)) + (-4 *3 (-620 (-542))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1186)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-709 *3)) (-4 *3 (-620 (-542)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-5 *1 (-1198 *3))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *2 (-1281)) + (-5 *1 (-439 *3 *4)) (-4 *4 (-436 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-900 *2 *3)) (-4 *2 (-1251 *3)))) + (|partial| -12 (-4 *3 (-13 (-562) (-148))) (-5 *1 (-1246 *3 *2)) + (-4 *2 (-1252 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-575 *3)) (-4 *3 (-1047 (-570))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1 *1) (-5 *1 (-777))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1035 (-849 (-570)))) (-5 *1 (-601 *3)) (-4 *3 (-1058))))) +(((*1 *1 *1 *1) (-4 *1 (-551)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) + (-5 *2 + (-2 (|:| |mval| (-695 *4)) (|:| |invmval| (-695 *4)) + (|:| |genIdeal| (-510 *4 *5 *6 *7)))) + (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-650 (-1186))) (-4 *6 (-368)) + (-5 *2 (-650 (-298 (-959 *6)))) (-5 *1 (-544 *5 *6 *7)) + (-4 *5 (-458)) (-4 *7 (-13 (-368) (-854)))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457))))) + (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-512)) (-5 *3 (-1113)) (-5 *1 (-295))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *1 *1 *1) (-4 *1 (-311))) ((*1 *1 *1 *1) (-5 *1 (-777))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) - (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-694 *3)) - (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310))))) -(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-310)) (-5 *1 (-705 *3))))) + (|partial| -12 (-4 *3 (-368)) (-5 *1 (-772 *2 *3)) (-4 *2 (-714 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-1252 (-413 *3))) (-5 *2 (-928)) + (-5 *1 (-920 *4 *5)) (-4 *5 (-1252 (-413 *4)))))) (((*1 *2) - (-12 (-14 *4 (-776)) (-4 *5 (-1225)) (-5 *2 (-134)) - (-5 *1 (-238 *3 *4 *5)) (-4 *3 (-239 *4 *5)))) + (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) + (-4 *3 (-562))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-207)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-650 (-384))) (-5 *2 (-384)) (-5 *1 (-207))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-1156 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-304))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) ((*1 *2) - (-12 (-4 *4 (-367)) (-5 *2 (-134)) (-5 *1 (-331 *3 *4)) - (-4 *3 (-332 *4)))) + (-12 (-4 *4 (-174)) (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)) + (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-415 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-173)))) - ((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) - (-5 *2 (-569)) (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-988 *3)) (-4 *3 (-1057)) (-5 *2 (-927)))) - ((*1 *2) (-12 (-4 *1 (-1282 *3)) (-4 *3 (-367)) (-5 *2 (-134))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1185))))) + (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) + (-5 *2 (-695 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1275 (-319 (-226)))) + (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) + (-5 *2 (-2 (|:| -1436 (-413 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1252 (-413 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) (-5 *2 - (-2 (|:| |additions| (-569)) (|:| |multiplications| (-569)) - (|:| |exponentiations| (-569)) (|:| |functionCalls| (-569)))) - (-5 *1 (-308))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-569)) (-5 *1 (-383))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1225)) (-5 *1 (-1140 *4 *2)) - (-4 *2 (-13 (-609 (-569) *4) (-10 -7 (-6 -4447) (-6 -4448)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-855)) (-4 *3 (-1225)) (-5 *1 (-1140 *3 *2)) - (-4 *2 (-13 (-609 (-569) *3) (-10 -7 (-6 -4447) (-6 -4448))))))) + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))) +(((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) (((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-593 *4)) - (-4 *4 (-353))))) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-695 *4)) + (-5 *1 (-820 *4 *5)) (-4 *5 (-662 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-368)) + (-5 *2 (-695 *5)) (-5 *1 (-820 *5 *6)) (-4 *6 (-662 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1280)) - (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-634))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-635 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010) (-1210)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1226 *2)) - (-4 *2 (-1108)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-1108)) (-4 *2 (-855)) - (-5 *1 (-1226 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1 *1) (-5 *1 (-776))) - ((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-949 *5)) (-4 *5 (-1057)) (-5 *2 (-776)) - (-5 *1 (-1173 *4 *5)) (-14 *4 (-927)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-776))) (-5 *3 (-776)) (-5 *1 (-1173 *4 *5)) - (-14 *4 (-927)) (-4 *5 (-1057)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-776))) (-5 *3 (-949 *5)) (-4 *5 (-1057)) - (-5 *1 (-1173 *4 *5)) (-14 *4 (-927))))) + (-12 (-5 *3 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) + (-4 *4 (-354)) (-5 *2 (-777)) (-5 *1 (-351 *4)))) + ((*1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) + (-14 *4 (-928)))) + ((*1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) + (-14 *4 + (-3 (-1182 *3) + (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129))))))))) + ((*1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) + (-14 *4 (-928))))) +(((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-531)))) + ((*1 *2 *1) (-12 (-5 *2 (-512)) (-5 *1 (-1160))))) +(((*1 *2 *1) (-12 (-4 *1 (-1158 *3)) (-4 *3 (-1226)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-132)) + (-4 *3 (-798))))) +(((*1 *2 *2) (-12 (-5 *2 (-320 (-227))) (-5 *1 (-270))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5)) + (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6)) + (-4 *6 (-458)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-487 *5 *6))) (-5 *4 (-870 *5)) + (-14 *5 (-650 (-1186))) (-5 *2 (-487 *5 *6)) (-5 *1 (-637 *5 *6)) + (-4 *6 (-458))))) (((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-353)) - (-5 *2 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) - (-5 *1 (-350 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-435 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-1155 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1220 *3)) (-4 *3 (-982))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))))) - ((*1 *1 *1) - (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) - (-14 *3 (-649 (-1185)))))) + (-12 (-5 *3 (-1276 *4)) (-4 *4 (-1058)) (-4 *2 (-1252 *4)) + (-5 *1 (-450 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-413 (-1182 (-320 *5)))) (-5 *3 (-1276 (-320 *5))) + (-5 *4 (-570)) (-4 *5 (-562)) (-5 *1 (-1139 *5))))) +(((*1 *2 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-551))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) -(((*1 *2 *3) (-12 (-5 *2 (-649 (-569))) (-5 *1 (-566)) (-5 *3 (-569))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))) + (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *2 (-1276 (-320 (-384)))) + (-5 *1 (-309))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-650 + (-2 (|:| -3979 (-777)) + (|:| |eqns| + (-650 + (-2 (|:| |det| *7) (|:| |rows| (-650 (-570))) + (|:| |cols| (-650 (-570)))))) + (|:| |fgb| (-650 *7))))) + (-4 *7 (-956 *4 *6 *5)) (-4 *4 (-13 (-311) (-148))) + (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-777)) + (-5 *1 (-931 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-368 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108))))) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-2 (|:| |k| (-825 *3)) (|:| |c| *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570)))) + ((*1 *2 *2) + (-12 (-4 *3 (-311)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-1133 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) (((*1 *2 *1) - (-12 (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-824 *3)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-851)) (-5 *1 (-1298 *3 *2)) (-4 *3 (-1057))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-172))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1057)) (-5 *1 (-717 *3 *4)) - (-4 *4 (-1251 *3))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *2 *3) (-12 (-5 *3 (-412 (-569))) (-5 *2 (-226)) (-5 *1 (-308))))) -(((*1 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) - (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-457)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-1280)) - (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1079 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-731)) (-5 *2 (-112))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) - (-5 *1 (-1169 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) - (-14 *4 (-1185)) (-14 *5 *3)))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) - (-5 *3 (-649 (-569))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-649 (-569)))) (-5 *1 (-889)) - (-5 *3 (-649 (-569)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-927)) (-5 *1 (-1109 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) - ((*1 *1 *1) (-5 *1 (-867)))) + (-12 (-4 *3 (-562)) (-5 *2 (-112)) (-5 *1 (-629 *3 *4)) + (-4 *4 (-1252 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-732)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-486 *4 *5))) (-14 *4 (-649 (-1185))) - (-4 *5 (-457)) - (-5 *2 - (-2 (|:| |gblist| (-649 (-248 *4 *5))) - (|:| |gvlist| (-649 (-569))))) - (-5 *1 (-636 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) + (-12 (-4 *4 (-38 (-413 (-570)))) + (-5 *2 (-2 (|:| -2604 (-1166 *4)) (|:| -2616 (-1166 *4)))) + (-5 *1 (-1172 *4)) (-5 *3 (-1166 *4))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) + (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-617 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1046 (-569))) - (-4 *4 (-561)) (-5 *2 (-1181 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-617 *1)) (-4 *1 (-1057)) (-4 *1 (-305)) - (-5 *2 (-1181 *1))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-865)) (-5 *3 (-128)) (-5 *2 (-776))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1128)) (-4 *4 (-353)) - (-5 *1 (-533 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-955 *3 *5 *4)) (-5 *1 (-995 *3 *4 *5 *2)) - (-4 *3 (-457)) (-4 *4 (-855)) (-4 *5 (-798))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-1054 *5 *6))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) - (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-1054 *4 *5))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) - (-5 *1 (-473))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2865 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-12 (-4 *5 (-368)) + (-5 *2 (-650 (-2 (|:| C (-695 *5)) (|:| |g| (-1276 *5))))) + (-5 *1 (-987 *5)) (-5 *3 (-695 *5)) (-5 *4 (-1276 *5))))) (((*1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1057)) - (-14 *4 (-649 (-1185))))) + (-12 (-5 *2 (-777)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1058)) + (-14 *4 (-650 (-1186))))) ((*1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-224 *3 *4)) (-4 *3 (-13 (-1057) (-855))) - (-14 *4 (-649 (-1185))))) - ((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) + (-12 (-5 *2 (-777)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1058) (-856))) + (-14 *4 (-650 (-1186))))) + ((*1 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-373)) (-4 *2 (-368)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-339 *3 *4 *5 *2)) (-4 *3 (-367)) - (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) - (-4 *2 (-346 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-340 *3 *4 *5 *2)) (-4 *3 (-368)) + (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) + (-4 *2 (-347 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-173)))) - ((*1 *1) (-12 (-4 *2 (-173)) (-4 *1 (-729 *2 *3)) (-4 *3 (-1251 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353))))) -(((*1 *1) (-5 *1 (-602)))) + (-12 (-5 *2 (-777)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-730 *2 *3)) (-4 *3 (-1252 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5)) (-14 *3 (-649 (-1185))) - (-14 *4 (-649 (-1185))) (-4 *5 (-392))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1248 *5 *4)) (-4 *4 (-457)) (-4 *4 (-825)) - (-14 *5 (-1185)) (-5 *2 (-569)) (-5 *1 (-1122 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-436 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186)))) + ((*1 *1 *1) (-4 *1 (-161)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-593 *2)) (-4 *2 (-551))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-240 *3 *2)) (-4 *2 (-1226)) (-4 *2 (-1058)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-868)))) + ((*1 *1 *1) (-5 *1 (-868))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-950 (-227))) (-5 *2 (-227)) (-5 *1 (-1222)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1058))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) - (-14 *6 (-649 (-1185))) - (-5 *2 - (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) - (-5 *1 (-633 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) - ((*1 *1 *1) - (-12 (-5 *1 (-632 *2 *3 *4)) (-4 *2 (-855)) - (-4 *3 (-13 (-173) (-722 (-412 (-569))))) (-14 *4 (-927)))) - ((*1 *1 *1) (-12 (-5 *1 (-682 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) (-12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) + (-12 (-5 *3 (-1182 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-959 *5)) (-4 *5 (-458)) (-5 *2 (-650 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1109))))) (((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *6)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-911 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-1102 (-848 (-226)))) (-5 *1 (-308))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-569))) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-561)) (-4 *8 (-955 *7 *5 *6)) - (-5 *2 (-2 (|:| -1993 (-776)) (|:| -1435 *9) (|:| |radicand| *9))) - (-5 *1 (-959 *5 *6 *7 *8 *9)) (-5 *4 (-776)) - (-4 *9 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *8)) (-15 -4399 (*8 $)) (-15 -4412 (*8 $)))))))) + (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)) + (-5 *2 (-1182 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058)) + (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) + (-4 *3 (-858 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) + (-5 *2 (-650 (-2 (|:| -4135 *1) (|:| -1718 (-650 *7))))) + (-5 *3 (-650 *7)) (-4 *1 (-1219 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-570)) + (-14 *4 (-777)) (-4 *5 (-174))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-380 *4 *2)) + (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1151 *3 *4)) (-14 *3 (-928)) (-4 *4 (-368)) + (-5 *1 (-1002 *3 *4))))) +(((*1 *1 *1) (-4 *1 (-562)))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-856)) (-5 *1 (-1197 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-659 (-413 *2))) (-4 *2 (-1252 *4)) (-5 *1 (-816 *4 *2)) + (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *2 (-413 *2))) (-4 *2 (-1252 *4)) + (-5 *1 (-816 *4 *2)) + (-4 *4 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570)))))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1165 (-226))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3743 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1043)) (-5 *1 (-308))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-383)) (-5 *3 (-1167)) (-5 *1 (-97))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) - (-5 *2 - (-2 (|:| -4267 (-418 *4 (-412 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3364 (-412 *6)) - (|:| |special| (-412 *6)))) - (-5 *1 (-732 *5 *6)) (-5 *3 (-412 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-367)) (-5 *2 (-649 *3)) (-5 *1 (-902 *3 *4)) - (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-776)) (-4 *5 (-367)) - (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-902 *3 *5)) - (-4 *3 (-1251 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) - (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) - (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) - (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-649 *9)) (-5 *3 (-649 *8)) (-5 *4 (-112)) - (-4 *8 (-1073 *5 *6 *7)) (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) - (-4 *6 (-798)) (-4 *7 (-855)) (-5 *1 (-1153 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-649 (-112))) (-5 *7 (-694 (-226))) - (-5 *8 (-694 (-569))) (-5 *3 (-569)) (-5 *4 (-226)) (-5 *5 (-112)) - (-5 *2 (-1043)) (-5 *1 (-759))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-776)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-855)) - (-4 *3 (-1108))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-310)) - (-5 *2 (-776)) (-5 *1 (-460 *5 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112)))) + (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) + (|:| |expense| (-384)) (|:| |accuracy| (-384)) + (|:| |intermediateResults| (-384)))) + (-5 *2 (-1044)) (-5 *1 (-309))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)))) - ((*1 *1) (-4 *1 (-1160)))) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)))) + ((*1 *1) (-4 *1 (-1161)))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-955 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-798)) (-4 *5 (-1057)) (-4 *6 (-955 *5 *4 *2)) - (-4 *2 (-855)) (-5 *1 (-956 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *6)) (-15 -4399 (*6 $)) - (-15 -4412 (*6 $))))))) + (-12 + (-5 *2 + (-1276 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -3958 (-570)) + (|:| -3721 (-570)) (|:| |spline| (-570)) (|:| -3671 (-570)) + (|:| |axesColor| (-880)) (|:| -3159 (-570)) + (|:| |unitsColor| (-880)) (|:| |showing| (-570))))) + (-5 *1 (-1277))))) +(((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-424 *3)) (-4 *3 (-562)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) - (-5 *2 (-1185)) (-5 *1 (-1051 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-5 *3 (-650 (-2 (|:| -3801 *4) (|:| -3324 (-570))))) + (-4 *4 (-1252 (-570))) (-5 *2 (-777)) (-5 *1 (-448 *4))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))) (((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1251 (-569))) (-5 *1 (-491 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-131)) - (-5 *2 (-649 (-2 (|:| |gen| *3) (|:| -4389 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| -1435 *3) (|:| -3348 *4)))) - (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-731)))) - ((*1 *2 *3) - (-12 (-5 *3 (-972 *4)) (-4 *4 (-1108)) (-5 *2 (-1110 *4)) - (-5 *1 (-973 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-5 *2 (-1165 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-367) (-853))) (-5 *1 (-182 *2 *3)) - (-4 *3 (-1251 (-170 *2)))))) + (-12 (-4 *3 (-1058)) (-5 *2 (-965 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) + (-4 *4 (-1252 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-562)) (-5 *1 (-978 *4 *2)) + (-4 *2 (-1252 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-251))) (-5 *1 (-250))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1074 *5 *6 *7)) (-4 *5 (-562)) + (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-2 (|:| |goodPols| (-650 *8)) (|:| |badPols| (-650 *8)))) + (-5 *1 (-986 *5 *6 *7 *8)) (-5 *4 (-650 *8))))) +(((*1 *2 *1) (-12 (-4 *1 (-330 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-798)))) + ((*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1058)) (-5 *2 (-777)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 (-777))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *3 (-856)) (-5 *2 (-777))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-4 *1 (-257 *3)))) + ((*1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1182 *2)) (-5 *4 (-1186)) (-4 *2 (-436 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-562)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-4 *1 (-1021)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1182 *1)) (-5 *3 (-928)) (-5 *4 (-868)) + (-4 *1 (-1021)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-928)) (-4 *4 (-13 (-854) (-368))) + (-4 *1 (-1077 *4 *2)) (-4 *2 (-1252 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-412 (-569)))) - (-5 *2 (-2 (|:| -2746 (-1165 *4)) (|:| -2758 (-1165 *4)))) - (-5 *1 (-1171 *4)) (-5 *3 (-1165 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-561)) + (-12 (-4 *1 (-354)) (-5 *3 (-570)) (-5 *2 (-1199 (-928) (-777)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-384)) (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6)) + (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-986 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) + (-5 *1 (-1170 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-570)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) + (-14 *4 (-1186)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) + (-5 *1 (-703))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1058)) (-5 *1 (-1248 *3 *2)) (-4 *2 (-1252 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-13 (-311) (-148))) + (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) - (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) - (-5 *1 (-793)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) - (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) - (-5 *1 (-793))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) (-4 *5 (-367)) - (-5 *2 (-2 (|:| -2679 (-412 *6)) (|:| |coeff| (-412 *6)))) - (-5 *1 (-579 *5 *6)) (-5 *3 (-412 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-649 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-435 *4) (-1010))) (-4 *4 (-561)) - (-5 *1 (-278 *4 *2))))) + (-650 + (-2 (|:| |eqzro| (-650 *7)) (|:| |neqzro| (-650 *7)) + (|:| |wcond| (-650 (-959 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *4)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *4)))))))))) + (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) + (-4 *3 (-1109))))) +(((*1 *2 *1) + (-12 (-4 *1 (-369 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1109))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-855)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-855))))) -(((*1 *2 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1 (-1165 (-958 *4)) (-1165 (-958 *4)))) - (-5 *1 (-1283 *4)) (-4 *4 (-367))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-561)) (-4 *2 (-457)) (-5 *1 (-977 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1218 *5 *6 *7 *3)) - (-4 *5 (-561)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-1275 *3)) - (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) - (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447))))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *1) (-5 *1 (-828)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-14 *5 (-649 (-1185))) (-5 *2 (-649 (-649 (-1032 (-412 *4))))) - (-5 *1 (-1301 *4 *5 *6)) (-14 *6 (-649 (-1185))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *5))))) (-5 *1 (-1301 *5 *6 *7)) - (-14 *6 (-649 (-1185))) (-14 *7 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) - (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-649 (-649 (-1032 (-412 *4))))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185)))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-865)) (-5 *2 (-696 (-554))) (-5 *3 (-554))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 - (-2 (|:| |stiffness| (-383)) (|:| |stability| (-383)) - (|:| |expense| (-383)) (|:| |accuracy| (-383)) - (|:| |intermediateResults| (-383)))) - (-5 *1 (-808))))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *3)) + (-5 *1 (-986 *4 *5 *6 *3)) (-4 *3 (-1074 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-650 *7) (-650 *7))) (-5 *2 (-650 *7)) + (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) (-4 *5 (-799)) + (-4 *6 (-856)) (-5 *1 (-986 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-777)) + (-4 *5 (-13 (-458) (-1047 (-570)))) (-4 *5 (-562)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-436 *5)) + (-4 *2 + (-13 (-368) (-306) + (-10 -8 (-15 -4400 ((-1134 *5 (-618 $)) $)) + (-15 -4413 ((-1134 *5 (-618 $)) $)) + (-15 -3798 ($ (-1134 *5 (-618 $)))))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1225)) (-5 *2 (-649 *1)) (-4 *1 (-1018 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-1 (-1181 (-958 *4)) (-958 *4))) - (-5 *1 (-1283 *4)) (-4 *4 (-367))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-193)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-303)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1102 (-848 (-226)))) (-5 *2 (-226)) (-5 *1 (-308))))) -(((*1 *1 *2) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-1108)))) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) + (-5 *2 (-650 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-743 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-445))) (-5 *1 (-871))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *1 *2) (-12 (-5 *1 (-1212 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-1211 *3)))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1212 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-649 (-1211 *2))) (-5 *1 (-1211 *2)) (-4 *2 (-1108))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) - (-4 *3 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *4 (-1251 *3)) (-5 *1 (-504 *3 *4 *5)) (-4 *5 (-414 *3 *4))))) + (-12 (-5 *3 (-650 (-1212 *2))) (-5 *1 (-1212 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *2 (-424 (-1182 (-570)))) (-5 *1 (-193)) (-5 *3 (-570))))) (((*1 *2 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-649 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-776)) (-5 *1 (-59 *3)) (-4 *3 (-1225)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-59 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1197 (-649 *4))) (-4 *4 (-855)) - (-5 *2 (-649 (-649 *4))) (-5 *1 (-1196 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-329 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) - ((*1 *2 *1) (-12 (-4 *1 (-713 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-857 *3)) (-4 *3 (-1057)) (-5 *2 (-776)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *6)) (-4 *1 (-955 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 (-776))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *3 (-855)) (-5 *2 (-776))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) + (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1226)) (-5 *2 (-650 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1300 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-825 *3)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) - ((*1 *1 *1) (-4 *1 (-853))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173)) (-4 *2 (-1068)))) - ((*1 *1 *1) (-4 *1 (-1068))) ((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-330 *3)) (-4 *3 (-1225)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-521 *3 *4)) (-4 *3 (-1225)) - (-14 *4 (-569))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1152)))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-694 (-226))) (-5 *5 (-694 (-569))) (-5 *3 (-569)) - (-5 *2 (-1043)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) - (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-333))))) + (-12 (-5 *1 (-1268 *2 *3 *4)) (-4 *2 (-1058)) (-14 *3 (-1186)) + (-14 *4 *2)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1148 *2 *3)) (-4 *2 (-13 (-1108) (-34))) - (-4 *3 (-13 (-1108) (-34)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-649 *7)) (|:| |badPols| (-649 *7)))) - (-5 *1 (-985 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-649 *3)) (|:| -3663 *4)))) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-855)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-682 *3)) (-4 *3 (-855)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824 *3)) (-4 *3 (-855))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-1128)) (-5 *2 (-112)) (-5 *1 (-826))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-423 *4)) (-4 *4 (-561))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-756))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058)) + (-5 *1 (-720 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-260))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1226)) (-5 *1 (-380 *4 *2)) + (-4 *2 (-13 (-378 *4) (-10 -7 (-6 -4449))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058)) + (-5 *1 (-1170 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-334))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *2 (-1044)) (-5 *1 (-757))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) + (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-458)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-1281)) + (-5 *1 (-1116 *3 *4 *5 *6 *7)) (-4 *7 (-1080 *3 *4 *5 *6))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1168)) (-5 *3 (-829)) (-5 *1 (-828))))) (((*1 *2 *1) - (-12 (-5 *2 (-696 (-878 (-972 *3) (-972 *3)))) (-5 *1 (-972 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1148 *4 *5)) (-4 *4 (-13 (-1108) (-34))) - (-4 *5 (-13 (-1108) (-34))) (-5 *2 (-112)) (-5 *1 (-1149 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-694 (-412 (-958 (-569))))) (-5 *2 (-649 (-319 (-569)))) - (-5 *1 (-1039))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-694 (-226))) (-5 *6 (-112)) (-5 *7 (-694 (-569))) - (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-569)) (-5 *4 (-226)) (-5 *2 (-1043)) (-5 *1 (-758))))) -(((*1 *1 *1) (-12 (-4 *1 (-377 *2)) (-4 *2 (-1225)))) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1869 (-788 *3)) (|:| |coef2| (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-2 (|:| -1869 *1) (|:| |coef2| *1))) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-762))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-828))))) +(((*1 *1 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-1226)))) ((*1 *2 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3)))) + (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1252 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) - (-4 *4 (-353)) (-5 *2 (-694 *4)) (-5 *1 (-350 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-367)) (-5 *1 (-288 *3 *2)) (-4 *2 (-1266 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1159))))) -(((*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-367)) (-4 *1 (-332 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-1251 *4)) (-4 *4 (-1229)) - (-4 *1 (-346 *4 *3 *5)) (-4 *5 (-1251 (-412 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173)) - (-4 *1 (-371 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-1275 *1)) (-4 *4 (-173)) - (-4 *1 (-374 *4 *5)) (-4 *5 (-1251 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) - (-4 *4 (-1251 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) (-4 *2 (-679 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-927)) (-4 *5 (-310)) (-4 *3 (-1251 *5)) - (-5 *2 (-2 (|:| |plist| (-649 *3)) (|:| |modulo| *5))) - (-5 *1 (-465 *5 *3)) (-5 *4 (-649 *3))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-617 *3)) (-5 *5 (-1 (-1181 *3) (-1181 *3))) - (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-561)) (-5 *2 (-591 *3)) - (-5 *1 (-556 *6 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-949 *4)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *2 *3) - (-12 (-5 *2 (-423 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1251 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-855)))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 *4)) (-4 *4 (-13 (-29 *3) (-1210))) - (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-588 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-591 (-412 (-958 *3)))) - (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *1 (-594 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) - (-5 *2 (-2 (|:| -3364 *3) (|:| |special| *3))) (-5 *1 (-732 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1275 *5)) (-4 *5 (-367)) (-4 *5 (-1057)) - (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) - (-5 *3 (-649 (-694 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1275 (-1275 *5))) (-4 *5 (-367)) (-4 *5 (-1057)) - (-5 *2 (-649 (-649 (-694 *5)))) (-5 *1 (-1037 *5)) - (-5 *3 (-649 (-694 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-649 *1)) (-4 *1 (-1152)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-649 *1)) (-4 *1 (-1152))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-791))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-353))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-915))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) (-5 *1 (-542 *4 *2)) - (-4 *2 (-1266 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) - (-4 *5 (-1251 *4)) (-4 *6 (-729 *4 *5)) (-5 *1 (-546 *4 *5 *6 *2)) - (-4 *2 (-1266 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-13 (-367) (-372) (-619 *3))) - (-5 *1 (-547 *4 *2)) (-4 *2 (-1266 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-13 (-561) (-147))) - (-5 *1 (-1161 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) (((*1 *2 *1) - (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1110 *3)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2 *2) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1013 *3)) (-14 *3 (-570))))) +(((*1 *2) + (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) + (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-777))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) + (-5 *1 (-336))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1267 *3))))) +(((*1 *1 *2 *3 *4) (-12 + (-5 *3 + (-650 + (-2 (|:| |scalar| (-413 (-570))) (|:| |coeff| (-1182 *2)) + (|:| |logand| (-1182 *2))))) + (-5 *4 (-650 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-368)) (-5 *1 (-592 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-1127)) (-5 *1 (-1124))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-959 (-570)))) (-5 *1 (-443)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-227))) (-5 *2 (-1113)) + (-5 *1 (-765)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-695 (-570))) (-5 *2 (-1113)) + (-5 *1 (-765))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1276 (-650 *3))) (-4 *4 (-311)) + (-5 *2 (-650 *3)) (-5 *1 (-461 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) + (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) + (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-348 *3 *4)) (-14 *3 (-928)) + (-14 *4 (-928)))) + ((*1 *2) + (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-349 *3 *4)) (-4 *3 (-354)) + (-14 *4 (-1182 *3)))) + ((*1 *2) + (-12 (-5 *2 (-965 (-1129))) (-5 *1 (-350 *3 *4)) (-4 *3 (-354)) + (-14 *4 (-928))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-424 *2)) (-4 *2 (-311)) (-5 *1 (-921 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-424 (-959 *6))) (-5 *5 (-1186)) (-5 *3 (-959 *6)) + (-4 *6 (-13 (-311) (-148))) (-5 *2 (-52)) (-5 *1 (-922 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *10)) + (-5 *1 (-630 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1080 *5 *6 *7 *8)) + (-4 *10 (-1118 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) + (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) + (-5 *1 (-634 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) + (-14 *6 (-650 (-1186))) (-5 *2 - (-649 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-776)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-798)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) (-4 *5 (-855)) - (-5 *1 (-454 *3 *4 *5 *6))))) + (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6))))) + (-5 *1 (-634 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1036 *5 *6 *7 *8))) (-5 *1 (-1036 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) + (-14 *6 (-650 (-1186))) (-5 *2 (-650 (-1055 *5 *6))) + (-5 *1 (-1055 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-112)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-5 *2 (-650 (-1155 *5 *6 *7 *8))) (-5 *1 (-1155 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1219 *4 *5 *6 *7))))) +(((*1 *1 *1) (-4 *1 (-635))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-636 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011) (-1211)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1275 *4)) (-4 *4 (-644 (-569))) (-5 *2 (-112)) - (-5 *1 (-1302 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-412 *4)) (-4 *4 (-1251 *3)) (-4 *3 (-13 (-367) (-147))) - (-5 *1 (-404 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) + (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1012 *3)) (-14 *3 (-569))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) - (-5 *2 (-1043)) (-5 *1 (-753))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *2 (-1073 *4 *5 *6)) (-5 *1 (-781 *4 *5 *6 *2 *3)) - (-4 *3 (-1079 *4 *5 *6 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-927))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *1 *2) (-12 (-5 *2 (-319 (-170 (-383)))) (-5 *1 (-333)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-569))) (-5 *1 (-333)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-383))) (-5 *1 (-333)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-699))) (-5 *1 (-333)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-706))) (-5 *1 (-333)))) - ((*1 *1 *2) (-12 (-5 *2 (-319 (-704))) (-5 *1 (-333)))) - ((*1 *1) (-5 *1 (-333)))) -(((*1 *1) (-5 *1 (-1276)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-776)) (-5 *1 (-592 *2)) (-4 *2 (-550))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) - ((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-472)))) - ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-933))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) - (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *2 (-112)) (-5 *1 (-930 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-13 (-310) (-147))) - (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) (-5 *2 (-112)) - (-5 *1 (-930 *4 *5 *6 *7)) (-4 *7 (-955 *4 *6 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-457)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *5 (-915)) (-5 *1 (-462 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-915))))) -(((*1 *1) (-5 *1 (-1277)))) -(((*1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-879)) (-5 *1 (-1278))))) + (-12 (-4 *3 (-1058)) (-5 *2 (-650 *1)) (-4 *1 (-1143 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1249 *5 *4)) (-5 *1 (-1184 *4 *5 *6)) + (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1249 *5 *4)) (-5 *1 (-1268 *4 *5 *6)) + (-4 *4 (-1058)) (-14 *5 (-1186)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) + (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-4 *1 (-562)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-650 (-618 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1182 (-48))) (-5 *3 (-618 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-368) (-854))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1252 (-171 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-928)) (-4 *1 (-333 *3)) (-4 *3 (-368)) (-4 *3 (-373)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *2)) (-4 *2 (-368)))) + ((*1 *2 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1252 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1252 *2)) (-4 *2 (-1001 *3)) (-5 *1 (-419 *3 *2 *4 *5)) + (-4 *3 (-311)) (-4 *5 (-13 (-415 *2 *4) (-1047 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1252 *2)) (-4 *2 (-1001 *3)) + (-5 *1 (-420 *3 *2 *4 *5 *6)) (-4 *3 (-311)) (-4 *5 (-415 *2 *4)) + (-14 *6 (-1276 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-928)) (-4 *5 (-1058)) + (-4 *2 (-13 (-410) (-1047 *5) (-368) (-1211) (-288))) + (-5 *1 (-449 *5 *3 *2)) (-4 *3 (-1252 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-618 (-501)))) (-5 *1 (-501)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-618 (-501))) (-5 *1 (-501)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-650 (-618 (-501)))) + (-5 *1 (-501)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1182 (-501))) (-5 *3 (-618 (-501))) (-5 *1 (-501)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-928)) (-4 *4 (-354)) + (-5 *1 (-534 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-458)) (-4 *5 (-730 *4 *2)) (-4 *2 (-1252 *4)) + (-5 *1 (-781 *4 *2 *5 *3)) (-4 *3 (-1252 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)))) + ((*1 *1 *1) (-4 *1 (-1069)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-320 *5))) + (-5 *1 (-1138 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-413 (-959 *5)))) (-5 *4 (-650 (-1186))) + (-4 *5 (-13 (-311) (-148))) (-5 *2 (-650 (-650 (-320 *5)))) + (-5 *1 (-1138 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-708 *4 *5 *6 *7)) + (-4 *4 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226)) + (-4 *7 (-1226))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777))) + (-5 *1 (-911 *4))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-928)) (-4 *3 (-368)) + (-14 *4 (-1002 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1252 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-174)) (-4 *2 (-562)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *1 *1) (|partial| -4 *1 (-728))) + ((*1 *1 *1) (|partial| -4 *1 (-732))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-782 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368))) + (-4 *2 (-1252 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1058)) (-4 *3 (-1252 *4)) (-4 *2 (-1267 *4)) + (-5 *1 (-1270 *4 *3 *5 *2)) (-4 *5 (-662 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-650 (-320 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-1129)) (-5 *2 (-112)) (-5 *1 (-827))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-758))))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1300 *3 *4)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-391 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-825 *3)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-650 (-950 *4))) (-4 *1 (-1143 *4)) (-4 *4 (-1058)) + (-5 *2 (-777))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12378,3095 +12172,3547 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1165 (-226))) + (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3743 + (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-564))))) + (-5 *1 (-565))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) + ((*1 *1 *1) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) + ((*1 *1 *1) (-4 *1 (-854))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174)) (-4 *2 (-1069)))) + ((*1 *1 *1) (-4 *1 (-1069))) ((*1 *1 *1) (-4 *1 (-1148)))) +(((*1 *2 *1) (-12 (-4 *1 (-372 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) + (-12 (-5 *3 (-1182 (-959 *6))) (-4 *6 (-562)) + (-4 *2 (-956 (-413 (-959 *6)) *5 *4)) (-5 *1 (-738 *5 *4 *6 *2)) + (-4 *5 (-799)) + (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)))))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-856)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-856)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-570)) (-4 *1 (-286 *3)) (-4 *3 (-1226)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-286 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (|:| |%expansion| (-316 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) - (-5 *1 (-425 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) - (-14 *6 (-1185)) (-14 *7 *3)))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-170 (-226)) (-170 (-226)))) (-5 *4 (-1102 (-226))) - (-5 *5 (-112)) (-5 *2 (-1277)) (-5 *1 (-259))))) -(((*1 *2 *3) - (-12 (-5 *3 (-569)) (-5 *2 (-649 (-649 (-226)))) (-5 *1 (-1221))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) - (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) - (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-885 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-649 (-949 *3))))) + (-2 + (|:| -2009 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -2219 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1166 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2762 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-565)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-4 *1 (-701 *2)) (-4 *2 (-1109)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-949 *3))) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-949 *3))) (-4 *1 (-1142 *3)) (-4 *3 (-1057))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-193))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *3 (-1073 *6 *7 *8)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1080 *6 *7 *8 *3 *4)) (-4 *4 (-1079 *6 *7 *8 *3)))) + (-2 + (|:| -2009 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -2219 + (-2 (|:| |stiffness| (-384)) (|:| |stability| (-384)) + (|:| |expense| (-384)) (|:| |accuracy| (-384)) + (|:| |intermediateResults| (-384)))))) + (-5 *1 (-809)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1281)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2 *3) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-567)) (-5 *3 (-570)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1182 (-413 (-570)))) (-5 *1 (-949)) (-5 *3 (-570))))) +(((*1 *1) (-5 *1 (-474)))) +(((*1 *2 *3) + (-12 (-5 *3 (-959 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) + ((*1 *2 *3) + (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) + ((*1 *2 *3) (-12 (-5 *3 (-959 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 (-413 (-570)))) (-5 *2 (-650 *1)) (-4 *1 (-1021)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 *1)) (-4 *1 (-1021)) (-5 *2 (-650 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-854) (-368))) (-4 *3 (-1252 *4)) (-5 *2 (-650 *1)) + (-4 *1 (-1077 *4 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-928)) (-5 *2 (-474)) (-5 *1 (-1277))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-298 (-849 *3))) (-4 *3 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 + (-3 (-849 *3) + (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed")) + (|:| |rightHandLimit| (-3 (-849 *3) "failed"))) + "failed")) + (-5 *1 (-642 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-2 (|:| |val| (-649 *8)) (|:| -3663 *9)))) - (-5 *5 (-112)) (-4 *8 (-1073 *6 *7 *4)) (-4 *9 (-1079 *6 *7 *4 *8)) - (-4 *6 (-457)) (-4 *7 (-798)) (-4 *4 (-855)) - (-5 *2 (-649 (-2 (|:| |val| *8) (|:| -3663 *9)))) - (-5 *1 (-1080 *6 *7 *4 *8 *9))))) -(((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) + (|partial| -12 (-5 *4 (-298 *3)) (-5 *5 (-1168)) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-849 *3)) (-5 *1 (-642 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-298 (-849 (-959 *5)))) (-4 *5 (-458)) (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) + (-3 (-849 (-413 (-959 *5))) + (-2 (|:| |leftHandLimit| (-3 (-849 (-413 (-959 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-849 (-413 (-959 *5))) "failed"))) + "failed")) + (-5 *1 (-643 *5)) (-5 *3 (-413 (-959 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) + (-4 *5 (-458)) + (-5 *2 + (-3 (-849 *3) + (-2 (|:| |leftHandLimit| (-3 (-849 *3) "failed")) + (|:| |rightHandLimit| (-3 (-849 *3) "failed"))) + "failed")) + (-5 *1 (-643 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-298 (-413 (-959 *6)))) (-5 *5 (-1168)) + (-5 *3 (-413 (-959 *6))) (-4 *6 (-458)) (-5 *2 (-849 *3)) + (-5 *1 (-643 *6))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 *5)) (-4 *5 (-645 *4)) (-4 *4 (-562)) + (-5 *2 (-112)) (-5 *1 (-644 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1196))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-458)) (-4 *4 (-1109)) + (-5 *1 (-579 *4 *2)) (-4 *2 (-288)) (-4 *2 (-436 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-5 *1 (-810 *4 *2)) (-4 *2 (-13 (-29 *4) (-1211) (-966)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-927)) (-4 *5 (-561)) (-5 *2 (-694 *5)) - (-5 *1 (-962 *5 *3)) (-4 *3 (-661 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-1108)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-600 *3)) (-4 *3 (-1057)))) + (-12 (-4 *7 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) (-4 *7 (-562)) + (-4 *8 (-956 *7 *5 *6)) + (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *3) (|:| |radicand| *3))) + (-5 *1 (-960 *5 *6 *7 *8 *3)) (-5 *4 (-777)) + (-4 *3 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *8)) (-15 -4400 (*8 $)) (-15 -4413 (*8 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1094))) (-5 *1 (-295))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1203 *4 *5)) + (-4 *4 (-1109)) (-4 *5 (-1109))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *3 (-1058)) + (-5 *1 (-1170 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-761))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-256 *4 *3 *5 *6)) (-4 *4 (-1058)) (-4 *3 (-856)) + (-4 *5 (-269 *3)) (-4 *6 (-799)) (-5 *2 (-650 (-777))))) ((*1 *2 *1) - (-12 (-4 *3 (-561)) (-5 *2 (-112)) (-5 *1 (-628 *3 *4)) - (-4 *4 (-1251 *3)))) + (-12 (-4 *1 (-256 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-856)) + (-4 *5 (-269 *4)) (-4 *6 (-799)) (-5 *2 (-650 (-777)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1297 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-825 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-740 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-731)))) + (-12 (-4 *2 (-852)) (-5 *1 (-1299 *3 *2)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-864)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-972)))) + ((*1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-998)))) + ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1226)))) ((*1 *2 *1) - (-12 (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) (-4 *4 (-1057)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) - (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1167)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-1280)) - (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-550)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2736 *1) (|:| -4434 *1) (|:| |associate| *1))) - (-4 *1 (-561))))) + (-12 (-4 *2 (-13 (-1109) (-34))) (-5 *1 (-1149 *2 *3)) + (-4 *3 (-13 (-1109) (-34)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-650 (-695 *4))) (-5 *2 (-695 *4)) (-4 *4 (-1058)) + (-5 *1 (-1038 *4))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-928)) (-5 *4 (-227)) (-5 *5 (-570)) (-5 *6 (-880)) + (-5 *2 (-1281)) (-5 *1 (-1277))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1014))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-561) (-1046 (-569)))) - (-4 *7 (-1251 (-412 *6))) (-5 *1 (-557 *4 *5 *6 *7 *2)) - (-4 *2 (-346 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-305))) ((*1 *1 *1) (-4 *1 (-305)))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-863)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-971)))) - ((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-997)))) - ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) + (-12 (-5 *2 (-650 (-2 (|:| |k| (-1186)) (|:| |c| (-1298 *3))))) + (-5 *1 (-1298 *3)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1108) (-34))) (-5 *1 (-1148 *2 *3)) - (-4 *3 (-13 (-1108) (-34)))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-932)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-932)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-949 (-226)) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-5 *2 (-1181 *3)) (-5 *1 (-1199 *3)) - (-4 *3 (-367))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *2)) (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) - (-5 *1 (-737 *5 *4 *6 *2)) (-4 *5 (-798)) - (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $))))) - (-4 *6 (-561))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1275 *5)) (-5 *3 (-776)) (-5 *4 (-1128)) (-4 *5 (-353)) - (-5 *1 (-533 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-694 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-12 (-5 *2 (-650 (-2 (|:| |k| *3) (|:| |c| (-1300 *3 *4))))) + (-5 *1 (-1300 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-878 *2 *3)) (-4 *2 (-1225)) (-4 *3 (-1225))))) -(((*1 *1 *1 *1) (-4 *1 (-478))) ((*1 *1 *1 *1) (-4 *1 (-766)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 (-383)) (-5 *1 (-206))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-1057)))) - ((*1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1185)) - (-4 *5 (-13 (-561) (-1046 (-569)) (-147))) - (-5 *2 - (-2 (|:| -2679 (-412 (-958 *5))) (|:| |coeff| (-412 (-958 *5))))) - (-5 *1 (-575 *5)) (-5 *3 (-412 (-958 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1266 *4)) - (-4 *4 (-38 (-412 (-569)))) - (-5 *2 (-1 (-1165 *4) (-1165 *4) (-1165 *4))) (-5 *1 (-1268 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-297 (-958 (-569)))) - (-5 *2 - (-2 (|:| |varOrder| (-649 (-1185))) - (|:| |inhom| (-3 (-649 (-1275 (-776))) "failed")) - (|:| |hom| (-649 (-1275 (-776)))))) - (-5 *1 (-237))))) + (-12 (-5 *1 (-879 *2 *3)) (-4 *2 (-1226)) (-4 *3 (-1226))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1144))) (-5 *1 (-1099))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *5 (-1252 *4)) (-5 *2 (-650 (-2 (|:| -2172 *5) (|:| -3499 *5)))) + (-5 *1 (-813 *4 *5 *3 *6)) (-4 *3 (-662 *5)) + (-4 *6 (-662 (-413 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *4 (-1252 *5)) (-5 *2 (-650 (-2 (|:| -2172 *4) (|:| -3499 *4)))) + (-5 *1 (-813 *5 *4 *3 *6)) (-4 *3 (-662 *4)) + (-4 *6 (-662 (-413 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *5 (-1252 *4)) (-5 *2 (-650 (-2 (|:| -2172 *5) (|:| -3499 *5)))) + (-5 *1 (-813 *4 *5 *6 *3)) (-4 *6 (-662 *5)) + (-4 *3 (-662 (-413 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *4 (-1252 *5)) (-5 *2 (-650 (-2 (|:| -2172 *4) (|:| -3499 *4)))) + (-5 *1 (-813 *5 *4 *6 *3)) (-4 *6 (-662 *4)) + (-4 *3 (-662 (-413 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-176 *3)) (-4 *3 (-311))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-368)) (-5 *1 (-903 *2 *3)) + (-4 *2 (-1252 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-368)) (-5 *1 (-289 *3 *2)) (-4 *2 (-1267 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) - ((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-408 *3)) (-4 *3 (-409)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (|has| *1 (-6 -4438)) (-4 *1 (-409)))) - ((*1 *2) (-12 (-4 *1 (-409)) (-5 *2 (-927)))) - ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-1165 (-569)))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-242)))) + (-12 (-5 *2 (-650 (-1212 *3))) (-5 *1 (-1212 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1276 (-1276 (-570)))) (-5 *3 (-928)) (-5 *1 (-472))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-354)) (-5 *2 (-777)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-408)) (-5 *2 (-777))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1269 *3 *2)) + (-4 *2 (-1267 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1168)) (-5 *3 (-570)) (-5 *1 (-243)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-649 (-1167))) (-5 *3 (-569)) (-5 *4 (-1167)) - (-5 *1 (-242)))) - ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) + (-12 (-5 *2 (-650 (-1168))) (-5 *3 (-570)) (-5 *4 (-1168)) + (-5 *1 (-243)))) + ((*1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) ((*1 *2 *1) - (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-551)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1185))) (-4 *6 (-367)) - (-5 *2 (-649 (-297 (-958 *6)))) (-5 *1 (-543 *5 *6 *7)) - (-4 *5 (-457)) (-4 *7 (-13 (-367) (-853)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 + (-3 (|:| |%expansion| (-317 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1168)) (|:| |prob| (-1168)))))) + (-5 *1 (-426 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) + (-14 *6 (-1186)) (-14 *7 *3)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-776)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-407)) (-5 *2 (-776))))) -(((*1 *1 *1 *1) (-5 *1 (-226))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048)))) - ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1057)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1251 *3))))) -(((*1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1189)) (-5 *1 (-1188))))) + (-12 (-4 *5 (-799)) (-4 *6 (-856)) (-4 *3 (-562)) + (-4 *7 (-956 *3 *5 *6)) + (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *8) (|:| |radicand| *8))) + (-5 *1 (-960 *5 *6 *3 *7 *8)) (-5 *4 (-777)) + (-4 *8 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $)))))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-760))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-650 (-777))) + (-5 *1 (-911 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-1226)) (-4 *3 (-856)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-378 *4)) (-4 *4 (-1226)) + (-5 *2 (-112))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) + (-5 *4 (-320 (-171 (-384)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) + (-5 *4 (-320 (-384))) (-5 *1 (-334)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) + (-5 *4 (-320 (-570))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-171 (-384))))) + (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-384)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-570)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-171 (-384))))) + (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-384)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-570)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-171 (-384)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-384))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-570))) (-5 *1 (-334)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) + (-5 *4 (-320 (-700))) (-5 *1 (-334)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) + (-5 *4 (-320 (-705))) (-5 *1 (-334)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1186)) (-5 *3 (-650 (-959 (-570)))) + (-5 *4 (-320 (-707))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-700)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-705)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-320 (-707)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-700)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-705)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-320 (-707)))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-700))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-705))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-1276 (-707))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-700))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-705))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-695 (-707))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-700))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-705))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-320 (-707))) (-5 *1 (-334)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *3 (-1168)) (-5 *1 (-334)))) + ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-112)) (-5 *5 (-695 (-171 (-227)))) + (-5 *2 (-1044)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1182 *5)) (-4 *5 (-368)) (-5 *2 (-650 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-368)) (-4 *4 (-13 (-368) (-854)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1211) (-436 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4)))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-649 *3)) (-5 *1 (-967 *3)) (-4 *3 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) - (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-649 (-319 (-226)))) - (|:| -2307 (-649 (-226))))))) - (-5 *2 (-649 (-1167))) (-5 *1 (-269))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-927)) (-4 *3 (-1057))))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) + (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-649 (-486 *3 *4))) (-14 *3 (-649 (-1185))) - (-4 *4 (-457)) (-5 *1 (-636 *3 *4))))) -(((*1 *2 *3) - (-12 (-4 *1 (-915)) (-5 *2 (-423 (-1181 *1))) (-5 *3 (-1181 *1))))) -(((*1 *1) (-12 (-4 *1 (-332 *2)) (-4 *2 (-372)) (-4 *2 (-367)))) - ((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) - (-4 *4 (-353))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-412 (-569)))) - (-5 *2 - (-649 - (-2 (|:| |outval| *4) (|:| |outmult| (-569)) - (|:| |outvect| (-649 (-694 *4)))))) - (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1181 (-412 (-569)))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1057))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-927)) (-4 *1 (-372)))) + (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -3665 *7)))) + (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-997 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-650 (-2 (|:| |val| (-650 *6)) (|:| -3665 *7)))) + (-4 *6 (-1074 *3 *4 *5)) (-4 *7 (-1080 *3 *4 *5 *6)) (-4 *3 (-458)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-1116 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))) +(((*1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-373)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1275 *4)) (-5 *1 (-533 *4)) - (-4 *4 (-353)))) + (-12 (-5 *3 (-928)) (-5 *2 (-1276 *4)) (-5 *1 (-534 *4)) + (-4 *4 (-354)))) ((*1 *2 *1) - (-12 (-4 *2 (-855)) (-5 *1 (-718 *2 *3 *4)) (-4 *3 (-1108)) + (-12 (-4 *2 (-856)) (-5 *1 (-719 *2 *3 *4)) (-4 *3 (-1109)) (-14 *4 - (-1 (-112) (-2 (|:| -2150 *2) (|:| -1993 *3)) - (-2 (|:| -2150 *2) (|:| -1993 *3))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-1068)) (-4 *3 (-1210)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-569))) (-4 *3 (-1057)) (-5 *1 (-600 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1235 *3)) (-4 *3 (-1057)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-569))) (-4 *1 (-1266 *3)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) - ((*1 *2 *1) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933))))) -(((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-193)))) - ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-303)))) - ((*1 *2 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1167)) (-5 *1 (-308))))) -(((*1 *2 *3) - (-12 (-5 *3 (-569)) (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *2 (-1280)) (-5 *1 (-454 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *1)) (-4 *1 (-1073 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1218 *4 *5 *6 *3)) (-4 *4 (-561)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108)) - (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) - (-5 *1 (-1084 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) - (-5 *1 (-1084 *3 *4 *2)) - (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-569)) - (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) - (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-1 (-112) (-2 (|:| -2155 *2) (|:| -3283 *3)) + (-2 (|:| -2155 *2) (|:| -3283 *3))))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-563 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-591)) (-5 *1 (-284))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-311)) (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-971 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1629 (-650 (-2 (|:| |irr| *10) (|:| -2306 (-570))))))) + (-5 *6 (-650 *3)) (-5 *7 (-650 *8)) (-4 *8 (-856)) (-4 *3 (-311)) + (-4 *10 (-956 *3 *9 *8)) (-4 *9 (-799)) + (-5 *2 + (-2 (|:| |polfac| (-650 *10)) (|:| |correct| *3) + (|:| |corrfact| (-650 (-1182 *3))))) + (-5 *1 (-631 *8 *9 *3 *10)) (-5 *4 (-650 (-1182 *3)))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| |contp| (-569)) - (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) - (-5 *1 (-1240 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112))))) + (-996 (-413 (-570)) (-870 *3) (-242 *4 (-777)) + (-249 *3 (-413 (-570))))) + (-14 *3 (-650 (-1186))) (-14 *4 (-777)) (-5 *1 (-995 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *2 (-13 (-435 *4) (-1010) (-1210))) - (-5 *1 (-605 *4 *2 *3)) - (-4 *3 (-13 (-435 (-170 *4)) (-1010) (-1210)))))) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *2 (-650 (-227))) + (-5 *1 (-474))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-694 (-1181 *8))) (-4 *5 (-1057)) (-4 *8 (-1057)) - (-4 *6 (-1251 *5)) (-5 *2 (-694 *6)) (-5 *1 (-506 *5 *6 *7 *8)) - (-4 *7 (-1251 *6))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-353)) (-4 *6 (-1251 *5)) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) (-5 *2 - (-649 - (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-694 *6))))) - (-5 *1 (-503 *5 *6 *7)) - (-5 *3 - (-2 (|:| -2403 (-694 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-694 *6)))) - (-4 *7 (-1251 *6))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-412 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) + (-2 (|:| |solns| (-650 *5)) + (|:| |maps| (-650 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1137 *3 *5)) (-4 *3 (-1252 *5))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109)) + (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) + (-5 *1 (-1085 *4 *5 *2)) + (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) + (-5 *1 (-1085 *3 *4 *2)) + (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) + (-12 (-5 *4 (-570)) (-4 *2 (-436 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1047 *4)) (-4 *3 (-562))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1226))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7))))) - (-4 *7 (-853)) - (-4 *8 - (-13 (-1253 *3 *7) (-367) (-1210) - (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) + (-12 (-4 *5 (-368)) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) - (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8)) - (-14 *10 (-1185))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1870 (-787 *3)) (|:| |coef1| (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-2 (|:| -1870 *1) (|:| |coef1| *1))) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-367)) - (-5 *2 (-112)) (-5 *1 (-672 *5)))) + (-2 (|:| A (-695 *5)) + (|:| |eqs| + (-650 + (-2 (|:| C (-695 *5)) (|:| |g| (-1276 *5)) (|:| -4313 *6) + (|:| |rh| *5)))))) + (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *5)) (-5 *4 (-1276 *5)) + (-4 *6 (-662 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *6 (-13 (-377 *5) (-10 -7 (-6 -4448)))) - (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4448)))) (-5 *2 (-112)) - (-5 *1 (-673 *5 *6 *4 *3)) (-4 *3 (-692 *5 *6 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *5 (-1167)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1043)) - (-5 *1 (-755))))) + (-12 (-4 *5 (-368)) (-4 *6 (-662 *5)) + (-5 *2 (-2 (|:| -2568 (-695 *6)) (|:| |vec| (-1276 *5)))) + (-5 *1 (-819 *5 *6)) (-5 *3 (-695 *6)) (-5 *4 (-1276 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-650 (-650 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-650 (-650 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-650 *3))) (-5 *1 (-1198 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-965 *3)) (-5 *1 (-1173 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *5 (-373)) + (-5 *2 (-777))))) +(((*1 *2 *1) + (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-854)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) + (-4 *3 (-1252 *4)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-1252 *4)) (-5 *1 (-545 *4 *2 *5 *6)) + (-4 *4 (-311)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-777)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-293 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1252 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-717 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1252 *3)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1058)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-721 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-875 *3)) (-5 *2 (-570))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-512)) (-5 *2 (-697 (-1113))) (-5 *1 (-295))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-777)) (-5 *3 (-950 *5)) (-4 *5 (-1058)) + (-5 *1 (-1174 *4 *5)) (-14 *4 (-928)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-777))) (-5 *3 (-777)) (-5 *1 (-1174 *4 *5)) + (-14 *4 (-928)) (-4 *5 (-1058)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-777))) (-5 *3 (-950 *5)) (-4 *5 (-1058)) + (-5 *1 (-1174 *4 *5)) (-14 *4 (-928))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-777)) (-5 *1 (-103 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) + (-4 *3 (-167 *6)) (-4 (-959 *6) (-893 *5)) + (-4 *6 (-13 (-893 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-896 *4 *1)) (-5 *3 (-899 *4)) (-4 *1 (-893 *4)) + (-4 *4 (-1109)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *6)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) + (-4 *6 (-13 (-1109) (-1047 *3))) (-4 *3 (-893 *5)) + (-5 *1 (-938 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) + (-4 *3 (-13 (-436 *6) (-620 *4) (-893 *5) (-1047 (-618 $)))) + (-5 *4 (-899 *5)) (-4 *6 (-13 (-562) (-893 *5))) + (-5 *1 (-939 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 (-570) *3)) (-5 *4 (-899 (-570))) (-4 *3 (-551)) + (-5 *1 (-940 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *6)) (-5 *3 (-618 *6)) (-4 *5 (-1109)) + (-4 *6 (-13 (-1109) (-1047 (-618 $)) (-620 *4) (-893 *5))) + (-5 *4 (-899 *5)) (-5 *1 (-941 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-892 *5 *6 *3)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) + (-4 *6 (-893 *5)) (-4 *3 (-672 *6)) (-5 *1 (-942 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-896 *6 *3) *8 (-899 *6) (-896 *6 *3))) + (-4 *8 (-856)) (-5 *2 (-896 *6 *3)) (-5 *4 (-899 *6)) + (-4 *6 (-1109)) (-4 *3 (-13 (-956 *9 *7 *8) (-620 *4))) + (-4 *7 (-799)) (-4 *9 (-13 (-1058) (-893 *6))) + (-5 *1 (-943 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) + (-4 *3 (-13 (-956 *8 *6 *7) (-620 *4))) (-5 *4 (-899 *5)) + (-4 *7 (-893 *5)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *8 (-13 (-1058) (-893 *5))) (-5 *1 (-943 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 *3)) (-4 *5 (-1109)) (-4 *3 (-1001 *6)) + (-4 *6 (-13 (-562) (-893 *5) (-620 *4))) (-5 *4 (-899 *5)) + (-5 *1 (-946 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-896 *5 (-1186))) (-5 *3 (-1186)) (-5 *4 (-899 *5)) + (-4 *5 (-1109)) (-5 *1 (-947 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-650 (-899 *7))) (-5 *5 (-1 *9 (-650 *9))) + (-5 *6 (-1 (-896 *7 *9) *9 (-899 *7) (-896 *7 *9))) (-4 *7 (-1109)) + (-4 *9 (-13 (-1058) (-620 (-899 *7)) (-1047 *8))) + (-5 *2 (-896 *7 *9)) (-5 *3 (-650 *9)) (-4 *8 (-1058)) + (-5 *1 (-948 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-112)) + (-5 *2 (-1044)) (-5 *1 (-751))))) (((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-219)))) - ((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-488)) (-5 *1 (-681)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-695 (-413 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-1226)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-522 *3 *4)) (-4 *3 (-1226)) + (-14 *4 (-570))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-424 *4)) (-4 *4 (-562))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-561)) - (-5 *2 (-2 (|:| -1863 (-694 *5)) (|:| |vec| (-1275 (-649 (-927)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-927)) (-4 *3 (-661 *5))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1043)) (-5 *1 (-753))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-294))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1181 *1)) (-4 *1 (-1020))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-472))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-757))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1224)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631)))) + (-12 (-5 *2 (-650 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1252 (-171 (-570)))) (-4 *4 (-13 (-368) (-854))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-650 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1225)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632)))) ((*1 *2 *1) - (-12 (-4 *3 (-1108)) - (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) - (-5 *1 (-1084 *3 *4 *2)) - (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))))) + (-12 (-4 *3 (-1109)) + (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) + (-5 *1 (-1085 *3 *4 *2)) + (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-1108))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-365 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-390 *4)) (-4 *4 (-1108)) (-5 *2 (-776)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-23)) (-5 *1 (-654 *4 *2 *5)) - (-4 *4 (-1108)) (-14 *5 *2)))) + (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *3 *2)) (-4 *3 (-1109))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1174 *2 *3)) (-14 *2 (-928)) (-4 *3 (-1058))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-896 *4 *5)) (-5 *3 (-896 *4 *6)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-672 *5)) (-5 *1 (-892 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-311)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570)))) + ((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1) (-4 *1 (-875 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798)) + (-4 *4 (-856))))) +(((*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-973 *3)) (-4 *3 (-1109))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| -2188 *4) (|:| -3766 (-569))))) - (-4 *4 (-1108)) (-5 *2 (-1 *4)) (-5 *1 (-1025 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-534))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-649 *11)) - (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11)))))) - (-5 *6 (-776)) - (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11)))) - (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9)) - (-4 *11 (-1079 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) - (-4 *9 (-855)) (-5 *1 (-1077 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-649 *11)) - (|:| |todo| (-649 (-2 (|:| |val| *3) (|:| -3663 *11)))))) - (-5 *6 (-776)) - (-5 *2 (-649 (-2 (|:| |val| (-649 *10)) (|:| -3663 *11)))) - (-5 *3 (-649 *10)) (-5 *4 (-649 *11)) (-4 *10 (-1073 *7 *8 *9)) - (-4 *11 (-1117 *7 *8 *9 *10)) (-4 *7 (-457)) (-4 *8 (-798)) - (-4 *9 (-855)) (-5 *1 (-1153 *7 *8 *9 *10 *11))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) - (-5 *2 - (-2 (|:| |mval| (-694 *4)) (|:| |invmval| (-694 *4)) - (|:| |genIdeal| (-509 *4 *5 *6 *7)))) - (-5 *1 (-509 *4 *5 *6 *7)) (-4 *7 (-955 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-223 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-4 *1 (-256 *3)))) - ((*1 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) + (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-887))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 (-958 *6))) (-4 *6 (-561)) - (-4 *2 (-955 (-412 (-958 *6)) *5 *4)) (-5 *1 (-737 *5 *4 *6 *2)) - (-4 *5 (-798)) - (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)))))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *1) + (-12 (-5 *2 (-697 (-973 *3))) (-5 *1 (-973 *3)) (-4 *3 (-1109))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-590)) (-5 *3 (-602)) (-5 *4 (-294)) (-5 *1 (-283))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-597)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-631)))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *1) (-4 *1 (-1069)))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-484)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-598)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-632)))) ((*1 *2 *1) - (-12 (-4 *3 (-1108)) - (-4 *2 (-13 (-435 *4) (-892 *3) (-619 (-898 *3)))) - (-5 *1 (-1084 *3 *4 *2)) - (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))))) + (-12 (-4 *3 (-1109)) + (-4 *2 (-13 (-436 *4) (-893 *3) (-620 (-899 *3)))) + (-5 *1 (-1085 *3 *4 *2)) + (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))))) ((*1 *2 *1) - (-12 (-4 *2 (-1108)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-1108))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-649 (-617 *2))) (-5 *4 (-649 (-1185))) - (-4 *2 (-13 (-435 (-170 *5)) (-1010) (-1210))) (-4 *5 (-561)) - (-5 *1 (-605 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1010) (-1210)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-569)) (-14 *3 (-776)) - (-4 *4 (-173)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *1 (-158 *4 *2)) - (-4 *2 (-435 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1100 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1100 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1185)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-5 *1 (-1295 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-173))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1108)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-390 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-509 *3 *4 *5 *6))) (-4 *3 (-367)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) - (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *1)) (-4 *1 (-1079 *4 *5 *6 *3)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-649 *1)) (-5 *3 (-649 *7)) (-4 *1 (-1079 *4 *5 *6 *7)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1106 *2)) (-4 *2 (-1108))))) + (-12 (-4 *2 (-1109)) (-5 *1 (-1175 *2 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-562)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-1216 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-2 (|:| |deg| (-777)) (|:| -1566 *5)))) + (-4 *5 (-1252 *4)) (-4 *4 (-354)) (-5 *2 (-650 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-2 (|:| -3801 *5) (|:| -3324 (-570))))) + (-5 *4 (-570)) (-4 *5 (-1252 *4)) (-5 *2 (-650 *5)) + (-5 *1 (-702 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-650 *2))) (-5 *4 (-650 *5)) + (-4 *5 (-38 (-413 (-570)))) (-4 *2 (-1267 *5)) + (-5 *1 (-1269 *5 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-13 (-1057) (-722 (-412 (-569))))) - (-4 *5 (-855)) (-5 *1 (-1291 *4 *5 *2)) (-4 *2 (-1296 *5 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *3)) (-4 *3 (-1108)) (-5 *2 (-1110 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-649 *4))) (-5 *1 (-910 *4)) - (-5 *3 (-649 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1108)) (-5 *2 (-1110 (-1110 *4))) (-5 *1 (-910 *4)) - (-5 *3 (-1110 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1110 *3)) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *1) (-5 *1 (-1188)))) -(((*1 *2 *1) (-12 (-5 *2 (-979)) (-5 *1 (-911 *3)) (-4 *3 (-1108))))) + (-12 (-4 *3 (-1058)) (-5 *2 (-1276 *3)) (-5 *1 (-718 *3 *4)) + (-4 *4 (-1252 *3))))) (((*1 *2) - (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) - (-4 *3 (-561))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1251 *9)) (-4 *7 (-798)) (-4 *8 (-855)) (-4 *9 (-310)) - (-4 *10 (-955 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-649 (-1181 *10))) - (|:| |dterm| - (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-649 *6)) (|:| |nlead| (-649 *10)))) - (-5 *1 (-783 *6 *7 *8 *9 *10)) (-5 *3 (-1181 *10)) (-5 *4 (-649 *6)) - (-5 *5 (-649 *10))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-319 (-569))) (|:| -1668 (-319 (-383))) - (|:| CF (-319 (-170 (-383)))) (|:| |switch| (-1184)))) - (-5 *1 (-1184))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) + (-12 (-5 *2 (-695 (-917 *3))) (-5 *1 (-356 *3 *4)) (-14 *3 (-928)) + (-14 *4 (-928)))) + ((*1 *2) + (-12 (-5 *2 (-695 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-354)) + (-14 *4 + (-3 (-1182 *3) + (-1276 (-650 (-2 (|:| -2190 *3) (|:| -2155 (-1129))))))))) + ((*1 *2) + (-12 (-5 *2 (-695 *3)) (-5 *1 (-358 *3 *4)) (-4 *3 (-354)) + (-14 *4 (-928))))) +(((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-694 *8)) (-5 *4 (-776)) (-4 *8 (-955 *5 *7 *6)) - (-4 *5 (-13 (-310) (-147))) (-4 *6 (-13 (-855) (-619 (-1185)))) - (-4 *7 (-798)) - (-5 *2 - (-649 - (-2 (|:| |det| *8) (|:| |rows| (-649 (-569))) - (|:| |cols| (-649 (-569)))))) - (-5 *1 (-930 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) - (-248 *4 (-412 (-569))))) - (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) - (-5 *1 (-510 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-310)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1108)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-390 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4007 (-776)) (|:| -2054 (-776)))) - (-5 *1 (-776)))) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-742 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108)))) - ((*1 *1) (-12 (-5 *1 (-742 *2)) (-4 *2 (-1108))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-776)) (-4 *4 (-1057)) (-5 *1 (-1247 *4 *2)) - (-4 *2 (-1251 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-867))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-4 *4 (-457)) - (-5 *2 (-649 (-3 (-412 (-958 *4)) (-1174 (-1185) (-958 *4))))) - (-5 *1 (-295 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-958 *5)) (-4 *5 (-1057)) (-5 *2 (-248 *4 *5)) - (-5 *1 (-950 *4 *5)) (-14 *4 (-649 (-1185)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-128))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049)))) + ((*1 *1 *1 *1) (-4 *1 (-1148)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-383)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265))))) -(((*1 *1 *1 *1) (-4 *1 (-975)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4))))) + (|partial| -12 (-5 *3 (-928)) (-5 *1 (-448 *2)) + (-4 *2 (-1252 (-570))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-928)) (-5 *4 (-777)) (-5 *1 (-448 *2)) + (-4 *2 (-1252 (-570))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *1 (-448 *2)) + (-4 *2 (-1252 (-570))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777)) + (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-928)) (-5 *4 (-650 (-777))) (-5 *5 (-777)) + (-5 *6 (-112)) (-5 *1 (-448 *2)) (-4 *2 (-1252 (-570))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-367) (-853))) (-5 *2 (-423 *3)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *8)) (-4 *8 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) + (-12 (-5 *3 (-928)) (-5 *4 (-424 *2)) (-4 *2 (-1252 *5)) + (-5 *1 (-450 *5 *2)) (-4 *5 (-1058))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569))))) - (-4 *4 (-1251 (-569))) (-5 *2 (-776)) (-5 *1 (-447 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-649 (-949 *4))) (-4 *1 (-1142 *4)) (-4 *4 (-1057)) - (-5 *2 (-776))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-895 *4 *5)) (-5 *3 (-895 *4 *6)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-671 *5)) (-5 *1 (-891 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-694 *6)) (-5 *5 (-1 (-423 (-1181 *6)) (-1181 *6))) - (-4 *6 (-367)) + (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 (-899 *6))) + (-5 *5 (-1 (-896 *6 *8) *8 (-899 *6) (-896 *6 *8))) (-4 *6 (-1109)) + (-4 *8 (-13 (-1058) (-620 (-899 *6)) (-1047 *7))) + (-5 *2 (-896 *6 *8)) (-4 *7 (-1058)) (-5 *1 (-948 *6 *7 *8))))) +(((*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1279))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1190))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-649 - (-2 (|:| |outval| *7) (|:| |outmult| (-569)) - (|:| |outvect| (-649 (-694 *7)))))) - (-5 *1 (-537 *6 *7 *4)) (-4 *7 (-367)) (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1014))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282)))) + (-3 (|:| I (-320 (-570))) (|:| -1667 (-320 (-384))) + (|:| CF (-320 (-171 (-384)))) (|:| |switch| (-1185)))) + (-5 *1 (-1185))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-322)) (-5 *3 (-227))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1226)) (-4 *1 (-107 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-650 (-1186))) (-4 *2 (-174)) + (-4 *4 (-240 (-2431 *5) (-777))) + (-14 *6 + (-1 (-112) (-2 (|:| -2155 *3) (|:| -3283 *4)) + (-2 (|:| -2155 *3) (|:| -3283 *4)))) + (-5 *1 (-467 *5 *2 *3 *4 *6 *7)) (-4 *3 (-856)) + (-4 *7 (-956 *2 *4 (-870 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-762))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-828)) (-5 *2 (-52)) (-5 *1 (-835))))) +(((*1 *2 *1) (-12 (-5 *2 (-697 (-1144))) (-5 *1 (-1160))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-765))))) +(((*1 *1 *1 *1) (-4 *1 (-551)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1276 *4)) (-4 *4 (-423 *3)) (-4 *3 (-311)) + (-4 *3 (-562)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-928)) (-4 *4 (-368)) (-5 *2 (-1276 *1)) + (-4 *1 (-333 *4)))) + ((*1 *2) (-12 (-4 *3 (-368)) (-5 *2 (-1276 *1)) (-4 *1 (-333 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1252 *3)) (-5 *2 (-1276 *1)) + (-4 *1 (-415 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-569) (-226) (-511) (-1167) (-1190))) - (-5 *1 (-1190))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) - (-5 *2 (-649 (-1185))) (-5 *1 (-1084 *3 *4 *5)) - (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-853) (-367))) (-5 *1 (-1069 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-112)) - (-5 *1 (-265))))) -(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-330 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1225)) (-5 *1 (-521 *3 *4)) - (-14 *4 (-569))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1018 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1) - (-12 (-4 *1 (-559 *3)) (-4 *3 (-13 (-409) (-1210))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-853)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1076 *4 *3)) (-4 *4 (-13 (-853) (-367))) - (-4 *3 (-1251 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) + (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) + (-5 *2 (-1276 *6)) (-5 *1 (-419 *3 *4 *5 *6)) + (-4 *6 (-13 (-415 *4 *5) (-1047 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-311)) (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) + (-5 *2 (-1276 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)) + (-4 *6 (-415 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1276 *1)) (-4 *1 (-423 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1276 (-1276 *4))) (-5 *1 (-534 *4)) + (-4 *4 (-354))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148))) + (-5 *1 (-1246 *4 *2)) (-4 *2 (-1252 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-776)) - (-5 *1 (-454 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3)) (-4 *3 (-855))))) + (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-367)) (-4 *6 (-1251 (-412 *2))) - (-4 *2 (-1251 *5)) (-5 *1 (-216 *5 *2 *6 *3)) - (-4 *3 (-346 *5 *2 *6))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1103 (-227))) + (-5 *5 (-112)) (-5 *2 (-1278)) (-5 *1 (-260))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562))))) +(((*1 *1) (-5 *1 (-295)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-650 *1)) (|has| *1 (-6 -4449)) (-4 *1 (-1019 *3)) + (-4 *3 (-1226))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) (-5 *6 (-681 (-227))) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-649 (-1190))) (-5 *1 (-1144))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-569)) (-4 *5 (-853)) (-4 *5 (-367)) - (-5 *2 (-776)) (-5 *1 (-951 *5 *6)) (-4 *6 (-1251 *5))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-457)) (-4 *3 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-454 *4 *3 *5 *6)) (-4 *6 (-955 *4 *3 *5))))) + (-12 (-5 *3 (-695 *4)) (-4 *4 (-368)) (-5 *2 (-1182 *4)) + (-5 *1 (-538 *4 *5 *6)) (-4 *5 (-368)) (-4 *6 (-13 (-368) (-854)))))) (((*1 *2 *3) - (-12 (-5 *3 (-694 (-319 (-226)))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-570))) (-5 *1 (-1056))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-777)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1227 *3)) (-4 *3 (-1109)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1109)) (-5 *2 (-112)) + (-5 *1 (-1227 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-122 *3))))) +(((*1 *2) + (-12 (-4 *3 (-1230)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 (-413 *4))) + (-5 *2 (-1276 *1)) (-4 *1 (-347 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-383)) (|:| |stabilityFactor| (-383)))) - (-5 *1 (-206))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-4 *7 (-955 *4 *6 *5)) + (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-695 *3)))) + (-5 *1 (-355 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1252 (-570))) (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-649 *7)) (|:| |n0| (-649 *7)))) - (-5 *1 (-930 *4 *5 *6 *7)) (-5 *3 (-649 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-550)))) - ((*1 *1 *1) (-4 *1 (-1068)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-764))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-853))) - (-5 *2 (-2 (|:| |start| *3) (|:| -4360 (-423 *3)))) - (-5 *1 (-182 *4 *3)) (-4 *3 (-1251 (-170 *4)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *3) - (-12 (-4 *1 (-901)) - (-5 *3 - (-2 (|:| |pde| (-649 (-319 (-226)))) - (|:| |constraints| - (-649 - (-2 (|:| |start| (-226)) (|:| |finish| (-226)) - (|:| |grid| (-776)) (|:| |boundaryType| (-569)) - (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) - (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) - (|:| |tol| (-226)))) - (-5 *2 (-1043))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-569)) (-5 *5 (-694 (-226))) (-5 *4 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *5 *6)) (-4 *6 (-619 (-1185))) - (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *2 (-1174 (-649 (-958 *4)) (-649 (-297 (-958 *4))))) - (-5 *1 (-509 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1190)) (-5 *1 (-282))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1043)) (-5 *1 (-753))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-843))) (-5 *1 (-140))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) + (-2 (|:| -2077 (-695 (-570))) (|:| |basisDen| (-570)) + (|:| |basisInv| (-695 (-570))))) + (-5 *1 (-774 *3 *4)) (-4 *4 (-415 (-570) *3)))) + ((*1 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 *4)) (-5 *2 - (-2 (|:| |zeros| (-1165 (-226))) (|:| |ones| (-1165 (-226))) - (|:| |singularities| (-1165 (-226))))) - (-5 *1 (-105))))) + (-2 (|:| -2077 (-695 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-695 *4)))) + (-5 *1 (-994 *3 *4 *5 *6)) (-4 *6 (-730 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-354)) (-4 *4 (-1252 *3)) (-4 *5 (-1252 *4)) + (-5 *2 + (-2 (|:| -2077 (-695 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-695 *4)))) + (-5 *1 (-1285 *3 *4 *5 *6)) (-4 *6 (-415 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-1212 *3))) (-5 *1 (-1212 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-311)) (-4 *2 (-458)) (-4 *3 (-856)) + (-4 *4 (-799)) (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-320 (-570))) (-5 *1 (-1128)))) + ((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-541)) (-5 *1 (-540 *4)) - (-4 *4 (-1225))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1167)) (-4 *1 (-394))))) -(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) - ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265))))) -(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-561)) (-4 *3 (-1057)) - (-5 *2 (-2 (|:| -4007 *1) (|:| -2054 *1))) (-4 *1 (-857 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-561)) (-4 *5 (-1057)) - (-5 *2 (-2 (|:| -4007 *3) (|:| -2054 *3))) (-5 *1 (-858 *5 *3)) - (-4 *3 (-857 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1183 *4 *5 *6)) - (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1248 *5 *4)) (-5 *1 (-1267 *4 *5 *6)) - (-4 *4 (-1057)) (-14 *5 (-1185)) (-14 *6 *4)))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1109)) (-4 *5 (-1109)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-689 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-962)) (-5 *2 (-650 (-650 (-950 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-983)) (-5 *2 (-650 (-650 (-950 (-227)))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-911 *4)) + (-4 *4 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 (-650 (-650 (-570)))) + (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-570)) (-4 *7 (-956 *4 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-569)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1046 *4)) (-4 *3 (-561))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-368)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-580 *5 *3))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-569))) (-5 *1 (-1055))))) -(((*1 *1 *1) (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) - ((*1 *1 *1) (-12 (-4 *1 (-700 *2)) (-4 *2 (-1108))))) + (-12 (-5 *3 (-1182 (-570))) (-5 *2 (-570)) (-5 *1 (-949))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-4 *5 (-436 *4)) + (-5 *2 (-424 *3)) (-5 *1 (-441 *4 *5 *3)) (-4 *3 (-1252 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1181 *4)) (-5 *1 (-361 *4)) - (-4 *4 (-353))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) - (-5 *1 (-335))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-958 *4))) (-4 *4 (-457)) (-5 *2 (-112)) - (-5 *1 (-364 *4 *5)) (-14 *5 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-785 *4 (-869 *5)))) (-4 *4 (-457)) - (-14 *5 (-649 (-1185))) (-5 *2 (-112)) (-5 *1 (-633 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-511)) (-5 *3 (-649 (-971))) (-5 *1 (-109))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) - (-5 *2 (-2 (|:| -1435 (-412 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5)))))) + (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-1191))) (-5 *1 (-1145))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-695 (-570))) (-5 *3 (-650 (-570))) (-5 *1 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-583)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) - (-5 *2 (-649 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-742 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-444))) (-5 *1 (-870))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-457)) (-4 *4 (-1108)) - (-5 *1 (-578 *4 *2)) (-4 *2 (-287)) (-4 *2 (-435 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225)))) - ((*1 *1 *1) (-4 *1 (-874 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797)) - (-4 *4 (-855))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-473)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1276)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-1277))))) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1074 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-172)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-494 *3)) (-4 *3 (-1225)) - (-4 *3 (-1108)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-911 *4)) (-4 *4 (-1108)) (-5 *2 (-112)) - (-5 *1 (-910 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-927)) (-5 *2 (-112)) (-5 *1 (-1109 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) + (-5 *2 (-650 *3))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-793)) (-5 *2 (-1044)) + (-5 *3 + (-2 (|:| |fn| (-320 (-227))) + (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-793)) (-5 *2 (-1044)) + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *1) (-4 *1 (-354)))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1168)) (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *2 (-1044)) (-5 *1 (-763))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-758))))) (((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-310)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-452 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) - (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-452 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-649 *7)) (-5 *3 (-1167)) (-4 *7 (-955 *4 *5 *6)) - (-4 *4 (-310)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-452 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1252 (-413 (-570)))) (-5 *1 (-920 *3 *2)) + (-4 *2 (-1252 (-413 *3)))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1225)) (-5 *2 (-1280))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569)))) + (-12 (-5 *3 (-928)) (-5 *2 (-1281)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 (*2 $)) + (-15 -2038 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1275 (-3 (-473) "undefined"))) (-5 *1 (-1276))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-131))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-694 *7)) (-5 *3 (-649 *7)) (-4 *7 (-955 *4 *6 *5)) - (-4 *4 (-13 (-310) (-147))) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-617 *4)) (-4 *4 (-1108)) (-4 *2 (-1108)) - (-5 *1 (-616 *2 *4))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-762))))) + (-12 (-5 *2 (-1281)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 (*2 $)) + (-15 -2038 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-508))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-320 (-227)))) (-5 *4 (-777)) + (-5 *2 (-695 (-227))) (-5 *1 (-270))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-809))))) (((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-1191)) (-5 *1 (-283))))) +(((*1 *2 *1) + (-12 (-4 *2 (-714 *3)) (-5 *1 (-833 *2 *3)) (-4 *3 (-1058))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -4411 *7) (|:| |sol?| (-112))) + (-570) *7)) + (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1252 *7)) + (-5 *3 (-413 *8)) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-412 *6)) (|:| |c| (-412 *6)) - (|:| -3676 *6))) - (-5 *1 (-1023 *5 *6)) (-5 *3 (-412 *6))))) + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-580 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) - (-5 *2 (-248 *4 *5)) (-5 *1 (-950 *4 *5))))) + (-12 (-5 *3 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570))))) + (-5 *2 (-413 (-570))) (-5 *1 (-1029 *4)) (-4 *4 (-1252 (-570)))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-959 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-959 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-174)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-959 *4)) (-4 *4 (-1058)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-959 *5)) (-5 *4 (-928)) (-4 *5 (-1058)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-413 (-959 (-171 *4)))) (-4 *4 (-562)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-413 (-959 (-171 *5)))) (-5 *4 (-928)) + (-4 *5 (-562)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) + (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 *4)) (-4 *4 (-562)) (-4 *4 (-856)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-320 *5)) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) + (-5 *1 (-791 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-320 (-171 *4))) (-4 *4 (-562)) (-4 *4 (-856)) + (-4 *4 (-620 (-384))) (-5 *2 (-171 (-384))) (-5 *1 (-791 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-320 (-171 *5))) (-5 *4 (-928)) (-4 *5 (-562)) + (-4 *5 (-856)) (-4 *5 (-620 (-384))) (-5 *2 (-171 (-384))) + (-5 *1 (-791 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-591)) (-5 *3 (-603)) (-5 *4 (-295)) (-5 *1 (-284))))) (((*1 *2 *1) - (-12 (-5 *2 (-1260 *3 *4 *5)) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) - (-14 *4 (-1185)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-423 *3)) (-4 *3 (-561)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-704)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1108)) (-5 *1 (-718 *3 *2 *4)) (-4 *3 (-855)) - (-14 *4 - (-1 (-112) (-2 (|:| -2150 *3) (|:| -1993 *2)) - (-2 (|:| -2150 *3) (|:| -1993 *2))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1870 *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) + (-12 (-5 *2 (-173)) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-880)))) + ((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-695 *6)) (-5 *5 (-1 (-424 (-1182 *6)) (-1182 *6))) + (-4 *6 (-368)) + (-5 *2 + (-650 + (-2 (|:| |outval| *7) (|:| |outmult| (-570)) + (|:| |outvect| (-650 (-695 *7)))))) + (-5 *1 (-538 *6 *7 *4)) (-4 *7 (-368)) (-4 *4 (-13 (-368) (-854)))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1168)) (-4 *1 (-395))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-570)) + (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) + (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-570)) + (|:| -1629 (-650 (-2 (|:| |irr| *3) (|:| -2306 (-570))))))) + (-5 *1 (-1241 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-260))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-366 (-115))) (-4 *2 (-1058)) (-5 *1 (-720 *2 *4)) + (-4 *4 (-654 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-366 (-115))) (-5 *1 (-842 *2)) (-4 *2 (-1058))))) (((*1 *1 *1) - (-12 (-4 *2 (-367)) (-4 *3 (-798)) (-4 *4 (-855)) - (-5 *1 (-509 *2 *3 *4 *5)) (-4 *5 (-955 *2 *3 *4))))) + (-12 (-4 *2 (-354)) (-4 *2 (-1058)) (-5 *1 (-718 *2 *3)) + (-4 *3 (-1252 *2))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-649 *5))) (-4 *5 (-1266 *4)) - (-4 *4 (-38 (-412 (-569)))) - (-5 *2 (-1 (-1165 *4) (-649 (-1165 *4)))) (-5 *1 (-1268 *4 *5))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-757))))) -(((*1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1203))))) + (-12 (|has| *2 (-6 (-4450 "*"))) (-4 *5 (-378 *2)) (-4 *6 (-378 *2)) + (-4 *2 (-1058)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1252 *2)) + (-4 *4 (-693 *2 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-928)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-266))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-650 *7) *7 (-1182 *7))) (-5 *5 (-1 (-424 *7) *7)) + (-4 *7 (-1252 *6)) (-4 *6 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-5 *2 (-650 (-2 (|:| |frac| (-413 *7)) (|:| -4313 *3)))) + (-5 *1 (-815 *6 *7 *3 *8)) (-4 *3 (-662 *7)) + (-4 *8 (-662 (-413 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-424 *6) *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 + (-650 (-2 (|:| |frac| (-413 *6)) (|:| -4313 (-660 *6 (-413 *6)))))) + (-5 *1 (-818 *5 *6)) (-5 *3 (-660 *6 (-413 *6)))))) (((*1 *2 *3) - (-12 (-4 *4 (-353)) (-5 *2 (-423 (-1181 (-1181 *4)))) - (-5 *1 (-1223 *4)) (-5 *3 (-1181 (-1181 *4)))))) + (-12 (-5 *2 (-1166 (-570))) (-5 *1 (-1170 *4)) (-4 *4 (-1058)) + (-5 *3 (-570))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))))) + (-12 (-5 *2 (-899 *4)) (-4 *4 (-1109)) (-5 *1 (-897 *4 *3)) + (-4 *3 (-1226)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-4 *1 (-1252 *4)) (-4 *4 (-1058)) + (-5 *2 (-1276 *4))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1186)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-650 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2134 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1211) (-27) (-436 *8))) + (-4 *8 (-13 (-458) (-148) (-1047 *3) (-645 *3))) (-5 *3 (-570)) + (-5 *2 (-650 *4)) (-5 *1 (-1023 *8 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-474)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1277)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-1278))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-570)) (|has| *1 (-6 -4449)) (-4 *1 (-1264 *3)) + (-4 *3 (-1226))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-458)) + (-4 *3 (-562)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-986 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-650 *7)) (-5 *3 (-112)) (-4 *7 (-1074 *4 *5 *6)) + (-4 *4 (-458)) (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *1 (-986 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-1182 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-694 *5))) (-4 *5 (-310)) (-4 *5 (-1057)) - (-5 *2 (-1275 (-1275 *5))) (-5 *1 (-1037 *5)) (-5 *4 (-1275 *5))))) -(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) - ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-569)) (-5 *2 (-112)) (-5 *1 (-558))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-226)) - (-5 *2 (-1043)) (-5 *1 (-754))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4447)) (-4 *1 (-494 *4)) - (-4 *4 (-1225)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1230)))))) -(((*1 *1 *1 *1) (-5 *1 (-867))) ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *3 (-569)) (-4 *1 (-874 *4))))) -(((*1 *1) (-5 *1 (-442)))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-423 *2)) (-4 *2 (-310)) (-5 *1 (-920 *2)))) + (-12 (-5 *3 (-695 *1)) (-5 *4 (-1276 *1)) (-4 *1 (-645 *5)) + (-4 *5 (-1058)) + (-5 *2 (-2 (|:| -2568 (-695 *5)) (|:| |vec| (-1276 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-695 *1)) (-4 *1 (-645 *4)) (-4 *4 (-1058)) + (-5 *2 (-695 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-757))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-311)) (-5 *1 (-706 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-826)) (-14 *5 (-1186)) + (-5 *2 (-650 *4)) (-5 *1 (-1123 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *2) + (-12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1044)) (-5 *1 (-755))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1281)) + (-5 *1 (-1227 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-5 *2 (-1281)) + (-5 *1 (-1227 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-650 (-650 (-650 *4)))) (-5 *3 (-650 *4)) (-4 *4 (-856)) + (-5 *1 (-1197 *4))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-757))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-551)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) +(((*1 *2 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1252 (-570))) (-5 *1 (-492 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540)))) + ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-570)) (-5 *2 (-650 (-650 (-227)))) (-5 *1 (-1222))))) +(((*1 *2 *3) + (-12 (-5 *3 (-320 *4)) (-4 *4 (-13 (-834) (-1058))) (-5 *2 (-1168)) + (-5 *1 (-832 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-320 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-834) (-1058))) + (-5 *2 (-1168)) (-5 *1 (-832 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *5)))) + (-12 (-5 *3 (-828)) (-5 *4 (-320 *5)) (-4 *5 (-13 (-834) (-1058))) + (-5 *2 (-1281)) (-5 *1 (-832 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-423 (-958 *6))) (-5 *5 (-1185)) (-5 *3 (-958 *6)) - (-4 *6 (-13 (-310) (-147))) (-5 *2 (-52)) (-5 *1 (-921 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2) (-12 (-5 *2 (-848 (-569))) (-5 *1 (-539)))) - ((*1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1 *1) (-4 *1 (-550)))) + (-12 (-5 *3 (-828)) (-5 *4 (-320 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-834) (-1058))) (-5 *2 (-1281)) (-5 *1 (-832 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-834)) (-5 *2 (-1168)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-834)) (-5 *3 (-112)) (-5 *2 (-1168)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *2 (-1281)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-834)) (-5 *3 (-828)) (-5 *4 (-112)) (-5 *2 (-1281))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1182 *9)) (-5 *4 (-650 *7)) (-5 *5 (-650 (-650 *8))) + (-4 *7 (-856)) (-4 *8 (-311)) (-4 *9 (-956 *8 *6 *7)) (-4 *6 (-799)) + (-5 *2 + (-2 (|:| |upol| (-1182 *8)) (|:| |Lval| (-650 *8)) + (|:| |Lfact| + (-650 (-2 (|:| -3801 (-1182 *8)) (|:| -3283 (-570))))) + (|:| |ctpol| *8))) + (-5 *1 (-748 *6 *7 *8 *9))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-1108)) - (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) + (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-1109)) + (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4))))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-649 (-569))) (-5 *3 (-694 (-569))) (-5 *1 (-1118))))) -(((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-1108)) (-5 *2 (-776))))) -(((*1 *2 *2) - (-12 (-4 *3 (-619 (-898 *3))) (-4 *3 (-892 *3)) (-4 *3 (-457)) - (-5 *1 (-1216 *3 *2)) (-4 *2 (-619 (-898 *3))) (-4 *2 (-892 *3)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1058)) (-5 *1 (-450 *3 *2)) (-4 *2 (-1252 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-391 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-458) (-148))) (-5 *2 (-424 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-13 (-458) (-148))) + (-5 *2 (-424 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2) (-12 (-5 *2 (-849 (-570))) (-5 *1 (-540)))) + ((*1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-1109))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -2134 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-650 (-413 *8))) (-4 *7 (-368)) (-4 *8 (-1252 *7)) + (-5 *3 (-413 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-580 *7 *8))))) (((*1 *2 *1) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-322 *3 *4 *5)) (-4 *3 (-367)) - (-14 *4 (-1185)) (-14 *5 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-569)) (-5 *1 (-242)))) + (-12 (-4 *3 (-1226)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-1174 *3 *4))) (-5 *1 (-1174 *3 *4)) + (-14 *3 (-928)) (-4 *4 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-193)) (-5 *3 (-570)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-569)) (-5 *1 (-242))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-112)) - (-5 *6 (-226)) (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-393)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1043)) (-5 *1 (-761))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-649 (-265))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265))))) -(((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-879))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) + (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) - (-15 -4412 ((-1133 *3 (-617 $)) $)) - (-15 -3796 ($ (-1133 *3 (-617 $)))))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *1)) (-4 *1 (-1142 *3)) (-4 *3 (-1057)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)) - (-4 *3 (-561)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561))))) + (|partial| -12 (-4 *3 (-368)) (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) + (-5 *1 (-527 *3 *4 *5 *2)) (-4 *2 (-693 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-562)) (-4 *5 (-378 *4)) (-4 *6 (-378 *4)) + (-4 *7 (-1001 *4)) (-4 *2 (-693 *7 *8 *9)) + (-5 *1 (-528 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-693 *4 *5 *6)) + (-4 *8 (-378 *7)) (-4 *9 (-378 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-693 *2 *3 *4)) (-4 *2 (-1058)) + (-4 *3 (-378 *2)) (-4 *4 (-378 *2)) (-4 *2 (-368)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-368)) (-4 *3 (-174)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) + (-4 *2 (-693 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-695 *2)) (-4 *2 (-368)) (-4 *2 (-1058)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-240 *2 *3)) (-4 *5 (-240 *2 *3)) (-4 *3 (-368)))) + ((*1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-1197 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1044)) (-5 *1 (-755)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-394)) (-5 *2 (-1044)) (-5 *1 (-755))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1186)) (-5 *6 (-650 (-618 *3))) + (-5 *5 (-618 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *7))) + (-4 *7 (-13 (-458) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) + (-5 *1 (-563 *7 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-928)) (-5 *4 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1277))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-561) (-147))) - (-5 *2 (-2 (|:| -4398 *3) (|:| -4410 *3))) (-5 *1 (-1245 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -3908 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(((*1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-835))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -1738 *1) (|:| -4435 *1) (|:| |associate| *1))) + (-4 *1 (-562))))) +(((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1275 (-412 (-958 *4)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *4))))))) - (-5 *3 (-649 *7)) (-4 *4 (-13 (-310) (-147))) - (-4 *7 (-955 *4 *6 *5)) (-4 *5 (-13 (-855) (-619 (-1185)))) - (-4 *6 (-798)) (-5 *1 (-930 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-609 *4 *3)) (-4 *4 (-1108)) - (-4 *3 (-1225)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| -3800 (-1181 *6)) (|:| -1993 (-569))))) - (-4 *6 (-310)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-569)) - (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) - (-5 *2 (-112)) (-5 *1 (-345 *3 *4 *5 *6)) (-4 *3 (-346 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-879)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1266 *4)) (-5 *1 (-1268 *4 *2)) - (-4 *4 (-38 (-412 (-569))))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) -(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) - (-12 (-5 *3 (-694 (-412 (-958 (-569))))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-649 - (-2 (|:| |radval| (-319 (-569))) (|:| |radmult| (-569)) - (|:| |radvect| (-649 (-694 (-319 (-569)))))))) - (-5 *1 (-1039))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-949 (-226)))) (-5 *1 (-1276))))) -(((*1 *1 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 -1668)))) - (-5 *2 (-1043)) (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1275 (-649 (-2 (|:| -2188 *4) (|:| -2150 (-1128)))))) - (-4 *4 (-353)) (-5 *2 (-1280)) (-5 *1 (-533 *4))))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-266)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-570)) (-5 *4 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1281)) (-5 *1 (-1278)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2298 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1278)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1182 *1)) (-5 *3 (-1186)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-959 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1186)) (-4 *1 (-29 *3)) (-4 *3 (-562)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-562))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-830)) (-5 *3 (-650 (-1186))) (-5 *1 (-831))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-570)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-877 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-877 *2)) (-14 *2 (-570)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-570)) (-14 *3 *2) (-5 *1 (-878 *3 *4)) + (-4 *4 (-875 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-570)) (-5 *1 (-878 *2 *3)) (-4 *3 (-875 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-570)) (-4 *1 (-1238 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-1267 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1238 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1267 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-120 *2)) (-4 *2 (-1226))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-956 *3 *4 *5)) (-4 *3 (-368)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-510 *3 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-776)) (-5 *4 (-569)) (-5 *1 (-450 *2)) (-4 *2 (-1057))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-4 *1 (-909 *3))))) -(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-928)) (-5 *4 (-424 *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-1058)) (-5 *2 (-650 *6)) (-5 *1 (-450 *5 *6))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1153)))) +(((*1 *1) (-5 *1 (-1072)))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1149 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34))) + (-5 *2 (-112)) (-5 *1 (-1150 *5 *6))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1186)) (-5 *5 (-650 (-413 (-959 *6)))) + (-5 *3 (-413 (-959 *6))) + (-4 *6 (-13 (-562) (-1047 (-570)) (-148))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-576 *6))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4364 *3) (|:| -3283 (-777)))) (-5 *1 (-593 *3)) + (-4 *3 (-551))))) +(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -4410 *6) (|:| |sol?| (-112))) (-569) - *6)) - (-4 *6 (-367)) (-4 *7 (-1251 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-412 *7)) (|:| |a0| *6)) - (-2 (|:| -2679 (-412 *7)) (|:| |coeff| (-412 *7))) "failed")) - (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7))))) -(((*1 *2 *1) (-12 (-5 *1 (-175 *2)) (-4 *2 (-310)))) - ((*1 *2 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-310)))) - ((*1 *2 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-561)) (-4 *2 (-310)))) - ((*1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-569))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1108)) (-4 *6 (-1108)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *5 (-1108))))) -(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-706))))) -(((*1 *2 *3) - (-12 (-5 *3 (-824 *4)) (-4 *4 (-855)) (-5 *2 (-112)) - (-5 *1 (-677 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-964 (-184 (-139)))) (-5 *1 (-336)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1224))) (-5 *1 (-611))))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-551)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) + (-5 *5 (-1 (-3 (-650 *6) "failed") (-570) *6 *6)) (-4 *6 (-368)) + (-4 *7 (-1252 *6)) + (-5 *2 (-2 (|:| |answer| (-592 (-413 *7))) (|:| |a0| *6))) + (-5 *1 (-580 *6 *7)) (-5 *3 (-413 *7))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) - (-15 -4412 ((-1133 *3 (-617 $)) $)) - (-15 -3796 ($ (-1133 *3 (-617 $)))))))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-649 (-1181 *7))) (-5 *3 (-1181 *7)) - (-4 *7 (-955 *5 *6 *4)) (-4 *5 (-915)) (-4 *6 (-798)) - (-4 *4 (-855)) (-5 *1 (-912 *5 *6 *4 *7))))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *3) - (-12 (-5 *3 (-694 *2)) (-4 *4 (-1251 *2)) - (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-5 *1 (-504 *2 *4 *5)) (-4 *5 (-414 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1131 *3 *2 *4 *5)) (-4 *4 (-239 *3 *2)) - (-4 *5 (-239 *3 *2)) (-4 *2 (-1057))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) -(((*1 *2 *3) - (-12 (-5 *3 (-226)) (-5 *2 (-112)) (-5 *1 (-302 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1102 (-848 (-226)))) (-5 *3 (-226)) (-5 *2 (-112)) - (-5 *1 (-308)))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-650 (-777))) (-5 *1 (-978 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1286))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-174)) (-4 *5 (-378 *4)) + (-4 *6 (-378 *4)) (-5 *1 (-694 *4 *5 *6 *2)) + (-4 *2 (-693 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1249 *5 *4)) (-4 *4 (-458)) (-4 *4 (-826)) + (-14 *5 (-1186)) (-5 *2 (-570)) (-5 *1 (-1123 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-1015))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-956 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-353)) (-5 *2 (-1275 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-694 *1)) (-4 *1 (-145)) (-4 *1 (-915)) - (-5 *2 (-1275 *1))))) + (-12 (-4 *3 (-1058)) (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) + (-4 *1 (-1252 *3))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-697 (-879 (-973 *3) (-973 *3)))) (-5 *1 (-973 *3)) + (-4 *3 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-965 (-185 (-140)))) (-5 *1 (-337)))) + ((*1 *2 *1) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-612))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) - (-5 *2 (-649 (-2 (|:| -4133 *1) (|:| -1721 (-649 *7))))) - (-5 *3 (-649 *7)) (-4 *1 (-1218 *4 *5 *6 *7))))) -(((*1 *1) (-5 *1 (-157)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) - (-5 *2 - (-2 (|:| A (-694 *5)) - (|:| |eqs| - (-649 - (-2 (|:| C (-694 *5)) (|:| |g| (-1275 *5)) (|:| -4312 *6) - (|:| |rh| *5)))))) - (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *5)) (-5 *4 (-1275 *5)) - (-4 *6 (-661 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *6 (-661 *5)) - (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5)))) - (-5 *1 (-818 *5 *6)) (-5 *3 (-694 *6)) (-5 *4 (-1275 *5))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-170 (-226))) (-5 *5 (-569)) (-5 *6 (-1167)) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-496))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) + (-12 (-4 *4 (-562)) (-5 *2 (-777)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-495 *3)) (-4 *3 (-1226)) + (-4 *3 (-1109)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-912 *4)) (-4 *4 (-1109)) (-5 *2 (-112)) + (-5 *1 (-911 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-928)) (-5 *2 (-112)) (-5 *1 (-1110 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1057)) (-4 *7 (-1057)) - (-4 *6 (-1251 *5)) (-5 *2 (-1181 (-1181 *7))) - (-5 *1 (-506 *5 *6 *4 *7)) (-4 *4 (-1251 *6))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1148 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1108) (-34))) (-4 *5 (-13 (-1108) (-34))) - (-5 *1 (-1149 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-649 (-1148 *3 *4))) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-776)) (-5 *5 (-649 *3)) (-4 *3 (-310)) (-4 *6 (-855)) - (-4 *7 (-798)) (-5 *2 (-112)) (-5 *1 (-630 *6 *7 *3 *8)) - (-4 *8 (-955 *3 *7 *6))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-756))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-1167)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-752))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1131 *3 *4 *2 *5)) (-4 *4 (-1057)) (-4 *5 (-239 *3 *4)) - (-4 *2 (-239 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-4 *3 (-13 (-27) (-1210) (-435 *6) (-10 -8 (-15 -3796 ($ *7))))) - (-4 *7 (-853)) - (-4 *8 - (-13 (-1253 *3 *7) (-367) (-1210) - (-10 -8 (-15 -3517 ($ $)) (-15 -3579 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1167)) (|:| |prob| (-1167)))))) - (-5 *1 (-427 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1167)) (-4 *9 (-991 *8)) - (-14 *10 (-1185))))) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-650 *4)) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-712 *4 *5 *6)) + (-4 *4 (-620 (-542))) (-4 *5 (-1226)) (-4 *6 (-1226))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1276 (-570))) (-5 *3 (-570)) (-5 *1 (-1119)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1276 (-570))) (-5 *3 (-650 (-570))) (-5 *4 (-570)) + (-5 *1 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-497))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-650 (-959 *4))) (-5 *3 (-650 (-1186))) (-4 *4 (-458)) + (-5 *1 (-925 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) - (-4 *5 (-561)) (-5 *2 (-649 (-649 (-958 *5)))) (-5 *1 (-1194 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1070)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1070))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-972 *2)) (-4 *2 (-1108))))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-530))))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-650 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1109)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-650 *4))) (-4 *4 (-1109)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1109)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-650 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1109)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-654 *3)) (-4 *3 (-1058)) + (-5 *1 (-720 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-842 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-650 (-2 (|:| -4399 (-413 (-570))) (|:| -4411 (-413 (-570)))))) + (-5 *2 (-650 (-227))) (-5 *1 (-309))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-560 *3)) (-4 *3 (-13 (-410) (-1211))) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 *3 *4 *5 *6)) (-4 *6 (-1047 *4)) (-4 *3 (-311)) + (-4 *4 (-1001 *3)) (-4 *5 (-1252 *4)) (-4 *6 (-415 *4 *5)) + (-14 *7 (-1276 *6)) (-5 *1 (-420 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1276 *6)) (-4 *6 (-415 *4 *5)) (-4 *4 (-1001 *3)) + (-4 *5 (-1252 *4)) (-4 *3 (-311)) (-5 *1 (-420 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-776)) (-4 *4 (-310)) (-4 *6 (-1251 *4)) - (-5 *2 (-1275 (-649 *6))) (-5 *1 (-460 *4 *6)) (-5 *5 (-649 *6))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *1) (-5 *1 (-141)))) + (|partial| -12 (-5 *5 (-650 *4)) (-4 *4 (-368)) (-5 *2 (-1276 *4)) + (-5 *1 (-820 *4 *3)) (-4 *3 (-662 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-896 *4 *3)) - (-4 *3 (-1225)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *2 (-649 (-226))) (-5 *1 (-205))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173)) (-4 *2 (-1210)))) - ((*1 *2 *1) (-12 (-5 *1 (-334 *2)) (-4 *2 (-855)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 *3)) (-5 *1 (-617 *3)) (-4 *3 (-1108))))) -(((*1 *2) - (-12 (-4 *4 (-367)) (-5 *2 (-927)) (-5 *1 (-331 *3 *4)) - (-4 *3 (-332 *4)))) - ((*1 *2) - (-12 (-4 *4 (-367)) (-5 *2 (-838 (-927))) (-5 *1 (-331 *3 *4)) - (-4 *3 (-332 *4)))) - ((*1 *2) (-12 (-4 *1 (-332 *3)) (-4 *3 (-367)) (-5 *2 (-927)))) - ((*1 *2) - (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-838 (-927)))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) - (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) - (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) - (-5 *1 (-702)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-226))) - (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-702)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1141 (-226))) (-5 *3 (-1 (-949 (-226)) (-226) (-226))) - (-5 *4 (-1102 (-226))) (-5 *5 (-649 (-265))) (-5 *1 (-702))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1280)) (-5 *1 (-383))))) + (-12 (-5 *2 (-1182 *6)) (-5 *3 (-570)) (-4 *6 (-311)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *1 (-748 *4 *5 *6 *7)) (-4 *7 (-956 *6 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-5 *2 (-1181 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-310)) (-4 *3 (-561)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-985 *3 *4 *5 *6))))) + (-12 (-4 *2 (-1109)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1109))))) (((*1 *2 *1) - (-12 (-5 *2 (-1110 (-1110 *3))) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1128)) (-5 *2 (-1280)) (-5 *1 (-836))))) -(((*1 *2 *2) (-12 (-5 *2 (-649 (-319 (-226)))) (-5 *1 (-269))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-776)) (-5 *3 (-949 *4)) (-4 *1 (-1142 *4)) - (-4 *4 (-1057)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-776)) (-5 *4 (-949 (-226))) (-5 *2 (-1280)) - (-5 *1 (-1277))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-848 (-226)))) (-5 *4 (-226)) (-5 *2 (-649 *4)) - (-5 *1 (-269))))) -(((*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-5 *2 (-112)))) + (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-132)) + (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-694 *2)) (-4 *2 (-173)) (-5 *1 (-146 *2)))) + (-12 (-5 *2 (-650 (-2 (|:| -1436 *3) (|:| -3350 *4)))) + (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-732)))) ((*1 *2 *3) - (-12 (-4 *4 (-173)) (-4 *2 (-1251 *4)) (-5 *1 (-178 *4 *2 *3)) - (-4 *3 (-729 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-412 (-958 *5)))) (-5 *4 (-1185)) - (-5 *2 (-958 *5)) (-5 *1 (-295 *5)) (-4 *5 (-457)))) - ((*1 *2 *3) - (-12 (-5 *3 (-694 (-412 (-958 *4)))) (-5 *2 (-958 *4)) - (-5 *1 (-295 *4)) (-4 *4 (-457)))) + (-12 (-5 *3 (-973 *4)) (-4 *4 (-1109)) (-5 *2 (-1111 *4)) + (-5 *1 (-974 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *2)) (-4 *3 (-173)) (-4 *2 (-1251 *3)))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-5 *2 (-1166 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1291 *3 *4)) (-4 *3 (-856)) (-4 *4 (-174)) + (-5 *1 (-670 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-670 *3 *4)) (-5 *1 (-1296 *3 *4)) + (-4 *3 (-856)) (-4 *4 (-174))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) + (-4 *4 (-13 (-562) (-1047 (-570)) (-148))) (-5 *1 (-576 *4))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1070 (-1033 *3) (-1182 (-1033 *3)))) + (-5 *1 (-1033 *3)) (-4 *3 (-13 (-854) (-368) (-1031)))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-650 (-1182 *7))) (-5 *3 (-1182 *7)) + (-4 *7 (-956 *5 *6 *4)) (-4 *5 (-916)) (-4 *6 (-799)) + (-4 *4 (-856)) (-5 *1 (-913 *5 *6 *4 *7))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-650 (-570))) (-5 *3 (-695 (-570))) (-5 *1 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1182 *1)) (-4 *1 (-1021))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-1206))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-368)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) + (-5 *1 (-772 *3 *4)) (-4 *3 (-714 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-368)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) + (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) + (-4 *3 (-858 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-330 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)) + (-4 *2 (-458)))) + ((*1 *1 *1) + (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-1252 *2)) + (-4 *4 (-1252 (-413 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *3 (-458)))) + ((*1 *1 *1) + (-12 (-4 *1 (-956 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-311)) (-4 *3 (-562)) (-5 *1 (-1173 *3 *2)) + (-4 *2 (-1252 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1058)) (-5 *1 (-718 *3 *4)) + (-4 *4 (-1252 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) + ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1109)) (-4 *4 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-1 *6 *5)) (-5 *1 (-690 *5 *4 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) ((*1 *2 *3) - (-12 (-5 *3 (-694 (-170 (-412 (-569))))) - (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *4)) - (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-170 (-412 (-569))))) (-5 *4 (-1185)) - (-5 *2 (-958 (-170 (-412 (-569))))) (-5 *1 (-769 *5)) - (-4 *5 (-13 (-367) (-853))))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) + (-4 *2 + (-13 (-408) + (-10 -7 (-15 -3798 (*2 *4)) (-15 -2484 ((-928) *2)) + (-15 -2077 ((-1276 *2) (-928))) (-15 -2663 (*2 *2))))) + (-5 *1 (-361 *2 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-570))) (-5 *4 (-912 (-570))) + (-5 *2 (-695 (-570))) (-5 *1 (-596)))) ((*1 *2 *3) - (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *2 (-958 (-412 (-569)))) - (-5 *1 (-784 *4)) (-4 *4 (-13 (-367) (-853))))) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-650 (-695 (-570)))) + (-5 *1 (-596)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-694 (-412 (-569)))) (-5 *4 (-1185)) - (-5 *2 (-958 (-412 (-569)))) (-5 *1 (-784 *5)) - (-4 *5 (-13 (-367) (-853)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-310)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1132 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6))))) + (-12 (-5 *3 (-650 (-570))) (-5 *4 (-650 (-912 (-570)))) + (-5 *2 (-650 (-695 (-570)))) (-5 *1 (-596))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-1182 *3)) + (-4 *3 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) + (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-413 (-1182 *3))) + (-4 *3 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-2 (|:| -2134 *3) (|:| |coeff| *3))) + (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1109))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-550))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) + (-12 (-5 *3 (-413 (-570))) (-5 *4 (-570)) (-5 *2 (-52)) + (-5 *1 (-1014))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1869 *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1109)) (-5 *1 (-971 *3 *2)) (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-759))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1267 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-618 *3)) (-4 *3 (-13 (-436 *5) (-27) (-1211))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 (-592 *3)) (-5 *1 (-572 *5 *3 *6)) (-4 *6 (-1109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-523))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) + (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-695 *3)) + (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-562) (-148))) + (-5 *2 (-2 (|:| -4399 *3) (|:| -4411 *3))) (-5 *1 (-1246 *4 *3)) + (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) + (-5 *2 (-1044)) (-5 *1 (-762))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-650 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1219 *5 *6 *7 *8)) (-4 *5 (-562)) + (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-1074 *5 *6 *7))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1057)) (-14 *3 (-649 (-1185))))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))))) ((*1 *1 *1) - (-12 (-5 *1 (-224 *2 *3)) (-4 *2 (-13 (-1057) (-855))) - (-14 *3 (-649 (-1185))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) + (-14 *3 (-650 (-1186))))) ((*1 *1 *1) - (-12 (-4 *1 (-386 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-1108)))) + (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-1109)))) ((*1 *1 *1) - (-12 (-14 *2 (-649 (-1185))) (-4 *3 (-173)) - (-4 *5 (-239 (-2428 *2) (-776))) + (-12 (-14 *2 (-650 (-1186))) (-4 *3 (-174)) + (-4 *5 (-240 (-2431 *2) (-777))) (-14 *6 - (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5)) - (-2 (|:| -2150 *4) (|:| -1993 *5)))) - (-5 *1 (-466 *2 *3 *4 *5 *6 *7)) (-4 *4 (-855)) - (-4 *7 (-955 *3 *5 (-869 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-855)))) + (-1 (-112) (-2 (|:| -2155 *4) (|:| -3283 *5)) + (-2 (|:| -2155 *4) (|:| -3283 *5)))) + (-5 *1 (-467 *2 *3 *4 *5 *6 *7)) (-4 *4 (-856)) + (-4 *7 (-956 *3 *5 (-870 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-856)))) ((*1 *1 *1) - (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057)))) + (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1252 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058)))) ((*1 *1 *1) - (-12 (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1057)) - (-4 *3 (-731)))) - ((*1 *1 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) + (-12 (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1058)) + (-4 *3 (-732)))) + ((*1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855)))) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)))) ((*1 *1 *1) - (-12 (-5 *1 (-1298 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-851))))) -(((*1 *1) (-4 *1 (-975)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-170 (-226))) (-5 *4 (-569)) (-5 *2 (-1043)) - (-5 *1 (-763))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-558))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-333))))) -(((*1 *1) (-5 *1 (-828)))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *3 (-561))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1150 *3 *4)) (-14 *3 (-927)) (-4 *4 (-367)) - (-5 *1 (-1001 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *5 (-372)) - (-5 *2 (-776))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-583))) - ((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-868)))) - ((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1280)) (-5 *1 (-868)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-867)) (-5 *2 (-1280)) (-5 *1 (-868)))) + (-12 (-5 *1 (-1299 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-852))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1267 *4)) + (-4 *4 (-38 (-413 (-570)))) + (-5 *2 (-1 (-1166 *4) (-1166 *4) (-1166 *4))) (-5 *1 (-1269 *4 *5))))) +(((*1 *1) (-4 *1 (-976)))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-650 (-487 *4 *5))) (-5 *3 (-870 *4)) + (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1047 (-570))) (-4 *3 (-562)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-436 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1182 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1058)) (-4 *1 (-306)))) + ((*1 *2) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1182 *3)))) + ((*1 *2) (-12 (-4 *1 (-730 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1252 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1077 *3 *2)) (-4 *3 (-13 (-854) (-368))) + (-4 *2 (-1252 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1058)) (-4 *4 (-1252 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1252 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1436 *3) (|:| |gap| (-777)) (|:| -1310 (-788 *3)) + (|:| -2423 (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-1058)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) (-4 *3 (-856)) + (-5 *2 + (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -1310 *1) + (|:| -2423 *1))) + (-4 *1 (-1074 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 + (-2 (|:| -1436 *1) (|:| |gap| (-777)) (|:| -1310 *1) + (|:| -2423 *1))) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-765))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) + (-4 *5 (-1252 *4)) + (-5 *2 (-650 (-2 (|:| |deg| (-777)) (|:| -4313 *5)))) + (-5 *1 (-815 *4 *5 *3 *6)) (-4 *3 (-662 *5)) + (-4 *6 (-662 (-413 *5)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-1211) (-966) (-29 *4)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| -1436 *4) (|:| -1310 *3) (|:| -2423 *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-1074 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| -1436 *3) (|:| -1310 *1) (|:| -2423 *1))) + (-4 *1 (-1252 *3))))) +(((*1 *1) (-5 *1 (-584))) + ((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-869)))) + ((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1281)) (-5 *1 (-869)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1168)) (-5 *4 (-868)) (-5 *2 (-1281)) (-5 *1 (-869)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-569)) (-5 *2 (-1280)) (-5 *1 (-1165 *4)) - (-4 *4 (-1108)) (-4 *4 (-1225))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) - ((*1 *1 *1 *1) (-4 *1 (-457))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-5 *1 (-491 *2)) (-4 *2 (-1251 (-569))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-569)) (-5 *1 (-701 *2)) (-4 *2 (-1251 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-776))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-798)) (-4 *4 (-855)) (-4 *5 (-310)) - (-5 *1 (-922 *3 *4 *5 *2)) (-4 *2 (-955 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *6 *4 *5)) - (-5 *1 (-922 *4 *5 *6 *2)) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-310)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1181 *6)) (-4 *6 (-955 *5 *3 *4)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *5 (-310)) (-5 *1 (-922 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-1181 *7))) (-4 *4 (-798)) (-4 *5 (-855)) - (-4 *6 (-310)) (-5 *2 (-1181 *7)) (-5 *1 (-922 *4 *5 *6 *7)) - (-4 *7 (-955 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-927))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-457)) (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) - (-4 *2 (-1251 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457))))) + (-12 (-5 *3 (-570)) (-5 *2 (-1281)) (-5 *1 (-1166 *4)) + (-4 *4 (-1109)) (-4 *4 (-1226))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1225)) - (-4 *4 (-377 *2)) (-4 *5 (-377 *2)))) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1226)) + (-4 *4 (-378 *2)) (-4 *5 (-378 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-377 *2)) - (-4 *5 (-377 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-378 *2)) + (-4 *5 (-378 *2)) (-4 *2 (-1226)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1225)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1226)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-649 (-569))) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 (-569)) (-14 *5 (-776)))) + (-12 (-5 *3 (-650 (-570))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-570)) (-14 *5 (-777)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-776)))) + (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-777)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-776)))) + (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-777)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-776)))) + (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-777)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *2 (-173)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-776)))) + (-12 (-5 *3 (-570)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-777)))) ((*1 *2 *1) - (-12 (-4 *2 (-173)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-569)) - (-14 *4 (-776)))) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-570)) + (-14 *4 (-777)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-246 (-1167))) (-5 *1 (-215 *4)) + (-12 (-5 *3 (-1186)) (-5 *2 (-247 (-1168))) (-5 *1 (-216 *4)) (-4 *4 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ *3)) (-15 -4158 ((-1280) $)) - (-15 -3567 ((-1280) $))))))) + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ *3)) (-15 -4160 ((-1281) $)) + (-15 -2038 ((-1281) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-997)) (-5 *1 (-215 *3)) + (-12 (-5 *2 (-998)) (-5 *1 (-216 *3)) (-4 *3 - (-13 (-855) - (-10 -8 (-15 -1869 ((-1167) $ (-1185))) (-15 -4158 ((-1280) $)) - (-15 -3567 ((-1280) $))))))) + (-13 (-856) + (-10 -8 (-15 -1872 ((-1168) $ (-1186))) (-15 -4160 ((-1281) $)) + (-15 -2038 ((-1281) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-776)) (-5 *1 (-246 *4)) (-4 *4 (-855)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-246 *3)) (-4 *3 (-855)))) + (-12 (-5 *3 "count") (-5 *2 (-777)) (-5 *1 (-247 *4)) (-4 *4 (-856)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-247 *3)) (-4 *3 (-856)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-246 *3)) (-4 *3 (-855)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-776)) (-5 *2 (-1190)) (-5 *1 (-251)))) + (-12 (-5 *2 "unique") (-5 *1 (-247 *3)) (-4 *3 (-856)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-777)) (-5 *2 (-1191)) (-5 *1 (-252)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) + (-12 (-4 *1 (-290 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1225)))) + (-12 (-4 *1 (-292 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-1226)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-173)) (-5 *1 (-292 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1251 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *3 (-174)) (-5 *1 (-293 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1252 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-346 *2 *3 *4)) (-4 *2 (-1229)) (-4 *3 (-1251 *2)) - (-4 *4 (-1251 (-412 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-569)) (-4 *1 (-422 *2)) (-4 *2 (-173)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1167)) (-5 *1 (-507)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-52)) (-5 *1 (-637)))) + (-12 (-4 *1 (-347 *2 *3 *4)) (-4 *2 (-1230)) (-4 *3 (-1252 *2)) + (-4 *4 (-1252 (-413 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-570)) (-4 *1 (-423 *2)) (-4 *2 (-174)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1168)) (-5 *1 (-508)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-52)) (-5 *1 (-638)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1242 (-569))) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-1243 (-570))) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-776)) (-5 *1 (-680 *2)) (-4 *2 (-1108)))) + (-12 (-5 *3 (-777)) (-5 *1 (-681 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-649 (-569))) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867)))) + (-12 (-5 *2 (-650 (-570))) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-649 (-898 *4))) (-5 *1 (-898 *4)) - (-4 *4 (-1108)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108)))) + (-12 (-5 *2 (-115)) (-5 *3 (-650 (-899 *4))) (-5 *1 (-899 *4)) + (-4 *4 (-1109)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1109)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-911 *4)) (-5 *1 (-910 *4)) - (-4 *4 (-1108)))) + (-12 (-5 *3 (-777)) (-5 *2 (-912 *4)) (-5 *1 (-911 *4)) + (-4 *4 (-1109)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-241 *4 *2)) (-14 *4 (-927)) (-4 *2 (-367)) - (-5 *1 (-1001 *4 *2)))) + (-12 (-5 *3 (-242 *4 *2)) (-14 *4 (-928)) (-4 *2 (-368)) + (-5 *1 (-1002 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1018 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *1 (-1034 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 "value") (-4 *1 (-1019 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) (-4 *2 (-1057)) - (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)))) + (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) (-4 *2 (-1058)) + (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-1061 *4 *5 *2 *6 *7)) - (-4 *6 (-239 *5 *2)) (-4 *7 (-239 *4 *2)) (-4 *2 (-1057)))) + (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *2 *6 *7)) + (-4 *6 (-240 *5 *2)) (-4 *7 (-240 *4 *2)) (-4 *2 (-1058)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-927)) (-4 *4 (-1108)) - (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) - (-5 *1 (-1084 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-927)) (-4 *4 (-1108)) - (-4 *5 (-13 (-1057) (-892 *4) (-619 (-898 *4)))) + (-12 (-5 *3 (-928)) (-4 *4 (-1109)) + (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) (-5 *1 (-1085 *4 *5 *2)) - (-4 *2 (-13 (-435 *5) (-892 *4) (-619 (-898 *4)))))) + (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-928)) (-4 *4 (-1109)) + (-4 *5 (-13 (-1058) (-893 *4) (-620 (-899 *4)))) + (-5 *1 (-1086 *4 *5 *2)) + (-4 *2 (-13 (-436 *5) (-893 *4) (-620 (-899 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-4 *1 (-1111 *3 *4 *5 *6 *7)) - (-4 *3 (-1108)) (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) - (-4 *7 (-1108)))) + (-12 (-5 *2 (-650 (-570))) (-4 *1 (-1112 *3 *4 *5 *6 *7)) + (-4 *3 (-1109)) (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) + (-4 *7 (-1109)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-1111 *3 *4 *5 *6 *7)) (-4 *3 (-1108)) - (-4 *4 (-1108)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) - ((*1 *1 *1 *1) (-4 *1 (-1152))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-1185)))) + (-12 (-5 *2 (-570)) (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) + (-4 *4 (-1109)) (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)))) + ((*1 *1 *1 *1) (-4 *1 (-1153))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-412 *1)) (-4 *1 (-1251 *2)) (-4 *2 (-1057)) - (-4 *2 (-367)))) + (-12 (-5 *3 (-413 *1)) (-4 *1 (-1252 *2)) (-4 *2 (-1058)) + (-4 *2 (-368)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-412 *1)) (-4 *1 (-1251 *3)) (-4 *3 (-1057)) - (-4 *3 (-561)))) + (-12 (-5 *2 (-413 *1)) (-4 *1 (-1252 *3)) (-4 *3 (-1058)) + (-4 *3 (-562)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1253 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) + (-12 (-4 *1 (-1254 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1263 *2)) (-4 *2 (-1225)))) + (-12 (-5 *3 "last") (-4 *1 (-1264 *2)) (-4 *2 (-1226)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 "rest") (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) - (-5 *1 (-1080 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-955 *3 *4 *5))))) + (-12 (-5 *3 "first") (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-694 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-694 *3))))) -(((*1 *2 *3) - (-12 (-4 *1 (-926)) (-5 *2 (-2 (|:| -1435 (-649 *1)) (|:| -2332 *1))) - (-5 *3 (-649 *1))))) + (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1) (-12 (-4 *1 (-1054 *2)) (-4 *2 (-23))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458)))) + ((*1 *1 *1 *1) (-4 *1 (-458))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1252 (-570))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1252 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-777))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-799)) (-4 *4 (-856)) (-4 *5 (-311)) + (-5 *1 (-923 *3 *4 *5 *2)) (-4 *2 (-956 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *2)) (-4 *2 (-956 *6 *4 *5)) + (-5 *1 (-923 *4 *5 *6 *2)) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-311)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *5 (-311)) (-5 *1 (-923 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-1182 *7))) (-4 *4 (-799)) (-4 *5 (-856)) + (-4 *6 (-311)) (-5 *2 (-1182 *7)) (-5 *1 (-923 *4 *5 *6 *7)) + (-4 *7 (-956 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-928))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-458)) (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) + (-4 *2 (-1252 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-458))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) (((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) - (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6)) - (-4 *6 (-346 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-226))) (-5 *4 (-776)) (-5 *2 (-694 (-226))) - (-5 *1 (-308))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) - (-248 *4 (-412 (-569))))) - (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) - (-5 *1 (-510 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1229)) (-4 *5 (-1251 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-412 *5)) - (|:| |c2| (-412 *5)) (|:| |deg| (-776)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1251 (-412 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-126 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-956 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *1) (-12 (-4 *1 (-680 *3)) (-4 *3 (-1226)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-432 *4 *2)) (-4 *2 (-13 (-1211) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148)) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-320 *5)) + (-5 *1 (-595 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1168)) (|:| -3574 (-1168)))) + (-5 *1 (-828))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-333 *4)) (-4 *4 (-368)) + (-5 *2 (-695 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-333 *3)) (-4 *3 (-368)) (-5 *2 (-1276 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-695 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-1276 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-375 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1252 *4)) (-5 *2 (-1276 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-415 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1252 *4)) (-5 *2 (-695 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-1057)) (-5 *1 (-50 *2 *3)) (-14 *3 (-649 (-1185))))) + (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) + (-5 *2 (-1276 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-423 *4)) (-4 *4 (-174)) + (-5 *2 (-695 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1276 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-695 *5))) (-5 *3 (-695 *5)) (-4 *5 (-368)) + (-5 *2 (-1276 *5)) (-5 *1 (-1095 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) ((*1 *2 *1) - (-12 (-5 *2 (-319 *3)) (-5 *1 (-224 *3 *4)) - (-4 *3 (-13 (-1057) (-855))) (-14 *4 (-649 (-1185))))) + (-12 (-4 *2 (-1058)) (-5 *1 (-50 *2 *3)) (-14 *3 (-650 (-1186))))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1057)))) + (-12 (-5 *2 (-320 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1058) (-856))) (-14 *4 (-650 (-1186))))) ((*1 *2 *1) - (-12 (-14 *3 (-649 (-1185))) (-4 *5 (-239 (-2428 *3) (-776))) + (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1109)) (-4 *2 (-1058)))) + ((*1 *2 *1) + (-12 (-14 *3 (-650 (-1186))) (-4 *5 (-240 (-2431 *3) (-777))) (-14 *6 - (-1 (-112) (-2 (|:| -2150 *4) (|:| -1993 *5)) - (-2 (|:| -2150 *4) (|:| -1993 *5)))) - (-4 *2 (-173)) (-5 *1 (-466 *3 *2 *4 *5 *6 *7)) (-4 *4 (-855)) - (-4 *7 (-955 *2 *5 (-869 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-514 *2 *3)) (-4 *3 (-855)) (-4 *2 (-1108)))) + (-1 (-112) (-2 (|:| -2155 *4) (|:| -3283 *5)) + (-2 (|:| -2155 *4) (|:| -3283 *5)))) + (-4 *2 (-174)) (-5 *1 (-467 *3 *2 *4 *5 *6 *7)) (-4 *4 (-856)) + (-4 *7 (-956 *2 *5 (-870 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-515 *2 *3)) (-4 *3 (-856)) (-4 *2 (-1109)))) ((*1 *2 *1) - (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-713 *2)) (-4 *2 (-1057)))) + (-12 (-4 *2 (-562)) (-5 *1 (-629 *2 *3)) (-4 *3 (-1252 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1058)))) ((*1 *2 *1) - (-12 (-4 *2 (-1057)) (-5 *1 (-740 *2 *3)) (-4 *3 (-855)) - (-4 *3 (-731)))) - ((*1 *2 *1) (-12 (-4 *1 (-857 *2)) (-4 *2 (-1057)))) + (-12 (-4 *2 (-1058)) (-5 *1 (-741 *2 *3)) (-4 *3 (-856)) + (-4 *3 (-732)))) + ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)))) ((*1 *2 *1) - (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *3 (-797)) (-4 *4 (-855)) - (-4 *2 (-1057)))) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *3 (-798)) (-4 *4 (-856)) + (-4 *2 (-1058)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1073 *3 *4 *2)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *2 (-855))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *1) - (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-117 *3)) (-14 *3 (-569)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1165 *2)) (-4 *2 (-310)) (-5 *1 (-175 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-310)) (-5 *1 (-175 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-175 (-569))) (-5 *1 (-770 *3)) (-4 *3 (-409)))) - ((*1 *2 *1) - (-12 (-5 *2 (-175 (-412 (-569)))) (-5 *1 (-876 *3)) (-14 *3 (-569)))) - ((*1 *2 *1) - (-12 (-14 *3 (-569)) (-5 *2 (-175 (-412 (-569)))) - (-5 *1 (-877 *3 *4)) (-4 *4 (-874 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-1225))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-305)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) + (-12 (-4 *1 (-1074 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-777)) (-4 *4 (-13 (-562) (-148))) + (-5 *1 (-1246 *4 *2)) (-4 *2 (-1252 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-1226))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-412 (-958 *5)) (-1174 (-1185) (-958 *5)))) - (-4 *5 (-457)) (-5 *2 (-649 (-694 (-412 (-958 *5))))) - (-5 *1 (-295 *5)) (-5 *4 (-694 (-412 (-958 *5))))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1057)) (-4 *3 (-797)))) + (-12 (-5 *4 (-650 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-311)) + (-5 *2 (-777)) (-5 *1 (-461 *5 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-928)) (-5 *1 (-1110 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-311)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1109)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-391 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1310 (-777)) (|:| -2423 (-777)))) + (-5 *1 (-777)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-320 (-171 (-384)))) (-5 *1 (-334)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-570))) (-5 *1 (-334)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-384))) (-5 *1 (-334)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-700))) (-5 *1 (-334)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-707))) (-5 *1 (-334)))) + ((*1 *1 *2) (-12 (-5 *2 (-320 (-705))) (-5 *1 (-334)))) + ((*1 *1) (-5 *1 (-334)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-562) (-148))) (-5 *2 (-650 *3)) + (-5 *1 (-1246 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1058)) (-4 *3 (-798)))) ((*1 *2 *1) - (-12 (-4 *1 (-386 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1108)))) + (-12 (-4 *1 (-387 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1109)))) ((*1 *2 *1) - (-12 (-14 *3 (-649 (-1185))) (-4 *4 (-173)) - (-4 *6 (-239 (-2428 *3) (-776))) + (-12 (-14 *3 (-650 (-1186))) (-4 *4 (-174)) + (-4 *6 (-240 (-2431 *3) (-777))) (-14 *7 - (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *6)) - (-2 (|:| -2150 *5) (|:| -1993 *6)))) - (-5 *2 (-718 *5 *6 *7)) (-5 *1 (-466 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-855)) (-4 *8 (-955 *4 *6 (-869 *3))))) + (-1 (-112) (-2 (|:| -2155 *5) (|:| -3283 *6)) + (-2 (|:| -2155 *5) (|:| -3283 *6)))) + (-5 *2 (-719 *5 *6 *7)) (-5 *1 (-467 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-856)) (-4 *8 (-956 *4 *6 (-870 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-731)) (-4 *2 (-855)) (-5 *1 (-740 *3 *2)) - (-4 *3 (-1057)))) + (-12 (-4 *2 (-732)) (-4 *2 (-856)) (-5 *1 (-741 *3 *2)) + (-4 *3 (-1058)))) ((*1 *1 *1) - (-12 (-4 *1 (-981 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-797)) - (-4 *4 (-855))))) -(((*1 *2 *1) - (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-649 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1188)) (-5 *3 (-1185))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *6 (-855)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-933))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) - (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) -(((*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) - (-5 *5 (-3 (|:| |fn| (-393)) (|:| |fp| (-64 G)))) (-5 *2 (-1043)) - (-5 *1 (-753))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1185)) (-5 *4 (-958 (-569))) (-5 *2 (-333)) - (-5 *1 (-335))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *1)) (-4 *1 (-457)))) - ((*1 *1 *1 *1) (-4 *1 (-457)))) -(((*1 *2 *3 *3) + (-12 (-4 *1 (-982 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-798)) + (-4 *4 (-856))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-413 (-959 *6)) (-1175 (-1186) (-959 *6)))) + (-5 *5 (-777)) (-4 *6 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *6))))) + (-5 *1 (-296 *6)) (-5 *4 (-695 (-413 (-959 *6)))))) + ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-798)) (-4 *7 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) - (-5 *2 (-112)) (-5 *1 (-454 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 (-569))) (-5 *2 (-569)) (-5 *1 (-948))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-4 *1 (-329 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1057)))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-454 *3 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) - (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) + (-2 (|:| |eigval| (-3 (-413 (-959 *5)) (-1175 (-1186) (-959 *5)))) + (|:| |eigmult| (-777)) (|:| |eigvec| (-650 *4)))) + (-4 *5 (-458)) (-5 *2 (-650 (-695 (-413 (-959 *5))))) + (-5 *1 (-296 *5)) (-5 *4 (-695 (-413 (-959 *5))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-512)) (-5 *1 (-283)))) ((*1 *2 *1) - (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) - (-5 *2 (-694 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1173 3 *3)) (-4 *3 (-1057)) (-4 *1 (-1142 *3)))) - ((*1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-1167)) (-5 *1 (-541))))) + (-12 (-5 *2 (-3 (-570) (-227) (-512) (-1168) (-1191))) + (-5 *1 (-1191))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-570) "failed") *5)) (-4 *5 (-1058)) + (-5 *2 (-570)) (-5 *1 (-549 *5 *3)) (-4 *3 (-1252 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058)) + (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-570) "failed") *4)) (-4 *4 (-1058)) + (-5 *2 (-570)) (-5 *1 (-549 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311))))) (((*1 *1 *1) - (-12 (-4 *1 (-955 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-457)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1)))) - (-4 *1 (-1079 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1229))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-1254 *3 *2)) - (-4 *2 (-13 (-1251 *3) (-561) (-10 -8 (-15 -1870 ($ $ $)))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-371 *4)) (-4 *4 (-173)) - (-5 *2 (-649 (-958 *4))))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-649 (-958 *4))) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) - (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-649 (-958 *3))))) - ((*1 *2) - (-12 (-5 *2 (-649 (-958 *3))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1275 (-458 *4 *5 *6 *7))) (-5 *2 (-649 (-958 *4))) - (-5 *1 (-458 *4 *5 *6 *7)) (-4 *4 (-561)) (-4 *4 (-173)) - (-14 *5 (-927)) (-14 *6 (-649 (-1185))) (-14 *7 (-1275 (-694 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1) (-5 *1 (-443)))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-112)) (-5 *1 (-899 *4)) + (-4 *4 (-1109))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-458)))) + ((*1 *1 *1 *1) (-4 *1 (-458)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-353)) + (-12 (-5 *4 (-1101 (-849 *3))) (-4 *3 (-13 (-1211) (-966) (-29 *5))) + (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -4360 (-649 (-2 (|:| |irr| *3) (|:| -4180 (-569))))))) - (-5 *1 (-217 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-52))) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-1185)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-305)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1185)) (-5 *2 (-112)) (-5 *1 (-617 *4)) - (-4 *4 (-1108)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-617 *4)) (-4 *4 (-1108)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-840 *3)) (-4 *3 (-1108)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-5 *2 (-112)) (-5 *1 (-893 *5 *3 *4)) - (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6)) (-4 *6 (-892 *5)) (-4 *5 (-1108)) - (-5 *2 (-112)) (-5 *1 (-893 *5 *6 *4)) (-4 *4 (-619 (-898 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1165 *3))) (-5 *2 (-1165 *3)) (-5 *1 (-1169 *3)) - (-4 *3 (-38 (-412 (-569)))) (-4 *3 (-1057))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-649 (-282))) (-5 *1 (-282)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1190))) (-5 *1 (-1190))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1251 *2)) (-4 *2 (-1251 *4)) (-5 *1 (-993 *4 *2 *3 *5)) - (-4 *4 (-353)) (-4 *5 (-729 *2 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) (-5 *2 (-649 *4)) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *1 *1) (-4 *1 (-244))) - ((*1 *1 *1) - (-12 (-4 *2 (-173)) (-5 *1 (-292 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1251 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-2776 (-12 (-5 *1 (-297 *2)) (-4 *2 (-367)) (-4 *2 (-1225))) - (-12 (-5 *1 (-297 *2)) (-4 *2 (-478)) (-4 *2 (-1225))))) - ((*1 *1 *1) (-4 *1 (-478))) - ((*1 *2 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-353)) (-5 *1 (-533 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-720 *2 *3 *4 *5 *6)) (-4 *2 (-173)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)) (-4 *2 (-367))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-147))) (-5 *2 (-649 *3)) - (-5 *1 (-1245 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-541))) ((*1 *1) (-4 *1 (-727))) - ((*1 *1) (-4 *1 (-731))) - ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) - ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-855))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 *4)) (-4 *4 (-353)) (-5 *2 (-1181 *4)) - (-5 *1 (-533 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-774)) + (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1101 (-849 *3))) (-5 *5 (-1168)) + (-4 *3 (-13 (-1211) (-966) (-29 *6))) + (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) - (-5 *1 (-570)))) + (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-774)) (-5 *4 (-1071)) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1101 (-849 (-320 *5)))) + (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))) (|:| |extra| (-1043)))) - (-5 *1 (-570)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-792)) (-5 *3 (-1071)) - (-5 *4 - (-2 (|:| |fn| (-319 (-226))) - (|:| -3743 (-649 (-1102 (-848 (-226))))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-413 (-959 *6))) (-5 *4 (-1101 (-849 (-320 *6)))) + (-5 *5 (-1168)) + (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 - (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) - (|:| |extra| (-1043)))))) + (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-792)) (-5 *3 (-1071)) - (-5 *4 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-12 (-5 *4 (-1101 (-849 (-413 (-959 *5))))) (-5 *3 (-413 (-959 *5))) + (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 - (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)) - (|:| |extra| (-1043)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-805)) (-5 *3 (-1071)) - (-5 *4 - (-2 (|:| |xinit| (-226)) (|:| |xend| (-226)) - (|:| |fn| (-1275 (-319 (-226)))) (|:| |yinit| (-649 (-226))) - (|:| |intvals| (-649 (-226))) (|:| |g| (-319 (-226))) - (|:| |abserr| (-226)) (|:| |relerr| (-226)))) - (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-813)) + (-3 (|:| |f1| (-849 (-320 *5))) (|:| |f2| (-650 (-849 (-320 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1101 (-849 (-413 (-959 *6))))) (-5 *5 (-1168)) + (-5 *3 (-413 (-959 *6))) + (-4 *6 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *1 (-810)))) + (-3 (|:| |f1| (-849 (-320 *6))) (|:| |f2| (-650 (-849 (-320 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-813)) (-5 *4 (-1071)) - (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *1 (-810)))) + (-12 (-5 *4 (-1186)) + (-4 *5 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-3 *3 (-650 *3))) (-5 *1 (-434 *5 *3)) + (-4 *3 (-13 (-1211) (-966) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-480 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) + (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3) (-12 (-5 *3 (-775)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) + (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) + (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-844)) (-5 *3 (-1071)) - (-5 *4 - (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) - (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-1103 (-849 (-384)))) + (-5 *2 (-1044)) (-5 *1 (-571)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-844)) (-5 *3 (-1071)) - (-5 *4 - (-2 (|:| |fn| (-319 (-226))) (|:| -2307 (-649 (-226))) - (|:| |lb| (-649 (-848 (-226)))) (|:| |cf| (-649 (-319 (-226)))) - (|:| |ub| (-649 (-848 (-226)))))) - (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) + (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) + (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) + (-5 *5 (-384)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-320 (-384))) (-5 *4 (-650 (-1103 (-849 (-384))))) + (-5 *5 (-384)) (-5 *6 (-1072)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384)))) + (-5 *5 (-1168)) (-5 *2 (-1044)) (-5 *1 (-571)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-320 (-384))) (-5 *4 (-1101 (-849 (-384)))) + (-5 *5 (-1186)) (-5 *2 (-1044)) (-5 *1 (-571)))) ((*1 *2 *3) - (-12 (-5 *3 (-846)) - (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *1 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-846)) (-5 *4 (-1071)) - (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *1 (-845)))) + (-12 (-4 *4 (-13 (-368) (-148) (-1047 (-570)))) (-4 *5 (-1252 *4)) + (-5 *2 (-592 (-413 *5))) (-5 *1 (-574 *4 *5)) (-5 *3 (-413 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-901)) (-5 *3 (-1071)) - (-5 *4 - (-2 (|:| |pde| (-649 (-319 (-226)))) - (|:| |constraints| - (-649 - (-2 (|:| |start| (-226)) (|:| |finish| (-226)) - (|:| |grid| (-776)) (|:| |boundaryType| (-569)) - (|:| |dStart| (-694 (-226))) (|:| |dFinish| (-694 (-226)))))) - (|:| |f| (-649 (-649 (-319 (-226))))) (|:| |st| (-1167)) - (|:| |tol| (-226)))) - (-5 *2 (-2 (|:| -1813 (-383)) (|:| |explanations| (-1167)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-904)) - (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *1 (-903)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-904)) (-5 *4 (-1071)) + (-12 (-5 *3 (-413 (-959 *5))) (-5 *4 (-1186)) (-4 *5 (-148)) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-3 (-320 *5) (-650 (-320 *5)))) (-5 *1 (-595 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-856)) + (-4 *3 (-38 (-413 (-570)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1186)) (-5 *1 (-959 *3)) (-4 *3 (-38 (-413 (-570)))) + (-4 *3 (-1058)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-4 *2 (-856)) + (-5 *1 (-1135 *3 *2 *4)) (-4 *4 (-956 *3 (-537 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) + (-5 *1 (-1170 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1177 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1183 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1184 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *1 (-1220 *3)) (-4 *3 (-38 (-413 (-570)))) + (-4 *3 (-1058)))) + ((*1 *1 *1 *2) + (-2779 + (-12 (-5 *2 (-1186)) (-4 *1 (-1236 *3)) (-4 *3 (-1058)) + (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1211)) + (-4 *3 (-38 (-413 (-570)))))) + (-12 (-5 *2 (-1186)) (-4 *1 (-1236 *3)) (-4 *3 (-1058)) + (-12 (|has| *3 (-15 -1709 ((-650 *2) *3))) + (|has| *3 (-15 -1840 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1236 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1240 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) + ((*1 *1 *1 *2) + (-2779 + (-12 (-5 *2 (-1186)) (-4 *1 (-1257 *3)) (-4 *3 (-1058)) + (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1211)) + (-4 *3 (-38 (-413 (-570)))))) + (-12 (-5 *2 (-1186)) (-4 *1 (-1257 *3)) (-4 *3 (-1058)) + (-12 (|has| *3 (-15 -1709 ((-650 *2) *3))) + (|has| *3 (-15 -1840 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1261 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2779 + (-12 (-5 *2 (-1186)) (-4 *1 (-1267 *3)) (-4 *3 (-1058)) + (-12 (-4 *3 (-29 (-570))) (-4 *3 (-966)) (-4 *3 (-1211)) + (-4 *3 (-38 (-413 (-570)))))) + (-12 (-5 *2 (-1186)) (-4 *1 (-1267 *3)) (-4 *3 (-1058)) + (-12 (|has| *3 (-15 -1709 ((-650 *2) *3))) + (|has| *3 (-15 -1840 (*3 *3 *2))) (-4 *3 (-38 (-413 (-570)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1058)) (-4 *2 (-38 (-413 (-570)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1272 *4)) (-14 *4 (-1186)) (-5 *1 (-1268 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *3 (-1058)) (-14 *5 *3)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-2 (|:| |k| (-570)) (|:| |c| *3)))) + (-5 *1 (-601 *3)) (-4 *3 (-1058))))) +(((*1 *2 *1) (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)))) + ((*1 *2 *1) (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1053 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-650 (-570))) + (|:| |cols| (-650 (-570))))) + (-5 *4 (-695 *12)) (-5 *5 (-650 (-413 (-959 *9)))) + (-5 *6 (-650 (-650 *12))) (-5 *7 (-777)) (-5 *8 (-570)) + (-4 *9 (-13 (-311) (-148))) (-4 *12 (-956 *9 *11 *10)) + (-4 *10 (-13 (-856) (-620 (-1186)))) (-4 *11 (-799)) (-5 *2 - (-2 (|:| -1813 (-383)) (|:| -3573 (-1167)) - (|:| |explanations| (-649 (-1167))))) - (-5 *1 (-903))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-694 (-412 (-958 (-569))))) - (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039)) - (-5 *3 (-319 (-569)))))) + (-2 (|:| |eqzro| (-650 *12)) (|:| |neqzro| (-650 *12)) + (|:| |wcond| (-650 (-959 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *9)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *9))))))))) + (-5 *1 (-931 *9 *10 *11 *12))))) +(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1189))))) +(((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868)))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-1189)) (-5 *3 (-1186))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) +(((*1 *2 *3) + (-12 (-5 *3 (-249 *4 *5)) (-14 *4 (-650 (-1186))) (-4 *5 (-458)) + (-5 *2 (-487 *4 *5)) (-5 *1 (-637 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| |den| (-569)) (|:| |gcdnum| (-569))))) - (-4 *4 (-1251 (-412 *2))) (-5 *2 (-569)) (-5 *1 (-919 *4 *5)) - (-4 *5 (-1251 (-412 *4)))))) + (-12 (-4 *4 (-856)) (-5 *2 (-1198 (-650 *4))) (-5 *1 (-1197 *4)) + (-5 *3 (-650 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-433 *3 *2)) (-4 *3 (-13 (-174) (-38 (-413 (-570))))) + (-4 *2 (-13 (-856) (-21)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-986 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *1 (-474))))) (((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) - (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1185)) (-5 *5 (-1102 (-226))) (-5 *2 (-933)) - (-5 *1 (-931 *3)) (-4 *3 (-619 (-541))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-932)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-932)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1 (-226) (-226)))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-226) (-226))) (-5 *3 (-1102 (-226))) - (-5 *1 (-933))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) - (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-958 *5)) (-4 *5 (-457)) (-5 *2 (-649 *6)) - (-5 *1 (-543 *5 *6 *4)) (-4 *6 (-367)) (-4 *4 (-13 (-367) (-853)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *10)) - (-5 *1 (-629 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1079 *5 *6 *7 *8)) - (-4 *10 (-1117 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) - (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) - (-5 *1 (-633 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) - (-14 *6 (-649 (-1185))) + (-12 (-5 *2 - (-649 (-1154 *5 (-536 (-869 *6)) (-869 *6) (-785 *5 (-869 *6))))) - (-5 *1 (-633 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 (-785 *5 (-869 *6)))) (-5 *4 (-112)) (-4 *5 (-457)) - (-14 *6 (-649 (-1185))) (-5 *2 (-649 (-1054 *5 *6))) - (-5 *1 (-1054 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1079 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *7)) (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1218 *4 *5 *6 *7))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-570)))) + (-4 *4 (-13 (-1252 *3) (-562) (-10 -8 (-15 -1869 ($ $ $))))) + (-4 *3 (-562)) (-5 *1 (-1255 *3 *4))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *1 *1) (-4 *1 (-245))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-293 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1252 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-2779 (-12 (-5 *1 (-298 *2)) (-4 *2 (-368)) (-4 *2 (-1226))) + (-12 (-5 *1 (-298 *2)) (-4 *2 (-479)) (-4 *2 (-1226))))) + ((*1 *1 *1) (-4 *1 (-479))) + ((*1 *2 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-354)) (-5 *1 (-534 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-721 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)) (-4 *2 (-368))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *6)) (-4 *1 (-956 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-777))))) +(((*1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-542))) ((*1 *1) (-4 *1 (-728))) + ((*1 *1) (-4 *1 (-732))) + ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) + ((*1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-856))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-866)) (-5 *2 (-697 (-1234))) (-5 *3 (-1234))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1) (-12 (-5 *1 (-921 *2)) (-4 *2 (-311))))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189))))) (((*1 *2 *2) - (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7)))) - (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-996 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-649 (-2 (|:| |val| (-649 *6)) (|:| -3663 *7)))) - (-4 *6 (-1073 *3 *4 *5)) (-4 *7 (-1079 *3 *4 *5 *6)) (-4 *3 (-457)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-1115 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-562)) (-5 *1 (-437 *3 *2)) (-4 *2 (-436 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-473))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-475 *2 *3)) (-4 *2 (-173)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-541))) - ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1066)))) - ((*1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) - ((*1 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1066))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 *1)) (|has| *1 (-6 -4448)) (-4 *1 (-1018 *3)) - (-4 *3 (-1225))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-949 *3) (-949 *3))) (-5 *1 (-177 *3)) - (-4 *3 (-13 (-367) (-1210) (-1010)))))) + ((*1 *1) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-542))) + ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1067)))) + ((*1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) + ((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-1067))))) +(((*1 *2 *3) (-12 (-5 *3 (-950 *2)) (-5 *1 (-991 *2)) (-4 *2 (-1058))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-570)) (-5 *2 (-1044)) + (-5 *1 (-764))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) (-5 *6 (-1182 *3)) + (-4 *3 (-13 (-436 *7) (-27) (-1211))) + (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) + (-5 *6 (-413 (-1182 *3))) (-4 *3 (-13 (-436 *7) (-27) (-1211))) + (-4 *7 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-566 *7 *3 *8)) (-4 *8 (-1109))))) (((*1 *2 *3) - (-12 (-5 *3 (-486 *4 *5)) (-14 *4 (-649 (-1185))) (-4 *5 (-1057)) - (-5 *2 (-958 *5)) (-5 *1 (-950 *4 *5))))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-368) (-854))) (-4 *3 (-1252 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-763))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-1108))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-396))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-242))))) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1230)) (-4 *5 (-1252 (-413 *2))) + (-4 *2 (-1252 *4)) (-5 *1 (-346 *3 *4 *2 *5)) + (-4 *3 (-347 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-347 *3 *2 *4)) (-4 *3 (-1230)) + (-4 *4 (-1252 (-413 *2))) (-4 *2 (-1252 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) + (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-412 (-569))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))))) + (-12 (-5 *4 (-413 (-570))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *5 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *3)))) + (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-297 *3)) (-5 *5 (-412 (-569))) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) + (-12 (-5 *4 (-298 *3)) (-5 *5 (-413 (-570))) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-412 (-569)))) (-5 *4 (-297 *8)) - (-5 *5 (-1242 (-412 (-569)))) (-5 *6 (-412 (-569))) - (-4 *8 (-13 (-27) (-1210) (-435 *7))) - (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-413 (-570)))) (-5 *4 (-298 *8)) + (-5 *5 (-1243 (-413 (-570)))) (-5 *6 (-413 (-570))) + (-4 *8 (-13 (-27) (-1211) (-436 *7))) + (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-412 (-569)))) - (-5 *7 (-412 (-569))) (-4 *3 (-13 (-27) (-1210) (-435 *8))) - (-4 *8 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *8 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-413 (-570)))) + (-5 *7 (-413 (-570))) (-4 *3 (-13 (-27) (-1211) (-436 *8))) + (-4 *8 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-412 (-569))) (-4 *4 (-1057)) (-4 *1 (-1258 *4 *3)) - (-4 *3 (-1235 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3)) - (-4 *3 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225))))) + (-12 (-5 *2 (-413 (-570))) (-4 *4 (-1058)) (-4 *1 (-1259 *4 *3)) + (-4 *3 (-1236 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058)))) + ((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3018)) (-5 *2 (-112)) (-5 *1 (-622)))) + (-12 (-5 *3 (|[\|\|]| -3020)) (-5 *2 (-112)) (-5 *1 (-623)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1627)) (-5 *2 (-112)) (-5 *1 (-622)))) + (-12 (-5 *3 (|[\|\|]| -1626)) (-5 *2 (-112)) (-5 *1 (-623)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1882)) (-5 *2 (-112)) (-5 *1 (-622)))) + (-12 (-5 *3 (|[\|\|]| -1883)) (-5 *2 (-112)) (-5 *1 (-623)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1587)) (-5 *2 (-112)) (-5 *1 (-696 *4)) - (-4 *4 (-618 (-867))))) + (-12 (-5 *3 (|[\|\|]| -1586)) (-5 *2 (-112)) (-5 *1 (-697 *4)) + (-4 *4 (-619 (-868))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-618 (-867))) (-5 *2 (-112)) - (-5 *1 (-696 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-619 (-868))) (-5 *2 (-112)) + (-5 *1 (-697 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-881)))) + (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-882)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-881)))) + (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-882)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-597))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-598))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-483))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1175))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1176))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-631))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-632))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1105))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1098))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-181))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1044))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-314))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-315))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1286))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1287))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1075))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-522))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-523))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-686))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-687))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1123))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1124))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-611))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-612))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-1285))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-1286))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1145)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1146)) (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1167))) (-5 *2 (-112)) (-5 *1 (-1190)))) + (-12 (-5 *3 (|[\|\|]| (-1168))) (-5 *2 (-112)) (-5 *1 (-1191)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-511))) (-5 *2 (-112)) (-5 *1 (-1190)))) + (-12 (-5 *3 (|[\|\|]| (-512))) (-5 *2 (-112)) (-5 *1 (-1191)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-226))) (-5 *2 (-112)) (-5 *1 (-1190)))) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1191)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-569))) (-5 *2 (-112)) (-5 *1 (-1190))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-236 *3)) - (-4 *3 (-1108)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-236 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-285 *2)) (-4 *2 (-1225)) (-4 *2 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-285 *3)) (-4 *3 (-1225)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1108)) (-4 *2 (-1108)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108)) - (-5 *1 (-742 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-867))))) -(((*1 *2 *3 *2) - (-12 + (-12 (-5 *3 (|[\|\|]| (-570))) (-5 *2 (-112)) (-5 *1 (-1191))))) +(((*1 *2 *1) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-868))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-659 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) (-5 *2 - (-649 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-776)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-798)) (-4 *3 (-955 *4 *5 *6)) (-4 *4 (-457)) (-4 *6 (-855)) - (-5 *1 (-454 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855))))) -(((*1 *1 *2) (-12 (-5 *2 (-879)) (-5 *1 (-265)))) - ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-265))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-367)) (-5 *1 (-579 *4 *2)) (-4 *2 (-1251 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-412 (-958 (-569))))) (-5 *4 (-649 (-1185))) - (-5 *2 (-649 (-649 *5))) (-5 *1 (-384 *5)) - (-4 *5 (-13 (-853) (-367))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-816 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 (-569)))) (-5 *2 (-649 *4)) (-5 *1 (-384 *4)) - (-4 *4 (-13 (-853) (-367)))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1225)) (-5 *1 (-183 *3 *2)) - (-4 *2 (-679 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1189))))) + (-12 (-5 *3 (-659 (-413 *6))) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-2 (|:| -2077 (-650 (-413 *6))) (|:| -2568 (-695 *5)))) + (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6 (-413 *6))) (-5 *4 (-413 *6)) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2077 (-650 *4)))) + (-5 *1 (-816 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *6 (-413 *6))) (-4 *6 (-1252 *5)) + (-4 *5 (-13 (-368) (-148) (-1047 (-570)) (-1047 (-413 (-570))))) + (-5 *2 (-2 (|:| -2077 (-650 (-413 *6))) (|:| -2568 (-695 *5)))) + (-5 *1 (-816 *5 *6)) (-5 *4 (-650 (-413 *6)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *5 *6)) (-4 *6 (-620 (-1186))) + (-4 *4 (-368)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *2 (-1175 (-650 (-959 *4)) (-650 (-298 (-959 *4))))) + (-5 *1 (-510 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-368)) (-4 *2 (-1252 *4)) + (-5 *1 (-929 *4 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-826)) (-14 *5 (-1186)) (-5 *2 (-650 (-1249 *5 *4))) + (-5 *1 (-1123 *4 *5)) (-5 *3 (-1249 *5 *4))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-695 *11)) (-5 *4 (-650 (-413 (-959 *8)))) + (-5 *5 (-777)) (-5 *6 (-1168)) (-4 *8 (-13 (-311) (-148))) + (-4 *11 (-956 *8 *10 *9)) (-4 *9 (-13 (-856) (-620 (-1186)))) + (-4 *10 (-799)) + (-5 *2 + (-2 + (|:| |rgl| + (-650 + (-2 (|:| |eqzro| (-650 *11)) (|:| |neqzro| (-650 *11)) + (|:| |wcond| (-650 (-959 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1276 (-413 (-959 *8)))) + (|:| -2077 (-650 (-1276 (-413 (-959 *8)))))))))) + (|:| |rgsz| (-570)))) + (-5 *1 (-931 *8 *9 *10 *11)) (-5 *7 (-570))))) (((*1 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) + (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-569)) (-4 *5 (-13 (-457) (-1046 *4) (-644 *4))) - (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *5))))) + (-12 (-5 *4 (-570)) (-4 *5 (-13 (-458) (-1047 *4) (-645 *4))) + (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *3)))) + (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-457) (-1046 *5) (-644 *5))) (-5 *5 (-569)) - (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) + (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-458) (-1047 *5) (-645 *5))) (-5 *5 (-570)) + (-5 *2 (-52)) (-5 *1 (-319 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-569))) - (-4 *7 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1243 (-570))) + (-4 *7 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-569))) - (-4 *3 (-13 (-27) (-1210) (-435 *7))) - (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *7 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-570))) + (-4 *3 (-13 (-27) (-1211) (-436 *7))) + (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-569)) (-4 *4 (-1057)) (-4 *1 (-1237 *4 *3)) - (-4 *3 (-1266 *4)))) + (-12 (-5 *2 (-570)) (-4 *4 (-1058)) (-4 *1 (-1238 *4 *3)) + (-4 *3 (-1267 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1258 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1235 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1128)))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1181 *2)) (-4 *2 (-435 *4)) (-4 *4 (-561)) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-949 (-226))) (-5 *4 (-879)) (-5 *5 (-927)) - (-5 *2 (-1280)) (-5 *1 (-473)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-949 (-226))) (-5 *2 (-1280)) (-5 *1 (-473)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-879)) (-5 *5 (-927)) - (-5 *2 (-1280)) (-5 *1 (-473))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1870 *3))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-561)) (-4 *2 (-955 *3 *5 *4)) - (-5 *1 (-737 *5 *4 *6 *2)) (-5 *3 (-412 (-958 *6))) (-4 *5 (-798)) - (-4 *4 (-13 (-855) (-10 -8 (-15 -1410 ((-1185) $)))))))) -(((*1 *2) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-1185))) (-4 *4 (-13 (-310) (-147))) - (-4 *5 (-13 (-855) (-619 (-1185)))) (-4 *6 (-798)) - (-5 *2 (-649 (-412 (-958 *4)))) (-5 *1 (-930 *4 *5 *6 *7)) - (-4 *7 (-955 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *5)) (-4 *5 (-13 (-27) (-1210) (-435 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-52)) (-5 *1 (-318 *5 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 *3)) (-4 *3 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *5 *3)))) + (-12 (-4 *1 (-1259 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1236 *3))))) +(((*1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-451 *3)) (-4 *3 (-1058))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1129)))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-777)) (-5 *1 (-862 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-5 *2 (-650 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-423 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-562) (-1047 (-570)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-112)) + (-5 *1 (-1215 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4)))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562))))) +(((*1 *1) (-5 *1 (-1277)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-570)) (-4 *6 (-799)) (-4 *7 (-856)) (-4 *8 (-311)) + (-4 *9 (-956 *8 *6 *7)) + (-5 *2 (-2 (|:| -1750 (-1182 *9)) (|:| |polval| (-1182 *8)))) + (-5 *1 (-748 *6 *7 *8 *9)) (-5 *3 (-1182 *9)) (-5 *4 (-1182 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-1281)) (-5 *1 (-1189)))) + ((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-1189))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-570) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1093 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *5)) (-4 *5 (-13 (-27) (-1211) (-436 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *4 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-52)) (-5 *1 (-319 *5 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-298 *3)) (-4 *3 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-297 *3)) (-5 *5 (-776)) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-318 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-569))) (-5 *4 (-297 *6)) - (-4 *6 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *5 *6)))) + (-12 (-5 *4 (-298 *3)) (-5 *5 (-777)) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-319 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-570))) (-5 *4 (-298 *6)) + (-4 *6 (-13 (-27) (-1211) (-436 *5))) + (-4 *5 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *6 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-569))) (-5 *4 (-297 *7)) (-5 *5 (-1242 (-776))) - (-4 *7 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-570))) (-5 *4 (-298 *7)) (-5 *5 (-1243 (-777))) + (-4 *7 (-13 (-27) (-1211) (-436 *6))) + (-4 *6 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1185)) (-5 *5 (-297 *3)) (-5 *6 (-1242 (-776))) - (-4 *3 (-13 (-27) (-1210) (-435 *7))) - (-4 *7 (-13 (-561) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-52)) - (-5 *1 (-464 *7 *3)))) + (-12 (-5 *4 (-1186)) (-5 *5 (-298 *3)) (-5 *6 (-1243 (-777))) + (-4 *3 (-13 (-27) (-1211) (-436 *7))) + (-4 *7 (-13 (-562) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-52)) + (-5 *1 (-465 *7 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3))))) + (-12 (-4 *1 (-1238 *3 *2)) (-4 *3 (-1058)) (-4 *2 (-1267 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-695 (-227))) (-5 *4 (-570)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1044)) + (-5 *1 (-755))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1226)) + (-4 *5 (-378 *4)) (-4 *2 (-378 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-1062 *4 *5 *6 *2 *7)) (-4 *6 (-1058)) + (-4 *7 (-240 *4 *6)) (-4 *2 (-240 *5 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1252 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *3)) + (-4 *3 (-1252 (-413 *4)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-777)) (-4 *4 (-354)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1252 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-570)) (-5 *1 (-702 *2)) (-4 *2 (-1252 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-394)) (-5 *1 (-442))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-650 (-871)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9)) + (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *9 (-1074 *6 *7 *8)) + (-5 *2 + (-650 + (-2 (|:| -4313 (-650 *9)) (|:| -3665 *10) (|:| |ineq| (-650 *9))))) + (-5 *1 (-997 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-650 *10)) (-5 *5 (-112)) (-4 *10 (-1080 *6 *7 *8 *9)) + (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) + (-4 *9 (-1074 *6 *7 *8)) + (-5 *2 + (-650 + (-2 (|:| -4313 (-650 *9)) (|:| -3665 *10) (|:| |ineq| (-650 *9))))) + (-5 *1 (-1116 *6 *7 *8 *9 *10)) (-5 *3 (-650 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-452)) (-5 *3 (-570))))) +(((*1 *1 *1) (-4 *1 (-1153)))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-304)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1168)) (-5 *1 (-309))))) +(((*1 *1) (-5 *1 (-334)))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-311)) (-4 *3 (-174)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) + (-5 *1 (-694 *3 *4 *5 *6)) (-4 *6 (-693 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-706 *3)) + (-4 *3 (-311))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *9 (-1079 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) - (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1077 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *9)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *9 (-1117 *5 *6 *7 *8)) (-4 *5 (-457)) (-4 *6 (-798)) - (-4 *7 (-855)) (-5 *2 (-776)) (-5 *1 (-1153 *5 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *1) (-4 *1 (-975)))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1267 *4)) (-5 *1 (-1269 *4 *2)) + (-4 *4 (-38 (-413 (-570))))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3009 (-570)) (|:| -1629 (-650 *3)))) + (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-298 (-959 (-570)))) + (-5 *2 + (-2 (|:| |varOrder| (-650 (-1186))) + (|:| |inhom| (-3 (-650 (-1276 (-777))) "failed")) + (|:| |hom| (-650 (-1276 (-777)))))) + (-5 *1 (-238))))) (((*1 *2 *1) - (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) - (-5 *2 (-649 (-649 (-949 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) (-4 *4 (-1057)) - (-4 *1 (-1142 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 (-949 *3)))) (-4 *3 (-1057)) - (-4 *1 (-1142 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-649 (-649 (-649 *4)))) (-5 *3 (-112)) - (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-649 (-649 (-949 *4)))) (-5 *3 (-112)) - (-4 *1 (-1142 *4)) (-4 *4 (-1057)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-649 (-649 (-649 *5)))) (-5 *3 (-649 (-172))) - (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-649 (-649 (-949 *5)))) (-5 *3 (-649 (-172))) - (-5 *4 (-172)) (-4 *1 (-1142 *5)) (-4 *5 (-1057))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) - (-4 *3 (-561))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1299 *3 *4)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-173)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-390 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-824 *2)) (-4 *2 (-855)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-824 *3)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-1057)))) + (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1226)) (-4 *2 (-1011)) + (-4 *2 (-1058))))) +(((*1 *2 *1) (-12 (-4 *1 (-1004 *2)) (-4 *2 (-1226))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-379 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-174)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1292 *2 *3)) (-4 *2 (-855)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-870)))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-932))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1275 (-319 (-226)))) (-5 *4 (-649 (-1185))) - (-5 *2 (-694 (-319 (-226)))) (-5 *1 (-206)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-4 *6 (-906 *5)) (-5 *2 (-694 *6)) - (-5 *1 (-697 *5 *6 *3 *4)) (-4 *3 (-377 *6)) - (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447))))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *5 (-1251 *4)) (-5 *2 (-1181 (-412 *5))) (-5 *1 (-620 *4 *5)) - (-5 *3 (-412 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-423 *6) *6)) (-4 *6 (-1251 *5)) - (-4 *5 (-13 (-147) (-27) (-1046 (-569)) (-1046 (-412 (-569))))) - (-5 *2 (-1181 (-412 *6))) (-5 *1 (-620 *5 *6)) (-5 *3 (-412 *6))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-500))))) -(((*1 *1) (-5 *1 (-333)))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3335 (-569)) (|:| -4360 (-649 *3)))) - (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-776)) (-4 *2 (-561)) (-5 *1 (-977 *2 *4)) - (-4 *4 (-1251 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *1) (-4 *1 (-975)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-744 *3))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-112)) (-5 *1 (-370 *3 *4)) - (-4 *3 (-371 *4)))) - ((*1 *2) (-12 (-4 *1 (-371 *3)) (-4 *3 (-173)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-319 (-226))) (-5 *1 (-269))))) -(((*1 *1 *2) (-12 (-5 *1 (-228 *2)) (-4 *2 (-13 (-367) (-1210)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-5 *1 (-1268 *3 *2)) - (-4 *2 (-1266 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) - (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4))))) + (-12 (-5 *2 (-777)) (-4 *1 (-1297 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-1058))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-743 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109)))) + ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1109))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-928)) (-4 *1 (-750 *3)) (-4 *3 (-174))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1276)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1276)))) + (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1277)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1277)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1277)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-1277)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1277))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-457) (-147))) (-5 *2 (-423 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-649 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-13 (-457) (-147))) - (-5 *2 (-423 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1) (-4 *1 (-975))) ((*1 *1 *1) (-5 *1 (-1128)))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522))))) -(((*1 *2) - (-12 (-5 *2 (-1275 (-1109 *3 *4))) (-5 *1 (-1109 *3 *4)) - (-14 *3 (-927)) (-14 *4 (-927))))) + (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1168)) (-5 *1 (-1278)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-1278))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 *4)) (-4 *4 (-354)) (-5 *2 (-1182 *4)) + (-5 *1 (-534 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-384) (-384))) (-5 *4 (-384)) + (-5 *2 + (-2 (|:| -2190 *4) (|:| -3650 *4) (|:| |totalpts| (-570)) + (|:| |success| (-112)))) + (-5 *1 (-795)) (-5 *5 (-570))))) (((*1 *2 *1) - (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 *2))) - (-5 *2 (-898 *3)) (-5 *1 (-1084 *3 *4 *5)) - (-4 *5 (-13 (-435 *4) (-892 *3) (-619 *2)))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-694 *2)) (-5 *4 (-569)) - (-4 *2 (-13 (-310) (-10 -8 (-15 -3764 ((-423 $) $))))) - (-4 *5 (-1251 *2)) (-5 *1 (-504 *2 *5 *6)) (-4 *6 (-414 *2 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-879)) (-5 *3 (-649 (-265))) (-5 *1 (-263))))) -(((*1 *1) (-5 *1 (-55)))) + (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 *2))) + (-5 *2 (-899 *3)) (-5 *1 (-1085 *3 *4 *5)) + (-4 *5 (-13 (-436 *4) (-893 *3) (-620 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-591 *3)) (-5 *1 (-431 *5 *3)) - (-4 *3 (-13 (-1210) (-29 *5)))))) -(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308))))) + (-12 (-5 *3 (-650 (-786 *5 (-870 *6)))) (-5 *4 (-112)) (-4 *5 (-458)) + (-14 *6 (-650 (-1186))) + (-5 *2 + (-650 (-1155 *5 (-537 (-870 *6)) (-870 *6) (-786 *5 (-870 *6))))) + (-5 *1 (-634 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1182 *4)) (-4 *4 (-354)) + (-5 *2 (-1276 (-650 (-2 (|:| -2190 *4) (|:| -2155 (-1129)))))) + (-5 *1 (-351 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-1182 *3)) (-4 *3 (-354)) (-5 *1 (-362 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-142))))) (((*1 *2 *1) - (-12 (-5 *2 (-1165 (-412 *3))) (-5 *1 (-175 *3)) (-4 *3 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3)) (-4 *3 (-1225))))) -(((*1 *2 *3) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-566)) (-5 *3 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-442))))) -(((*1 *2 *1) (-12 (-5 *2 (-336)) (-5 *1 (-250))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-173))))) + (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 *4)))) + (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-570)) (-5 *2 (-112)) (-5 *1 (-559))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-384))) (-5 *1 (-266)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-372 *2)) (-4 *2 (-562)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-1226))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *2 (-1221 (-933))) + (-5 *1 (-322)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1103 (-227))) (-5 *6 (-570)) (-5 *7 (-1168)) + (-5 *2 (-1221 (-933))) (-5 *1 (-322)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) + (-5 *2 (-1221 (-933))) (-5 *1 (-322)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-320 (-570))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1103 (-227))) (-5 *6 (-227)) (-5 *7 (-570)) (-5 *8 (-1168)) + (-5 *2 (-1221 (-933))) (-5 *1 (-322))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-959 (-413 (-570)))) (-5 *4 (-1186)) + (-5 *5 (-1103 (-849 (-227)))) (-5 *2 (-650 (-227))) (-5 *1 (-304))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-5 *2 (-2 (|:| -2006 *3) (|:| -2216 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-649 *6)) (-4 *6 (-855)) (-4 *4 (-367)) (-4 *5 (-798)) - (-5 *1 (-509 *4 *5 *6 *2)) (-4 *2 (-955 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-509 *3 *4 *5 *2)) (-4 *2 (-955 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-649 (-1185))) (-4 *2 (-173)) - (-4 *3 (-239 (-2428 *4) (-776))) - (-14 *6 - (-1 (-112) (-2 (|:| -2150 *5) (|:| -1993 *3)) - (-2 (|:| -2150 *5) (|:| -1993 *3)))) - (-5 *1 (-466 *4 *2 *5 *3 *6 *7)) (-4 *5 (-855)) - (-4 *7 (-955 *2 *3 (-869 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-147))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1266 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-4 *4 (-1251 *3)) - (-4 *5 (-729 *3 *4)) (-5 *1 (-546 *3 *4 *5 *2)) (-4 *2 (-1266 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-367) (-372) (-619 (-569)))) (-5 *1 (-547 *3 *2)) - (-4 *2 (-1266 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-561) (-147))) - (-5 *1 (-1161 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) - (-15 -4412 ((-1133 *3 (-617 $)) $)) - (-15 -3796 ($ (-1133 *3 (-617 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) - (-15 -4412 ((-1133 *3 (-617 $)) $)) - (-15 -3796 ($ (-1133 *3 (-617 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) - (-15 -4412 ((-1133 *4 (-617 $)) $)) - (-15 -3796 ($ (-1133 *4 (-617 $))))))) - (-4 *4 (-561)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-617 *2))) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *4 (-617 $)) $)) - (-15 -4412 ((-1133 *4 (-617 $)) $)) - (-15 -3796 ($ (-1133 *4 (-617 $))))))) - (-4 *4 (-561)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057)) (-4 *2 (-561))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-5 *2 (-2 (|:| -2009 *3) (|:| -2219 *4)))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-448 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-827))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-334))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-650 *11)) (-5 *5 (-650 (-1182 *9))) + (-5 *6 (-650 *9)) (-5 *7 (-650 *12)) (-5 *8 (-650 (-777))) + (-4 *11 (-856)) (-4 *9 (-311)) (-4 *12 (-956 *9 *10 *11)) + (-4 *10 (-799)) (-5 *2 (-650 (-1182 *12))) + (-5 *1 (-713 *10 *11 *9 *12)) (-5 *3 (-1182 *12))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-384)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1277)))) + ((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-1278))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-412 *5)) (-4 *4 (-1229)) (-4 *5 (-1251 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1251 *3)))) + (-12 (-5 *3 (-413 *5)) (-4 *4 (-1230)) (-4 *5 (-1252 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1252 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569))) - (-5 *1 (-191)))) + (-12 (-5 *3 (-1188 (-413 (-570)))) (-5 *2 (-413 (-570))) + (-5 *1 (-192)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-694 (-319 (-226)))) (-5 *3 (-649 (-1185))) - (-5 *4 (-1275 (-319 (-226)))) (-5 *1 (-206)))) + (-12 (-5 *2 (-695 (-320 (-227)))) (-5 *3 (-650 (-1186))) + (-5 *4 (-1276 (-320 (-227)))) (-5 *1 (-207)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-297 *3))) (-4 *3 (-312 *3)) (-4 *3 (-1108)) - (-4 *3 (-1225)) (-5 *1 (-297 *3)))) + (-12 (-5 *2 (-650 (-298 *3))) (-4 *3 (-313 *3)) (-4 *3 (-1109)) + (-4 *3 (-1226)) (-5 *1 (-298 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-312 *2)) (-4 *2 (-1108)) (-4 *2 (-1225)) - (-5 *1 (-297 *2)))) + (-12 (-4 *2 (-313 *2)) (-4 *2 (-1109)) (-4 *2 (-1226)) + (-5 *1 (-298 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 (-649 *1)))) - (-4 *1 (-305)))) + (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 (-650 *1)))) + (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) + (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 *1)) (-4 *1 (-305)))) + (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 *1)) (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1185)) (-5 *3 (-1 *1 (-649 *1))) (-4 *1 (-305)))) + (-12 (-5 *2 (-1186)) (-5 *3 (-1 *1 (-650 *1))) (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 (-649 *1)))) - (-4 *1 (-305)))) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 (-650 *1)))) + (-4 *1 (-306)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-1 *1 *1))) (-4 *1 (-305)))) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-1 *1 *1))) (-4 *1 (-306)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-297 *3))) (-4 *1 (-312 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-650 (-298 *3))) (-4 *1 (-313 *3)) (-4 *3 (-1109)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-297 *3)) (-4 *1 (-312 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-298 *3)) (-4 *1 (-313 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-569))) (-5 *4 (-1187 (-412 (-569)))) - (-5 *1 (-313 *2)) (-4 *2 (-38 (-412 (-569)))))) + (-12 (-5 *3 (-1 *2 (-570))) (-5 *4 (-1188 (-413 (-570)))) + (-5 *1 (-314 *2)) (-4 *2 (-38 (-413 (-570)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *1)) (-4 *1 (-378 *4 *5)) - (-4 *4 (-855)) (-4 *5 (-173)))) + (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *1)) (-4 *1 (-379 *4 *5)) + (-4 *4 (-856)) (-4 *5 (-174)))) ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-855)) (-4 *3 (-173)))) + (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) + (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-776)) (-5 *4 (-1 *1 (-649 *1))) - (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-1057)))) + (-12 (-5 *2 (-1186)) (-5 *3 (-777)) (-5 *4 (-1 *1 (-650 *1))) + (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-1058)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776))) - (-5 *4 (-649 (-1 *1 (-649 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) - (-4 *5 (-1057)))) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777))) + (-5 *4 (-650 (-1 *1 (-650 *1)))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) + (-4 *5 (-1058)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-649 (-776))) - (-5 *4 (-649 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1108)) - (-4 *5 (-1057)))) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-650 (-777))) + (-5 *4 (-650 (-1 *1 *1))) (-4 *1 (-436 *5)) (-4 *5 (-1109)) + (-4 *5 (-1058)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-649 (-114))) (-5 *3 (-649 *1)) (-5 *4 (-1185)) - (-4 *1 (-435 *5)) (-4 *5 (-1108)) (-4 *5 (-619 (-541))))) + (-12 (-5 *2 (-650 (-115))) (-5 *3 (-650 *1)) (-5 *4 (-1186)) + (-4 *1 (-436 *5)) (-4 *5 (-1109)) (-4 *5 (-620 (-542))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1185)) (-4 *1 (-435 *4)) (-4 *4 (-1108)) - (-4 *4 (-619 (-541))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1186)) (-4 *1 (-436 *4)) (-4 *4 (-1109)) + (-4 *4 (-620 (-542))))) ((*1 *1 *1) - (-12 (-4 *1 (-435 *2)) (-4 *2 (-1108)) (-4 *2 (-619 (-541))))) + (-12 (-4 *1 (-436 *2)) (-4 *2 (-1109)) (-4 *2 (-620 (-542))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-1185))) (-4 *1 (-435 *3)) (-4 *3 (-1108)) - (-4 *3 (-619 (-541))))) + (-12 (-5 *2 (-650 (-1186))) (-4 *1 (-436 *3)) (-4 *3 (-1109)) + (-4 *3 (-620 (-542))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1185)) (-4 *1 (-435 *3)) (-4 *3 (-1108)) - (-4 *3 (-619 (-541))))) + (-12 (-5 *2 (-1186)) (-4 *1 (-436 *3)) (-4 *3 (-1109)) + (-4 *3 (-620 (-542))))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-519 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1225)))) + (-12 (-4 *1 (-520 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1226)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 *4)) (-5 *3 (-649 *5)) (-4 *1 (-519 *4 *5)) - (-4 *4 (-1108)) (-4 *5 (-1225)))) + (-12 (-5 *2 (-650 *4)) (-5 *3 (-650 *5)) (-4 *1 (-520 *4 *5)) + (-4 *4 (-1109)) (-4 *5 (-1226)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-838 *3)) (-4 *3 (-367)) (-5 *1 (-723 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-723 *2)) (-4 *2 (-367)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1108)))) + (-12 (-5 *2 (-839 *3)) (-4 *3 (-368)) (-5 *1 (-724 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-724 *2)) (-4 *2 (-368)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-910 *2)) (-4 *2 (-1109)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-412 (-958 *4))) (-5 *3 (-1185)) (-4 *4 (-561)) - (-5 *1 (-1051 *4)))) + (-12 (-5 *2 (-413 (-959 *4))) (-5 *3 (-1186)) (-4 *4 (-562)) + (-5 *1 (-1052 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-649 (-1185))) (-5 *4 (-649 (-412 (-958 *5)))) - (-5 *2 (-412 (-958 *5))) (-4 *5 (-561)) (-5 *1 (-1051 *5)))) + (-12 (-5 *3 (-650 (-1186))) (-5 *4 (-650 (-413 (-959 *5)))) + (-5 *2 (-413 (-959 *5))) (-4 *5 (-562)) (-5 *1 (-1052 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-5 *2 (-412 (-958 *4))) - (-4 *4 (-561)) (-5 *1 (-1051 *4)))) + (-12 (-5 *3 (-298 (-413 (-959 *4)))) (-5 *2 (-413 (-959 *4))) + (-4 *4 (-562)) (-5 *1 (-1052 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) (-5 *2 (-412 (-958 *4))) - (-4 *4 (-561)) (-5 *1 (-1051 *4)))) + (-12 (-5 *3 (-650 (-298 (-413 (-959 *4))))) (-5 *2 (-413 (-959 *4))) + (-4 *4 (-562)) (-5 *1 (-1052 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-1057)) (-4 *4 (-797)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1165 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1104)))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1166 *3))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) + (-5 *2 + (-2 (|:| |brans| (-650 (-650 (-950 *4)))) + (|:| |xValues| (-1103 *4)) (|:| |yValues| (-1103 *4)))) + (-5 *1 (-154)) (-5 *3 (-650 (-650 (-950 *4))))))) +(((*1 *2 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1105)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-1219 *3 *4 *5 *2)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *2 (-1074 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1263 *3)) (-4 *3 (-1225)))) - ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-855)) (-5 *1 (-489 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-5 *2 (-777)) (-4 *1 (-1264 *3)) (-4 *3 (-1226)))) + ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1166 *4)) (-5 *3 (-1 *4 (-570))) (-4 *4 (-1058)) + (-5 *1 (-1170 *4))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-4 *1 (-610 *2 *3)) (-4 *3 (-1226)) (-4 *2 (-1109)) + (-4 *2 (-856))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1167)) (-4 *1 (-368 *2 *4)) (-4 *2 (-1108)) - (-4 *4 (-1108)))) + (-12 (-5 *3 (-1168)) (-4 *1 (-369 *2 *4)) (-4 *2 (-1109)) + (-4 *4 (-1109)))) ((*1 *1 *2) - (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-1108)) (-4 *3 (-1108))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-569)) - (-5 *6 - (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383)))) - (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) - (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) - (-5 *1 (-793)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-569)) - (-5 *6 - (-2 (|:| |try| (-383)) (|:| |did| (-383)) (|:| -2056 (-383)))) - (-5 *7 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) - (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) - (-5 *1 (-793))))) -(((*1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-128))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-119 *2)) (-4 *2 (-1225))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) + (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-1109)) (-4 *3 (-1109))))) +(((*1 *1) (-5 *1 (-512)))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-570)) (-5 *1 (-1166 *3)) (-4 *3 (-1226)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-799)) + (-4 *3 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *5 (-562)) + (-5 *1 (-738 *4 *3 *5 *2)) (-4 *2 (-956 (-413 (-959 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *3 + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-5 *1 (-993 *4 *5 *3 *2)) (-4 *2 (-956 (-959 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-650 *6)) + (-4 *6 + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-4 *4 (-1058)) (-4 *5 (-799)) (-5 *1 (-993 *4 *5 *6 *2)) + (-4 *2 (-956 (-959 *4) *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278)))) + ((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1278))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *4)))) - (-5 *1 (-1149 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34)))))) + (-12 (-4 *3 (-1226)) (-5 *2 (-650 *1)) (-4 *1 (-1019 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-2 (|:| |val| *3) (|:| -3665 *4)))) + (-5 *1 (-1150 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-827)) (-5 *4 (-52)) (-5 *2 (-1281)) (-5 *1 (-837))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1008 *3)) (-4 *3 (-174)) (-5 *1 (-805 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-649 (-319 (-226)))) (|:| -2307 (-649 (-226))))) - (-5 *2 (-649 (-1185))) (-5 *1 (-269)))) + (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) + (-5 *2 (-650 (-1186))) (-5 *1 (-270)))) ((*1 *2 *3) - (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-649 *5)) - (-5 *1 (-324 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1182 *7)) (-4 *7 (-956 *6 *4 *5)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1058)) (-5 *2 (-650 *5)) + (-5 *1 (-325 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-343 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-392)))) + (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-344 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-393)))) ((*1 *2 *1) - (-12 (-4 *1 (-435 *3)) (-4 *3 (-1108)) (-5 *2 (-649 (-1185))))) + (-12 (-4 *1 (-436 *3)) (-4 *3 (-1109)) (-5 *2 (-650 (-1186))))) ((*1 *2 *1) - (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) - (-12 (-4 *1 (-955 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-649 *5)))) + (-12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-650 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) - (-4 *7 (-955 *6 *4 *5)) (-5 *2 (-649 *5)) - (-5 *1 (-956 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) + (-4 *7 (-956 *6 *4 *5)) (-5 *2 (-650 *5)) + (-5 *1 (-957 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))))) + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-4 *5 (-855)) (-5 *2 (-649 *5)))) + (-12 (-4 *1 (-982 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-4 *5 (-856)) (-5 *2 (-650 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5)))) + (-12 (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) (-5 *2 (-649 (-1185))) - (-5 *1 (-1051 *4))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *5 (-226)) - (-5 *2 (-1043)) (-5 *1 (-757))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-447 *3)) (-4 *3 (-1251 (-569)))))) + (-12 (-5 *3 (-413 (-959 *4))) (-4 *4 (-562)) (-5 *2 (-650 (-1186))) + (-5 *1 (-1052 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-911 (-570))) (-5 *1 (-924)))) + ((*1 *2) (-12 (-5 *2 (-911 (-570))) (-5 *1 (-924))))) (((*1 *2 *3) - (-12 (-5 *3 (-412 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-561)) - (-4 *4 (-1057)) (-4 *2 (-1266 *4)) (-5 *1 (-1269 *4 *5 *6 *2)) - (-4 *6 (-661 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-5 *3 (-650 *2)) (-5 *1 (-492 *2)) (-4 *2 (-1252 (-570)))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1185)) (-5 *3 (-439)) (-4 *5 (-1108)) - (-5 *1 (-1114 *5 *4)) (-4 *4 (-435 *5))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-450 *3)) (-4 *3 (-1057))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-315)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) - (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) - (-4 *6 (-457)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-486 *5 *6))) (-5 *4 (-869 *5)) - (-14 *5 (-649 (-1185))) (-5 *2 (-486 *5 *6)) (-5 *1 (-636 *5 *6)) - (-4 *6 (-457))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *1) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-175 *3)) (-4 *3 (-310))))) + (-12 (-5 *2 (-1186)) (-5 *3 (-440)) (-4 *5 (-1109)) + (-5 *1 (-1115 *5 *4)) (-4 *4 (-436 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) + (-5 *2 (-384)) (-5 *1 (-270)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1276 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-309))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-562)) (-4 *2 (-956 *3 *5 *4)) + (-5 *1 (-738 *5 *4 *6 *2)) (-5 *3 (-413 (-959 *6))) (-4 *5 (-799)) + (-4 *4 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $)))))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-535))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-985 *4 *5 *6 *3)) (-4 *4 (-1058)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-798)) + (-5 *2 (-777)))) + ((*1 *2 *1) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-777)))) + ((*1 *2 *1) + (-12 (-5 *2 (-777)) (-5 *1 (-741 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-732))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1181 (-412 (-1181 *2)))) (-5 *4 (-617 *2)) - (-4 *2 (-13 (-435 *5) (-27) (-1210))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1108)))) + (-12 (-5 *3 (-1182 (-413 (-1182 *2)))) (-5 *4 (-618 *2)) + (-4 *2 (-13 (-436 *5) (-27) (-1211))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1109)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 *1)) (-4 *1 (-955 *4 *5 *3)) (-4 *4 (-1057)) - (-4 *5 (-798)) (-4 *3 (-855)))) + (-12 (-5 *2 (-1182 *1)) (-4 *1 (-956 *4 *5 *3)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *3 (-856)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1057)) (-4 *1 (-955 *4 *5 *3)) - (-4 *5 (-798)) (-4 *3 (-855)))) + (-12 (-5 *2 (-1182 *4)) (-4 *4 (-1058)) (-4 *1 (-956 *4 *5 *3)) + (-4 *5 (-799)) (-4 *3 (-856)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-1181 *2))) (-4 *5 (-798)) (-4 *4 (-855)) - (-4 *6 (-1057)) + (-12 (-5 *3 (-413 (-1182 *2))) (-4 *5 (-799)) (-4 *4 (-856)) + (-4 *6 (-1058)) (-4 *2 - (-13 (-367) - (-10 -8 (-15 -3796 ($ *7)) (-15 -4399 (*7 $)) (-15 -4412 (*7 $))))) - (-5 *1 (-956 *5 *4 *6 *7 *2)) (-4 *7 (-955 *6 *5 *4)))) + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) (-15 -4413 (*7 $))))) + (-5 *1 (-957 *5 *4 *6 *7 *2)) (-4 *7 (-956 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-1181 (-412 (-958 *5))))) (-5 *4 (-1185)) - (-5 *2 (-412 (-958 *5))) (-5 *1 (-1051 *5)) (-4 *5 (-561))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1185))) (-5 *3 (-1185)) (-5 *1 (-541)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1185)) (-5 *1 (-709 *3)) (-4 *3 (-619 (-541))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-649 (-1185))) (-5 *2 (-1185)) (-5 *1 (-709 *3)) - (-4 *3 (-619 (-541)))))) + (-12 (-5 *3 (-413 (-1182 (-413 (-959 *5))))) (-5 *4 (-1186)) + (-5 *2 (-413 (-959 *5))) (-5 *1 (-1052 *5)) (-4 *5 (-562))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-758))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4447)) (-4 *1 (-151 *2)) (-4 *2 (-1225)) - (-4 *2 (-1108)))) + (-12 (|has| *1 (-6 -4448)) (-4 *1 (-152 *2)) (-4 *2 (-1226)) + (-4 *2 (-1109)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3)) - (-4 *3 (-1225)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *3)) + (-4 *3 (-1226)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1226)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-569)) (-4 *4 (-1108)) - (-5 *1 (-742 *4)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-570)) (-4 *4 (-1109)) + (-5 *1 (-743 *4)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-5 *1 (-742 *2)) (-4 *2 (-1108)))) + (-12 (-5 *3 (-570)) (-5 *1 (-743 *2)) (-4 *2 (-1109)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1148 *3 *4)) (-4 *3 (-13 (-1108) (-34))) - (-4 *4 (-13 (-1108) (-34))) (-5 *1 (-1149 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-649 *2))) (-5 *4 (-649 *5)) - (-4 *5 (-38 (-412 (-569)))) (-4 *2 (-1266 *5)) - (-5 *1 (-1268 *5 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) - (-5 *2 (-649 *3))))) -(((*1 *1) (-5 *1 (-144))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1141 (-226))) (-5 *1 (-265))))) + (-12 (-5 *2 (-1149 *3 *4)) (-4 *3 (-13 (-1109) (-34))) + (-4 *4 (-13 (-1109) (-34))) (-5 *1 (-1150 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-368)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-368)) (-4 *5 (-1058)) + (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) + (-4 *3 (-858 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) - (-5 *2 (-2 (|:| -4133 (-649 *6)) (|:| -1721 (-649 *6))))))) -(((*1 *2 *1) (-12 (-4 *1 (-256 *2)) (-4 *2 (-1225))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25)))))) + (-12 (-5 *2 (-650 (-52))) (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-1186))) (-5 *3 (-1186)) (-5 *1 (-542)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1186)) (-5 *1 (-710 *3)) (-4 *3 (-620 (-542))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-650 (-1186))) (-5 *2 (-1186)) (-5 *1 (-710 *3)) + (-4 *3 (-620 (-542)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1186)) (-5 *3 (-384)) (-5 *1 (-1072))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-442))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-1231)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-367)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-112)) - (-5 *1 (-509 *4 *5 *6 *3)) (-4 *3 (-955 *4 *5 *6))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-802 *2)) (-4 *2 (-173)))) - ((*1 *2 *1) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-569)) (-5 *5 (-694 (-226))) (-5 *6 (-680 (-226))) - (-5 *3 (-226)) (-5 *2 (-1043)) (-5 *1 (-755))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-390 *2)) (-4 *2 (-1108))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1225)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-609 *3 *2)) (-4 *3 (-1108)) - (-4 *2 (-1225))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1167)) (-5 *4 (-569)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-759))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185)) - (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-193)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-319 (-226))) (-5 *4 (-1185)) - (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303))))) -(((*1 *2 *2) - (-12 (-4 *3 (-353)) (-4 *4 (-332 *3)) (-4 *5 (-1251 *4)) - (-5 *1 (-782 *3 *4 *5 *2 *6)) (-4 *2 (-1251 *5)) (-14 *6 (-927)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-4 *3 (-372)))) - ((*1 *1 *1) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-367)) (-4 *2 (-372))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-1279))))) +(((*1 *2 *3) + (-12 (-5 *3 (-695 *2)) (-4 *4 (-1252 *2)) + (-4 *2 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-5 *1 (-505 *2 *4 *5)) (-4 *5 (-415 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-981 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-797)) - (-4 *5 (-855)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-766)))) + (-12 (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) + (-4 *5 (-240 *3 *2)) (-4 *2 (-1058))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1166 *4)) (-5 *3 (-570)) (-4 *4 (-1058)) + (-5 *1 (-1170 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-570)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-1058)) + (-14 *4 (-1186)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *8 (-1074 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-650 *8)) + (|:| |towers| (-650 (-1036 *5 *6 *7 *8))))) + (-5 *1 (-1036 *5 *6 *7 *8)) (-5 *3 (-650 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *8 (-1074 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-650 *8)) + (|:| |towers| (-650 (-1155 *5 *6 *7 *8))))) + (-5 *1 (-1155 *5 *6 *7 *8)) (-5 *3 (-650 *8))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *1 (-694 *3 *4 *5 *2)) + (-4 *2 (-693 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-559))))) +(((*1 *2 *3) + (-12 (-5 *3 (-928)) (-5 *2 (-1182 *4)) (-5 *1 (-362 *4)) + (-4 *4 (-354))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-400))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-1047 (-413 *2)))) (-5 *2 (-570)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-1116 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-866)) (-5 *2 (-697 (-130))) (-5 *3 (-130))))) +(((*1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-135))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-570)) (-5 *5 (-112)) (-5 *6 (-695 (-227))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-759))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4315 (-777)) (|:| |period| (-777)))) + (-5 *1 (-1166 *4)) (-4 *4 (-1226)) (-5 *3 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-226)) (-5 *4 (-569)) (-5 *2 (-1043)) (-5 *1 (-763))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1252 *5)) (-4 *5 (-368)) + (-5 *2 (-2 (|:| -3366 (-424 *3)) (|:| |special| (-424 *3)))) + (-5 *1 (-733 *5 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-384)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-550)) (-5 *1 (-159 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-186)) (-5 *2 (-649 (-112)))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-423 *2)) (-4 *2 (-561))))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-570)) (-5 *1 (-451 *3)) (-4 *3 (-410)) (-4 *3 (-1058))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1044)) (-5 *1 (-759))))) (((*1 *1 *2) - (-12 (-5 *2 (-1260 *3 *4 *5)) (-4 *3 (-367)) (-14 *4 (-1185)) - (-14 *5 *3) (-5 *1 (-322 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-383))) (-5 *1 (-1048)) (-5 *3 (-383))))) + (-12 (-5 *2 (-650 *1)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-1058)) (-5 *1 (-695 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-650 *4)) (-4 *4 (-1058)) (-4 *1 (-1132 *3 *4 *5 *6)) + (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-1 (-384))) (-5 *1 (-1049))))) +(((*1 *2 *3) + (-12 (-5 *3 (-570)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-5 *2 (-1281)) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-243)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-1168))) (-5 *2 (-1281)) (-5 *1 (-243))))) +(((*1 *2 *3) + (-12 (-14 *4 (-650 (-1186))) (-14 *5 (-777)) + (-5 *2 + (-650 + (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) + (-249 *4 (-413 (-570)))))) + (-5 *1 (-511 *4 *5)) + (-5 *3 + (-510 (-413 (-570)) (-242 *5 (-777)) (-870 *4) + (-249 *4 (-413 (-570)))))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-695 (-227))) (-5 *5 (-695 (-570))) (-5 *3 (-570)) + (-5 *2 (-1044)) (-5 *1 (-762))))) +(((*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-856)) (-4 *3 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-633 *2 *3 *4)) (-4 *2 (-856)) + (-4 *3 (-13 (-174) (-723 (-413 (-570))))) (-14 *4 (-928)))) + ((*1 *1 *1) (-12 (-5 *1 (-683 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-856)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1293 *2 *3)) (-4 *2 (-856)) (-4 *3 (-1058))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1058)) (-5 *1 (-720 *4 *2)) + (-4 *2 (-654 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-842 *2)) (-4 *2 (-1058))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-777)) (-4 *4 (-1058)) (-5 *1 (-1248 *4 *2)) + (-4 *2 (-1252 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-569)) (-4 *1 (-326 *4 *2)) (-4 *4 (-1108)) - (-4 *2 (-131))))) + (|partial| -12 (-5 *3 (-1186)) (-4 *4 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -3283 (-570)))) + (-4 *1 (-436 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1058)) (-4 *4 (-1109)) + (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -3283 (-570)))) + (-4 *1 (-436 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1121)) (-4 *3 (-1109)) + (-5 *2 (-2 (|:| |var| (-618 *1)) (|:| -3283 (-570)))) + (-4 *1 (-436 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-899 *3)) (|:| -3283 (-777)))) + (-5 *1 (-899 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-956 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-777)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1058)) + (-4 *7 (-956 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -3283 (-570)))) + (-5 *1 (-957 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-368) + (-10 -8 (-15 -3798 ($ *7)) (-15 -4400 (*7 $)) + (-15 -4413 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-689 *4 *3)) (-4 *4 (-1109)) + (-4 *3 (-1109))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1044)) (-5 *3 (-1186)) (-5 *1 (-194))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-649 (-949 *4))) (-5 *1 (-1173 *3 *4)) (-14 *3 (-927)) - (-4 *4 (-1057))))) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-650 *6)) (-4 *1 (-985 *3 *4 *5 *6)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) + (-4 *3 (-562))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-777)) (-4 *3 (-1058)) (-4 *1 (-693 *3 *4 *5)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1058)) (-4 *1 (-1132 *3 *2 *4 *5)) (-4 *4 (-240 *3 *2)) + (-4 *5 (-240 *3 *2))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-777)) (-4 *6 (-1109)) (-4 *7 (-907 *6)) + (-5 *2 (-695 *7)) (-5 *1 (-698 *6 *7 *3 *4)) (-4 *3 (-378 *7)) + (-4 *4 (-13 (-378 *6) (-10 -7 (-6 -4448))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145))))) +(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211))))) + ((*1 *1 *1 *1) (-4 *1 (-799)))) +(((*1 *2) + (-12 (-4 *4 (-1230)) (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) + (-5 *2 (-777)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-347 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-777))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-777)) (-5 *1 (-593 *2)) (-4 *2 (-551))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1 (-383))) (-5 *1 (-1048))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-591 *3) *3 (-1185))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1185))) - (-4 *3 (-287)) (-4 *3 (-634)) (-4 *3 (-1046 *4)) (-4 *3 (-435 *7)) - (-5 *4 (-1185)) (-4 *7 (-619 (-898 (-569)))) (-4 *7 (-457)) - (-4 *7 (-892 (-569))) (-4 *7 (-1108)) (-5 *2 (-591 *3)) - (-5 *1 (-578 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-242)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1280)) (-5 *1 (-242))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-649 (-869 *5))) (-14 *5 (-649 (-1185))) (-4 *6 (-457)) + (-12 (-4 *3 (-1230)) (-4 *5 (-1252 *3)) (-4 *6 (-1252 (-413 *5))) + (-5 *2 (-112)) (-5 *1 (-346 *4 *3 *5 *6)) (-4 *4 (-347 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-347 *3 *4 *5)) (-4 *3 (-1230)) (-4 *4 (-1252 *3)) + (-4 *5 (-1252 (-413 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-775)) (-5 *2 - (-2 (|:| |dpolys| (-649 (-248 *5 *6))) - (|:| |coords| (-649 (-569))))) - (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-649 (-248 *5 *6))) (-4 *7 (-457))))) -(((*1 *2 *1 *1) - (-12 + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) + (-5 *1 (-571)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-775)) (-5 *4 (-1072)) (-5 *2 - (-2 (|:| |polnum| (-787 *3)) (|:| |polden| *3) (|:| -4037 (-776)))) - (-5 *1 (-787 *3)) (-4 *3 (-1057)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4037 (-776)))) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-569)))) (-4 *5 (-1251 *4)) - (-5 *2 (-2 (|:| |ans| (-412 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1023 *4 *5)) (-5 *3 (-412 *5))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-762))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *8 (-1073 *5 *6 *7)) + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))) (|:| |extra| (-1044)))) + (-5 *1 (-571)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-793)) (-5 *3 (-1072)) + (-5 *4 + (-2 (|:| |fn| (-320 (-227))) + (|:| -2762 (-650 (-1103 (-849 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |val| (-649 *8)) - (|:| |towers| (-649 (-1035 *5 *6 *7 *8))))) - (-5 *1 (-1035 *5 *6 *7 *8)) (-5 *3 (-649 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *8 (-1073 *5 *6 *7)) + (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) + (|:| |extra| (-1044)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-793)) (-5 *3 (-1072)) + (-5 *4 + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 - (-2 (|:| |val| (-649 *8)) - (|:| |towers| (-649 (-1154 *5 *6 *7 *8))))) - (-5 *1 (-1154 *5 *6 *7 *8)) (-5 *3 (-649 *8))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1181 (-569))) (-5 *1 (-948)) (-5 *3 (-569))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-559 *2)) (-4 *2 (-13 (-409) (-1210)))))) -(((*1 *1 *2) - (-12 + (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)) + (|:| |extra| (-1044)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-806)) (-5 *3 (-1072)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1276 (-320 (-227)))) (|:| |yinit| (-650 (-227))) + (|:| |intvals| (-650 (-227))) (|:| |g| (-320 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-814)) (-5 *2 - (-2 (|:| |mval| (-694 *3)) (|:| |invmval| (-694 *3)) - (|:| |genIdeal| (-509 *3 *4 *5 *6)))) - (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-776)) (-4 *5 (-367)) (-5 *2 (-175 *6)) - (-5 *1 (-872 *5 *4 *6)) (-4 *4 (-1266 *5)) (-4 *6 (-1251 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-206)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-383))) (-5 *2 (-383)) (-5 *1 (-206))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1165 *4)) (-5 *3 (-569)) (-4 *4 (-1057)) - (-5 *1 (-1169 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-569)) (-5 *1 (-1267 *3 *4 *5)) (-4 *3 (-1057)) - (-14 *4 (-1185)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1202 *4 *5)) - (-4 *4 (-1108)) (-4 *5 (-1108))))) -(((*1 *2 *1) - (-12 (-5 *2 (-696 (-972 *3))) (-5 *1 (-972 *3)) (-4 *3 (-1108))))) -(((*1 *1 *1) - (-12 (-4 *2 (-353)) (-4 *2 (-1057)) (-5 *1 (-717 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1106 *3)) (-4 *3 (-1108)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-4 *6 (-892 *5)) (-5 *2 (-891 *5 *6 (-649 *6))) - (-5 *1 (-893 *5 *6 *4)) (-5 *3 (-649 *6)) (-4 *4 (-619 (-898 *5))))) + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *1 (-811)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 *3))) (-5 *1 (-893 *5 *3 *4)) - (-4 *3 (-1046 (-1185))) (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5))))) + (-12 (-5 *3 (-814)) (-5 *4 (-1072)) + (-5 *2 + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *1 (-811)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-5 *2 (-649 (-297 (-958 *3)))) - (-5 *1 (-893 *5 *3 *4)) (-4 *3 (-1057)) - (-1749 (-4 *3 (-1046 (-1185)))) (-4 *3 (-892 *5)) - (-4 *4 (-619 (-898 *5))))) + (-12 (-4 *1 (-845)) (-5 *3 (-1072)) + (-5 *4 + (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) + (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-5 *2 (-895 *5 *3)) (-5 *1 (-893 *5 *3 *4)) - (-1749 (-4 *3 (-1046 (-1185)))) (-1749 (-4 *3 (-1057))) - (-4 *3 (-892 *5)) (-4 *4 (-619 (-898 *5)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-1220 *3)) - (-4 *3 (-982))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-1073 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1115 *4 *5 *6 *7 *3)) (-4 *3 (-1079 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-367)) (-5 *2 (-649 (-1165 *4))) (-5 *1 (-288 *4 *5)) - (-5 *3 (-1165 *4)) (-4 *5 (-1266 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-855))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-569)) (-4 *5 (-353)) (-5 *2 (-423 (-1181 (-1181 *5)))) - (-5 *1 (-1223 *5)) (-5 *3 (-1181 (-1181 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) - (-4 *5 (-13 (-457) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-591 *3)) (-5 *1 (-562 *5 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1285))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1152)) (-5 *2 (-144))))) -(((*1 *2) (-12 (-5 *2 (-1167)) (-5 *1 (-1195))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1167)) (-5 *3 (-569)) (-5 *1 (-1071))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-828)) (-5 *1 (-827))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1143)) (-5 *3 (-294)) (-5 *1 (-168))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1134 *4 *3 *5))) (-4 *4 (-38 (-412 (-569)))) - (-4 *4 (-1057)) (-4 *3 (-855)) (-5 *1 (-1134 *4 *3 *5)) - (-4 *5 (-955 *4 (-536 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1219 *4))) (-5 *3 (-1185)) (-5 *1 (-1219 *4)) - (-4 *4 (-38 (-412 (-569)))) (-4 *4 (-1057))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-383)) (-5 *1 (-97))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-4 *2 (-1108)) - (-5 *1 (-895 *4 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-561) (-1046 (-569)))) (-5 *2 (-170 (-319 *4))) - (-5 *1 (-189 *4 *3)) (-4 *3 (-13 (-27) (-1210) (-435 (-170 *4)))))) + (-12 (-4 *1 (-845)) (-5 *3 (-1072)) + (-5 *4 + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) + (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-170 *3)) (-5 *1 (-1214 *4 *3)) - (-4 *3 (-13 (-27) (-1210) (-435 *4)))))) -(((*1 *1) (-5 *1 (-622)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-776)) (-4 *4 (-353)) (-5 *1 (-217 *4 *2)) - (-4 *2 (-1251 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-176)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-511)) (-5 *2 (-696 (-109))) (-5 *1 (-1093))))) + (-12 (-5 *3 (-847)) + (-5 *2 + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *1 (-846)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-847)) (-5 *4 (-1072)) + (-5 *2 + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *1 (-846)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-902)) (-5 *3 (-1072)) + (-5 *4 + (-2 (|:| |pde| (-650 (-320 (-227)))) + (|:| |constraints| + (-650 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-777)) (|:| |boundaryType| (-570)) + (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) + (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -1643 (-384)) (|:| |explanations| (-1168)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-905)) + (-5 *2 + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *1 (-904)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-905)) (-5 *4 (-1072)) + (-5 *2 + (-2 (|:| -1643 (-384)) (|:| -3574 (-1168)) + (|:| |explanations| (-650 (-1168))))) + (-5 *1 (-904))))) +(((*1 *2 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226))))) +(((*1 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570))))) + ((*1 *2 *2) + (-12 (-5 *2 (-777)) (-5 *1 (-121 *3)) (-4 *3 (-1252 (-570)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-777)) (-4 *2 (-562)) (-5 *1 (-978 *2 *4)) + (-4 *4 (-1252 *2))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) (((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *2) - (-12 (-4 *3 (-310)) (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) - (-5 *1 (-1132 *3 *4 *5 *2)) (-4 *2 (-692 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1153)) (-5 *2 (-145))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-570)) (-5 *3 (-777)) (-5 *1 (-567))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-174))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-246 *2)) (-4 *2 (-1226))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1144)) (-5 *3 (-295)) (-5 *1 (-169))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *1) + (-12 (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 (-570))))) + (-5 *1 (-366 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-391 *3)) (-4 *3 (-1109)) + (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 (-777))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-650 (-2 (|:| -3801 *3) (|:| -3283 (-570))))) + (-5 *1 (-424 *3)) (-4 *3 (-562))))) +(((*1 *1) (-5 *1 (-829)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-1186))))) +(((*1 *1) (-5 *1 (-623)))) +(((*1 *2 *3) + (-12 (-5 *3 (-413 *5)) (-4 *5 (-1252 *4)) (-4 *4 (-562)) + (-4 *4 (-1058)) (-4 *2 (-1267 *4)) (-5 *1 (-1270 *4 *5 *6 *2)) + (-4 *6 (-662 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-592 *3)) (-4 *3 (-368))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1276 (-705))) (-5 *1 (-309))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-2 (|:| |gen| *3) (|:| -4390 *4)))) + (-4 *3 (-1109)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-655 *3 *4 *5))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) + (-2 (|:| |var| (-1186)) (|:| |fn| (-320 (-227))) + (|:| -2762 (-1103 (-849 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -15480,2864 +15726,2615 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1165 (-226))) + (-3 (|:| |str| (-1166 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3743 + (|:| -2762 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-564))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-1275 *5))) (-5 *4 (-569)) (-5 *2 (-1275 *5)) - (-5 *1 (-1037 *5)) (-4 *5 (-367)) (-4 *5 (-372)) (-4 *5 (-1057))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-694 *3)) (-4 *3 (-1057)) (-5 *1 (-1036 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-649 (-694 *3))) (-4 *3 (-1057)) (-5 *1 (-1036 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-1108))))) -(((*1 *1) (-4 *1 (-353))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-561) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-649 (-1181 *5))) - (|:| |prim| (-1181 *5)))) - (-5 *1 (-437 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-561) (-147))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1181 *3)) - (|:| |pol2| (-1181 *3)) (|:| |prim| (-1181 *3)))) - (-5 *1 (-437 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-958 *5)) (-5 *4 (-1185)) (-4 *5 (-13 (-367) (-147))) - (-5 *2 - (-2 (|:| |coef1| (-569)) (|:| |coef2| (-569)) - (|:| |prim| (-1181 *5)))) - (-5 *1 (-966 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-958 *5))) (-5 *4 (-649 (-1185))) - (-4 *5 (-13 (-367) (-147))) - (-5 *2 - (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *5))) - (|:| |prim| (-1181 *5)))) - (-5 *1 (-966 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 (-958 *6))) (-5 *4 (-649 (-1185))) (-5 *5 (-1185)) - (-4 *6 (-13 (-367) (-147))) - (-5 *2 - (-2 (|:| -1435 (-649 (-569))) (|:| |poly| (-649 (-1181 *6))) - (|:| |prim| (-1181 *6)))) - (-5 *1 (-966 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-955 *4 *6 *5)) (-4 *4 (-457)) - (-4 *5 (-855)) (-4 *6 (-798)) (-5 *1 (-995 *4 *5 *6 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 (-649 *6))) (-4 *6 (-955 *3 *5 *4)) - (-4 *3 (-13 (-310) (-147))) (-4 *4 (-13 (-855) (-619 (-1185)))) - (-4 *5 (-798)) (-5 *1 (-930 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-566))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-399)))) - ((*1 *2 *1) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1205))))) + (-5 *1 (-565))))) +(((*1 *2 *1) (-12 (-5 *2 (-295)) (-5 *1 (-284))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-650 (-777))) (-5 *3 (-112)) (-5 *1 (-1174 *4 *5)) + (-14 *4 (-928)) (-4 *5 (-1058))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-649 *7)) (-4 *7 (-855)) - (-4 *8 (-955 *5 *6 *7)) (-4 *5 (-561)) (-4 *6 (-798)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1275 (-412 *8)) "failed")) - (|:| -2403 (-649 (-1275 (-412 *8)))))) - (-5 *1 (-674 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1225)) - (-4 *5 (-1225)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-241 *6 *7)) (-14 *6 (-776)) - (-4 *7 (-1225)) (-4 *5 (-1225)) (-5 *2 (-241 *6 *5)) - (-5 *1 (-240 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1225)) (-4 *5 (-1225)) - (-4 *2 (-377 *5)) (-5 *1 (-375 *6 *4 *5 *2)) (-4 *4 (-377 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) - (-4 *2 (-430 *5)) (-5 *1 (-428 *6 *4 *5 *2)) (-4 *4 (-430 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-649 *6)) (-4 *6 (-1225)) - (-4 *5 (-1225)) (-5 *2 (-649 *5)) (-5 *1 (-647 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-964 *6)) (-4 *6 (-1225)) - (-4 *5 (-1225)) (-5 *2 (-964 *5)) (-5 *1 (-963 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1165 *6)) (-4 *6 (-1225)) - (-4 *3 (-1225)) (-5 *2 (-1165 *3)) (-5 *1 (-1163 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1275 *6)) (-4 *6 (-1225)) - (-4 *5 (-1225)) (-5 *2 (-1275 *5)) (-5 *1 (-1274 *6 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1071)) (-5 *3 (-1167))))) -(((*1 *2 *3) - (-12 (-5 *2 (-649 (-1181 (-569)))) (-5 *1 (-192)) (-5 *3 (-569))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) - (-5 *2 (-412 (-569))))) - ((*1 *2 *1) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-423 *3)) (-4 *3 (-550)) - (-4 *3 (-561)))) - ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-412 (-569))))) - ((*1 *2 *1) - (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) - (-5 *2 (-412 (-569))))) - ((*1 *2 *1) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-838 *3)) (-4 *3 (-550)) - (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-848 *3)) (-4 *3 (-550)) - (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) - (-5 *2 (-412 (-569))))) - ((*1 *2 *3) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-1016 *3)) (-4 *3 (-1046 *2))))) + (-12 (-5 *3 (-650 (-695 *5))) (-5 *4 (-1276 *5)) (-4 *5 (-311)) + (-4 *5 (-1058)) (-5 *2 (-695 *5)) (-5 *1 (-1038 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1185)) - (-4 *4 (-13 (-310) (-147) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-431 *4 *2)) (-4 *2 (-13 (-1210) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) (-4 *5 (-147)) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-319 *5)) - (-5 *1 (-594 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-378 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-173)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-1296 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-1057))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-569)) (-5 *3 (-776)) (-5 *1 (-566))))) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-436 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1101 *2)) (-4 *2 (-436 *4)) (-4 *4 (-562)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1186))))) (((*1 *2 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) (-5 *2 (-649 *1)) - (-4 *1 (-1073 *3 *4 *5))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3346 *3) (|:| |coef1| (-787 *3)) (|:| |coef2| (-787 *3)))) - (-5 *1 (-787 *3)) (-4 *3 (-561)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-249))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-569)) (-5 *6 (-1 (-1280) (-1275 *5) (-1275 *5) (-383))) - (-5 *3 (-1275 (-383))) (-5 *5 (-383)) (-5 *2 (-1280)) - (-5 *1 (-793))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-367)) (-5 *1 (-771 *2 *3)) (-4 *2 (-713 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-857 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1109) (-34))) (-4 *6 (-13 (-1109) (-34))) + (-5 *2 (-112)) (-5 *1 (-1149 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-4 *5 (-368)) (-5 *2 (-1166 (-1166 (-959 *5)))) + (-5 *1 (-1284 *5)) (-5 *4 (-1166 (-959 *5)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1057)) (-5 *1 (-1169 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1267 *2 *3 *4)) (-4 *2 (-1057)) (-14 *3 (-1185)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-367)) (-5 *1 (-902 *2 *3)) - (-4 *2 (-1251 *3))))) -(((*1 *1 *1) (-5 *1 (-1071)))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) (-5 *2 (-1 (-1182 (-959 *4)) (-959 *4))) + (-5 *1 (-1284 *4)) (-4 *4 (-368))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) + (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4313 (-650 *9)) (|:| -3665 *4) (|:| |ineq| (-650 *9)))) + (-5 *1 (-997 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9)) + (-4 *4 (-1080 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-458)) (-4 *7 (-799)) + (-4 *8 (-856)) (-4 *9 (-1074 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4313 (-650 *9)) (|:| -3665 *4) (|:| |ineq| (-650 *9)))) + (-5 *1 (-1116 *6 *7 *8 *9 *4)) (-5 *3 (-650 *9)) + (-4 *4 (-1080 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) - (-5 *1 (-264 *2)) (-4 *2 (-1225)))) + (-12 (-4 *2 (-1252 *4)) (-5 *1 (-813 *4 *2 *3 *5)) + (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *3 (-662 *2)) + (-4 *5 (-662 (-413 *2))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-649 (-265))) (-5 *4 (-1185)) (-5 *2 (-52)) - (-5 *1 (-265))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1277))))) + (-12 (-4 *2 (-1252 *4)) (-5 *1 (-813 *4 *2 *5 *3)) + (-4 *4 (-13 (-368) (-148) (-1047 (-413 (-570))))) (-4 *5 (-662 *2)) + (-4 *3 (-662 (-413 *2)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-650 (-173)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1276 (-777))) (-5 *1 (-681 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) (-12 (-5 *2 (-650 (-1168))) (-5 *1 (-403))))) (((*1 *2 *3) - (-12 (-5 *3 (-933)) - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) - (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-933)) (-5 *4 (-412 (-569))) - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) - (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) - (-5 *1 (-153)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) - (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) - (-5 *1 (-153)) (-5 *3 (-649 (-949 (-226)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-649 (-649 (-949 (-226))))) - (|:| |xValues| (-1102 (-226))) (|:| |yValues| (-1102 (-226))))) - (-5 *1 (-153)) (-5 *3 (-649 (-649 (-949 (-226))))))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-1102 (-383)))) (-5 *1 (-265)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-265))))) + (-12 (-5 *3 (-777)) (-5 *2 (-695 (-959 *4))) (-5 *1 (-1037 *4)) + (-4 *4 (-1058))))) (((*1 *2 *1) - (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855)) - (-4 *4 (-268 *3)) (-4 *5 (-798))))) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1185)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-649 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -2679 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1210) (-27) (-435 *8))) - (-4 *8 (-13 (-457) (-147) (-1046 *3) (-644 *3))) (-5 *3 (-569)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -4410 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1021 *8 *4))))) -(((*1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-618 (-867)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *6)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) - (-5 *1 (-1137 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-13 (-310) (-147))) - (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-297 (-412 (-958 *5)))) (-5 *4 (-1185)) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-297 (-319 *5)))) - (-5 *1 (-1137 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-297 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) - (-5 *2 (-649 (-297 (-319 *4)))) (-5 *1 (-1137 *4)))) + (-12 (-5 *2 (-650 (-777))) (-5 *1 (-1174 *3 *4)) (-14 *3 (-928)) + (-4 *4 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-831))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-1276 (-695 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1276 (-695 *4))) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) + ((*1 *2) + (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1276 (-695 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-412 (-958 *5)))) (-5 *4 (-649 (-1185))) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) - (-5 *1 (-1137 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 (-412 (-958 *4)))) (-4 *4 (-13 (-310) (-147))) - (-5 *2 (-649 (-649 (-297 (-319 *4))))) (-5 *1 (-1137 *4)))) + (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368)) + (-5 *2 (-1276 (-695 (-413 (-959 *5))))) (-5 *1 (-1095 *5)) + (-5 *4 (-695 (-413 (-959 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-297 (-412 (-958 *5))))) (-5 *4 (-649 (-1185))) - (-4 *5 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *5))))) - (-5 *1 (-1137 *5)))) + (-12 (-5 *3 (-650 (-1186))) (-4 *5 (-368)) + (-5 *2 (-1276 (-695 (-959 *5)))) (-5 *1 (-1095 *5)) + (-5 *4 (-695 (-959 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-297 (-412 (-958 *4))))) - (-4 *4 (-13 (-310) (-147))) (-5 *2 (-649 (-649 (-297 (-319 *4))))) - (-5 *1 (-1137 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-369 *2)) (-4 *2 (-1108)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1167)) (-5 *1 (-1206))))) + (-12 (-5 *3 (-650 (-695 *4))) (-4 *4 (-368)) + (-5 *2 (-1276 (-695 *4))) (-5 *1 (-1095 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 (-650 *3))) (-4 *3 (-1109)) (-4 *1 (-910 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-250))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *1 (-391 *4)) (-4 *4 (-1109)) (-5 *2 (-777)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-570)) (-4 *2 (-23)) (-5 *1 (-655 *4 *2 *5)) + (-4 *4 (-1109)) (-14 *5 *2)))) +(((*1 *2) + (|partial| -12 (-4 *3 (-562)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2077 (-650 *1)))) + (-4 *1 (-372 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-459 *3 *4 *5 *6)) + (|:| -2077 (-650 (-459 *3 *4 *5 *6))))) + (-5 *1 (-459 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-799)) + (-4 *5 (-13 (-856) (-10 -8 (-15 -1411 ((-1186) $))))) (-4 *6 (-562)) + (-5 *2 (-2 (|:| -1647 (-959 *6)) (|:| -1483 (-959 *6)))) + (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-956 (-413 (-959 *6)) *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-688 *2)) (-4 *2 (-1109)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-650 *5) (-650 *5))) (-5 *4 (-570)) + (-5 *2 (-650 *5)) (-5 *1 (-688 *5)) (-4 *5 (-1109))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *1)) (-4 *1 (-306)))) + ((*1 *1 *1) (-4 *1 (-306))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868)))) + ((*1 *1 *1) (-5 *1 (-868)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6)) (-5 *4 (-649 (-1165 *7))) (-4 *6 (-855)) - (-4 *7 (-955 *5 (-536 *6) *6)) (-4 *5 (-1057)) - (-5 *2 (-1 (-1165 *7) *7)) (-5 *1 (-1134 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-649 (-1181 *13))) (-5 *3 (-1181 *13)) - (-5 *4 (-649 *12)) (-5 *5 (-649 *10)) (-5 *6 (-649 *13)) - (-5 *7 (-649 (-649 (-2 (|:| -3233 (-776)) (|:| |pcoef| *13))))) - (-5 *8 (-649 (-776))) (-5 *9 (-1275 (-649 (-1181 *10)))) - (-4 *12 (-855)) (-4 *10 (-310)) (-4 *13 (-955 *10 *11 *12)) - (-4 *11 (-798)) (-5 *1 (-712 *11 *12 *10 *13))))) -(((*1 *2 *1) (-12 (-5 *2 (-964 (-776))) (-5 *1 (-336))))) + (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) + (-5 *1 (-265 *2)) (-4 *2 (-1226)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-650 (-266))) (-5 *4 (-1186)) (-5 *2 (-52)) + (-5 *1 (-266))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-844))) (-5 *1 (-141))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-1225))) (-5 *1 (-530))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-950 *3) (-950 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-368) (-1211) (-1011)))))) +(((*1 *2) (-12 (-5 *2 (-650 (-1186))) (-5 *1 (-105))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1182 (-570))) (-5 *1 (-949)) (-5 *3 (-570))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-934))))) +(((*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-619 (-868)))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-856)) (-5 *3 (-650 *6)) (-5 *5 (-650 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-650 *5)) (|:| |f3| *5) + (|:| |f4| (-650 *5)))) + (-5 *1 (-1197 *6)) (-5 *4 (-650 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1168)) (-5 *1 (-309))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-1118)) (-5 *3 (-569))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-5 *2 (-569)) (-5 *1 (-448 *4 *3 *5)) - (-4 *3 (-1251 *4)) - (-4 *5 (-13 (-409) (-1046 *4) (-367) (-1210) (-287)))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-569)) (-5 *1 (-1055))))) -(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *1 (-184 *2)) (-4 *2 (-186)))) - ((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-249))))) + (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) + (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1168)) (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) (-5 *2 (-1281)) + (-5 *1 (-1117 *4 *5 *6 *7 *8)) (-4 *8 (-1080 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1186)) (-5 *4 (-959 (-570))) (-5 *2 (-334)) + (-5 *1 (-336))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-413 *6)) (-4 *5 (-1230)) (-4 *6 (-1252 *5)) + (-5 *2 (-2 (|:| -3283 (-777)) (|:| -1436 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-777)) (-4 *7 (-1252 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) + (-5 *2 + (-2 (|:| |zeros| (-1166 (-227))) (|:| |ones| (-1166 (-227))) + (|:| |singularities| (-1166 (-227))))) + (-5 *1 (-105))))) (((*1 *2 *1) - (-12 (-4 *3 (-1108)) (-4 *4 (-13 (-1057) (-892 *3) (-619 (-898 *3)))) - (-5 *2 (-649 (-1084 *3 *4 *5))) (-5 *1 (-1085 *3 *4 *5)) - (-4 *5 (-13 (-435 *4) (-892 *3) (-619 (-898 *3))))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1225))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-617 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) (-5 *5 (-1181 *2)) - (-4 *2 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-617 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1185))) - (-5 *5 (-412 (-1181 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *1 (-565 *6 *2 *7)) (-4 *7 (-1108))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-511)) (-5 *3 (-779)) (-5 *1 (-114)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1167)) (-5 *3 (-779)) (-5 *1 (-114))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-649 *3))) (-4 *3 (-1108)) (-5 *1 (-911 *3))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-570)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570))))) +(((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-567))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2 *1) - (-12 (-5 *2 (-1165 (-2 (|:| |k| (-569)) (|:| |c| *3)))) - (-5 *1 (-600 *3)) (-4 *3 (-1057))))) + (-12 (-4 *3 (-1109)) (-4 *4 (-13 (-1058) (-893 *3) (-620 (-899 *3)))) + (-5 *2 (-650 (-1085 *3 *4 *5))) (-5 *1 (-1086 *3 *4 *5)) + (-4 *5 (-13 (-436 *4) (-893 *3) (-620 (-899 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) + ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) + ((*1 *2 *1) (-12 (-5 *2 (-251)) (-5 *1 (-250))))) (((*1 *2 *1) - (-12 (-4 *3 (-367)) (-4 *4 (-1251 *3)) (-4 *5 (-1251 (-412 *4))) - (-5 *2 (-1275 *6)) (-5 *1 (-340 *3 *4 *5 *6)) - (-4 *6 (-346 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225)))) + (-12 (-5 *2 (-2 (|:| |preimage| (-650 *3)) (|:| |image| (-650 *3)))) + (-5 *1 (-912 *3)) (-4 *3 (-1109))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *3 (-650 (-266))) + (-5 *1 (-264)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-950 (-227)) (-950 (-227)))) (-5 *1 (-266)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-650 (-487 *5 *6))) (-5 *3 (-487 *5 *6)) + (-14 *5 (-650 (-1186))) (-4 *6 (-458)) (-5 *2 (-1276 *6)) + (-5 *1 (-637 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-334))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-1188 (-413 (-570)))) + (-5 *1 (-192))))) +(((*1 *1 *1 *1) (-4 *1 (-976)))) +(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226)))) ((*1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)))) - ((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1167)) (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *4 (-1073 *6 *7 *8)) (-5 *2 (-1280)) - (-5 *1 (-781 *6 *7 *8 *4 *5)) (-4 *5 (-1079 *6 *7 *8 *4))))) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)))) + ((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) + (-12 (-5 *2 (-868)) (-5 *1 (-396 *3 *4 *5)) (-14 *3 (-777)) + (-14 *4 (-777)) (-4 *5 (-174))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-868))) ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1) (-5 *1 (-868)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-512)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-115))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-368) (-1211)))))) +(((*1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279)))) + ((*1 *2 *2) (-12 (-5 *2 (-880)) (-5 *1 (-1279))))) +(((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *1)) (-4 *1 (-1074 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3 *4 *5)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *5 (-856)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1219 *4 *5 *6 *3)) (-4 *4 (-562)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1185)) - (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) (-5 *1 (-1188))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-776)) (-4 *1 (-1251 *3)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-371 *2)) (-4 *2 (-173))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-776)) (-4 *5 (-561)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-977 *5 *3)) (-4 *3 (-1251 *5))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-297 *2)) (-4 *2 (-731)) (-4 *2 (-1225))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1187 (-412 (-569)))) (-5 *2 (-412 (-569))) - (-5 *1 (-191))))) + (-12 (-4 *4 (-458)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-650 *1)) + (-4 *1 (-1080 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-252)) (-5 *1 (-337))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1226))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) + ((*1 *2 *2) (-12 (-5 *2 (-570)) (-5 *1 (-473)))) + ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-934))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1044)) + (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-435 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-561))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-932))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-4 *7 (-1251 *5)) (-4 *4 (-729 *5 *7)) - (-5 *2 (-2 (|:| -1863 (-694 *6)) (|:| |vec| (-1275 *5)))) - (-5 *1 (-816 *5 *6 *7 *4 *3)) (-4 *6 (-661 *5)) (-4 *3 (-661 *4))))) -(((*1 *2 *3 *4) - (-12 + (-12 (-4 *1 (-845)) (-5 *3 - (-649 - (-2 (|:| |eqzro| (-649 *8)) (|:| |neqzro| (-649 *8)) - (|:| |wcond| (-649 (-958 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1275 (-412 (-958 *5)))) - (|:| -2403 (-649 (-1275 (-412 (-958 *5)))))))))) - (-5 *4 (-1167)) (-4 *5 (-13 (-310) (-147))) (-4 *8 (-955 *5 *7 *6)) - (-4 *6 (-13 (-855) (-619 (-1185)))) (-4 *7 (-798)) (-5 *2 (-569)) - (-5 *1 (-930 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1251 *6)) - (-4 *6 (-13 (-367) (-147) (-1046 *4))) (-5 *4 (-569)) + (-2 (|:| |fn| (-320 (-227))) (|:| -2310 (-650 (-227))) + (|:| |lb| (-650 (-849 (-227)))) (|:| |cf| (-650 (-320 (-227)))) + (|:| |ub| (-650 (-849 (-227)))))) + (-5 *2 (-1044)))) + ((*1 *2 *3) + (-12 (-4 *1 (-845)) + (-5 *3 + (-2 (|:| |lfn| (-650 (-320 (-227)))) (|:| -2310 (-650 (-227))))) + (-5 *2 (-1044))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-4 *7 (-956 *4 *6 *5)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -4312 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1023 *6 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-473)) (-5 *4 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276))))) + (-2 (|:| |sysok| (-112)) (|:| |z0| (-650 *7)) (|:| |n0| (-650 *7)))) + (-5 *1 (-931 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *5 (-1251 *4)) (-5 *2 (-649 (-658 (-412 *5)))) - (-5 *1 (-662 *4 *5)) (-5 *3 (-658 (-412 *5)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-776)) (-4 *4 (-13 (-561) (-147))) - (-5 *1 (-1245 *4 *2)) (-4 *2 (-1251 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-383) (-383))) (-5 *4 (-383)) - (-5 *2 - (-2 (|:| -2188 *4) (|:| -3647 *4) (|:| |totalpts| (-569)) - (|:| |success| (-112)))) - (-5 *1 (-794)) (-5 *5 (-569))))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-650 (-320 (-227)))) + (|:| |constraints| + (-650 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-777)) (|:| |boundaryType| (-570)) + (|:| |dStart| (-695 (-227))) (|:| |dFinish| (-695 (-227)))))) + (|:| |f| (-650 (-650 (-320 (-227))))) (|:| |st| (-1168)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-868))))) +(((*1 *2 *2) (-12 (-5 *1 (-968 *2)) (-4 *2 (-551))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1109)) (-4 *2 (-907 *5)) (-5 *1 (-698 *5 *2 *3 *4)) + (-4 *3 (-378 *2)) (-4 *4 (-13 (-378 *5) (-10 -7 (-6 -4448))))))) (((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-112)))) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *6)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-867)) (-5 *2 (-1167)) (-5 *1 (-715))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) - (-5 *4 (-3 (-1 (-226) (-226) (-226) (-226)) "undefined")) - (-5 *5 (-1102 (-226))) (-5 *6 (-649 (-265))) (-5 *2 (-1141 (-226))) - (-5 *1 (-702))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) + (-12 (-5 *2 (-650 (-912 *3))) (-5 *1 (-911 *3)) (-4 *3 (-1109))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562))))) (((*1 *2 *3) - (-12 (-5 *3 (-1275 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-173)) - (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)))) - ((*1 *2) - (-12 (-4 *4 (-173)) (-4 *5 (-1251 *4)) (-5 *2 (-694 *4)) - (-5 *1 (-413 *3 *4 *5)) (-4 *3 (-414 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) - (-5 *2 (-694 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-522))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5)))) - (-5 *1 (-812 *4 *5 *3 *6)) (-4 *3 (-661 *5)) - (-4 *6 (-661 (-412 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4)))) - (-5 *1 (-812 *5 *4 *3 *6)) (-4 *3 (-661 *4)) - (-4 *6 (-661 (-412 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *5 (-1251 *4)) (-5 *2 (-649 (-2 (|:| -2170 *5) (|:| -3497 *5)))) - (-5 *1 (-812 *4 *5 *6 *3)) (-4 *6 (-661 *5)) - (-4 *3 (-661 (-412 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *4 (-1251 *5)) (-5 *2 (-649 (-2 (|:| -2170 *4) (|:| -3497 *4)))) - (-5 *1 (-812 *5 *4 *6 *3)) (-4 *6 (-661 *4)) - (-4 *3 (-661 (-412 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1043)) (-5 *1 (-754)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-694 (-226))) (-5 *4 (-569)) (-5 *5 (-226)) - (-5 *6 (-3 (|:| |fn| (-393)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-393)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-393)) (-5 *2 (-1043)) (-5 *1 (-754))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-432 *3 *2)) (-4 *3 (-13 (-173) (-38 (-412 (-569))))) - (-4 *2 (-13 (-855) (-21)))))) + (-12 (-5 *3 (-695 (-413 (-959 (-570))))) + (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040))))) +(((*1 *2 *1) (-12 (-5 *2 (-1281)) (-5 *1 (-828))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1165 *4) (-1165 *4))) (-5 *2 (-1165 *4)) - (-5 *1 (-1300 *4)) (-4 *4 (-1225)))) + (-12 (-5 *3 (-1 (-1166 *4) (-1166 *4))) (-5 *2 (-1166 *4)) + (-5 *1 (-1301 *4)) (-4 *4 (-1226)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-649 (-1165 *5)) (-649 (-1165 *5)))) (-5 *4 (-569)) - (-5 *2 (-649 (-1165 *5))) (-5 *1 (-1300 *5)) (-4 *5 (-1225))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 *2)) (-4 *2 (-955 *4 *5 *6)) (-4 *4 (-367)) - (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-5 *1 (-455 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-367)) - (-5 *2 - (-2 (|:| R (-694 *6)) (|:| A (-694 *6)) (|:| |Ainv| (-694 *6)))) - (-5 *1 (-986 *6)) (-5 *3 (-694 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-367)) (-4 *5 (-377 *4)) (-4 *6 (-377 *4)) - (-5 *2 (-776)) (-5 *1 (-526 *4 *5 *6 *3)) (-4 *3 (-692 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-4 *3 (-561)) (-5 *2 (-776)))) - ((*1 *2 *3) - (-12 (-4 *4 (-561)) (-4 *4 (-173)) (-4 *5 (-377 *4)) - (-4 *6 (-377 *4)) (-5 *2 (-776)) (-5 *1 (-693 *4 *5 *6 *3)) - (-4 *3 (-692 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-4 *5 (-561)) - (-5 *2 (-776))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-310)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1251 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-310)) (-5 *1 (-465 *3 *2)) (-4 *2 (-1251 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-310)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-776))) - (-5 *1 (-544 *3 *2 *4 *5)) (-4 *2 (-1251 *3))))) + (-12 (-5 *3 (-1 (-650 (-1166 *5)) (-650 (-1166 *5)))) (-5 *4 (-570)) + (-5 *2 (-650 (-1166 *5))) (-5 *1 (-1301 *5)) (-4 *5 (-1226))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-695 (-413 (-959 (-570))))) + (-5 *2 (-650 (-695 (-320 (-570))))) (-5 *1 (-1040)) + (-5 *3 (-320 (-570)))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1221 *3)) (-4 *3 (-983))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-555)))))) +(((*1 *2) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-569)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1275 (-694 *4))) (-4 *4 (-173)) - (-5 *2 (-1275 (-694 (-958 *4)))) (-5 *1 (-190 *4))))) + (-12 (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-650 *1)) + (-4 *1 (-1074 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *5)) (-5 *4 (-928)) (-4 *5 (-856)) + (-5 *2 (-650 (-678 *5))) (-5 *1 (-678 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1044)) (-5 *1 (-755))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-933)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1103 (-227))) (-5 *1 (-934)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-384)) (-5 *2 (-1281)) (-5 *1 (-1278))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1109)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-849 *3)) (-4 *3 (-1109))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-439)) (|:| -2579 "void"))) - (-5 *1 (-442))))) + (-12 (-5 *2 (-1166 (-413 *3))) (-5 *1 (-176 *3)) (-4 *3 (-311))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-650 (-868))) (-5 *1 (-868))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-1049))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1225)) (-4 *3 (-1108)) - (-5 *2 (-112))))) + (-12 (-5 *2 (-112)) (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 G)))) (-5 *2 (-1044)) + (-5 *1 (-754))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2077 (-695 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-695 *3)))) + (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-570)) (-5 *6 (-1168)) + (-5 *3 (-227)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-171 (-227)))) (-5 *2 (-1044)) + (-5 *1 (-762))))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) +(((*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-1168)) (-5 *1 (-716))))) (((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3))))) -(((*1 *2) - (-12 (-4 *3 (-561)) (-5 *2 (-649 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-422 *3))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1035 *5 *6 *7 *8))) (-5 *1 (-1035 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-649 *8)) (-5 *4 (-112)) (-4 *8 (-1073 *5 *6 *7)) - (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-649 (-1154 *5 *6 *7 *8))) (-5 *1 (-1154 *5 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-4 *1 (-1003 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-855)) (-5 *4 (-649 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-649 *4)))) - (-5 *1 (-1196 *6)) (-5 *5 (-649 *4))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-649 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1073 *6 *7 *8)) (-4 *6 (-561)) (-4 *7 (-798)) - (-4 *8 (-855)) (-5 *1 (-985 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-1057))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-569) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1092 *2))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1229)) (-4 *5 (-1251 *3)) (-4 *6 (-1251 (-412 *5))) - (-5 *2 (-112)) (-5 *1 (-345 *4 *3 *5 *6)) (-4 *4 (-346 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-112))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-64 -1667)))) + (-5 *2 (-1044)) (-5 *1 (-754))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) (-4 *4 (-378 *3)) + (-4 *5 (-378 *3)) (-5 *2 (-570)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1062 *3 *4 *5 *6 *7)) (-4 *5 (-1058)) + (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)) (-5 *2 (-570))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) (((*1 *2 *3) - (-12 (-5 *3 (-694 (-412 (-958 (-569))))) - (-5 *2 (-649 (-694 (-319 (-569))))) (-5 *1 (-1039))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-112))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-654 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1073 *5 *6 *7)) (-4 *5 (-561)) - (-4 *6 (-798)) (-4 *7 (-855)) - (-5 *2 (-2 (|:| |goodPols| (-649 *8)) (|:| |badPols| (-649 *8)))) - (-5 *1 (-985 *5 *6 *7 *8)) (-5 *4 (-649 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-297 (-848 *3))) (-4 *3 (-13 (-27) (-1210) (-435 *5))) - (-4 *5 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 - (-3 (-848 *3) - (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) - (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) - "failed")) - (-5 *1 (-641 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-297 *3)) (-5 *5 (-1167)) - (-4 *3 (-13 (-27) (-1210) (-435 *6))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-848 *3)) (-5 *1 (-641 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 (-848 (-958 *5)))) (-4 *5 (-457)) - (-5 *2 - (-3 (-848 (-412 (-958 *5))) - (-2 (|:| |leftHandLimit| (-3 (-848 (-412 (-958 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-848 (-412 (-958 *5))) "failed"))) - "failed")) - (-5 *1 (-642 *5)) (-5 *3 (-412 (-958 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-297 (-412 (-958 *5)))) (-5 *3 (-412 (-958 *5))) - (-4 *5 (-457)) + (-12 (-5 *3 (-1111 *4)) (-4 *4 (-1109)) (-5 *2 (-1 *4)) + (-5 *1 (-1026 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-384))) (-5 *1 (-1049)) (-5 *3 (-384)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1103 (-570))) (-5 *2 (-1 (-570))) (-5 *1 (-1056))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-777)) (|:| -1750 *4))) (-5 *5 (-777)) + (-4 *4 (-956 *6 *7 *8)) (-4 *6 (-458)) (-4 *7 (-799)) (-4 *8 (-856)) (-5 *2 - (-3 (-848 *3) - (-2 (|:| |leftHandLimit| (-3 (-848 *3) "failed")) - (|:| |rightHandLimit| (-3 (-848 *3) "failed"))) - "failed")) - (-5 *1 (-642 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-297 (-412 (-958 *6)))) (-5 *5 (-1167)) - (-5 *3 (-412 (-958 *6))) (-4 *6 (-457)) (-5 *2 (-848 *3)) - (-5 *1 (-642 *6))))) -(((*1 *2) - (-12 (-5 *2 (-694 (-916 *3))) (-5 *1 (-355 *3 *4)) (-14 *3 (-927)) - (-14 *4 (-927)))) - ((*1 *2) - (-12 (-5 *2 (-694 *3)) (-5 *1 (-356 *3 *4)) (-4 *3 (-353)) - (-14 *4 - (-3 (-1181 *3) - (-1275 (-649 (-2 (|:| -2188 *3) (|:| -2150 (-1128))))))))) - ((*1 *2) - (-12 (-5 *2 (-694 *3)) (-5 *1 (-357 *3 *4)) (-4 *3 (-353)) - (-14 *4 (-927))))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-455 *6 *7 *8 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *6)) (-5 *3 (-569)) (-4 *6 (-310)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *1 (-747 *4 *5 *6 *7)) (-4 *7 (-955 *6 *4 *5))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1181 *9)) (-5 *4 (-649 *7)) (-5 *5 (-649 *8)) - (-4 *7 (-855)) (-4 *8 (-1057)) (-4 *9 (-955 *8 *6 *7)) - (-4 *6 (-798)) (-5 *2 (-1181 *8)) (-5 *1 (-324 *6 *7 *8 *9))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-984 *4 *5 *3 *6)) (-4 *4 (-1057)) (-4 *5 (-798)) - (-4 *3 (-855)) (-4 *6 (-1073 *4 *5 *3)) (-5 *2 (-112))))) + (-12 (-4 *1 (-256 *2 *3 *4 *5)) (-4 *2 (-1058)) (-4 *3 (-856)) + (-4 *4 (-269 *3)) (-4 *5 (-799))))) (((*1 *2 *3) - (-12 (-5 *3 (-958 (-226))) (-5 *2 (-319 (-383))) (-5 *1 (-308))))) -(((*1 *1 *1) - (-12 (-4 *1 (-255 *2 *3 *4 *5)) (-4 *2 (-1057)) (-4 *3 (-855)) - (-4 *4 (-268 *3)) (-4 *5 (-798))))) -(((*1 *1 *1) (-5 *1 (-1071)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1181 *7)) (-4 *7 (-955 *6 *4 *5)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1057)) (-5 *2 (-1181 *6)) - (-5 *1 (-324 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 (-776))) (-5 *1 (-1278))))) -(((*1 *2 *2) - (-12 (-4 *2 (-173)) (-4 *2 (-1057)) (-5 *1 (-719 *2 *3)) - (-4 *3 (-653 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-841 *2)) (-4 *2 (-173)) (-4 *2 (-1057))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *1 *1 *1) (-5 *1 (-867)))) + (-12 (-5 *3 (-650 (-2 (|:| -2190 *4) (|:| -2793 (-570))))) + (-4 *4 (-1109)) (-5 *2 (-1 *4)) (-5 *1 (-1026 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) + (-5 *5 (-3 (|:| |fn| (-394)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1044)) (-5 *1 (-759))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *2 (-1044)) (-5 *1 (-757))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-777)) (-5 *2 (-413 (-570))) (-5 *1 (-384))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *1 *2) (-12 (-5 *2 (-413 (-570))) (-5 *1 (-219))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1266 *3)) - (-5 *1 (-280 *3 *4 *2)) (-4 *2 (-1237 *3 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1267 *3)) + (-5 *1 (-281 *3 *4 *2)) (-4 *2 (-1238 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *4 (-1235 *3)) - (-5 *1 (-281 *3 *4 *2 *5)) (-4 *2 (-1258 *3 *4)) (-4 *5 (-991 *4)))) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *4 (-1236 *3)) + (-5 *1 (-282 *3 *4 *2 *5)) (-4 *2 (-1259 *3 *4)) (-4 *5 (-992 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1171 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1171 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *5)) (-5 *4 (-649 (-1 *6 (-649 *6)))) - (-4 *5 (-38 (-412 (-569)))) (-4 *6 (-1266 *5)) (-5 *2 (-649 *6)) - (-5 *1 (-1268 *5 *6))))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-569)) (-5 *1 (-1207 *3)) (-4 *3 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101 *3)) (-4 *3 (-1225)) (-5 *2 (-569))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) - (-4 *3 (-1251 *4)) (-5 *1 (-814 *4 *3 *2 *5)) (-4 *2 (-661 *3)) - (-4 *5 (-661 (-412 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-412 *5)) - (-4 *4 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *5 (-1251 *4)) - (-5 *1 (-814 *4 *5 *2 *6)) (-4 *2 (-661 *5)) (-4 *6 (-661 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-412 (-569))) - (-4 *4 (-13 (-561) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-279 *4 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-867)) (-5 *1 (-395 *3 *4 *5)) (-14 *3 (-776)) - (-14 *4 (-776)) (-4 *5 (-173))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-1266 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057)))) - ((*1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-450 *3)) (-4 *3 (-1057))))) + (-12 (-5 *3 (-1186)) (-5 *2 (-542)) (-5 *1 (-541 *4)) + (-4 *4 (-1226))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-561)) (-4 *3 (-173)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *1 (-693 *3 *4 *5 *2)) - (-4 *2 (-692 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1167)) (-5 *1 (-308))))) -(((*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1225)) (-5 *2 (-776))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-649 *4)) (-4 *4 (-1108)) (-4 *4 (-1225)) (-5 *2 (-112)) - (-5 *1 (-1165 *4))))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *3)) (-4 *3 (-1226)) (-5 *2 (-570))))) +(((*1 *1 *1) (-12 (-4 *1 (-257 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4449)) (-4 *1 (-378 *2)) (-4 *2 (-1226)))) + ((*1 *1 *1) + (-12 (-5 *1 (-655 *2 *3 *4)) (-4 *2 (-1109)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-777)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-799)) (-4 *7 (-956 *4 *5 *6)) (-4 *4 (-458)) (-4 *6 (-856)) + (-5 *2 (-112)) (-5 *1 (-455 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1226)) (-5 *2 (-777))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-512)) (-5 *3 (-603)) (-5 *1 (-591))))) +(((*1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) (((*1 *2 *3) - (-12 (-4 *2 (-367)) (-4 *2 (-853)) (-5 *1 (-951 *2 *3)) - (-4 *3 (-1251 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))) + (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-458)) (-5 *2 (-112)) + (-5 *1 (-365 *4 *5)) (-14 *5 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-786 *4 (-870 *5)))) (-4 *4 (-458)) + (-14 *5 (-650 (-1186))) (-5 *2 (-112)) (-5 *1 (-634 *4 *5))))) +(((*1 *2) + (-12 (-4 *1 (-354)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) (-4 *5 (-799)) (-4 *6 (-856)) + (-4 *7 (-1074 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-650 *7)) (|:| |badPols| (-650 *7)))) + (-5 *1 (-986 *4 *5 *6 *7)) (-5 *3 (-650 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1102 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-777)) (-5 *1 (-789 *2)) (-4 *2 (-38 (-413 (-570)))) + (-4 *2 (-174))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856))))) (((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-710 *3 *4)) (-4 *3 (-1225)) (-4 *4 (-1225))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226))) (-5 *1 (-708 *3)) - (-4 *3 (-619 (-541))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1185)) (-5 *2 (-1 (-226) (-226) (-226))) - (-5 *1 (-708 *3)) (-4 *3 (-619 (-541)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1057)) (-5 *1 (-1247 *3 *2)) (-4 *2 (-1251 *3))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-112)) (-5 *5 (-694 (-226))) - (-5 *2 (-1043)) (-5 *1 (-760))))) -(((*1 *1 *1) (-4 *1 (-1068)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-760))))) + (-5 *1 (-711 *3 *4)) (-4 *3 (-1226)) (-4 *4 (-1226))))) (((*1 *2 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-776)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-422 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)))) (-4 *3 (-561)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) - (-4 *2 - (-13 (-367) (-305) - (-10 -8 (-15 -4399 ((-1133 *3 (-617 $)) $)) - (-15 -4412 ((-1133 *3 (-617 $)) $)) - (-15 -3796 ($ (-1133 *3 (-617 $)))))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 (-927))) (-5 *1 (-1109 *3 *4)) (-14 *3 (-927)) - (-14 *4 (-927))))) + (-12 (-4 *4 (-562)) (-5 *2 (-171 *5)) (-5 *1 (-606 *4 *5 *3)) + (-4 *5 (-13 (-436 *4) (-1011) (-1211))) + (-4 *3 (-13 (-436 (-171 *4)) (-1011) (-1211)))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-569)) (-5 *1 (-491 *4)) - (-4 *4 (-1251 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-367)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1005 *2)) (-4 *2 (-173))))) -(((*1 *2 *2) (-12 (-5 *1 (-967 *2)) (-4 *2 (-550))))) -(((*1 *2 *3) (-12 (-5 *3 (-170 (-569))) (-5 *2 (-112)) (-5 *1 (-451)))) + (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-509 (-412 (-569)) (-241 *5 (-776)) (-869 *4) - (-248 *4 (-412 (-569))))) - (-14 *4 (-649 (-1185))) (-14 *5 (-776)) (-5 *2 (-112)) - (-5 *1 (-510 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-967 *3)) (-4 *3 (-550)))) - ((*1 *2 *1) (-12 (-4 *1 (-1229)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-310) (-147))) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-649 (-649 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-5 *3 (-649 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-310) (-147))) (-4 *6 (-798)) - (-4 *7 (-855)) (-4 *8 (-955 *5 *6 *7)) (-5 *2 (-649 (-649 *8))) - (-5 *1 (-453 *5 *6 *7 *8)) (-5 *3 (-649 *8))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-991 *2)) (-4 *2 (-1210))))) -(((*1 *2) - (-12 (-5 *2 (-1280)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) -(((*1 *2 *3) - (-12 (-4 *4 (-915)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *7 (-955 *4 *5 *6)) (-5 *2 (-423 (-1181 *7))) - (-5 *1 (-912 *4 *5 *6 *7)) (-5 *3 (-1181 *7)))) + (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-304)))) ((*1 *2 *3) - (-12 (-4 *4 (-915)) (-4 *5 (-1251 *4)) (-5 *2 (-423 (-1181 *5))) - (-5 *1 (-913 *4 *5)) (-5 *3 (-1181 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-511)) (-5 *1 (-282))))) -(((*1 *2 *1) - (-12 (-4 *1 (-255 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-855)) - (-4 *5 (-268 *4)) (-4 *6 (-798)) (-5 *2 (-776)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-255 *4 *3 *5 *6)) (-4 *4 (-1057)) (-4 *3 (-855)) - (-4 *5 (-268 *3)) (-4 *6 (-798)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-268 *3)) (-4 *3 (-855)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-353)) (-5 *2 (-927)))) - ((*1 *2 *3) - (-12 (-5 *3 (-340 *4 *5 *6 *7)) (-4 *4 (-13 (-372) (-367))) - (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *7 (-346 *4 *5 *6)) - (-5 *2 (-776)) (-5 *1 (-397 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-838 (-927))))) - ((*1 *2 *1) (-12 (-4 *1 (-409)) (-5 *2 (-569)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-601 *3)) (-4 *3 (-1057)))) + (-12 (-5 *3 (-1103 (-849 (-227)))) (-5 *2 (-227)) (-5 *1 (-309))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-978 *3 *2)) (-4 *2 (-1252 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1252 *2)) (-4 *2 (-1058)) (-4 *2 (-562))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-777)) (-4 *1 (-330 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-798)) (-4 *3 (-174))))) +(((*1 *2 *1) (-12 (-4 *1 (-560 *2)) (-4 *2 (-13 (-410) (-1211)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *3 (-959 (-570))) + (-5 *1 (-334)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1101 (-959 (-570)))) (-5 *1 (-334))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1109)) (-4 *4 (-1226)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-1186))) (-4 *4 (-13 (-311) (-148))) + (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) + (-5 *2 (-650 (-413 (-959 *4)))) (-5 *1 (-931 *4 *5 *6 *7)) + (-4 *7 (-956 *4 *6 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1166 (-650 (-570)))) (-5 *1 (-890)) (-5 *3 (-570))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1186)) (-5 *6 (-112)) + (-4 *7 (-13 (-311) (-148) (-1047 (-570)) (-645 (-570)))) + (-4 *3 (-13 (-1211) (-966) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-849 *3)) (|:| |f2| (-650 (-849 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-849 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1058)) (-5 *1 (-1170 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-650 (-879 (-1191) (-777)))) (-5 *1 (-337))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-283)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) ((*1 *2 *1) - (-12 (-4 *3 (-561)) (-5 *2 (-569)) (-5 *1 (-628 *3 *4)) - (-4 *4 (-1251 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) - (-4 *3 (-855)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-745 *4 *3)) (-4 *4 (-1057)) (-4 *3 (-855)) - (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-874 *3)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-910 *3)) (-4 *3 (-1108)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-911 *3)) (-4 *3 (-1108)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-340 *5 *6 *7 *8)) (-4 *5 (-435 *4)) - (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) - (-4 *8 (-346 *5 *6 *7)) (-4 *4 (-13 (-561) (-1046 (-569)))) - (-5 *2 (-776)) (-5 *1 (-917 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-340 (-412 (-569)) *4 *5 *6)) - (-4 *4 (-1251 (-412 (-569)))) (-4 *5 (-1251 (-412 *4))) - (-4 *6 (-346 (-412 (-569)) *4 *5)) (-5 *2 (-776)) - (-5 *1 (-918 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-340 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-367)) - (-4 *7 (-1251 *6)) (-4 *4 (-1251 (-412 *7))) (-4 *8 (-346 *6 *7 *4)) - (-4 *9 (-13 (-372) (-367))) (-5 *2 (-776)) - (-5 *1 (-1026 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1251 *3)) (-4 *3 (-1057)) (-4 *3 (-561)) - (-5 *2 (-776)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797)))) + (-12 (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) (-4 *4 (-1058)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1253 *3 *2)) (-4 *3 (-1057)) (-4 *2 (-797))))) -(((*1 *2 *1) (-12 (-4 *1 (-679 *3)) (-4 *3 (-1225)) (-5 *2 (-776))))) -(((*1 *1 *2) (-12 (-5 *2 (-649 *3)) (-4 *3 (-1108)) (-5 *1 (-911 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-649 (-1224))) (-5 *3 (-1224)) (-5 *1 (-686))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-852))))) +(((*1 *1) (-5 *1 (-829)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-562)) (-4 *3 (-1058)) + (-5 *2 (-2 (|:| -1310 *1) (|:| -2423 *1))) (-4 *1 (-858 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-562)) (-4 *5 (-1058)) + (-5 *2 (-2 (|:| -1310 *3) (|:| -2423 *3))) (-5 *1 (-859 *5 *3)) + (-4 *3 (-858 *5))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *1 (-1137 *3 *2)) (-4 *3 (-1252 *2))))) +(((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-933))))) +(((*1 *2 *3) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-303 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1103 (-849 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-309)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1112 *3 *4 *5 *6 *7)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1249 *4 *5)) (-5 *3 (-650 *5)) (-14 *4 (-1186)) + (-4 *5 (-368)) (-5 *1 (-930 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *5)) (-4 *5 (-368)) (-5 *2 (-1182 *5)) + (-5 *1 (-930 *4 *5)) (-14 *4 (-1186)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-777)) (-4 *6 (-368)) + (-5 *2 (-413 (-959 *6))) (-5 *1 (-1059 *5 *6)) (-14 *5 (-1186))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-562) (-1047 (-570)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1211) (-436 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-13 (-562) (-1047 (-570)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *3 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *1 (-1215 *4 *2)) (-4 *2 (-13 (-27) (-1211) (-436 *4)))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-412 (-569))) (-4 *4 (-1046 (-569))) (-4 *4 (-561)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-134))) + (-12 (-5 *3 (-413 (-570))) (-4 *4 (-1047 (-570))) (-4 *4 (-562)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-436 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-135))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-226))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-244)) (-5 *2 (-569)))) + (-12 (-4 *3 (-562)) (-5 *1 (-159 *3 *2)) (-4 *2 (-436 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-245)) (-5 *2 (-570)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) - (-4 *5 (-1266 *4)) (-5 *1 (-280 *4 *5 *2)) (-4 *2 (-1237 *4 *5)))) + (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3)) + (-4 *5 (-1267 *4)) (-5 *1 (-281 *4 *5 *2)) (-4 *2 (-1238 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-412 (-569))) (-4 *4 (-367)) (-4 *4 (-38 *3)) - (-4 *5 (-1235 *4)) (-5 *1 (-281 *4 *5 *2 *6)) (-4 *2 (-1258 *4 *5)) - (-4 *6 (-991 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-287))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-569)) (-5 *1 (-365 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *1) (-5 *1 (-383))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-776)) (-4 *1 (-390 *2)) (-4 *2 (-1108)))) + (-12 (-5 *3 (-413 (-570))) (-4 *4 (-368)) (-4 *4 (-38 *3)) + (-4 *5 (-1236 *4)) (-5 *1 (-282 *4 *5 *2 *6)) (-4 *2 (-1259 *4 *5)) + (-4 *6 (-992 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-288))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-366 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *1) (-5 *1 (-384))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-777)) (-4 *1 (-391 *2)) (-4 *2 (-1109)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-435 *3)) (-4 *3 (-1108)) - (-4 *3 (-1120)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-478)) (-5 *2 (-569)))) + (-12 (-5 *2 (-777)) (-4 *1 (-436 *3)) (-4 *3 (-1109)) + (-4 *3 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-479)) (-5 *2 (-570)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *3 (-367)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *1 (-509 *3 *4 *5 *6)) (-4 *6 (-955 *3 *4 *5)))) + (-12 (-5 *2 (-777)) (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1275 *4)) (-5 *3 (-569)) (-4 *4 (-353)) - (-5 *1 (-533 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-541)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-541)))) + (-12 (-5 *2 (-1276 *4)) (-5 *3 (-570)) (-4 *4 (-354)) + (-5 *1 (-534 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-542)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-542)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-776)) (-4 *4 (-1108)) - (-5 *1 (-687 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-777)) (-4 *4 (-1109)) + (-5 *1 (-688 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)) (-4 *3 (-367)))) + (-12 (-5 *2 (-570)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)) (-4 *3 (-368)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-776)) (-4 *1 (-692 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-777)) (-4 *1 (-693 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-694 *4)) (-5 *3 (-776)) (-4 *4 (-1057)) - (-5 *1 (-695 *4)))) + (-12 (-5 *2 (-695 *4)) (-5 *3 (-777)) (-4 *4 (-1058)) + (-5 *1 (-696 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *3 (-1057)) (-5 *1 (-719 *3 *4)) - (-4 *4 (-653 *3)))) + (-12 (-5 *2 (-570)) (-4 *3 (-1058)) (-5 *1 (-720 *3 *4)) + (-4 *4 (-654 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-4 *4 (-1057)) - (-5 *1 (-719 *4 *5)) (-4 *5 (-653 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-725)) (-5 *2 (-927)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-776)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-731)) (-5 *2 (-776)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-841 *3)) (-4 *3 (-1057)))) + (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-4 *4 (-1058)) + (-5 *1 (-720 *4 *5)) (-4 *5 (-654 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-928)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-728)) (-5 *2 (-777)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-777)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-842 *3)) (-4 *3 (-1058)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-569)) (-5 *1 (-841 *4)) (-4 *4 (-1057)))) - ((*1 *1 *1 *1) (-5 *1 (-867))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-776)) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1010)) (-5 *2 (-412 (-569))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-927)))) + (-12 (-5 *2 (-115)) (-5 *3 (-570)) (-5 *1 (-842 *4)) (-4 *4 (-1058)))) + ((*1 *1 *1 *1) (-5 *1 (-868))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-1109)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-777)) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1011)) (-5 *2 (-413 (-570))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1121)) (-5 *2 (-928)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-569)) (-4 *1 (-1131 *3 *4 *5 *6)) (-4 *4 (-1057)) - (-4 *5 (-239 *3 *4)) (-4 *6 (-239 *3 *4)) (-4 *4 (-367)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) - (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-570)) (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *4 (-1058)) + (-4 *5 (-240 *3 *4)) (-4 *6 (-240 *3 *4)) (-4 *4 (-368)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-38 (-412 (-569)))) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) (-5 *1 (-1171 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-38 (-413 (-570)))) + (-5 *1 (-1172 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1266 *2)) (-4 *2 (-1057)) (-4 *2 (-367))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1276)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-927)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-333))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-245 *2)) (-4 *2 (-1225))))) -(((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1048))))) + (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1058)) (-4 *2 (-368))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-880)) + (-5 *5 (-928)) (-5 *6 (-650 (-266))) (-5 *2 (-1277)) + (-5 *1 (-1280)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-650 (-950 (-227))))) (-5 *4 (-650 (-266))) + (-5 *2 (-1277)) (-5 *1 (-1280))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1276 *1)) (-4 *1 (-372 *4)) (-4 *4 (-174)) + (-5 *2 (-695 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-695 *4)) (-5 *1 (-422 *3 *4)) + (-4 *3 (-423 *4)))) + ((*1 *2) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-695 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-695 (-320 (-227)))) (-5 *2 (-384)) (-5 *1 (-207))))) +(((*1 *2) + (-12 (-5 *2 (-413 (-959 *3))) (-5 *1 (-459 *3 *4 *5 *6)) + (-4 *3 (-562)) (-4 *3 (-174)) (-14 *4 (-928)) + (-14 *5 (-650 (-1186))) (-14 *6 (-1276 (-695 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-949 *3)) (-4 *3 (-13 (-367) (-1210) (-1010))) - (-5 *1 (-177 *3))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1195))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-753))))) +(((*1 *2 *1) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-650 *6)) (-4 *6 (-856)) (-4 *4 (-368)) (-4 *5 (-799)) + (-5 *2 (-112)) (-5 *1 (-510 *4 *5 *6 *7)) (-4 *7 (-956 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6)) (-5 *4 (-1186)) (-4 *6 (-436 *5)) + (-4 *5 (-1109)) (-5 *2 (-650 (-618 *6))) (-5 *1 (-579 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-650 (-650 (-950 (-227))))) (-5 *3 (-650 (-880))) + (-5 *1 (-474))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-950 *5)) (-5 *3 (-777)) (-4 *5 (-1058)) + (-5 *1 (-1174 *4 *5)) (-14 *4 (-928))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-368) (-854))) (-5 *2 (-424 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4)))))) +(((*1 *2) (-12 (-5 *2 (-1281)) (-5 *1 (-451 *3)) (-4 *3 (-1058))))) +(((*1 *1 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-1109)) (-5 *1 (-1009 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1057)) (-4 *3 (-1251 *4)) (-4 *2 (-1266 *4)) - (-5 *1 (-1269 *4 *3 *5 *2)) (-4 *5 (-661 *3))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -4360 (-649 (-2 (|:| |irr| *10) (|:| -4180 (-569))))))) - (-5 *6 (-649 *3)) (-5 *7 (-649 *8)) (-4 *8 (-855)) (-4 *3 (-310)) - (-4 *10 (-955 *3 *9 *8)) (-4 *9 (-798)) - (-5 *2 - (-2 (|:| |polfac| (-649 *10)) (|:| |correct| *3) - (|:| |corrfact| (-649 (-1181 *3))))) - (-5 *1 (-630 *8 *9 *3 *10)) (-5 *4 (-649 (-1181 *3)))))) + (-12 (-4 *4 (-562)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3511 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *2 (-1044)) + (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-368) (-854))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1629 (-424 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1252 (-171 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-562)) (-4 *2 (-551)))) + ((*1 *1 *1) (-4 *1 (-1069)))) +(((*1 *2 *3) + (-12 (-5 *3 (-650 (-2 (|:| |den| (-570)) (|:| |gcdnum| (-570))))) + (-4 *4 (-1252 (-413 *2))) (-5 *2 (-570)) (-5 *1 (-920 *4 *5)) + (-4 *5 (-1252 (-413 *4)))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-777)) (-4 *5 (-562)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-978 *5 *3)) (-4 *3 (-1252 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1251 *5)) (-4 *5 (-367)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-579 *5 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-955 *3 *4 *5)) (-4 *3 (-367)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-509 *3 *4 *5 *6))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) - (-5 *4 (-649 (-927))) (-5 *5 (-649 (-265))) (-5 *1 (-473)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *3 (-649 (-879))) - (-5 *4 (-649 (-927))) (-5 *1 (-473)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-649 (-949 (-226))))) (-5 *1 (-473)))) - ((*1 *1 *1) (-5 *1 (-473)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1043))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-412 (-1181 (-319 *3)))) (-4 *3 (-561)) - (-5 *1 (-1138 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-898 *4)) (-4 *4 (-1108)) (-5 *2 (-649 *5)) - (-5 *1 (-896 *4 *5)) (-4 *5 (-1225))))) -(((*1 *2) (-12 (-5 *2 (-1280)) (-5 *1 (-1188)))) - ((*1 *2 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1185)) (-5 *2 (-1280)) (-5 *1 (-1188))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-423 *3)) (-4 *3 (-550)) (-4 *3 (-561)))) - ((*1 *2 *1) (-12 (-4 *1 (-550)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-802 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-838 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-848 *3)) (-4 *3 (-550)) (-4 *3 (-1108)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1005 *3)) (-4 *3 (-173)) (-4 *3 (-550)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1016 *3)) (-4 *3 (-1046 (-412 (-569))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-457)) (-4 *4 (-855)) - (-4 *5 (-798)) (-5 *1 (-995 *3 *4 *5 *6)) (-4 *6 (-955 *3 *5 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-776)) (-5 *1 (-861 *2)) (-4 *2 (-173))))) -(((*1 *1 *1) (-12 (-4 *1 (-679 *2)) (-4 *2 (-1225))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1185)) (-5 *1 (-680 *3)) (-4 *3 (-1108))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-412 (-569))) (-5 *1 (-600 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1057))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1299 *4 *2)) (-4 *1 (-378 *4 *2)) (-4 *4 (-855)) - (-4 *2 (-173)))) + (-12 (-5 *3 (-1300 *4 *2)) (-4 *1 (-379 *4 *2)) (-4 *4 (-856)) + (-4 *2 (-174)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1292 *3 *2)) (-4 *3 (-855)) (-4 *2 (-1057)))) + (-12 (-4 *1 (-1293 *3 *2)) (-4 *3 (-856)) (-4 *2 (-1058)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-824 *4)) (-4 *1 (-1292 *4 *2)) (-4 *4 (-855)) - (-4 *2 (-1057)))) + (-12 (-5 *3 (-825 *4)) (-4 *1 (-1293 *4 *2)) (-4 *4 (-856)) + (-4 *2 (-1058)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1057)) (-5 *1 (-1298 *2 *3)) (-4 *3 (-851))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1181 *7)) (-5 *3 (-569)) (-4 *7 (-955 *6 *4 *5)) - (-4 *4 (-798)) (-4 *5 (-855)) (-4 *6 (-1057)) - (-5 *1 (-324 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *2 (-569)) (-5 *1 (-574 *3)) (-4 *3 (-1046 *2)))) + (-12 (-4 *2 (-1058)) (-5 *1 (-1299 *2 *3)) (-4 *3 (-852))))) +(((*1 *2 *2) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211)))))) +(((*1 *2 *3) (-12 (-5 *2 (-570)) (-5 *1 (-575 *3)) (-4 *3 (-1047 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *4 *2 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-932)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1102 (-226))) (-5 *1 (-933)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1280)) (-5 *1 (-1277))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-920 *3)) (-4 *3 (-310))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-649 *5) *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-412 (-569))))) (-4 *6 (-1251 *5)) - (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 *3)))) - (-5 *1 (-814 *5 *6 *3 *7)) (-4 *3 (-661 *6)) - (-4 *7 (-661 (-412 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-649 *5) *6)) - (-4 *5 (-13 (-367) (-147) (-1046 (-569)) (-1046 (-412 (-569))))) - (-4 *6 (-1251 *5)) - (-5 *2 (-649 (-2 (|:| |poly| *6) (|:| -4312 (-659 *6 (-412 *6)))))) - (-5 *1 (-817 *5 *6)) (-5 *3 (-659 *6 (-412 *6)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-649 (-248 *4 *5))) (-5 *2 (-248 *4 *5)) - (-14 *4 (-649 (-1185))) (-4 *5 (-457)) (-5 *1 (-636 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-256 *3)) (-4 *3 (-1225)) (-5 *2 (-776)))) - ((*1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-776)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1057)) - (-4 *2 (-13 (-409) (-1046 *4) (-367) (-1210) (-287))) - (-5 *1 (-448 *4 *3 *2)) (-4 *3 (-1251 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) - ((*1 *2) (-12 (-5 *2 (-569)) (-5 *1 (-867)))) - ((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-867))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1046 (-569)) (-644 (-569)) (-457))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1260 *4 *5 *6)) - (|:| |%expon| (-322 *4 *5 *6)) - (|:| |%expTerms| - (-649 (-2 (|:| |k| (-412 (-569))) (|:| |c| *4)))))) - (|:| |%type| (-1167)))) - (-5 *1 (-1261 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1210) (-435 *3))) - (-14 *5 (-1185)) (-14 *6 *4)))) + (-12 (-4 *1 (-1112 *3 *4 *2 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109))))) (((*1 *2 *3) - (-12 (-5 *2 (-569)) (-5 *1 (-450 *3)) (-4 *3 (-409)) (-4 *3 (-1057))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-649 *6) "failed") (-569) *6 *6)) (-4 *6 (-367)) - (-4 *7 (-1251 *6)) - (-5 *2 (-2 (|:| |answer| (-591 (-412 *7))) (|:| |a0| *6))) - (-5 *1 (-579 *6 *7)) (-5 *3 (-412 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-278 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1010)))))) -(((*1 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-393)) (-5 *1 (-441))))) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-956 *4 *6 *5)) + (-4 *4 (-13 (-311) (-148))) (-4 *5 (-13 (-856) (-620 (-1186)))) + (-4 *6 (-799)) (-5 *2 (-112)) (-5 *1 (-931 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-959 *4))) (-4 *4 (-13 (-311) (-148))) + (-4 *5 (-13 (-856) (-620 (-1186)))) (-4 *6 (-799)) (-5 *2 (-112)) + (-5 *1 (-931 *4 *5 *6 *7)) (-4 *7 (-956 *4 *6 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-570) (-570))) (-5 *1 (-366 *3)) (-4 *3 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-777) (-777))) (-4 *1 (-391 *3)) (-4 *3 (-1109)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-655 *3 *4 *5)) (-4 *3 (-1109))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4448)) (-4 *1 (-495 *4)) + (-4 *4 (-1226)) (-5 *2 (-112))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-310)) (-5 *1 (-180 *3))))) + (-12 (-5 *3 (-650 (-249 *4 *5))) (-5 *2 (-249 *4 *5)) + (-14 *4 (-650 (-1186))) (-4 *5 (-458)) (-5 *1 (-637 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1168)) (-5 *3 (-650 (-266))) (-5 *1 (-264)))) + ((*1 *1 *2) (-12 (-5 *2 (-1168)) (-5 *1 (-266))))) +(((*1 *2 *1) (-12 (-4 *1 (-257 *3)) (-4 *3 (-1226)) (-5 *2 (-777)))) + ((*1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-777)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1058)) + (-4 *2 (-13 (-410) (-1047 *4) (-368) (-1211) (-288))) + (-5 *1 (-449 *4 *3 *2)) (-4 *3 (-1252 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-777)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) + ((*1 *2) (-12 (-5 *2 (-570)) (-5 *1 (-868)))) + ((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-868))))) +(((*1 *2 *1) + (-12 (-4 *1 (-330 *2 *3)) (-4 *3 (-798)) (-4 *2 (-1058)) + (-4 *2 (-458)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-1252 (-570))) (-5 *2 (-650 (-570))) + (-5 *1 (-492 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1058)) (-4 *2 (-458)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-956 *3 *4 *2)) (-4 *3 (-1058)) (-4 *4 (-799)) + (-4 *2 (-856)) (-4 *3 (-458))))) +(((*1 *1 *1 *1) (-5 *1 (-868)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1168)) (-5 *1 (-1207))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-413 (-570))) (-5 *1 (-1033 *3)) + (-4 *3 (-13 (-854) (-368) (-1031))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-854) (-368))) (-5 *1 (-1070 *2 *3)) + (-4 *3 (-1252 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1077 *2 *3)) (-4 *2 (-13 (-854) (-368))) + (-4 *3 (-1252 *2))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-745 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1141 (-226))) (-5 *1 (-257)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1142 (-227))) (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) - (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) - (-5 *1 (-261 *6)))) + (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) + (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) + (-5 *1 (-262 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383))) - (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) - (-5 *1 (-261 *5)))) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384))) + (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) + (-5 *1 (-262 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) - (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3)) - (-4 *3 (-13 (-619 (-541)) (-1108))))) + (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) + (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3)) + (-4 *3 (-13 (-620 (-542)) (-1109))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1141 (-226))) (-5 *1 (-261 *3)) - (-4 *3 (-13 (-619 (-541)) (-1108))))) + (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1142 (-227))) (-5 *1 (-262 *3)) + (-4 *3 (-13 (-620 (-542)) (-1109))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) - (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) - (-5 *1 (-261 *6)))) + (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) + (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) + (-5 *1 (-262 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383))) - (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1141 (-226))) - (-5 *1 (-261 *5))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9)) - (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *9 (-1073 *6 *7 *8)) - (-5 *2 - (-649 - (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9))))) - (-5 *1 (-996 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-649 *10)) (-5 *5 (-112)) (-4 *10 (-1079 *6 *7 *8 *9)) - (-4 *6 (-457)) (-4 *7 (-798)) (-4 *8 (-855)) - (-4 *9 (-1073 *6 *7 *8)) - (-5 *2 - (-649 - (-2 (|:| -4312 (-649 *9)) (|:| -3663 *10) (|:| |ineq| (-649 *9))))) - (-5 *1 (-1115 *6 *7 *8 *9 *10)) (-5 *3 (-649 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-181)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-314)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-978)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1002)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1044)))) - ((*1 *2 *1) (-12 (-5 *2 (-1143)) (-5 *1 (-1081))))) + (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384))) + (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1142 (-227))) + (-5 *1 (-262 *5))))) +(((*1 *1) (-5 *1 (-829)))) +(((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-315)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-979)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1003)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1045)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144)) (-5 *1 (-1082))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4447)) (-4 *1 (-151 *3)) - (-4 *3 (-1225)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4448)) (-4 *1 (-152 *3)) + (-4 *3 (-1226)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-679 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-680 *3)) (-4 *3 (-1226)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1218 *4 *5 *3 *2)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *3 (-855)) (-4 *2 (-1073 *4 *5 *3)))) + (|partial| -12 (-4 *1 (-1219 *4 *5 *3 *2)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *3 (-856)) (-4 *2 (-1074 *4 *5 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-776)) (-5 *1 (-1222 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1057)) (-5 *1 (-719 *4 *2)) - (-4 *2 (-653 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-841 *2)) (-4 *2 (-1057))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1225))))) + (-12 (-5 *3 (-777)) (-5 *1 (-1223 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1) + (-12 (-4 *3 (-458)) (-4 *4 (-856)) (-4 *5 (-799)) (-5 *2 (-650 *6)) + (-5 *1 (-996 *3 *4 *5 *6)) (-4 *6 (-956 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-803 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-695 (-413 (-959 (-570))))) + (-5 *2 (-695 (-320 (-570)))) (-5 *1 (-1040))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-298 (-839 *3))) + (-4 *5 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-839 *3)) (-5 *1 (-642 *5 *3)) + (-4 *3 (-13 (-27) (-1211) (-436 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-298 (-839 (-959 *5)))) (-4 *5 (-458)) + (-5 *2 (-839 (-413 (-959 *5)))) (-5 *1 (-643 *5)) + (-5 *3 (-413 (-959 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-298 (-413 (-959 *5)))) (-5 *3 (-413 (-959 *5))) + (-4 *5 (-458)) (-5 *2 (-839 *3)) (-5 *1 (-643 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-609 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1225)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-617 *3)) (-5 *5 (-649 *3)) - (-4 *3 (-13 (-435 *6) (-27) (-1210))) - (-4 *6 (-13 (-457) (-1046 (-569)) (-147) (-644 (-569)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-571 *6 *3 *7)) (-4 *7 (-1108))))) -(((*1 *1 *1) (-5 *1 (-867)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-226)) (-5 *2 (-1280)) (-5 *1 (-827))))) + (-12 (-4 *1 (-1080 *4 *5 *6 *3)) (-4 *4 (-458)) (-4 *5 (-799)) + (-4 *6 (-856)) (-4 *3 (-1074 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-619 *2) (-173))) (-5 *2 (-898 *4)) - (-5 *1 (-171 *4 *5 *3)) (-4 *4 (-1108)) (-4 *3 (-166 *5)))) + (-12 (-4 *5 (-13 (-620 *2) (-174))) (-5 *2 (-899 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1109)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-1102 (-848 (-383))))) - (-5 *2 (-649 (-1102 (-848 (-226))))) (-5 *1 (-308)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-399)))) + (-12 (-5 *3 (-650 (-1103 (-849 (-384))))) + (-5 *2 (-650 (-1103 (-849 (-227))))) (-5 *1 (-309)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-400)))) ((*1 *1 *2) - (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-414 *3 *4)) - (-4 *4 (-1251 *3)))) + (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-415 *3 *4)) + (-4 *4 (-1252 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-414 *3 *4)) (-4 *3 (-173)) (-4 *4 (-1251 *3)) - (-5 *2 (-1275 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1275 *3)) (-4 *3 (-173)) (-4 *1 (-422 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-5 *2 (-1275 *3)))) + (-12 (-4 *1 (-415 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1252 *3)) + (-5 *2 (-1276 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1276 *3)) (-4 *3 (-174)) (-4 *1 (-423 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-423 *3)) (-4 *3 (-174)) (-5 *2 (-1276 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-423 *1)) (-4 *1 (-435 *3)) (-4 *3 (-561)) - (-4 *3 (-1108)))) + (-12 (-5 *2 (-424 *1)) (-4 *1 (-436 *3)) (-4 *3 (-562)) + (-4 *3 (-1109)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-468 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1225)))) - ((*1 *1 *2) (-12 (-4 *1 (-623 *2)) (-4 *2 (-1225)))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-542)))) + ((*1 *2 *1) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1226)))) + ((*1 *1 *2) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1226)))) ((*1 *1 *2) - (-12 (-4 *3 (-173)) (-4 *1 (-729 *3 *2)) (-4 *2 (-1251 *3)))) + (-12 (-4 *3 (-174)) (-4 *1 (-730 *3 *2)) (-4 *2 (-1252 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-649 (-898 *3))) (-5 *1 (-898 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-650 (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-1109)))) ((*1 *1 *2) - (-12 (-5 *2 (-958 *3)) (-4 *3 (-1057)) (-4 *1 (-1073 *3 *4 *5)) - (-4 *5 (-619 (-1185))) (-4 *4 (-798)) (-4 *5 (-855)))) + (-12 (-5 *2 (-959 *3)) (-4 *3 (-1058)) (-4 *1 (-1074 *3 *4 *5)) + (-4 *5 (-620 (-1186))) (-4 *4 (-799)) (-4 *5 (-856)))) ((*1 *1 *2) - (-2776 - (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) - (-12 (-1749 (-4 *3 (-38 (-412 (-569))))) (-4 *3 (-38 (-569))) - (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))) - (-12 (-5 *2 (-958 (-569))) (-4 *1 (-1073 *3 *4 *5)) - (-12 (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185)))) - (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855))))) + (-2779 + (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) + (-12 (-1748 (-4 *3 (-38 (-413 (-570))))) (-4 *3 (-38 (-570))) + (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))) + (-12 (-5 *2 (-959 (-570))) (-4 *1 (-1074 *3 *4 *5)) + (-12 (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186)))) + (-4 *3 (-1058)) (-4 *4 (-799)) (-4 *5 (-856))))) ((*1 *1 *2) - (-12 (-5 *2 (-958 (-412 (-569)))) (-4 *1 (-1073 *3 *4 *5)) - (-4 *3 (-38 (-412 (-569)))) (-4 *5 (-619 (-1185))) (-4 *3 (-1057)) - (-4 *4 (-798)) (-4 *5 (-855)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) - (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1079 *4 *5 *6 *7)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167)) - (-5 *1 (-1077 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-649 *7)) (|:| -3663 *8))) - (-4 *7 (-1073 *4 *5 *6)) (-4 *8 (-1117 *4 *5 *6 *7)) (-4 *4 (-457)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-1167)) - (-5 *1 (-1153 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-1190)))) - ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1190)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-867)) (-5 *3 (-569)) (-5 *1 (-1205)))) - ((*1 *2 *3) - (-12 (-5 *3 (-785 *4 (-869 *5))) - (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *5 (-649 (-1185))) - (-5 *2 (-785 *4 (-869 *6))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *6 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-958 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-785 *4 (-869 *6))) - (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185))) - (-5 *2 (-958 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1181 *4)) (-4 *4 (-13 (-853) (-310) (-147) (-1030))) - (-5 *2 (-1181 (-1032 (-412 *4)))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185))) (-14 *6 (-649 (-1185))))) + (-12 (-5 *2 (-959 (-413 (-570)))) (-4 *1 (-1074 *3 *4 *5)) + (-4 *3 (-38 (-413 (-570)))) (-4 *5 (-620 (-1186))) (-4 *3 (-1058)) + (-4 *4 (-799)) (-4 *5 (-856)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) + (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168)) + (-5 *1 (-1078 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-650 *7)) (|:| -3665 *8))) + (-4 *7 (-1074 *4 *5 *6)) (-4 *8 (-1118 *4 *5 *6 *7)) (-4 *4 (-458)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-1168)) + (-5 *1 (-1154 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-1191)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-1191)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1206)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-868)) (-5 *3 (-570)) (-5 *1 (-1206)))) + ((*1 *2 *3) + (-12 (-5 *3 (-786 *4 (-870 *5))) + (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *5 (-650 (-1186))) + (-5 *2 (-786 *4 (-870 *6))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *6 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-959 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-786 *4 (-870 *6))) + (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186))) + (-5 *2 (-959 (-1033 (-413 *4)))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1182 *4)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-1182 (-1033 (-413 *4)))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186))))) ((*1 *2 *3) (-12 - (-5 *3 (-1154 *4 (-536 (-869 *6)) (-869 *6) (-785 *4 (-869 *6)))) - (-4 *4 (-13 (-853) (-310) (-147) (-1030))) (-14 *6 (-649 (-1185))) - (-5 *2 (-649 (-785 *4 (-869 *6)))) (-5 *1 (-1301 *4 *5 *6)) - (-14 *5 (-649 (-1185)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-4 *5 (-798)) (-4 *6 (-855)) (-5 *2 (-649 *3)) - (-5 *1 (-985 *4 *5 *6 *3)) (-4 *3 (-1073 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 *3)) (-4 *3 (-1073 *4 *5 *6)) (-4 *4 (-561)) - (-4 *5 (-798)) (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-649 *6)) (-4 *6 (-1073 *3 *4 *5)) (-4 *3 (-561)) - (-4 *4 (-798)) (-4 *5 (-855)) (-5 *1 (-985 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-649 *7) (-649 *7))) (-5 *2 (-649 *7)) - (-4 *7 (-1073 *4 *5 *6)) (-4 *4 (-561)) (-4 *5 (-798)) - (-4 *6 (-855)) (-5 *1 (-985 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2 *2) (-12 (-5 *2 (-170 (-226))) (-5 *1 (-227)))) - ((*1 *2 *2) (-12 (-5 *2 (-226)) (-5 *1 (-227)))) - ((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-436 *3 *2)) (-4 *2 (-435 *3)))) - ((*1 *1 *1) (-4 *1 (-1147)))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-878 (-1190) (-776)))) (-5 *1 (-336))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1185)) (-5 *2 (-383)) (-5 *1 (-1071))))) + (-5 *3 (-1155 *4 (-537 (-870 *6)) (-870 *6) (-786 *4 (-870 *6)))) + (-4 *4 (-13 (-854) (-311) (-148) (-1031))) (-14 *6 (-650 (-1186))) + (-5 *2 (-650 (-786 *4 (-870 *6)))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186)))))) +(((*1 *2 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410)))) + ((*1 *2) (-12 (-5 *2 (-928)) (-5 *1 (-409 *3)) (-4 *3 (-410)))) + ((*1 *2 *2) (-12 (-5 *2 (-928)) (|has| *1 (-6 -4439)) (-4 *1 (-410)))) + ((*1 *2) (-12 (-4 *1 (-410)) (-5 *2 (-928)))) + ((*1 *2 *1) (-12 (-4 *1 (-875 *3)) (-5 *2 (-1166 (-570)))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-570)) (-5 *4 (-695 (-227))) (-5 *5 (-227)) + (-5 *2 (-1044)) (-5 *1 (-757))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *5 (-1230)) (-4 *6 (-1252 *5)) + (-4 *7 (-1252 (-413 *6))) (-5 *2 (-650 (-959 *5))) + (-5 *1 (-346 *4 *5 *6 *7)) (-4 *4 (-347 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *1 (-347 *4 *5 *6)) (-4 *4 (-1230)) + (-4 *5 (-1252 *4)) (-4 *6 (-1252 (-413 *5))) (-4 *4 (-368)) + (-5 *2 (-650 (-959 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1058)) (-14 *3 (-650 (-1186))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) + (-14 *3 (-650 (-1186)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-650 (-570))) (-5 *1 (-1119)) (-5 *3 (-570))))) (((*1 *2 *1) - (-12 (-4 *1 (-1111 *3 *2 *4 *5 *6)) (-4 *3 (-1108)) (-4 *4 (-1108)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-1108))))) -(((*1 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-649 (-1167))) (-5 *1 (-1278))))) -(((*1 *1 *1) (-4 *1 (-1152)))) + (-12 (-4 *1 (-1112 *3 *2 *4 *5 *6)) (-4 *3 (-1109)) (-4 *4 (-1109)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-4 *2 (-1109))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-649 *7)) (-5 *5 (-649 (-649 *8))) (-4 *7 (-855)) - (-4 *8 (-310)) (-4 *6 (-798)) (-4 *9 (-955 *8 *6 *7)) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1168)) (-5 *2 (-112)) (-5 *1 (-835))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-649 (-2 (|:| -3800 (-1181 *9)) (|:| -1993 (-569))))))) - (-5 *1 (-747 *6 *7 *8 *9)) (-5 *3 (-1181 *9))))) -(((*1 *1) (-5 *1 (-583)))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-898 *4)) (-4 *4 (-1108)) (-5 *1 (-895 *4 *3)) - (-4 *3 (-1108))))) -(((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210)))))) + (-2 (|:| -2865 *3) (|:| |coef1| (-788 *3)) (|:| |coef2| (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-561) (-1046 (-569)))) (-5 *1 (-189 *3 *2)) - (-4 *2 (-13 (-27) (-1210) (-435 (-170 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-27) (-1210) (-435 *3)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-649 (-412 *6))) (-5 *3 (-412 *6)) - (-4 *6 (-1251 *5)) (-4 *5 (-13 (-367) (-147) (-1046 (-569)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1043)) (-5 *1 (-845)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-319 (-383)))) (-5 *4 (-649 (-383))) - (-5 *2 (-1043)) (-5 *1 (-845))))) + (-12 (-5 *2 (-950 *3)) (-4 *3 (-13 (-368) (-1211) (-1011))) + (-5 *1 (-178 *3))))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1219 *3 *4 *5 *6)) (-4 *3 (-562)) (-4 *4 (-799)) + (-4 *5 (-856)) (-4 *6 (-1074 *3 *4 *5)) (-5 *2 (-650 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-298 *2)) (-4 *2 (-21)) (-4 *2 (-1226))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1103 (-227))) (-5 *6 (-650 (-266))) (-5 *2 (-1142 (-227))) + (-5 *1 (-703))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1275 *4)) (-5 *3 (-694 *4)) (-4 *4 (-367)) - (-5 *1 (-672 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-367)) - (-4 *5 (-13 (-377 *4) (-10 -7 (-6 -4448)))) - (-4 *2 (-13 (-377 *4) (-10 -7 (-6 -4448)))) - (-5 *1 (-673 *4 *5 *2 *3)) (-4 *3 (-692 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-649 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-367)) - (-5 *1 (-819 *2 *3)) (-4 *3 (-661 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *1 (-1136 *3 *2)) (-4 *3 (-1251 *2))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1057)) (-5 *2 (-776))))) + (-12 (-5 *2 (-650 *3)) (-4 *3 (-311)) (-5 *1 (-181 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-1167))) (-5 *2 (-1167)) (-5 *1 (-193)))) - ((*1 *1 *2) (-12 (-5 *2 (-649 (-867))) (-5 *1 (-867))))) -(((*1 *2 *1) (-12 (-4 *1 (-532)) (-5 *2 (-696 (-554)))))) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570))))) +(((*1 *1 *2) (-12 (-5 *2 (-880)) (-5 *1 (-266)))) + ((*1 *1 *2) (-12 (-5 *2 (-384)) (-5 *1 (-266))))) (((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *5 (-1229)) (-4 *6 (-1251 *5)) - (-4 *7 (-1251 (-412 *6))) (-5 *2 (-649 (-958 *5))) - (-5 *1 (-345 *4 *5 *6 *7)) (-4 *4 (-346 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1185)) (-4 *1 (-346 *4 *5 *6)) (-4 *4 (-1229)) - (-4 *5 (-1251 *4)) (-4 *6 (-1251 (-412 *5))) (-4 *4 (-367)) - (-5 *2 (-649 (-958 *4)))))) -(((*1 *1) (-5 *1 (-294)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1275 *5)) (-4 *5 (-797)) (-5 *2 (-112)) - (-5 *1 (-850 *4 *5)) (-14 *4 (-776))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-457)) (-4 *6 (-798)) (-4 *7 (-855)) - (-4 *3 (-1073 *5 *6 *7)) - (-5 *2 (-649 (-2 (|:| |val| (-112)) (|:| -3663 *4)))) - (-5 *1 (-781 *5 *6 *7 *3 *4)) (-4 *4 (-1079 *5 *6 *7 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-787 *2)) (-4 *2 (-561)) (-4 *2 (-1057)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-977 *3 *2)) (-4 *2 (-1251 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)) (-4 *2 (-561)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-457)) (-4 *5 (-798)) (-4 *6 (-855)) - (-4 *3 (-1073 *4 *5 *6)) - (-5 *2 (-649 (-2 (|:| |val| *3) (|:| -3663 *1)))) - (-4 *1 (-1079 *4 *5 *6 *3))))) + (-12 (-5 *3 (-650 (-650 (-650 *4)))) (-5 *2 (-650 (-650 *4))) + (-5 *1 (-1197 *4)) (-4 *4 (-856))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1191))))) (((*1 *1 *1) - (-12 (-4 *1 (-692 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-377 *2)) - (-4 *4 (-377 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *4)) (-5 *1 (-1136 *3 *4)) (-4 *3 (-1251 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-367) (-10 -8 (-15 ** ($ $ (-412 (-569))))))) - (-5 *2 (-649 *3)) (-5 *1 (-1136 *4 *3)) (-4 *4 (-1251 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-649 (-1185))) (-5 *1 (-1189))))) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) + (-4 *3 (-13 (-311) (-10 -8 (-15 -2555 ((-424 $) $))))) + (-4 *4 (-1252 *3)) (-5 *1 (-505 *3 *4 *5)) (-4 *5 (-415 *3 *4))))) +(((*1 *1) (-5 *1 (-295)))) +(((*1 *2 *1) (-12 (-5 *2 (-570)) (-5 *1 (-921 *3)) (-4 *3 (-311))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-535))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1153)))) +(((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1058) (-856))) + (-14 *3 (-650 (-1186)))))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 *7)) (-4 *7 (-1074 *4 *5 *6)) (-4 *4 (-562)) + (-4 *5 (-799)) (-4 *6 (-856)) (-5 *2 (-112)) + (-5 *1 (-986 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-927)) (-4 *6 (-561)) (-5 *2 (-649 (-319 *6))) - (-5 *1 (-222 *5 *6)) (-5 *3 (-319 *6)) (-4 *5 (-1057)))) - ((*1 *2 *1) (-12 (-5 *1 (-423 *2)) (-4 *2 (-561)))) + (-12 (-5 *4 (-928)) (-4 *6 (-562)) (-5 *2 (-650 (-320 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-320 *6)) (-4 *5 (-1058)))) + ((*1 *2 *1) (-12 (-5 *1 (-424 *2)) (-4 *2 (-562)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 *5)) (-4 *5 (-13 (-29 *4) (-1210))) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) (-5 *2 (-649 *5)) - (-5 *1 (-588 *4 *5)))) + (-12 (-5 *3 (-592 *5)) (-4 *5 (-13 (-29 *4) (-1211))) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) (-5 *2 (-650 *5)) + (-5 *1 (-589 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-591 (-412 (-958 *4)))) - (-4 *4 (-13 (-457) (-1046 (-569)) (-644 (-569)))) - (-5 *2 (-649 (-319 *4))) (-5 *1 (-594 *4)))) + (-12 (-5 *3 (-592 (-413 (-959 *4)))) + (-4 *4 (-13 (-458) (-1047 (-570)) (-645 (-570)))) + (-5 *2 (-650 (-320 *4))) (-5 *1 (-595 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-853)) (-4 *2 (-1157 *3)))) + (-12 (-4 *1 (-1104 *3 *2)) (-4 *3 (-854)) (-4 *2 (-1158 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 *1)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853)) - (-4 *2 (-1157 *4)))) + (-12 (-5 *3 (-650 *1)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854)) + (-4 *2 (-1158 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-457)) (-5 *1 (-1216 *3 *2)) - (-4 *2 (-13 (-435 *3) (-1210))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1290 (-1185) *3)) (-5 *1 (-1297 *3)) (-4 *3 (-1057)))) + (-12 (-4 *3 (-458)) (-5 *1 (-1217 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1211))))) ((*1 *2 *1) - (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1299 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-1057))))) -(((*1 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278)))) - ((*1 *2 *2) (-12 (-5 *2 (-927)) (-5 *1 (-1278))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) (-4 *4 (-377 *3)) - (-4 *5 (-377 *3)) (-5 *2 (-569)))) + (-12 (-5 *2 (-1291 (-1186) *3)) (-5 *1 (-1298 *3)) (-4 *3 (-1058)))) ((*1 *2 *1) - (-12 (-4 *1 (-1061 *3 *4 *5 *6 *7)) (-4 *5 (-1057)) - (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)) (-5 *2 (-569))))) -(((*1 *2 *1) - (-12 (-4 *2 (-561)) (-5 *1 (-628 *2 *3)) (-4 *3 (-1251 *2))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) - (-12 (-5 *2 (-649 (-649 (-776)))) (-5 *1 (-910 *3)) (-4 *3 (-1108))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *1) (-12 (-5 *2 (-423 *3)) (-5 *1 (-920 *3)) (-4 *3 (-310))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-649 (-569))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-569)) - (-14 *4 (-776)) (-4 *5 (-173))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) + (-12 (-5 *2 (-1291 *3 *4)) (-5 *1 (-1300 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-1058))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-458)) (-4 *6 (-799)) (-4 *7 (-856)) + (-4 *3 (-1074 *5 *6 *7)) + (-5 *2 (-650 (-2 (|:| |val| (-112)) (|:| -3665 *4)))) + (-5 *1 (-1117 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-777)) (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-695 *3)) (|:| |invmval| (-695 *3)) + (|:| |genIdeal| (-510 *3 *4 *5 *6)))) + (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-562)) (-5 *2 (-650 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1186)) (-5 *2 (-384)) (-5 *1 (-1072))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-650 *4)) (-4 *4 (-1109)) (-4 *4 (-1226)) (-5 *2 (-112)) + (-5 *1 (-1166 *4))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-551)))) + ((*1 *1 *2) (-12 (-5 *2 (-650 (-570))) (-5 *1 (-980))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-512)) (-5 *3 (-650 (-972))) (-5 *1 (-109))))) +(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-831))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1276)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1277)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1276)) (-5 *1 (-257)))) + (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1277)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-883 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1276)) (-5 *1 (-257)))) + (-12 (-5 *3 (-884 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1277)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 (-1 (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-886 (-1 (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-949 (-226)) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-226) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-949 (-226)) (-226) (-226))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-1 (-950 (-227)) (-227) (-227))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *5 (-649 (-265))) (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *5 (-650 (-266))) (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-888 (-1 (-226) (-226) (-226)))) (-5 *4 (-1102 (-383))) - (-5 *2 (-1277)) (-5 *1 (-257)))) + (-12 (-5 *3 (-889 (-1 (-227) (-227) (-227)))) (-5 *4 (-1103 (-384))) + (-5 *2 (-1278)) (-5 *1 (-258)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-297 *7)) (-5 *4 (-1185)) (-5 *5 (-649 (-265))) - (-4 *7 (-435 *6)) (-4 *6 (-13 (-561) (-855) (-1046 (-569)))) - (-5 *2 (-1276)) (-5 *1 (-258 *6 *7)))) + (-12 (-5 *3 (-298 *7)) (-5 *4 (-1186)) (-5 *5 (-650 (-266))) + (-4 *7 (-436 *6)) (-4 *6 (-13 (-562) (-856) (-1047 (-570)))) + (-5 *2 (-1277)) (-5 *1 (-259 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1276)) - (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) + (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1277)) + (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1276)) (-5 *1 (-261 *3)) - (-4 *3 (-13 (-619 (-541)) (-1108))))) + (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1277)) (-5 *1 (-262 *3)) + (-4 *3 (-13 (-620 (-542)) (-1109))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-883 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) - (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276)) - (-5 *1 (-261 *6)))) + (-12 (-5 *3 (-884 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) + (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1277)) + (-5 *1 (-262 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-883 *5)) (-5 *4 (-1100 (-383))) - (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1276)) - (-5 *1 (-261 *5)))) + (-12 (-5 *3 (-884 *5)) (-5 *4 (-1101 (-384))) + (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1277)) + (-5 *1 (-262 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-885 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) - (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) - (-5 *1 (-261 *6)))) + (-12 (-5 *3 (-886 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) + (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) + (-5 *1 (-262 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-885 *5)) (-5 *4 (-1100 (-383))) - (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) - (-5 *1 (-261 *5)))) + (-12 (-5 *3 (-886 *5)) (-5 *4 (-1101 (-384))) + (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) + (-5 *1 (-262 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) (-5 *2 (-1277)) - (-5 *1 (-261 *3)) (-4 *3 (-13 (-619 (-541)) (-1108))))) + (-12 (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) (-5 *2 (-1278)) + (-5 *1 (-262 *3)) (-4 *3 (-13 (-620 (-542)) (-1109))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1100 (-383))) (-5 *2 (-1277)) (-5 *1 (-261 *3)) - (-4 *3 (-13 (-619 (-541)) (-1108))))) + (-12 (-5 *4 (-1101 (-384))) (-5 *2 (-1278)) (-5 *1 (-262 *3)) + (-4 *3 (-13 (-620 (-542)) (-1109))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-888 *6)) (-5 *4 (-1100 (-383))) (-5 *5 (-649 (-265))) - (-4 *6 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) - (-5 *1 (-261 *6)))) + (-12 (-5 *3 (-889 *6)) (-5 *4 (-1101 (-384))) (-5 *5 (-650 (-266))) + (-4 *6 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) + (-5 *1 (-262 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-888 *5)) (-5 *4 (-1100 (-383))) - (-4 *5 (-13 (-619 (-541)) (-1108))) (-5 *2 (-1277)) - (-5 *1 (-261 *5)))) + (-12 (-5 *3 (-889 *5)) (-5 *4 (-1101 (-384))) + (-4 *5 (-13 (-620 (-542)) (-1109))) (-5 *2 (-1278)) + (-5 *1 (-262 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1276)) (-5 *1 (-262)))) + (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1277)) (-5 *1 (-263)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1276)) - (-5 *1 (-262)))) + (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1277)) + (-5 *1 (-263)))) ((*1 *2 *3) - (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *2 (-1276)) (-5 *1 (-262)))) + (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *2 (-1277)) (-5 *1 (-263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 (-949 (-226)))) (-5 *4 (-649 (-265))) - (-5 *2 (-1276)) (-5 *1 (-262)))) + (-12 (-5 *3 (-650 (-950 (-227)))) (-5 *4 (-650 (-266))) + (-5 *2 (-1277)) (-5 *1 (-263)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-649 (-226))) (-5 *2 (-1277)) (-5 *1 (-262)))) + (-12 (-5 *3 (-650 (-227))) (-5 *2 (-1278)) (-5 *1 (-263)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-649 (-226))) (-5 *4 (-649 (-265))) (-5 *2 (-1277)) - (-5 *1 (-262))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-367)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-661 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-367)) (-5 *2 (-2 (|:| -4312 *3) (|:| -3906 (-649 *5)))) - (-5 *1 (-1033 *5 *3)) (-5 *4 (-649 *5)) (-4 *3 (-661 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) - ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))) - ((*1 *1 *1 *1) (-5 *1 (-1232))) ((*1 *1 *1 *1) (-5 *1 (-1233)))) + (-12 (-5 *3 (-650 (-227))) (-5 *4 (-650 (-266))) (-5 *2 (-1278)) + (-5 *1 (-263))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) + ((*1 *1 *1 *1) (-5 *1 (-1231))) ((*1 *1 *1 *1) (-5 *1 (-1232))) + ((*1 *1 *1 *1) (-5 *1 (-1233))) ((*1 *1 *1 *1) (-5 *1 (-1234)))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-618 *3)) (-5 *5 (-650 *3)) + (-4 *3 (-13 (-436 *6) (-27) (-1211))) + (-4 *6 (-13 (-458) (-1047 (-570)) (-148) (-645 (-570)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1109))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1225)) (-4 *3 (-1057)) - (-5 *2 (-694 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-569)) (-5 *1 (-879)))) - ((*1 *2 *3) (-12 (-5 *3 (-949 *2)) (-5 *1 (-990 *2)) (-4 *2 (-1057))))) -(((*1 *2 *1) (-12 (-4 *1 (-1101 *2)) (-4 *2 (-1225))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-757))))) + (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1226)) (-4 *3 (-1058)) + (-5 *2 (-695 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) + (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1078 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *8)) (-5 *4 (-650 *9)) (-4 *8 (-1074 *5 *6 *7)) + (-4 *9 (-1118 *5 *6 *7 *8)) (-4 *5 (-458)) (-4 *6 (-799)) + (-4 *7 (-856)) (-5 *2 (-777)) (-5 *1 (-1154 *5 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-4 *2 (-458)) (-4 *3 (-856)) (-4 *4 (-799)) + (-5 *1 (-996 *2 *3 *4 *5)) (-4 *5 (-956 *2 *4 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-976)))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-535 *3)) (-4 *3 (-13 (-731) (-25)))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-319 (-226))) (-5 *1 (-308)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-536 *3)) (-4 *3 (-13 (-732) (-25)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-371 *3 *4)) + (-4 *3 (-372 *4)))) + ((*1 *2) (-12 (-4 *1 (-372 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-320 (-227))) (-5 *1 (-309)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |num| (-898 *3)) (|:| |den| (-898 *3)))) - (-5 *1 (-898 *3)) (-4 *3 (-1108))))) -(((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-1225))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277)))) - ((*1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-1277))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-52)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-4 *3 (-561)) (-5 *1 (-158 *3 *2)) (-4 *2 (-435 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-600 *2)) (-4 *2 (-38 (-412 (-569)))) (-4 *2 (-1057))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-649 *1)) (-4 *1 (-305)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-305)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-617 *3)) (-4 *3 (-1108)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-649 *5)) (-5 *4 (-776)) (-4 *5 (-1108)) - (-5 *1 (-617 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1192 *2)) (-14 *2 (-927)))) - ((*1 *1 *1 *1) (-5 *1 (-1230))) ((*1 *1 *1 *1) (-5 *1 (-1231))) - ((*1 *1 *1 *1) (-5 *1 (-1232))) ((*1 *1 *1 *1) (-5 *1 (-1233)))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) + (-5 *2 (-2 (|:| |num| (-899 *3)) (|:| |den| (-899 *3)))) + (-5 *1 (-899 *3)) (-4 *3 (-1109))))) +(((*1 *1 *1) (-12 (-4 *1 (-246 *2)) (-4 *2 (-1226))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 (-959 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-1055 *5 *6))) (-5 *1 (-1302 *5 *6 *7)) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 (-959 *4))) + (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 (-650 (-1055 *4 *5))) (-5 *1 (-1302 *4 *5 *6)) + (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186)))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + ((*1 *2 *1) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) (-5 *2 (-112)) + (-5 *1 (-510 *3 *4 *5 *6)) (-4 *6 (-956 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-1067)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1077 *4 *3)) (-4 *4 (-13 (-854) (-368))) + (-4 *3 (-1252 *4)) (-5 *2 (-112))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-958 (-170 *4))) (-4 *4 (-173)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-958 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-173)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-958 *4)) (-4 *4 (-1057)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-958 *5)) (-5 *4 (-927)) (-4 *5 (-1057)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-412 (-958 *4))) (-4 *4 (-561)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-412 (-958 *5))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-412 (-958 (-170 *4)))) (-4 *4 (-561)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-412 (-958 (-170 *5)))) (-5 *4 (-927)) - (-4 *5 (-561)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) - (-5 *1 (-790 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-319 *4)) (-4 *4 (-561)) (-4 *4 (-855)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-14 *5 (-650 (-1186))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *4)) (|:| -1861 (-650 (-959 *4)))))) + (-5 *1 (-1302 *4 *5 *6)) (-14 *6 (-650 (-1186))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) + (-5 *1 (-1302 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) + (-5 *1 (-1302 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-319 *5)) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) - (-5 *1 (-790 *5)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *5)) (|:| -1861 (-650 (-959 *5)))))) + (-5 *1 (-1302 *5 *6 *7)) (-5 *3 (-650 (-959 *5))) + (-14 *6 (-650 (-1186))) (-14 *7 (-650 (-1186))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-319 (-170 *4))) (-4 *4 (-561)) (-4 *4 (-855)) - (-4 *4 (-619 (-383))) (-5 *2 (-170 (-383))) (-5 *1 (-790 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-319 (-170 *5))) (-5 *4 (-927)) (-4 *5 (-561)) - (-4 *5 (-855)) (-4 *5 (-619 (-383))) (-5 *2 (-170 (-383))) - (-5 *1 (-790 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-649 (-776))) (-5 *1 (-977 *4 *3)) - (-4 *3 (-1251 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1167)) (|:| -3573 (-1167)))) - (-5 *1 (-827))))) -(((*1 *2 *1) (-12 (-5 *2 (-776)) (-5 *1 (-144))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) + (-12 (-4 *4 (-13 (-854) (-311) (-148) (-1031))) + (-5 *2 + (-650 (-2 (|:| -3922 (-1182 *4)) (|:| -1861 (-650 (-959 *4)))))) + (-5 *1 (-1302 *4 *5 *6)) (-5 *3 (-650 (-959 *4))) + (-14 *5 (-650 (-1186))) (-14 *6 (-650 (-1186)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-601 *2)) (-4 *2 (-38 (-413 (-570)))) (-4 *2 (-1058))))) +(((*1 *2 *2) + (-12 (-4 *3 (-562)) (-5 *1 (-279 *3 *2)) + (-4 *2 (-13 (-436 *3) (-1011)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-650 *1)) (-4 *1 (-306)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-306)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-618 *3)) (-4 *3 (-1109)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-650 *5)) (-5 *4 (-777)) (-4 *5 (-1109)) + (-5 *1 (-618 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1193 *2)) (-14 *2 (-928)))) + ((*1 *1 *1 *1) (-5 *1 (-1231))) ((*1 *1 *1 *1) (-5 *1 (-1232))) + ((*1 *1 *1 *1) (-5 *1 (-1233))) ((*1 *1 *1 *1) (-5 *1 (-1234)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-695 *3)) (-4 *3 (-1058)) (-5 *1 (-696 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-515 *3 *2)) (-4 *3 (-1109)) (-4 *2 (-856))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2865 *3) (|:| |coef1| (-788 *3)))) + (-5 *1 (-788 *3)) (-4 *3 (-562)) (-4 *3 (-1058))))) +(((*1 *2 *3) + (-12 (-4 *4 (-562)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3511 *4))) + (-5 *1 (-978 *4 *3)) (-4 *3 (-1252 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1074 *2 *3 *4)) (-4 *2 (-1058)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *2 (-562))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-797)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-798)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-649 (-1185))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-650 (-1186))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1225)) - (-4 *4 (-377 *3)) (-4 *5 (-377 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1226)) + (-4 *4 (-378 *3)) (-4 *5 (-378 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-569)) - (-14 *6 (-776)) (-4 *7 (-173)) (-4 *8 (-173)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-570)) + (-14 *6 (-777)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-170 *5)) (-4 *5 (-173)) - (-4 *6 (-173)) (-5 *2 (-170 *6)) (-5 *1 (-169 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) + (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-319 *3) (-319 *3))) (-4 *3 (-13 (-1057) (-855))) - (-5 *1 (-224 *3 *4)) (-14 *4 (-649 (-1185))))) + (-12 (-5 *2 (-1 (-320 *3) (-320 *3))) (-4 *3 (-13 (-1058) (-856))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-650 (-1186))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-241 *5 *6)) (-14 *5 (-776)) - (-4 *6 (-1225)) (-4 *7 (-1225)) (-5 *2 (-241 *5 *7)) - (-5 *1 (-240 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-242 *5 *6)) (-14 *5 (-777)) + (-4 *6 (-1226)) (-4 *7 (-1226)) (-5 *2 (-242 *5 *7)) + (-5 *1 (-241 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-297 *6)) (-5 *1 (-296 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-298 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-298 *6)) (-5 *1 (-297 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-297 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-298 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1167)) (-5 *5 (-617 *6)) - (-4 *6 (-305)) (-4 *2 (-1225)) (-5 *1 (-300 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1168)) (-5 *5 (-618 *6)) + (-4 *6 (-306)) (-4 *2 (-1226)) (-5 *1 (-301 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-617 *5)) (-4 *5 (-305)) - (-4 *2 (-305)) (-5 *1 (-301 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-618 *5)) (-4 *5 (-306)) + (-4 *2 (-306)) (-5 *1 (-302 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-617 *1)) (-4 *1 (-305)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-618 *1)) (-4 *1 (-306)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-694 *5)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-5 *2 (-694 *6)) (-5 *1 (-307 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-695 *5)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-5 *2 (-695 *6)) (-5 *1 (-308 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-319 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-319 *6)) (-5 *1 (-317 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-320 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-320 *6)) (-5 *1 (-318 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-340 *5 *6 *7 *8)) (-4 *5 (-367)) - (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *8 (-346 *5 *6 *7)) - (-4 *9 (-367)) (-4 *10 (-1251 *9)) (-4 *11 (-1251 (-412 *10))) - (-5 *2 (-340 *9 *10 *11 *12)) - (-5 *1 (-337 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-346 *9 *10 *11)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-341 *5 *6 *7 *8)) (-4 *5 (-368)) + (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *8 (-347 *5 *6 *7)) + (-4 *9 (-368)) (-4 *10 (-1252 *9)) (-4 *11 (-1252 (-413 *10))) + (-5 *2 (-341 *9 *10 *11 *12)) + (-5 *1 (-338 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-347 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-342 *3)) (-4 *3 (-1108)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1229)) (-4 *8 (-1229)) - (-4 *6 (-1251 *5)) (-4 *7 (-1251 (-412 *6))) (-4 *9 (-1251 *8)) - (-4 *2 (-346 *8 *9 *10)) (-5 *1 (-344 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-346 *5 *6 *7)) (-4 *10 (-1251 (-412 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1230)) (-4 *8 (-1230)) + (-4 *6 (-1252 *5)) (-4 *7 (-1252 (-413 *6))) (-4 *9 (-1252 *8)) + (-4 *2 (-347 *8 *9 *10)) (-5 *1 (-345 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-347 *5 *6 *7)) (-4 *10 (-1252 (-413 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1225)) (-4 *6 (-1225)) - (-4 *2 (-377 *6)) (-5 *1 (-375 *5 *4 *6 *2)) (-4 *4 (-377 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1226)) (-4 *6 (-1226)) + (-4 *2 (-378 *6)) (-5 *1 (-376 *5 *4 *6 *2)) (-4 *4 (-378 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-386 *3 *4)) (-4 *3 (-1057)) - (-4 *4 (-1108)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-387 *3 *4)) (-4 *3 (-1058)) + (-4 *4 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-423 *5)) (-4 *5 (-561)) - (-4 *6 (-561)) (-5 *2 (-423 *6)) (-5 *1 (-410 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-424 *5)) (-4 *5 (-562)) + (-4 *6 (-562)) (-5 *2 (-424 *6)) (-5 *1 (-411 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-561)) - (-4 *6 (-561)) (-5 *2 (-412 *6)) (-5 *1 (-411 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-562)) + (-4 *6 (-562)) (-5 *2 (-413 *6)) (-5 *1 (-412 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-418 *5 *6 *7 *8)) (-4 *5 (-310)) - (-4 *6 (-1000 *5)) (-4 *7 (-1251 *6)) - (-4 *8 (-13 (-414 *6 *7) (-1046 *6))) (-4 *9 (-310)) - (-4 *10 (-1000 *9)) (-4 *11 (-1251 *10)) - (-5 *2 (-418 *9 *10 *11 *12)) - (-5 *1 (-417 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-414 *10 *11) (-1046 *10))))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-419 *5 *6 *7 *8)) (-4 *5 (-311)) + (-4 *6 (-1001 *5)) (-4 *7 (-1252 *6)) + (-4 *8 (-13 (-415 *6 *7) (-1047 *6))) (-4 *9 (-311)) + (-4 *10 (-1001 *9)) (-4 *11 (-1252 *10)) + (-5 *2 (-419 *9 *10 *11 *12)) + (-5 *1 (-418 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-415 *10 *11) (-1047 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) - (-4 *2 (-422 *6)) (-5 *1 (-420 *4 *5 *2 *6)) (-4 *4 (-422 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-423 *6)) (-5 *1 (-421 *4 *5 *2 *6)) (-4 *4 (-423 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-561)) (-5 *1 (-423 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-562)) (-5 *1 (-424 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) - (-4 *2 (-435 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-435 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) + (-4 *2 (-436 *6)) (-5 *1 (-427 *5 *4 *6 *2)) (-4 *4 (-436 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) - (-4 *2 (-430 *6)) (-5 *1 (-428 *5 *4 *6 *2)) (-4 *4 (-430 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1109)) (-4 *6 (-1109)) + (-4 *2 (-431 *6)) (-5 *1 (-429 *5 *4 *6 *2)) (-4 *4 (-431 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-494 *3)) (-4 *3 (-1225)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-495 *3)) (-4 *3 (-1226)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-514 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-855)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-515 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-856)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-591 *5)) (-4 *5 (-367)) - (-4 *6 (-367)) (-5 *2 (-591 *6)) (-5 *1 (-589 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-368)) + (-4 *6 (-368)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2679 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-367)) (-4 *6 (-367)) - (-5 *2 (-2 (|:| -2679 *6) (|:| |coeff| *6))) - (-5 *1 (-589 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2134 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-368)) (-4 *6 (-368)) + (-5 *2 (-2 (|:| -2134 *6) (|:| |coeff| *6))) + (-5 *1 (-590 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-367)) (-4 *2 (-367)) (-5 *1 (-589 *5 *2)))) + (-4 *5 (-368)) (-4 *2 (-368)) (-5 *1 (-590 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-650 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-367)) (-4 *6 (-367)) + (-4 *5 (-368)) (-4 *6 (-368)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-649 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-589 *5 *6)))) + (-650 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-590 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-606 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-606 *6)) (-5 *1 (-603 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-607 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-607 *6)) (-5 *1 (-604 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-606 *7)) - (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-606 *8)) - (-5 *1 (-604 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-607 *7)) + (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-607 *8)) + (-5 *1 (-605 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-606 *7)) - (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) - (-5 *1 (-604 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-607 *7)) + (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-1166 *8)) + (-5 *1 (-605 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-606 *6)) (-5 *5 (-1165 *7)) - (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) - (-5 *1 (-604 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-607 *6)) (-5 *5 (-1166 *7)) + (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-1166 *8)) + (-5 *1 (-605 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-649 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-649 *6)) (-5 *1 (-647 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-650 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-650 *6)) (-5 *1 (-648 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-649 *6)) (-5 *5 (-649 *7)) - (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-649 *8)) - (-5 *1 (-648 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-650 *6)) (-5 *5 (-650 *7)) + (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-650 *8)) + (-5 *1 (-649 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-656 *3)) (-4 *3 (-1225)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1057)) (-4 *8 (-1057)) - (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) (-4 *2 (-692 *8 *9 *10)) - (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-692 *5 *6 *7)) - (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1057)) - (-4 *8 (-1057)) (-4 *6 (-377 *5)) (-4 *7 (-377 *5)) - (-4 *2 (-692 *8 *9 *10)) (-5 *1 (-690 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-692 *5 *6 *7)) (-4 *9 (-377 *8)) (-4 *10 (-377 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-561)) (-4 *7 (-561)) - (-4 *6 (-1251 *5)) (-4 *2 (-1251 (-412 *8))) - (-5 *1 (-714 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1251 (-412 *6))) - (-4 *8 (-1251 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1057)) (-4 *9 (-1057)) - (-4 *5 (-855)) (-4 *6 (-798)) (-4 *2 (-955 *9 *7 *5)) - (-5 *1 (-733 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-798)) - (-4 *4 (-955 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-855)) (-4 *6 (-855)) (-4 *7 (-798)) - (-4 *9 (-1057)) (-4 *2 (-955 *9 *8 *6)) - (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-798)) - (-4 *4 (-955 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-740 *5 *7)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-4 *7 (-731)) (-5 *2 (-740 *6 *7)) - (-5 *1 (-739 *5 *6 *7)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-657 *3)) (-4 *3 (-1226)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1058)) (-4 *8 (-1058)) + (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) (-4 *2 (-693 *8 *9 *10)) + (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-693 *5 *6 *7)) + (-4 *9 (-378 *8)) (-4 *10 (-378 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1058)) + (-4 *8 (-1058)) (-4 *6 (-378 *5)) (-4 *7 (-378 *5)) + (-4 *2 (-693 *8 *9 *10)) (-5 *1 (-691 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-693 *5 *6 *7)) (-4 *9 (-378 *8)) (-4 *10 (-378 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-562)) (-4 *7 (-562)) + (-4 *6 (-1252 *5)) (-4 *2 (-1252 (-413 *8))) + (-5 *1 (-715 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1252 (-413 *6))) + (-4 *8 (-1252 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1058)) (-4 *9 (-1058)) + (-4 *5 (-856)) (-4 *6 (-799)) (-4 *2 (-956 *9 *7 *5)) + (-5 *1 (-734 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-799)) + (-4 *4 (-956 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-856)) (-4 *6 (-856)) (-4 *7 (-799)) + (-4 *9 (-1058)) (-4 *2 (-956 *9 *8 *6)) + (-5 *1 (-735 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-799)) + (-4 *4 (-956 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-741 *5 *7)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-4 *7 (-732)) (-5 *2 (-741 *6 *7)) + (-5 *1 (-740 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-740 *3 *4)) - (-4 *4 (-731)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-741 *3 *4)) + (-4 *4 (-732)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) - (-4 *2 (-802 *6)) (-5 *1 (-803 *4 *5 *2 *6)) (-4 *4 (-802 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-803 *6)) (-5 *1 (-804 *4 *5 *2 *6)) (-4 *4 (-803 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-838 *6)) (-5 *1 (-837 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-838 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-838 *5)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-837 *5 *6)))) + (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-838 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-848 *6)) (-5 *1 (-847 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-849 *6)) (-5 *1 (-848 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-848 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-848 *5)) - (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *1 (-847 *5 *6)))) + (-12 (-5 *2 (-849 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-849 *5)) + (-4 *5 (-1109)) (-4 *6 (-1109)) (-5 *1 (-848 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-884 *6)) (-5 *1 (-883 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-885 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-885 *6)) (-5 *1 (-884 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-886 *6)) (-5 *1 (-885 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-895 *5 *6)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-895 *5 *7)) - (-5 *1 (-894 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-896 *5 *6)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-4 *7 (-1109)) (-5 *2 (-896 *5 *7)) + (-5 *1 (-895 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-898 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-898 *6)) (-5 *1 (-897 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-5 *2 (-958 *6)) (-5 *1 (-952 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-5 *2 (-959 *6)) (-5 *1 (-953 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-855)) - (-4 *8 (-1057)) (-4 *6 (-798)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-856)) + (-4 *8 (-1058)) (-4 *6 (-799)) (-4 *2 - (-13 (-1108) - (-10 -8 (-15 -3012 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-776)))))) - (-5 *1 (-957 *6 *7 *8 *5 *2)) (-4 *5 (-955 *8 *6 *7)))) + (-13 (-1109) + (-10 -8 (-15 -3014 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-777)))))) + (-5 *1 (-958 *6 *7 *8 *5 *2)) (-4 *5 (-956 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-964 *6)) (-5 *1 (-963 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-965 *6)) (-5 *1 (-964 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1108)) - (-4 *6 (-1108)) (-5 *2 (-972 *6)) (-5 *1 (-974 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-973 *5)) (-4 *5 (-1109)) + (-4 *6 (-1109)) (-5 *2 (-973 *6)) (-5 *1 (-975 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-5 *2 (-949 *6)) (-5 *1 (-989 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-950 *5)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-5 *2 (-950 *6)) (-5 *1 (-990 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-958 *4))) (-4 *4 (-1057)) - (-4 *2 (-955 (-958 *4) *5 *6)) (-4 *5 (-798)) + (-12 (-5 *3 (-1 *2 (-959 *4))) (-4 *4 (-1058)) + (-4 *2 (-956 (-959 *4) *5 *6)) (-4 *5 (-799)) (-4 *6 - (-13 (-855) - (-10 -8 (-15 -1410 ((-1185) $)) - (-15 -2672 ((-3 $ "failed") (-1185)))))) - (-5 *1 (-992 *4 *5 *6 *2)))) + (-13 (-856) + (-10 -8 (-15 -1411 ((-1186) $)) + (-15 -2676 ((-3 $ "failed") (-1186)))))) + (-5 *1 (-993 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-561)) (-4 *6 (-561)) - (-4 *2 (-1000 *6)) (-5 *1 (-998 *5 *6 *4 *2)) (-4 *4 (-1000 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-562)) (-4 *6 (-562)) + (-4 *2 (-1001 *6)) (-5 *1 (-999 *5 *6 *4 *2)) (-4 *4 (-1001 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-173)) (-4 *6 (-173)) - (-4 *2 (-1005 *6)) (-5 *1 (-1006 *4 *5 *2 *6)) (-4 *4 (-1005 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) + (-4 *2 (-1006 *6)) (-5 *1 (-1007 *4 *5 *2 *6)) (-4 *4 (-1006 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) - (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) + (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1061 *3 *4 *5 *6 *7)) - (-4 *5 (-1057)) (-4 *6 (-239 *4 *5)) (-4 *7 (-239 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1062 *3 *4 *5 *6 *7)) + (-4 *5 (-1058)) (-4 *6 (-240 *4 *5)) (-4 *7 (-240 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1057)) (-4 *10 (-1057)) - (-14 *5 (-776)) (-14 *6 (-776)) (-4 *8 (-239 *6 *7)) - (-4 *9 (-239 *5 *7)) (-4 *2 (-1061 *5 *6 *10 *11 *12)) - (-5 *1 (-1063 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1061 *5 *6 *7 *8 *9)) (-4 *11 (-239 *6 *10)) - (-4 *12 (-239 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1058)) (-4 *10 (-1058)) + (-14 *5 (-777)) (-14 *6 (-777)) (-4 *8 (-240 *6 *7)) + (-4 *9 (-240 *5 *7)) (-4 *2 (-1062 *5 *6 *10 *11 *12)) + (-5 *1 (-1064 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1062 *5 *6 *7 *8 *9)) (-4 *11 (-240 *6 *10)) + (-4 *12 (-240 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-1102 *6)) (-5 *1 (-1097 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-1103 *6)) (-5 *1 (-1098 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1102 *5)) (-4 *5 (-853)) - (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-649 *6)) - (-5 *1 (-1097 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1103 *5)) (-4 *5 (-854)) + (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-650 *6)) + (-5 *1 (-1098 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1100 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-1100 *6)) (-5 *1 (-1099 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1101 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-1101 *6)) (-5 *1 (-1100 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1103 *4 *2)) (-4 *4 (-853)) - (-4 *2 (-1157 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1104 *4 *2)) (-4 *4 (-854)) + (-4 *2 (-1158 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1165 *6)) (-5 *5 (-1165 *7)) - (-4 *6 (-1225)) (-4 *7 (-1225)) (-4 *8 (-1225)) (-5 *2 (-1165 *8)) - (-5 *1 (-1164 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1166 *6)) (-5 *5 (-1166 *7)) + (-4 *6 (-1226)) (-4 *7 (-1226)) (-4 *8 (-1226)) (-5 *2 (-1166 *8)) + (-5 *1 (-1165 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-5 *2 (-1181 *6)) (-5 *1 (-1179 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1182 *5)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-5 *2 (-1182 *6)) (-5 *1 (-1180 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1201 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1239 *5 *7 *9)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1239 *6 *8 *10)) (-5 *1 (-1234 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1185)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1240 *5 *7 *9)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1240 *6 *8 *10)) (-5 *1 (-1235 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1186)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-1242 *6)) (-5 *1 (-1241 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-1243 *6)) (-5 *1 (-1242 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5)) (-4 *5 (-853)) - (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1165 *6)) - (-5 *1 (-1241 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1243 *5)) (-4 *5 (-854)) + (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1166 *6)) + (-5 *1 (-1242 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1248 *5 *6)) (-14 *5 (-1185)) - (-4 *6 (-1057)) (-4 *8 (-1057)) (-5 *2 (-1248 *7 *8)) - (-5 *1 (-1243 *5 *6 *7 *8)) (-14 *7 (-1185)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1249 *5 *6)) (-14 *5 (-1186)) + (-4 *6 (-1058)) (-4 *8 (-1058)) (-5 *2 (-1249 *7 *8)) + (-5 *1 (-1244 *5 *6 *7 *8)) (-14 *7 (-1186)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) - (-4 *2 (-1251 *6)) (-5 *1 (-1249 *5 *4 *6 *2)) (-4 *4 (-1251 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) + (-4 *2 (-1252 *6)) (-5 *1 (-1250 *5 *4 *6 *2)) (-4 *4 (-1252 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1260 *5 *7 *9)) (-4 *5 (-1057)) - (-4 *6 (-1057)) (-14 *7 (-1185)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1260 *6 *8 *10)) (-5 *1 (-1255 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1185)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1261 *5 *7 *9)) (-4 *5 (-1058)) + (-4 *6 (-1058)) (-14 *7 (-1186)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1261 *6 *8 *10)) (-5 *1 (-1256 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1186)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1057)) (-4 *6 (-1057)) - (-4 *2 (-1266 *6)) (-5 *1 (-1264 *5 *6 *4 *2)) (-4 *4 (-1266 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1058)) (-4 *6 (-1058)) + (-4 *2 (-1267 *6)) (-5 *1 (-1265 *5 *6 *4 *2)) (-4 *4 (-1267 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1275 *5)) (-4 *5 (-1225)) - (-4 *6 (-1225)) (-5 *2 (-1275 *6)) (-5 *1 (-1274 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1276 *5)) (-4 *5 (-1226)) + (-4 *6 (-1226)) (-5 *2 (-1276 *6)) (-5 *1 (-1275 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1275 *5)) - (-4 *5 (-1225)) (-4 *6 (-1225)) (-5 *2 (-1275 *6)) - (-5 *1 (-1274 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1276 *5)) + (-4 *5 (-1226)) (-4 *6 (-1226)) (-5 *2 (-1276 *6)) + (-5 *1 (-1275 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1292 *3 *4)) (-4 *3 (-855)) - (-4 *4 (-1057)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1293 *3 *4)) (-4 *3 (-856)) + (-4 *4 (-1058)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1057)) (-5 *1 (-1298 *3 *4)) - (-4 *4 (-851))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1073 *3 *4 *5)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-5 *2 (-112))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4448)) (-4 *1 (-1263 *2)) (-4 *2 (-1225))))) -(((*1 *2 *3) (-12 (-5 *3 (-1167)) (-5 *2 (-1280)) (-5 *1 (-587))))) -(((*1 *1 *1) (-5 *1 (-226))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1058)) (-5 *1 (-1299 *3 *4)) + (-4 *4 (-852))))) +(((*1 *1) (-5 *1 (-1094)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-650 (-570))) (-5 *2 (-1188 (-413 (-570)))) + (-5 *1 (-192))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1 *1) (-5 *1 (-383))) ((*1 *1) (-5 *1 (-383)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1073 *2 *3 *4)) (-4 *2 (-1057)) (-4 *3 (-798)) - (-4 *4 (-855)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1218 *3 *4 *5 *2)) (-4 *3 (-561)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *2 (-1073 *3 *4 *5))))) + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1 *1) (-5 *1 (-384))) ((*1 *1) (-5 *1 (-384)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-776)) (-5 *2 (-1275 (-649 (-569)))) (-5 *1 (-485)))) + (-12 (-5 *3 (-777)) (-5 *2 (-1276 (-650 (-570)))) (-5 *1 (-486)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-606 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-607 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1225)) (-5 *1 (-1165 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-694 *4)) (-5 *3 (-927)) (|has| *4 (-6 (-4449 "*"))) - (-4 *4 (-1057)) (-5 *1 (-1036 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-649 (-694 *4))) (-5 *3 (-927)) - (|has| *4 (-6 (-4449 "*"))) (-4 *4 (-1057)) (-5 *1 (-1036 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-649 (-569))) (-5 *2 (-910 (-569))) (-5 *1 (-923)))) - ((*1 *2) (-12 (-5 *2 (-910 (-569))) (-5 *1 (-923))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-752))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1226)) (-5 *1 (-1166 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-650 (-413 *7))) + (-4 *7 (-1252 *6)) (-5 *3 (-413 *7)) (-4 *6 (-368)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-650 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1251 (-569)))))) -(((*1 *2) - (-12 (-4 *1 (-346 *3 *4 *5)) (-4 *3 (-1229)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-5 *2 (-694 (-412 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1185)) (-4 *1 (-27)) - (-5 *2 (-649 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-958 *1)) (-4 *1 (-27)) (-5 *2 (-649 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1185)) (-4 *4 (-561)) (-5 *2 (-649 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-561)) (-5 *2 (-649 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-561)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3346 *4))) - (-5 *1 (-977 *4 *3)) (-4 *3 (-1251 *4))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-333))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1057)) (-4 *5 (-798)) (-4 *3 (-855)) - (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1))) - (-4 *1 (-1073 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1057)) (-4 *4 (-798)) (-4 *5 (-855)) - (-5 *2 (-2 (|:| -1435 *1) (|:| |gap| (-776)) (|:| -2054 *1))) - (-4 *1 (-1073 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *4)) (-5 *1 (-1137 *3 *4)) (-4 *3 (-1252 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-368) (-10 -8 (-15 ** ($ $ (-413 (-570))))))) + (-5 *2 (-650 *3)) (-5 *1 (-1137 *4 *3)) (-4 *4 (-1252 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-298 *2)) (-4 *2 (-732)) (-4 *2 (-1226))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1185)) (|:| |fn| (-319 (-226))) - (|:| -3743 (-1102 (-848 (-226)))) (|:| |abserr| (-226)) - (|:| |relerr| (-226)))) - (-5 *2 (-383)) (-5 *1 (-193))))) -(((*1 *2 *1) - (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-1057)) (-4 *4 (-798)) - (-4 *5 (-855)) (-4 *6 (-1073 *3 *4 *5)) (-5 *2 (-649 *5))))) + (-12 (-5 *3 (-1168)) (-5 *2 (-650 (-697 (-284)))) (-5 *1 (-169))))) +(((*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-856)) (-5 *1 (-490 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-649 (-2 (|:| -3800 *4) (|:| -4339 (-569))))) - (-4 *4 (-1251 (-569))) (-5 *2 (-742 (-776))) (-5 *1 (-447 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-423 *5)) (-4 *5 (-1251 *4)) (-4 *4 (-1057)) - (-5 *2 (-742 (-776))) (-5 *1 (-449 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-756))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-958 (-412 (-569)))) (-5 *4 (-1185)) - (-5 *5 (-1102 (-848 (-226)))) (-5 *2 (-649 (-226))) (-5 *1 (-303))))) -(((*1 *1) (-5 *1 (-828)))) -(((*1 *1 *2) (-12 (-5 *2 (-412 (-569))) (-5 *1 (-218))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1187 (-412 (-569)))) (-5 *1 (-191)) (-5 *3 (-569))))) -(((*1 *2) (-12 (-5 *2 (-838 (-569))) (-5 *1 (-539)))) - ((*1 *1) (-12 (-5 *1 (-838 *2)) (-4 *2 (-1108))))) + (-12 (-5 *2 (-1188 (-413 (-570)))) (-5 *1 (-192)) (-5 *3 (-570))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1108)) (-4 *3 (-906 *5)) (-5 *2 (-694 *3)) - (-5 *1 (-697 *5 *3 *6 *4)) (-4 *6 (-377 *3)) - (-4 *4 (-13 (-377 *5) (-10 -7 (-6 -4447))))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1181 *3)) (-4 *3 (-353)) (-5 *1 (-361 *3))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-569)) (-5 *4 (-694 (-226))) (-5 *2 (-1043)) - (-5 *1 (-761))))) + (-12 (-5 *3 (-227)) (-5 *4 (-570)) (-5 *2 (-1044)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1226))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1212 *3)) (-4 *3 (-1109))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-334))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1196))))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *1) - (-12 (-4 *1 (-377 *3)) (-4 *3 (-1225)) (-4 *3 (-855)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-377 *4)) (-4 *4 (-1225)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-694 *4)) (-4 *4 (-367)) (-5 *2 (-1181 *4)) - (-5 *1 (-537 *4 *5 *6)) (-4 *5 (-367)) (-4 *6 (-13 (-367) (-853)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-927)) (-5 *4 (-1167)) (-5 *2 (-1280)) (-5 *1 (-1276))))) + (-12 (-4 *4 (-1109)) (-5 *2 (-112)) (-5 *1 (-892 *3 *4 *5)) + (-4 *3 (-1109)) (-4 *5 (-672 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1109)) + (-4 *4 (-1109))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) (-5 *4 (-227)) + (-5 *2 (-1044)) (-5 *1 (-758))))) (((*1 *2 *2) - (-12 (-4 *3 (-1057)) (-4 *4 (-1251 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1251 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-1225))))) + (-12 (-5 *2 (-650 *6)) (-4 *6 (-1074 *3 *4 *5)) (-4 *3 (-562)) + (-4 *4 (-799)) (-4 *5 (-856)) (-5 *1 (-986 *3 *4 *5 *6))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-1108)) - (-4 *4 (-1108))))) + (-12 (-4 *3 (-562)) (-5 *2 (-650 (-695 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-423 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-992 *2)) (-4 *2 (-1211))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1232)))))) +(((*1 *1 *2) (-12 (-5 *1 (-1035 *2)) (-4 *2 (-1226))))) +(((*1 *2) (-12 (-5 *2 (-839 (-570))) (-5 *1 (-540)))) + ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1109))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-570)) (-5 *5 (-695 (-227))) + (-5 *6 (-3 (|:| |fn| (-394)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-394)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1044)) (-5 *1 (-755))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-601 *3)) (-4 *3 (-1058))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1109)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-533)) (-5 *2 (-697 (-1231)))))) +(((*1 *1 *1) (-5 *1 (-1072)))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1186)) (-5 *1 (-592 *2)) (-4 *2 (-1047 *3)) + (-4 *2 (-368)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-592 *2)) (-4 *2 (-368)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1186)) (-4 *4 (-562)) (-5 *1 (-636 *4 *2)) + (-4 *2 (-13 (-436 *4) (-1011) (-1211))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1101 *2)) (-4 *2 (-13 (-436 *4) (-1011) (-1211))) + (-4 *4 (-562)) (-5 *1 (-636 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-966)) (-5 *2 (-1186)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1101 *1)) (-4 *1 (-966))))) +(((*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-1168)) (-5 *1 (-792))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1186)) + (-4 *6 (-13 (-311) (-1047 (-570)) (-645 (-570)) (-148))) + (-4 *4 (-13 (-29 *6) (-1211) (-966))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2077 (-650 *4)))) + (-5 *1 (-807 *6 *4 *3)) (-4 *3 (-662 *4))))) (((*1 *2) - (-12 (-4 *2 (-13 (-435 *3) (-1010))) (-5 *1 (-278 *3 *2)) - (-4 *3 (-561)))) + (-12 (-4 *2 (-13 (-436 *3) (-1011))) (-5 *1 (-279 *3 *2)) + (-4 *3 (-562)))) ((*1 *1) - (-12 (-5 *1 (-343 *2 *3 *4)) (-14 *2 (-649 (-1185))) - (-14 *3 (-649 (-1185))) (-4 *4 (-392)))) - ((*1 *1) (-5 *1 (-482))) ((*1 *1) (-4 *1 (-1210)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-649 (-776))) (-5 *3 (-172)) (-5 *1 (-1173 *4 *5)) - (-14 *4 (-927)) (-4 *5 (-1057))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3 *4 *5 *6)) (-4 *3 (-367)) (-4 *4 (-1251 *3)) - (-4 *5 (-1251 (-412 *4))) (-4 *6 (-346 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1280)) (-5 *1 (-827))))) -(((*1 *2) - (-12 (-4 *4 (-173)) (-5 *2 (-1181 (-958 *4))) (-5 *1 (-421 *3 *4)) - (-4 *3 (-422 *4)))) - ((*1 *2) - (-12 (-4 *1 (-422 *3)) (-4 *3 (-173)) (-4 *3 (-367)) - (-5 *2 (-1181 (-958 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1181 (-412 (-958 *3)))) (-5 *1 (-458 *3 *4 *5 *6)) - (-4 *3 (-561)) (-4 *3 (-173)) (-14 *4 (-927)) - (-14 *5 (-649 (-1185))) (-14 *6 (-1275 (-694 *3)))))) -((-1308 . 733162) (-1309 . 733109) (-1310 . 732956) (-1311 . 732832) - (-1312 . 732579) (-1313 . 732486) (-1314 . 732327) (-1315 . 732234) - (-1316 . 732088) (-1317 . 731897) (-1318 . 731790) (-1319 . 731704) - (-1320 . 731530) (-1321 . 731423) (-1322 . 731339) (-1323 . 731280) - (-1324 . 731252) (-1325 . 731107) (-1326 . 730994) (-1327 . 730729) - (-1328 . 730586) (-1329 . 730376) (-1330 . 730043) (-1331 . 729930) - (-1332 . 729800) (-1333 . 729398) (-1334 . 729264) (-1335 . 729103) - (-1336 . 729051) (-1337 . 728950) (-1338 . 728813) (-1339 . 728556) - (-1340 . 728241) (-1341 . 728014) (-1342 . 727817) (-1343 . 727748) - (-1344 . 727664) (-1345 . 727551) (-1346 . 713321) (-1347 . 713269) - (-1348 . 713217) (-1349 . 713123) (-1350 . 713016) (-1351 . 711160) - (-1352 . 711107) (-1353 . 710885) (-1354 . 710576) (-1355 . 710490) - (-1356 . 710412) (-1357 . 710345) (-1358 . 710317) (-1359 . 710216) - (-1360 . 710160) (-1361 . 709956) (-1362 . 709868) (-1363 . 709746) - (-1364 . 709665) (-1365 . 709608) (-1366 . 709484) (-1367 . 709385) - (-1368 . 709163) (-1369 . 708930) (-1370 . 704867) (-1371 . 704781) - (-1372 . 704658) (-1373 . 704585) (-1374 . 704448) (-1375 . 704361) - (-1376 . 704302) (-1377 . 704223) (-1378 . 703977) (-1379 . 703876) - (-1380 . 702909) (-1381 . 702848) (-1382 . 702548) (-1383 . 702445) - (-1384 . 701992) (-1385 . 701774) (-1386 . 701658) (-1387 . 701630) - (-1388 . 701278) (-1389 . 701219) (-1390 . 701084) (-1391 . 701012) - (-1392 . 700845) (-1393 . 700262) (-1394 . 700084) (-1395 . 699775) - (-1396 . 699511) (-1397 . 699415) (-1398 . 699308) (-1399 . 699280) - (-1400 . 698962) (-1401 . 698795) (-1402 . 698763) (-1403 . 698646) - (-1404 . 698508) (-1405 . 698436) (-1406 . 698362) (-1407 . 698147) - (-1408 . 698094) (-1409 . 697341) (-1410 . 693674) (-1411 . 693603) - (-1412 . 693572) (-1413 . 693206) (-1414 . 693108) (-1415 . 693046) - (-1416 . 692874) (-1417 . 692387) (-1418 . 692076) (-1419 . 691443) - (-1420 . 689098) (-1421 . 689020) (-1422 . 688915) (-1423 . 688820) - (-1424 . 688577) (-1425 . 688489) (-1426 . 688026) (-1427 . 687598) - (-1428 . 687459) (-1429 . 686940) (-1430 . 686818) (-1431 . 686748) - (-1432 . 686406) (-1433 . 686196) (-1434 . 686032) (-1435 . 685674) - (-1436 . 685571) (-1437 . 685491) (-1438 . 685435) (-1439 . 685362) - (-1440 . 685207) (-1441 . 684556) (-1442 . 684366) (-1443 . 684250) - (-1444 . 684150) (-1445 . 684097) (-1446 . 684025) (-1447 . 683972) - (-1448 . 683587) (-1449 . 683446) (-1450 . 683288) (-1451 . 682837) - (-1452 . 682710) (-1453 . 682614) (-1454 . 682562) (-1455 . 682512) - (-1456 . 682412) (-1457 . 682362) (-1458 . 682279) (-1459 . 682226) - (-1460 . 682175) (-1461 . 682023) (** . 679029) (-1463 . 678948) - (-1464 . 678874) (-1465 . 678803) (-1466 . 676547) (-1467 . 676485) - (-1468 . 676189) (-1469 . 676095) (-1470 . 676029) (-1471 . 675649) - (-1472 . 675575) (-1473 . 675186) (-1474 . 675131) (-1475 . 675066) - (-1476 . 674995) (-1477 . 674894) (-1478 . 674791) (-1479 . 674506) - (-1480 . 674411) (-1481 . 674298) (-1482 . 674266) (-1483 . 674123) - (-1484 . 674039) (-1485 . 673805) (-1486 . 673675) (-1487 . 673618) - (-1488 . 673521) (-1489 . 673407) (-1490 . 673335) (-1491 . 673267) - (-1492 . 673104) (-1493 . 672967) (-1494 . 672886) (-1495 . 672773) - (-1496 . 672677) (-1497 . 672513) (-1498 . 672160) (-1499 . 672086) - (-1500 . 672014) (-1501 . 671930) (-1502 . 671759) (-1503 . 671197) - (-1504 . 671163) (-1505 . 671097) (-1506 . 670931) (-1507 . 670816) - (-1508 . 670651) (-1509 . 670619) (-1510 . 670501) (-1511 . 670418) - (-1512 . 670275) (-1513 . 670068) (-1514 . 669908) (-1515 . 669822) - (-1516 . 669463) (-1517 . 668165) (-1518 . 667925) (-1519 . 667829) - (-1520 . 667773) (-1521 . 667669) (-1522 . 667554) (-1523 . 667269) - (-1524 . 667100) (-1525 . 667040) (-1526 . 666939) (-1527 . 666711) - (-1528 . 666513) (-1529 . 666456) (-1530 . 666048) (-1531 . 665953) - (-1532 . 665829) (-1533 . 665734) (-1534 . 665638) (-1535 . 665545) - (-1536 . 665426) (-1537 . 665180) (-1538 . 664890) (-1539 . 664308) - (-1540 . 663949) (-1541 . 663680) (-1542 . 663561) (-1543 . 663018) - (-1544 . 662923) (-1545 . 662035) (-1546 . 661982) (-1547 . 661649) - (-1548 . 661554) (-1549 . 661334) (-1550 . 661266) (-1551 . 661019) - (-1552 . 660800) (-1553 . 660670) (-1554 . 660461) (-1555 . 660369) - (-1556 . 660025) (-1557 . 659577) (-1558 . 659365) (-1559 . 659316) - (-1560 . 659217) (-1561 . 659120) (-1562 . 659037) (-1563 . 658856) - (-1564 . 658801) (-1565 . 658714) (-1566 . 658601) (-1567 . 658402) - (-1568 . 658195) (-1569 . 658035) (-1570 . 657923) (-1571 . 657840) - (-1572 . 657695) (-1573 . 657103) (-1574 . 657003) (-1575 . 656800) - (-1576 . 656645) (-1577 . 656583) (-1578 . 656425) (-1579 . 656342) - (-1580 . 656283) (-1581 . 655862) (-1582 . 655766) (-1583 . 655575) - (-1584 . 655447) (-1585 . 654224) (-1586 . 654081) (-1587 . 654022) - (-1588 . 653511) (-1589 . 653370) (-1590 . 653252) (-1591 . 653065) - (-1592 . 652149) (-1593 . 652076) (-1594 . 651853) (-1595 . 651821) - (-1596 . 651723) (-1597 . 651550) (-1598 . 651375) (-1599 . 651196) - (-1600 . 651143) (-1601 . 650981) (-1602 . 650865) (-1603 . 650795) - (-1604 . 650603) (-1605 . 650272) (-1606 . 649558) (-1607 . 649462) - (-1608 . 649378) (-1609 . 649296) (-1610 . 648115) (-1611 . 647837) - (-1612 . 647718) (-1613 . 647666) (-1614 . 647481) (-1615 . 647337) - (-1616 . 646189) (-1617 . 646118) (-1618 . 645826) (-1619 . 645504) - (-1620 . 645349) (-1621 . 644053) (-1622 . 644001) (-1623 . 643871) - (-1624 . 643785) (-1625 . 643628) (-1626 . 643525) (-1627 . 643497) - (-1628 . 643187) (-1629 . 643073) (-1630 . 643003) (-1631 . 642920) - (-1632 . 642605) (-1633 . 642534) (-1634 . 642463) (-1635 . 642376) - (-1636 . 642325) (-1637 . 642215) (-1638 . 642161) (-1639 . 642133) - (-1640 . 642037) (-1641 . 641980) (-1642 . 641794) (-1643 . 641654) - (-1644 . 641529) (-1645 . 641471) (-1646 . 641341) (-1647 . 640958) - (-1648 . 640848) (-1649 . 640751) (-1650 . 640041) (-1651 . 639964) - (-1652 . 639866) (-1653 . 639783) (-1654 . 639670) (-1655 . 639452) - (-1656 . 639320) (-1657 . 639161) (-1658 . 638925) (-1659 . 638853) - (-1660 . 638776) (-1661 . 638266) (-1662 . 638162) (-1663 . 637971) - (-1664 . 637655) (-1665 . 637405) (-1666 . 637260) (-1667 . 636882) - (-1668 . 636804) (-1669 . 636698) (-1670 . 636601) (-1671 . 636410) - (-1672 . 636337) (-1673 . 636278) (-1674 . 636200) (-1675 . 636112) - (-1676 . 636075) (-1677 . 635894) (-1678 . 635798) (-1679 . 635496) - (-1680 . 635222) (-1681 . 635081) (-1682 . 634873) (-1683 . 634839) - (-1684 . 634780) (-1685 . 634573) (-1686 . 634464) (-1687 . 634366) - (-1688 . 634250) (-1689 . 634109) (-1690 . 634049) (-1691 . 633961) - (-1692 . 633876) (-1693 . 633820) (-1694 . 633635) (-1695 . 633467) - (-1696 . 633369) (-1697 . 633223) (-1698 . 632624) (-1699 . 632178) - (-1700 . 631319) (-1701 . 631245) (-1702 . 631101) (-1703 . 630780) - (-1704 . 630709) (-1705 . 630643) (-1706 . 630574) (-1707 . 630454) - (-1708 . 630402) (-1709 . 630239) (-1710 . 630162) (-1711 . 630043) - (-1712 . 628747) (-1713 . 628589) (-1714 . 628512) (-1715 . 628431) - (-1716 . 628360) (-1717 . 628199) (-1718 . 628116) (-1719 . 628064) - (-1720 . 627521) (-1721 . 627347) (-1722 . 627294) (-1723 . 627221) - (-1724 . 626847) (-1725 . 622840) (-1726 . 622569) (-1727 . 622463) - (-1728 . 621499) (-1729 . 621053) (-1730 . 620760) (-1731 . 620620) - (-1732 . 620349) (-1733 . 620211) (-1734 . 620159) (-1735 . 620107) - (-1736 . 620055) (-1737 . 619981) (-1738 . 619910) (-1739 . 619827) - (-1740 . 619759) (-1741 . 619580) (-1742 . 619553) (-1743 . 619474) - (-1744 . 619422) (-1745 . 619231) (-1746 . 619056) (-1747 . 618948) - (-1748 . 618895) (-1749 . 618778) (-1750 . 618530) (-1751 . 618136) - (-1752 . 618009) (-1753 . 617910) (-1754 . 617841) (-1755 . 617782) - (-1756 . 617624) (-1757 . 617546) (-1758 . 617484) (-1759 . 617387) - (-1760 . 617284) (-1761 . 617162) (-1762 . 617134) (-1763 . 617079) - (-1764 . 616646) (-1765 . 616347) (-1766 . 616295) (-1767 . 616236) - (-1768 . 615745) (-1769 . 615653) (-1770 . 614846) (-1771 . 614749) - (-1772 . 614325) (-1773 . 612559) (-1774 . 612341) (-1775 . 612284) - (-1776 . 612091) (-1777 . 612005) (-1778 . 611875) (-1779 . 611548) - (-1780 . 611446) (-1781 . 611390) (-1782 . 611335) (-1783 . 611237) - (-1784 . 609782) (-1785 . 609660) (-1786 . 609565) (-1787 . 609278) - (-1788 . 609226) (-1789 . 609045) (-1790 . 608943) (-1791 . 608845) - (-1792 . 608606) (-1793 . 608553) (-1794 . 607810) (-1795 . 604147) - (-1796 . 603956) (-1797 . 602466) (-1798 . 602416) (-1799 . 602366) - (-1800 . 602226) (-1801 . 602099) (-1802 . 601984) (-1803 . 601879) - (-1804 . 601605) (-1805 . 601176) (-1806 . 599208) (-1807 . 598913) - (-1808 . 597733) (-1809 . 597591) (-1810 . 597412) (-1811 . 597269) - (-1812 . 597212) (-1813 . 593913) (-1814 . 593815) (-1815 . 593568) - (-1816 . 593454) (-1817 . 592718) (-1818 . 592538) (-1819 . 592403) - (-1820 . 592275) (-1821 . 592025) (-1822 . 591897) (-1823 . 591793) - (-1824 . 591657) (-1825 . 590994) (-1826 . 590915) (-1827 . 590716) - (-1828 . 590553) (-1829 . 589885) (-1830 . 589438) (-1831 . 589385) - (-1832 . 589253) (-1833 . 589033) (-1834 . 588892) (-1835 . 588764) - (-1836 . 588676) (-1837 . 588599) (-1838 . 588358) (-1839 . 588271) - (-1840 . 588173) (-1841 . 588005) (-1842 . 587850) (-1843 . 587797) - (-1844 . 587559) (-1845 . 587507) (-1846 . 587318) (-1847 . 587236) - (-1848 . 587100) (-1849 . 586456) (-1850 . 586263) (-1851 . 586177) - (-1852 . 586053) (-1853 . 585987) (-1854 . 585928) (-1855 . 585419) - (-1856 . 585346) (-1857 . 584174) (-1858 . 584103) (-1859 . 584030) - (-1860 . 583797) (-1861 . 583599) (-1862 . 583508) (-1863 . 583404) - (-1864 . 583244) (-1865 . 583134) (-1866 . 582963) (-1867 . 582848) - (-1868 . 582668) (-1869 . 577499) (-1870 . 576397) (-1871 . 576039) - (-1872 . 575923) (-1873 . 575765) (-1874 . 575679) (-1875 . 575577) - (-1876 . 575443) (-1877 . 575387) (-1878 . 575359) (-1879 . 575300) - (-1880 . 575248) (-1881 . 575150) (-1882 . 575122) (-1883 . 573985) - (-1884 . 573895) (-1885 . 573713) (-1886 . 572628) (-1887 . 572462) - (-1888 . 572355) (-1889 . 572154) (-1890 . 572088) (-1891 . 572016) - (-1892 . 571931) (-1893 . 571756) (-1894 . 571678) (-1895 . 571610) - (-1896 . 571557) (-1897 . 571012) (-1898 . 570681) (-1899 . 570485) - (-1900 . 570243) (-1901 . 570071) (-1902 . 570043) (-1903 . 570015) - (-1904 . 569855) (-1905 . 569802) (-1906 . 569707) (-1907 . 569652) - (-1908 . 569593) (-1909 . 569488) (-1910 . 569337) (-1911 . 568855) - (-1912 . 568742) (-1913 . 568610) (-1914 . 568506) (-1915 . 568326) - (-1916 . 568016) (-1917 . 567840) (-1918 . 567775) (-1919 . 567722) - (-1920 . 567584) (-1921 . 567112) (-1922 . 567084) (-1923 . 566878) - (-1924 . 566687) (-1925 . 566604) (-1926 . 566260) (-1927 . 566208) - (-1928 . 565930) (-1929 . 565874) (-1930 . 565681) (-1931 . 565396) - (-1932 . 565316) (-1933 . 565257) (-1934 . 565133) (-1935 . 565040) - (-1936 . 564941) (-1937 . 564801) (-1938 . 564573) (-1939 . 564223) - (-1940 . 564149) (-1941 . 564058) (-1942 . 563916) (-1943 . 563750) - (-1944 . 563695) (-1945 . 563628) (-1946 . 563557) (-1947 . 563344) - (-1948 . 563184) (-1949 . 563113) (-1950 . 563061) (-1951 . 562937) - (-1952 . 562807) (-1953 . 562553) (-1954 . 562280) (-1955 . 562077) - (-1956 . 561982) (-1957 . 561846) (-1958 . 561552) (-1959 . 561394) - (-1960 . 561123) (-1961 . 560895) (-1962 . 560829) (-1963 . 560777) - (-1964 . 560619) (-1965 . 560490) (-1966 . 560217) (-1967 . 560074) - (-1968 . 559957) (-1969 . 559772) (-1970 . 559701) (-1971 . 559611) - (-1972 . 559413) (-1973 . 559379) (-1974 . 559272) (-1975 . 559186) - (-1976 . 558829) (-1977 . 558801) (-1978 . 558658) (-1979 . 558598) - (-1980 . 558474) (-1981 . 558210) (-1982 . 558095) (-1983 . 558025) - (-1984 . 557918) (-1985 . 557767) (-1986 . 557586) (-1987 . 557464) - (-1988 . 557410) (-1989 . 557306) (-1990 . 557139) (-1991 . 557016) - (-1992 . 556886) (-1993 . 556418) (-1994 . 556288) (-1995 . 556013) - (-1996 . 555900) (-1997 . 555771) (-1998 . 555660) (-1999 . 555461) - (-2000 . 555360) (-2001 . 555198) (-2002 . 555074) (-2003 . 554608) - (-2004 . 554292) (-2005 . 554196) (-2006 . 554042) (-2007 . 553724) - (-2008 . 553593) (-2009 . 553363) (-2010 . 553197) (-2011 . 553126) - (-2012 . 553047) (-2013 . 552785) (-2014 . 552687) (-2015 . 552593) - (-2016 . 552495) (-2017 . 552369) (-2018 . 552284) (-2019 . 552167) - (-2020 . 551895) (-2021 . 551609) (-2022 . 551535) (-2023 . 551467) - (-2024 . 551365) (-2025 . 551306) (-2026 . 551214) (-2027 . 551037) - (-2028 . 550978) (-2029 . 550919) (-2030 . 550724) (-2031 . 550671) - (-2032 . 550444) (-2033 . 550310) (-2034 . 550228) (-2035 . 549799) - (-2036 . 549646) (-2037 . 549489) (-2038 . 549439) (-2039 . 549278) - (-2040 . 549177) (-2041 . 548913) (-2042 . 548760) (-2043 . 548613) - (-2044 . 548462) (-2045 . 548383) (-2046 . 548220) (-2047 . 548150) - (-2048 . 548012) (-2049 . 547917) (-2050 . 547864) (-2051 . 547616) - (-2052 . 547532) (-2053 . 547362) (-2054 . 547154) (-2055 . 547080) - (-2056 . 547024) (-2057 . 546926) (-2058 . 546830) (-2059 . 546636) - (-2060 . 546483) (-2061 . 546433) (-2062 . 546143) (-2063 . 545997) - (-2064 . 545892) (-2065 . 545687) (-2066 . 545300) (-2067 . 545223) - (-2068 . 544961) (-2069 . 544927) (-2070 . 544798) (-2071 . 544732) - (-2072 . 544680) (-2073 . 544628) (-2074 . 544501) (-2075 . 544343) - (-2076 . 544224) (-2077 . 544136) (-2078 . 544067) (-2079 . 544018) - (-2080 . 543876) (-2081 . 543646) (-2082 . 543538) (-2083 . 543359) - (-2084 . 542938) (-2085 . 542866) (-2086 . 542668) (-2087 . 542362) - (-2088 . 542217) (-2089 . 542168) (-2090 . 541941) (-2091 . 541769) - (-2092 . 541717) (-2093 . 541308) (-2094 . 541216) (-2095 . 541145) - (-2096 . 541116) (-2097 . 540744) (-2098 . 540591) (-2099 . 540505) - (-2100 . 540409) (-2101 . 539449) (-2102 . 539327) (-2103 . 538743) - (-2104 . 538533) (-2105 . 537974) (-2106 . 537884) (-2107 . 537789) - (-2108 . 537578) (-2109 . 537381) (-2110 . 537127) (-2111 . 536325) - (-2112 . 536273) (-2113 . 536141) (-2114 . 535869) (-2115 . 535310) - (-2116 . 535197) (-2117 . 535098) (-2118 . 535031) (-2119 . 534949) - (-2120 . 534757) (-2121 . 534587) (-2122 . 534335) (-2123 . 534211) - (-2124 . 533965) (-2125 . 533906) (-2126 . 533591) (-2127 . 533291) - (-2128 . 532809) (-2129 . 532756) (-2130 . 532668) (-2131 . 532488) - (-2132 . 532306) (-2133 . 531977) (-2134 . 531748) (-2135 . 531592) - (-2136 . 531463) (-2137 . 531112) (-2138 . 530733) (-2139 . 530358) - (-2140 . 529831) (-2141 . 529700) (-2142 . 529596) (-2143 . 529431) - (-2144 . 529277) (-2145 . 529077) (-2146 . 528959) (-2147 . 528904) - (-2148 . 528654) (-2149 . 528521) (-2150 . 528194) (-2151 . 527552) - (-2152 . 527493) (-2153 . 527359) (-2154 . 527142) (-2155 . 526983) - (-2156 . 526899) (-2157 . 526784) (-2158 . 526706) (-2159 . 526307) - (-2160 . 526229) (-2161 . 526156) (-2162 . 526095) (-2163 . 526039) - (-2164 . 525956) (-2165 . 525621) (-2166 . 525506) (-2167 . 525418) - (-2168 . 525230) (-2169 . 525134) (-2170 . 524803) (-2171 . 524488) - (-2172 . 524408) (-2173 . 524281) (-2174 . 524064) (-2175 . 523897) - (-2176 . 523657) (-2177 . 523531) (-2178 . 523443) (-2179 . 523151) - (-2180 . 523086) (-2181 . 523006) (-2182 . 522612) (-2183 . 522441) - (-2184 . 522325) (-2185 . 522121) (-2186 . 522023) (-2187 . 521606) - (-2188 . 521294) (-2189 . 521136) (-2190 . 521074) (-2191 . 520835) - (-2192 . 520766) (-2193 . 520682) (-2194 . 520576) (-2195 . 520488) - (-2196 . 520451) (-2197 . 520060) (-2198 . 519525) (-2199 . 519453) - (-2200 . 519379) (-2201 . 519249) (-2202 . 519030) (-2203 . 518974) - (-2204 . 518444) (-2205 . 517953) (-2206 . 517904) (-2207 . 517451) - (-2208 . 517407) (-2209 . 517354) (-2210 . 516897) (-2211 . 516678) - (-2212 . 516597) (-2213 . 516513) (-2214 . 516367) (-2215 . 516048) - (-2216 . 514846) (-2217 . 514745) (-2218 . 514716) (-2219 . 514457) - (-2220 . 514066) (-2221 . 513920) (-2222 . 513847) (-2223 . 513818) - (-2224 . 513441) (-2225 . 513358) (-2226 . 513243) (-2227 . 513188) - (-2228 . 513027) (-2229 . 512874) (-2230 . 512708) (-2231 . 512627) - (-2232 . 512554) (-2233 . 512441) (-2234 . 512339) (-2235 . 512100) - (-2236 . 511948) (-2237 . 511830) (-2238 . 511305) (-2239 . 511176) - (-2240 . 511108) (-2241 . 510016) (-2242 . 509964) (-2243 . 509865) - (-2244 . 509689) (-2245 . 509507) (-2246 . 509425) (-2247 . 508828) - (-2248 . 508774) (-2249 . 508692) (-2250 . 508551) (-2251 . 508326) - (-2252 . 508046) (-2253 . 507938) (-2254 . 507793) (-2255 . 507690) - (-2256 . 507580) (-2257 . 507460) (-2258 . 507368) (-2259 . 507153) - (-2260 . 507125) (-2261 . 506900) (-2262 . 506686) (-2263 . 506590) - (-2264 . 506482) (-2265 . 506429) (-2266 . 506207) (-2267 . 506069) - (-2268 . 505983) (-2269 . 505949) (-2270 . 505785) (-2271 . 505299) - (-2272 . 504836) (-2273 . 504724) (-2274 . 504580) (-2275 . 504503) - (-2276 . 504333) (-2277 . 504115) (-2278 . 503867) (-2279 . 503749) - (-2280 . 503672) (-2281 . 503594) (-2282 . 503115) (-2283 . 503036) - (-2284 . 502153) (-2285 . 502125) (-2286 . 502051) (-2287 . 501876) - (-2288 . 501455) (-2289 . 501389) (-2290 . 501289) (-2291 . 501164) - (-2292 . 500946) (-2293 . 500850) (-2294 . 500671) (-2295 . 500468) - (-2296 . 500106) (-2297 . 499925) (-2298 . 499770) (-2299 . 499668) - (-2300 . 499191) (-2301 . 499108) (-2302 . 499014) (-2303 . 498890) - (-2304 . 498795) (-2305 . 498707) (-2306 . 498229) (-2307 . 498104) - (-2308 . 498016) (-2309 . 497921) (-2310 . 497394) (-2311 . 497366) - (-2312 . 497311) (-2313 . 497193) (-2314 . 497031) (-2315 . 496826) - (-2316 . 495249) (-2317 . 495108) (-2318 . 494043) (-2319 . 493705) - (-2320 . 493638) (-2321 . 493508) (-2322 . 493286) (-2323 . 493200) - (-2324 . 493042) (-2325 . 492666) (-2326 . 492443) (-2327 . 492377) - (-2328 . 492241) (-2329 . 491988) (-2330 . 491960) (-2331 . 491866) - (-2332 . 491255) (-2333 . 491075) (-2334 . 490972) (-2335 . 490328) - (-2336 . 490157) (-2337 . 490104) (-2338 . 489981) (-2339 . 489880) - (-2340 . 489810) (-2341 . 489577) (-2342 . 489422) (-2343 . 489215) - (-2344 . 489127) (-2345 . 489023) (-2346 . 488834) (-2347 . 488616) - (-2348 . 488530) (-2349 . 488243) (-2350 . 488172) (-2351 . 487830) - (-2352 . 487756) (-2353 . 487659) (-2354 . 487557) (-2355 . 487502) - (-2356 . 487354) (-2357 . 487181) (-2358 . 487104) (-2359 . 487014) - (-2360 . 486940) (-2361 . 486825) (-2362 . 486642) (-2363 . 486568) - (-2364 . 486491) (-2365 . 486179) (-2366 . 486034) (-2367 . 485670) - (-2368 . 485573) (-2369 . 485371) (-2370 . 485239) (-2371 . 485100) - (-2372 . 485006) (-2373 . 484710) (-2374 . 484655) (-2375 . 484442) - (-2376 . 484389) (-2377 . 483654) (-2378 . 483581) (-2379 . 483484) - (-2380 . 483429) (-2381 . 483088) (-2382 . 482975) (-2383 . 482813) - (-2384 . 482776) (-2385 . 482568) (-2386 . 482170) (-2387 . 481900) - (-2388 . 481794) (-2389 . 481501) (-2390 . 480917) (-2391 . 480852) - (-2392 . 480497) (-2393 . 480401) (-2394 . 480296) (-2395 . 480188) - (-2396 . 480025) (-2397 . 479907) (-2398 . 479807) (-2399 . 479649) - (-2400 . 479526) (-2401 . 479449) (-2402 . 479325) (-2403 . 478457) - (-2404 . 478176) (-2405 . 477930) (-2406 . 477537) (-2407 . 476676) - (-2408 . 476502) (-2409 . 476450) (-2410 . 476366) (-2411 . 476208) - (-2412 . 476151) (-2413 . 475993) (-2414 . 475792) (-2415 . 474600) - (-2416 . 474505) (-2417 . 474418) (-2418 . 474334) (-2419 . 474257) - (-2420 . 474059) (-2421 . 473976) (-2422 . 473631) (-2423 . 473443) - (-2424 . 473109) (-2425 . 472733) (-2426 . 472634) (-2427 . 472026) - (-2428 . 471659) (-2429 . 471329) (-2430 . 470895) (-2431 . 470843) - (-2432 . 470812) (-2433 . 469380) (-2434 . 469255) (-2435 . 469170) - (-2436 . 469139) (-2437 . 468846) (-2438 . 468703) (-2439 . 467884) - (-2440 . 467796) (-2441 . 467628) (-2442 . 467515) (-2443 . 466885) - (-2444 . 466296) (-2445 . 465987) (-2446 . 465914) (-2447 . 465771) - (-2448 . 465274) (-2449 . 465222) (-2450 . 465104) (-2451 . 465003) - (-2452 . 464926) (-2453 . 464642) (-2454 . 463825) (-2455 . 463715) - (-2456 . 463535) (-2457 . 463282) (-2458 . 462778) (-2459 . 462614) - (-2460 . 462498) (-2461 . 462403) (-2462 . 462211) (-2463 . 462129) - (-2464 . 462060) (-2465 . 462032) (-2466 . 461939) (-2467 . 461793) - (-2468 . 461640) (-2469 . 461321) (-2470 . 461221) (-2471 . 461149) - (-2472 . 460999) (-2473 . 460856) (-2474 . 460770) (-2475 . 460718) - (-2476 . 460637) (-2477 . 460533) (-2478 . 460481) (-2479 . 460414) - (-2480 . 460218) (-2481 . 460148) (-2482 . 460053) (-2483 . 459782) - (-2484 . 459700) (-2485 . 459628) (-2486 . 459554) (-2487 . 459444) - (-2488 . 459148) (-2489 . 459114) (-2490 . 458928) (-2491 . 458825) - (-2492 . 458724) (-2493 . 458656) (-2494 . 458603) (-2495 . 458435) - (-2496 . 458296) (-2497 . 458200) (-2498 . 458009) (-2499 . 457523) - (-2500 . 457489) (-2501 . 457208) (-2502 . 457155) (-2503 . 456768) - (-2504 . 456652) (-2505 . 456534) (-2506 . 456478) (-2507 . 456253) - (-2508 . 456193) (-2509 . 455986) (-2510 . 455849) (-2511 . 455631) - (-2512 . 455120) (-2513 . 455054) (-2514 . 454908) (-2515 . 454726) - (-2516 . 454627) (-2517 . 454428) (-2518 . 454333) (-2519 . 453926) - (-2520 . 453213) (-2521 . 452915) (-2522 . 452760) (-2523 . 452492) - (-2524 . 452412) (-2525 . 452338) (-2526 . 452232) (-2527 . 452126) - (-2528 . 452070) (-2529 . 451795) (-2530 . 451633) (-2531 . 451560) - (-2532 . 451457) (-2533 . 451198) (-2534 . 451076) (-2535 . 451024) - (-2536 . 450929) (-2537 . 450855) (-2538 . 450711) (-2539 . 449449) - (-2540 . 449363) (-2541 . 449303) (-2542 . 449210) (-2543 . 449104) - (-2544 . 448787) (-2545 . 448650) (-2546 . 448471) (-2547 . 448377) - (-2548 . 448249) (-2549 . 447896) (-2550 . 447764) (-2551 . 447667) - (-2552 . 447530) (-2553 . 447330) (-2554 . 445600) (-2555 . 445468) - (-2556 . 445364) (-2557 . 445102) (-2558 . 444766) (-2559 . 444109) - (-2560 . 444016) (-2561 . 443925) (-2562 . 443817) (-2563 . 443760) - (-2564 . 443605) (-2565 . 443303) (-2566 . 443230) (-2567 . 443142) - (-2568 . 443090) (-2569 . 442988) (-2570 . 442865) (-2571 . 442763) - (-2572 . 442447) (-2573 . 442344) (-2574 . 442173) (-2575 . 442099) - (-2576 . 441988) (-2577 . 441907) (-2578 . 441805) (-2579 . 441776) - (-2580 . 441460) (-2581 . 441379) (-2582 . 440806) (-2583 . 440665) - (-2584 . 440534) (-2585 . 440239) (-2586 . 439869) (-2587 . 439770) - (-2588 . 439738) (-2589 . 439606) (-2590 . 439426) (-2591 . 439273) - (-2592 . 439185) (-2593 . 438929) (-2594 . 438770) (-2595 . 438718) - (-2596 . 438623) (-2597 . 438508) (-2598 . 438380) (-2599 . 438324) - (-2600 . 438260) (-2601 . 437531) (-2602 . 437454) (-2603 . 437143) - (-2604 . 437115) (-2605 . 436529) (-2606 . 436498) (-2607 . 436392) - (-2608 . 436339) (-2609 . 436287) (-2610 . 436167) (-2611 . 435816) - (-2612 . 435220) (-2613 . 435109) (-2614 . 434380) (-2615 . 434306) - (-2616 . 434150) (-2617 . 434070) (-2618 . 433974) (-2619 . 433607) - (-2620 . 433529) (-2621 . 433213) (-2622 . 433132) (-2623 . 433025) - (-2624 . 432887) (-2625 . 432817) (-2626 . 432141) (-2627 . 432002) - (-2628 . 431456) (-2629 . 430915) (-2630 . 430846) (-2631 . 430774) - (-2632 . 430608) (-2633 . 430445) (-2634 . 430335) (-2635 . 429771) - (-2636 . 429718) (-2637 . 429534) (-2638 . 429506) (-2639 . 429443) - (-2640 . 429225) (-2641 . 429144) (-2642 . 428549) (-2643 . 428349) - (-2644 . 428321) (-2645 . 428150) (-2646 . 428005) (-2647 . 427441) - (-2648 . 427298) (-2649 . 427126) (-2650 . 427026) (-2651 . 426882) - (-2652 . 426757) (-2653 . 426642) (-2654 . 426549) (-2655 . 426465) - (-2656 . 426161) (-2657 . 422001) (-2658 . 421949) (-2659 . 421871) - (-2660 . 421662) (-2661 . 421098) (-2662 . 419872) (-2663 . 419700) - (-2664 . 419645) (-2665 . 419549) (-2666 . 419449) (-2667 . 419341) - (-2668 . 419247) (-2669 . 419109) (-2670 . 419043) (-2671 . 418786) - (-2672 . 418268) (-2673 . 418084) (-2674 . 417977) (-2675 . 417303) - (-2676 . 417131) (-2677 . 416941) (-2678 . 416891) (-2679 . 416836) - (-2680 . 416759) (-2681 . 416597) (-2682 . 416548) (-2683 . 416451) - (-2684 . 416057) (-2685 . 415938) (-2686 . 415861) (-2687 . 415691) - (-2688 . 415554) (-2689 . 414880) (-2690 . 414708) (-2691 . 414530) - (-2692 . 414430) (-2693 . 414086) (-2694 . 413246) (-2695 . 412800) - (-2696 . 412726) (-2697 . 412610) (-2698 . 412557) (-2699 . 412523) - (-2700 . 412320) (-2701 . 411583) (-2702 . 411399) (-2703 . 411247) - (-2704 . 411164) (-2705 . 410976) (-2706 . 410390) (-2707 . 409982) - (-2708 . 409835) (-2709 . 409798) (-2710 . 409745) (-2711 . 409648) - (-2712 . 409086) (-2713 . 408698) (-2714 . 408601) (-2715 . 408431) - (-2716 . 408270) (-2717 . 408138) (-2718 . 407887) (-2719 . 407691) - (-2720 . 407663) (-2721 . 406798) (-2722 . 406727) (-2723 . 406165) - (-2724 . 406097) (-2725 . 405130) (-2726 . 404988) (-2727 . 404875) - (-2728 . 404780) (-2729 . 404643) (-2730 . 404416) (-2731 . 404272) - (-2732 . 404186) (-2733 . 403996) (-2734 . 403434) (-2735 . 403382) - (-2736 . 403193) (-2737 . 403140) (-2738 . 403090) (-2739 . 402604) - (-2740 . 402289) (-2741 . 402219) (-2742 . 401973) (-2743 . 401920) - (-2744 . 401297) (-2745 . 401231) (-2746 . 400556) (-2747 . 400472) - (-2748 . 400398) (-2749 . 400296) (-2750 . 400109) (-2751 . 399706) - (-2752 . 399651) (-2753 . 399593) (-2754 . 399500) (-2755 . 399430) - (-2756 . 399270) (-2757 . 399135) (-2758 . 398460) (-2759 . 398402) - (-2760 . 398314) (-2761 . 398240) (-2762 . 397976) (-2763 . 397773) - (-2764 . 397574) (-2765 . 397502) (-2766 . 397243) (-2767 . 397040) - (-2768 . 396793) (-2769 . 396765) (-2770 . 396664) (-2771 . 395989) - (-2772 . 395810) (-2773 . 395623) (-2774 . 395409) (-2775 . 395290) - (-2776 . 395118) (-2777 . 394983) (-2778 . 394671) (-2779 . 394521) - (-2780 . 394402) (-2781 . 394106) (-2782 . 393954) (-2783 . 393391) - (-2784 . 393267) (-2785 . 393163) (-2786 . 393060) (-2787 . 392886) - (-12 . 392714) (-2789 . 392589) (-2790 . 392487) (-2791 . 392409) - (-2792 . 392358) (-2793 . 391621) (-2794 . 391204) (-2795 . 390609) - (-2796 . 390543) (-2797 . 390420) (-2798 . 390271) (-2799 . 390108) - (-2800 . 389950) (-2801 . 389859) (-2802 . 389256) (-2803 . 389129) - (-2804 . 388988) (-2805 . 388960) (-2806 . 388909) (-2807 . 388765) - (-2808 . 388713) (-2809 . 388320) (-2810 . 388073) (-2811 . 387927) - (-2812 . 387630) (-2813 . 387485) (-2814 . 387430) (-2815 . 387143) - (-2816 . 387070) (-2817 . 387000) (-2818 . 386790) (-2819 . 386676) - (-2820 . 386624) (-2821 . 386354) (-2822 . 386296) (-2823 . 386230) - (-2824 . 386148) (-2825 . 386020) (-2826 . 385965) (-2827 . 385913) - (-2828 . 385754) (-2829 . 385705) (-2830 . 385525) (-2831 . 385138) - (-2832 . 384306) (-2833 . 384056) (-2834 . 383510) (-2835 . 383394) - (-2836 . 383362) (-2837 . 383283) (-2838 . 383177) (-2839 . 382899) - (-2840 . 382818) (-2841 . 382634) (-2842 . 382534) (-2843 . 382456) - (-2844 . 382385) (-2845 . 382282) (-2846 . 381803) (-2847 . 381714) - (-2848 . 381218) (-2849 . 381107) (-2850 . 380029) (-2851 . 379919) - (-2852 . 379860) (-2853 . 379808) (-2854 . 379728) (-2855 . 379505) - (-2856 . 379436) (-2857 . 379156) (-2858 . 379082) (-2859 . 378998) - (-2860 . 378940) (-2861 . 378701) (-2862 . 378436) (-2863 . 378358) - (-2864 . 378285) (-2865 . 378195) (-2866 . 377834) (-2867 . 377778) - (-2868 . 377605) (-2869 . 377526) (-2870 . 377441) (-2871 . 377362) - (-2872 . 377258) (-2873 . 377190) (-2874 . 376793) (-2875 . 376694) - (-2876 . 376622) (-2877 . 376456) (-2878 . 376355) (-2879 . 375841) - (-2880 . 375774) (-2881 . 375722) (-2882 . 375503) (-2883 . 375315) - (-2884 . 374966) (-2885 . 374892) (* . 370625) (-2887 . 370467) - (-2888 . 370187) (-2889 . 370064) (-2890 . 369966) (-2891 . 369897) - (-2892 . 369679) (-2893 . 369291) (-2894 . 369206) (-2895 . 369099) - (-2896 . 369025) (-2897 . 368945) (-2898 . 368846) (-2899 . 368751) - (-2900 . 368497) (-2901 . 367796) (-2902 . 367695) (-2903 . 367572) - (-2904 . 367493) (-2905 . 366814) (-2906 . 366751) (-2907 . 366696) - (-2908 . 366645) (-2909 . 366529) (-2910 . 366443) (-2911 . 366394) - (-2912 . 366284) (-2913 . 366189) (-2914 . 366052) (-2915 . 365807) - (-2916 . 365750) (-2917 . 365559) (-2918 . 365394) (-2919 . 364051) - (-2920 . 363779) (-2921 . 363602) (-2922 . 363507) (-2923 . 363312) - (-2924 . 362710) (-2925 . 362527) (-2926 . 362160) (-2927 . 361995) - (-2928 . 361935) (-2929 . 361816) (-2930 . 361711) (-2931 . 361623) - (-2932 . 361541) (-2933 . 361149) (-2934 . 360863) (-2935 . 360797) - (-2936 . 360765) (-2937 . 360276) (-2938 . 360193) (-2939 . 359678) - (-2940 . 359604) (-2941 . 359350) (-2942 . 359144) (-2943 . 359028) - (-2944 . 358797) (-2945 . 358701) (-2946 . 358548) (-2947 . 358445) - (-2948 . 358244) (-2949 . 358173) (-2950 . 358045) (-2951 . 357837) - (-2952 . 357712) (-2953 . 357539) (-2954 . 357510) (-2955 . 357311) - (-2956 . 357224) (-2957 . 356967) (-2958 . 356879) (-2959 . 356737) - (-2960 . 356505) (-2961 . 356362) (-2962 . 356223) (-2963 . 356095) - (-2964 . 356000) (-2965 . 355928) (-2966 . 355769) (-2967 . 355716) - (-2968 . 355657) (-2969 . 355598) (-2970 . 354710) (-2971 . 354624) - (-2972 . 354556) (-2973 . 354473) (-2974 . 353599) (-2975 . 353407) - (-2976 . 353155) (-2977 . 353076) (-2978 . 352989) (-2979 . 352855) - (-2980 . 352724) (-2981 . 352406) (-2982 . 352297) (-2983 . 352269) - (-2984 . 352174) (-2985 . 352065) (-2986 . 351941) (-2987 . 351889) - (-2988 . 351746) (-2989 . 351642) (-2990 . 351548) (-2991 . 351344) - (-2992 . 351150) (-2993 . 351087) (-2994 . 350865) (-2995 . 350655) - (-2996 . 350627) (-2997 . 350353) (-2998 . 350299) (-2999 . 350040) - (-3000 . 349667) (-3001 . 349593) (-3002 . 349540) (-3003 . 349285) - (-3004 . 349043) (-3005 . 348863) (-3006 . 348743) (-3007 . 348688) - (-3008 . 348635) (-3009 . 348475) (-3010 . 348173) (-3011 . 347932) - (-3012 . 346746) (-3013 . 346319) (-3014 . 346067) (-3015 . 345792) - (-3016 . 345581) (-3017 . 345043) (-3018 . 345015) (-3019 . 344786) - (-3020 . 344715) (-3021 . 344572) (-3022 . 344501) (-3023 . 344216) - (-3024 . 343034) (-3025 . 342939) (-3026 . 342857) (-3027 . 342769) - (-3028 . 342712) (-3029 . 342272) (-3030 . 342176) (-3031 . 342118) - (-3032 . 342066) (-3033 . 342014) (-3034 . 341912) (-3035 . 339704) - (-3036 . 339591) (-3037 . 339563) (-3038 . 338996) (-3039 . 338944) - (-3040 . 338628) (-3041 . 338376) (-3042 . 338167) (-3043 . 338040) - (-3044 . 337987) (-3045 . 337644) (-3046 . 337612) (-3047 . 337467) - (-3048 . 337415) (-3049 . 337321) (-3050 . 337111) (-3051 . 336434) - (-9 . 336406) (-3053 . 336305) (-3054 . 336221) (-3055 . 336103) - (-3056 . 335757) (-3057 . 335704) (-3058 . 335648) (-3059 . 334945) - (-3060 . 334859) (-3061 . 334781) (-3062 . 334665) (-3063 . 334565) - (-3064 . 334508) (-8 . 334480) (-3066 . 334295) (-3067 . 334116) - (-3068 . 334021) (-3069 . 333967) (-3070 . 333897) (-3071 . 333844) - (-3072 . 333563) (-3073 . 333464) (-3074 . 333295) (-7 . 333267) - (-3076 . 333196) (-3077 . 333095) (-3078 . 333026) (-3079 . 332821) - (-3080 . 332752) (-3081 . 332678) (-3082 . 332612) (-3083 . 331876) - (-3084 . 331627) (-3085 . 331449) (-3086 . 330232) (-3087 . 330053) - (-3088 . 329731) (-3089 . 329594) (-3090 . 329511) (-3091 . 328835) - (-3092 . 328669) (-3093 . 328609) (-3094 . 328521) (-3095 . 328419) - (-3096 . 328342) (-3097 . 327552) (-3098 . 327345) (-3099 . 327076) - (-3100 . 327024) (-3101 . 326966) (-3102 . 326732) (-3103 . 326654) - (-3104 . 326620) (-3105 . 325804) (-3106 . 325646) (-3107 . 325576) - (-3108 . 325475) (-3109 . 324868) (-3110 . 324424) (-3111 . 324352) - (-3112 . 324224) (-3113 . 324129) (-3114 . 324077) (-3115 . 324021) - (-3116 . 322243) (-3117 . 322134) (-3118 . 322041) (-3119 . 321894) - (-3120 . 321755) (-3121 . 321315) (-3122 . 321163) (-3123 . 321024) - (-3124 . 320950) (-3125 . 320721) (-3126 . 320589) (-3127 . 320490) - (-3128 . 320371) (-3129 . 320231) (-3130 . 320102) (-3131 . 317874) - (-3132 . 317846) (-3133 . 317763) (-3134 . 317626) (-3135 . 317569) - (-3136 . 317289) (-3137 . 317237) (-3138 . 317174) (-3139 . 316146) - (-3140 . 315720) (-3141 . 315667) (-3142 . 315498) (-3143 . 315433) - (-3144 . 315325) (-3145 . 315196) (-3146 . 315081) (-3147 . 314978) - (-3148 . 314847) (-3149 . 314726) (-3150 . 309387) (-3151 . 309286) - (-3152 . 309168) (-3153 . 309094) (-3154 . 309039) (-3155 . 308976) - (-3156 . 308921) (-3157 . 308537) (-3158 . 308459) (-3159 . 308407) - (-3160 . 308312) (-3161 . 308064) (-3162 . 307759) (-3163 . 307706) - (-3164 . 307677) (-3165 . 307581) (-3166 . 306383) (-3167 . 306136) - (-3168 . 306012) (-3169 . 305765) (-3170 . 305446) (-3171 . 305387) - (-3172 . 305280) (-3173 . 305147) (-3174 . 305087) (-3175 . 305008) - (-3176 . 304904) (-3177 . 304517) (-3178 . 304402) (-3179 . 304180) - (-3180 . 304120) (-3181 . 303995) (-3182 . 303889) (-3183 . 303746) - (-3184 . 303631) (-3185 . 303289) (-3186 . 303202) (-3187 . 303128) - (-3188 . 302902) (-3189 . 302744) (-3190 . 302692) (-3191 . 302588) - (-3192 . 302525) (-3193 . 302406) (-3194 . 301860) (-3195 . 301774) - (-3196 . 301404) (-3197 . 301053) (-3198 . 300574) (-3199 . 300522) - (-3200 . 300427) (-3201 . 300297) (-3202 . 300187) (-3203 . 299927) - (-3204 . 299827) (-3205 . 299744) (-3206 . 299678) (-3207 . 299599) - (-3208 . 299475) (-3209 . 298294) (-3210 . 297720) (-3211 . 297686) - (-3212 . 297613) (-3213 . 297223) (-3214 . 297151) (-3215 . 297074) - (-3216 . 296454) (-3217 . 296357) (-3218 . 286907) (-3219 . 286854) - (-3220 . 286748) (-3221 . 286716) (-3222 . 286688) (-3223 . 286515) - (-3224 . 286326) (-3225 . 286080) (-3226 . 285748) (-3227 . 285647) - (-3228 . 285574) (-3229 . 285475) (-3230 . 285441) (-3231 . 285090) - (-3232 . 284666) (-3233 . 284555) (-3234 . 284390) (-3235 . 283854) - (-3236 . 283608) (-3237 . 283510) (-3238 . 283217) (-3239 . 283140) - (-3240 . 282713) (-3241 . 282629) (-3242 . 282105) (-3243 . 282041) - (-3244 . 281958) (-3245 . 281690) (-3246 . 281535) (-3247 . 281349) - (-3248 . 281297) (-3249 . 281111) (-3250 . 280660) (-3251 . 280471) - (-3252 . 280235) (-3253 . 280027) (-3254 . 279884) (-3255 . 279807) - (-3256 . 279712) (-3257 . 279502) (-3258 . 279424) (-3259 . 279301) - (-3260 . 279105) (-3261 . 279053) (-3262 . 278938) (-3263 . 278782) - (-3264 . 278599) (-3265 . 278490) (-3266 . 277714) (-3267 . 277641) - (-3268 . 277492) (-3269 . 277398) (-3270 . 277333) (-3271 . 277083) - (-3272 . 275655) (-3273 . 275540) (-3274 . 275392) (-3275 . 275339) - (-3276 . 274865) (-3277 . 274795) (-3278 . 274369) (-3279 . 274295) - (-3280 . 273953) (-3281 . 273894) (-3282 . 273865) (-3283 . 273227) - (-3284 . 272847) (-3285 . 272733) (-3286 . 272701) (-3287 . 272539) - (-3288 . 272346) (-3289 . 272292) (-3290 . 272165) (-3291 . 272057) - (-3292 . 271977) (-3293 . 271865) (-3294 . 271632) (-3295 . 271546) - (-3296 . 271451) (-3297 . 271367) (-3298 . 271314) (-3299 . 271261) - (-3300 . 271159) (-3301 . 271003) (-3302 . 270785) (-3303 . 270656) - (-3304 . 270526) (-3305 . 270293) (-3306 . 270219) (-3307 . 270166) - (-3308 . 270093) (-3309 . 270020) (-3310 . 269963) (-3311 . 269890) - (-3312 . 269763) (-3313 . 269624) (-3314 . 269572) (-3315 . 269442) - (-3316 . 269358) (-3317 . 269106) (-3318 . 269037) (-3319 . 268655) - (-3320 . 268490) (-3321 . 268407) (-3322 . 268248) (-3323 . 265407) - (-3324 . 265337) (-3325 . 265224) (-3326 . 265089) (-3327 . 265018) - (-3328 . 264858) (-3329 . 264698) (-3330 . 264618) (-3331 . 264345) - (-3332 . 264202) (-3333 . 263835) (-3334 . 263783) (-3335 . 263699) - (-3336 . 263646) (-3337 . 263131) (-3338 . 263036) (-3339 . 262981) - (-3340 . 262931) (-3341 . 262693) (-3342 . 262607) (-3343 . 262519) - (-3344 . 262361) (-3345 . 262306) (-3346 . 261919) (-3347 . 261857) - (-3348 . 261581) (-3349 . 261402) (-3350 . 261162) (-3351 . 260994) - (-3352 . 259654) (-3353 . 259534) (-3354 . 259463) (-3355 . 259410) - (-3356 . 259382) (-3357 . 259272) (-3358 . 258841) (-3359 . 258753) - (-3360 . 258599) (-3361 . 258531) (-3362 . 257980) (-3363 . 257690) - (-3364 . 257612) (-3365 . 257529) (-3366 . 257250) (-3367 . 257015) - (-3368 . 256956) (-3369 . 256801) (-3370 . 256773) (-3371 . 256721) - (-3372 . 256500) (-3373 . 256384) (-3374 . 256211) (-3375 . 256091) - (-3376 . 255844) (-3377 . 255026) (-3378 . 254897) (-3379 . 254778) - (-3380 . 254500) (-3381 . 254372) (-3382 . 254257) (-3383 . 254135) - (-3384 . 254032) (-3385 . 253888) (-3386 . 253090) (-3387 . 252843) - (-3388 . 252762) (-3389 . 252396) (-3390 . 252126) (-3391 . 251715) - (-3392 . 251649) (-3393 . 251580) (-3394 . 251484) (-3395 . 251346) - (-3396 . 251046) (-3397 . 250841) (-3398 . 250789) (-3399 . 250760) - (-3400 . 250501) (-3401 . 250446) (-3402 . 250393) (-3403 . 250275) - (-3404 . 249790) (-3405 . 249713) (-3406 . 249090) (-3407 . 248952) - (-3408 . 248811) (-3409 . 248281) (-3410 . 248179) (-3411 . 248038) - (-3412 . 247983) (-3413 . 247899) (-3414 . 247816) (-3415 . 247640) - (-3416 . 247445) (-3417 . 247388) (-3418 . 247311) (-3419 . 247079) - (-3420 . 246985) (-3421 . 246524) (-3422 . 246435) (-3423 . 246361) - (-3424 . 246265) (-3425 . 246194) (-3426 . 246090) (-3427 . 245963) - (-3428 . 245816) (-3429 . 245739) (-3430 . 245669) (-3431 . 245250) - (-3432 . 245195) (-3433 . 245109) (-3434 . 245011) (-3435 . 244957) - (-3436 . 244875) (-3437 . 244781) (-3438 . 244603) (-3439 . 244428) - (-3440 . 244351) (-3441 . 244298) (-3442 . 243228) (-3443 . 243149) - (-3444 . 243061) (-3445 . 242965) (-3446 . 242305) (-3447 . 242250) - (-3448 . 242198) (-3449 . 241610) (-3450 . 241365) (-3451 . 240974) - (-3452 . 240921) (-3453 . 240860) (-3454 . 240776) (-3455 . 240705) - (-3456 . 240566) (-3457 . 240538) (-3458 . 240443) (-3459 . 240279) - (-3460 . 240164) (-3461 . 239828) (-3462 . 239604) (-3463 . 239532) - (-3464 . 239476) (-3465 . 239375) (-3466 . 238887) (-3467 . 238680) - (-3468 . 238612) (-3469 . 238563) (-3470 . 238500) (-3471 . 238351) - (-3472 . 238285) (-3473 . 237349) (-3474 . 237236) (-3475 . 237135) - (-3476 . 236855) (-3477 . 236707) (-3478 . 236513) (-3479 . 235592) - (-3480 . 235381) (-3481 . 235204) (-3482 . 235152) (-3483 . 234934) - (-3484 . 234846) (-3485 . 234680) (-3486 . 234524) (-3487 . 234439) - (-3488 . 234009) (-3489 . 233938) (-3490 . 233765) (-3491 . 233585) - (-3492 . 233493) (-3493 . 233395) (-3494 . 232877) (-3495 . 232758) - (-3496 . 232614) (-3497 . 232286) (-3498 . 232143) (-3499 . 232106) - (-3500 . 231888) (-3501 . 231821) (-3502 . 231717) (-3503 . 231559) - (-3504 . 231482) (-3505 . 231448) (-3506 . 231356) (-3507 . 231146) - (-3508 . 231033) (-3509 . 230466) (-3510 . 230038) (-3511 . 229753) - (-3512 . 229456) (-3513 . 228843) (-3514 . 228416) (-3515 . 228364) - (-3516 . 227500) (-3517 . 225338) (-3518 . 225160) (-3519 . 225074) - (-3520 . 224852) (-3521 . 224517) (-3522 . 224096) (-3523 . 223971) - (-3524 . 223875) (-3525 . 223448) (-3526 . 223347) (-3527 . 223281) - (-3528 . 223131) (-3529 . 222916) (-3530 . 222760) (-3531 . 222704) - (-3532 . 222627) (-3533 . 222530) (-3534 . 222312) (-3535 . 222189) - (-3536 . 222055) (-3537 . 221993) (-3538 . 221915) (-3539 . 221830) - (-3540 . 221756) (-3541 . 221690) (-3542 . 221561) (-3543 . 220922) - (-3544 . 220630) (-3545 . 220602) (-3546 . 220431) (-3547 . 220377) - (-3548 . 219813) (-3549 . 219745) (-3550 . 219646) (-3551 . 219551) - (-3552 . 219485) (-3553 . 219426) (-3554 . 219263) (-3555 . 219205) - (-3556 . 219131) (-3557 . 218748) (-3558 . 218584) (-3559 . 218138) - (-3560 . 217899) (-3561 . 217826) (-3562 . 217695) (-3563 . 217591) - (-3564 . 217438) (-3565 . 217201) (-3566 . 217024) (-3567 . 216602) - (-3568 . 216260) (-3569 . 216128) (-3570 . 216094) (-3571 . 215968) - (-3572 . 215836) (-3573 . 215190) (-3574 . 215036) (-3575 . 214924) - (-3576 . 214756) (-3577 . 214517) (-3578 . 214434) (-3579 . 207491) - (-3580 . 207339) (-3581 . 207011) (-3582 . 206867) (-3583 . 206724) - (-3584 . 206543) (-3585 . 205701) (-3586 . 205109) (-3587 . 205013) - (-3588 . 204923) (-3589 . 204778) (-3590 . 204486) (-3591 . 204312) - (-3592 . 204256) (-3593 . 204225) (-3594 . 203986) (-3595 . 203958) - (-3596 . 203860) (-3597 . 203738) (-3598 . 200129) (-3599 . 199778) - (-3600 . 199642) (-3601 . 199590) (-3602 . 199471) (-3603 . 199411) - (-3604 . 199283) (-3605 . 199002) (-3606 . 198856) (-3607 . 198637) - (-3608 . 198463) (-3609 . 198323) (-3610 . 198255) (-3611 . 198111) - (-3612 . 197736) (-3613 . 197431) (-3614 . 197337) (-3615 . 196458) - (-3616 . 196378) (-3617 . 196237) (-3618 . 196178) (-3619 . 196041) - (-3620 . 195834) (-3621 . 195754) (-3622 . 195647) (-3623 . 195531) - (-3624 . 195431) (-3625 . 195397) (-3626 . 195309) (-3627 . 195191) - (-3628 . 195135) (-3629 . 195073) (-3630 . 194979) (-3631 . 194781) - (-3632 . 194665) (-3633 . 194555) (-3634 . 194459) (-3635 . 194083) - (-3636 . 193645) (-3637 . 193579) (-3638 . 193422) (-3639 . 193226) - (-3640 . 193152) (-3641 . 192985) (-3642 . 192854) (-3643 . 192804) - (-3644 . 192428) (-3645 . 192253) (-3646 . 192147) (-3647 . 191838) - (-3648 . 191644) (-3649 . 191486) (-3650 . 191363) (-3651 . 191208) - (-3652 . 191086) (-3653 . 191033) (-3654 . 190819) (-3655 . 190639) - (-3656 . 190569) (-3657 . 190513) (-3658 . 190035) (-3659 . 189973) - (-3660 . 189815) (-3661 . 189566) (-3662 . 189413) (-3663 . 189351) - (-3664 . 189220) (-3665 . 188997) (-3666 . 188936) (-3667 . 188778) - (-3668 . 188726) (-3669 . 188476) (-3670 . 188349) (-3671 . 188294) - (-3672 . 187913) (-3673 . 187521) (-3674 . 187326) (-3675 . 187178) - (-3676 . 187105) (-3677 . 186968) (-3678 . 186869) (-3679 . 186788) - (-3680 . 186703) (-3681 . 186362) (-3682 . 186263) (-3683 . 186145) - (-3684 . 186061) (-3685 . 185908) (-3686 . 185836) (-3687 . 185392) - (-3688 . 185273) (-3689 . 185171) (-3690 . 184997) (-3691 . 184927) - (-3692 . 184818) (-3693 . 184732) (-3694 . 184672) (-3695 . 184380) - (-3696 . 184309) (-3697 . 184249) (-3698 . 184180) (-3699 . 184066) - (-3700 . 184011) (-3701 . 183927) (-3702 . 183754) (-3703 . 183596) - (-3704 . 183380) (-3705 . 183279) (-3706 . 183184) (-3707 . 183051) - (-3708 . 182977) (-3709 . 182560) (-3710 . 182234) (-3711 . 182144) - (-3712 . 181896) (-3713 . 179764) (-3714 . 179273) (-3715 . 179189) - (-3716 . 179074) (-3717 . 178690) (-3718 . 178556) (-3719 . 178504) - (-3720 . 178362) (-3721 . 178207) (-3722 . 177964) (-3723 . 177892) - (-3724 . 177840) (-3725 . 177545) (-3726 . 177307) (-3727 . 177134) - (-3728 . 176807) (-3729 . 176751) (-3730 . 176532) (-3731 . 176387) - (-3732 . 176317) (-3733 . 176218) (-3734 . 176065) (-3735 . 175944) - (-3736 . 175882) (-3737 . 175766) (-3738 . 175678) (-3739 . 175573) - (-3740 . 175349) (-3741 . 175201) (-3742 . 174970) (-3743 . 174831) - (-3744 . 174752) (-3745 . 174608) (-3746 . 173513) (-3747 . 173446) - (-3748 . 173329) (-3749 . 173171) (-3750 . 172946) (-3751 . 172815) - (-3752 . 172718) (-3753 . 172540) (-3754 . 172437) (-3755 . 172322) - (-3756 . 172252) (-3757 . 172034) (-3758 . 171829) (-3759 . 171669) - (-3760 . 171109) (-3761 . 171055) (-3762 . 170942) (-3763 . 170725) - (-3764 . 169452) (-3765 . 169314) (-3766 . 168876) (-3767 . 167474) - (-3768 . 167321) (-3769 . 166687) (-3770 . 166324) (-3771 . 166172) - (-3772 . 165916) (-3773 . 165812) (-3774 . 165701) (-3775 . 165607) - (-3776 . 165175) (-3777 . 165039) (-3778 . 164944) (-3779 . 164658) - (-3780 . 164447) (-3781 . 164368) (-3782 . 164289) (-3783 . 164041) - (-3784 . 163945) (-3785 . 163844) (-3786 . 163761) (-3787 . 163623) - (-3788 . 163397) (-3789 . 163344) (-3790 . 163290) (-3791 . 163118) - (-3792 . 162827) (-3793 . 162733) (-3794 . 162677) (-3795 . 162574) - (-3796 . 143999) (-3797 . 143899) (-3798 . 143781) (-3799 . 143614) - (-3800 . 138100) (-3801 . 138005) (-3802 . 137842) (-3803 . 137775) - (-3804 . 137677) (-3805 . 137341) (-3806 . 137262) (-3807 . 137155) - (-3808 . 136796) (-3809 . 133975) (-3810 . 133916) (-3811 . 133664) - (-3812 . 133546) (-3813 . 133153) (-3814 . 132935) (-3815 . 132816) - (-3816 . 132742) (-3817 . 132674) (-3818 . 132251) (-3819 . 132144) - (-3820 . 131979) (-3821 . 131821) (-3822 . 131761) (-3823 . 131660) - (-3824 . 131218) (-3825 . 131138) (-3826 . 131023) (-3827 . 130927) - (-3828 . 130796) (-3829 . 129010) (-3830 . 128686) (-3831 . 128476) - (-3832 . 127943) (-3833 . 127561) (-3834 . 127334) (-3835 . 127211) - (-3836 . 126876) (-3837 . 126803) (-3838 . 126585) (-3839 . 126484) - (-3840 . 126407) (-3841 . 126056) (-3842 . 125982) (-3843 . 125812) - (-3844 . 125364) (-3845 . 124688) (-3846 . 124456) (-3847 . 124237) - (-3848 . 124157) (-3849 . 123885) (-3850 . 123690) (-3851 . 123537) - (-3852 . 123033) (-3853 . 122967) (-3854 . 122894) (-3855 . 122290) - (-3856 . 122218) (-3857 . 121951) (-3858 . 121814) (-3859 . 121439) - (-3860 . 121297) (-3861 . 121171) (-3862 . 121066) (-3863 . 120965) - (-3864 . 120879) (-3865 . 120769) (-3866 . 117988) (-3867 . 117843) - (-3868 . 117628) (-3869 . 117562) (-3870 . 117303) (-3871 . 117178) - (-3872 . 117065) (-3873 . 116957) (-3874 . 116861) (-3875 . 116737) - (-3876 . 116589) (-3877 . 116464) (-3878 . 116128) (-3879 . 116012) - (-3880 . 115962) (-3881 . 115673) (-3882 . 115567) (-3883 . 115479) - (-3884 . 115385) (-3885 . 115343) (-3886 . 115230) (-3887 . 115171) - (-3888 . 114875) (-3889 . 114841) (-3890 . 114813) (-3891 . 114488) - (-3892 . 114359) (-3893 . 114047) (-3894 . 111632) (-3895 . 111272) - (-3896 . 111170) (-3897 . 111117) (-3898 . 110609) (-3899 . 110449) - (-3900 . 110393) (-3901 . 110344) (-3902 . 110196) (-3903 . 110129) - (-3904 . 109939) (-3905 . 109853) (-3906 . 109774) (-3907 . 109549) - (-3908 . 109361) (-3909 . 109308) (-3910 . 109089) (-3911 . 108758) - (-3912 . 108523) (-3913 . 108119) (-3914 . 108050) (-3915 . 107917) - (-3916 . 107838) (-3917 . 107779) (-3918 . 107701) (-3919 . 107621) - (-3920 . 107569) (-3921 . 107453) (-3922 . 106986) (-3923 . 105356) - (-3924 . 105290) (-3925 . 105213) (-3926 . 104940) (-3927 . 104721) - (-3928 . 104588) (-3929 . 104285) (-3930 . 104109) (-3931 . 104012) - (-3932 . 103835) (-3933 . 103761) (-3934 . 103690) (-3935 . 103289) - (-3936 . 103136) (-3937 . 103040) (-3938 . 102983) (-3939 . 102903) - (-3940 . 102844) (-3941 . 102717) (-3942 . 102651) (-3943 . 101347) - (-3944 . 101244) (-3945 . 101149) (-3946 . 101115) (-3947 . 100784) - (-3948 . 100732) (-3949 . 100609) (-3950 . 100514) (-3951 . 100437) - (-3952 . 100284) (-3953 . 100131) (-3954 . 100028) (-3955 . 99931) - (-3956 . 99834) (-3957 . 99748) (-3958 . 99696) (-3959 . 99438) - (-3960 . 99253) (-3961 . 99176) (-3962 . 98849) (-3963 . 98721) - (-3964 . 98508) (-3965 . 98389) (-3966 . 98247) (-3967 . 98089) - (-3968 . 97797) (-3969 . 97435) (-3970 . 97220) (-3971 . 97057) - (-3972 . 96991) (-3973 . 96889) (-3974 . 96611) (-3975 . 96200) - (-3976 . 96045) (-3977 . 95830) (-3978 . 94580) (-3979 . 94462) - (-3980 . 94393) (-3981 . 94344) (-3982 . 94083) (-3983 . 93852) - (-3984 . 93750) (-3985 . 93673) (-3986 . 93602) (-3987 . 93573) - (-3988 . 93417) (-3989 . 93325) (-3990 . 93242) (-3991 . 93126) - (-3992 . 93040) (-3993 . 90979) (-3994 . 90849) (-3995 . 90783) - (-3996 . 90699) (-3997 . 90469) (-3998 . 90390) (-3999 . 90320) - (-4000 . 90243) (-4001 . 90058) (-4002 . 89060) (-4003 . 88956) - (-4004 . 88828) (-4005 . 88608) (-4006 . 88453) (-4007 . 88203) - (-4008 . 88062) (-4009 . 87816) (-4010 . 87673) (-4011 . 87342) - (-4012 . 87204) (-4013 . 87084) (-4014 . 86951) (-4015 . 86900) - (-4016 . 86805) (-4017 . 86677) (-4018 . 85231) (-4019 . 84804) - (-4020 . 84736) (-4021 . 84615) (-4022 . 84550) (-4023 . 84360) - (-4024 . 84164) (-4025 . 84111) (-4026 . 84059) (-4027 . 83896) - (-4028 . 83806) (-4029 . 83725) (-4030 . 83673) (-4031 . 83542) - (-4032 . 83399) (-4033 . 83063) (-4034 . 82312) (-4035 . 82056) - (-4036 . 81535) (-4037 . 81436) (-4038 . 81364) (-4039 . 81239) - (-4040 . 79937) (-4041 . 79630) (-4042 . 79536) (-4043 . 79368) - (-4044 . 79116) (-4045 . 79042) (-4046 . 78515) (-4047 . 78393) - (-4048 . 78340) (-4049 . 78199) (-4050 . 77947) (-4051 . 77839) - (-4052 . 76997) (-4053 . 76850) (-4054 . 76190) (-4055 . 76110) - (-4056 . 75854) (-4057 . 75783) (-4058 . 74002) (-4059 . 73881) - (-4060 . 73537) (-4061 . 73053) (-4062 . 72967) (-4063 . 72810) - (-4064 . 72500) (-4065 . 72404) (-4066 . 72352) (-4067 . 72266) - (-4068 . 72164) (-4069 . 72026) (-4070 . 71943) (-4071 . 71710) - (-4072 . 71600) (-4073 . 71499) (-4074 . 71444) (-4075 . 71367) - (-4076 . 71268) (-4077 . 71046) (-4078 . 70600) (-4079 . 70433) - (-4080 . 70127) (-4081 . 69971) (-4082 . 69919) (-4083 . 68801) - (-4084 . 68749) (-4085 . 68671) (-4086 . 68619) (-4087 . 68033) - (-4088 . 67888) (-4089 . 67792) (-4090 . 67659) (-4091 . 67494) - (-4092 . 67215) (-4093 . 67070) (-4094 . 66818) (-4095 . 66751) - (-4096 . 66598) (-4097 . 66442) (-4098 . 66319) (-4099 . 66092) - (-4100 . 65990) (-4101 . 65825) (-4102 . 65067) (-4103 . 65015) - (-4104 . 64935) (-4105 . 64847) (-4106 . 64797) (-4107 . 64588) - (-4108 . 64521) (-4109 . 64438) (-4110 . 64371) (-4111 . 64321) - (-4112 . 64236) (-4113 . 64139) (-4114 . 64068) (-4115 . 63969) - (-4116 . 63889) (-4117 . 63706) (-4118 . 63143) (-4119 . 62941) - (-4120 . 62859) (-4121 . 62744) (-4122 . 62626) (-4123 . 62598) - (-4124 . 62524) (-4125 . 62465) (-4126 . 62413) (-4127 . 62339) - (-4128 . 61776) (-4129 . 61723) (-4130 . 61349) (-4131 . 61256) - (-4132 . 60752) (-4133 . 60593) (-4134 . 60520) (-4135 . 60449) - (-4136 . 60375) (-4137 . 60289) (-4138 . 60166) (-4139 . 60029) - (-4140 . 59467) (-4141 . 59364) (-4142 . 59283) (-4143 . 58796) - (-4144 . 58718) (-4145 . 58373) (-4146 . 58148) (-4147 . 58080) - (-4148 . 57207) (-4149 . 57004) (-4150 . 56806) (-4151 . 56244) - (-4152 . 56143) (-4153 . 56115) (-4154 . 56023) (-4155 . 55916) - (-4156 . 55818) (-4157 . 55765) (-4158 . 55011) (-4159 . 54868) - (-4160 . 54682) (-4161 . 54120) (-4162 . 54054) (-4163 . 53963) - (-4164 . 53736) (-4165 . 53084) (-4166 . 53018) (-4167 . 52924) - (-4168 . 52782) (-4169 . 52678) (-4170 . 52591) (-4171 . 52459) - (-4172 . 52380) (-4173 . 52231) (-4174 . 52016) (-4175 . 51454) - (-4176 . 51317) (-4177 . 51023) (-4178 . 50878) (-4179 . 50801) - (-4180 . 50693) (-4181 . 50640) (-4182 . 50552) (-4183 . 49990) - (-4184 . 49827) (-4185 . 49613) (-4186 . 49500) (-4187 . 49412) - (-4188 . 49339) (-4189 . 49101) (-4190 . 48883) (-4191 . 48773) - (-4192 . 48402) (-4193 . 48253) (-4194 . 48165) (-4195 . 48095) - (-4196 . 48018) (-4197 . 47969) (-4198 . 47431) (-4199 . 45889) - (-4200 . 45686) (-4201 . 45532) (-4202 . 45480) (-4203 . 45367) - (-4204 . 45215) (-4205 . 45126) (-4206 . 45029) (-4207 . 44848) - (-4208 . 44792) (-4209 . 44706) (-4210 . 44572) (-4211 . 44448) - (-4212 . 43694) (-4213 . 43582) (-4214 . 43531) (-4215 . 43115) - (-4216 . 42351) (-4217 . 42300) (-4218 . 42203) (-4219 . 41207) - (-4220 . 41146) (-4221 . 41094) (-4222 . 41000) (-4223 . 40860) - (-4224 . 40701) (-4225 . 40522) (-4226 . 40399) (-4227 . 40201) - (-4228 . 40128) (-4229 . 40032) (-4230 . 39859) (-4231 . 39549) - (-4232 . 39468) (-4233 . 39368) (-4234 . 39340) (-4235 . 39280) - (-4236 . 39185) (-4237 . 39126) (-4238 . 39002) (-4239 . 38708) - (-4240 . 38587) (-4241 . 38341) (-4242 . 38271) (-4243 . 37614) - (-4244 . 37408) (-4245 . 37248) (-4246 . 37107) (-4247 . 36973) - (-4248 . 36888) (-4249 . 36474) (-4250 . 35864) (-4251 . 35703) - (-4252 . 35650) (-4253 . 35593) (-4254 . 35332) (-4255 . 35182) - (-4256 . 35129) (-4257 . 35000) (-4258 . 34759) (-4259 . 34675) - (-4260 . 34589) (-4261 . 34493) (-4262 . 34398) (-4263 . 34327) - (-4264 . 34241) (-4265 . 34125) (-4266 . 34094) (-4267 . 34038) - (-4268 . 33987) (-4269 . 33775) (-4270 . 33741) (-4271 . 33640) - (-4272 . 33506) (-4273 . 33291) (-4274 . 32139) (-4275 . 31979) - (-4276 . 31826) (-4277 . 31660) (-4278 . 31557) (-4279 . 31331) - (-4280 . 31235) (-4281 . 31150) (-4282 . 31064) (-4283 . 30981) - (-4284 . 30849) (-4285 . 30753) (-4286 . 30627) (-4287 . 30425) - (-4288 . 30366) (-4289 . 30206) (-4290 . 30124) (-4291 . 30041) - (-4292 . 29863) (-4293 . 29720) (-4294 . 29562) (-4295 . 29505) - (-4296 . 29226) (-4297 . 29152) (-4298 . 28996) (-4299 . 28908) - (-4300 . 28138) (-4301 . 27772) (-4302 . 27554) (-4303 . 27455) - (-4304 . 27404) (-4305 . 27227) (-4306 . 27097) (-4307 . 26939) - (-4308 . 26652) (-4309 . 26579) (-4310 . 26470) (-4311 . 26397) - (-4312 . 26187) (-4313 . 26125) (-4314 . 25979) (-4315 . 25908) - (-4316 . 25825) (-4317 . 25732) (-4318 . 25538) (-4319 . 25479) - (-4320 . 25378) (-4321 . 25196) (-4322 . 25139) (-4323 . 24987) - (-4324 . 24829) (-4325 . 24494) (-4326 . 24441) (-4327 . 24389) - (-4328 . 24233) (-4329 . 24098) (-4330 . 23999) (-4331 . 23712) - (-4332 . 23549) (-4333 . 23497) (-4334 . 23411) (-4335 . 22771) - (-4336 . 22671) (-4337 . 22637) (-4338 . 22585) (-4339 . 20471) - (-4340 . 20400) (-4341 . 20279) (-4342 . 20172) (-4343 . 20051) - (-4344 . 19977) (-4345 . 19878) (-4346 . 19797) (-4347 . 19598) - (-4348 . 19371) (-4349 . 19321) (-4350 . 19034) (-4351 . 18913) - (-4352 . 18733) (-4353 . 18422) (-4354 . 18247) (-4355 . 18216) - (-4356 . 18159) (-4357 . 18091) (-4358 . 17784) (-4359 . 17718) - (-4360 . 17378) (-4361 . 17325) (-4362 . 17243) (-4363 . 16997) - (-4364 . 16719) (-4365 . 16590) (-4366 . 16469) (-4367 . 16376) - (-4368 . 16255) (-4369 . 16167) (-4370 . 16049) (-4371 . 15938) - (-4372 . 15812) (-4373 . 15740) (-4374 . 15684) (-4375 . 15590) - (-4376 . 15507) (-4377 . 15081) (-4378 . 14862) (-4379 . 14741) - (-4380 . 14644) (-4381 . 10101) (-4382 . 9788) (-4383 . 8199) - (-4384 . 8102) (-4385 . 7919) (-4386 . 7824) (-4387 . 7793) - (-4388 . 7761) (-4389 . 6561) (-4390 . 6451) (-4391 . 6043) - (-4392 . 5986) (-4393 . 5849) (-4394 . 5777) (-4395 . 5716) - (-4396 . 5633) (-4397 . 5499) (-4398 . 5161) (-4399 . 4457) - (-4400 . 4341) (-4401 . 4239) (-4402 . 4102) (-4403 . 4036) - (-4404 . 3972) (-4405 . 3849) (-4406 . 3815) (-4407 . 3727) - (-4408 . 3631) (-4409 . 3578) (-4410 . 3240) (-4411 . 3166) - (-4412 . 2485) (-4413 . 2344) (-4414 . 2033) (-4415 . 1967) - (-4416 . 1884) (-4417 . 1740) (-4418 . 1688) (-4419 . 1654) - (-4420 . 1394) (-4421 . 1191) (-4422 . 862) (-4423 . 810) - (-4424 . 719) (-4425 . 659) (-4426 . 564) (-4427 . 30))
\ No newline at end of file + (-12 (-5 *1 (-344 *2 *3 *4)) (-14 *2 (-650 (-1186))) + (-14 *3 (-650 (-1186))) (-4 *4 (-393)))) + ((*1 *1) (-5 *1 (-483))) ((*1 *1) (-4 *1 (-1211)))) +(((*1 *2 *3) (-12 (-5 *3 (-384)) (-5 *2 (-227)) (-5 *1 (-1279)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1279))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-458)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1182 *6)) (-4 *6 (-956 *5 *3 *4)) (-4 *3 (-799)) + (-4 *4 (-856)) (-4 *5 (-916)) (-5 *1 (-463 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1182 *1)) (-4 *1 (-916))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-368)) (-4 *4 (-799)) (-4 *5 (-856)) + (-5 *1 (-510 *3 *4 *5 *2)) (-4 *2 (-956 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-368)) (-4 *3 (-799)) (-4 *4 (-856)) + (-5 *1 (-510 *2 *3 *4 *5)) (-4 *5 (-956 *2 *3 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-570)) (-5 *1 (-424 *2)) (-4 *2 (-562))))) +((-1309 . 733350) (-1310 . 733100) (-1311 . 732841) (-1312 . 732725) + (-1313 . 732472) (-1314 . 732220) (-1315 . 732152) (-1316 . 731644) + (-1317 . 731612) (-1318 . 731552) (-1319 . 731496) (-1320 . 731407) + (-1321 . 731113) (-1322 . 731006) (-1323 . 730949) (-1324 . 730889) + (-1325 . 730823) (-1326 . 730721) (-1327 . 730579) (-1328 . 730448) + (-1329 . 730239) (-1330 . 730211) (-1331 . 730161) (-1332 . 730048) + (-1333 . 729971) (-1334 . 729915) (-1335 . 729827) (-1336 . 729743) + (-1337 . 729670) (-1338 . 729586) (-1339 . 729503) (-1340 . 729203) + (-1341 . 728900) (-1342 . 728585) (-1343 . 728388) (-1344 . 728291) + (-1345 . 728203) (-1346 . 728174) (-1347 . 713944) (-1348 . 713831) + (-1349 . 713684) (-1350 . 713553) (-1351 . 713487) (-1352 . 713413) + (-1353 . 713254) (-1354 . 713032) (-1355 . 712723) (-1356 . 712628) + (-1357 . 712542) (-1358 . 711240) (-1359 . 710753) (-1360 . 710109) + (-1361 . 710053) (-1362 . 709849) (-1363 . 709691) (-1364 . 709603) + (-1365 . 709569) (-1366 . 709446) (-1367 . 709022) (-1368 . 708923) + (-1369 . 708557) (-1370 . 708335) (-1371 . 704272) (-1372 . 704220) + (-1373 . 704141) (-1374 . 704029) (-1375 . 703915) (-1376 . 703843) + (-1377 . 703748) (-1378 . 703512) (-1379 . 703426) (-1380 . 703207) + (-1381 . 702240) (-1382 . 702077) (-1383 . 702049) (-1384 . 701948) + (-1385 . 701862) (-1386 . 701810) (-1387 . 701740) (-1388 . 701712) + (-1389 . 701542) (-1390 . 701456) (-1391 . 701403) (-1392 . 701236) + (-1393 . 701118) (-1394 . 701016) (-1395 . 700932) (-1396 . 700854) + (-1397 . 700634) (-1398 . 700564) (-1399 . 700421) (-1400 . 700319) + (-1401 . 700219) (-1402 . 700057) (-1403 . 699989) (-1404 . 699822) + (-1405 . 699684) (-1406 . 699601) (-1407 . 699418) (-1408 . 699066) + (-1409 . 698932) (-1410 . 698617) (-1411 . 694950) (-1412 . 694864) + (-1413 . 694721) (-1414 . 694225) (-1415 . 694104) (-1416 . 694049) + (-1417 . 693908) (-1418 . 693421) (-1419 . 693110) (-1420 . 693082) + (-1421 . 690737) (-1422 . 690579) (-1423 . 690501) (-1424 . 690194) + (-1425 . 690130) (-1426 . 690096) (-1427 . 689714) (-1428 . 689286) + (-1429 . 689155) (-1430 . 689016) (-1431 . 688892) (-1432 . 688605) + (-1433 . 688214) (-1434 . 688004) (-1435 . 687908) (-1436 . 687550) + (-1437 . 687455) (-1438 . 687388) (-1439 . 687300) (-1440 . 687140) + (-1441 . 686961) (-1442 . 686860) (-1443 . 686703) (-1444 . 686599) + (-1445 . 686472) (-1446 . 686330) (-1447 . 686253) (-1448 . 686184) + (-1449 . 685922) (-1450 . 685827) (-1451 . 685669) (-1452 . 685546) + (-1453 . 685443) (-1454 . 685299) (-1455 . 685004) (-1456 . 684900) + (-1457 . 684805) (-1458 . 684629) (-1459 . 684546) (-1460 . 684287) + (-1461 . 684007) (-1462 . 683925) (** . 680931) (-1464 . 680821) + (-1465 . 680254) (-1466 . 679864) (-1467 . 679711) (-1468 . 679367) + (-1469 . 679318) (-1470 . 679188) (-1471 . 678902) (-1472 . 678874) + (-1473 . 678567) (-1474 . 678493) (-1475 . 678415) (-1476 . 678080) + (-1477 . 677996) (-1478 . 677908) (-1479 . 677690) (-1480 . 677592) + (-1481 . 677198) (-1482 . 677030) (-1483 . 676961) (-1484 . 676846) + (-1485 . 676575) (-1486 . 676327) (-1487 . 676153) (-1488 . 676023) + (-1489 . 675925) (-1490 . 675819) (-1491 . 675762) (-1492 . 675548) + (-1493 . 675457) (-1494 . 675195) (-1495 . 675143) (-1496 . 675073) + (-1497 . 675001) (-1498 . 674763) (-1499 . 674691) (-1500 . 674466) + (-1501 . 674394) (-1502 . 674298) (-1503 . 674206) (-1504 . 673644) + (-1505 . 673585) (-1506 . 673551) (-1507 . 673235) (-1508 . 673101) + (-1509 . 672930) (-1510 . 672798) (-1511 . 672680) (-1512 . 672390) + (-1513 . 672136) (-1514 . 672041) (-1515 . 671795) (-1516 . 671629) + (-1517 . 671534) (-1518 . 671466) (-1519 . 671414) (-1520 . 671291) + (-1521 . 671153) (-1522 . 670907) (-1523 . 670742) (-1524 . 670631) + (-1525 . 670581) (-1526 . 670529) (-1527 . 670467) (-1528 . 670384) + (-1529 . 670318) (-1530 . 670128) (-1531 . 669786) (-1532 . 669522) + (-1533 . 669449) (-1534 . 669328) (-1535 . 669212) (-1536 . 669036) + (-1537 . 668977) (-1538 . 668903) (-1539 . 668818) (-1540 . 668738) + (-1541 . 668595) (-1542 . 668326) (-1543 . 668273) (-1544 . 668158) + (-1545 . 667928) (-1546 . 667775) (-1547 . 667553) (-1548 . 667400) + (-1549 . 667345) (-1550 . 667289) (-1551 . 666861) (-1552 . 666597) + (-1553 . 666227) (-1554 . 666155) (-1555 . 665975) (-1556 . 665829) + (-1557 . 665767) (-1558 . 665715) (-1559 . 665566) (-1560 . 665039) + (-1561 . 664982) (-1562 . 664881) (-1563 . 664812) (-1564 . 664740) + (-1565 . 664631) (-1566 . 664534) (-1567 . 664421) (-1568 . 664214) + (-1569 . 664180) (-1570 . 664086) (-1571 . 664027) (-1572 . 663682) + (-1573 . 663557) (-1574 . 663402) (-1575 . 663199) (-1576 . 663146) + (-1577 . 662916) (-1578 . 662864) (-1579 . 662618) (-1580 . 662441) + (-1581 . 662230) (-1582 . 662132) (-1583 . 661740) (-1584 . 661672) + (-1585 . 661447) (-1586 . 661388) (-1587 . 661336) (-1588 . 661259) + (-1589 . 661202) (-1590 . 661084) (-1591 . 661024) (-1592 . 660965) + (-1593 . 660742) (-1594 . 660572) (-1595 . 660367) (-1596 . 660128) + (-1597 . 659720) (-1598 . 659448) (-1599 . 659395) (-1600 . 659312) + (-1601 . 658611) (-1602 . 658551) (-1603 . 658445) (-1604 . 658292) + (-1605 . 658190) (-1606 . 658130) (-1607 . 658049) (-1608 . 657968) + (-1609 . 657626) (-1610 . 656987) (-1611 . 656869) (-1612 . 656774) + (-1613 . 656634) (-1614 . 656450) (-1615 . 656334) (-1616 . 656022) + (-1617 . 655880) (-1618 . 655756) (-1619 . 655704) (-1620 . 654408) + (-1621 . 654265) (-1622 . 654192) (-1623 . 654108) (-1624 . 654038) + (-1625 . 653875) (-1626 . 653847) (-1627 . 653784) (-1628 . 653756) + (-1629 . 653416) (-1630 . 653169) (-1631 . 653096) (-1632 . 653025) + (-1633 . 652910) (-1634 . 652827) (-1635 . 652718) (-1636 . 652648) + (-1637 . 652538) (-1638 . 652452) (-1639 . 652333) (-1640 . 652230) + (-1641 . 652075) (-1642 . 652019) (-1643 . 648720) (-1644 . 648435) + (-1645 . 648362) (-1646 . 648019) (-1647 . 647918) (-1648 . 647808) + (-1649 . 647613) (-1650 . 647381) (-1651 . 647217) (-1652 . 647189) + (-1653 . 647062) (-1654 . 646904) (-1655 . 646827) (-1656 . 646728) + (-1657 . 645650) (-1658 . 645542) (-1659 . 645370) (-1660 . 644994) + (-1661 . 644838) (-1662 . 644785) (-1663 . 644736) (-1664 . 644451) + (-1665 . 644306) (-1666 . 644152) (-1667 . 644074) (-1668 . 643630) + (-1669 . 643453) (-1670 . 643300) (-1671 . 643212) (-1672 . 643134) + (-1673 . 643005) (-1674 . 642837) (-1675 . 642674) (-1676 . 642449) + (-1677 . 642397) (-1678 . 642318) (-1679 . 642194) (-1680 . 641807) + (-1681 . 641686) (-1682 . 641491) (-1683 . 641428) (-1684 . 641334) + (-1685 . 641282) (-1686 . 641119) (-1687 . 640609) (-1688 . 640391) + (-1689 . 640113) (-1690 . 640012) (-1691 . 639924) (-1692 . 639855) + (-1693 . 639778) (-1694 . 639332) (-1695 . 639253) (-1696 . 638967) + (-1697 . 638368) (-1698 . 638255) (-1699 . 637396) (-1700 . 637117) + (-1701 . 636928) (-1702 . 636872) (-1703 . 636679) (-1704 . 636620) + (-1705 . 636402) (-1706 . 636282) (-1707 . 636199) (-1708 . 636062) + (-1709 . 634766) (-1710 . 634611) (-1711 . 634524) (-1712 . 634366) + (-1713 . 634289) (-1714 . 634188) (-1715 . 633531) (-1716 . 633369) + (-1717 . 633341) (-1718 . 633167) (-1719 . 633079) (-1720 . 632984) + (-1721 . 632880) (-1722 . 632773) (-1723 . 632399) (-1724 . 632181) + (-1725 . 628174) (-1726 . 628068) (-1727 . 627776) (-1728 . 627445) + (-1729 . 627392) (-1730 . 627321) (-1731 . 627244) (-1732 . 627106) + (-1733 . 627029) (-1734 . 626884) (-1735 . 626130) (-1736 . 626059) + (-1737 . 625977) (-1738 . 625788) (-1739 . 625718) (-1740 . 625575) + (-1741 . 625465) (-1742 . 625391) (-1743 . 625233) (-1744 . 625088) + (-1745 . 624865) (-1746 . 624690) (-1747 . 624471) (-1748 . 624412) + (-1749 . 624357) (-1750 . 624259) (-1751 . 623865) (-1752 . 623792) + (-1753 . 623760) (-1754 . 623581) (-1755 . 623389) (-1756 . 623332) + (-1757 . 623238) (-1758 . 623021) (-1759 . 622899) (-1760 . 622834) + (-1761 . 622716) (-1762 . 622419) (-1763 . 622391) (-1764 . 622191) + (-1765 . 622159) (-1766 . 622085) (-1767 . 622032) (-1768 . 621399) + (-1769 . 621340) (-1770 . 621235) (-1771 . 621049) (-1772 . 620934) + (-1773 . 620869) (-1774 . 620617) (-1775 . 620416) (-1776 . 618650) + (-1777 . 618481) (-1778 . 618362) (-1779 . 618112) (-1780 . 618083) + (-1781 . 618010) (-1782 . 617666) (-1783 . 617568) (-1784 . 617445) + (-1785 . 617297) (-1786 . 617199) (-1787 . 617131) (-1788 . 615676) + (-1789 . 615056) (-1790 . 614921) (-1791 . 614835) (-1792 . 614732) + (-1793 . 614505) (-1794 . 614435) (-1795 . 613407) (-1796 . 613354) + (-1797 . 613196) (-1798 . 609533) (-1799 . 609396) (-1800 . 607906) + (-1801 . 607518) (-1802 . 607414) (-1803 . 607362) (-1804 . 607249) + (-1805 . 606459) (-1806 . 606361) (-1807 . 606295) (-1808 . 606221) + (-1809 . 605947) (-1810 . 605848) (-1811 . 605770) (-1812 . 605700) + (-1813 . 605644) (-1814 . 605589) (-1815 . 605532) (-1816 . 605451) + (-1817 . 605204) (-1818 . 604961) (-1819 . 604895) (-1820 . 604159) + (-1821 . 604085) (-1822 . 604006) (-1823 . 603771) (-1824 . 603698) + (-1825 . 603538) (-1826 . 603419) (-1827 . 603314) (-1828 . 603185) + (-1829 . 603133) (-1830 . 602970) (-1831 . 602917) (-1832 . 602779) + (-1833 . 602697) (-1834 . 602635) (-1835 . 602584) (-1836 . 601950) + (-1837 . 601869) (-1838 . 601741) (-1839 . 601629) (-1840 . 594686) + (-1841 . 594599) (-1842 . 594498) (-1843 . 594420) (-1844 . 594392) + (-1845 . 594306) (-1846 . 594251) (-1847 . 593790) (-1848 . 593637) + (-1849 . 593152) (-1850 . 593101) (-1851 . 592457) (-1852 . 592343) + (-1853 . 591966) (-1854 . 591545) (-1855 . 591438) (-1856 . 591372) + (-1857 . 591254) (-1858 . 591195) (-1859 . 591065) (-1860 . 589893) + (-1861 . 588701) (-1862 . 588607) (-1863 . 588540) (-1864 . 588209) + (-1865 . 588138) (-1866 . 588043) (-1867 . 587928) (-1868 . 587862) + (-1869 . 586760) (-1870 . 586708) (-1871 . 586181) (-1872 . 581012) + (-1873 . 580654) (-1874 . 580227) (-1875 . 580059) (-1876 . 579830) + (-1877 . 579780) (-1878 . 579721) (-1879 . 579175) (-1880 . 579016) + (-1881 . 578532) (-1882 . 578393) (-1883 . 578365) (-1884 . 578198) + (-1885 . 577061) (-1886 . 576858) (-1887 . 576720) (-1888 . 576562) + (-1889 . 576221) (-1890 . 576168) (-1891 . 576115) (-1892 . 575908) + (-1893 . 575827) (-1894 . 575696) (-1895 . 575619) (-1896 . 575489) + (-1897 . 575392) (-1898 . 574804) (-1899 . 574670) (-1900 . 574345) + (-1901 . 574311) (-1902 . 574085) (-1903 . 574033) (-1904 . 573878) + (-1905 . 573735) (-1906 . 573634) (-1907 . 573532) (-1908 . 572937) + (-1909 . 572526) (-1910 . 572401) (-1911 . 572334) (-1912 . 572246) + (-1913 . 572156) (-1914 . 571963) (-1915 . 571822) (-1916 . 571677) + (-1917 . 571453) (-1918 . 571396) (-1919 . 570919) (-1920 . 570842) + (-1921 . 570682) (-1922 . 570545) (-1923 . 570182) (-1924 . 570093) + (-1925 . 569950) (-1926 . 569348) (-1927 . 569298) (-1928 . 569245) + (-1929 . 569134) (-1930 . 569081) (-1931 . 568890) (-1932 . 568750) + (-1933 . 568679) (-1934 . 568499) (-1935 . 568183) (-1936 . 568088) + (-1937 . 567964) (-1938 . 567861) (-1939 . 567784) (-1940 . 567648) + (-1941 . 567396) (-1942 . 567346) (-1943 . 567210) (-1944 . 567057) + (-1945 . 567003) (-1946 . 566823) (-1947 . 566771) (-1948 . 566664) + (-1949 . 566564) (-1950 . 566469) (-1951 . 566226) (-1952 . 566036) + (-1953 . 565710) (-1954 . 565533) (-1955 . 565504) (-1956 . 565418) + (-1957 . 565281) (-1958 . 565140) (-1959 . 565057) (-1960 . 564971) + (-1961 . 564919) (-1962 . 564323) (-1963 . 564243) (-1964 . 563941) + (-1965 . 562601) (-1966 . 562495) (-1967 . 562438) (-1968 . 562169) + (-1969 . 562076) (-1970 . 561789) (-1971 . 561246) (-1972 . 560279) + (-1973 . 560056) (-1974 . 559871) (-1975 . 559404) (-1976 . 559331) + (-1977 . 559224) (-1978 . 558976) (-1979 . 558894) (-1980 . 558835) + (-1981 . 558752) (-1982 . 558637) (-1983 . 558439) (-1984 . 558073) + (-1985 . 557297) (-1986 . 557213) (-1987 . 557106) (-1988 . 557051) + (-1989 . 556968) (-1990 . 556870) (-1991 . 556833) (-1992 . 556747) + (-1993 . 556634) (-1994 . 556520) (-1995 . 556327) (-1996 . 556190) + (-1997 . 555945) (-1998 . 555816) (-1999 . 555750) (-2000 . 555626) + (-2001 . 555545) (-2002 . 555435) (-2003 . 555340) (-2004 . 555083) + (-2005 . 555009) (-2006 . 554913) (-2007 . 554577) (-2008 . 554475) + (-2009 . 554321) (-2010 . 554250) (-2011 . 553735) (-2012 . 553636) + (-2013 . 553464) (-2014 . 553364) (-2015 . 552790) (-2016 . 552661) + (-2017 . 552478) (-2018 . 552408) (-2019 . 552295) (-2020 . 552197) + (-2021 . 552009) (-2022 . 551957) (-2023 . 551819) (-2024 . 551440) + (-2025 . 551381) (-2026 . 551091) (-2027 . 550967) (-2028 . 550871) + (-2029 . 550781) (-2030 . 548925) (-2031 . 548769) (-2032 . 548283) + (-2033 . 548204) (-2034 . 548151) (-2035 . 548065) (-2036 . 548015) + (-2037 . 547904) (-2038 . 547482) (-2039 . 547378) (-2040 . 547256) + (-2041 . 547136) (-2042 . 547108) (-2043 . 546701) (-2044 . 546603) + (-2045 . 546487) (-2046 . 546335) (-2047 . 546245) (-2048 . 546166) + (-2049 . 546024) (-2050 . 545990) (-2051 . 545913) (-2052 . 545755) + (-2053 . 545548) (-2054 . 545380) (-2055 . 545236) (-2056 . 545115) + (-2057 . 544796) (-2058 . 544740) (-2059 . 544644) (-2060 . 544559) + (-2061 . 543561) (-2062 . 543488) (-2063 . 543227) (-2064 . 543142) + (-2065 . 542996) (-2066 . 542789) (-2067 . 542676) (-2068 . 542571) + (-2069 . 542543) (-2070 . 542470) (-2071 . 542324) (-2072 . 542236) + (-2073 . 541942) (-2074 . 541815) (-2075 . 541746) (-2076 . 541651) + (-2077 . 540783) (-2078 . 540749) (-2079 . 540700) (-2080 . 540639) + (-2081 . 540573) (-2082 . 540412) (-2083 . 540380) (-2084 . 540270) + (-2085 . 540217) (-2086 . 539924) (-2087 . 539830) (-2088 . 539763) + (-2089 . 539689) (-2090 . 539608) (-2091 . 539390) (-2092 . 539218) + (-2093 . 539164) (-2094 . 539106) (-2095 . 538842) (-2096 . 538694) + (-2097 . 537943) (-2098 . 537608) (-2099 . 537534) (-2100 . 537175) + (-2101 . 537073) (-2102 . 537045) (-2103 . 537011) (-2104 . 536865) + (-2105 . 536553) (-2106 . 536420) (-2107 . 536367) (-2108 . 535808) + (-2109 . 535776) (-2110 . 535681) (-2111 . 535598) (-2112 . 535510) + (-2113 . 535432) (-2114 . 535358) (-2115 . 535040) (-2116 . 534894) + (-2117 . 534816) (-2118 . 534257) (-2119 . 533870) (-2120 . 533750) + (-2121 . 533586) (-2122 . 533452) (-2123 . 533333) (-2124 . 533220) + (-2125 . 530992) (-2126 . 530918) (-2127 . 530551) (-2128 . 530456) + (-2129 . 530373) (-2130 . 530302) (-2131 . 530268) (-2132 . 529555) + (-2133 . 529410) (-2134 . 529355) (-2135 . 529107) (-2136 . 528949) + (-2137 . 528818) (-2138 . 528714) (-2139 . 528365) (-2140 . 527893) + (-2141 . 527833) (-2142 . 527716) (-2143 . 527341) (-2144 . 527085) + (-2145 . 526985) (-2146 . 526805) (-2147 . 526692) (-2148 . 526606) + (-2149 . 526525) (-2150 . 526074) (-2151 . 525994) (-2152 . 525816) + (-2153 . 525764) (-2154 . 525422) (-2155 . 525095) (-2156 . 524986) + (-2157 . 524557) (-2158 . 524316) (-2159 . 523749) (-2160 . 523600) + (-2161 . 523450) (-2162 . 520669) (-2163 . 520478) (-2164 . 520354) + (-2165 . 520202) (-2166 . 520098) (-2167 . 519991) (-2168 . 519675) + (-2169 . 519356) (-2170 . 519319) (-2171 . 519116) (-2172 . 518785) + (-2173 . 518686) (-2174 . 518571) (-2175 . 518475) (-2176 . 518194) + (-2177 . 518106) (-2178 . 518021) (-2179 . 517939) (-2180 . 517841) + (-2181 . 517767) (-2182 . 516879) (-2183 . 516818) (-2184 . 516738) + (-2185 . 516482) (-2186 . 516396) (-2187 . 516337) (-2188 . 516179) + (-2189 . 516071) (-2190 . 515759) (-2191 . 515682) (-2192 . 515629) + (-2193 . 515456) (-2194 . 515175) (-2195 . 515098) (-2196 . 514955) + (-2197 . 514856) (-2198 . 514743) (-2199 . 514683) (-2200 . 514352) + (-2201 . 514286) (-2202 . 514121) (-2203 . 513990) (-2204 . 513939) + (-2205 . 513824) (-2206 . 513796) (-2207 . 512498) (-2208 . 512217) + (-2209 . 512146) (-2210 . 511557) (-2211 . 511529) (-2212 . 511373) + (-2213 . 508958) (-2214 . 508747) (-2215 . 508692) (-2216 . 508206) + (-2217 . 508178) (-2218 . 508083) (-2219 . 506881) (-2220 . 506804) + (-2221 . 506699) (-2222 . 506613) (-2223 . 506122) (-2224 . 506027) + (-2225 . 505899) (-2226 . 505807) (-2227 . 505700) (-2228 . 505573) + (-2229 . 504356) (-2230 . 504252) (-2231 . 504087) (-2232 . 503776) + (-2233 . 501990) (-2234 . 501938) (-2235 . 501822) (-2236 . 501691) + (-2237 . 501597) (-2238 . 501325) (-2239 . 501248) (-2240 . 501150) + (-2241 . 501018) (-2242 . 499050) (-2243 . 498693) (-2244 . 498619) + (-2245 . 498321) (-2246 . 497930) (-2247 . 497785) (-2248 . 497525) + (-2249 . 497430) (-2250 . 497358) (-2251 . 497112) (-2252 . 497030) + (-2253 . 496932) (-2254 . 496659) (-2255 . 496578) (-2256 . 496353) + (-2257 . 496300) (-2258 . 496228) (-2259 . 496121) (-2260 . 496032) + (-2261 . 495732) (-2262 . 495574) (-2263 . 495500) (-2264 . 495159) + (-2265 . 495107) (-2266 . 494979) (-2267 . 494835) (-2268 . 494766) + (-2269 . 494713) (-2270 . 494660) (-2271 . 494561) (-2272 . 494424) + (-2273 . 494372) (-2274 . 494190) (-2275 . 494017) (-2276 . 493526) + (-2277 . 493397) (-2278 . 493320) (-2279 . 493236) (-2280 . 493018) + (-2281 . 492930) (-2282 . 492700) (-2283 . 492376) (-2284 . 492266) + (-2285 . 492214) (-2286 . 492134) (-2287 . 492081) (-2288 . 491328) + (-2289 . 491251) (-2290 . 491152) (-2291 . 490725) (-2292 . 490641) + (-2293 . 490464) (-2294 . 490246) (-2295 . 490118) (-2296 . 490017) + (-2297 . 489708) (-2298 . 489429) (-2299 . 489345) (-2300 . 488608) + (-2301 . 488411) (-2302 . 487948) (-2303 . 487708) (-2304 . 487649) + (-2305 . 487546) (-2306 . 487438) (-2307 . 487358) (-2308 . 487153) + (-2309 . 486793) (-2310 . 486668) (-2311 . 486446) (-2312 . 486226) + (-2313 . 486068) (-2314 . 485750) (-2315 . 485654) (-2316 . 485475) + (-2317 . 485392) (-2318 . 485361) (-2319 . 485259) (-2320 . 485122) + (-2321 . 485094) (-2322 . 485008) (-2323 . 484885) (-2324 . 484679) + (-2325 . 484393) (-2326 . 484299) (-2327 . 484183) (-2328 . 484123) + (-2329 . 483828) (-2330 . 483748) (-2331 . 483432) (-2332 . 483367) + (-2333 . 483251) (-2334 . 482992) (-2335 . 482381) (-2336 . 482219) + (-2337 . 482131) (-2338 . 481981) (-2339 . 481947) (-2340 . 481374) + (-2341 . 481206) (-2342 . 481051) (-2343 . 480516) (-2344 . 480450) + (-2345 . 480247) (-2346 . 480042) (-2347 . 479916) (-2348 . 479523) + (-2349 . 479421) (-2350 . 479322) (-2351 . 479267) (-2352 . 479026) + (-2353 . 478705) (-2354 . 478646) (-2355 . 478549) (-2356 . 478477) + (-2357 . 478374) (-2358 . 477895) (-2359 . 477645) (-2360 . 477588) + (-2361 . 477498) (-2362 . 477279) (-2363 . 477208) (-2364 . 477042) + (-2365 . 476709) (-2366 . 476499) (-2367 . 476422) (-2368 . 476290) + (-2369 . 476198) (-2370 . 476068) (-2371 . 475893) (-2372 . 475796) + (-2373 . 475743) (-2374 . 475664) (-2375 . 475495) (-2376 . 475307) + (-2377 . 475053) (-2378 . 475019) (-2379 . 474931) (-2380 . 474834) + (-2381 . 474553) (-2382 . 474441) (-2383 . 474367) (-2384 . 474281) + (-2385 . 474166) (-2386 . 474082) (-2387 . 473848) (-2388 . 473640) + (-2389 . 473544) (-2390 . 473432) (-2391 . 473045) (-2392 . 473016) + (-2393 . 472694) (-2394 . 472642) (-2395 . 472589) (-2396 . 472493) + (-2397 . 472368) (-2398 . 472244) (-2399 . 472081) (-2400 . 471958) + (-2401 . 471755) (-2402 . 471683) (-2403 . 471626) (-2404 . 471209) + (-2405 . 470982) (-2406 . 470887) (-2407 . 470804) (-2408 . 470752) + (-2409 . 470561) (-2410 . 469700) (-2411 . 469648) (-2412 . 469523) + (-2413 . 469371) (-2414 . 469266) (-2415 . 469125) (-2416 . 467945) + (-2417 . 467875) (-2418 . 467717) (-2419 . 467630) (-2420 . 467521) + (-2421 . 467271) (-2422 . 467200) (-2423 . 466992) (-2424 . 466940) + (-2425 . 466806) (-2426 . 466596) (-2427 . 465999) (-2428 . 465832) + (-2429 . 465564) (-2430 . 465492) (-2431 . 465125) (-2432 . 465070) + (-2433 . 464636) (-2434 . 464419) (-2435 . 464388) (-2436 . 464214) + (-2437 . 464054) (-2438 . 463866) (-2439 . 463835) (-2440 . 463735) + (-2441 . 463662) (-2442 . 463324) (-2443 . 463230) (-2444 . 463152) + (-2445 . 462522) (-2446 . 462349) (-2447 . 462268) (-2448 . 462169) + (-2449 . 462029) (-2450 . 461945) (-2451 . 461893) (-2452 . 461862) + (-2453 . 461774) (-2454 . 461653) (-2455 . 461501) (-2456 . 461404) + (-2457 . 461355) (-2458 . 461128) (-2459 . 461033) (-2460 . 460900) + (-2461 . 460812) (-2462 . 460308) (-2463 . 459926) (-2464 . 459761) + (-2465 . 459580) (-2466 . 459474) (-2467 . 459405) (-2468 . 459132) + (-2469 . 459104) (-2470 . 458958) (-2471 . 458890) (-2472 . 458863) + (-2473 . 458684) (-2474 . 458593) (-2475 . 457791) (-2476 . 457705) + (-2477 . 457278) (-2478 . 457155) (-2479 . 456644) (-2480 . 456507) + (-2481 . 456220) (-2482 . 456125) (-2483 . 456003) (-2484 . 455859) + (-2485 . 455523) (-2486 . 455426) (-2487 . 455305) (-2488 . 454888) + (-2489 . 454814) (-2490 . 454706) (-2491 . 454618) (-2492 . 454565) + (-2493 . 454119) (-2494 . 454016) (-2495 . 453483) (-2496 . 453354) + (-2497 . 453298) (-2498 . 453130) (-2499 . 452985) (-2500 . 452842) + (-2501 . 452595) (-2502 . 451477) (-2503 . 451366) (-2504 . 451289) + (-2505 . 451230) (-2506 . 451052) (-2507 . 450964) (-2508 . 450831) + (-2509 . 450775) (-2510 . 450708) (-2511 . 450655) (-2512 . 450256) + (-2513 . 450140) (-2514 . 450034) (-2515 . 449979) (-2516 . 449884) + (-2517 . 449801) (-2518 . 449733) (-2519 . 449280) (-2520 . 449214) + (-2521 . 449140) (-2522 . 448982) (-2523 . 448736) (-2524 . 448569) + (-2525 . 448322) (-2526 . 448242) (-2527 . 447656) (-2528 . 447624) + (-2529 . 447464) (-2530 . 447336) (-2531 . 447280) (-2532 . 447005) + (-2533 . 446921) (-2534 . 446782) (-2535 . 446658) (-2536 . 446072) + (-2537 . 445846) (-2538 . 445693) (-2539 . 445624) (-2540 . 445570) + (-2541 . 445331) (-2542 . 445235) (-2543 . 445097) (-2544 . 445023) + (-2545 . 444672) (-2546 . 444604) (-2547 . 444533) (-2548 . 444272) + (-2549 . 444147) (-2550 . 444046) (-2551 . 443960) (-2552 . 443780) + (-2553 . 443648) (-2554 . 443509) (-2555 . 442236) (-2556 . 442177) + (-2557 . 442081) (-2558 . 441949) (-2559 . 441841) (-2560 . 441579) + (-2561 . 441491) (-2562 . 441419) (-2563 . 441346) (-2564 . 441242) + (-2565 . 441184) (-2566 . 441127) (-2567 . 441031) (-2568 . 440927) + (-2569 . 440724) (-2570 . 440572) (-2571 . 439829) (-2572 . 439577) + (-2573 . 439352) (-2574 . 439286) (-2575 . 439199) (-2576 . 439127) + (-2577 . 439074) (-2578 . 438971) (-2579 . 437628) (-2580 . 437336) + (-2581 . 437163) (-2582 . 437134) (-2583 . 437063) (-2584 . 436860) + (-2585 . 436702) (-2586 . 436608) (-2587 . 436476) (-2588 . 436397) + (-2589 . 436323) (-2590 . 436271) (-2591 . 436079) (-2592 . 435947) + (-2593 . 435874) (-2594 . 435396) (-2595 . 435123) (-2596 . 435026) + (-2597 . 434830) (-2598 . 434778) (-2599 . 434722) (-2600 . 434622) + (-2601 . 434551) (-2602 . 434385) (-2603 . 434312) (-2604 . 433583) + (-2605 . 433518) (-2606 . 433439) (-2607 . 432782) (-2608 . 432725) + (-2609 . 432694) (-2610 . 432183) (-2611 . 430751) (-2612 . 430665) + (-2613 . 430569) (-2614 . 430370) (-2615 . 430321) (-2616 . 429592) + (-2617 . 429219) (-2618 . 429161) (-2619 . 429018) (-2620 . 428974) + (-2621 . 428919) (-2622 . 428777) (-2623 . 428725) (-2624 . 428509) + (-2625 . 428219) (-2626 . 427900) (-2627 . 427762) (-2628 . 427631) + (-2629 . 426955) (-2630 . 426640) (-2631 . 426556) (-2632 . 426348) + (-2633 . 426319) (-2634 . 426137) (-2635 . 425752) (-2636 . 425188) + (-2637 . 425082) (-2638 . 425004) (-2639 . 424808) (-2640 . 424491) + (-2641 . 424333) (-2642 . 424196) (-2643 . 424117) (-2644 . 424064) + (-2645 . 423804) (-2646 . 423706) (-2647 . 423607) (-2648 . 423043) + (-2649 . 422619) (-2650 . 422523) (-2651 . 422100) (-2652 . 421928) + (-2653 . 421787) (-2654 . 421759) (-2655 . 421545) (-2656 . 421430) + (-2657 . 421373) (-2658 . 421236) (-2659 . 420944) (-2660 . 420753) + (-2661 . 420679) (-2662 . 420575) (-2663 . 420273) (-2664 . 419709) + (-2665 . 418483) (-2666 . 418311) (-2667 . 418212) (-2668 . 418132) + (-2669 . 417952) (-2670 . 417884) (-2671 . 417791) (-2672 . 417693) + (-2673 . 417397) (-2674 . 417259) (-2675 . 417115) (-2676 . 416597) + (-2677 . 416545) (-2678 . 415871) (-2679 . 415699) (-2680 . 415556) + (-2681 . 415390) (-2682 . 415294) (-2683 . 415226) (-2684 . 415006) + (-2685 . 414846) (-2686 . 414484) (-2687 . 414418) (-2688 . 414300) + (-2689 . 414181) (-2690 . 414104) (-2691 . 413986) (-2692 . 413312) + (-2693 . 413140) (-2694 . 412700) (-2695 . 412469) (-2696 . 412323) + (-2697 . 412210) (-2698 . 412133) (-2699 . 412002) (-2700 . 411949) + (-2701 . 411859) (-2702 . 411696) (-2703 . 411643) (-2704 . 410906) + (-2705 . 410811) (-2706 . 410430) (-2707 . 410368) (-2708 . 409489) + (-2709 . 409364) (-2710 . 409263) (-2711 . 409110) (-2712 . 408895) + (-2713 . 408718) (-2714 . 408647) (-2715 . 408085) (-2716 . 407810) + (-2717 . 407494) (-2718 . 407379) (-2719 . 407066) (-2720 . 406757) + (-2721 . 406702) (-2722 . 406650) (-2723 . 406568) (-2724 . 406511) + (-2725 . 406452) (-2726 . 405890) (-2727 . 405760) (-2728 . 405667) + (-2729 . 405608) (-2730 . 405467) (-2731 . 405363) (-2732 . 405021) + (-2733 . 404947) (-2734 . 404894) (-2735 . 404356) (-2736 . 404260) + (-2737 . 403698) (-2738 . 403411) (-2739 . 403349) (-2740 . 403236) + (-2741 . 403183) (-2742 . 402697) (-2743 . 402597) (-2744 . 402563) + (-2745 . 401903) (-2746 . 401875) (-2747 . 401774) (-2748 . 401724) + (-2749 . 401049) (-2750 . 400586) (-2751 . 400428) (-2752 . 400373) + (-2753 . 399828) (-2754 . 399448) (-2755 . 399119) (-2756 . 399041) + (-2757 . 398934) (-2758 . 398352) (-2759 . 398271) (-2760 . 398134) + (-2761 . 397459) (-2762 . 397320) (-2763 . 397214) (-2764 . 397127) + (-2765 . 397031) (-2766 . 396906) (-2767 . 396707) (-2768 . 396637) + (-2769 . 396587) (-2770 . 396455) (-2771 . 396181) (-2772 . 396070) + (-2773 . 395985) (-2774 . 395310) (-2775 . 395030) (-2776 . 394847) + (-2777 . 394788) (-2778 . 394735) (-2779 . 394563) (-2780 . 394188) + (-2781 . 394088) (-2782 . 393992) (-2783 . 393811) (-2784 . 393738) + (-2785 . 393416) (-2786 . 392853) (-2787 . 392736) (-2788 . 392653) + (-2789 . 392286) (-2790 . 392188) (-12 . 392016) (-2792 . 391919) + (-2793 . 391481) (-2794 . 391378) (-2795 . 390580) (-2796 . 390450) + (-2797 . 389932) (-2798 . 389830) (-2799 . 389235) (-2800 . 389139) + (-2801 . 388829) (-2802 . 388656) (-2803 . 388515) (-2804 . 388258) + (-2805 . 388025) (-2806 . 387884) (-2807 . 387794) (-2808 . 387420) + (-2809 . 386895) (-2810 . 386792) (-2811 . 386691) (-2812 . 386509) + (-2813 . 386310) (-2814 . 386225) (-2815 . 386084) (-2816 . 385989) + (-2817 . 385804) (-2818 . 385641) (-2819 . 385540) (-2820 . 385301) + (-2821 . 385165) (-2822 . 384773) (-2823 . 384721) (-2824 . 384641) + (-2825 . 384371) (-2826 . 384305) (-2827 . 384218) (-2828 . 384094) + (-2829 . 384066) (-2830 . 383904) (-2831 . 383797) (-2832 . 383436) + (-2833 . 383384) (-2834 . 383173) (-2835 . 382341) (-2836 . 382223) + (-2837 . 382067) (-2838 . 381838) (-2839 . 381647) (-2840 . 381552) + (-2841 . 381524) (-2842 . 380564) (-2843 . 380511) (-2844 . 380420) + (-2845 . 380037) (-2846 . 379959) (-2847 . 379845) (-2848 . 379762) + (-2849 . 379707) (-2850 . 379655) (-2851 . 379545) (-2852 . 379380) + (-2853 . 379313) (-2854 . 379205) (-2855 . 379047) (-2856 . 378590) + (-2857 . 378517) (-2858 . 378357) (-2859 . 378283) (-2860 . 378084) + (-2861 . 378056) (-2862 . 377190) (-2863 . 377011) (-2864 . 376954) + (-2865 . 376567) (-2866 . 376394) (-2867 . 376267) (-2868 . 376125) + (-2869 . 376073) (-2870 . 375969) (-2871 . 375828) (-2872 . 375778) + (-2873 . 375402) (-2874 . 375200) (-2875 . 375057) (-2876 . 374779) + (-2877 . 374448) (-2878 . 374360) (-2879 . 374261) (-2880 . 372719) + (-2881 . 372472) (-2882 . 372314) (-2883 . 372228) (-2884 . 372170) + (-2885 . 371951) (-2886 . 371775) (-2887 . 371723) (-2888 . 371584) + (* . 367317) (-2890 . 367024) (-2891 . 366830) (-2892 . 366665) + (-2893 . 366510) (-2894 . 366391) (-2895 . 366236) (-2896 . 366128) + (-2897 . 365943) (-2898 . 365821) (-2899 . 364947) (-2900 . 364729) + (-2901 . 364545) (-2902 . 364459) (-2903 . 364378) (-2904 . 364126) + (-2905 . 364033) (-2906 . 363910) (-2907 . 363396) (-2908 . 363201) + (-2909 . 362522) (-2910 . 362381) (-2911 . 362071) (-2912 . 361992) + (-2913 . 361839) (-2914 . 361660) (-2915 . 361301) (-2916 . 361168) + (-2917 . 361039) (-2918 . 360794) (-2919 . 360623) (-2920 . 360546) + (-2921 . 360363) (-2922 . 360264) (-2923 . 359992) (-2924 . 359728) + (-2925 . 359417) (-2926 . 359293) (-2927 . 359190) (-2928 . 359134) + (-2929 . 359031) (-2930 . 358979) (-2931 . 358441) (-2932 . 358322) + (-2933 . 358162) (-2934 . 358001) (-2935 . 357935) (-2936 . 357842) + (-2937 . 357722) (-2938 . 357661) (-2939 . 357503) (-2940 . 357437) + (-2941 . 357367) (-2942 . 357293) (-2943 . 356999) (-2944 . 356902) + (-2945 . 356387) (-2946 . 356200) (-2947 . 356044) (-2948 . 355813) + (-2949 . 355705) (-2950 . 355531) (-2951 . 355398) (-2952 . 355276) + (-2953 . 355205) (-2954 . 354983) (-2955 . 354830) (-2956 . 354761) + (-2957 . 354729) (-2958 . 354603) (-2959 . 354516) (-2960 . 354464) + (-2961 . 354293) (-2962 . 354066) (-2963 . 353995) (-2964 . 353740) + (-2965 . 353561) (-2966 . 353453) (-2967 . 353373) (-2968 . 353154) + (-2969 . 352995) (-2970 . 352860) (-2971 . 352763) (-2972 . 352568) + (-2973 . 352360) (-2974 . 352220) (-2975 . 352126) (-2976 . 352052) + (-2977 . 351981) (-2978 . 351663) (-2979 . 351597) (-2980 . 351474) + (-2981 . 351387) (-2982 . 350801) (-2983 . 350705) (-2984 . 350603) + (-2985 . 350502) (-2986 . 350379) (-2987 . 350273) (-2988 . 350066) + (-2989 . 350014) (-2990 . 349818) (-2991 . 349737) (-2992 . 349594) + (-2993 . 349284) (-2994 . 348918) (-2995 . 348825) (-2996 . 348681) + (-2997 . 348598) (-2998 . 348524) (-2999 . 348453) (-3000 . 348388) + (-3001 . 348359) (-3002 . 348263) (-3003 . 348211) (-3004 . 348080) + (-3005 . 347927) (-3006 . 347875) (-3007 . 347371) (-3008 . 347251) + (-3009 . 347167) (-3010 . 347019) (-3011 . 346827) (-3012 . 346476) + (-3013 . 346327) (-3014 . 345141) (-3015 . 345003) (-3016 . 344718) + (-3017 . 344623) (-3018 . 344420) (-3019 . 344038) (-3020 . 344010) + (-3021 . 343300) (-3022 . 343155) (-3023 . 343096) (-3024 . 343000) + (-3025 . 342921) (-3026 . 341739) (-3027 . 341657) (-3028 . 341587) + (-3029 . 341468) (-3030 . 341002) (-3031 . 340934) (-3032 . 340866) + (-3033 . 340764) (-3034 . 340565) (-3035 . 340484) (-3036 . 340355) + (-3037 . 338147) (-3038 . 338069) (-3039 . 337995) (-3040 . 337459) + (-3041 . 337357) (-3042 . 337297) (-3043 . 337209) (-3044 . 336807) + (-3045 . 336728) (-3046 . 336675) (-3047 . 336591) (-3048 . 336533) + (-3049 . 336417) (-3050 . 336361) (-3051 . 336010) (-3052 . 335837) + (-3053 . 335253) (-9 . 335225) (-3055 . 335173) (-3056 . 334895) + (-3057 . 334808) (-3058 . 333892) (-3059 . 333839) (-3060 . 333730) + (-3061 . 333625) (-3062 . 333573) (-3063 . 333523) (-3064 . 333070) + (-3065 . 332828) (-3066 . 332727) (-3067 . 332567) (-8 . 332539) + (-3069 . 332484) (-3070 . 332274) (-3071 . 332112) (-3072 . 331927) + (-3073 . 331720) (-3074 . 331526) (-3075 . 331383) (-7 . 331355) + (-3077 . 331175) (-3078 . 331107) (-3079 . 331055) (-3080 . 330974) + (-3081 . 330155) (-3082 . 330096) (-3083 . 330002) (-3084 . 329879) + (-3085 . 329708) (-3086 . 329459) (-3087 . 329332) (-3088 . 329119) + (-3089 . 328961) (-3090 . 328911) (-3091 . 328669) (-3092 . 328485) + (-3093 . 327809) (-3094 . 327675) (-3095 . 327560) (-3096 . 327338) + (-3097 . 327241) (-3098 . 326424) (-3099 . 326296) (-3100 . 326219) + (-3101 . 326116) (-3102 . 325763) (-3103 . 325705) (-3104 . 325506) + (-3105 . 325403) (-3106 . 325188) (-3107 . 324372) (-3108 . 323721) + (-3109 . 323503) (-3110 . 323432) (-3111 . 323359) (-3112 . 323227) + (-3113 . 323131) (-3114 . 323062) (-3115 . 322967) (-3116 . 322843) + (-3117 . 322748) (-3118 . 322639) (-3119 . 322605) (-3120 . 322512) + (-3121 . 322417) (-3122 . 322287) (-3123 . 322233) (-3124 . 322147) + (-3125 . 322073) (-3126 . 321977) (-3127 . 321748) (-3128 . 321660) + (-3129 . 321604) (-3130 . 321431) (-3131 . 321240) (-3132 . 321030) + (-3133 . 320865) (-3134 . 320812) (-3135 . 320760) (-3136 . 320674) + (-3137 . 320014) (-3138 . 319663) (-3139 . 319445) (-3140 . 319325) + (-3141 . 319191) (-3142 . 318765) (-3143 . 318686) (-3144 . 317594) + (-3145 . 317460) (-3146 . 317377) (-3147 . 317283) (-3148 . 317228) + (-3149 . 317127) (-3150 . 316992) (-3151 . 316783) (-3152 . 311444) + (-3153 . 311023) (-3154 . 310905) (-3155 . 310820) (-3156 . 310677) + (-3157 . 310626) (-3158 . 310498) (-3159 . 310114) (-3160 . 309946) + (-3161 . 309844) (-3162 . 309792) (-3163 . 309742) (-3164 . 309315) + (-3165 . 309037) (-3166 . 308930) (-3167 . 308881) (-3168 . 308470) + (-3169 . 308400) (-3170 . 308351) (-3171 . 308273) (-3172 . 308221) + (-3173 . 308111) (-3174 . 307981) (-3175 . 307815) (-3176 . 307718) + (-3177 . 307505) (-3178 . 307450) (-3179 . 307340) (-3180 . 306946) + (-3181 . 306858) (-3182 . 306798) (-3183 . 306620) (-3184 . 306502) + (-3185 . 306429) (-3186 . 306142) (-3187 . 306068) (-3188 . 305997) + (-3189 . 305788) (-3190 . 305569) (-3191 . 305497) (-3192 . 305434) + (-3193 . 305346) (-3194 . 305218) (-3195 . 305055) (-3196 . 304762) + (-3197 . 304685) (-3198 . 304588) (-3199 . 304416) (-3200 . 304357) + (-3201 . 304305) (-3202 . 304134) (-3203 . 303688) (-3204 . 303628) + (-3205 . 303518) (-3206 . 303374) (-3207 . 303156) (-3208 . 303090) + (-3209 . 303056) (-3210 . 302933) (-3211 . 301752) (-3212 . 301604) + (-3213 . 301234) (-3214 . 301044) (-3215 . 300992) (-3216 . 300882) + (-3217 . 300767) (-3218 . 300545) (-3219 . 300384) (-3220 . 300258) + (-3221 . 300128) (-3222 . 300032) (-3223 . 299973) (-3224 . 299726) + (-3225 . 297948) (-3226 . 297759) (-3227 . 297513) (-3228 . 297373) + (-3229 . 296964) (-3230 . 296891) (-3231 . 296734) (-3232 . 296680) + (-3233 . 296600) (-3234 . 296510) (-3235 . 296315) (-3236 . 296242) + (-3237 . 296189) (-3238 . 296065) (-3239 . 295819) (-3240 . 295725) + (-3241 . 295287) (-3242 . 295220) (-3243 . 295121) (-3244 . 295026) + (-3245 . 294954) (-3246 . 294870) (-3247 . 294602) (-3248 . 294397) + (-3249 . 294331) (-3250 . 294114) (-3251 . 294085) (-3252 . 293870) + (-3253 . 293807) (-3254 . 293648) (-3255 . 293508) (-3256 . 293449) + (-3257 . 292786) (-3258 . 292731) (-3259 . 292625) (-3260 . 292557) + (-3261 . 292473) (-3262 . 292366) (-3263 . 292314) (-3264 . 292159) + (-3265 . 292106) (-3266 . 292007) (-3267 . 291908) (-3268 . 291574) + (-3269 . 291228) (-3270 . 291091) (-3271 . 290732) (-3272 . 290420) + (-3273 . 290301) (-3274 . 288873) (-3275 . 288794) (-3276 . 288523) + (-3277 . 288352) (-3278 . 288299) (-3279 . 288203) (-3280 . 287777) + (-3281 . 287682) (-3282 . 287515) (-3283 . 287047) (-3284 . 286659) + (-3285 . 286606) (-3286 . 285968) (-3287 . 285916) (-3288 . 285845) + (-3289 . 285789) (-3290 . 285712) (-3291 . 285646) (-3292 . 285519) + (-3293 . 285445) (-3294 . 285376) (-3295 . 285305) (-3296 . 285253) + (-3297 . 285172) (-3298 . 285078) (-3299 . 284657) (-3300 . 284604) + (-3301 . 284273) (-3302 . 284171) (-3303 . 284105) (-3304 . 284049) + (-3305 . 283874) (-3306 . 283746) (-3307 . 283688) (-3308 . 283600) + (-3309 . 283369) (-3310 . 283317) (-3311 . 283064) (-3312 . 283007) + (-3313 . 282852) (-3314 . 282649) (-3315 . 282430) (-3316 . 282037) + (-3317 . 281722) (-3318 . 281638) (-3319 . 281428) (-3320 . 281359) + (-3321 . 281179) (-3322 . 281075) (-3323 . 280491) (-3324 . 278377) + (-3325 . 275536) (-3326 . 273947) (-3327 . 273919) (-3328 . 273762) + (-3329 . 273627) (-3330 . 273517) (-3331 . 273380) (-3332 . 273327) + (-3333 . 273054) (-3334 . 272911) (-3335 . 272560) (-3336 . 272501) + (-3337 . 272385) (-3338 . 272314) (-3339 . 271943) (-3340 . 271877) + (-3341 . 271759) (-3342 . 271709) (-3343 . 271681) (-3344 . 271532) + (-3345 . 271473) (-3346 . 271217) (-3347 . 271145) (-3348 . 270992) + (-3349 . 270930) (-3350 . 270654) (-3351 . 270507) (-3352 . 270267) + (-3353 . 270172) (-3354 . 270072) (-3355 . 269980) (-3356 . 269752) + (-3357 . 269649) (-3358 . 269596) (-3359 . 269167) (-3360 . 268736) + (-3361 . 268684) (-3362 . 268579) (-3363 . 268028) (-3364 . 267875) + (-3365 . 267801) (-3366 . 267723) (-3367 . 267475) (-3368 . 267143) + (-3369 . 266325) (-3370 . 266259) (-3371 . 264997) (-3372 . 264881) + (-3373 . 264705) (-3374 . 263970) (-3375 . 263825) (-3376 . 263753) + (-3377 . 263652) (-3378 . 263492) (-3379 . 263333) (-3380 . 263305) + (-3381 . 263184) (-3382 . 262906) (-3383 . 262746) (-3384 . 262631) + (-3385 . 262561) (-3386 . 262478) (-3387 . 262384) (-3388 . 262225) + (-3389 . 262146) (-3390 . 262065) (-3391 . 261795) (-3392 . 261699) + (-3393 . 261611) (-3394 . 261481) (-3395 . 261429) (-3396 . 261333) + (-3397 . 261195) (-3398 . 260967) (-3399 . 260752) (-3400 . 260655) + (-3401 . 260559) (-3402 . 260183) (-3403 . 260117) (-3404 . 259967) + (-3405 . 259911) (-3406 . 259852) (-3407 . 259779) (-3408 . 259156) + (-3409 . 259018) (-3410 . 258875) (-3411 . 258771) (-3412 . 258655) + (-3413 . 258599) (-3414 . 258508) (-3415 . 258425) (-3416 . 258352) + (-3417 . 258288) (-3418 . 258191) (-3419 . 258118) (-3420 . 258041) + (-3421 . 257881) (-3422 . 257697) (-3423 . 257462) (-3424 . 256988) + (-3425 . 256509) (-3426 . 256456) (-3427 . 256319) (-3428 . 256205) + (-3429 . 255992) (-3430 . 255811) (-3431 . 255734) (-3432 . 255702) + (-3433 . 255578) (-3434 . 255483) (-3435 . 255412) (-3436 . 255246) + (-3437 . 255057) (-3438 . 254986) (-3439 . 254912) (-3440 . 254756) + (-3441 . 254698) (-3442 . 254621) (-3443 . 254421) (-3444 . 254365) + (-3445 . 254118) (-3446 . 254065) (-3447 . 253765) (-3448 . 253459) + (-3449 . 253381) (-3450 . 253128) (-3451 . 253063) (-3452 . 253035) + (-3453 . 252644) (-3454 . 252543) (-3455 . 252421) (-3456 . 252336) + (-3457 . 252185) (-3458 . 251681) (-3459 . 251581) (-3460 . 251452) + (-3461 . 251303) (-3462 . 250953) (-3463 . 250925) (-3464 . 250765) + (-3465 . 250669) (-3466 . 250601) (-3467 . 250498) (-3468 . 250396) + (-3469 . 250189) (-3470 . 250105) (-3471 . 250009) (-3472 . 249884) + (-3473 . 249504) (-3474 . 249418) (-3475 . 248482) (-3476 . 248415) + (-3477 . 248105) (-3478 . 247813) (-3479 . 247606) (-3480 . 247407) + (-3481 . 246486) (-3482 . 246421) (-3483 . 246282) (-3484 . 246198) + (-3485 . 246032) (-3486 . 245961) (-3487 . 245804) (-3488 . 245691) + (-3489 . 245618) (-3490 . 245535) (-3491 . 245239) (-3492 . 245140) + (-3493 . 244960) (-3494 . 244868) (-3495 . 244768) (-3496 . 244493) + (-3497 . 244392) (-3498 . 244239) (-3499 . 243911) (-3500 . 242713) + (-3501 . 242534) (-3502 . 242352) (-3503 . 242134) (-3504 . 242068) + (-3505 . 241877) (-3506 . 241800) (-3507 . 241734) (-3508 . 241642) + (-3509 . 241082) (-3510 . 240988) (-3511 . 240285) (-3512 . 240033) + (-3513 . 239920) (-3514 . 239850) (-3515 . 239237) (-3516 . 239166) + (-3517 . 239098) (-3518 . 239015) (-3519 . 236853) (-3520 . 236626) + (-3521 . 236540) (-3522 . 236476) (-3523 . 236421) (-3524 . 236302) + (-3525 . 236132) (-3526 . 235947) (-3527 . 235520) (-3528 . 235454) + (-3529 . 235336) (-3530 . 235132) (-3531 . 234602) (-3532 . 234402) + (-3533 . 233920) (-3534 . 233852) (-3535 . 233619) (-3536 . 233542) + (-3537 . 233440) (-3538 . 233367) (-3539 . 233305) (-3540 . 233003) + (-3541 . 232900) (-3542 . 231119) (-3543 . 230715) (-3544 . 230567) + (-3545 . 230452) (-3546 . 230331) (-3547 . 229261) (-3548 . 229142) + (-3549 . 229085) (-3550 . 229000) (-3551 . 228946) (-3552 . 228847) + (-3553 . 228717) (-3554 . 228565) (-3555 . 228506) (-3556 . 228296) + (-3557 . 228244) (-3558 . 227861) (-3559 . 227643) (-3560 . 227524) + (-3561 . 227285) (-3562 . 227046) (-3563 . 226691) (-3564 . 226209) + (-3565 . 225995) (-3566 . 225938) (-3567 . 225701) (-3568 . 225555) + (-3569 . 225368) (-3570 . 225212) (-3571 . 225124) (-3572 . 224960) + (-3573 . 224926) (-3574 . 224280) (-3575 . 224206) (-3576 . 224132) + (-3577 . 223978) (-3578 . 223841) (-3579 . 222111) (-3580 . 221974) + (-3581 . 221799) (-3582 . 221733) (-3583 . 221515) (-3584 . 221427) + (-3585 . 221374) (-3586 . 220532) (-3587 . 219940) (-3588 . 219666) + (-3589 . 219592) (-3590 . 219510) (-3591 . 219460) (-3592 . 219316) + (-3593 . 219115) (-3594 . 218447) (-3595 . 218416) (-3596 . 217976) + (-3597 . 217882) (-3598 . 217789) (-3599 . 217599) (-3600 . 213990) + (-3601 . 213743) (-3602 . 213547) (-3603 . 213262) (-3604 . 213148) + (-3605 . 212974) (-3606 . 212548) (-3607 . 211940) (-3608 . 211844) + (-3609 . 211674) (-3610 . 211363) (-3611 . 211264) (-3612 . 211204) + (-3613 . 211175) (-3614 . 211093) (-3615 . 211041) (-3616 . 211007) + (-3617 . 210879) (-3618 . 210729) (-3619 . 210621) (-3620 . 210535) + (-3621 . 210420) (-3622 . 210254) (-3623 . 210036) (-3624 . 209965) + (-3625 . 209882) (-3626 . 209808) (-3627 . 209685) (-3628 . 209033) + (-3629 . 208920) (-3630 . 208807) (-3631 . 208511) (-3632 . 208367) + (-3633 . 208206) (-3634 . 208137) (-3635 . 208037) (-3636 . 207968) + (-3637 . 207477) (-3638 . 207312) (-3639 . 207189) (-3640 . 207105) + (-3641 . 207063) (-3642 . 206990) (-3643 . 206407) (-3644 . 206221) + (-3645 . 206100) (-3646 . 205703) (-3647 . 205485) (-3648 . 205310) + (-3649 . 205215) (-3650 . 204906) (-3651 . 204727) (-3652 . 204529) + (-3653 . 204422) (-3654 . 204369) (-3655 . 204271) (-3656 . 204169) + (-3657 . 204025) (-3658 . 203955) (-3659 . 203698) (-3660 . 203457) + (-3661 . 203398) (-3662 . 203217) (-3663 . 202968) (-3664 . 202915) + (-3665 . 202853) (-3666 . 202816) (-3667 . 202625) (-3668 . 202195) + (-3669 . 201930) (-3670 . 201692) (-3671 . 201438) (-3672 . 201325) + (-3673 . 201247) (-3674 . 201174) (-3675 . 200210) (-3676 . 200094) + (-3677 . 199966) (-3678 . 199893) (-3679 . 199797) (-3680 . 199655) + (-3681 . 199475) (-3682 . 199260) (-3683 . 198885) (-3684 . 198787) + (-3685 . 198384) (-3686 . 198301) (-3687 . 198137) (-3688 . 198041) + (-3689 . 197967) (-3690 . 197908) (-3691 . 197823) (-3692 . 197719) + (-3693 . 197649) (-3694 . 197431) (-3695 . 197134) (-3696 . 196687) + (-3697 . 196634) (-3698 . 196564) (-3699 . 196368) (-3700 . 196277) + (-3701 . 195888) (-3702 . 195669) (-3703 . 195598) (-3704 . 195268) + (-3705 . 194849) (-3706 . 194730) (-3707 . 194652) (-3708 . 194280) + (-3709 . 194226) (-3710 . 194147) (-3711 . 193730) (-3712 . 192507) + (-3713 . 192429) (-3714 . 192214) (-3715 . 192050) (-3716 . 189918) + (-3717 . 189835) (-3718 . 189722) (-3719 . 189593) (-3720 . 189469) + (-3721 . 189376) (-3722 . 189198) (-3723 . 189142) (-3724 . 189093) + (-3725 . 189027) (-3726 . 188975) (-3727 . 188760) (-3728 . 188732) + (-3729 . 188559) (-3730 . 188531) (-3731 . 188497) (-3732 . 188365) + (-3733 . 188262) (-3734 . 187728) (-3735 . 187386) (-3736 . 187200) + (-3737 . 187168) (-3738 . 187015) (-3739 . 186953) (-3740 . 185805) + (-3741 . 185731) (-3742 . 185618) (-3743 . 185420) (-3744 . 185288) + (-3745 . 185186) (-3746 . 185098) (-3747 . 184491) (-3748 . 183396) + (-3749 . 183279) (-3750 . 182782) (-3751 . 182543) (-3752 . 182365) + (-3753 . 182310) (-3754 . 182255) (-3755 . 181950) (-3756 . 181820) + (-3757 . 181689) (-3758 . 181543) (-3759 . 181392) (-3760 . 181158) + (-3761 . 180919) (-3762 . 180792) (-3763 . 180738) (-3764 . 180402) + (-3765 . 180286) (-3766 . 179398) (-3767 . 179343) (-3768 . 177941) + (-3769 . 177848) (-3770 . 177788) (-3771 . 177643) (-3772 . 177485) + (-3773 . 177332) (-3774 . 177261) (-3775 . 176897) (-3776 . 176786) + (-3777 . 176182) (-3778 . 175750) (-3779 . 175693) (-3780 . 175596) + (-3781 . 175416) (-3782 . 175338) (-3783 . 175233) (-3784 . 175006) + (-3785 . 174915) (-3786 . 174789) (-3787 . 174688) (-3788 . 174636) + (-3789 . 174581) (-3790 . 174463) (-3791 . 174364) (-3792 . 174105) + (-3793 . 174053) (-3794 . 173762) (-3795 . 173710) (-3796 . 173644) + (-3797 . 173577) (-3798 . 155002) (-3799 . 154949) (-3800 . 154831) + (-3801 . 149317) (-3802 . 148871) (-3803 . 148735) (-3804 . 148544) + (-3805 . 148293) (-3806 . 148151) (-3807 . 147815) (-3808 . 147762) + (-3809 . 147672) (-3810 . 147600) (-3811 . 144779) (-3812 . 144720) + (-3813 . 144564) (-3814 . 144446) (-3815 . 144053) (-3816 . 143930) + (-3817 . 143759) (-3818 . 143640) (-3819 . 143561) (-3820 . 143313) + (-3821 . 143192) (-3822 . 143160) (-3823 . 143066) (-3824 . 142833) + (-3825 . 142773) (-3826 . 142658) (-3827 . 142216) (-3828 . 141737) + (-3829 . 141674) (-3830 . 141580) (-3831 . 141428) (-3832 . 141350) + (-3833 . 141250) (-3834 . 141098) (-3835 . 141015) (-3836 . 140932) + (-3837 . 140705) (-3838 . 140602) (-3839 . 140267) (-3840 . 140147) + (-3841 . 140095) (-3842 . 139992) (-3843 . 139920) (-3844 . 139655) + (-3845 . 139588) (-3846 . 139426) (-3847 . 138750) (-3848 . 138640) + (-3849 . 138408) (-3850 . 138328) (-3851 . 138181) (-3852 . 138129) + (-3853 . 138046) (-3854 . 137930) (-3855 . 137867) (-3856 . 137103) + (-3857 . 136670) (-3858 . 136593) (-3859 . 136326) (-3860 . 135882) + (-3861 . 135701) (-3862 . 135600) (-3863 . 135548) (-3864 . 135432) + (-3865 . 135208) (-3866 . 135022) (-3867 . 134969) (-3868 . 134917) + (-3869 . 134833) (-3870 . 134659) (-3871 . 134444) (-3872 . 134389) + (-3873 . 134130) (-3874 . 134017) (-3875 . 133303) (-3876 . 133150) + (-3877 . 132948) (-3878 . 132739) (-3879 . 132654) (-3880 . 132456) + (-3881 . 132359) (-3882 . 132206) (-3883 . 131917) (-3884 . 122467) + (-3885 . 122415) (-3886 . 122259) (-3887 . 121932) (-3888 . 121830) + (-3889 . 121640) (-3890 . 120904) (-3891 . 120791) (-3892 . 120667) + (-3893 . 120530) (-3894 . 120463) (-3895 . 119944) (-3896 . 119861) + (-3897 . 119581) (-3898 . 119479) (-3899 . 119427) (-3900 . 119132) + (-3901 . 118892) (-3902 . 118810) (-3903 . 118517) (-3904 . 118354) + (-3905 . 118253) (-3906 . 118140) (-3907 . 118043) (-3908 . 117964) + (-3909 . 117795) (-3910 . 117192) (-3911 . 116646) (-3912 . 116488) + (-3913 . 116387) (-3914 . 116194) (-3915 . 115878) (-3916 . 115593) + (-3917 . 115459) (-3918 . 115314) (-3919 . 114970) (-3920 . 114788) + (-3921 . 114695) (-3922 . 114380) (-3923 . 114264) (-3924 . 114178) + (-3925 . 112548) (-3926 . 112493) (-3927 . 112414) (-3928 . 112359) + (-3929 . 112255) (-3930 . 112072) (-3931 . 111976) (-3932 . 111831) + (-3933 . 111342) (-3934 . 110991) (-3935 . 110873) (-3936 . 110793) + (-3937 . 110595) (-3938 . 110440) (-3939 . 110359) (-3940 . 109958) + (-3941 . 109878) (-3942 . 109550) (-3943 . 109418) (-3944 . 109277) + (-3945 . 107973) (-3946 . 107838) (-3947 . 107728) (-3948 . 107595) + (-3949 . 107031) (-3950 . 106833) (-3951 . 106574) (-3952 . 106431) + (-3953 . 106226) (-3954 . 106030) (-3955 . 105946) (-3956 . 105874) + (-3957 . 105780) (-3958 . 105687) (-3959 . 105552) (-3960 . 105501) + (-3961 . 105450) (-3962 . 105151) (-3963 . 105010) (-3964 . 104683) + (-3965 . 103819) (-3966 . 103668) (-3967 . 103440) (-3968 . 103318) + (-3969 . 103216) (-3970 . 103136) (-3971 . 102774) (-3972 . 102702) + (-3973 . 102464) (-3974 . 102013) (-3975 . 101912) (-3976 . 101803) + (-3977 . 101499) (-3978 . 101446) (-3979 . 100196) (-3980 . 100034) + (-3981 . 99938) (-3982 . 99773) (-3983 . 99232) (-3984 . 99140) + (-3985 . 99088) (-3986 . 98973) (-3987 . 98795) (-3988 . 98707) + (-3989 . 98457) (-3990 . 98309) (-3991 . 98217) (-3992 . 98152) + (-3993 . 98066) (-3994 . 96005) (-3995 . 95884) (-3996 . 95788) + (-3997 . 95716) (-3998 . 95664) (-3999 . 95485) (-4000 . 95407) + (-4001 . 95189) (-4002 . 95062) (-4003 . 94470) (-4004 . 94344) + (-4005 . 94152) (-4006 . 94012) (-4007 . 93984) (-4008 . 93836) + (-4009 . 93750) (-4010 . 93665) (-4011 . 93582) (-4012 . 93455) + (-4013 . 92925) (-4014 . 92851) (-4015 . 92753) (-4016 . 92503) + (-4017 . 92417) (-4018 . 92337) (-4019 . 92263) (-4020 . 91423) + (-4021 . 91340) (-4022 . 89763) (-4023 . 89693) (-4024 . 89623) + (-4025 . 89572) (-4026 . 88689) (-4027 . 88383) (-4028 . 88289) + (-4029 . 88079) (-4030 . 87827) (-4031 . 87757) (-4032 . 87705) + (-4033 . 87577) (-4034 . 87169) (-4035 . 87113) (-4036 . 87012) + (-4037 . 86961) (-4038 . 86845) (-4039 . 86324) (-4040 . 86268) + (-4041 . 86240) (-4042 . 85155) (-4043 . 85078) (-4044 . 84915) + (-4045 . 84705) (-4046 . 84604) (-4047 . 84530) (-4048 . 84462) + (-4049 . 84340) (-4050 . 84218) (-4051 . 84166) (-4052 . 84022) + (-4053 . 83880) (-4054 . 83702) (-4055 . 83539) (-4056 . 83345) + (-4057 . 83291) (-4058 . 83219) (-4059 . 83007) (-4060 . 82868) + (-4061 . 82771) (-4062 . 82444) (-4063 . 82352) (-4064 . 78192) + (-4065 . 78059) (-4066 . 77973) (-4067 . 77917) (-4068 . 77833) + (-4069 . 77075) (-4070 . 76731) (-4071 . 76662) (-4072 . 76498) + (-4073 . 76443) (-4074 . 76315) (-4075 . 76059) (-4076 . 75861) + (-4077 . 75784) (-4078 . 75747) (-4079 . 75589) (-4080 . 75501) + (-4081 . 75312) (-4082 . 75142) (-4083 . 75039) (-4084 . 74953) + (-4085 . 74847) (-4086 . 74624) (-4087 . 74430) (-4088 . 74292) + (-4089 . 74192) (-4090 . 74104) (-4091 . 74000) (-4092 . 73917) + (-4093 . 73730) (-4094 . 73352) (-4095 . 73223) (-4096 . 72809) + (-4097 . 72701) (-4098 . 72560) (-4099 . 72532) (-4100 . 72362) + (-4101 . 72091) (-4102 . 72039) (-4103 . 71914) (-4104 . 71843) + (-4105 . 71791) (-4106 . 71711) (-4107 . 71265) (-4108 . 71163) + (-4109 . 70938) (-4110 . 70692) (-4111 . 70459) (-4112 . 70343) + (-4113 . 70315) (-4114 . 70111) (-4115 . 70016) (-4116 . 69921) + (-4117 . 69841) (-4118 . 69508) (-4119 . 68945) (-4120 . 68837) + (-4121 . 68587) (-4122 . 68533) (-4123 . 68438) (-4124 . 68314) + (-4125 . 68255) (-4126 . 68110) (-4127 . 67878) (-4128 . 67784) + (-4129 . 67221) (-4130 . 66967) (-4131 . 66745) (-4132 . 66650) + (-4133 . 66595) (-4134 . 66491) (-4135 . 66332) (-4136 . 66265) + (-4137 . 66213) (-4138 . 66053) (-4139 . 65930) (-4140 . 65829) + (-4141 . 65267) (-4142 . 65101) (-4143 . 64903) (-4144 . 64830) + (-4145 . 64153) (-4146 . 64076) (-4147 . 63929) (-4148 . 63819) + (-4149 . 63747) (-4150 . 62874) (-4151 . 62822) (-4152 . 62679) + (-4153 . 62117) (-4154 . 62010) (-4155 . 61915) (-4156 . 61517) + (-4157 . 61489) (-4158 . 61429) (-4159 . 61372) (-4160 . 60618) + (-4161 . 60584) (-4162 . 60398) (-4163 . 59402) (-4164 . 59283) + (-4165 . 58721) (-4166 . 58665) (-4167 . 58312) (-4168 . 58197) + (-4169 . 58038) (-4170 . 58006) (-4171 . 57937) (-4172 . 57882) + (-4173 . 57750) (-4174 . 57632) (-4175 . 57503) (-4176 . 56941) + (-4177 . 56493) (-4178 . 56440) (-4179 . 56370) (-4180 . 55730) + (-4181 . 55088) (-4182 . 54877) (-4183 . 54795) (-4184 . 54503) + (-4185 . 54429) (-4186 . 53867) (-4187 . 53805) (-4188 . 53553) + (-4189 . 53501) (-4190 . 53287) (-4191 . 53181) (-4192 . 53020) + (-4193 . 52410) (-4194 . 52184) (-4195 . 51119) (-4196 . 50883) + (-4197 . 50764) (-4198 . 50630) (-4199 . 50556) (-4200 . 50220) + (-4201 . 50090) (-4202 . 47834) (-4203 . 47646) (-4204 . 47575) + (-4205 . 47434) (-4206 . 47280) (-4207 . 46832) (-4208 . 46780) + (-4209 . 46599) (-4210 . 46513) (-4211 . 46292) (-4212 . 46044) + (-4213 . 45786) (-4214 . 45370) (-4215 . 45258) (-4216 . 45128) + (-4217 . 44286) (-4218 . 44235) (-4219 . 44152) (-4220 . 44024) + (-4221 . 43942) (-4222 . 43890) (-4223 . 43824) (-4224 . 43765) + (-4225 . 43716) (-4226 . 43228) (-4227 . 43121) (-4228 . 42978) + (-4229 . 42850) (-4230 . 42695) (-4231 . 42411) (-4232 . 42310) + (-4233 . 42273) (-4234 . 42180) (-4235 . 41884) (-4236 . 41831) + (-4237 . 41625) (-4238 . 41290) (-4239 . 41191) (-4240 . 41125) + (-4241 . 40958) (-4242 . 40860) (-4243 . 40666) (-4244 . 40500) + (-4245 . 40412) (-4246 . 40141) (-4247 . 39935) (-4248 . 39837) + (-4249 . 39682) (-4250 . 39390) (-4251 . 39152) (-4252 . 39057) + (-4253 . 38787) (-4254 . 38699) (-4255 . 38480) (-4256 . 38299) + (-4257 . 38225) (-4258 . 38130) (-4259 . 38001) (-4260 . 37593) + (-4261 . 37497) (-4262 . 37375) (-4263 . 37260) (-4264 . 37199) + (-4265 . 37088) (-4266 . 36542) (-4267 . 35999) (-4268 . 35968) + (-4269 . 35868) (-4270 . 35840) (-4271 . 35784) (-4272 . 35607) + (-4273 . 35506) (-4274 . 35348) (-4275 . 35232) (-4276 . 34080) + (-4277 . 34027) (-4278 . 33903) (-4279 . 33806) (-4280 . 33747) + (-4281 . 33685) (-4282 . 33405) (-4283 . 33352) (-4284 . 33205) + (-4285 . 32993) (-4286 . 32889) (-4287 . 32670) (-4288 . 32554) + (-4289 . 32379) (-4290 . 32177) (-4291 . 31950) (-4292 . 30769) + (-4293 . 30674) (-4294 . 30466) (-4295 . 30286) (-4296 . 29663) + (-4297 . 29384) (-4298 . 29265) (-4299 . 29109) (-4300 . 28339) + (-4301 . 28166) (-4302 . 27933) (-4303 . 27628) (-4304 . 27542) + (-4305 . 27491) (-4306 . 27352) (-4307 . 27287) (-4308 . 26866) + (-4309 . 26817) (-4310 . 26738) (-4311 . 25292) (-4312 . 25139) + (-4313 . 24929) (-4314 . 24784) (-4315 . 24722) (-4316 . 24578) + (-4317 . 24507) (-4318 . 24344) (-4319 . 24240) (-4320 . 24156) + (-4321 . 24103) (-4322 . 23594) (-4323 . 23493) (-4324 . 23308) + (-4325 . 23234) (-4326 . 23181) (-4327 . 23036) (-4328 . 22691) + (-4329 . 22596) (-4330 . 22533) (-4331 . 22377) (-4332 . 22090) + (-4333 . 22019) (-4334 . 21893) (-4335 . 21777) (-4336 . 21724) + (-4337 . 21569) (-4338 . 21508) (-4339 . 21456) (-4340 . 21377) + (-4341 . 21240) (-4342 . 21125) (-4343 . 21039) (-4344 . 20838) + (-4345 . 20754) (-4346 . 20611) (-4347 . 20084) (-4348 . 19985) + (-4349 . 19879) (-4350 . 19492) (-4351 . 19439) (-4352 . 19357) + (-4353 . 19274) (-4354 . 19188) (-4355 . 19013) (-4356 . 18883) + (-4357 . 18631) (-4358 . 18549) (-4359 . 18173) (-4360 . 18124) + (-4361 . 17997) (-4362 . 17944) (-4363 . 17698) (-4364 . 17452) + (-4365 . 17174) (-4366 . 17033) (-4367 . 16753) (-4368 . 16700) + (-4369 . 16626) (-4370 . 16490) (-4371 . 16347) (-4372 . 15869) + (-4373 . 15752) (-4374 . 15686) (-4375 . 15587) (-4376 . 15469) + (-4377 . 15335) (-4378 . 15283) (-4379 . 15151) (-4380 . 14822) + (-4381 . 14697) (-4382 . 10154) (-4383 . 10032) (-4384 . 9760) + (-4385 . 9605) (-4386 . 9453) (-4387 . 9422) (-4388 . 9348) + (-4389 . 9052) (-4390 . 7852) (-4391 . 7678) (-4392 . 7607) + (-4393 . 7551) (-4394 . 7393) (-4395 . 7268) (-4396 . 7207) + (-4397 . 7063) (-4398 . 6936) (-4399 . 6598) (-4400 . 5894) + (-4401 . 5779) (-4402 . 5684) (-4403 . 5613) (-4404 . 5513) + (-4405 . 5377) (-4406 . 5254) (-4407 . 5220) (-4408 . 5041) + (-4409 . 4882) (-4410 . 4075) (-4411 . 3737) (-4412 . 3663) + (-4413 . 2982) (-4414 . 2824) (-4415 . 2300) (-4416 . 1933) + (-4417 . 1866) (-4418 . 1678) (-4419 . 1532) (-4420 . 1374) + (-4421 . 1220) (-4422 . 987) (-4423 . 953) (-4424 . 814) (-4425 . 430) + (-4426 . 334) (-4427 . 173) (-4428 . 30))
\ No newline at end of file |